WO2015109707A1 - 面光源、背光模组和显示装置 - Google Patents

面光源、背光模组和显示装置 Download PDF

Info

Publication number
WO2015109707A1
WO2015109707A1 PCT/CN2014/078510 CN2014078510W WO2015109707A1 WO 2015109707 A1 WO2015109707 A1 WO 2015109707A1 CN 2014078510 W CN2014078510 W CN 2014078510W WO 2015109707 A1 WO2015109707 A1 WO 2015109707A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
laser
grating
optical fiber
Prior art date
Application number
PCT/CN2014/078510
Other languages
English (en)
French (fr)
Inventor
金起满
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/422,281 priority Critical patent/US9606283B2/en
Publication of WO2015109707A1 publication Critical patent/WO2015109707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the invention belongs to the technical field of display, in particular to a surface light source, a backlight module and a display
  • a liquid crystal display device Liquid Crystal Display
  • a backlight module Back Light Module
  • a light source that provides uniform brightness to the liquid crystal panel.
  • backlight modules usually pass A series of optical diaphragms convert commonly used point or line sources into high brightness and uniformity The surface light source of the brightness enables the liquid crystal panel to display images properly.
  • the backlight module mainly includes a light source (Light Source) and a reflective film. (Reflector), Light Guide Plate and frame.
  • the light source includes CCFL (Cold Cathode Fluorescent Lamp) Extreme fluorescent light) or LED (Light Emitting Diode), these lights
  • CCFL Cold Cathode Fluorescent Lamp
  • LED Light Emitting Diode
  • the light beam emitted by the source is usually dispersed after being guided by the light guide plate, and the light collecting effect is poor.
  • An additional prism film is used to collect astigmatism to enhance the concentrating effect, thereby improving the backlight mode.
  • the brightness of the group in addition, these light sources also have a narrow color gamut and low efficiency.
  • the technical problem to be solved by the present invention is to address the above-mentioned non-existence in the prior art.
  • the group has the advantages of wide color gamut, high efficiency and high concentration of light.
  • the technical solution adopted to solve the technical problem of the present invention is a surface light source, and the package thereof Include at least one optical fiber and one-to-one correspondence on one end of the at least one optical fiber At least one light source, each of the at least one optical fibers being spaced apart along the length direction There are multiple light exit windows, and the light beams emitted by the respective light sources propagate along their respective optical fibers, and The optical fibers are respectively emitted through the plurality of light exit windows.
  • the at least one optical fiber is curvedly arranged in a line shape or a central axis, and And the central axes of the optical fibers are located in the same layout plane, and the light exit windows of the optical fibers are opened. At least one side of the layout plane.
  • the opening density of the light-emitting window on each of the optical fibers is along with the corresponding light source The distance increases as the distance increases.
  • each light exit window on each fiber is on the surface of the fiber a grating having a plurality of slits formed at a pitch, the arrangement direction of the plurality of slits being perpendicular to the The length direction of the fiber.
  • the at least one light source is a laser light source, and the laser light source emits The laser is transmitted along the fiber and exits the fiber through the grating.
  • the line-to-line period of the grating and the wavelength of the laser satisfy the formula: 0.5 ⁇ ⁇ / ⁇ ⁇ 1, wherein ⁇ is the line-to-line period of the grating, and ⁇ is the laser The wavelength.
  • the incident angle of the laser beam entering the grating is in the range of 50° ⁇ At 80°, the exit angle of the grating is emitted in the range of -15° to 15°.
  • the optical fiber comprises a coaxially disposed core wire and a protective layer, the protection a layer wrapped around a periphery of the core wire; the protective layer being formed of a transparent resin, The light exit window is opened in the protective layer.
  • the optical fiber is composed of a core wire, and the light exit window is opened in the core In the outer surface of the line.
  • the at least one optical fiber comprises three optical fibers, and the three optical fibers are The central axis is disposed in a parallel curved manner in the layout plane; the at least one light
  • the source includes a red laser source, a green laser source, and a blue laser light. a source, the red laser source, the green laser source, and the blue laser source They are respectively disposed at one ends of one of the three optical fibers.
  • the red laser source, the green laser source, and the blue light The red light laser, the green light laser, and the blue light laser respectively emitted by the laser light source pass through the light output After the window exits, the mixed colors form white light.
  • the invention also provides a backlight module comprising any of the aforementioned surface light sources.
  • the routing plane is parallel to the display panel.
  • the light exit window of each fiber faces the display panel.
  • each optical fiber faces away from the display panel, and the backlight module
  • the group also includes a reflective film, and each fiber is located between the reflective film and the display panel.
  • each optical fiber Preferably, a part of the light exit window of each optical fiber faces the display panel, and Another portion of the light exit window of each fiber faces away from the display panel, and the backlight
  • the module further includes a reflective film, and each of the optical fibers is located on the reflective film and the display panel between.
  • the backlight module further includes a diffusion film, and the diffusion film is disposed at the Between the optical fiber and the display panel.
  • the present invention also provides a display device comprising any of the foregoing backlight modules.
  • the invention has the beneficial effects that the surface light source provided by the invention has high concentration and wideness. Color gamut, high efficiency; correspondingly, the backlight module using the surface light source High concentrating, wide color gamut, high efficiency; and the display of the backlight module
  • the device has a better display effect.
  • FIG. 1 is a schematic structural view of a surface light source according to Embodiment 1 of the present invention.
  • Figure 2 is a schematic cross-sectional view of the optical fiber of Figure 1 in a direction perpendicular to the length;
  • Figure 3 is a schematic cross-sectional view of the optical fiber of Figure 2 in the longitudinal direction;
  • Figure 4 is another schematic cross-sectional view of the optical fiber of Figure 1 in a direction perpendicular to the length;
  • Figure 5 is a schematic cross-sectional view of the optical fiber of Figure 4 in the longitudinal direction;
