WO2015108163A1 - 正極活物質およびその製造方法 - Google Patents

正極活物質およびその製造方法 Download PDF

Info

Publication number
WO2015108163A1
WO2015108163A1 PCT/JP2015/051141 JP2015051141W WO2015108163A1 WO 2015108163 A1 WO2015108163 A1 WO 2015108163A1 JP 2015051141 W JP2015051141 W JP 2015051141W WO 2015108163 A1 WO2015108163 A1 WO 2015108163A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
sulfate
Prior art date
Application number
PCT/JP2015/051141
Other languages
English (en)
French (fr)
Inventor
酒井 智弘
翼 ▲高▼杉
拓也 寺谷
健太郎 角▲崎▼
浩大 福本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015557898A priority Critical patent/JP6467352B2/ja
Publication of WO2015108163A1 publication Critical patent/WO2015108163A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material and a method for producing the same.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • a positive electrode active material of a lithium ion secondary battery a lithium-containing composite oxide containing Li and a transition metal element such as LiCoO 2 , LiNiO 2 , and LiNi 0.8 Co 0.2 O 2 is known.
  • As the positive electrode active material of a lithium ion secondary battery represented by LiCo a Ni b Mn c O 2 ( provided that 0 ⁇ a ⁇ 1,0 ⁇ b ⁇ 1,0 ⁇ c ⁇ 1.)
  • a so-called ternary lithium-containing composite oxide is also known.
  • discharge capacity As a positive electrode active material capable of increasing the discharge capacity of a lithium ion secondary battery, a positive electrode active material having a large content of Li and Mn, a so-called lithium-rich positive electrode active material has attracted attention.
  • the lithium ion secondary battery having the lithium-rich positive electrode active material (i) or (ii) has a high direct current resistance (hereinafter abbreviated as DCR), and as a result, the charge / discharge cycle is repeated.
  • DCR direct current resistance
  • An object of the present invention is to provide a positive electrode active material capable of increasing a discharge capacity of a lithium ion secondary battery and reducing a DCR, and a method for producing the positive electrode active material.
  • a positive electrode active material including secondary particles in which a plurality of primary particles of lithium-containing composite oxide are aggregated,
  • the lithium-containing composite oxide has the general formula aLi (Li 1/3 Mn 2/3 ) O 2.
  • LiMO 2 where M is at least one element selected from Ni, Co and Mn). Represented by 0 ⁇ a ⁇ 1),
  • a positive electrode active material, wherein the secondary particles have a cross-sectional porosity of 12 to 40% and the isolated porosity of the positive electrode active material is 5% or less.
  • the lithium-containing composite oxide has a molar ratio with respect to the total molar amount (X) of Ni, Co, and Mn, the Ni ratio (Ni / X) is 0.15 to 0.5, and the Co ratio (Co
  • the molar ratio of Li to the total molar amount (X) of Ni, Co, and Mn, and the Li ratio (Li / X) is 1.1 to 1.7.
  • particle size D 50 of the positive electrode active material is 3-15 [mu] m, any of the positive electrode active material of [1] to [3].
  • the discharge capacity of the lithium ion secondary battery can be increased and the DCR can be reduced. Moreover, according to the manufacturing method of the positive electrode active material of this invention, the positive electrode active material which can make high the discharge capacity of a lithium ion secondary battery and can make DCR low can be obtained.
  • 3 is a graph showing an X-ray diffraction pattern of the positive electrode active material of Example 1.
  • 4 is a SEM image of a secondary particle cross section of the positive electrode active material of Example 1.
  • 10 is a SEM image of a secondary particle cross section of the positive electrode active material of Example 8.
  • 10 is a SEM image of a secondary particle cross section of the positive electrode active material of Example 10.
  • the composition analysis of the positive electrode active material is performed by inductively coupled plasma analysis (hereinafter referred to as ICP).
  • ICP inductively coupled plasma analysis
  • the ratio of elements in the positive electrode active material is a value in the positive electrode active material before the first charge.
  • Primary particle means the smallest particle observed by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • secondary particle means a particle in which primary particles are aggregated.
  • D 50 means a particle diameter at a point of 50% in a cumulative volume distribution curve in which the total volume of particle size distribution obtained on a volume basis is 100%, that is, a volume-based cumulative 50% diameter.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, using a laser diffraction / scattering particle size distribution measuring device).
  • the positive electrode active material (hereinafter referred to as the present active material) of the present invention includes a solid solution lithium-containing composite oxide (1) (hereinafter referred to as a composite oxide (1)).
  • the composite oxide (1) has the general formula aLi (Li 1/3 Mn 2/3 ) O 2.
  • LiMO 2 where M is at least one element selected from Ni, Co and Mn). And 0 ⁇ a ⁇ 1.
  • the composite oxide (1) is a solid solution of Li (Li 1/3 Mn 2/3 ) O 2 and LiMO 2 . Since this active material contains complex oxide (1), the discharge capacity of the lithium ion secondary battery which has this active material can be made high.
  • a in the general formula is preferably 0.1 to 0.78, more preferably 0.2 to 0.75.
  • this active material contains the complex oxide (1) in which a is 0.1 or more, the discharge capacity of the lithium ion secondary battery can be easily increased.
  • the active material contains a composite oxide (1) having a of 0.7 or less, the discharge voltage of the lithium ion secondary battery tends to be high.
  • M of the composite oxide (1) preferably contains Ni and Mn, and more preferably contains Ni, Co, and Mn.
  • each content of Ni, Co and Mn is a molar ratio with respect to the total molar amount (X) of Ni, Co and Mn, and the Ni ratio (Ni / X) is 0.15.
  • the Co ratio (Co / X) is 0 to 0.33
  • the Mn ratio (Mn / X) is 0.33 to 0.8.
  • the Ni ratio is more preferably 0.15 to 0.45, and particularly preferably 0.15 to 0.37.
  • the active material contains the composite oxide (1) having a Ni ratio of 0.15 or more, the discharge voltage of the lithium ion secondary battery can be easily increased.
  • the active material contains the composite oxide (1) having a Ni ratio of 0.45 or less, the discharge capacity of the lithium ion secondary battery can be easily increased.
  • the Co ratio is more preferably 0 to 0.3, and particularly preferably 0 to 0.25.
  • the positive electrode active material containing the composite oxide (1) whose Co ratio is not more than the upper limit value has better cycle characteristics of the lithium ion secondary battery.
  • the Mn ratio is more preferably 0.4 to 0.82, particularly preferably 0.5 to 0.8.
  • the active material includes the composite oxide (1) having a Mn ratio of 0.4 or more, the discharge capacity of the lithium ion secondary battery can be easily increased.
  • this active material contains the complex oxide (1) whose Mn ratio is 0.82 or less, it is easy to increase the discharge voltage of the lithium ion secondary battery.
  • the Li ratio (Li / X) is preferably 1.1 to 1.7 as the molar ratio with respect to the total molar amount (X) of Ni, Co and Mn.
  • the Li ratio is more preferably 1.1 to 1.67, and particularly preferably 1.25 to 1.6.
  • the composite oxide (1) may contain elements other than Li, Ni, Co, and Mn. Examples of other elements include P.
  • this preferable active material contains the complex oxide (1) containing P, the cycle characteristics of the lithium ion secondary battery can be improved.
  • Composite oxides (1) has the general formula aLi (Li 1/3 Mn 2/3) O 2 ⁇ (1-a) LiNi b Co c Mn d O 2 (although, b 0.33 to 0.6 c is preferably 0 to 0.33, and d is 0.33 to 0.5). Further, b is more preferably 0.33 to 0.5.
  • the composite oxide (1) is a solid solution of Li (Li 1/3 Mn 2/3 ) O 2 and LiMO 2 and has two crystal structures.
  • Li (Li 1/3 Mn 2/3 ) O 2 has a layered rock salt type crystal structure of the space group C2 / m.
  • the crystal structure of the space group C2 / m is also called a lithium excess phase.
  • LiMO 2 has a layered rock salt type crystal structure of the space group R-3m. It can be confirmed by X-ray diffraction measurement that the complex oxide (1) has these crystal structures.
  • the (020) plane of the crystal structure of the space group C2 / m with respect to the integrated intensity (I 003 ) of the (003) plane of the crystal structure of the space group R-3m The ratio (I 020 / I 003 ) of the integrated intensity (I 020 ) of the peak is preferably 0.02 to 0.3.
  • the composite oxide (1) having I 020 / I 003 in the above range includes the above-mentioned two crystal structures in a balanced manner, so that the discharge capacity of the lithium ion secondary battery can be easily increased. .
  • I 020 / I 003 is more preferably 0.02 to 0.28, and further preferably 0.02 to 0.25.
  • X-ray diffraction measurement can be performed by the method described in the examples.
  • the active material includes secondary particles in which a plurality of primary particles of the composite oxide (1) are aggregated.
  • the active material has a secondary particle cross-sectional porosity of 12 to 40%. If the active material having a porosity within the above range is used, the DCR of the lithium ion secondary battery can be reduced.
  • the lower limit value of the porosity is preferably 13%, and more preferably 14%.
  • the upper limit value of the porosity of the cross section of the secondary particles is preferably 38% and more preferably 33%.
  • “Porosity of the cross section of the secondary particles” is a value calculated as follows. An image obtained by binarizing the SEM image obtained by observing the cross section of the secondary particles (for example, the portion where the primary particles are present is white, the void portion where the primary particles are not present and the outside of the secondary particles are black) )) Using image analysis software, fill the outer part of the secondary particle and the part connected to the outer part of the void part in the secondary particle with the third color (color other than white and black). .
  • the total number of dots of the portion where the primary particles are present (white portion) in the secondary particle cross section is N A
  • the portion not filled in the third color in the void portion of the secondary particle cross section, that is, the secondary particle cross section the total number of partial dots in the (black portion) which is not connected to the outer side in the gap portion as N B obtains the void ratio (%) by the following equation (1).
  • the isolated porosity of the active material is 5% or less. Since this active material has an isolated porosity of 5% or less, the DCR of the lithium ion secondary battery can be reduced.
  • the isolated porosity is preferably 4% or less, and more preferably 3% or less.
  • this active material has a hole (henceforth a through-hole) which has a hollow part inside a secondary particle, and leads from the exterior to a hollow part. It is preferable that the positive electrode active material has a through hole because the isolated porosity is reduced.
  • the “isolated porosity of the positive electrode active material” is a value calculated as follows.
  • the apparent density d1 of the positive electrode active material is measured using nitrogen gas by a pycnometer method.
  • the lattice constant of the positive electrode active material is measured by X-ray diffraction, and the theoretical crystal density d2 is calculated from the lattice constant.
  • the active material may be the composite oxide (1) as the active material, or may have a coating on the surface of the composite oxide (1) as the active material.
  • the active material having a coating on the surface of the composite oxide (1) is preferable because it can improve the cycle characteristics of the lithium ion secondary battery.
  • the surface of the composite oxide (1) has a coating, the contact frequency between the composite oxide (1) and the electrolyte decreases, and as a result, transition metal elements such as Mn in the composite oxide (1) are reduced. It is thought that elution can be reduced.
  • the cycle characteristics can be improved without lowering other battery characteristics, so that Al compounds (Al 2 O 3 , AlOOH, Al (OH 3 ) is preferred.
  • the coating may be present on the surface of the complex oxide (1), may be present on the entire surface of the complex oxide (1), or may be present on a part of the complex oxide (1).
  • the D 50 of the active material is preferably 3 to 15 ⁇ m. Within D 50 of the range, easily increase the discharge capacity of the lithium ion battery. D 50 of the active material is more preferably 5 to 15 ⁇ m, particularly preferably 6 to 12 ⁇ m.
  • the specific surface area of the active material is preferably 0.1 to 10 m 2 / g. When the specific surface area of this active material is 0.1 m 2 / g or more, the discharge capacity of the lithium ion secondary battery can be increased. When the specific surface area of this active material is 10 m 2 / g or less, the cycle characteristics of the lithium ion secondary battery can be improved.
  • the specific surface area of the active material is more preferably 0.5 ⁇ 7m 2 / g, particularly preferably 0.5 ⁇ 5m 2 / g. The specific surface area of the active material is measured by the method described in the examples.
  • the method for producing a positive electrode active material of the present invention preferably has the following steps (I) and (II).
  • (I) a group consisting of at least two sulfates (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate, Na carbonate, K carbonate, NaOH and KOH
  • (II) A step of mixing the metal-containing coprecipitate and lithium carbonate, and firing at 500 to 1000 ° C.
