WO2015109720A1 - 一种基于压电聚合物微结构阵列的俘能器制造方法 - Google Patents

一种基于压电聚合物微结构阵列的俘能器制造方法 Download PDF

Info

Publication number
WO2015109720A1
WO2015109720A1 PCT/CN2014/079030 CN2014079030W WO2015109720A1 WO 2015109720 A1 WO2015109720 A1 WO 2015109720A1 CN 2014079030 W CN2014079030 W CN 2014079030W WO 2015109720 A1 WO2015109720 A1 WO 2015109720A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric polymer
piezoelectric
array
substrate
micro
Prior art date
Application number
PCT/CN2014/079030
Other languages
English (en)
French (fr)
Inventor
邵金友
丁玉成
陈小亮
周要培
田洪淼
李祥明
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US14/633,131 priority Critical patent/US9621077B2/en
Publication of WO2015109720A1 publication Critical patent/WO2015109720A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/22Methods relating to manufacturing, e.g. assembling, calibration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49151Assembling terminal to base by deforming or shaping
    • Y10T29/49153Assembling terminal to base by deforming or shaping with shaping or forcing terminal into base aperture

Definitions

  • the invention belongs to the technical field of micro-nano manufacturing, and in particular relates to a method for manufacturing an energy harvester based on a piezoelectric polymer microstructure array.
  • the disadvantage is that the coil used is large and the output voltage is small.
  • the electrostatic conversion is to maintain the voltage stability, the external force excitation changes the capacitance of the capacitor, which causes the charge to flow and output the electric energy.
  • the biggest disadvantage of this trapping mode is that it needs a separate power supply to provide stability.
  • the voltage is therefore greatly limited in practical applications; piezoelectric transformation is the use of environmental vibration to induce deformation of the piezoelectric material, which causes the positive and negative charge centers in the material molecules to separate, thereby generating a polarization voltage and driving the charge on the plate.
  • Directional flow output electrical energy because piezoelectric conversion has the advantages of good power conversion performance, high energy density, no additional power supply, easy miniaturization, etc., and is very suitable for capturing natural environment.
  • the mechanical energy generated by the neutralizer during the movement has a very broad application prospect.
  • piezoelectric polymer materials have the advantages of low density, good flexibility, suitable for large-area processing, low dielectric constant, low mechanical impedance, long service life, etc.
  • Polarization is an important part of the piezoelectric polymer material's piezoelectric properties.
  • the main purpose is to make the molecular dipole moment of the disordered orientation of the piezoelectric polymer uniformly oriented along the direction of the polarization electric field.
  • the manufacturing method of the piezoelectric polymer-based energy absorbing device is generally to first prepare an initial film by melt calendering or extrusion molding at a high temperature, and after cooling to a certain temperature, mechanically stretching the orientation, and then evaporating the electrode and electric field pole.
  • a film having a better piezoelectric effect is obtained, and then the film is fixed and packaged. From the above film preparation and device fabrication process, it is necessary to prepare a film with piezoelectric characteristics and then package it into the device through a complicated preparation process. This method makes the device costly to manufacture, has low efficiency, and is incapable of adapting to the device micro. And the development of intelligence. Further, in order to improve the energy conversion efficiency of the piezoelectric energy absorbing device to a greater extent, it is indispensable to prepare a three-dimensional micro-nano structure on the film, and a large aspect ratio microstructure array under the same size mechanical vibration. More deformation can be produced relative to the film, resulting in more electrical energy.
  • an object of the present invention is to provide a method for manufacturing a trapper based on a piezoelectric polymer microstructure array, in which a piezoelectric polymer flow becomes micro at the same time of an electric field and a thermal field.
  • the structure is simultaneously polarized in the direction of the electric field to obtain strong piezoelectric
  • the final result is a set of piezoelectric polymer microstructures connecting the upper and lower electrodes to directly form the final piezoelectric trapping device.
  • the present invention combines the piezoelectric properties and the scale effects of the material organically, and can not only obtain a large depth and width.