  • FIG. 6 is a schematic structural diagram of a surface light source in a backlight module according to Embodiment 2 of the present invention.
  • the surface light source is a light-emitting mode, relative to the LED
  • surface light sources such as flat light sources have soft light, It does not hurt the eyes, saves electricity, and the natural light beam is an important part of future development of light source products. to.
  • the surface light source in this embodiment includes an optical fiber 2 and is disposed on the optical fiber. 2 at one end of the light source 1, the optical fibers 2 are spaced apart in the longitudinal direction to have a plurality of light exit windows 3, The light beam emitted from the light source 1 propagates along the optical fiber 2 and exits the optical fiber 2 through the respective light exit windows 3.
  • each light exit window 3 on the optical fiber is equally spaced on the surface of the optical fiber 2 a grating 30 having a plurality of slits arranged in a direction perpendicular to the length of the optical fiber 2 Towards, that is, an exit window 3 is a raster 30.
  • the light source 1 is a laser light source, and the laser light emitted by the laser light source It is transmitted along the optical fiber 2 and exits the optical fiber 2 via the grating 30.
  • fiber 2 can be in line Type arrangement, or arranged in a curved manner with its central axis, and in the middle of the fiber
  • the mandrel is arranged in a layout plane, and the light exit window 3 is located at the optical fiber 2 Arranging above the layout plane (as shown in Figure 2) and/or opening on the optical fiber 2 Below the plane (the opposite direction as shown in Figure 2, not shown) to form A surface light source that controls the intensity of light.
  • the optical fibers can be wired Types arranged in parallel, or arranged in parallel with their central axes curved, and these lights The central axes of the fibers are arranged in the same layout plane, and the light exit window 3 of each fiber is opened.
  • the layout plane of the corresponding optical fiber as shown in FIG. 2 and/or The corresponding fiber is located below the layout plane (in the opposite direction to that shown in Figure 2, Not shown) to form a surface light source that is easy to control the intensity of light.
  • the optical fiber is usually an elongated cylindrical solid composite fiber, in this embodiment, As shown in Figures 2 and 3, the optical fiber 2 is a multi-layer coaxial cylindrical body including coaxial a core wire 21 and a protective layer 22 are disposed, and the protective layer 22 is wrapped around the periphery of the core wire 21; The line 21 and the protective layer 22 together form a dielectric optical waveguide for conducting and contracting the light beam. Beam to achieve light transmission.
  • the protective layer 22 is formed of a transparent resin, and each light window 3 is a grating 30 formed in the protective layer 22 including a plurality of slits formed at equal intervals; Alternatively, as shown in FIG. 4 and FIG.
  • the optical fiber 2 includes only the core wire 21, and each light exit window 3 A grating 30 including a plurality of slits formed in the outer surface of the core wire 21.
  • Core wire 21 Usually formed of silica, so the resulting fiber has a refractive index of 1.5 to 1.6 for light. between.
  • the laser will attenuate during the transmission of the optical fiber 2, to ensure the surface light source Uniformity of brightness everywhere, preferably with light exit window 3 and fiber 2
  • the opening density of the light-emitting window 3 increases, that is, The density of the light window 3 (grating 30) is set with its distance from the light exit end of the laser source. The increase increases as the distance increases.
  • the grating 30 can be formed using a patterning process. Specifically, when the grating 30 is formed in the light When the protective layer 22 of the fiber 2 is used, it can be coated, exposed, developed, and etched by photoresist. A step of forming a grating structure having a plurality of slits in the protective layer 22, as shown in FIG. 2 and 3 is shown. At this time, the thickness of the protective layer 22 is equal to the height h of the grating 30.
  • the grating 30 is formed in the outer surface of the core wire 21, it can also pass The above method is formed.
  • the line interval of the grating 30 i.e., one
  • the period of the light-transmissive slit and the wavelength of the laser must satisfy the formula:
  • is the line-to-line period of the grating 30, and ⁇ is the laser source. The wavelength of the laser that is emitted.
  • the efficiency of the grating 30 is determined by the slit width w and the height h constituting the grating 30.
  • the range of the slit width w of the grating 30 is: 0.05 ⁇ W ⁇ 0.99 ⁇ , if the slit width w is less than 0.05 ⁇ , the diffraction effect of the grating 30 The rate is low, the amount of light emitted is small, and the manufacturing process is difficult; if the slit width w is greater than 0.99 ⁇ , then Most lasers produce total reflection and the diffraction efficiency is low.
  • the height h of the grating 30 The circumference is: 0.05 ⁇ h ⁇ 5 ⁇ , if the height h is less than 0.05 ⁇ , the diffraction effect of the grating 30 The rate is low, and the emitted light is small; if the height h is greater than 5 ⁇ , the manufacturing process is complicated and difficult.
  • n' is the refractive index of the air
  • n s is the refractive index of the grating
  • ⁇ in is the incident angle of the laser incident grating
  • ⁇ m is the exit angle of the exit grating
  • m is the diffraction of the grating 30.
  • the number of stages of the spectrum, where m 0, ⁇ 1, ⁇ 2.... It should be understood here that the angle of incidence and the angle of exit are the same as the angle of incidence and exit angle in the usual sense, i.e. relative to the normal direction of the plane of the grating 30 at a point.
  • the angle of incidence of the laser incident grating 30 ranges from 50° to 80°.
  • the exit angle of the exit grating 30 ranges from -15° to 15°.
  • the incident angle of the laser light incident grating 30 ranges from 60° to 70°, A narrower range of exit angles of the grating 30 can be obtained.
  • the angular range is -15 ° ⁇ 15 °, that is, the laser beam passes through the grating 30 to be close to perpendicular to The angle of the fiber exits the grating, thus making the surface light source have a better concentrating effect.
  • the opposite light source usually has special requirements, so it can be based on
  • the principle of color mixing is to use different colors of laser light source, combined with more than one fiber and Multiple gratings to meet the requirements of different surface source colors and illuminating areas.
  • the surface light source in this embodiment is formed by using a laser light source and an optical fiber having a grating. It has the advantages of high concentration, wide color gamut and high efficiency.
  • This embodiment provides a backlight module, also called a backlight (Back Light Source), used to provide a light source for a panel, the backlight module includes The surface light source in Example 1.
  • a backlight module also called a backlight (Back Light Source)