  • step (I) sulfate (A) and alkali (B) are mixed in the form of an aqueous solution and reacted in the mixed solution. Thereby, a coprecipitate containing at least two kinds of transition metal elements selected from the group consisting of Ni, Co and Mn is deposited. In step (I), other solutions may be mixed as necessary.
  • the aspect which mixes sulfate (A) and alkali (B) in the state of aqueous solution will not be specifically limited if sulfate (A) and alkali (B) are in the state of aqueous solution at the time of mixing.
  • both the aqueous solution of sulfate (A) and the aqueous solution of alkali (B) are continuously added to the reaction tank. It is preferable to add to. It is preferable to put ion exchange water, pure water, distilled water, etc. in the reaction tank in advance.
  • the pH in the reaction vessel is more preferable to control the pH in the reaction vessel using alkali (B) or other solutions.
  • the pH of the mixed solution at the time of mixing the sulfate (A) and the alkali (B) is preferably maintained at a set value of 7 to 12, since the coprecipitate is likely to be precipitated. It is more preferable to maintain the set value of 10.
  • the sulfate (A) is at least two sulfates selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
  • Ni nickel sulfate
  • Co sulfate nickel sulfate
  • Mn manganese sulfate
  • II nickel sulfate
  • Mn manganese sulfate
  • the sulfate (A) preferably includes Ni sulfate and Mn sulfate, and more preferably includes all of Ni sulfate, Co sulfate, and Mn sulfate. That is, the coprecipitate obtained in the step (I) is preferably a coprecipitate containing Ni and Mn, and more preferably a coprecipitate containing all of Ni, Co and Mn.
  • the aqueous solution of sulfate (A) may be a separate aqueous solution of each of two or more sulfates (A), or a single aqueous solution containing two or more sulfates (A). Moreover, you may use together the aqueous solution containing 1 type of sulfates (A), and the aqueous solution containing 2 or more types of sulfates (A). The same applies when two types of alkalis (B) are used.
  • the ratio of Ni contained in the sulfate (A) is preferably 0.15 to 0.5 as a molar ratio with respect to the total molar amount of Ni, Co and Mn contained in the sulfate (A). If the proportion of Ni is 0.15 to 0.5, a composite oxide (1) having a desired composition can be obtained. For the same reason, the Ni ratio is more preferably 0.15 to 0.45, and particularly preferably 0.15 to 0.37.
  • the ratio of Co contained in the sulfate (A) is preferably 0 to 0.33 in terms of a molar ratio with respect to the total molar amount of Ni, Co and Mn contained in the sulfate (A).
  • the proportion of Co is in the range of 0 to 0.33, a composite oxide (1) having a desired composition can be obtained.
  • the proportion of Co is more preferably 0 to 0.3, and particularly preferably 0 to 0.25.
  • the ratio of Mn contained in the sulfate (A) is preferably 0.33 to 0.8 as a molar ratio with respect to the total molar amount of Ni, Co and Mn contained in the sulfate (A). If the ratio of Mn is 0.33 to 0.8, a composite oxide (1) having a desired composition can be obtained. For the same reason, the ratio of Mn is more preferably 0.4 to 0.82, and particularly preferably 0.5 to 0.8.
  • the total concentration of Ni, Co and Mn in the aqueous solution of sulfate (A) is preferably 0.1 to 2 mol / kg, more preferably 0.5 to 1.6 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. When the concentration of sulfate (A) is 2 mol / kg or less, sulfate (A) can be sufficiently dissolved in water. When using 2 or more types of aqueous solution containing a sulfate (A), it is preferable to make the density
  • the alkali (B) is at least one selected from the group consisting of Na carbonate, K carbonate, NaOH and KOH.
  • Alkali (B) also serves as a pH adjuster for precipitating the coprecipitate.
  • Na carbonate or K carbonate is used as the alkali (B)
  • a coprecipitate of a carbonate compound containing metal is obtained.
  • NaOH or KOH is used as the alkali (B)
  • a metal-containing hydroxide coprecipitate is obtained.
  • Alkali (B) may be used alone or as a mixture of two or more. From the viewpoint of ease of production of the composite oxide (1), the alkali (B) is preferably at least one carbonate selected from the group consisting of Na carbonate and K carbonate.
  • Examples of the carbonate of Na include sodium carbonate and sodium hydrogen carbonate.
  • Examples of the carbonate of K include potassium carbonate and potassium hydrogen carbonate.
  • As the carbonate, sodium carbonate and potassium carbonate are preferable because they are inexpensive and easy to control the particle size of the coprecipitate.
  • the concentration of alkali (B) in the aqueous solution of alkali (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 1.6 mol / kg.
  • concentration of the alkali (B) is 0.1 to 2 mol / kg, the coprecipitate is likely to be precipitated by the coprecipitation reaction.
  • concentration of an alkali (B) is preferable to make into the said range about each aqueous solution.
  • aqueous solutions containing ammonia or an ammonium salt. These function to adjust the pH and the solubility of the transition metal element.
  • ammonium salts include ammonium chloride, ammonium sulfate, and ammonium nitrate. Ammonia or ammonium salt is preferably supplied to the mixed solution simultaneously with the supply of sulfate (A).
  • aqueous solution of sulfate (A), the aqueous solution of alkali (B), and other solutions water is preferable. If the sulfate (A) and the alkali (B) can be dissolved, a mixed medium containing an aqueous medium other than water up to 20% with respect to the total mass of the solvent may be used as the solvent.
  • components other than water include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like.
  • the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
  • stirring device When mixing a sulfate (A) and an alkali (B) in the state of aqueous solution, it is preferable to carry out stirring in a reaction tank.
  • stirring device include a three-one motor.
  • stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
  • the temperature of the mixed solution at the time of mixing the sulfate (A) and the alkali (B) is preferably 20 to 80 ° C., more preferably 25 to 60 ° C. because coprecipitate is likely to precipitate.
  • the mixed solution in the reaction vessel is filtered using a filter medium (filter cloth or the like).
  • a concentration method A method in which the precipitation reaction is performed while concentrating the coprecipitate
  • overflow method there are two types of methods in which the precipitation reaction is performed.
  • Step (I) is preferably a concentration method.
  • the secondary particles of the lithium-containing composite oxide obtained by the concentration method and using the coprecipitate are likely to have a porosity of the cross section of the secondary particles satisfying the above range.
  • the positive electrode active material obtained using the coprecipitate obtained by the concentration method tends to satisfy the above range in the isolated porosity of the positive electrode active material. This is considered as follows.
  • the concentration method since the solid content concentration of the coprecipitate in the mixed solution in the reaction tank is high, the primary particles of the coprecipitate are aggregated, and secondary particles of the dense coprecipitate are easily formed. Secondary particles of the coprecipitate are likely to aggregate. When the secondary particles of the coprecipitate aggregate, the particle surface becomes dense.
  • the coprecipitate is a carbonate compound
  • the step (II) when the lithium compound and the carbonate compound are mixed and the mixture is baked, if the particle surface is dense, the lithium compound is transformed into Li Does not easily enter the inside of the carbonic acid compound. Therefore, while carbonic acid is removed by firing, atoms inside the carbonic acid compound tend to move to the surface of the carbonic acid compound to form a lithium-containing composite oxide.
  • the secondary particles of the lithium-containing composite oxide obtained after calcination have a reduced volume reduction from the mixture, and a hollow portion and a hole communicating from the outside to the hollow portion are formed.
  • the porosity and the isolated porosity of the positive electrode active material tend to satisfy the above range.
  • the precipitated coprecipitate is withdrawn from time to time together with the liquid mixture, so the solid content concentration of the coprecipitate in the liquid mixture in the reaction vessel is low.
  • the secondary particles of the coprecipitate are less likely to agglomerate, and spherical and uniform secondary particles of the coprecipitate having many pores into which Li can enter are likely to be formed.
  • the coprecipitate is a carbonate compound
  • the carbonate compound and the lithium compound are mixed in step (II) and the mixture is baked, the carbonate is removed while the secondary compound of the carbonate compound is removed.
  • the secondary particles of the lithium-containing composite oxide obtained after calcination are greatly reduced in volume from the mixture before calcination and are likely to be solid particles.
  • desired hollow particles can be easily obtained by controlling the conditions of the precipitation reaction. A longer reaction time is preferred. Thereby, the particle surface of a coprecipitate tends to become dense. As a result, it tends to become hollow particles after firing. It is preferable that the initial pH of the reaction vessel is high. Thereby, the ionic strength in a reaction tank becomes high and aggregation of a coprecipitate tends to advance. As a result, it tends to become hollow particles after firing. Higher control pH during the reaction and higher reaction temperature are preferred. Thereby, aggregation of a coprecipitate tends to advance. As a result, there is a tendency to become hollow particles after firing.
  • the preferred ranges of the respective proportions of Ni, Co and Mn in the obtained coprecipitate are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in all the sulfates (A) used.
  • the D 50 of the coprecipitate is preferably 3 to 15 ⁇ m, more preferably 6 to 15 ⁇ m, and particularly preferably 6 to 12 ⁇ m. Within D 50 is the range of the coprecipitate, easily controlled within the preferred range of D 50 of the positive electrode active material, easy positive electrode active material was obtained showing a sufficient battery characteristics.
  • the specific surface area of a coprecipitate is preferably 50 ⁇ 300m 2 / g, more preferably 100 ⁇ 250m 2 / g. If the specific surface area of the coprecipitate is within the above range, the positive electrode active material is easy to control the specific surface area of the positive electrode active material within the above range, and a lithium ion secondary battery exhibiting high discharge capacity and cycle characteristics is obtained. Easy to manufacture.
  • the specific surface area of a coprecipitate means the value measured after drying the said coprecipitate at 120 degreeC for 15 hours. The specific surface area of the coprecipitate can be measured by the BET method.
  • Step (I) preferably includes a step of removing the aqueous solution by filtration or centrifugation after obtaining the coprecipitate.
  • a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
  • the obtained coprecipitate is preferably washed to remove impurity ions.
  • the method for washing the coprecipitate include a method of repeating pressure filtration and dispersion in distilled water. It is preferable to dry the coprecipitate after washing. In the case of drying, the drying temperature is preferably from 60 to 200 ° C, more preferably from 80 to 130 ° C.
  • the drying temperature is more than a lower limit, a coprecipitate can be dried in a short time. If the said drying temperature is below an upper limit, the oxidation of a coprecipitate can be suppressed.
  • the drying time is preferably 1 to 300 hours, more preferably 5 to 120 hours.
  • step (II) the coprecipitate obtained in step (I) and the lithium compound are mixed and fired at 500 to 1000 ° C. Thereby, the complex oxide (1) is formed.
  • the lithium compound is preferably at least one selected from the group consisting of lithium carbonate, lithium hydroxide and lithium nitrate, and lithium carbonate is more preferable from the viewpoint of ease of handling.
  • Examples of the method for mixing the coprecipitate and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
  • the ratio (mixing ratio) of the molar amount of Li contained in the lithium compound to the total molar amount (X) of Ni, Co and Mn contained in the coprecipitate is 1.1 to 1.7. 1.1 to 1.67 are more preferable, and 1.25 to 1.6 are particularly preferable.
  • the mixing ratio is within the above range, the Li ratio of the composite oxide (1) can be set to a desired range, and a positive electrode active material exhibiting a high discharge capacity is easily obtained.
  • An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the precursor compound (coprecipitate) is oxidized during firing, the firing is preferably performed in the atmosphere, and particularly preferably performed while supplying air.
  • the air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per 1 L of the furnace internal volume.
  • the firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C.
  • a complex oxide (1) having high crystallinity can be obtained.
  • the higher the firing temperature the easier the atoms in the coprecipitate move to the surface of the coprecipitate.
  • the porosity of the cross section of the secondary particles and the isolated porosity of the positive electrode active material tend to satisfy the above range.
  • the firing temperature is too high, a hetero phase such as spinel is generated in the composite oxide, which is not preferable.
  • the firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
  • the firing time is increased, atoms inside the coprecipitate can move to the surface of the coprecipitate. Therefore, the porosity of the cross section of the secondary particles and the isolated porosity of the positive electrode active material tend to satisfy the above range.
  • the firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C.
  • two-stage firing is preferable because Li easily diffuses uniformly into the lithium-containing composite oxide.
  • the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C.
  • the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
  • the manufacturing method of complex oxide (1) contained in this active material is not limited to an above described method.
  • the coprecipitate obtained in step (I) is mixed with a phosphate aqueous solution (phosphoric acid aqueous solution, ammonium dihydrogen phosphate aqueous solution, diammonium hydrogen phosphate aqueous solution, etc.), and the water is volatilized. Also good.