  • the piezoelectric polymer microstructure array can simplify the process of film formation, tensile orientation, electric field polarization, device packaging, etc., thereby reducing the manufacturing process, improving efficiency, and achieving batch, low cost and uniformity of device manufacturing. Manufacturing technical property requirements.
  • the technical route adopted by the present invention is:
  • a method for fabricating an energy harvester based on a piezoelectric polymer microstructure array comprising the following steps:
  • the desired circular aperture array pattern structure is prepared on the surface of the silicon wafer by photolithography and etching process, and the surface treatment is performed to facilitate the demolding after imprinting. ;
  • Both the substrate and the electrode are made of FTO or ITO conductive glass, and a layer of polymer piezoelectric polymer solution having a thickness of micron is spin-coated on the surface of the substrate by a homogenizer. The residual solvent was evaporated to dryness on a hot plate at 100 ° C;
  • embossing and demolding In the oven, the treated embossing die is pressed against the polymer film at a pressure of 8 MPa, and the oven temperature is raised above the glass transition temperature of the piezoelectric polymer, 10 After -30 minutes, cooled to room temperature, demolded, leaving a columnar array of piezoelectric polymers on the substrate;
  • electric field induced flow conversion type Using another FTO or ITO conductive glass as the upper electrode, combined with the substrate to form a pair of plate electrodes, there is an air gap between the two plate electrodes, and the air gap is through the different thickness of the pad. Polyimide film to control air The gap requirement is 2-4 times the height of the columnar array. Place the plate electrode in the oven, apply an external DC power supply, connect the positive electrode to the electrode, connect the negative electrode to the substrate, and raise the oven temperature above the glass transition temperature of the piezoelectric polymer.
  • piezoelectric polymer curing directly obtains the piezoelectric energy absorbing device: while maintaining the voltage, the oven is cooled to room temperature and the voltage is removed to obtain a set of piezoelectric polymer microparticles connecting the substrate and the upper electrode.
  • the array of structures extracts the polyimide film between the substrate and the upper electrode, and the piezoelectric polymer microstructure array of the large aspect ratio and the upper and lower electrodes together constitute a micro piezoelectric energy harvester;
  • the piezoelectric energy harvester converts the surrounding mechanical vibration into electrical energy: the piezoelectric energy harvester is connected to an external circuit, and the alternating current generated by the external mechanical vibration is converted into a direct current through a rectifier, and then filtered, DC-transformed, etc. are satisfied.
  • the DC voltage is supplied to the load resistor.
  • the piezoelectric polymer is polyvinylidene fluoride (PVDF), polyvinylidene fluoride and trifluoroethylene copolymer P (VDF-TrFE), polyvinyl chloride (PVC) or nylon-11.
  • PVDF polyvinylidene fluoride
  • VDF-TrFE trifluoroethylene copolymer P
  • PVC polyvinyl chloride
  • the piezoelectric polymer solution is obtained by dispersing a piezoelectric polymer powder in a corresponding solvent at a mass concentration of 10%, and stirring it in a water bath at 60 ° C for 30-50 minutes to sufficiently dissolve it.
  • the invention can be applied to a wide range of piezoelectric polymer materials, and the obtained piezoelectric energy absorbing device has a large aspect ratio microstructure array, which greatly improves the energy conversion efficiency of the piezoelectric energy harvester. Same Since the invention does not require multiple complicated processes, the micro-structure is obtained while the electric field polarization is completed, and the device fabrication process is formed at one time, the processing cost is greatly reduced, and the processing efficiency is improved.
  • the technical solution can be widely applied to underwater acoustic detection. In the fields of piezoelectric sensing and ultrasonic transducing, it can also wirelessly power low-energy products such as wireless networks, embedded systems and MEMS, showing the good application prospect of piezoelectric captive energy technology.
  • Figure 1 is a schematic view showing the structure of an imprinting mold of the present invention.
  • FIG. 2 is a schematic view showing the preparation of a piezoelectric polymer film on a substrate according to the present invention.
  • Figure 3 is a schematic view of the present invention for pressing a treated template against a piezoelectric polymer film.
  • 4 is a schematic view showing a columnar array of piezoelectric polymers formed after demolding of the present invention.
