WO2015105392A1 - 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 - Google Patents

무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 Download PDF

Info

Publication number
WO2015105392A1
WO2015105392A1 PCT/KR2015/000300 KR2015000300W WO2015105392A1 WO 2015105392 A1 WO2015105392 A1 WO 2015105392A1 KR 2015000300 W KR2015000300 W KR 2015000300W WO 2015105392 A1 WO2015105392 A1 WO 2015105392A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
frame
mode
poll
timer
Prior art date
Application number
PCT/KR2015/000300
Other languages
English (en)
French (fr)
Inventor
박기원
류기선
김정기
조한규
김서욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/110,688 priority Critical patent/US10091726B2/en
Priority to KR1020167017910A priority patent/KR101832642B1/ko
Publication of WO2015105392A1 publication Critical patent/WO2015105392A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for operating based on a power save mode in a wireless local area network (WLAN).
  • WLAN wireless local area network
  • a power save mechanism (or a power save mode) may be used to increase the lifetime of a WLAN STA.
  • the STA operating based on the power saving mode may operate in an awake state or a doze state for power saving.
  • the awake state is a state in which normal operation of the STA such as transmission or reception of a frame or channel scanning is possible.
  • the doze state dramatically reduces power consumption, making it impossible to transmit or receive a frame and to perform channel scanning.
  • the STA when the STA operates in the power saving mode, the STA may be in the doze state and, if necessary, may be switched to the awake state to reduce power consumption.
  • the STA may operate by acquiring information on the existence of a frame pending at the AP and periodically switching to an awake state to receive the frame held at the AP.
  • the AP may obtain information on the awake state operation timing of the STA, and transmit information on the presence or absence of a frame pending to the AP according to the awake state operation timing of the STA.
  • the STA in the doze state may receive a beacon frame by periodically switching from the doze state to the awake state in order to receive information on the existence of a frame to be received from the AP.
  • the AP may inform about the existence of a frame to be transmitted to each STA based on a traffic indication map (TIM) included in the beacon frame.
  • TIM is used to inform the existence of a unicast frame to be transmitted to the STA
  • DTIM delivery traffic indication map
  • An object of the present invention is to provide a power save mode based operation method in a WLAN.
  • Still another object of the present invention is to provide an operation device based on a power save mode in a WLAN.
  • a method of operating a power save mode based on a wireless LAN includes a method in which an STA is transmitted by an access point (AP) after switching to the power save mode. Transitioning from a sleep mode to an active mode based on a listening interval for receiving a 1 beacon frame; when the first beacon frame indicates buffered data for the STA, the STA transitions to the active mode Monitoring a frame for the STA transmitted by the AP before expiration of a timer started in the step; and switching the STA to the sleep mode after expiration of the timer, wherein the timer transmits the frame. Can be reset if
  • a station (station) operating in a power save mode is implemented with a radio frequency (RF) unit for transmitting or receiving a radio signal; And a processor operatively connected to the RF unit, wherein the processor is configured to receive the first beacon frame transmitted by an access point (AP) after switching to the power save mode based on a listening interval.
  • RF radio frequency
  • AP access point
  • the STA is transmitted by the AP before expiration of the timer started at the time of switching to the active mode.
  • An STA operating in a power save mode may receive the downlink data pending from the AP without transmitting a power saving (PS) -poll frame.
  • PS power saving
  • WLAN wireless local area network
  • FIG. 2 is a conceptual diagram illustrating a scanning method in a WLAN.
  • FIG. 3 is a conceptual diagram illustrating an authentication procedure and a combined procedure performed after a scanning procedure of an AP and an STA.
  • FIG. 4 is a conceptual diagram illustrating a beacon frame-based power save method.
  • FIG. 5 is a conceptual diagram illustrating a beacon frame-based power save method.
  • FIG. 6 is a conceptual diagram illustrating a power save method according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a power save method according to an embodiment of the present invention.
  • FIG. 8 is a conceptual diagram illustrating a power save method according to an embodiment of the present invention.
  • FIG. 9 is a conceptual diagram illustrating a non-PS-poll mode setting element according to an embodiment of the present invention.
  • FIG. 10 is a conceptual diagram illustrating a power save operation of an STA according to an embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating a non-PS-poll mode TIM element according to an embodiment of the present invention.
  • FIG. 12 is a conceptual diagram illustrating a PPDU format for delivering a frame according to an embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a wireless device to which an embodiment of the present invention can be applied.
  • WLAN wireless local area network
  • FIG. 1 shows the structure of an infrastructure BSS (Basic Service Set) of the Institute of Electrical and Electronic Engineers (IEEE) 802.11.
  • BSS Basic Service Set
  • IEEE Institute of Electrical and Electronic Engineers 802.11
  • the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
  • BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA1 (station 100-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area.
  • the BSS 105 may include one or more joinable STAs 105-1 and 105-2 to one AP 130.
  • the BSS may include at least one STA, APs 125 and 130 that provide a distribution service, and a distribution system DS that connects a plurality of APs.
  • the distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set.
  • ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110.
  • APs included in one ESS 140 may have the same service set identification (SSID).
  • the portal 120 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (for example, 802.X).
  • a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130.
  • a network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
  • FIG. 1 is a conceptual diagram illustrating an IBSS.
  • the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and access to a distributed system is not allowed, thus making a self-contained network. network).
  • a STA is any functional medium that includes a medium access control (MAC) and physical layer interface to a wireless medium that is compliant with the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • UE mobile subscriber unit
  • It may also be called various names such as a mobile subscriber unit or simply a user.
  • the data (or frame) transmitted from the AP to the STA is downlink data (or downlink frame), and the data (or frame) transmitted from the STA to the AP is uplink data (or uplink frame).
  • the transmission from the AP to the STA may be expressed in terms of downlink transmission, and the transmission from the STA to the AP may be expressed in terms of uplink transmission.