  • the backlight module includes The surface light source in Example 1.
  • the surface light source includes three optical fibers 2, and the central axes of the three optical fibers 2 are bent and arranged in parallel In the plane, in order to make the light source fully utilized, it is preferable to three of the surface light sources
  • the layout plane of the optical fiber 2 is set to be parallel to the plane of the liquid crystal display panel;
  • the light window 3 faces the liquid crystal display panel such that the laser beam is directly incident through the grating 30 To the LCD panel.
  • the light source 1 includes a red laser light source R, a green laser light source G, and a blue laser light.
  • Source B, red laser source R, green laser source G, and blue laser source B are each set Placed at one end of one of the three optical fibers 2; red laser source R, green laser source G And the blue laser light source, the green laser light, and the blue laser light source B
  • the light-emitting window 3 of each corresponding fiber is emitted and mixed to form white light, and is supplied to the liquid crystal. Display panel.
  • the wavelength of the red laser is 635 nm
  • the wavelength of the green laser is 523 nm.
  • the wavelength of the blue laser is 470 nm; correspondingly, according to formula (2), the red laser source
  • the line-to-line period of the grating 30 in the fiber 2 corresponding to R is 455 nm, and the green laser light source G
  • the line-to-line period of the grating 30 in the corresponding fiber 2 is 375 nm
  • the blue laser source B is The line-to-line period of the grating 30 in the intended fiber 2 is 337 nm.
  • the light window of the color laser is identified by different graphic shapes, among them, The shaped light window represents red light, and the circular light window represents green light, triangle
  • the light exit window represents the blue light.
  • the incident angle of the laser light incident grating 30 is in the range of 50 ° - 80°, further preferred in this embodiment are a red laser, a green laser, and a blue laser phase.
  • the incident angle to the grating 30 is about 65° so that the red laser, the green laser, and the blue
  • the color laser can achieve the range of the exit angle of the exit grating 30 by one transmission or reflection. It is -15 ° ⁇ 15 °.
  • the grating 30 Due to the angle between the beam finally emitted through the grating 30 and the normal In the range of -15 ° ⁇ 15 °, so it is a narrow angle of light, that is, the laser beam After the grating 30, the grating 30 is emitted at an angle close to perpendicular to the optical fiber, so that it has better Concentrating effect. Even if the prism film in the prior art is not used to concentrate the astigmatism, The surface light source can also achieve a better concentrating effect, thereby obtaining a better backlight effect; At the same time, since the laser is used as the light source, the surface light source also has a wide color gamut. The advantage of high efficiency.
  • the optical fiber 2 for transmitting red laser, green laser, and blue laser
  • the optical fiber 2 as the distance between the light exit window 3 and the laser light exit end of the laser light source increases, The opening density of the light-emitting window is increased, that is, the density of the arrangement of the grating 30 is increased to The uniform gray scale on the entire surface light source is realized, and the light extraction efficiency of the grating 30 is improved.
  • the backlight module further comprises a diffusion film (FIG. 4 is not shown), the diffusion film is disposed on one side of the optical fiber 2 and the display panel so as to be mixed The laser beam after the light is diffused to achieve a more uniform, closer to white backlight.
  • a diffusion film FIG. 4 is not shown
  • the backlight module in this embodiment adopts a laser light source and a fiber shape having a grating
  • the surface light source can realize the high concentration of the backlight module without using the prism film;
  • the light source itself has a wider color gamut and higher light utilization, thus achieving backlighting The wide color gamut and high efficiency of the module.
  • the embodiment provides a backlight module, and the light source in the backlight module can still be collected.
  • the surface light source of Example 1 was used.
  • the difference between this embodiment and Embodiment 2 is that the optical fiber The opening and exiting window is different.
  • the light exit window faces away from the display panel, correspondingly, in order to further Step to improve the utilization of the light source, the backlight module further includes a reflective film, and the optical fiber is arranged in the reflection Between the film and the display panel, the reflective film is used to reflect the light emitted from the grating to the liquid crystal display The panel is shown to form a backlight.
  • the optical module further includes a diffusion film disposed between the optical fiber and the display panel.
  • the backlight module in this embodiment adopts a laser light source and a fiber shape having a grating
  • the surface light source realizes a wide color gamut, high efficiency and high concentration of the backlight module.
  • Embodiment 2 respectively face the light-emitting window on the optical fiber facing the display surface
  • Embodiment 3 can also be used.
  • the object of the present invention is achieved by combining it with Embodiment 3. That is to say, the invention also A backlight module is provided, and the light source in the backlight module can still adopt Embodiment 1 The surface light source in the middle.
  • a part of the light exit window on the optical fiber is oriented The display panel, while the other part faces away from the display panel.
  • the backlight module further includes a reflective film and a diffusion film, and the optical fiber is arranged in the opposite Between the film and the diffusion film, the diffusion film is disposed between the light and the display panel.
  • the reflective film and the diffusion film in the example and the diffusion film of Example 2 and the emission in Example 3 The membranes have the same function and will not be described again here.
  • the backlight module in this embodiment adopts a laser light source and a fiber shape having a grating
  • the surface light source realizes a wide color gamut, high efficiency and high concentration of the backlight module.
  • the embodiment further provides a display device, which includes Embodiment 2 to Embodiment 4. Any backlight module.
  • the display device can be: a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, TV, monitor, laptop, digital photo frame, navigator, etc. A product or part that exhibits functionality.
  • the display device adopts a backlight with wide color gamut, high efficiency and high concentration.
  • the module has a better display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种面光源、背光模组和显示装置,所述面光源包括至少一条光纤(2)和以一一对应方式设置于所述至少一条光纤(2)一端的至少一个光源(1),所述至少一条光纤(2)各自沿长度方向上间隔地设有多个出光窗口(3),各光源(1)发出的光束沿各自对应的光纤传播,并分别经所述多个出光窗口(3)射出光纤。该面光源以及采用该面光源的背光模组具有高聚光、宽色域、高效率的优点,采用该背光模组的显示装置具有更好的显示效果。