  • Fig. 5 is a schematic view showing the application of an external electric field after the support of the support of the present invention and the application of the upper electrode.
  • Fig. 6 is a flow chart showing the microstructure of the piezoelectric polymer in the electric field induced flow-type process in the heated state.
  • Fig. 7 is a schematic view showing the piezoelectric polymer microarray connected to the upper and lower electrodes after the end of the electric field induced rheology of the present invention.
  • Fig. 8 is a schematic view showing the piezoelectric energy absorbing device formed after the temperature is removed and the polyimide film is removed after cooling and solidification.
  • Figure 9 is a schematic illustration of the use of a piezoelectric energy harvester to convert mechanical vibrations into electrical energy. detailed description
  • a method for fabricating an energy harvester based on a piezoelectric polymer microstructure array comprising the following steps: First, the preparation and processing of the imprinting mold: The imprinting mold 1 uses a conventional process of photolithography and etching to form a microporous array on the silicon wafer, as shown in Fig. 1, after completion, soaking with a fluorosilicone solution Hour, and baked at 170 ° C for 12 hours for low surface energy treatment to prevent damage to the microcolumn array structure during demolding;
  • FTO or ITO conductive glass is selected as substrate 2 and upper electrode 6, and a layer of micro-scale piezoelectric piezoelectric is spin-coated on the surface of substrate 2 by using a homogenizer. Polymer 3 solution and evaporated to dryness on a 100 ° C hot plate, as shown in Figure 2;
  • imprinting and demolding In the oven, the treated imprinting die 1 is pressed against the polymer 3 at a pressure P of 8 MPa, and the oven temperature is raised above the glass transition temperature of the piezoelectric polymer. After 10-30 minutes, cooled to room temperature, demolded, leaving a columnar array 4 of piezoelectric polymer on the substrate, as shown in FIG. 3 and FIG. 4;
  • piezoelectric polymer curing directly obtains a piezoelectric sensor: at a voltage of 7
  • the oven is cooled to room temperature and the voltage 7 is removed to obtain a set of piezoelectric polymer microstructure arrays 10 connecting the substrate 2 and the upper electrode 6, and the polyimide between the substrate 2 and the upper electrode 6 is obtained.
  • the amine film 5 is pulled out, and the piezoelectric polymer microstructure array 10 of the large aspect ratio and the upper electrode 6 and the lower electrode 2 together constitute a micro piezoelectric energy harvester, as shown in FIG. 8;
  • the piezoelectric energy harvester converts the surrounding mechanical vibration into electrical energy: the piezoelectric energy harvester is connected to an external circuit, and generally passes through the rectifier 11, converts the alternating current generated by the external mechanical vibration F into direct current, and then undergoes filtering and DC conversion.
  • the DC voltage that satisfies the requirements is obtained, and is supplied to the load resistor 12 as shown in FIG.
  • the size of the PVDF microstructure array that can be realized is that the size of the convex portion of the mold W1 and the size of the concave portion are both 10 micrometers to 100 micrometers, and the distance h2 between the plate electrodes is 20 micrometers to 100 micrometers, and the stamping is performed.
  • the height hl is from 10 micrometers to 50 micrometers, and the resulting piezoelectric polymer microstructure array has a size W4 of 5 micrometers to 50 micrometers, and a gap W3 between micrometer pillars of 10 micrometers to 100 micrometers.
  • Piezoelectric polymer The height h2 of the microstructure array is from 20 microns to 100 microns.
  • the invention adopts a method of imprint lithography and electric field induced rheology, and obtains a large aspect ratio microcolumn array with strong piezoelectric effect, which can perform large-area positioning of the microcolumn array by imprint lithography. Accurate positioning, simple and economical.
  • Capacitor because this processing process does not require multiple complicated processes, the micro-structure is obtained while the electric field polarization is completed, and the device is molded at a time, which greatly reduces the processing cost and improves the processing efficiency, and can be widely applied to underwater acoustics. Detection, piezoelectric sensing and ultrasonic transduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种基于压电聚合物微结构阵列的俘能器制造方法,先在导电基材上制备压电聚合物微柱阵列,然后使用另一块平板电极作为上电极,与基材形成一对平行平板电极,并在电极间施加直流电压,当加热基材至压电聚合物的玻璃态转换温度以上时,受电场力诱导作用,微柱阵列重新流变直至接触上电极形成具有蘑菇状顶部的大深宽比微柱阵列,在电场诱导流变的过程中,压电聚合物微结构化的同时其内部分子沿电场方向取向,获得具有强压电效应的微型俘能器,本发明得到的压电聚合物微结构阵列连接上下电极直接形成最终需要的器件,不需要复杂的工艺控制,大大降低了加工成本,提高了加工效率。