  • FIG. 2 is a conceptual diagram illustrating a scanning method in a WLAN.
  • a scanning method may be classified into passive scanning 200 and active scanning 250.
  • the passive scanning 200 may be performed by the beacon frame 230 periodically broadcasted by the AP 200.
  • the AP 200 of the WLAN broadcasts the beacon frame 230 to the non-AP STA 240 every specific period (for example, 100 msec).
  • the beacon frame 230 may include information about the current network.
  • the non-AP STA 240 receives the beacon frame 230 that is periodically broadcast to receive the network information to perform scanning for the AP 210 and the channel to perform the authentication / association (authentication / association) process Can be.
  • the passive scanning method 200 only needs to receive the beacon frame 230 transmitted from the AP 210 without requiring the non-AP STA 240 to transmit the frame.
  • passive scanning 200 has the advantage that the overall overhead incurred by the transmission / reception of data in the network is small.
  • scanning can be performed manually in proportion to the period of the beacon frame 230, the time taken to perform scanning is relatively increased compared to the active scanning method.
  • beacon frame For a detailed description of the beacon frame, see IEEE Draft P802.11-REVmb TM / D12, November 2011 'IEEE Standard for Information Technology Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (hereinafter referred to as IEEE 802.11) 'are described in 8.3.3.2 beacon frame.
  • IEEE 802.11 ai may additionally use other formats of beacon frames, and these beacon frames may be referred to as fast initial link setup (FILS) beacon frames.
  • a measurement pilot frame may be used in a scanning procedure as a frame including only some information of a beacon frame. Measurement pilot frames are disclosed in the IEEE 802.11 8.5.8.3 measurement pilot format.
  • a FILS discovery frame may be defined.
  • the FILS discovery frame is a frame transmitted between transmission periods of a beacon frame at each AP and may be a frame transmitted with a shorter period than the beacon frame. That is, the FILS discovery frame is a frame transmitted with a period smaller than the transmission period of the beacon frame.
  • the FILS discovery frame may include identifier information (SSID, BSSID) of the AP transmitting the detection frame.
  • the FILS discovery frame may be transmitted before the beacon frame is transmitted to the STA to allow the STA to detect in advance that the AP exists in the corresponding channel.
  • the interval at which a FILS discovery frame is transmitted from one AP is called a FILS discovery frame transmission interval.
  • the FILS discovery frame may include part of information included in the beacon frame and be transmitted.
  • the non-AP STA 290 may transmit the probe request frame 270 to the AP 260 to proactively perform scanning.
  • the AP 260 After receiving the probe request frame 270 from the non-AP STA 290, the AP 260 waits for a random time to prevent frame collision, and then includes network information in the probe response frame 280. may transmit to the non-AP STA 290. The non-AP STA 290 may obtain network information based on the received probe response frame 280 and stop the scanning process.
  • the probe request frame 270 is disclosed in IEEE 802.11 8.3.3.9 and the probe response frame 280 is disclosed in IEEE 802.11 8.3.3.10.
  • the AP and the non-AP STA may perform an authentication procedure and an association procedure.
  • FIG. 3 is a conceptual diagram illustrating an authentication procedure and a combined procedure performed after a scanning procedure of an AP and an STA.
  • an authentication procedure and a combining procedure with one of the scanned APs may be performed.
  • Authentication and association procedures can be performed, for example, via two-way handshaking.
  • the left side of FIG. 3 is a conceptual diagram illustrating an authentication and combining procedure after passive scanning, and the right side of FIG. 3 is a conceptual diagram showing an authentication and combining procedure after active scanning.
  • the authentication procedure and the association procedure are based on an authentication request frame 310 / authentication response frame 320 and an association request frame 330 regardless of whether active scanning method or passive scanning is used.
  • / Association response frame 340 may be equally performed by exchanging an association response frame 340 between the AP 300, 350 and the non-AP STA 305, 355.
  • the non-AP STAs 305 and 355 may transmit the authentication request frame 310 to the APs 300 and 350.
  • the AP 300 or 350 may transmit the authentication response frame 320 to the non-AP STAs 305 and 355 in response to the authentication request frame 310.
  • Authentication frame format is disclosed in IEEE 802.11 8.3.3.11.
  • the non-AP STAs 305 and 355 may transmit an association request frame 330 to the APs 300 and 305.
  • the APs 305 and 355 may transmit the association response frame 340 to the non-AP STAs 300 and 350.
  • the association request frame 330 transmitted to the AP includes information on the capabilities of the non-AP STAs 305 and 355. Based on the performance information of the non-AP STAs 305 and 355, the APs 300 and 350 may determine whether support for the non-AP STAs 305 and 355 is possible.
  • the APs 300 and 350 may transmit the combined response frame 340 to the non-AP STAs 305 and 355.
  • the association response frame 340 may include whether or not to accept the association request frame 340, and the capability information that can be supported by the association response frame 340.
  • Association frame format is disclosed in IEEE 802.11 8.3.3.5/8.3.3.6.
  • association procedure After the association procedure is performed between the AP and the non-AP STA, normal data transmission and reception may be performed between the AP and the non-AP STA. If the association procedure between the AP and the non-AP STA fails, the association procedure with the AP may be performed again or the association procedure with another AP may be performed again based on the reason for the association failure.
  • the STA When the STA is associated with the AP, the STA may be assigned an association identifier (AID) from the AP.
  • the AID assigned to the STA may be a unique value within one BSS, and the current AID may be one of 1 to 2007. 14bit is allocated for AID and can be used as the value of AID up to 16383. However, the value of 2008 ⁇ 16383 is reserved.
  • a power save mechanism is provided to increase the lifespan of a STA of a WLAN.
  • the STA can operate based on two modes (or states): active mode (awake state) and sleep mode (doze state). have.
  • the STA may operate in a power save mode based on the awake state or the doze state.
  • the STA in the active mode may perform normal operations such as transmission or reception of a frame and channel scanning.