  • the primary particles of the positive electrode active material can be doped with P (phosphorus).
  • Examples of the method for forming a coating on the surface of the secondary particles include a powder mixing method, a gas phase method, a spray coating method, and an immersion method. These methods will be described using an example in which an Al compound is used as a coating.
  • the powder mixing method is a method in which secondary particles and an Al compound are mixed and then heated.
  • the vapor phase method is a method in which an organic compound containing Al such as aluminum ethoxide, aluminum isopropoxide, aluminum acetylacetonate, etc. is vaporized, and the organic compound is brought into contact with the surface of secondary particles to cause a reaction.
  • the spray coating method is a method of heating after spraying a solution containing Al onto secondary particles.
  • an Al water-soluble compound (aluminum acetate, aluminum oxalate, aluminum citrate, aluminum lactate, basic aluminum lactate, aluminum nitrate, etc.) for forming an Al compound is dissolved in the secondary particles after firing in a solvent.
  • a coating containing an Al compound may be formed on the surface of the secondary particles by heating to remove the solvent.
  • this active material is a lithium-rich positive electrode active material, a lithium ion secondary battery having a high discharge capacity can be obtained. Further, this active material satisfies the conditions that the porosity of the cross section of the secondary particles is 12 to 40% and the isolated porosity of the positive electrode active material is 5% or less. Thereby, DCR of the lithium ion secondary battery which has this active material can be made low.
  • Japanese Patent Application Laid-Open No. 2011-119092 discloses Li 1 + m Ni p Co q Mn r M 1 S O 2 (having a hollow portion inside the secondary particle and having a through hole penetrating from the outside to the hollow portion.
  • M 1 is at least one selected from the group consisting of Al, Cr, Fe, V, Mg, Ti, Zr, Nb, Mo, Ta, W, Cu, Zn, Ga, In, Sn, La, and Ce.
  • a so-called ternary positive electrode active material is disclosed.
  • M 2 is at least one selected from the group consisting of Zr, Mg, Mg, Ca, Na, Fe, Cr, Zn, Si, Sn, Al, B, and F, and 0 ⁇ i ⁇ 0.2 0.1 ⁇ j ⁇ 0.9, 0.1 ⁇ k ⁇ 0.4, 0.0005 ⁇ ⁇ ⁇ 0.01, and 0 ⁇ ⁇ ⁇ 0.1.
  • a lithium-rich positive electrode active material that has a hollow portion inside the secondary particles and the porosity of the cross section of the secondary particles and the isolated porosity of the positive electrode active material satisfy the above ranges is used. Is not listed. Moreover, it is not disclosed that a lithium ion secondary battery can have a high discharge capacity and a low DCR by using such a lithium-rich positive electrode active material. Further, since a lithium ion secondary battery using a ternary positive electrode active material has a low DCR, it can be said that lowering the DCR of a lithium ion secondary battery is a problem inherent to the lithium rich positive electrode active material.
  • the present invention solves a problem peculiar to the case of using a lithium-rich positive electrode active material that can increase the discharge capacity of a lithium ion secondary battery but cannot lower DCR, and the present invention can solve the problem. Is difficult to predict from the descriptions in JP 2011-119092 A, International Publication No. 2012/169083, International Publication No. 2013/031478, and International Publication No. 2012/169083.
  • Examples 1 to 7 and 12 are examples, and examples 8 to 11 and 13 are comparative examples.
  • Examples 14 and 15 are reference examples.
  • the specific surface area was measured by a nitrogen adsorption BET (Brunauer, Emmett, Teller) method using a specific surface area measuring apparatus (manufactured by Mountec, apparatus name: HM model-1208). Deaeration was performed at 200 ° C. for 20 minutes.
  • X-ray diffraction measurement was performed with an X-ray diffractometer (manufactured by Rigaku Corporation, apparatus name: SmartLab). Table 1 shows the measurement conditions. The measurement was performed at 25 ° C. The obtained X-ray diffraction pattern was subjected to peak search using integrated powder X-ray analysis software PDXL2 manufactured by Rigaku Corporation.
  • the porosity (%) was determined by the following equation (1).
  • the porosity was determined for a total of 20 secondary particles, and the average value of these was taken as the porosity of the cross section of the secondary particles.
  • composition analysis The composition of the lithium-containing composite oxide contained in the positive electrode active material is a value calculated from the amount of sulfate and lithium compound charged. a, b, c, and d expressed by aLi (Li 1/3 Mn 2/3 ) O 2. (1-a) LiNi b Co c Mn d O 2 were calculated.
  • the obtained positive electrode sheet was punched into a circle with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium secondary battery was assembled in an argon glove box.
  • a stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 ⁇ m was formed on the negative electrode current collector to form a negative electrode.
  • porous polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • a solution in which LiPF 6 was dissolved in a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1 so that the concentration was 1 mol / dm 3 was used as an electrolytic solution.
  • the battery characteristics (charge capacity, discharge capacity, and charge / discharge efficiency) of the lithium secondary batteries having the positive electrode active materials of Examples 1 to 13 were measured under the following conditions. After constant current charging to 4.6V with a load current of 20 mA per 1 g of the positive electrode active material, 4.6 V constant voltage charging was performed. The constant current charge and the constant voltage charge were combined for 23 hours. Then, it discharged to 2.0V with the load current of 20 mA per 1g of positive electrode active materials, and performed first charge / discharge. The ratio of the discharge capacity to the charge capacity at that time was defined as the charge / discharge efficiency.
  • the battery characteristics of the lithium secondary batteries having the positive electrode active materials of Examples 14 and 15 were measured under the following conditions.
  • the DCR of the lithium secondary batteries having the positive electrode active materials of Examples 1 to 13 was measured under the following conditions. After the first charge / discharge, a 3.75 V constant current / constant voltage charge was performed for 3 and a half hours, and then the battery was discharged for 1 minute at a load current of 60 mA per 1 g of the positive electrode active material. The DCR value was calculated by dividing the voltage drop 10 seconds after the start of discharge by the current value. The DCR of the lithium secondary battery having the positive electrode active material of Examples 14 and 15 was measured under the following conditions.
  • a 3.75 V constant current / constant voltage charge was performed for 3 and a half hours, and then the battery was discharged for 1 minute at a load current of 52 mA per 1 g of the positive electrode active material.
  • the DCR value was calculated by dividing the voltage drop 10 seconds after the start of discharge by the current value.
  • the aqueous sulfate solution was added at a rate of 25 minutes per minute.
  • a pH adjusting solution was added so as to keep the pH in the reaction vessel at 8.5, thereby precipitating a carbonate compound (coprecipitate) containing Ni, Co and Mn.
  • the initial pH of the mixed solution was 7.0.
  • nitrogen gas was flowed into the reaction vessel at a flow rate of 2 L / min so that the precipitated coprecipitate was not oxidized.
  • the concentration method was employ
  • the obtained coprecipitate was repeatedly washed with pressure filtration and dispersed in distilled water to remove impurity ions. Washing was terminated when the electrical conductivity of the filtrate was less than 20 mS / m. Next, the coprecipitate after washing was dried at 120 ° C. for 15 hours. Next, the coprecipitate after drying and lithium carbonate were mixed with the mixing ratio (Li / X) of Li to the total molar amount (X) of the transition metal elements in the coprecipitate at a value shown in Table 2. The mixture was calcined at 600 ° C. for 5 hours in the atmosphere and then calcined at 900 ° C. for 16 hours to obtain a lithium-containing composite oxide. This lithium-containing composite oxide was used as a positive electrode active material.
  • Examples 2 to 7, 11 A lithium-containing composite oxide was obtained in the same manner as in Example 1 except that the precipitation reaction conditions and the lithiation conditions were changed as shown in Table 2. These lithium-containing composite oxides were used as positive electrode active materials.
  • ammonium sulfate was dissolved in distilled water so as to have a concentration of 0.75 mol / L to prepare an aqueous ammonium sulfate solution.
  • the aqueous ammonium sulfate solution together with the aqueous sulfate solution was combined with the total molar amount of transition metal elements in the carbonate compound ( It was added over 28 hours so that the molar ratio (NH 4+ / X) of ammonium ion to X) was as shown in Table 2.
  • Example 8 Under the precipitation reaction conditions, a coprecipitate was obtained in the same manner as in Example 1 except that the overflow method was adopted and the filter cloth was not used for extracting the liquid from the reaction tank. The carbonate compound overflowed during 15 to 18 hours from the start of the reaction was used. A lithium-containing composite oxide was obtained in the same manner as in Example 1 except that the lithiation conditions were changed as shown in Table 2. The obtained lithium-containing composite oxide was used as a positive electrode active material.
  • Example 9 The lithium-containing composite oxide was obtained in the same manner as in Example 8 except that the precipitation reaction conditions and the lithiation conditions were as shown in Table 2 and the coprecipitate overflowed during 12 to 15 hours from the start of the reaction was used. The obtained lithium-containing composite oxide was used as a positive electrode active material.
  • the obtained coprecipitate was repeatedly washed with pressure filtration and dispersed in distilled water to remove impurity ions. Washing was terminated when the electrical conductivity of the filtrate was less than 20 mS / m.
  • the coprecipitate after washing was dried at 120 ° C. for 15 hours.
  • the dried coprecipitate and lithium carbonate were mixed so that the mixing ratio of Li to the total amount of transition metal element (X) contained in the coprecipitate (Li / X) was as shown in Table 2.
  • the mixture was calcined at 600 ° C. for 5 hours in the atmosphere and then calcined at 850 ° C. to obtain a lithium-containing composite oxide.
  • the obtained lithium-containing composite oxide was used as a positive electrode active material.
  • Nickel sulfate (II) hexahydrate and manganese sulfate (II) pentahydrate were mixed so that the ratio of Ni and Mn was as shown in Table 2, and the total concentration of Ni and Mn was 1.5 mol. / L was dissolved in distilled water to obtain a sulfate aqueous solution.
  • a 48% sodium hydroxide aqueous solution by mass was prepared as a pH adjusting solution.
  • Ammonium sulfate was dissolved in distilled water to a concentration of 0.75 mol / L to prepare an aqueous ammonium sulfate solution.
  • distilled water is put into a 2 L baffled glass reaction vessel and heated to 50 ° C.
  • aqueous ammonium sulfate solution was added at a rate of 5.0 g / min for 28 hours at an addition rate such that the molar ratio (NH 4+ / X) of ammonium ions to the total moles (X) of transition metal elements in the coprecipitate was as shown in Table 2.
  • a pH adjusting solution was added so as to keep the pH of the mixed solution at 11.0 to precipitate a hydroxide (coprecipitate) containing Ni, Co and Mn. The initial pH of the mixture was 11.0.
  • nitrogen gas was flowed into the reaction vessel at a flow rate of 2 L / min so that the precipitated hydroxide was not oxidized.
  • the obtained coprecipitate was repeatedly washed with pressure filtration and dispersed in distilled water to remove impurity ions. Washing was terminated when the electrical conductivity of the filtrate was less than 20 mS / m.
  • the coprecipitate after washing was dried at 120 ° C. for 15 hours.
  • the dried coprecipitate and lithium carbonate were mixed so that the mixing ratio of Li to the total amount of transition metal element (X) contained in the coprecipitate (Li / X) was as shown in Table 2.
  • the mixture was calcined at 600 ° C. for 5 hours in the air atmosphere and then calcined at 935 ° C. to obtain a lithium-containing composite oxide.
  • the obtained lithium-containing composite oxide was used as a positive electrode active material.
  • Example 13 A lithium-containing composite oxide was obtained in the same manner as in Example 12 except that the precipitation reaction conditions and the lithiation conditions were as shown in Table 2. The obtained lithium-containing composite oxide was used as a positive electrode active material.
  • Table 3 shows D 50 of the positive electrode active material obtained in each example, specific surface area, apparent density d1, porosity of the cross section of the secondary particles, and isolated porosity of the positive electrode active material.
  • Table 3 shows D 50 of the positive electrode active material obtained in each example, specific surface area, apparent density d1, porosity of the cross section of the secondary particles, and isolated porosity of the positive electrode active material.
  • the positive electrode active materials of Examples 1 to 7 and 12 have a porosity of 12 to 40% in the cross section of the secondary particles of the lithium-containing composite oxide contained in the positive electrode active material. And the isolated porosity of the positive electrode active material is 5% or less. Therefore, as shown in Table 4, the lithium secondary batteries having the positive electrode active materials of Examples 1 to 7 and 12 have low DCR and high discharge capacity and charge / discharge efficiency. On the other hand, the lithium secondary batteries having Examples 8, 9, 11 and 13 which are so-called solid positive electrode active materials having a low porosity of the cross section of the secondary particles have a high discharge capacity but a high DCR.