Description

说 明 书
一种基于压电聚合物微结构阵列的俘能器制造方法 技术领域
本发明属于微纳制造技术领域,具体涉及一种基于压电聚合物微 结构阵列的俘能器制造方法。
背景技术
随着社会工业化进程的加快和世界人口的急速增长,能源问题已 经成为当今最为关注的问题之一,通过开发新能源和回收可再生能源 来解决能源匮乏的重要性日益凸显。潜在可用的环境能源有:太阳能、 地热能和振动机械能等等,太阳能和地热能由于受天气因素的影响和 地理环境的限制而难以广泛使用,而振动机械能是自然界存在范围很 广的能量形式, 由于其无处不在且具有较高的能量密度, 因此研究振 动能量收集技术具有重要意义。常见的能将机械振动转化成电能的方 法有电磁、静电和压电三种转换方式, 电磁转换是利用电磁感应现象 将机械能转换成电能, 其缺点在于所用线圈的体积大且输出电压小, 俘能效果不佳; 而静电转换是在保持电压稳定时, 外力激励改变电容 器的电容, 从而引起电荷流动而输出电能, 但这种俘能方式的最大缺 点在于需要一个独立的电源为其提供稳衡电压,因此在实际应用中受 到了很大限制; 压电转换是利用环境振动诱导压电材料变形, 变形导 致材料分子中的正负电荷中心分离, 从而产生极化电压, 驱动极板上 的电荷定向流动输出电能, 因为压电转换具有力电转换性能好、能量 密度大、 无需额外电源、 易微型化等优点, 非常适用于俘获自然环境 中和人在运动过程中产生的机械能, 具有非常广阔的应用前景。
在众多的压电材料中, 压电聚合物材料具有密度低、 柔性好、 适 于大面积加工、具有低介电常数、低的机械阻抗、使用寿命长等优点, 越来越受到各国科技者的青睐。极化是压电聚合物材料产生压电性能 的重要环节,主要目的是让压电聚合物中杂乱取向的分子偶极矩沿着 极化电场方向一致取向。 目前, 基于高分子压电聚合物的俘能器制造 方法通常是先在高温下通过熔融压延或挤出成型制备初始薄膜,冷却 到一定温度后经过机械拉伸取向,随后蒸镀电极并电场极化得到具有 较好压电效应的薄膜, 再进行薄膜固定、 器件封装。 从上述薄膜制备 和器件制作工艺看,必须先经过复杂的制备工艺制备好具有压电特性 的薄膜再封装到器件中, 这种方法使器件制作成本较高, 效率较低, 更无法适应器件微型化及智能化的发展。更进一歩, 为了更大程度的 提高压电俘能器的能量转换效率,在薄膜上制备三维微纳米结构是必 不可少的, 在同样大小的机械振动下, 大深宽比的微结构阵列相对于 薄膜能够产生更大的形变, 从而产生更多的电能。而传统俘能器制备 压电薄膜过程中高温压延和挤出过程、 拉伸过程很难与 MEMS中的 硅基平面工艺匹配,因此将具有微纳米结构的压电聚合物集成到压电 俘能器工艺中, 实现微器件的制备, 是一个亟待解决的技术瓶颈。 发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于 压电聚合物微结构阵列的俘能器制造方法,在电场和热场的同时作用 下, 压电聚合物流变成为微结构的同时沿电场方向极化获得强压电 性, 最终得到一组连接上下电极的压电聚合物微结构阵列, 直接形成 最终的压电俘获器件,本发明将材料的压电性能和尺度效应有机地结 合起来,不仅可以得到具有大深宽比的压电聚合物微结构阵列而且可 以将制备薄膜、 拉伸取向、 电场极化、 器件封装等过程简化, 从而减 少制作工序, 提高效率, 达到器件制造的批量化、 低成本和一致性等 制造技术属性要求。
为了达到上述目的, 本发明采取的技术路线为:
一种基于压电聚合物微结构阵列的俘能器制造方法,包括以下歩 骤:
第一歩, 压印模具的制备及处理: 在硅片表面利用光刻和刻蚀工 艺制备出所需的圆孔阵列图形结构, 并对其进行表面处理, 使其利于 压印后的脱模;
第二歩, 基材和电极的选择及处理: 基材和电极都采用 FTO或 ITO导电玻璃,利用匀胶机在基材表面旋涂一层厚度为微米级别的高 分子压电聚合物溶液并在 100°C热板上把残余溶剂蒸干;
第三歩, 压印及脱模: 在烘箱中, 以 8Mpa的压力将处理后的压 印模具压在聚合物薄膜上,并把烘箱温度升至压电聚合物的玻璃态转 换温度以上, 10-30分钟后, 冷却至室温, 脱模, 在基材上留下压电 聚合物的柱状阵列;
第四歩, 电场诱导流变成型: 利用另一块 FTO或 ITO导电玻璃 作为上电极, 与基材组合形成一对平板电极, 两平板电极之间有一层 空气间隙, 空气间隙是通过垫不同厚度的聚酰亚胺薄膜来控制, 空气 间隙要求是柱状阵列高度的 2-4倍, 把平板电极放入烘箱中, 施加外 接直流电源, 正极连上电极, 负极连基材, 把烘箱温度升至压电聚合 物的玻璃态转换温度以上, 调节电压, 使压电聚合物柱状阵列受到的 电场力克服表面张力以及粘滞阻力流变,保持施加电压 20-50min,直 到压电聚合物微柱阵列接触到上电极并润湿形成顶部宽大的蘑菇状 结构阵列;
第五歩, 压电聚合物固化直接获得压电俘能器: 在保持电压不变 的情况下, 将烘箱冷却到室温后撤去电压, 得到一组连接基材和上电 极的压电聚合物微结构阵列,把基材和上电极之间的聚酰亚胺薄膜拔 出,大深宽比的压电聚合物微结构阵列和上下电极一起构成了微型压 电俘能器;