  • the STA in the sleep mode does not perform transmission or reception of a frame and does not perform channel scanning to reduce power consumption.
  • the STA operating in the power save mode may remain in the doze state to reduce power consumption and, if necessary, switch to an awake state (or transition) to communicate with the AP.
  • the power consumption of the STA may decrease and the lifetime of the STA may also increase.
  • transmission or reception of the frame of the STA is impossible. If there is an uplink frame pending in the STA, the STA may switch from the doze state to the active state and transmit the uplink frame to the AP. On the contrary, if there is a pending frame to be transmitted to the STA in the doze state, the AP cannot transmit the frame to the STA until the STA switches to the awake mode.
  • the STA may occasionally switch from the doze state to the awake state and receive information on whether there is a frame pending for the STA from the AP.
  • the AP may transmit information on the existence of downlink data pending for the STA to the STA in consideration of the transition time of the STA to the awake state.
  • the STA may periodically switch from the doze state to the awake state to receive a beacon frame in order to receive information on whether there is a frame pending for the STA.
  • the beacon frame is a frame used for passive scanning of the STA and may include information on the capability of the AP.
  • the AP may transmit a beacon frame to the STA periodically (eg, 100 msec).
  • FIG. 4 is a conceptual diagram illustrating a beacon frame-based power save method.
  • the AP may periodically transmit a beacon frame
  • the STA may periodically switch from the doze state to the awake state to receive the beacon frame in consideration of the transmission timing of the beacon frame.
  • the beacon frame may include a traffic indication map element (TIM element).
  • TIM element may be used to transmit information on downlink data for the STA pending to the AP.
  • the TIM element may transmit information about a frame pending to the STA based on a bitmap.
  • the TIM element may be divided into a TIM or a delivery TIM (DTIM).
  • the TIM may indicate the presence of pending downlink data to be transmitted to the STA on unicast basis.
  • the DTIM may indicate the presence of pending downlink data to be transmitted on a broadcast / multicast basis.
  • FIG. 4 discloses a method in which an AP transmits a downlink frame based on an immediate response to a power saving (poll) -poll frame.
  • the STA may receive information on the existence of downlink data pending for the STA from the AP based on the TIM of the beacon frame 400.
  • the STA may transmit the PS-poll frame 410 to the AP.
  • the AP may receive the PS-poll frame 410 from the STA and transmit the downlink frame 420 to the STA in an immediate response to the PS-poll frame 410.
  • the immediate response to the PS-poll frame of the AP may be performed after receiving the PS-poll frame and short interframe space (SIFS).
  • SIFS short interframe space
  • the STA may transmit the ACK frame 430 in response to the downlink frame.
  • the STA may be switched back (or transitioned) to the doze state.
  • FIG. 4 shows a method of transmitting a downlink frame of an AP based on a deferred response to a PS-poll frame.
  • the STA may receive information about the existence of downlink data pending for the STA from the AP based on the TIM of the beacon frame 440.
  • the STA may transmit the PS-poll frame 450 to the AP.
  • the AP may receive the PS-poll frame 450 from the STA and transmit the ACK frame 460 to the STA in response to the PS-poll frame 450.
  • the AP may transmit a downlink frame 470 including the pending downlink data to the STA after transmission of the ACK frame 460.
  • the STA may monitor the downlink frame 470 transmitted by the AP to the STA after receiving the ACK frame 460.
  • the STA may be switched (or transitioned) from the awake state to the doze state again.
  • FIG. 5 is a conceptual diagram illustrating a beacon frame-based power save method.
  • the DTIM is transmitted through the beacon frame 500.
  • Beacon frame 500 may include a DTIM.
  • the DTIM may indicate the presence of pending downlink data to be transmitted on a broadcast / multicast basis.
  • the AP may transmit a beacon frame 500 including the DTIM to the STA.
  • the STA may maintain the awake state without transmitting the PS-poll frame and monitor the transmission of the downlink frame 520.
  • the AP may transmit the downlink frame 520 to the STA through a multicast method or a broadcast method.
  • the existing TIM element-based power save mechanism (or power save method) disclosed in FIGS. 4 and 5 may have the following problems.
  • the STA must transmit a PS-poll frame to the AP in order to receive the TIM and receive downlink data. After the STA is switched from the doze state to the awake state, the STA may transmit the PS-poll frame to the AP through contention-based access.
  • transmission of the PS-poll frame may be difficult due to competition between the plurality of STAs.
  • a delay from receiving a beacon frame to receiving a downlink frame from the AP of the STA may be large.
  • the STA Before receiving a TIM and receiving downlink data, the STA needs to transmit a PS-poll frame and a reception procedure of an ACK frame for the PS-poll frame.
  • an embodiment of the present invention discloses a method for reducing signaling overhead and downlink data reception delay of an STA operating in a power save mode.
  • the doze state may be used in the same meaning as the sleep mode and the awake state as the active mode. In the doze state, transmission or reception of a frame by the STA may not be performed.
  • the transmission from the AP to the STA may be expressed by the term downlink transmission.
  • Each of the PPDUs, frames, and data transmitted through downlink transmission may be represented by the terms downlink PPDU, downlink frame, and downlink data.
  • the PPDU may be a data unit including a PPDU header and a physical layer service data unit (PSDU) (or MAC protocol data unit (MPDU)).
  • PSDU physical layer service data unit
  • MPDU MAC protocol data unit
  • the transmission from the STA to the AP may be expressed in the term of downlink transmission.
  • Each of the PPDUs, frames, and data transmitted through uplink transmission may be expressed in terms of uplink PPDU, uplink frame, and uplink data.
  • FIG. 6 is a conceptual diagram illustrating a power save method according to an embodiment of the present invention.
  • a non-PS-poll section 600 and a PS-poll section 610 are defined, and a downlink transmitted by an AP on a non-PS poll section 600 and a PS-poll section 610 of an STA.
  • a method of receiving a link frame (or downlink data) is disclosed.