  • the lithium secondary battery having the positive electrode active material of Example 10 in which the porosity of the cross section of the secondary particles is 12 to 40% but the isolated porosity of the positive electrode active material is more than 5% has a high DCR. This is considered to be caused by a hollow but no through-hole and a high isolated porosity.
  • the positive electrode active material of the present invention is used as a positive electrode active material of a lithium ion secondary battery used in a wide field such as for portable electronic devices and in-vehicle use.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2014-008063 filed on January 20, 2014 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 放電容量が高く、かつDCRが低いリチウムイオン二次電池を与える正極活物質を提供する。 リチウム含有複合酸化物の一次粒子が複数凝集した二次粒子を含む正極活物質であり、該リチウム含有複合酸化物は、aLi(Li1/3Mn2/3)O・(1-a)LiMO(ただし、MはNi、CoおよびMnから選ばれる少なくとも1種の元素を表し、0<a<1である。)で表され、該二次粒子は断面の空隙率が12~40%であり、かつ、正極活物質の孤立気孔率が5%以下である正極活物質。また、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも2種と、Naの炭酸塩、Kの炭酸塩、NaOHおよびKOHからなる群から選ばれる少なくとも1種とを、水溶液の状態で混合して共沈物を得た後、前記共沈物と炭酸リチウムとを混合して焼成する前記正極活物質の製造方法。

Description

正極活物質およびその製造方法
 本発明は、正極活物質およびその製造方法に関する。
 携帯電話、ノート型パソコン等の携帯型電子機器等には、リチウムイオン二次電池が広く使用されている。リチウムイオン二次電池の正極活物質としては、LiCoO、LiNiO、LiNi0.8Co0.2等のLiと遷移金属元素とを含有するリチウム含有複合酸化物が知られている。
 また、リチウムイオン二次電池の正極活物質としては、LiCoNiMn(ただし、0<a<1、0<b<1、0<c<1である。)で表される、いわゆる3元系のリチウム含有複合酸化物も知られている。
 ところで、近年、携帯型電子機器用、車載用等のリチウムイオン二次電池では、小型化、軽量化の要求が高まっており、単位質量あたりの放電容量(以下、単に「放電容量」という。)のさらなる向上が求められている。
 リチウムイオン二次電池の放電容量を高くできる正極活物質としては、LiとMnの含有量が多い正極活物質、いわゆるリチウムリッチ系正極活物質が注目されている。
 リチウムリッチ系正極活物質としては、たとえば、下記の(i)及び(ii)のものが提案されている。
 (i)α-NaFeO型結晶構造を有し、Li1+αMe1-α(ただし、MeはCo、NiおよびMnを含む遷移金属元素であり、α>0であり、遷移金属元素に対するLiのモル比(Li/Me)が1.2~1.6であり、遷移金属元素に対するCoのモル比(Co/Me)が0.02~0.23であり、遷移金属元素に対するMnのモル比(Mn/Me)が0.62~0.72である。)で表される正極活物質(特許文献1)。
 (ii)zLiMnO・(1-z)LiNiu+△Mnu-△Co(ただし、AはMg、Sr、Ba、Cd、Zn、Al、Ga、B、Zr、Ti、Ca、Ce、Y、Nb、Cr、FeおよびVから選ばれる1種以上の元素であり、zは0.03~0.47であり、△は-0.3~0.3であり、2u+w+y=1であり、wは0~1であり、uは0~0.5であり、y<0.1である。)で表される正極活物質(特許文献2)。
国際公開第2012/091015号 国際公開第2011/031546号
 しかし、上記の(i)、(ii)のリチウムリッチ系正極活物質を有するリチウムイオン二次電池は、直流抵抗(以下、DCRと略す。)が高く、その結果、充放電サイクルを繰り返した際に充放電容量を維持する特性(以下、サイクル特性という)が低くなる問題がある。
 本発明は、リチウムイオン二次電池の放電容量を高くでき、かつDCRを低くできる正極活物質、および該正極活物質の製造方法の提供を目的とする。
 本発明は、前記の課題を達成するものであり、以下の要旨を有する。
[1]リチウム含有複合酸化物の一次粒子が複数凝集した二次粒子を含む正極活物質であり、
 該リチウム含有複合酸化物は、一般式aLi(Li1/3Mn2/3)O・(1-a)LiMO(ただし、MはNi、CoおよびMnから選ばれる少なくとも1種の元素を表し、0<a<1である。)で表され、
 該二次粒子は断面の空隙率が12~40%であり、かつ、正極活物質の孤立気孔率が5%以下であることを特徴とする正極活物質。
[2]前記リチウム含有複合酸化物は、Ni、CoおよびMnの合計モル量(X)に対してモル比で、Ni比(Ni/X)が0.15~0.5、Co比(Co/X)が0~0.33、Mn比(Mn/X)が0.33~0.8である、前記[1]の正極活物質。
[3]前記リチウム含有複合酸化物における、Ni、CoおよびMnの合計モル量(X)に対するLiのモル比で、Li比(Li/X)が1.1~1.7である、前記[1]または[2]の正極活物質。
[4]正極活物質の粒子径D50が3~15μmである、前記[1]~[3]のいずれかの正極活物質。
[5]正極活物質の比表面積が0.1~10mである、前記[1]~[4]のいずれかの正極活物質。
[6]前記リチウム含有複合酸化物のX線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)が0.02~0.3である、前記[1]~[5]のいずれかの正極活物質。
[7]前記[1]~[6]のいずれかの正極活物質の製造方法であって、下記工程(I)および(II)を有する正極活物質の製造方法。
 (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも2種の硫酸塩(A)と、
 Naの炭酸塩、Kの炭酸塩、NaOHおよびKOHからなる群から選ばれる少なくとも1種のアルカリ(B)とを、水溶液の状態で混合して共沈物を析出させる工程。
 (II)炭酸リチウムと前記共沈物とを混合し、500~1000℃で焼成する工程。
[8]硫酸塩(A)の水溶液中におけるNi、CoおよびMnを合計した濃度が0.1~2mol/kgである、前記[7]に記載の正極活物質の製造方法。
[9]アルカリ(B)の水溶液中におけるアルカリ(B)の濃度が0.1~2mol/kgである、前記[7]または[8]に記載の正極活物質の製造方法。
[10]共沈物に含まれるNi、CoおよびMnの合計モル量(X)に対するリチウム化合物に含まれるLiのモル量の比が1.1~1.7である、前記[7]~[9]のいずれか一項に記載の正極活物質の製造方法。
 本発明の正極活物質を用いれば、リチウムイオン二次電池の放電容量を高くでき、かつDCRを低減できる。また、本発明の正極活物質の製造方法によれば、リチウムイオン二次電池の放電容量を高くでき、かつDCRを低くできる正極活物質が得られる。
例1の正極活物質のX線回折パターンを示したグラフである。 例1の正極活物質の二次粒子断面のSEM画像である。 例8の正極活物質の二次粒子断面のSEM画像である。 例10の正極活物質の二次粒子断面のSEM画像である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「Li」との表記は、特に言及しない限り当該金属単体ではなく、Li元素であることを示す。Ni、Co、Mn等の他の表記も同様である。
 正極活物質の組成分析は、誘導結合プラズマ分析法(以下、ICPという。)により行う。また、正極活物質における元素の比率は、初回充電前の正極活物質における値である。
 「一次粒子」とは、走査型電子顕微鏡(SEM)により観察される最小の粒子を意味する。また、「二次粒子」とは、一次粒子が凝集している粒子を意味する。
 「D50」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理等で充分に分散させて粒度分布を測定する(たとえば、レーザー回折/散乱式粒子径分布測定装置等を用いる)ことで行われる。
<正極活物質>
 本発明の正極活物質(以下、本活物質という)は、固溶体系のリチウム含有複合酸化物(1)(以下、複合酸化物(1)という)を含む。
 複合酸化物(1)は、一般式aLi(Li1/3Mn2/3)O・(1-a)LiMO(ただし、MはNi、CoおよびMnから選ばれる少なくとも1種の元素を表し、0<a<1である。)で表される。すなわち、複合酸化物(1)は、Li(Li1/3Mn2/3)OとLiMOの固溶体である。
 本活物質は複合酸化物(1)を含むため、本活物質を有するリチウムイオン二次電池の放電容量を高くできる。
 前記一般式におけるaは、0.1~0.78が好ましく、0.2~0.75がより好ましい。本活物質は、aが0.1以上の複合酸化物(1)を含む場合、リチウムイオン二次電池の放電容量を高くしやすい。本活物質は、aが0.7以下の複合酸化物(1)を含む場合、リチウムイオン二次電池の放電電圧が高くなりやすい。
 複合酸化物(1)のMは、リチウムイオン二次電池の放電容量を高くする観点から、NiおよびMnを含有することが好ましく、Ni、CoおよびMnを含有することがより好ましい。
 複合酸化物(1)において、Ni、CoおよびMnのそれぞれの含有量は、Ni、CoおよびMnの合計モル量(X)に対してモル比で、Ni比(Ni/X)が0.15~0.5、Co比(Co/X)が0~0.33、Mn比(Mn/X)が0.33~0.8であることが好ましい。本活物質は、Ni比、Co比およびMn比がそれぞれ前記範囲である複合酸化物(1)を含む場合、リチウムイオン二次電池の放電容量を高くしやすく、またサイクル特性を良好にしやすい。
 Ni比は、0.15~0.45がより好ましく、0.15~0.37が特に好ましい。本活物質は、Ni比が0.15以上である複合酸化物(1)を含む場合、リチウムイオン二次電池の放電電圧を高くしやすい。本活物質は、Ni比が0.45以下である複合酸化物(1)を含む場合、リチウムイオン二次電池の放電容量を高くしやすい。
 Co比は、0~0.3がより好ましく、0~0.25が特に好ましい。Co比が上限値以下である複合酸化物(1)を含む正極活物質は、リチウムイオン二次電池のサイクル特性がより良好になる。
 Mn比は、0.4~0.82がより好ましく、0.5~0.8が特に好ましい。本活物質は、Mn比が0.4以上である複合酸化物(1)を含む場合、リチウムイオン二次電池の放電容量を高くしやすい。本活物質は、Mn比が0.82以下である複合酸化物(1)を含む場合、リチウムイオン二次電池の放電電圧を高くしやすい。
 複合酸化物(1)における、Ni、CoおよびMnの合計モル量(X)に対するモル比で、Li比(Li/X)は、1.1~1.7が好ましい。Li比は1.1~1.67がより好ましく、1.25~1.6が特に好ましい。本活物質はLi比が前記範囲内である複合酸化物(1)を含む場合、リチウムイオン二次電池の放電容量を高くできる。
 複合酸化物(1)は、Li、Ni、CoおよびMn以外の他の元素を含有してもよい。他の元素としてはP等が挙げられる。好ましい本活物質は、Pを含有する複合酸化物(1)を含む場合、リチウムイオン二次電池のサイクル特性を向上できる。
 複合酸化物(1)は、一般式aLi(Li1/3Mn2/3)O・(1-a)LiNiCoMn(ただし、bは0.33~0.6、cは0~0.33、dは0・33~0.5ある。)で表される化合物が好ましい。また、bは0.33~0.5がより好ましい。
 複合酸化物(1)は、Li(Li1/3Mn2/3)Oと、LiMOとの固溶体であり、2つの結晶構造を有する。Li(Li1/3Mn2/3)Oは、空間群C2/mの層状岩塩型結晶構造を有する。空間群C2/mの結晶構造は、リチウム過剰相とも呼ばれる。LiMOは、空間群R-3mの層状岩塩型結晶構造を有する。複合酸化物(1)がこれらの結晶構造を有することは、X線回折測定により確認できる。
 複合酸化物(1)のX線回折パターンにおける、空間群R-3mの結晶構造の(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造の(020)面のピークの積分強度(I020)の比(I020/I003)は、0.02~0.3であることが好ましい。本活物質の好ましい態様において、I020/I003が前記範囲にある複合酸化物(1)は、前記した2つの結晶構造をバランスよく含むため、リチウムイオン二次電池の放電容量を高くしやすい。リチウムイオン二次電池の放電容量を高くする観点から、I020/I003は、0.02~0.28がより好ましく、0.02~0.25がさらに好ましい。
 なお、X線回折測定は、実施例に記載の方法で行える。空間群R-3mの結晶構造の(003)面のピークは、2θ=18~19°に現れるピークである。空間群C2/mの結晶構造の(020)面のピークは、2θ=20~21°に現れるピークである。
 本活物質は、複合酸化物(1)の一次粒子が複数凝集した二次粒子を含む。本活物質は、二次粒子の断面の空隙率が12~40%である。空隙率が前記範囲内にある本活物質を用いれば、リチウムイオン二次電池のDCRを低減できる。空隙率の下限値は、13%が好ましく、14%がより好ましい。二次粒子の断面の空隙率の上限値は、38%が好ましく、33%がより好ましい。
 「二次粒子の断面の空隙率」とは、以下のようにして算出した値である。二次粒子の断面を観察したSEM画像を二値化した画像(例えば、一次粒子が存在する部分を白色、二次粒子内の一次粒子が存在しない空隙部分と二次粒子の外側を黒色とする。)において、画像解析ソフトを用いて、二次粒子の外側部分、および二次粒子内の空隙部分における外側部分と繋がっている部分を第三の色(白および黒以外の色)で塗り潰す。二次粒子断面における一次粒子が存在する部分(白色部分)のドット数の合計をN、当該二次粒子断面の空隙部分における第三の色に塗り潰されなかった部分、すなわち二次粒子断面の空隙部分における外側と繋がっていない部分(黒色部分)のドット数の合計をNとして、下式(1)により空隙率(%)を求める。合計20個の二次粒子について空隙率を求め、これらの平均値を二次粒子の断面の空隙率とする。
 (空隙率)=N/(N+N)×100 ・・・(1)
 本活物質の孤立気孔率は5%以下である。本活物質は、孤立気孔率が5%以下であるので、リチウムイオン二次電池のDCRを低減できる。孤立気孔率は、4%以下が好ましく、3%以下がより好ましい。
 また、本活物質は、二次粒子の内側に中空部を有し外部から中空部まで通じる孔(以下、貫通孔という)を有することが好ましい。正極活物質が貫通孔を有していると、孤立気孔率が小さくなるため好ましい。