Description

面光源、背光模组和显示装置 技术领域
本发明属于显示技术领域,尤其涉及面光源、背光模组和显
示装置。
背景技术
由于液晶本身不发光,因此,在液晶显示装置(Liquid  Crystal Display)中采用背光模组(Back Light Module)来自作为 对液晶面板提供均匀亮度的光源。一般来说,背光模组通常通过 一系列光学膜片将常用的点光源或线型光源转化成高亮度且均一 辉度的面光源,从而使液晶面板能正常显示影像。
通常,背光模组主要包括光源(Light Source)、反射膜 (Reflector)、导光板(Light Guide Plate)及外框等部件。现有 技术中,光源包括CCFL(Cold Cathode Fluorescent Lamp,冷阴 极荧光灯)或LED(Light Emitting Diode,发光二极管),这些光 源发射的光束经导光板导光后通常较为分散,聚光效果差,需要 额外采用棱镜膜来聚集散光,以增强聚光效果,从而提高背光模 组的亮度;另外,这些光源还存在色域窄、效率低的不足。
因此,实现背光模组的高聚光性、宽色域以及高效率,成为 目前亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不 足,提供一种面光源、背光模组以及显示装置,其中所述背光模 组具有宽色域、高效率和高聚光的优点。
解决本发明技术问题所采用的技术方案是一种面光源,其包 括至少一条光纤和以一一对应方式设置于所述至少一条光纤一端 的至少一个光源,所述至少一条光纤各自沿长度方向上间隔地设 有多个出光窗口,各光源发出的光束沿各自对应的光纤传播,并 分别经所述多个出光窗***出光纤。
优选地,所述至少一条光纤以线型或中心轴弯曲地排布,并 且各光纤的中心轴位于同一布设平面内,各光纤的出光窗口开设 于所述布设平面的至少一侧。
优选地,每条光纤上的出光窗口的开设密度随着与相应光源 的距离的增大而增大。
优选地,每条光纤上的每个出光窗口均为在该光纤表面上等 间距形成有多个狭缝的光栅,所述多个狭缝的排列方向垂直于该 光纤的长度方向。
优选地,所述至少一个光源为激光光源,所述激光光源发射 的激光沿光纤传输,并经所述光栅射出光纤。
优选地,所述光栅的线间周期与所述激光的波长满足公式: 0.5≤Λ/λ≤1,其中,Λ为所述光栅的线间周期,λ为所述激光 的波长。
优选地,所述激光射入所述光栅的入射角以及射出所述光栅 的出射角满足公式:n’sinφ m-n ssinθ in=λ·m/Λ,其中,θ in为 所述激光入射所述光栅的入射角,φ m为所述激光射出所述光栅的 出射角,n’为空气的折射率,n s为所述光栅的折射率,m为所述光 栅的衍射光谱的级数。
优选地,所述激光射入所述光栅的入射角的范围为50°~ 80°,射出所述光栅的出射角的范围为-15°~15°。
优选地,所述光纤包括同轴设置的芯线和保护层,所述保护 层包裹于所述芯线的***;所述保护层采用透明树脂形成,所述 出光窗口开设于所述保护层中。
优选地,所述光纤由芯线构成,所述出光窗口开设于所述芯 线的外表面中。
优选地,所述至少一根光纤包括三根光纤,所述三根光纤以 中心轴平行弯曲的方式设置于所述布设平面内;所述至少一个光 源包括一个红光激光光源、一个绿光激光光源和一个蓝光激光光 源,所述红光激光光源、所述绿光激光光源和所述蓝光激光光源 分别设置于所述三根光纤之一的一端。
优选地,所述红光激光光源、所述绿光激光光源和所述蓝光 激光光源分别发出的红光激光、绿光激光和蓝光激光经所述出光 窗口出射后混色形成白光。
本发明还提供了一种背光模组,其包括前述任一面光源。
优选地,所述布设平面与所述显示面板平行。
优选地,各光纤的出光窗口朝向所述显示面板。
优选地,各光纤的出光窗口背向所述显示面板,所述背光模 组还包括反射膜,且各光纤位于所述反射膜和所述显示面板之间。
优选地,各光纤的出光窗口的一部分朝向所述显示面板,且 各光纤的出光窗口的另一部分背向所述显示面板,以及所述背光 模组还包括反射膜,且各光纤位于所述反射膜和所述显示面板之 间。
优选地,所述背光模组还包括扩散膜,所述扩散膜设置于所 述光纤与所述显示面板之间。
本发明还提供了一种显示装置,其包括前述任一背光模组。
本发明的有益效果是:本发明提供的面光源具有高聚光、宽 色域、高效率的优点;相应的,使得采用该面光源的背光模组具 有高聚光、宽色域、高效率的优点;而且采用该背光模组的显示 装置具有更好的显示效果。
附图说明
图1为本发明实施例1的面光源的结构示意图;
图2为图1中的光纤在垂直于长度方向上的一种剖面示意图;
图3为图2中光纤在长度方向上的剖面示意图;
图4为图1中的光纤在垂直于长度方向上的另一剖面示意图;
图5为图4中的光纤在长度方向上的剖面示意图;以及
图6为本发明实施例2的背光模组中的面光源的结构示意图。
参考标号说明:1-光源;2-光纤;21-芯线;22-保护层; 3-出光窗口;30-光栅。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结 合附图和具体实施方式对本发明提供的面光源、背光模组和显示 装置作进一步详细描述。
实施例1:
本实施例提供一种面光源。面光源是一种发光模式,相对LED 点光源及普通灯具光源而言,面光源如平板光源,具有出光柔和、 不伤眼、省电、光束自然等特点,是将来光源产品发展的重要方 向。