  • the STA is a downlink frame (buffered (or pending) downlink data) that is pending without transmission of the PS-poll frame. ) 635.
  • the STA receives the beacon frame 630 including a TIM indicating downlink data pending for the STA, the STA does not transmit a PS-poll frame to the AP, and includes downlink data pending from the AP.
  • the downlink frame 635 may be received.
  • the STA may operate in an awake state (or active mode) for a predetermined time period in the non-PS-poll period 600.
  • the downlink frame reception operation of the STA in the non-PS-poll period 600 may be expressed by the term non-PS-poll mode operation.
  • the start time of the non-PS-poll section 600 is the time to switch to the first awake state after switching to the power save mode from the non-power save mode (or active mode) of the STA or the power of the STA of the STA. It may be a reception time of the first beacon frame 630 after the switch to the save mode.
  • the start time of the non-PS-poll section 600 is assumed to be a transition (or transition) time to the awake state.
  • the length (or duration) of the non-PS-poll section 600 may be determined based on a timer that determines the length (or end) of the non-PS-poll section 600.
  • the timer for determining the length of the non-PS-poll section 600 (or whether the non-PS-poll section 600 ends) may be expressed by the term non-PS-poll section timer 620.
  • the non-PS-poll interval timer 620 may be started at the start of the non-PS-poll interval 600.
  • the set timer value is decreased. It may expire at the time of expiration.
  • the non-PS-poll interval timer 620 restarts again if the STA receives the downlink frame 635 from the AP (or if the downlink frame 635 is transmitted to the STA by the AP) before the expiration time. Or reset.
  • the non-PS-Poll Interval timer 620 may be started.
  • the non-PS-poll interval 600 may end and the STA may be switched to the doze state.
  • the non-PS-Poll interval timer 620 When the non-PS-Poll interval timer 620 is started, the non-PS-Poll interval timer 620 may be reduced to 0 from the set initial value.
  • the initial value of the non-PS-Poll interval timer 620 may be transmitted through a combined response frame transmitted by the AP in the initial access procedure of the STA and the AP.
  • the initial value of the non-PS-poll interval timer 620 may be a fixed value or a variable that may be set separately.
  • the STA switched to the doze state after the end of the non-PS-poll period 600 may be switched to the awake state based on the listening interval to receive the beacon frame 640.
  • the PS-poll section 610 is based on a listening time after the non-PS-poll section 600 of the STA based on a listening interval or a listening interval after the non-PS-poll section 600 of the STA of the STA. After the transition to the awake state may be started at the time of receiving the beacon frame 640.
  • the start time of the PS-poll section 610 is assumed to be a transition time to an awake state based on the listening interval.
  • the downlink frame reception operation of the STA in the PS-poll period 610 may be expressed by the term PS-poll mode operation.
  • the STA operating in the PS poll mode may perform a downlink frame reception operation based on the PS-poll frame 650 as described above with reference to FIGS. 4 and 5.
  • the STA may transmit a PS-Poll frame 650 to the AP.
  • the AP may receive a downlink frame 645 including downlink data pending to the STA. If there is no downlink frame pending for the STA in the AP, the STA may be switched to the doze state.
  • the STA operating in the PS-poll section 610 may be expressed by the term STA operating in the PS-poll mode.
  • the STA switched to the doze state after the PS-poll period 610 may switch back to the awake state based on the listening interval and operate in the non-PS-poll mode again to receive the beacon frame 670 from the AP.
  • the next non-PS-poll section 660 is based on a listening interval after the PS-poll section 610 of the STA, or a listening interval after the PS-poll section 610 of the STA of the STA. After switching to the awake state based on the start of the beacon frame 670 may be started. Similarly, when the non-PS-poll section timer 620 expires, the non-PS-poll section 660 may end.
  • a start time of the non-PS-poll section 660 is assumed to be a time of transition to an awake state.
  • the non-PS-poll section (or non-PS-poll mode) may be initiated.
  • a non-PS-poll interval may begin.
  • the listening interval may be a transition interval to the awake state of the STA for receiving the beacon frame. In other words, the listening interval may indicate how often the STA operating in the power save mode transitions to the awake state (wakes up) to listen to the beacon frame.
  • the STA receives downlink data (new downlink data and buffered (or pending) downlink data) pending for the STA from the AP on the PS-poll interval and is switched to the doze state, based on the next listening interval After the transition to the awake state, the non-PS-poll section may be started.
  • downlink data new downlink data and buffered (or pending) downlink data
  • the STA when the SNR of the medium does not satisfy a specific signal to noise ratio (SNR) threshold, the STA may not operate in the non-PS-poll mode. That is, the non-PS-poll period may not be allocated to the STA.
  • the SNR threshold for determining the allocation of the non-PS-poll interval may be included in the joint request frame and the joint response frame transmitted or received in the initial access procedure of the STA.
  • the STA may transmit the association request frame including the information on the SNR threshold or the AP may transmit the association response frame including the information on the SNR threshold.
  • the STA may not operate in the non-PS-poll mode. This will be described later in detail.
  • FIG. 7 is a conceptual diagram illustrating a power save method according to an embodiment of the present invention.
  • reception of downlink data of an STA is initiated in a non-PS-poll section and a PS-poll section.
  • the STA may transmit a frame (power save mode switch indication frame 700) including information indicating that the STA operates in the power save mode to the AP.
  • a frame power save mode switch indication frame 700
  • the STA transmits a power save mode switch indication frame 700 having a power saving bit (PS bit) set to 1 to indicate that the STA operates in the power save mode to the AP to save power of the STA.
  • the AP may be notified of the transition to the mode.
  • the STA may receive an ACK frame 710 for the power save mode switch indication frame 700 from the AP and switch to the doze state.
  • the STA may switch to the awake mode based on the listening interval after switching to the doze state and receive the first beacon frame 720 after switching to the power save mode.