第六歩, 压电俘能器将周围机械振动转换为电能: 将压电俘能器 连接外部电路,经过整流器将外界机械振动产生的交流电转换成直流 电, 再经过滤波、 直流变换等得到满足要求的直流电压, 供给负载电 阻。
所述的压电聚合物是聚偏氟乙烯(PVDF)、聚偏氟乙烯与三氟乙 烯共聚物 P (VDF-TrFE), 聚氯乙烯 (PVC) 或尼龙 -11。
所述的压电聚合物溶液是通过把压电高分子粉末,以 10%的质量 浓度分散在相应溶剂中, 在 60°C水浴环境下用磁力搅拌机搅拌 30-50 分钟使其充分溶解得到。
本发明可适用于广泛的压电聚合物材料,得到的压电俘能器具有 大深宽比的微结构阵列, 大大提高了压电俘能器的能量转换效率。 同 时由于本发明不需要多重复杂的工艺,获得微结构的同时完成了电场 极化, 器件制作过程一歩成型, 大大降低了加工成本, 提高了加工效 率, 本技术方案可以广泛地应用在水声探测、压电传感和超声换能等 领域, 同时也可为无线网络、 嵌入式***和 MEMS等低耗能产品的 实现无线供能, 展现出了压电俘能技术的良好应用前景。
附图说明:
图 1为本发明压印模具的结构示意图。
图 2为本发明在基材上制备一层压电聚合物薄膜的示意图。 图 3为本发明将处理后的模板压在压电聚合物薄膜上的示意图。 图 4为本发明脱模后形成的压电聚合物柱状阵列示意图。
图 5为本发明垫好支架并加上上电极后, 施加外电场的示意图 图 6为本发明在加热状态下,电场诱导流变成型过程中压电聚合 物微结构阵列的流变示意图。
图 7 为本发明电场诱导流变结束后压电聚合物微阵列连接上下 电极的示意图。
图 8为本发明降温固化后撤去电压、拔除聚酰亚胺膜后形成的压 电俘能器的示意图。
图 9是本发明利用压电俘能器将机械振动转换为电能的示意图。 具体实施方式
下面将结合附图对本发明做详细描述。
一种基于压电聚合物微结构阵列的俘能器制造方法,包括以下歩 骤: 第一歩, 压印模具的制备及处理: 压印模具 1采用光刻和刻蚀的 传统工艺, 在硅片上制作微孔阵列, 如图 1所示, 完成后用氟硅垸溶 液浸泡 6小时, 并 170°C烘烤 12小时进行低表面能处理, 防止脱模 时损伤微柱阵列结构;
第二歩, 基材和电极的选择及处理: 选择 FTO或 ITO导电玻璃 作为基材 2和上电极 6, 利用匀胶机在基材 2表面旋涂一层厚度为微 米级别的高分子压电聚合物 3 溶液并在 100°C热板上把残余溶剂蒸 干, 如图 2所示;
第三歩, 压印及脱模: 在烘箱中, 以 8Mpa的压力 P将处理后的 压印模具 1压在聚合物 3上,并把烘箱温度升至压电聚合物的玻璃态 转换温度以上, 10-30分钟后, 冷却至室温, 脱模, 在基材上留下压 电聚合物的柱状阵列 4, 如图 3、 图 4所示;
第四歩, 电场诱导流变成型: 利用另一块 FTO或 ITO导电玻璃 作为上电极 6, 与基材 2组合形成一对平板电极, 两平板电极之间有 一层空气间隙, 空气间隙是通过垫不同厚度的聚酰亚胺薄膜 5 来控 制,空气间隙要求是柱状阵列高度的 2-4倍,把平板电极放入烘箱中, 施加外接直流电源 7, 正极连上电极 6, 负极连基材 2, 把烘箱温度 升至压电聚合物的玻璃态转换温度以上, 调节电压, 使压电聚合物微 阵列 8受到的电场力克服表面张力以及粘滞阻力流变,保持施加电压 20-50min,直到压电聚合物微柱阵列 8接触到上电级 6并润湿形成顶 部宽大的蘑菇状结构阵列 9, 如图 5、 图 6、 图 7所示;
第五歩, 压电聚合物固化直接获得压电传感器: 在保持电压 7不 变的情况下, 将烘箱冷却到室温后撤去电压 7, 得到一组连接基材 2 和上电极 6的压电聚合物微结构阵列 10, 把基材 2和上电极 6之间 的聚酰亚胺薄膜 5拔出, 大深宽比的压电聚合物微结构阵列 10和上 电极 6、 下电极 2—起构成了微型压电俘能器, 如图 8所示;
第六歩, 压电俘能器将周围机械振动转换为电能: 将压电俘能器 连接外部电路, 一般经过整流器 11, 将外界机械振动 F产生的交流 电转换成直流电,再经过滤波、直流变换等得到满足要求的直流电压, 供给负载电阻 12, 如图 9所示。
上述方法, 可以实现的 PVDF微结构阵列尺寸为:模具凸起部分 尺寸 W1以及凹陷部分尺寸 W2均为 10微米至 100微米级, 平板电 极之间的距离 h2为 20微米至 100微米级, 压印高度 hl, 为 10微米 至 50微米级, 最终得到的压电聚合物微结构阵列尺寸 W4为 5微米 至 50微米级, 微米柱之间的间隙 W3为 10微米至 100微米级, 压电 聚合物微结构阵列的高度 h2为 20微米至 100微米级。
本发明采用了压印光刻和电场诱导流变的方法,获得了具有强压 电效应的大深宽比微柱阵列,能够利用压印光刻对微柱阵列进行大面 积的定位, 此歩骤定位准确, 简单经济。 压印形成的微柱阵列, 在热 场和电场的同时作用下, 进一歩流变, 最终接触到上级板, 形成联通 上下极板的微结构阵列,冷却固化后直接获得了最终需要的压电式俘 能器, 由于此种加工工艺不需要多重复杂的工艺, 获得微结构的同时 完成了电场极化, 器件一歩成型, 大大降低了加工成本, 提高了加工 效率, 可以广泛地应用在水声探测、 压电传感和超声换能等领域。