 「正極活物質の孤立気孔率」とは、以下のようにして算出した値である。ピクノメーター法により窒素ガスを用いて正極活物質の見掛け密度d1を測定する。また、X線回折によって正極活物質の格子定数を測定し、格子定数から理論的な結晶密度d2を計算する。下式(2)によって孤立気孔率(%)を算出する。
 (孤立気孔率)=(d2-d1)/d2×100 ・・・(2)
 本活物質は、複合酸化物(1)を本活物質としてもよく、複合酸化物(1)の表面に被覆物を有して本活物質としてもよい。複合酸化物(1)の表面に被覆物を有する本活物質は、リチウムイオン二次電池のサイクル特性を向上できるため好ましい。複合酸化物(1)の表面に被覆物を有すると、複合酸化物(1)と電解液との接触頻度が減少し、その結果、複合酸化物(1)中のMn等の遷移金属元素の溶出を低減できるためと考えられる。
 本活物質の複合酸化物(1)の表面に存在する被覆物としては、他の電池特性を下げることなく、サイクル特性を向上できるため、Alの化合物(Al、AlOOH、Al(OH)等)が好ましい。
 被覆物は、複合酸化物(1)の表面に存在すればよく、複合酸化物(1)の全面に存在してもよく、複合酸化物(1)の一部に存在してもよい。
 本活物質のD50は、3~15μmが好ましい。D50が前記範囲内であれば、リチウムイオン電池の放電容量を高くしやすい。本活物質のD50は、5~15μmがより好ましく、6~12μmが特に好ましい。
 本活物質の比表面積は、0.1~10m/gが好ましい。本活物質は比表面積が0.1m/g以上の場合、リチウムイオン二次電池の放電容量を高くできる。本活物質は、比表面積が10m/g以下の場合、リチウムイオン二次電池のサイクル特性を良好にできる。本活物質の比表面積は、0.5~7m/gがより好ましく、0.5~5m/gが特に好ましい。本活物質の比表面積は、実施例に記載の方法で測定される。
<正極活物質の製造方法>
 本発明の正極活物質の製造方法(以下、本製造方法という)は、下記の工程(I)および工程(II)を有することが好ましい。
 (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも2種の硫酸塩(A)と、Naの炭酸塩、Kの炭酸塩、NaOHおよびKOHからなる群から選ばれる少なくとも1種のアルカリ(B)とを、水溶液の状態で混合し、混合液中で反応させて、金属を含む共沈物を析出させる工程。
 (II)前記金属を含む共沈物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。
 [工程(I)]
 工程(I)では、硫酸塩(A)とアルカリ(B)とを、水溶液の状態で混合し、混合液中で反応させる。これにより、Ni、CoおよびMnからなる群から選ばれる少なくとも2種の遷移金属元素を含む共沈物が析出する。工程(I)においては、必要に応じて他の溶液を混合してもよい。
 硫酸塩(A)とアルカリ(B)とを、水溶液の状態で混合する態様は、硫酸塩(A)とアルカリ(B)とが混合の際に水溶液の状態であれば特に限定されない。
 具体的には、共沈物が析出しやすく、かつ共沈物の粒子径を制御しやすいことから、反応槽に硫酸塩(A)の水溶液と、アルカリ(B)の水溶液とを共に連続的に添加することが好ましい。反応槽には、予めイオン交換水、純水、蒸留水等を入れておくことが好ましい。さらに、アルカリ(B)や他の溶液を用いて反応槽中のpHを制御しておくことがより好ましい。
 硫酸塩(A)とアルカリ(B)とを混合する際の混合液のpHは、共沈物を析出させやすいことから、7~12の設定した値に保持することが好ましく、7.5~10の設定した値に保持することがより好ましい。
 硫酸塩(A)は、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも2種の硫酸塩である。
 Niの硫酸塩としては、たとえば、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
 Coの硫酸塩としては、たとえば、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
 Mnの硫酸塩としては、たとえば、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。
 硫酸塩(A)としては、Niの硫酸塩およびMnの硫酸塩を含むことが好ましく、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩の全てを含むことがより好ましい。すなわち、工程(I)で得られる共沈物は、NiおよびMnを含む共沈物が好ましく、Ni、CoおよびMnの全てを含む共沈物がより好ましい。
 硫酸塩(A)の水溶液は、2種以上の硫酸塩(A)のそれぞれを別々の水溶液としてもよく、2種以上の硫酸塩(A)を含む1種の水溶液としてもよい。また、1種の硫酸塩(A)を含む水溶液と、2種以上の硫酸塩(A)を含む水溶液とを併用してもよい。2種のアルカリ(B)を使用する場合も同様である。
 硫酸塩(A)に含まれるNiの割合は、硫酸塩(A)に含まれるNi、CoおよびMnの合計モル量に対してモル比で、0.15~0.5が好ましい。Niの割合が0.15~0.5にあれば、所望の組成の複合酸化物(1)が得られる。同様の理由で、Niの割合は、0.15~0.45がより好ましく、0.15~0.37が特に好ましい。
 硫酸塩(A)に含まれるCoの割合は、硫酸塩(A)に含まれるNi、CoおよびMnの合計モル量に対してモル比で、0~0.33が好ましい。Coの割合が、0~0.33にあれば、所望の組成の複合酸化物(1)が得られる。同様の理由で、Coの割合は、0~0.3がより好ましく、0~0.25が特に好ましい。
 硫酸塩(A)に含まれるMnの割合は、硫酸塩(A)に含まれるNi、CoおよびMnの合計モル量に対してモル比で、0.33~0.8が好ましい。Mnの割合が0.33~0.8にあれば、所望の組成の複合酸化物(1)が得られる。同様の理由で、Mnの割合は、0.4~0.82がより好ましく、0.5~0.8が特に好ましい。
 硫酸塩(A)の水溶液中におけるNi、CoおよびMnを合計した濃度は、0.1~2mol/kgが好ましく、0.5~1.6mol/kgがより好ましい。前記濃度が下限値以上であれば、生産性が高い。硫酸塩(A)の濃度が2mol/kg以下であれば、硫酸塩(A)を水に充分に溶解できる。
 硫酸塩(A)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について遷移金属元素(X)の濃度を前記範囲内とすることが好ましい。
 アルカリ(B)は、Naの炭酸塩、Kの炭酸塩、NaOHおよびKOHからなる群から選ばれる少なくとも1種である。アルカリ(B)は、共沈物を析出させるためのpH調整剤としての役割も果たす。アルカリ(B)として、Naの炭酸塩またはKの炭酸塩を用いた場合、金属を含む炭酸化合物の共沈物が得られる。また、アルカリ(B)として、NaOHまたはKOHを用いた場合、金属を含む水酸化物の共沈物が得られる。
 アルカリ(B)は、1種のみで使用してよく、2種以上の混合液としてもよい。複合酸化物(1)の製造容易性の観点から、アルカリ(B)としては、Naの炭酸塩およびKの炭酸塩からなる群から選ばれる少なくとも1種の炭酸塩であることが好ましい。
 Naの炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。
 Kの炭酸塩としては、炭酸カリウム、炭酸水素カリウムが挙げられる。
 炭酸塩としては、安価で、かつ共沈物の粒子径を制御しやすい点では、炭酸ナトリウム、炭酸カリウムが好ましい。
 アルカリ(B)の水溶液中におけるアルカリ(B)の濃度は、0.1~2mol/kgが好ましく、0.5~1.6mol/kgがより好ましい。前記アルカリ(B)の濃度が0.1~2mol/kgであれば、共沈反応で共沈物を析出させやすい。
 アルカリ(B)を含む水溶液を2種以上使用する場合は、それぞれの水溶液についてアルカリ(B)の濃度を前記範囲内とすることが好ましい。
 工程(I)で混合してもよい他の溶液としては、たとえば、アンモニア、またはアンモニウム塩を含む水溶液が挙げられる。これらは、pHや遷移金属元素の溶解度を調整する働きをする。アンモニウム塩としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等が挙げられる。
 アンモニアまたはアンモニウム塩は、硫酸塩(A)の供給と同時に混合液に供給することが好ましい。
 硫酸塩(A)の水溶液、アルカリ(B)の水溶液および他の溶液の溶媒としては、水が好ましい。硫酸塩(A)およびアルカリ(B)を溶解できれば、水以外の水性媒体を溶媒の全質量に対して、20%を上限として含有する混合媒体を溶媒としてもよい。
 水以外の成分としては、たとえば、メタノール、エタノール、1-プロパノール、2-プロパノール、ポリオール等が挙げられる。ポリオールとしては、たとえば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
 硫酸塩(A)とアルカリ(B)とを水溶液の状態で混合する際は、反応槽中で撹拌しながら行うことが好ましい。
 撹拌装置としては、たとえば、スリーワンモータ等が挙げられる。撹拌翼としては、たとえば、アンカー型、プロペラ型、パドル型等の撹拌翼が挙げられる。
 硫酸塩(A)とアルカリ(B)とを混合する際の混合液の温度は、共沈物が析出しやすいことから、20~80℃が好ましく、25~60℃がより好ましい。
 また、硫酸塩(A)とアルカリ(B)とを混合する際は、析出した共沈物の酸化を抑制する点から、窒素雰囲気下またはアルゴン雰囲気下で混合を行うことが好ましく、コストの面から、窒素雰囲気下で混合を行うことが特に好ましい。
 硫酸塩(A)とアルカリ(B)とを水溶液の状態で混合して共沈物を析出させるための好ましい方法としては、反応槽内の混合液を、ろ過材(濾布等)を用いて抜き出して共沈物を濃縮しながら析出反応を行う方法(以下、濃縮法という。)と、反応槽内の混合液をろ過材を用いずに共沈物と共に抜き出して炭酸化合物の濃度を低く保ちながら析出反応を行う方法(以下、オーバーフロー法という。)の2種類が挙げられる。
 工程(I)は、濃縮法が好ましい。濃縮法で得られ共沈物を使用して得られたリチウム含有複合酸化物の二次粒子は、該二次粒子の断面の空隙率が前記範囲を満たすものとなりやすい。また、濃縮法で得られた共沈物を使用して得られた正極活物質は、該正極活物質の孤立気孔率が前記範囲を満たすものとなりやすい。
 これは以下のように考えられる。濃縮法では反応槽中の混合液中の共沈物の固形分濃度が高いため、共沈物の一次粒子が凝集して、密度の高い共沈物の二次粒子が形成されやすく、さらに、該共沈物の二次粒子が凝集しやすい。共沈物の二次粒子が凝集すると、粒子表面が密になる。例えば、共沈物が炭酸化合物である場合には、工程(II)において、リチウム化合物と炭酸化合物とを混合して混合物を焼成するときに、該粒子表面が密であると、リチウム化合物からLiが炭酸化合物の内部に侵入しにくくなる。そのため、焼成により炭酸が除去されつつ、炭酸化合物の内部の原子が炭酸化合物の表面に移動してリチウム含有複合酸化物が形成される傾向がある。その結果、焼成後に得られるリチウム含有複合酸化物の二次粒子は該混合物からの体積の減少が小さくなり、中空部と、外側から該中空部まで通じる孔が形成され、二次粒子の断面の空隙率と正極活物質の孤立気孔率が前記範囲を満たすものとなりやすい。
 これに対し、オーバーフロー法では、析出した共沈物が混合液と共に随時抜き出されるために反応槽中の混合液中の共沈物の固形分濃度が低い。そのため、共沈物の二次粒子は凝集を起こしにくく、Liが侵入可能な孔を多く有する球状で均一な共沈物の二次粒子が形成されやすい。例えば、共沈物が炭酸化合物である場合には、工程(II)において該炭酸化合物とリチウム化合物とを混合して、混合物を焼成するときに、炭酸が除去されつつ、該炭酸化合物の二次粒子内にLiが侵入してリチウム含有複合酸化物が形成される傾向がある。そのため、焼成後に得られるリチウム含有複合酸化物の二次粒子は、焼成前の混合物から体積が大きく減少し、中実な粒子となりやすいと考えられる。
 さらに析出反応の条件を制御することで所望の中空粒子が得やすくなる。
 反応時間は長い方が好ましい。これにより、共沈物の粒子表面が密になりやすい。その結果、焼成後に中空粒子となりやすい。
 反応槽の初期のpHが高いことが好ましい。これにより、反応槽中のイオン強度が高くなり共沈物の凝集が進みやすい。その結果、焼成後に中空粒子となりやすい。
 反応中の制御pHが高く、反応温度が高い方が好ましい。これにより、共沈物の凝集が進みやすい。その結果、焼成後に中空粒子となりやすい傾向がある。
 得られる共沈物中のNi、CoおよびMnのそれぞれの割合の好ましい範囲は、前述した使用する全ての硫酸塩(A)中のNi、CoおよびMnのそれぞれの割合の好ましい範囲と同じである。
 共沈物のD50は、3~15μmが好ましく、6~15μmがより好ましく、6~12μmが特に好ましい。共沈物のD50が前記範囲内であれば、正極活物質のD50を好ましい範囲に制御しやすく、充分な電池特性を示す正極活物質が得られやすい。
 共沈物の比表面積は、50~300m/gが好ましく、100~250m/gがより好ましい。共沈物の比表面積が前記範囲内であれば、正極活物質の比表面積を前記した範囲内に制御しやすく、高い放電容量およびサイクル特性を示すリチウムイオン二次電池が得られる正極活物質を製造しやすい。
 なお、共沈物の比表面積は、当該共沈物を120℃で15時間乾燥した後に測定した値を意味する。共沈物の比表面積は、BET法により測定できる。
 工程(I)は、共沈物を得た後に、ろ過、または遠心分離によって水溶液を取り除く工程を有することが好ましい。ろ過または遠心分離には、加圧ろ過機、減圧ろ過機、遠心分級機、フィルタープレス、スクリュープレス、回転型脱水機等を用いることができる。
 得られた共沈物は、不純物イオンを取り除くために、洗浄することが好ましい。共沈物の洗浄方法としては、たとえば、加圧ろ過と蒸留水への分散を繰り返す方法等が挙げられる。
 洗浄後に、共沈物を乾燥することが好ましい。
 乾燥する場合、乾燥温度は、60~200℃が好ましく、80℃~130℃がより好ましい。前記乾燥温度が下限値以上であれば、共沈物を短時間で乾燥できる。前記乾燥温度が上限値以下であれば、共沈物の酸化を抑制できる。
 乾燥する場合、乾燥時間は、1~300時間が好ましく、5~120時間がより好ましい。
 [工程(II)]
 工程(II)では、工程(I)で得られた共沈物と、リチウム化合物とを混合し、500~1000℃で焼成する。これにより、複合酸化物(1)が形成される。
 リチウム化合物としては、炭酸リチウム、水酸化リチウムおよび硝酸リチウムからなる群から選ばれる少なくとも1種が好ましく、取扱いの容易性の観点から炭酸リチウムがより好ましい。
 共沈物と炭酸リチウムとを混合する方法は、たとえば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を使用する方法等が挙げられる。
 工程(II)において、共沈物に含まれるNi、CoおよびMnの合計モル量(X)に対するリチウム化合物に含まれるLiのモル量の比(混合比)は、1.1~1.7が好ましく、1.1~1.67がより好ましく、1.25~1.6が特に好ましい。混合比が前記範囲内であれば、複合酸化物(1)のLi比を所望の範囲にでき、高い放電容量を示す正極活物質が得られやすい。
 焼成装置には、電気炉、連続焼成炉、ロータリーキルン等を使用できる。焼成時に前駆体化合物(共沈物)は酸化されることから、焼成は大気下で行うことが好ましく、空気を供給しながら行うことが特に好ましい。