  • the non-PS-poll period when the STA is switched from the non-power save mode to the power save mode and is switched to the awake state based on the listening interval, the non-PS-poll period may be started.
  • the STA may operate in the non-PS-poll mode on the non-PS-poll interval. In more detail, the STA may not transmit the PS-poll frame in the non-PS-poll period.
  • the STA may operate the non-PS-Poll interval timer when the non-PS-poll interval starts.
  • the non-PS-Poll interval timer of the STA for determining whether to end the non-PS-poll interval may be started with the start of the start of the non-PS-poll interval.
  • the STA may determine whether there is downlink data pending for the STA based on the TIM of the beacon frame 720. For example, when the TIM included in the beacon frame indicates the presence of downlink data pending in the STA, the STA may monitor downlink frames 730 and 740 transmitted by the AP to the STA.
  • the STA operating in the non-PS-poll mode may monitor the downlink frames 730 and 740 until the expiration of the non-PS-poll interval timer without transmitting the PS-poll frame.
  • the STA may be switched to the doze state.
  • An expiration time of the non-PS poll period timer may be an end time of the non-PS poll interval.
  • the STA may maintain the dose state after the end of the non-PS poll interval until it is switched back to the awake state based on the listening interval.
  • the STA may maintain an awake state.
  • the STA receives the downlink frames 730 and 740 for the STA until the non-PS-poll interval timer expires, the STA resets the non-PS-poll interval timer to an initial value and maintains an awake state and for the STA. Additional downlink frame can be monitored. If the additional downlink frame for the STA is not received until the expiration of the non-PS-poll duration timer after the reset of the non-PS-poll duration timer, the STA may be switched to the doze state.
  • the operation of the non-PS-poll section timer may be stopped and switched to the doze state. It may be.
  • the STA may switch back to the awake state based on the listening interval after the non-PS-poll period and operate in the PS poll mode.
  • the STA operating in the PS-poll mode may determine whether there is downlink data pending for the STA based on the TIM included in the beacon frame 760. If there is no downlink data pending for the STA, the STA may be switched to the doze state again. Conversely, if there is no downlink data pending for the STA, the STA may transmit the PS-poll frame 770 to the AP, receive an ACK frame for the PS-poll frame 770, and receive new downlink data ( Or downlink frames 780 and 790 including buffered (or pending) downlink data).
  • the STA operating in the PS poll mode may be switched to the doze state.
  • the STA may not receive the pending downlink data due to the end of the non-PS-poll interval timer in the non-PS-poll period. Even in such a case, the STA may receive downlink data pending in the STA based on the PS-poll mode operation in the PS-poll section.
  • the STA may be switched to the awake state based on the listening interval to operate in the non-PS-poll mode.
  • the STA may receive the beacon frame 795 and monitor downlink data without transmitting the PS-poll frame based on the non-PS-poll interval timer.
  • FIG. 8 is a conceptual diagram illustrating a power save method according to an embodiment of the present invention.
  • reception of downlink data of a plurality of STAs is started in a non-PS-poll period and a PS-poll period.
  • a TIM included in the beacon frames 810, 825, and 850 indicates downlink data that is pending for each of STA1 and STA2.
  • each of the STA1 and the STA2 may transmit the power save mode switch instruction frames 800 and 805 instructing the switch to the power save mode to the AP and switch from the non-power save mode to the power save mode.
  • Each of the STA1 and the STA2 may receive an ACK frame for the power save mode switch indication frames 800 and 805 from the AP, and switch to the doze state.
  • the STA 1 and the STA2 may switch to the awake mode based on the listening interval and operate based on the non-PS-poll mode to receive the downlink frames 815 and 820 from the AP.
  • STA1 may maintain the awake state until the non-PS-poll interval timer expires and monitor the downlink frame 815 for STA1 transmitted by the AP.
  • the AP may transmit a downlink frame1 815 including downlink data pending for the STA1 to the STA1.
  • the STA1 may receive the downlink frame 1 815 and transmit an ACK frame for the downlink frame 1 815 to the AP.
  • the STA1 may reset the non-PS-poll interval timer after receiving the downlink frame1 815.
  • the reset non-PS-poll interval timer may expire when an additional downlink frame for STA1 is not transmitted.
  • STA1 may be switched to the doze state when the non-PS-poll interval timer expires.
  • STA2 may maintain the awake state until the non-PS-poll interval timer expires and monitor the downlink frame 820 for STA2 transmitted by the AP.
  • the AP may transmit a downlink frame 2 820 including downlink data pending for STA2 to STA2.
  • STA2 may receive the downlink frame 2 820 and transmit an ACK frame for the downlink frame 2 820 to the AP.
  • the STA2 may reset the non-PS-poll interval timer after receiving the downlink frame 2 820.
  • the reset non-PS-poll interval timer may expire when no additional downlink frame for STA2 is transmitted.
  • STA2 may be switched to the doze state when the non-PS-poll interval timer expires.
  • transmission of the PS-poll frame by each of the STA1 and the STA2 operating in the non-PS-poll mode may not be performed.
  • the congestion of the medium due to the PS-poll frame and the signaling overhead for the transmission of the PS-poll frame may be reduced.
  • each of STA1 and STA2 may receive a downlink frame without transmitting a PS-poll frame. Therefore, the reception delay of the downlink frame of each of the STA1 and the STA2 can be reduced.
  • each of the STA 1 and STA2 switched to the doze state may be switched to the awake mode based on the listening interval to operate in the PS-poll mode.
  • FIG. 8 it is assumed that the listening intervals of the STA1 and the STA2 are the same.
  • Each of STA1 and STA2 may transmit PS-poll frames 830 and 840 to the AP through contention-based channel access.
  • STA1 acquires a channel access right before STA2.
  • the STA1 may acquire a channel access right before the STA2 and transmit the PS-poll frame 1 830 to the AP.
  • the STA1 may receive an ACK frame in response to the PS-poll frame1 830 to the AP.