Claims

权利要求书
1、 一种基于压电聚合物微结构阵列的俘能器制造方法, 其特征 在于, 包括以下歩骤:
第一歩, 压印模具的制备及处理: 在硅片表面利用光刻和刻蚀工 艺制备出所需的圆孔阵列图形结构, 并对其进行表面处理, 使其利于 压印后的脱模;
第二歩, 基材和电极的选择及处理: 基材和电极都采用 FTO或 ITO导电玻璃,利用匀胶机在基材表面旋涂一层厚度为微米级别的高 分子压电聚合物溶液并在 100°C热板上把残余溶剂蒸干;
第三歩, 压印及脱模: 在烘箱中, 以 8Mpa的压力将处理后的压 印模具压在聚合物薄膜上,并把烘箱温度升至压电聚合物的玻璃态转 换温度以上, 10-30分钟后, 冷却至室温, 脱模, 在基材上留下压电 聚合物的柱状阵列;
第四歩, 电场诱导流变成型: 利用另一块 FTO或 ITO导电玻璃 作为上电极, 与基材组合形成一对平板电极, 两平板电极之间有一层 空气间隙, 空气间隙是通过垫不同厚度的聚酰亚胺薄膜来控制, 空气 间隙要求是柱状阵列高度的 2-4倍, 把平板电极放入烘箱中, 施加外 接直流电源, 正极连上电极, 负极连基材, 把烘箱温度升至压电聚合 物的玻璃态转换温度以上, 调节电压, 使压电聚合物柱状阵列受到的 电场力克服表面张力以及粘滞阻力流变,保持施加电压 20-50min,直 到压电聚合物微柱阵列接触到上电极并润湿形成顶部宽大的蘑菇状 结构阵列; 第五歩, 压电聚合物固化直接获得压电俘能器: 在保持电压不变 的情况下, 将烘箱冷却到室温后撤去电压, 得到一组连接基材和上电 极的压电聚合物微结构阵列,把基材和上电极之间的聚酰亚胺薄膜拔 出,大深宽比的压电聚合物微结构阵列和上下电极一起构成了微型压 电俘能器;
第六歩, 压电俘能器将周围机械振动转换为电能: 将压电俘能器 连接外部电路,经过整流器将外界机械振动产生的交流电转换成直流 电, 再经过滤波、 直流变换等得到满足要求的直流电压, 供给负载电 阻。
2、 根据权利要求 1所述的一种基于压电聚合物微结构阵列的俘 能器制造方法, 其特征在于: 所述的压电聚合物是聚偏氟乙烯
(PVDF)、 聚偏氟乙烯与三氟乙烯共聚物 P (VDF-TrFE), 聚氯乙烯 (PVC) 或尼龙 -11。
3、 根据权利要求 1所述的一种基于压电聚合物微结构阵列的俘 能器制造方法, 其特征在于: 所述的压电聚合物溶液是通过把压电高 分子粉末, 以 10%的质量浓度分散在相应溶剂中, 在 60°C水浴环境 下用磁力搅拌机搅拌 30-50分钟使其充分溶解得到。
PCT/CN2014/079030 2014-01-21 2014-05-31 一种基于压电聚合物微结构阵列的俘能器制造方法 WO2015109720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/633,131 US9621077B2 (en) 2014-01-21 2015-02-26 Method for manufacturing energy harvester comprising piezoelectric polymer microstructure array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410027619.1A CN103771336B (zh) 2014-01-21 2014-01-21 一种基于压电聚合物微结构阵列的俘能器制造方法
CN201410027619.1 2014-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/633,131 Continuation-In-Part US9621077B2 (en) 2014-01-21 2015-02-26 Method for manufacturing energy harvester comprising piezoelectric polymer microstructure array