 空気の供給速度は、炉の内容積1Lあたりに対して10~200mL/分が好ましく、40~150mL/分がより好ましい。
 焼成時に空気を供給することで、共沈物中の遷移金属元素が充分に酸化され、結晶性が高く、かつ目的とする結晶相を有する複合酸化物(1)を含む正極活物質が得られる。
 焼成温度は、500~1000℃であり、600~1000℃が好ましく、800~950℃が特に好ましい。焼成温度が、前記範囲内であれば、結晶性の高い複合酸化物(1)が得られる。
 焼成温度は高い方が共沈物の内部の原子が共沈物の表面に移動しやすい。その結果、二次粒子の断面の空隙率と正極活物質の孤立気孔率が前記範囲を満たすものとなりやすい。一方で焼成温度が高すぎると複合酸化物の中にスピネル等の異相が発生するため好ましくない。
 焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。
 焼成時間を長くすると、共沈物の内部の原子が共沈物の表面に移動できる。そのため、二次粒子の断面の空隙率と正極活物質の孤立気孔率が前記範囲を満たすものとなりやすい。
 焼成は、500~1000℃での1段焼成でもよく、400~700℃の仮焼成を行った後に、700~1000℃で本焼成を行う2段焼成でもよい。なかでも、Liがリチウム含有複合酸化物中に均一に拡散しやすいことから2段焼成が好ましい。
 2段焼成の場合の仮焼成の温度は、400~700℃が好ましく、500~650℃がより好ましい。また、2段焼成の場合の本焼成の温度は、700~1000℃が好ましく、800~950℃がより好ましい。
 なお、本活物質に含まれる複合酸化物(1)の製造方法は、前記した方法には限定されない。
 たとえば、工程(I)で得られた共沈物とリン酸塩水溶液(リン酸水溶液、リン酸二水素アンモニウム水溶液、リン酸水素二アンモニウム水溶液等)を混合し、水分を揮発させる工程を行ってもよい。この工程により、正極活物質の一次粒子にP(リン)をドープできる。
 二次粒子の表面に被覆物を形成する方法としては、粉体混合法、気相法、スプレーコート法、浸漬法等が挙げられる。これらの方法について、被覆物としてAlの化合物を使用する例を用いて説明する。
 粉体混合法とは、二次粒子とAlの化合物とを混合した後に加熱する方法である。気相法とは、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムアセチルアセトナート等のAlを含む有機化合物を気化し、該有機化合物を二次粒子の表面に接触させ、反応させる方法である。スプレーコート法とは、二次粒子にAlを含む溶液を噴霧した後、加熱する方法である。
 また、焼成後の二次粒子に、Alの化合物を形成するためのAl水溶性化合物(酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム、乳酸アルミニウム、塩基性乳酸アルミニウム、硝酸アルミニウム等)を溶媒に溶解させた水溶液をスプレーコート法等で接触させた後、加熱して溶媒を除去することで、該二次粒子の表面にAlの化合物を含む被覆物を形成してもよい。
 本活物質は、リチウムリッチ系正極活物質であるため、放電容量の高いリチウムイオン二次電池が得られる。また、本活物質は、二次粒子の断面の空隙率が12~40%で、かつ正極活物質の孤立気孔率が5%以下という条件を満たす。これにより、本活物質を有するリチウムイオン二次電池のDCRを低くできる。
 特開2011-119092号公報には、二次粒子の内側に中空部を有し、外部から中空部まで貫通する貫通孔が形成された、Li1+mNiCoMn (ただし、Mは、Al、Cr、Fe、V、Mg、Ti、Zr、Nb、Mo、Ta、W、Cu、Zn、Ga、In、Sn、LaおよびCeからなる群から選ばれる少なくとも1種であり、0≦m≦0.2であり、0.1≦p≦0.9であり、0≦q≦0.5であり、0≦r≦0.5であり、0≦s≦0.02であり、p+q+r+s=1である。)で表される、いわゆる3元系の正極活物質が開示されている。
 また、国際公開第2012/153379号には、二次粒子に同様の中空部と貫通孔が形成された、Li1+eNiCoMn(1-f-g) (ただし、Mは、Zr、W、Mg、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFからなる群から選ばれる少なくとも1種であり、0≦e≦0.2であり、0.1<f<0.9であり、0.1<g<0.4であり、0≦h≦0.01である。)で表される、いわゆる3元系の正極活物質が開示されている。
 また、国際公開第2013/031478号には、二次粒子に同様の中空部と貫通孔が形成された、Li1+iNiCoMn(1-j-k)β γ(ただし、Mは、Zr、Mg、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFからなる群から選ばれる少なくとも1種であり、0≦i≦0.2であり、0.1<j<0.9であり、0.1<k<0.4であり、0.0005≦β≦0.01であり、0≦γ≦0.1である。)で表される、いわゆる3元系の正極活物質が開示されている。
 また、国際公開第2012/169083号には、Li1+δNiεMnηCoζ φ(ただし、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wからなる群から選ばれる少なくとも1種であり、ε+η+ζ+φ=1であり、-0.05≦δ≦0.50であり、0.3≦ε≦0.7であり、0.1≦η≦0.55であり、0≦ζ≦0.4であり、0≦φ≦0.1である。)で表され、中空部を有し、結晶構造が六方晶の層状結晶リチウムニッケルマンガン複合酸化物単層からなる、いわゆる3元系の正極活物質が開示されている。
 これらの文献には、いずれも中空部を有する3元系の正極活物質が記載されている。しかし、これらの文献には、二次粒子の内側に中空部を有し、二次粒子の断面の空隙率と正極活物質の孤立気孔率が前記範囲を満たすリチウムリッチ系正極活物質とすることは記載されていない。また、このようなリチウムリッチ系の正極活物質を使用することで、リチウムイオン二次電池は高い放電容量が得られ、かつDCRを低くできることは開示されていない。さらに、3元系の正極活物質を使用するリチウムイオン二次電池はDCRが低いことから、リチウムイオン二次電池のDCRを下げることは、リチウムリッチ系正極活物質に固有の課題といえる。
 本発明は、リチウムイオン二次電池の放電容量を高くできるが、DCRを低くできないというリチウムリッチ系正極活物質を用いる場合に特有の課題を解決したものであり、本発明によって該課題が解決できることは、特開2011-119092号公報、国際公開第2012/169083号、国際公開第2013/031478号および国際公開第2012/169083号の記載からは予測困難である。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~7、12は実施例、例8~11、13は比較例である。例14、15は参考例である。
[比表面積]
 比表面積は、比表面積測定装置(マウンテック社製、装置名;HM model-1208)を使用して窒素吸着BET(Brunauer,Emmett,Teller)法により測定した。脱気は、200℃、20分の条件で行った。
[粒子径]
 粒子を水中に超音波処理によって充分に分散させ、レーザー回折/散乱式粒子径分布測定装置(日機装社製、装置名;MT-3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線において、累積体積が50%となる点の(平均)粒子径をD50とした。
[X線回折]
 X線回折測定は、X線回折装置(リガク社製、装置名:SmartLab)により行った。測定条件を表1に示す。測定は25℃で行った。得られたX線回折パターンについてリガク社製統合粉末X線解析ソフトウェアPDXL2を用いてピーク検索を行った。そこから、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)と、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)を求め、比(I020/I003)を算出した。
Figure JPOXMLDOC01-appb-T000001
[空隙率]
 エポキシ樹脂で包埋した正極活物質をダイヤモンド砥粒で研磨した試料を使用し、二次粒子の断面をSEMにより観察した。次いで、画像解析ソフトによって、得られたSEM画像を二値化した画像における、二次粒子の外側部分、および二次粒子内の空隙部分における外側部分と繋がっている部分を第三の色(緑色)で塗り潰した。次いで、二次粒子断面における一次粒子が存在する部分(白色部分)のドット数の合計をN、当該二次粒子断面内の空隙部分における第三の色に塗り潰されなかった部分、すなわち当該二次粒子断面の空隙部分における外側と繋がっていない部分(黒色部分)のドット数の合計をNとして、下式(1)により空隙率(%)を求めた。合計20個の二次粒子について空隙率を求め、これらの平均値を二次粒子断面の空隙率とした。
 (空隙率)=N/(N+N)×100 ・・・(1)
[孤立気孔率]
 全自動ピクノメーター(Ultrapyc 1200e、QUANTACHROME社製)を用い、ピクノメーター法により窒素ガスを用いて正極活物質の見掛け密度d1を測定した。また、X線回折の結果から二次粒子の格子定数を求め、格子定数から該正極活物質の理論的な結晶密度d2を計算により求めた。次に、下式(2)によって孤立気孔率(%)を算出した。
 (孤立気孔率)=(d2-d1)/d2×100 ・・・(2)
[組成分析]
 正極活物質に含まれるリチウム含有複合酸化物の組成は、硫酸塩とリチウム化合物の仕込み量から算出した値である。aLi(Li1/3Mn2/3)O・(1-a)LiNiCoMnで表したときのa、b、cおよびdを算出した。
[充電容量、放電容量、充放電効率]
 (正極体シートの製造)
 各例で得られた正極活物質と、導電材であるアセチレンブラック、およびポリフッ化ビニリデン(バインダ)を、質量比で80:10:10となるように秤量し、これらをN-メチルピロリドンに加えて、スラリーを調製した。
 次いで、該スラリーを、厚さ20μmのアルミニウム箔(正極集電体)の片面上にドクターブレードにより塗工した。ドクターブレードのギャップは圧延後のシート厚みが30μmとなるように調整した。これを120℃で乾燥した後、ロールプレス圧延を2回行い、正極体シートを作製した。
 (リチウム二次電池の製造)
 得られた正極体シートを直径18mmの円形に打ち抜いたものを正極とし、ステンレス鋼製簡易密閉セル型のリチウム二次電池をアルゴングローブボックス内で組み立てた。なお、負極集電体として厚さ1mmのステンレス鋼板を使用し、該負極集電体上に厚さ500μmの金属リチウム箔を形成して負極とした。セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の容積比1:1の混合溶液に、濃度が1mol/dmとなるようにLiPFを溶解させた液を電解液として使用した。
 (測定方法)
 例1~13の正極活物質を有するリチウム二次電池の電池特性(充電容量、放電容量および充放電効率)は次の条件で測定した。正極活物質1gにつき20mAの負荷電流で4.6Vまで定電流充電した後、4.6Vの定電圧充電を行った。定電流充電と定電圧充電を合わせて23時間充電を行った。その後、正極活物質1gにつき20mAの負荷電流で2.0Vまで放電して初回充放電を行った。その時の充電容量に対する放電容量の割合を充放電効率とした。
 例14および15の正極活物質を有するリチウム二次電池の電池特性は次の条件で測定した。正極活物質1gにつき16mAの負荷電流で4.3Vまで定電流充電した後、電流値が正極活物質1gにつき1.6mAとなるまで4.3Vの定電圧充電を行った。その後、正極活物質1gにつき16mAの負荷電流で2.0Vまで放電して初回充放電を行った。その時の充電容量に対する放電容量の割合を充放電効率とした。
[DCR]
 例1~13の正極活物質を有するリチウム二次電池のDCRは次の条件で測定した。初回充放電後に3.75Vの定電流・定電圧充電を3時間半行い、その後正極活物質1gにつき60mAの負荷電流で1分間放電した。放電開始から10秒後の電圧降下を電流値で除算して、DCRの数値を計算した。
 例14および15の正極活物質を有するリチウム二次電池のDCRは次の条件で測定した。初回充放電後に3.75Vの定電流・定電圧充電を3時間半行い、その後正極活物質1gにつき52mAの負荷電流で1分間放電した。放電開始から10秒後の電圧降下を電流値で除算して、DCRの数値を計算した。
[例1]
 硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物を、Ni、CoおよびMnの比率が表2に示すとおりとなるように、かつNi、CoおよびMnの合計濃度が1.5mol/Lとなるように蒸留水に溶解して硫酸塩水溶液を得た。また、炭酸ナトリウム1271gを蒸留水6729gに溶解させ、炭酸塩水溶液(pH調整液)を調製した。
 次いで、2Lのバッフル付きガラス製反応槽に蒸留水を入れてマントルヒータで25℃に加熱し、反応槽内の溶液を2段傾斜パドル型の撹拌翼で撹拌しながら、添加速度は5.0g/分で前記硫酸塩水溶液を25時間添加した。前記硫酸塩水溶液の添加中は、反応槽内のpHを8.5に保つようにpH調整液を添加し、Ni、CoおよびMnを含む炭酸化合物(共沈物)を析出させた。混合液の初期のpHは7.0であった。析出反応中は、析出した共沈物が酸化しないように反応槽内に窒素ガスを流量2L/分で流した。また、析出反応に濃縮法を採用し、反応中に、反応槽内の液量が2Lを超えないようにろ布を用いて連続的に液の抜き出しを行った。
 得られた共沈物を加圧ろ過と蒸留水への分散を繰り返して洗浄し、不純物イオンを取り除いた。洗浄は、ろ液の電気伝導度が20mS/m未満となった時点で終了した。次に、洗浄後の共沈物を120℃で15時間乾燥させた。
 次に、乾燥後の共沈物と炭酸リチウムとを、共沈物中の遷移金属元素の合計モル量(X)に対するLiの混合比(Li/X)を表2に示す値で混合した。混合物を大気雰囲気下において、600℃で5時間仮焼成した後に900℃で16時間本焼成してリチウム含有複合酸化物を得た。このリチウム含有複合酸化物を正極活物質とした。
[例2~7、11]
 析出反応条件とリチウム化条件を表2に示すとおりに変更した以外は、例1と同様にしてリチウム含有複合酸化物を得た。これらのリチウム含有複合酸化物を正極活物質とした。
 例11では、硫酸アンモニウムを濃度が0.75mol/Lとなるように蒸留水に溶解して硫酸アンモニウム水溶液を調製し、該硫酸アンモニウム水溶液を硫酸塩水溶液と共に、炭酸化合物中の遷移金属元素の合計モル量(X)に対するアンモニウムイオンのモル比(NH4+/X)が表2に示すとおりとなるように28時間かけて添加した。
[例8]
 析出反応条件において、オーバーフロー法を採用し、反応槽からの液の抜き出しでろ布を使用しなかったこと以外は、例1と同様にして共沈物を得た。反応開始から15~18時間の間にオーバーフローした炭酸化合物を使用した。
 リチウム化条件は表2に示すとおり変更した以外は、例1と同様にしてリチウム含有複合酸化物を得た。得られたリチウム含有複合酸化物を正極活物質とした。
[例9]
 析出反応条件とリチウム化条件を表2に示すとおりとし、反応開始から12~15時間の間にオーバーフローした共沈物を使用する以外は例8と同様にしてリチウム含有複合酸化物を得た。得られたリチウム含有複合酸化物を正極活物質とした。