  • the AP After transmitting the ACK frame, the AP may transmit downlink frame 3 835 including downlink data pending for STA1.
  • the STA1 may transmit an ACK frame to the AP in response to the downlink frame3 835.
  • the STA1 switches to the doze state when a field indicating the presence of additional pending downlink data included in the downlink frame 3 835 (eg, the MoreData field) indicates the absence of additional pending downlink data. Can be.
  • the STA2 may acquire a channel access right through contention-based channel access and transmit the PS-poll frame 2 to the AP.
  • the STA2 may receive an ACK frame in response to the PS-poll frame2 840 to the AP.
  • the AP may transmit downlink frame 4 845 including downlink data pending for STA2.
  • STA2 may transmit an ACK frame to the AP in response to the downlink frame 4 (845).
  • the STA2 switches to the doze state when a field indicating the presence of additional pending downlink data included in the downlink frame 4 (845) (eg, the MoreData field) indicates the absence of additional pending downlink data. Can be.
  • the STA- and / or STA2 may perform the PS- of STA- and STA2 in the PS-poll interval. Based on the poll mode operation, downlink data pending for STA1 and / or STA2 may be received.
  • the STA1 and the STA2 may switch back to the awake state based on the listening interval and operate in the non-PS-poll mode again.
  • Each of the STA1 and the STA2 may receive the beacon frame 850 and monitor the downlink data 860 without transmitting the PS-poll frame based on the non-PS-poll interval timer.
  • FIG. 9 is a conceptual diagram illustrating a non-PS-poll mode setting element according to an embodiment of the present invention.
  • a non-PS-poll mode setting element (or a non-PS-poll mode parameter set element) for non-PS-poll mode based operation of an STA is disclosed.
  • the non-PS-poll mode setting element may be transmitted through a separate frame, but a frame transmitted or received between the STA and the AP upon initial access to the STA's AP (eg, a beacon frame, a join request frame, or a join response). Frame).
  • the non-PS-poll mode setting element includes an element ID field 900, a length field 910, a non-PS-poll mode timer field 920, an SNR threshold field 930. ), And a mobility threshold field 940.
  • the element ID field 900 may include identifier information for indicating a non-PS-poll mode setting element.
  • the length field 910 may include information about the length of the non-PS-poll mode timer field, the SNR threshold field, and the mobility threshold field.
  • the non-PS-poll mode timer field 920 may include information about a default operation time of the STA in the non-PS-poll mode.
  • the basic operation time may be a time for maintaining an awake state when the STA has not received the downlink frame.
  • the non-PS-poll mode timer field 920 may include information on an initial value of the non-PS-poll interval timer.
  • the initial value of the non-PS-poll interval timer may be a multiple of the listening interval. For example, when the value of the non-PS-poll mode timer field 920 is 1, the STA may operate in the non-PS-poll mode for (2 * Beacon Interval). Alternatively, when the value of the non-PS-poll mode timer field 920 is 2, the STA may operate in the non-PS-Poll mode for (3 * Beacon Interval). Alternatively, the non-PS-poll mode timer field 920 may directly include information on a time interval for non-PS-poll mode operation of the STA in ms.
  • the SNR threshold field 930 may include information on the minimum SNR (or SNR threshold) of the medium for the STA to operate in the non-PS-poll mode. As described above, when the SNR of the medium is greater than or equal to the minimum SNR, the STA may operate in the non-PS-poll mode.
  • the mobility threshold field 940 may include information on the minimum mobility (or mobility threshold) of the STA for the STA to operate in the non-PS-poll mode.
  • the STA may perform the operation in the non-PS-poll mode only when the mobility is less than or equal to the minimum mobility.
  • the STA may basically operate based on the non-PS-poll mode.
  • FIG. 10 is a conceptual diagram illustrating a power save operation of an STA according to an embodiment of the present invention.
  • a non-PS-poll mode operation of an STA is disclosed based on a separate bitmap for non-PS-poll mode operation.
  • a non-PS-poll mode TIM including information on a separate bitmap for non-PS-poll mode operation of an STA may be defined.
  • the non-PS-poll mode TIM may indicate reception of downlink data (or downlink frame) based on the non-PS-poll mode operation of the STA.
  • the STA receives the beacon frame 1000 based on the listening interval, and the beacon frame 1000 may include a non-PS-poll mode TIM.
  • the non PS-poll mode TIM may include a bitmap field (eg, a partial virtual bitmap) and the bitmap field may include information about the non PS-poll mode TIM bitmap. .
  • Non-PS-poll Mode When the TIM bitmap indicates data pending to the STA, the STA may operate in the non-PS-poll mode.
  • the legacy TIM and the non-PS-poll mode TIM of the beacon frame 1000 may be included.
  • the legacy TIM may include a legacy virtual TIM bitmap for indicating downlink data pending for the STA.
  • the non-PS-poll mode TIM may include a non-PS-poll mode TIM bitmap for indicating downlink data pending for the STA. If the downlink data pending for the STA is indicated based on the legacy TIM, the STA may operate in the PS-poll mode to receive the downlink frame. If downlink data pending for the STA is indicated based on the non-PS-poll TIM, the STA may receive the downlink frame by operating in the non-PS-poll mode.
  • the beacon frame 1000 transmitted by the AP may include a legacy TIM and a non-PS-poll mode TIM.
  • the STA may operate in the PS-poll mode to receive the downlink data from the AP. Specifically, when the bit value for the STA indicates downlink data pending for the STA on the legacy virtual TIM bitmap included in the legacy TIM (or the STA indicates a positive indication at the position of the STA on the legacy virtual TIM bitmap of the legacy TIM). (detecting a positive indication), the STA may operate based on the PS-poll mode to receive downlink data from the AP.