如图1所示,本实施例中的面光源包括光纤2和设置于光纤 2一端的光源1,光纤2沿长度方向上间隔开设有多个出光窗口3, 光源1发出的光束沿光纤2传播,并经各出光窗口3射出光纤2。 其中,该光纤上的每个出光窗口3均为在光纤2表面上等间距形 成有多个狭缝的光栅30,狭缝的排列方向垂直于光纤2的长度方 向,即,一个出光窗口3即为一个光栅30。需要注意的是,在该 实施例中,虽然近以一条光纤2和一个光源1进行了说明,但是 本发明并不限于此,相反,该实施例中还可以包括两条以上的光 纤和与这些光纤分别一一对应设置的光源。
在本实施例中,光源1为激光光源,该激光光源发射的激光 沿光纤2传输,并经光栅30射出光纤2。同时,光纤2可以以线 型布置,或者以其中心轴弯曲地方式进行布置,并且该光纤的中 心轴布置在一个布设平面中,出光窗口3开设于光纤2的位于该 布设平面的上方(如图2所示)和/或开设于光纤2的位于该布设 平面的下方(与图2所示相反的方向,图中未示出),以形成易 于控制光亮强度的面光源。
在由多条光纤和多个光源构成面光源时,这些光纤可以以线 型平行布置,或者以其中心轴弯曲地方式平行布置,并且这些光 纤的中心轴布置在同一个布设平面中,各光纤的出光窗口3开设 于对应光纤的位于该布设平面的上方(如图2所示)和/或开设于 对应光纤的位于该布设平面的下方(与图2所示相反的方向,图 中未示出),以形成易于控制光亮强度的面光源。
光纤通常为一种细长的圆柱形实体复合纤维,在本实施例中, 如图2和图3所示,光纤2为多层同轴圆柱形实体,其包括同轴 设置的芯线21和保护层22,保护层22包裹于芯线21的***;芯 线21和保护层22共同构成介质光波导,用于对光束的传导和约 束,以实现光的传输。保护层22采用透明树脂形成,各出光窗口 3为形成在保护层22中的包括等间距形成的多个狭缝的光栅30; 或者,如图4和图5所示,光纤2仅包括芯线21,各出光窗口3 为形成在芯线21的外表面中的包括多个狭缝的光栅30。芯线21 通常采用二氧化硅形成,因此形成的光纤对光的折射率在1.5-1.6 之间。
由于激光在光纤2传输的过程中会发生衰减,为保证面光源 在各处亮度的均匀性,优选地随着出光窗口3与光纤2设置有光 源1一端之间的长度的增长,出光窗口3的开设密度增大,即出 光窗口3(光栅30)的设置密度随着其与激光光源的出光端的距 离的增大而增大。
光栅30可采用构图工艺形成。具体的,当光栅30形成在光 纤2的保护层22中时,可以通过光刻胶涂覆、曝光、显影、刻蚀 等步骤在保护层22中形成具有多个狭缝的光栅结构,如图2和图 3所示。此时,保护层22的厚度等于光栅30的高度h。
同理,当光栅30形成在芯线21的外表面中时,也可以通过 上述方法形成。
为了使激光能够从光栅30射出,光栅30的线间周期(即一 个透光狭缝的周期)与激光的波长需满足公式:
0.5≤Λ/λ≤1…………(1)
在公式(1)中,Λ为光栅30的线间周期,λ为激光光源发 出的激光的波长。
光栅30的效率由构成光栅30的狭缝宽度w和高度h决定。 在本实施例中,如图3所示,光栅30的狭缝宽度w的范围为: 0.05λ<W<0.99λ,如果狭缝宽度w小于0.05λ,则光栅30的衍射效 率低,出射光少,制作工艺困难;如果狭缝宽度w大于0.99λ,则 大部分激光会产生全反射,衍射效率低下。光栅30的高度h的范 围为:0.05λ<h<5λ,如果高度h小于0.05λ,则光栅30的衍射效 率低,出射光少;如果高度h大于5λ,制作工艺复杂且难度大。
在本实施例中,参考图3中针对激光相对于光栅30的入射角 和出射角的示意,激光射入光栅30的入射角以及射出光栅30的 出射角需满足公式:
n’sinφ m-n ssinθ in=λ·m/Λ…………(2)
在公式(2)中,n’为空气的折射率,n s为光栅30的折射率, θ in为激光入射光栅30的入射角,φ m为射出光栅的出射角,m为 光栅30的衍射光谱的级数,其中,m=0,±1,±2…。这里应该 理解的是,入射角和出射角与通常意义上入射角和出射角相同, 即相对于光栅30在某点所在平面的法线方向而言。
优选的是,激光射入光栅30的入射角的范围为50°~80°, 射出光栅30的出射角的范围为-15°~15°。
较佳的,激光射入光栅30的入射角的范围为60°~70°时, 可获得更窄的光栅30的出射角范围。
在一个示例中,红色激光光源R发出的红色激光的入射角θ in=65°,红色激光的波长为635nm,根据公式(2),红色激光光 源R对应的光纤2中光栅30的线间周期为可以取值为455nm,n’=1, n s=1.5,当取m=0,1,2,-2,3,-3…时,根据公式(2),φ m不 存在,即这个时候没有衍射,所有激光光束被全反射;当取m=-1 时,根据公式(2),φ m近似于等于0度。
本实施例中,由于经光栅30最终射出的光束与法线方向的夹 角范围为-15°~15°,即激光光束通过光栅30后以接近垂直于 光纤的角度射出光栅,因此使得该面光源具有较好的聚光效果。
在很多场合中对面光源通常有特殊的需求,因此,可以根据 混色原理来采用不同颜色的激光光源、并结合一根以上的光纤和 多个光栅,以满足不同的面光源颜色、以及发光面积的要求。
本实施例中的面光源,采用激光光源和具有光栅的光纤形成, 具有高聚光、宽色域、高效率的优点。
实施例2:
本实施例提供了一种背光模组,也称背光源(Back Light  source),用于为显示面板(panel)提供光源,背光模组包括实 施例1中的面光源。
在液晶显示技术中,由于液晶本身并不发光,所以通常需要 采用面光源提供光源。在液晶显示装置中,面光源通常要求为白 光光源。如图6所示,根据三基色的混色原理,在本实施例中, 面光源包括三根光纤2,三根光纤2的中心轴并行弯曲设置于布设 平面内,为使得光源能得到充分利用,优选地将面光源中的三根 光纤2的布设平面设置为与液晶显示面板的板面平行;同时,出 光窗口3朝向液晶显示面板,以使得激光光束通过光栅30直接射 向液晶显示面板。
光源1包括红光激光光源R、绿光激光光源G和蓝光激光光 源B,红光激光光源R、绿光激光光源G和蓝光激光光源B各自设 置于三根光纤2之一的一端;红光激光光源R、绿光激光光源G 和蓝光激光光源B各自发出的红光激光、绿光激光和蓝光激光经 各自对应光纤的出光窗口3出射后混色形成白光,并提供给液晶 显示面板。通常,红色激光的波长为635nm,绿色激光的波长523nm, 蓝色激光的波长470nm;相应的,根据公式(2),红色激光光源 R对应的光纤2中光栅30的线间周期为455nm,绿色激光光源G 对应的光纤2中光栅30的线间周期为375nm,蓝色激光光源B对 应的光纤2中光栅30的线间周期为337nm。图6中,对应于不同 颜色的激光的出光窗口采用不同的图形形状予以标识,其中,方 形出光窗口代表红光出光,圆形出光窗口代表绿光出光,三角形 出光窗口代表蓝光出光。
在实施例1中,激光射入光栅30的入射角的范围为50°~ 80°,本实施例中进一步优选红色激光、绿色激光、蓝色激光相 对光栅30的入射角为65°左右,以使得红色激光、绿色激光、蓝 色激光通过一次透射或反射即可实现射出光栅30的出射角的范围 为-15°~15°。由于通过光栅30最终射出的光束与法线的夹角 处于-15°~15°的范围内,因此其为窄角度发光,即激光光束经 光栅30后以接近垂直于光纤的角度射出光栅30,因此具有较好的 聚光效果。即使不采用现有技术中的棱镜膜来对散光进行聚集, 该面光源也能实现较好的聚光效果,从而得到更好的背光效果; 同时,由于采用了激光作为光源,因此该面光源还具有色域宽、 效率高的优点。
在本实施例中,用于传输红色激光、绿色激光、蓝色激光的 光纤2,随着出光窗口3与激光光源的激光出光端的距离的增大, 出光窗口的开设密度增大,也即使得光栅30的设置密度增大,以 实现整个面光源上的均一灰度,同时提高光栅30的出光效率。
在本实施例中,进一步优选的是,背光模组还包括扩散膜(图 4中未示出),扩散膜设置于光纤2与显示面板的一侧,以便将混 光后的激光光束进行扩散,实现更均匀的、更接近白色的背光。
本实施例中的背光模组,采用激光光源和具有光栅的光纤形 成面光源,不需采用棱镜膜就可实现背光模组的高聚光;且激光 光源本身就具有较宽的色域和较高的光利用率,从而实现了背光 模组的宽色域、高效率。
实施例3:
本实施例提供一种背光模组,该背光模组中的光源仍可以采 用实施例1中的面光源。本实施例与实施例2的区别在于,光纤 中出光窗口的开设位置不同。
在本实施例中,出光窗口背向显示面板,相应的,为了进一 步提高光源的利用率,背光模组还包括反射膜,光纤布置在反射 膜与显示面板之间,反射膜用以将光栅中射出的光反射向液晶显 示面板,以形成背光。
同样可以优选的是,为了进一步提供光源的均匀度,优选背 光模组还包括扩散膜,扩散膜设置于光纤与显示面板之间。
本实施例中背光模组中的其他结构与实施例2中相应的结构 相同,这里不再赘述。
本实施例中的背光模组,采用激光光源和具有光栅的光纤形 成面光源,实现了背光模组的宽色域、高效率和高聚光。
实施例4:
以上的实施例2和3分别针对光纤上的出光窗口面向显示面 板和背向显示面板的示例分别进行了说明,但是还可以将实施例2 和实施例3进行组合来实现本发明的目的。也就是说,本发明还 提供了一种背光模组,该背光模组中的光源仍可以采用实施例1 中的面光源。在本实施例中,光纤上的出光窗口的一部分朝向显 示面板,而另一部分背向显示面板。
相应的,如在实施例2和实施例3中所述,为了进一步提高 光源的利用率,背光模组还包括反射膜和扩散膜,光纤布置在反 射膜与扩散膜之间,扩散膜布置在光线与显示面板之间。本实施 例中的反射膜和扩散膜与实施例2的扩散膜和实施例3中的发射 膜的作用相同,在此不再赘述。
本实施例中背光模组中的其他结构与实施例2或实施例3中 相应的结构相同,在此不再赘述。
本实施例中的背光模组,采用激光光源和具有光栅的光纤形 成面光源,实现了背光模组的宽色域、高效率和高聚光。
实施例5:
本实施例还提供一种显示装置,包括实施例2至实施例4中 任一背光模组。
该显示装置可以为:液晶面板、电子纸、手机、平板电脑、 电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显 示功能的产品或部件。
该显示装置由于采用了具有宽色域、高效率和高聚光的背光 模组,因此具有更好的显示效果。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式,然而本发明并不局限于此。对于本领 域内的普通技术人员而言,在不脱离本发明的精神和实质的情况 下,可以做出各种变型和改进,这些变型和改进也视为本发明的 保护范围。