[例10]
 硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物を、Ni、CoおよびMnの比率が表2に示すとおりとなるように、かつNi、CoおよびMnの合計濃度が1.5mol/Lとなるように蒸留水に溶解して硫酸塩水溶液を得た。また、質量割合で48%の水酸化ナトリウム水溶液をpH調整液として準備した。
 次いで、2Lのバッフル付きガラス製反応槽に蒸留水を入れてマントルヒータで50℃に加熱し、反応槽内の溶液を2段傾斜パドル型の撹拌翼で撹拌しながら、前記硫酸塩水溶液を添加速度5.0g/分で28時間添加した。また、混合液のpHを10.0に保つようにpH調整液を添加して、Ni、CoおよびMnを含む水酸化物(共沈物)を析出させた。混合液の初期のpHは10.0であった。析出反応中は、析出した水酸化物が酸化しないように、反応槽内に窒素ガスを流量2L/分で流した。
 得られた共沈物を加圧ろ過と蒸留水への分散を繰り返して洗浄し、不純物イオンを取り除いた。洗浄は、ろ液の電気伝導度が20mS/m未満となった時点で終了した。洗浄後の共沈物を120℃で15時間乾燥させた。
 次に、乾燥後の共沈物と炭酸リチウムとを、共沈物に含まれる遷移金属元素(X)の合計量に対するLiの混合比(Li/X)が表2となるように混合した。そして、混合物を大気雰囲気下において、600℃で5時間仮焼成した後に850℃で本焼成して、リチウム含有複合酸化物を得た。得られたリチウム含有複合酸化物を正極活物質とした。
[例12]
 硫酸ニッケル(II)・六水和物、硫酸マンガン(II)・五水和物を、NiおよびMnの比率が表2に示すとおりとなるように、かつNiおよびMnの合計濃度が1.5mol/Lとなるように蒸留水に溶解して硫酸塩水溶液を得た。また、質量割合で48%の水酸化ナトリウム水溶液をpH調整液として準備した。硫酸アンモニウムを濃度が0.75mol/Lとなるように蒸留水に溶解して硫酸アンモニウム水溶液を調製した。
 次いで、2Lのバッフル付きガラス製反応槽に蒸留水を入れてマントルヒータで50℃に加熱し、反応槽内の溶液を2段傾斜パドル型の撹拌翼で撹拌しながら、前記硫酸塩水溶液を添加速度5.0g/分で、硫酸アンモニウム水溶液を共沈物中の遷移金属元素の合計モル(X)に対するアンモニウムイオンのモル比(NH4+/X)が表2に示すとおりとなる添加速度で28時間添加した。また、混合液のpHを11.0に保つようにpH調整液を添加して、Ni、CoおよびMnを含む水酸化物(共沈物)を析出させた。混合液の初期のpHは11.0であった。析出反応中は、析出した水酸化物が酸化しないように、反応槽内に窒素ガスを流量2L/分で流した。
 得られた共沈物を加圧ろ過と蒸留水への分散を繰り返して洗浄し、不純物イオンを取り除いた。洗浄は、ろ液の電気伝導度が20mS/m未満となった時点で終了した。洗浄後の共沈物を120℃で15時間乾燥させた。
 次に、乾燥後の共沈物と炭酸リチウムとを、共沈物に含まれる遷移金属元素(X)の合計量に対するLiの混合比(Li/X)が表2となるように混合した。そして、混合物を大気雰囲気下において、600℃で5時間仮焼成した後に935℃で本焼成して、リチウム含有複合酸化物を得た。得られたリチウム含有複合酸化物を正極活物質とした。
[例13]
 析出反応条件とリチウム化条件を表2に示すとおりとする以外は例12と同様にしてリチウム含有複合酸化物を得た。得られたリチウム含有複合酸化物を正極活物質とした。
[例14、15]
 Ni、CoおよびMnの比率が、モル比でNi:Co:Mn=5:2:3の水酸化物と炭酸リチウムとを混合し、表2に示す条件で焼成して、リチウム含有複合酸化物を得た。得られたリチウム含有複合酸化物を正極活物質とした。
 各例で得られた正極活物質のD50、比表面積、見掛け密度d1、二次粒子の断面の空隙率、および正極活物質の孤立気孔率を表3に示す。また、正極活物質のX線回折パターンの代表例として、例1の正極活物質のX線回折パターンを図1に示す。また、図1に示すような、各例で得られた正極活物質のX線回折パターンから算出したI003、I020、I020/I003の値、および正極活物質をaLi(Li1/3Mn2/3)O・(1-a)LiNiCoMnで表したときのa、b、cおよびdの値を表3に示す。
 また、正極活物質の二次粒子断面の代表例として、例1、8、10のSEM画像を図2~4に示す。なお、表2における「OF法」とは、析出反応にオーバーフロー法を採用したことを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および図2~4に示すように、例1~7および12の正極活物質は、該正極活物質に含まれるリチウム含有複合酸化物の二次粒子の断面の空隙率が12~40%であり、かつ正極活物質の孤立気孔率が5%以下である。そのため、表4に示すように例1~7および12の正極活物質を有するリチウム二次電池はDCRが低く、放電容量および充放電効率が高い。
 一方、二次粒子の断面の空隙率が低い、いわゆる中実の正極活物質である例8、9、11および13を有するリチウム二次電池は、放電容量は高いが、DCRが高かった。
 また、二次粒子の断面の空隙率は12~40%であるが、正極活物質の孤立気孔率が5%超である例10の正極活物質を有するリチウム二次電池はDCRが高かった。これは、中空であるが貫通孔を有さず、孤立気孔率が高いことが原因と考えられる。
 さらに、3元系の正極活物質の場合、空隙率が12%以上の例14と空隙率が12%未満の例15とでは、リチウム二次電池のDCRの変化がほとんどない。このように、3元系の正極活物質の場合、二次粒子の空隙率を制御しても該正極活物質を有するリチウム二次電池のDCRを低減させる効果は見られない。
 以上のことから、リチウムリッチ系の正極活物質を用いた場合には、二次粒子の空隙率と正極活物質の孤立気孔率を所定の大きさに制御することで、該正極活物質を有するリチウム二次電池のDCRを低減する顕著な効果が発現するといえる。すなわち、該効果は、3元系の正極活物質では見られず、リチウムリッチ系の正極活物質における特有の効果である。
 本発明の正極活物質は、携帯型電子機器用、車載用等の広い分野で使用されるリチウムイオン二次電池の正極活物質として使用される。
 なお、2014年1月20日に出願された日本特許出願2014-008063号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  リチウム含有複合酸化物の一次粒子が複数凝集した二次粒子を含み、
     前記リチウム含有複合酸化物は、一般式aLi(Li1/3Mn2/3)O・(1-a)LiMO(ただし、MはNi、CoおよびMnから選ばれる少なくとも1種の元素を表し、0<a<1である。)で表され、
     前記二次粒子は断面の空隙率が12~40%であり、かつ、正極活物質の孤立気孔率が5%以下であることを特徴とする正極活物質。
  2.  前記リチウム含有複合酸化物における、Ni、CoおよびMnの合計モル量(X)に対する、Niモル比(Ni/X)が0.15~0.5であり、Coモル比(Co/X)が0~0.33であり、かつMnモル比(Mn/X)が0.33~0.8である、請求項1に記載の正極活物質。
  3.  前記リチウム含有複合酸化物における、Ni、CoおよびMnの合計モル量(X)に対するLiのモル比(Li/X)が1.1~1.7である、請求項1または2に記載の正極活物質。
  4.  正極活物質の粒子径D50が3~15μmである、請求項1~3のいずれか一項に記載の正極活物質。
  5.  正極活物質の比表面積が0.1~10mである、請求項1~4のいずれか一項に記載の正極活物質。
  6.  前記リチウム含有複合酸化物のX線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)が0.02~0.3である、請求項1~5のいずれか一項に記載の正極活物質。
  7.  請求項1~6のいずれか一項に記載の正極活物質の製造方法であって、下記工程(I)
    および(II)を有する正極活物質の製造方法。
     (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも2種の硫酸塩(A)と、
     Naの炭酸塩、Kの炭酸塩、NaOHおよびKOHからなる群から選ばれる少なくとも1種のアルカリ(B)とを、それぞれ水溶液の状態で混合して共沈物を析出させる工程。
     (II)前記共沈物と炭酸リチウムとを混合し、500~1000℃で焼成する工程。
  8.  硫酸塩(A)の水溶液中におけるNi、CoおよびMnを合計した濃度が0.1~2mol/kgである、請求項7に記載の正極活物質の製造方法。
  9.  アルカリ(B)の水溶液中におけるアルカリ(B)の濃度が0.1~2mol/kgである、請求項7または8に記載の正極活物質の製造方法。
  10.  共沈物に含まれるNi、CoおよびMnの合計モル量(X)に対するリチウム化合物に含まれるLiのモル量の比が1.1~1.7である、請求項7~9のいずれか一項に記載の正極活物質の製造方法。
PCT/JP2015/051141 2014-01-20 2015-01-16 正極活物質およびその製造方法 WO2015108163A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557898A JP6467352B2 (ja) 2014-01-20 2015-01-16 正極活物質およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014008063 2014-01-20
JP2014-008063 2014-01-20

Publications (1)

Publication Number Publication Date
WO2015108163A1 true WO2015108163A1 (ja) 2015-07-23

Family

ID=53543046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051141 WO2015108163A1 (ja) 2014-01-20 2015-01-16 正極活物質およびその製造方法

Country Status (2)

Country Link
JP (1) JP6467352B2 (ja)
WO (1) WO2015108163A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039624A (ja) * 2015-08-20 2017-02-23 住友金属鉱山株式会社 遷移金属水酸化物の製造方法
JP2017188312A (ja) * 2016-04-06 2017-10-12 住友金属鉱山株式会社 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。
CN108183233A (zh) * 2016-12-08 2018-06-19 三星Sdi株式会社 用于锂二次电池的基于镍的活性材料、其制备方法和包括含其的正极的锂二次电池
CN108352527A (zh) * 2015-10-28 2018-07-31 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
JP2018531500A (ja) * 2016-03-04 2018-10-25 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法およびこれを含む二次電池
CN109155410A (zh) * 2016-05-24 2019-01-04 住友化学株式会社 正极活性物质、其制造方法和锂离子二次电池用正极
JP2019003818A (ja) * 2017-06-14 2019-01-10 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2019021423A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2019021422A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2019021425A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
KR20190040219A (ko) 2016-08-31 2019-04-17 스미또모 가가꾸 가부시끼가이샤 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
WO2019107374A1 (ja) * 2017-11-28 2019-06-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法
US10355276B2 (en) 2015-06-10 2019-07-16 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3767716A1 (en) 2019-07-18 2021-01-20 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
EP3678235A4 (en) * 2017-11-20 2021-06-02 Sumitomo Chemical Company Limited POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
EP3992150A4 (en) * 2019-06-25 2023-08-02 Sumitomo Metal Mining Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERIES, ITS PRODUCTION METHOD AND SECONDARY LITHIUM-ION BATTERY
US11777084B2 (en) 2019-07-18 2023-10-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
US11967700B2 (en) 2019-07-18 2024-04-23 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer
EP4361104A1 (en) * 2022-10-27 2024-05-01 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
EP4361108A1 (en) * 2022-10-27 2024-05-01 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152114A (ja) * 2007-12-21 2009-07-09 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP2010219069A (ja) * 2010-06-23 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質用の板状粒子の製造方法
WO2011083861A1 (ja) * 2010-01-08 2011-07-14 三菱化学株式会社 リチウム二次電池正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011171113A (ja) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法並びにそれを用いたリチウム二次電池