  • the STA may operate based on the non-PS-poll mode to receive downlink data from the AP. have. Specifically, when the bit value for the STA indicates downlink data pending for the STA on the non-PS-poll mode TIM bitmap of the non-PS-poll mode TIM (or the STA is a non-PS-poll mode TIM). When a positive indication is detected at the position of the STA on the poll mode TIM bitmap), the STA may operate based on the non-PS-poll mode to receive downlink data from the AP.
  • the STA may switch to the doze state when the non-PS-poll interval timer is operated and the non-PS-poll interval timer expires.
  • the AP may indicate the downlink data pending for one STA based on one bitmap of a legacy virtual TIM bitmap and a non-PS-poll mode TIM bitmap.
  • the STA may operate in the PS-poll mode or the non-PS-poll mode based on one bitmap indicating the presence of the pending downlink data among the legacy virtual TIM bitmap and the non-PS-poll mode TIM bitmap.
  • FIG. 11 is a conceptual diagram illustrating a non-PS-poll mode TIM element according to an embodiment of the present invention.
  • a non-PS-poll mode TIM element for non-PS-poll mode based operation of an STA is disclosed.
  • the non-PS-poll mode TIM element may be transmitted via a beacon frame.
  • the non-PS-poll mode TIM elements include element ID field 1100, length field 1110, DTIM count field 1120, DTIM period field 1130, bitmap control field 1140, and partial It may include a virtual bitmap field 1150.
  • It may include an element ID field 1100, a length field 1110, a DTIM count field 1120, a DTIM period field 1130, a bitmap control field 1140, and a partial virtual bitmap field 1150. have.
  • the element ID field 1100 may include identifier information for indicating a non-PS-poll mode TIM element.
  • the length field 1110 may include information about the length of a DTIM count field, a DTIM period field, a bitmap control field, and a partial virtual bitmap field.
  • the DTIM count field 1120 may indicate how many beacon frames appear before the next DTIM. If the DTIM count is 0, it may indicate that the current TIM is DTIM.
  • the DTIM period field 1130 may include information on the number of beacon intervals between successive DTIMs. If all TIMs are DTIMs, the value of the DTIM period field may be 1.
  • the bitmap control field 1140 may include bitmap offset information for interpretation of the partial virtual bitmap field.
  • the partial virtual bitmap field 1150 may include information on the aforementioned non-PS-poll mode TIM bitmap.
  • the STA may determine whether to perform a non-PS-poll mode based operation based on the non-PS-poll mode TIM bitmap included in the partial virtual bitmap field 1150.
  • FIG. 12 is a conceptual diagram illustrating a PPDU format for delivering a frame according to an embodiment of the present invention.
  • the PPDU may include a PPDU header and a MAC protocol data unit (MPDU) (or a physical layer service data unit (PSDU)).
  • MPDU MAC protocol data unit
  • PSDU physical layer service data unit
  • the frame may correspond to an MPDU.
  • the PPDU header in the PPDU format may be used to mean a PHY header and a PHY preamble of the PPDU.
  • the PPDU format disclosed in FIG. 12 may be used to carry the aforementioned downlink frame, ACK frame, and the like.
  • the PPDU header of the downlink PPDU may include a legacy short training field (L-STF), a legacy long training field (L-LTF), a legacy-signal (L-SIG), and an HE-SIG A.
  • L-STF legacy short training field
  • L-LTF legacy long training field
  • L-SIG legacy-signal
  • HE-SIG A high efficiency-signal A
  • HE-STF high efficiency-short training field
  • HE-LTF high efficiency-long training field
  • HE-SIG B high efficiency-signal-B
  • the L-STF 1200 may include a short training orthogonal frequency division multiplexing symbol.
  • the L-STF 1200 may be used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency / time synchronization.
  • AGC automatic gain control
  • the L-LTF 1210 may include a long training orthogonal frequency division multiplexing symbol.
  • the L-LTF 1210 may be used for fine frequency / time synchronization and channel prediction.
  • L-SIG 1220 may be used to transmit control information.
  • the L-SIG 1220 may include information about a data rate and a data length.
  • the HE-SIG A 1230 may include identification information of a STA for indicating a target STA to receive a downlink PPDU.
  • the STA may determine whether to receive the information included in the HE-SIG A 1230 based on the identifier information of the target STA.
  • the STA may perform additional decoding on the downlink PPDU.
  • the HE-SIG A 1230 may be configured to receive downlink data (frequency resources (or subbands) based on orthogonal frequency division multiplexing (OFDMA) or space time stream resources (MIMO (multilple input multiple output) based). Information may be included).
  • OFDMA orthogonal frequency division multiplexing
  • MIMO multiple input multiple output
  • the HE-STF 1240 may be used to improve automatic gain control estimation in a MIMO environment or an OFDMA environment.
  • the HE-LTF 1250 may be used to estimate a channel in a MIMO environment or an OFDMA environment.
  • the HE-SIG B 1260 may include information about a length MCS (modulation and coding scheme) of a physical layer service data unit (PSDU) for each STA, and tail bits.
  • MCS modulation and coding scheme
  • PSDU physical layer service data unit
  • the size of the inverse fast fourier transform (IFFT) applied to the fields after the HE-STF 1240 and the HE-STF 1240 and the size of the IFFT applied to the field before the HE-STF 1240 may be different.
  • the size of the IFFT applied to the field after the HE-STF 1240 and the HE-STF 1240 may be four times larger than the size of the IFFT applied to the field before the HE-STF 1240.
  • the STA may be determined whether to decode the field.
  • the STA is based on the FFT size changed from the fields after the HE-STF 1240 and the HE-STF 1240. Decoding can be performed.
  • the STA may stop decoding and configure a network allocation vector (NAV).
  • NAV network allocation vector
  • the cyclic prefix (CP) of the HE-STF 1240 may have a larger size than the CP of another field, and during this CP period, the STA may perform decoding on the downlink PPDU by changing the FFT size.
  • the order of the fields constituting the format of the PPDU disclosed at the top of FIG. 12 may vary.
  • the HE-SIG B 1215 of the HE portion may be located immediately after the HE-SIG A 1205, as disclosed in the interruption of FIG. 12.