Publications (1)

Publication Number Publication Date
WO2015109720A1 true WO2015109720A1 (zh) 2015-07-30

Family

ID=50564181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079030 WO2015109720A1 (zh) 2014-01-21 2014-05-31 一种基于压电聚合物微结构阵列的俘能器制造方法

Country Status (3)

Country Link
US (1) US9621077B2 (zh)
CN (1) CN103771336B (zh)
WO (1) WO2015109720A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951976A (zh) * 2021-02-05 2021-06-11 江西欧迈斯微电子有限公司 压电材料的极化方法、压电组件及无电极超声波发射装置
CN113517388A (zh) * 2021-05-21 2021-10-19 西安电子科技大学 一种可降解压电能量收集器及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944804B2 (en) * 2006-01-04 2015-02-03 Liquidia Technologies, Inc. Nanostructured surfaces for biomedical/biomaterial applications and processes thereof
CN103771336B (zh) * 2014-01-21 2016-04-13 西安交通大学 一种基于压电聚合物微结构阵列的俘能器制造方法
CN104588211B (zh) * 2015-01-28 2016-08-03 张文明 自发电防雾霾空气过滤装置
CN104764521B (zh) * 2015-03-20 2017-12-05 西北工业大学 一种高灵敏度微振动检测方法
KR101830205B1 (ko) * 2017-02-17 2018-02-21 주식회사 베프스 압전 센서 제조 방법 및 이를 이용한 압전 센서
WO2018156079A1 (en) * 2017-02-21 2018-08-30 Agency For Science, Technology And Research Ultrasonic transducers and methods for producing an ultrasonic transducer
CN108063183B (zh) * 2017-11-30 2019-07-12 西安交通大学 一种基于纳米压印制备封闭多孔压电驻极体俘能器的方法
CN108072389B (zh) * 2017-11-30 2019-09-03 西安交通大学 一种仿生贴附型可穿戴健康监测传感器制造方法
CN108462404A (zh) * 2018-03-22 2018-08-28 杭州干城科技有限公司 基于压电陶瓷震动环境能量收集的智能供电***
CN108892099B (zh) * 2018-06-25 2021-03-16 武汉大学 一种压印超薄材料制备均匀表面微结构的方法
CN109764981B (zh) * 2018-12-27 2020-01-14 西安交通大学 一种柔性力热集成传感器
CN111483972A (zh) * 2019-01-25 2020-08-04 中国科学院上海微***与信息技术研究所 富集器芯片结构及其制备方法
CN110138263B (zh) * 2019-06-13 2020-03-24 西安交通大学 一种基于可溶性模具制备微结构化压电俘能器的方法
CN110642222B (zh) * 2019-09-29 2022-12-30 中国科学技术大学 一种高长径比的微米柱阵列、其制备方法和应用
EP3869575A1 (en) * 2020-02-21 2021-08-25 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Piezoelectric device with pillar structure and method of manufacturing
CN112357876B (zh) * 2020-11-25 2024-06-04 四川大学 一种3d打印结合电场诱导成型制备高分子阵列的方法
CN113483922B (zh) * 2021-05-21 2023-03-31 中国科学院重庆绿色智能技术研究院 带有力敏薄膜的条带式柔性线阵压力传感器、智能工装夹具及力敏薄膜制备方法
CN114497352B (zh) * 2022-04-06 2022-06-24 淄博高新技术产业开发区Mems研究院 具有微结构阵列的压电材料层及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827588C1 (de) * 1998-06-20 2000-06-29 Georg Fauser Verfahren zur Herstellung piezoelektrischer Folien durch Polung von Polymerfolien oder Folien mit Polymerbeschichtung unter Verwendung einer rotierenden, elektrisch geladenen Trommel
CN103332649A (zh) * 2013-06-20 2013-10-02 西安理工大学 一种一维纳米线阵列结构聚偏氟乙烯的制备方法
CN103771336A (zh) * 2014-01-21 2014-05-07 西安交通大学 一种基于压电聚合物微结构阵列的俘能器制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100414808C (zh) * 2006-04-26 2008-08-27 中南大学 能高效俘能和储能的压电俘能器
US8274383B2 (en) * 2008-03-31 2012-09-25 The Boeing Company Methods and systems for sensing activity using energy harvesting devices
WO2013028916A1 (en) * 2011-08-23 2013-02-28 Powerleap, Inc. Flooring system and floor tile
CN102324869A (zh) * 2011-09-21 2012-01-18 武汉钢铁(集团)公司 一种哑铃型的超静定压电梁俘能器
CN203119792U (zh) * 2012-10-30 2013-08-07 苏州市职业大学 一种压电俘能单元
CN103064137B (zh) * 2013-01-09 2015-07-08 西安交通大学 一种非球面微透镜阵列的电场诱导压印方法
CN103159164B (zh) * 2013-03-01 2015-08-05 西安交通大学 一种高深宽比微柱阵列的电场诱导压印方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19827588C1 (de) * 1998-06-20 2000-06-29 Georg Fauser Verfahren zur Herstellung piezoelektrischer Folien durch Polung von Polymerfolien oder Folien mit Polymerbeschichtung unter Verwendung einer rotierenden, elektrisch geladenen Trommel
CN103332649A (zh) * 2013-06-20 2013-10-02 西安理工大学 一种一维纳米线阵列结构聚偏氟乙烯的制备方法
CN103771336A (zh) * 2014-01-21 2014-05-07 西安交通大学 一种基于压电聚合物微结构阵列的俘能器制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951976A (zh) * 2021-02-05 2021-06-11 江西欧迈斯微电子有限公司 压电材料的极化方法、压电组件及无电极超声波发射装置
CN113517388A (zh) * 2021-05-21 2021-10-19 西安电子科技大学 一种可降解压电能量收集器及其制备方法
CN113517388B (zh) * 2021-05-21 2023-10-13 西安电子科技大学 一种可降解压电能量收集器及其制备方法