WO2011162253A1 (ja) * 2010-06-23 2011-12-29 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
WO2012137391A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
JP2013065472A (ja) * 2011-09-16 2013-04-11 Gs Yuasa Corp 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2014067694A (ja) * 2012-09-04 2014-04-17 Ngk Insulators Ltd リチウム二次電池用正極活物質又はその前駆体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175826B2 (ja) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152114A (ja) * 2007-12-21 2009-07-09 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2009289726A (ja) * 2008-05-01 2009-12-10 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
WO2011083861A1 (ja) * 2010-01-08 2011-07-14 三菱化学株式会社 リチウム二次電池正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2011171113A (ja) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法並びにそれを用いたリチウム二次電池
JP2010219069A (ja) * 2010-06-23 2010-09-30 Ngk Insulators Ltd リチウム二次電池の正極活物質用の板状粒子の製造方法
WO2011162253A1 (ja) * 2010-06-23 2011-12-29 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
WO2012137391A1 (ja) * 2011-04-07 2012-10-11 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
JP2013065472A (ja) * 2011-09-16 2013-04-11 Gs Yuasa Corp 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2014067694A (ja) * 2012-09-04 2014-04-17 Ngk Insulators Ltd リチウム二次電池用正極活物質又はその前駆体の製造方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964944B2 (en) 2015-06-10 2021-03-30 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US10355276B2 (en) 2015-06-10 2019-07-16 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017039624A (ja) * 2015-08-20 2017-02-23 住友金属鉱山株式会社 遷移金属水酸化物の製造方法
CN108352527B (zh) * 2015-10-28 2021-06-22 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
CN108352527A (zh) * 2015-10-28 2018-07-31 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
JP2018531500A (ja) * 2016-03-04 2018-10-25 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法およびこれを含む二次電池
US10535873B2 (en) 2016-03-04 2020-01-14 Lg Chem, Ltd. Positive electrode active material for secondary battery, method of preparing the same and secondary battery including the same
JP2017188312A (ja) * 2016-04-06 2017-10-12 住友金属鉱山株式会社 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。
JPWO2017204164A1 (ja) * 2016-05-24 2019-03-22 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極
CN109155410A (zh) * 2016-05-24 2019-01-04 住友化学株式会社 正极活性物质、其制造方法和锂离子二次电池用正极
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11742482B2 (en) 2016-07-20 2023-08-29 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR20190040219A (ko) 2016-08-31 2019-04-17 스미또모 가가꾸 가부시끼가이샤 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
US11417879B2 (en) 2016-08-31 2022-08-16 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11309542B2 (en) 2016-12-08 2022-04-19 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
CN108183233A (zh) * 2016-12-08 2018-06-19 三星Sdi株式会社 用于锂二次电池的基于镍的活性材料、其制备方法和包括含其的正极的锂二次电池
JP2018098205A (ja) * 2016-12-08 2018-06-21 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
JP2019003818A (ja) * 2017-06-14 2019-01-10 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7313112B2 (ja) 2017-06-14 2023-07-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2019021425A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP2019021423A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2019021422A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7319026B2 (ja) 2017-07-12 2023-08-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7224754B2 (ja) 2017-07-12 2023-02-20 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
EP3678235A4 (en) * 2017-11-20 2021-06-02 Sumitomo Chemical Company Limited POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
WO2019107374A1 (ja) * 2017-11-28 2019-06-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法
US11873234B2 (en) 2017-11-28 2024-01-16 Sumitomo Metal Mining Co., Ltd. Positive electrode active material precursor for non-aqueous electrolyte secondary battery, and method of manufacturing positive electrode active material precursor for non-aqueous electrolyte secondary battery
US11545662B2 (en) 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11251427B2 (en) 2017-12-15 2022-02-15 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, transition metal hydroxide precursor, method of producing transition metal hydroxide precursor, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP3992150A4 (en) * 2019-06-25 2023-08-02 Sumitomo Metal Mining Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERIES, ITS PRODUCTION METHOD AND SECONDARY LITHIUM-ION BATTERY
EP3767716A1 (en) 2019-07-18 2021-01-20 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
US11777084B2 (en) 2019-07-18 2023-10-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
KR20210010402A (ko) 2019-07-18 2021-01-27 도요타 지도샤(주) 비수전해질 이차 전지
US11962000B2 (en) 2019-07-18 2024-04-16 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids
US11967700B2 (en) 2019-07-18 2024-04-23 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle and a rock salt layer
EP4361104A1 (en) * 2022-10-27 2024-05-01 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same
EP4361108A1 (en) * 2022-10-27 2024-05-01 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JPWO2015108163A1 (ja) 2017-03-23
JP6467352B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6467352B2 (ja) 正極活物質およびその製造方法
JP5971109B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5730676B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、ならびに、ニッケルコバルトマンガン複合水酸化物とその製造方法
WO2014181891A1 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
JP5440614B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
TWI584520B (zh) Li-Ni composite oxide particles and nonaqueous electrolyte batteries
JP6252383B2 (ja) マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2011067935A1 (ja) ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2012131881A1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2015198711A1 (ja) ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
KR20140047044A (ko) 비수계 이차 전지용 정극 활물질 및 그의 제조 방법, 및 그 정극 활물질을 이용한 비수계 전해질 이차 전지
JP2011116580A5 (ja)
WO2017119451A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP6860496B2 (ja) 正極活物質の製造方法、正極活物質、正極およびリチウムイオン二次電池
JP7452569B2 (ja) 非水系電解質二次電池用正極活物質
WO2017119459A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP2016031854A (ja) 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法
WO2017119457A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP2016528707A (ja) リチウムイオンバッテリー用カソード組成物
JP2021005475A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7452570B2 (ja) 非水系電解質二次電池用正極活物質
JP7389376B2 (ja) 非水系電解質二次電池用正極活物質
JP7343265B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP7389347B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737290

Country of ref document: EP

Kind code of ref document: A1