Claims (19)

  1. 一种面光源,其特征在于,包括至少一条光纤和以一一对 应方式设置于所述至少一条光纤一端的至少一个光源,所述至少 一条光纤各自沿长度方向上间隔地设有多个出光窗口,各光源发 出的光束沿各自对应的光纤传播,并分别经所述多个出光窗*** 出光纤。
  2. 根据权利要求1所述的面光源,其特征在于,所述至少一 条光纤以线型或中心轴弯曲地排布,并且各光纤的中心轴位于同 一布设平面内,各光纤的出光窗口开设于所述布设平面的至少一 侧。
  3. 根据权利要求2所述的面光源,其特征在于,每条光纤上 的出光窗口的开设密度随着与相应光源的距离的增大而增大。
  4. 根据权利要求3所述的面光源,其特征在于,每条光纤上 的每个出光窗口均为在该光纤表面上等间距形成有多个狭缝的光 栅,所述多个狭缝的排列方向垂直于该光纤的长度方向。
  5. 根据权利要求4所述的面光源,其特征在于,所述至少一 个光源为激光光源,所述激光光源发射的激光沿光纤传输,并经 所述光栅射出光纤。
  6. 根据权利要求5所述的面光源,其特征在于,所述光栅的 线间周期与所述激光的波长满足公式:0.5≤Λ/λ≤1,其中,Λ 为所述光栅的线间周期,λ为所述激光的波长。
  7. 根据权利要求6所述的面光源,其特征在于,所述激光射 入所述光栅的入射角以及射出所述光栅的出射角满足公式:n’sin φ m-n ssinθ in=λ·m/Λ,其中,θ in为所述激光入射所述光栅的入 射角,φ m为所述激光射出所述光栅的出射角,n’为空气的折射率, n s为所述光栅的折射率,m为所述光栅的衍射光谱的级数。
  8. 根据权利要求7所述的面光源,其特征在于,所述激光射 入所述光栅的入射角的范围为50°~80°,射出所述光栅的出射 角的范围为-15°~15°。
  9. 根据权利要求1-8任一项所述的面光源,其特征在于,所 述光纤包括同轴设置的芯线和保护层,所述保护层包裹于所述芯 线的***;所述保护层采用透明树脂形成,所述出光窗口开设于 所述保护层中。
  10. 根据权利要求1-8任一项所述的面光源,其特征在于, 所述光纤由芯线构成,所述出光窗口开设于所述芯线的外表面中。
  11. 根据权利要求1-8任一项所述的面光源,其特征在于, 所述至少一根光纤包括三根光纤,所述三根光纤以中心轴平行弯 曲的方式设置于所述布设平面内;所述至少一个光源包括一个红 光激光光源、一个绿光激光光源和一个蓝光激光光源,所述红光 激光光源、所述绿光激光光源和所述蓝光激光光源分别设置于所 述三根光纤之一的一端。
  12. 根据权利要求11所述的面光源,其特征在于,所述红光 激光光源、所述绿光激光光源和所述蓝光激光光源分别发出的红 光激光、绿光激光和蓝光激光经所述出光窗口出射后混色形成白 光。
  13. 一种背光模组,其特征在于,包括权利要求1-10任一项 所述的面光源。
  14. 根据权利要求11所述的背光模组,其特征在于,所述布 设平面与所述显示面板平行。
  15. 根据权利要求14所述的背光模组,其特征在于,各光纤 的出光窗口朝向所述显示面板。
  16. 根据权利要求14所述的背光模组,其特征在于,各光纤 出光窗口背向所述显示面板,所述背光模组还包括反射膜,且各 光纤位于所述反射膜和所述显示面板之间。
  17. 根据权利要求14所述的背光模组,其特征在于,各光纤 的出光窗口的一部分朝向所述显示面板,且各光纤的出光窗口的 另一部分背向所述显示面板,以及所述背光模组还包括反射膜, 且各光纤位于所述反射膜和所述显示面板之间。
  18. 根据权利要求15-17任一项所述的背光模组,其特征在 于,所述背光模组还包括扩散膜,所述扩散膜设置于所述光纤与 所述显示面板之间。
  19. 一种显示装置,包括权利要求11-18任一项所述的背光 模组。
PCT/CN2014/078510 2014-01-22 2014-05-27 面光源、背光模组和显示装置 WO2015109707A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/422,281 US9606283B2 (en) 2014-01-22 2014-05-27 Surface light source, backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410030483.XA CN103807672A (zh) 2014-01-22 2014-01-22 一种面光源、背光模组和显示装置
CN201410030483.X 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015109707A1 true WO2015109707A1 (zh) 2015-07-30