Also Published As

Publication number Publication date
CN103771336A (zh) 2014-05-07
US9621077B2 (en) 2017-04-11
CN103771336B (zh) 2016-04-13
US20150236620A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2015109720A1 (zh) 一种基于压电聚合物微结构阵列的俘能器制造方法
CN108063183B (zh) 一种基于纳米压印制备封闭多孔压电驻极体俘能器的方法
US10630207B2 (en) Triboelectric nanogenerator for harvesting broadband kinetic impact energy
CN109950045B (zh) 一种具有可调控类挠曲电效应的挠曲电驻极体及其制备方法
CN103532430B (zh) 基于压电和摩擦电耦合的柔性微型能量采集器的制备方法
CN103107737A (zh) 压电摩擦复合式微纳发电机及其制备方法
US8549715B2 (en) Piezoelectric microspeaker and method of fabricating the same
US10686118B2 (en) Method of promoting electric output of piezoelectric/conductive hybrid polymer
US20150372620A1 (en) Integrated micro/nanogenerator and method of fabricating the same
CN103159164B (zh) 一种高深宽比微柱阵列的电场诱导压印方法
WO2013181952A1 (zh) 压电和摩擦电混合纳米发电机
Mahmud et al. Advances in mems and microfluidics‐based energy harvesting technologies
CN110138263B (zh) 一种基于可溶性模具制备微结构化压电俘能器的方法
CN103036477B (zh) 基于柔性聚合物压电材料的多模态复合式能量采集器
US20160126450A1 (en) Diaphragm actuator and method for producing a diaphragm actuator
CN103354272B (zh) 卷对卷制备大面积微纳米结构发电机薄膜的方法
KR101694638B1 (ko) 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름의 제조방법, 이에 의해 제조된 마찰전기필름 및 이를 포함하는 고성능 마찰전기소자
CN102569641A (zh) 具有压电系数d31的压电驻极体功能膜的制备方法
KR20210065653A (ko) 마찰 전기 발전 소자 및 이의 제조방법
CN103434127A (zh) 基于机械力拉伸的大深宽比纳米纤维结构及其制备方法
US9048427B2 (en) Thin film fabrication of rubber material with piezoelectric characteristics
CN112987493B (zh) 一种大深宽比结构薄膜的制备装置及其制备方法
CN102856487A (zh) 一种可伸缩性压电驻极体功能膜的制备方法
TW201625089A (zh) 壓電換能器之製造方法
CN114613902B (zh) 一种聚合物薄膜极化的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880297

Country of ref document: EP

Kind code of ref document: A1