Family

ID=50704829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078510 WO2015109707A1 (zh) 2014-01-22 2014-05-27 面光源、背光模组和显示装置

Country Status (3)

Country Link
US (1) US9606283B2 (zh)
CN (1) CN103807672A (zh)
WO (1) WO2015109707A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807672A (zh) 2014-01-22 2014-05-21 京东方科技集团股份有限公司 一种面光源、背光模组和显示装置
CN105158977B (zh) * 2015-10-20 2018-09-07 京东方科技集团股份有限公司 光学组件以及使用该光学组件的液晶显示装置
CN106483751B (zh) * 2016-12-09 2018-10-23 上海天马微电子有限公司 光源结构、立体显示装置
KR102428755B1 (ko) * 2017-11-24 2022-08-02 엘지디스플레이 주식회사 파장 변환이 가능한 광섬유 및 이를 사용하는 백라이트 유닛
CN110056808B (zh) * 2018-01-18 2021-02-09 深圳市绎立锐光科技开发有限公司 激光发光装置
CN108490687B (zh) * 2018-03-30 2021-03-12 京东方科技集团股份有限公司 一种背光源模组及显示装置
KR20210033105A (ko) * 2019-09-17 2021-03-26 삼성디스플레이 주식회사 표시 장치 및 그것의 제조 방법
CN112859430A (zh) * 2021-03-23 2021-05-28 京东方科技集团股份有限公司 背光模组及液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050667A1 (en) * 2000-02-21 2001-12-13 Sung-Sik Kim Back lighting apparatus of liquid crystal display using optical fiber
KR20090053000A (ko) * 2007-11-22 2009-05-27 엘지디스플레이 주식회사 플렉서블 액정표시장치용 백라이트 어셈블리
CN202452315U (zh) * 2012-03-16 2012-09-26 京东方科技集团股份有限公司 背光模组及显示装置
CN102853346A (zh) * 2012-09-28 2013-01-02 京东方科技集团股份有限公司 背光模组及显示装置
CN102913866A (zh) * 2012-09-25 2013-02-06 京东方科技集团股份有限公司 一种背光源的背板结构、背光模组和显示装置
CN103807672A (zh) * 2014-01-22 2014-05-21 京东方科技集团股份有限公司 一种面光源、背光模组和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945107B2 (ja) * 2005-09-15 2012-06-06 ゲットナー・ファンデーション・エルエルシー 光源装置及びその製造方法、表示装置及びその製造方法、並びに表示装置の駆動方法
DE102006061164B4 (de) * 2006-12-22 2018-12-27 Osram Opto Semiconductors Gmbh Lichtemittierende Vorrichtung
CN101666462A (zh) * 2008-09-03 2010-03-10 先进开发光电股份有限公司 侧光式背光模块、其导光元件及其线光源
CN102913886A (zh) 2012-10-09 2013-02-06 王跃 高效合体节能炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050667A1 (en) * 2000-02-21 2001-12-13 Sung-Sik Kim Back lighting apparatus of liquid crystal display using optical fiber
KR20090053000A (ko) * 2007-11-22 2009-05-27 엘지디스플레이 주식회사 플렉서블 액정표시장치용 백라이트 어셈블리
CN202452315U (zh) * 2012-03-16 2012-09-26 京东方科技集团股份有限公司 背光模组及显示装置
CN102913866A (zh) * 2012-09-25 2013-02-06 京东方科技集团股份有限公司 一种背光源的背板结构、背光模组和显示装置
CN102853346A (zh) * 2012-09-28 2013-01-02 京东方科技集团股份有限公司 背光模组及显示装置
CN103807672A (zh) * 2014-01-22 2014-05-21 京东方科技集团股份有限公司 一种面光源、背光模组和显示装置

Also Published As

Publication number Publication date
US20160033703A1 (en) 2016-02-04
CN103807672A (zh) 2014-05-21
US9606283B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
WO2015109707A1 (zh) 面光源、背光模组和显示装置
JP3218401U (ja) 光学照明装置
TWI235807B (en) Light guiding board, and lighting device, plane light source device and display device using the light guiding board
CN107817629B (zh) 一种液晶显示装置
WO2014176818A1 (zh) 液晶显示装置
KR101270165B1 (ko) 반사 투과형 디스플레이 패널 및 이를 채용한 디스플레이장치
WO2014054574A1 (ja) 採光フィルム、採光フィルムの原反ロール、窓ガラス、ロールスクリーンおよび採光ルーバー
WO2017024654A1 (zh) 导光板和背光模组
JP2016181474A (ja) 導光部材、面光源装置及び表示装置
JP2007149665A (ja) 光源から離れた蛍光体を用いる照明システム
JPWO2010061699A1 (ja) 薄型バックライトシステムおよびこれを用いた液晶表示装置
JP2008288195A (ja) 偏光転向フィルムを含む、低減された色分解を有するバックライトユニット
US9933659B2 (en) Polarization beam splitter, backlight module and liquid crystal display apparatus
US10642112B2 (en) Array substrate, display panel and display device
WO2013116970A1 (zh) 一种用于液晶显示器的新型背光模组
KR20170004205A (ko) 도광판 및 이를 포함하는 면광원 장치
WO2017181477A1 (zh) 背光模组及显示装置
CN106990608A (zh) 光源装置
WO2010010694A1 (ja) 液晶表示装置
WO2016206148A1 (zh) 导光板、背光模组及显示装置
WO2020063155A1 (zh) 一种led显示屏
TWM559421U (zh) 背光模組及顯示裝置
JP2009003412A (ja) 低減された色分解を有する偏光転向フィルム
TWI464461B (zh) 彩色濾光片以及其側光式背光模組
KR20020025956A (ko) 영상 디스플레이 디바이스

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14422281

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14880314

Country of ref document: EP

Kind code of ref document: A1