  • the STA may decode up to the HE-SIG A 1205 and the HE-SIG B 1215, receive necessary control information, and make NAV settings.
  • the size of the IFFT applied to the fields after the HE-STF 1225 and the HE-STF 1225 may be different from the size of the IFFT applied to the fields before the HE-STF 1225.
  • the STA may receive the HE-SIG A 1205 and the HE-SIG B 1215.
  • reception of the downlink PPDU is indicated by the identifier of the target STA of the HE-SIG A 1205
  • the STA may perform decoding on the downlink PPDU by changing the FFT size from the HE-STF 1225.
  • the STA may configure a network allocation vector (NAV).
  • NAV network allocation vector
  • a downlink PPDU format for downlink (DL) multi-user (MU) transmission is disclosed.
  • the downlink PPDU may be transmitted to the STA through different downlink transmission resources (frequency resources or spatial streams) based on OFDMA. That is, downlink data may be transmitted to a plurality of STAs through a plurality of subbands based on a downlink PPDU format for DL MU transmission.
  • the AP transmits a downlink frame including downlink data pending to one STA.
  • downlink data may be transmitted in a downlink PPDU format for DL MU transmission to a plurality of STAs in an awake state.
  • the previous field of the HE-SIG B 1245 on the downlink PPDU may be transmitted in a duplicated form in each of different downlink transmission resources.
  • the HE-SIG B 1245 may be transmitted in encoded form on all transmission resources.
  • the field after the HE-SIG B 1245 may include individual information for each of the plurality of STAs receiving the downlink PPDU.
  • the CRC for each field may be included in the downlink PPDU.
  • the CRC for each field may not be included in the downlink PPDU.
  • the downlink PPDU format for DL MU transmission according to the embodiment of the present invention can reduce the CRC overhead of the downlink frame by using the HE-SIG B 1245 in the form of encoding on all transmission resources.
  • the downlink PPDU format for DL MU transmission may be encoded based on an IFFT size different from that of the field before the HE-STF 1255 and the field after the HE-STF 1255. Accordingly, when the STA receives the HE-SIG A 1235 and the HE-SIG B 1245 and is instructed to receive the downlink PPDU based on the HE-SIG A 1235, the STA-STF 1255 is used. Decoding of the downlink PPDU may be performed by changing the FFT size.
  • FIG. 13 is a block diagram illustrating a wireless device to which an embodiment of the present invention can be applied.
  • the wireless device 1300 may be an STA that may implement the above-described embodiment and may be an AP 1300 or a non-AP station (or STA) 1350.
  • the AP 1300 includes a processor 1310, a memory 1320, and an RF unit 1330.
  • the RF unit 1330 may be connected to the processor 1310 to transmit / receive a radio signal.
  • the processor 1310 may implement the functions, processes, and / or methods proposed in the present invention.
  • the processor 1310 may be implemented to perform the operation of the wireless device according to the embodiment of the present invention described above.
  • the processor may perform the operation of the wireless device disclosed in the embodiment of FIGS. 1 to 12.
  • the processor 1310 may transmit a downlink frame including downlink data pending for the STA to the STA without receiving the PS-poll frame.
  • the STA operates in the PS-poll mode
  • the PS-poll frame is transmitted by the STA
  • the downlink frame including the downlink data pending for the STA may be transmitted to the STA.
  • the processor may transmit a non-PS-poll mode parameter set element for reception of the frame based on a timer (non-PS-poll mode timer) to the STA.
  • the processor may include a non-PS-poll mode parameter set element including a non-PS-poll mode timer field, a signal to noise ratio (SNR) threshold field, and a mobility threshold field.
  • SNR signal to noise ratio
  • the non-PS-poll mode timer field includes information on an initial setting value of a timer
  • the SNR threshold field includes information on a threshold value of an SNR for a reception operation of a timer-based frame of an STA
  • a mobility threshold value may include information on a threshold of mobility for receiving a timer-based frame of the STA.
  • the STA 1350 includes a processor 1360, a memory 1370, and an RF unit 1380.
  • the RF unit 1380 may be connected to the processor 1360 to transmit / receive a radio signal.
  • the processor 1360 may implement the functions, processes, and / or methods proposed in the present invention.
  • the processor 1320 may be implemented to perform the operation of the wireless device according to the embodiment of the present invention described above.
  • the processor may perform the operation of the wireless device in the embodiment of FIGS. 1 to 12.
  • the processor 1360 may switch the operation mode of the STA from the sleep mode to the active mode based on the listening interval for receiving the first beacon frame transmitted by the access point (AP) after switching to the power save mode. If the first beacon frame indicates buffered data for the STA, monitor the frame for the STA transmitted by the AP until the expiration of the timer (non PS-poll mode timer) started at the time of transition to the active mode; After the timer expires, the operation mode of the STA may be switched to the sleep mode. The timer may be reset when the frame is transmitted.
  • the timer non PS-poll mode timer
  • the processor 1360 switches the operation mode from the sleep mode to the active mode to receive the second beacon frame transmitted by the AP based on the listening interval, and the second beacon frame indicates the buffered data for the STA.
  • the power saving (PS) -poll frame is transmitted to the AP, the polled frame is monitored based on the PS-poll frame transmitted from the AP, and when the end of transmission of the polled frame is indicated, You can switch to sleep mode.
  • the second beacon frame may be transmitted after the first beacon frame.
  • the processor 1360 switches the operation mode from the sleep mode to the active mode to receive the third beacon frame transmitted by the AP based on the listening interval, and the third beacon frame indicates the buffered data for the STA. If so, it may be implemented to monitor the frame for the STA transmitted from the AP until expiration of the timer started at the time of switching to the active mode.
  • the third beacon frame may be transmitted after the second beacon frame.
  • Processors 1310 and 1360 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memories 1320 and 1370 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 1330 and 1380 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 1320 and 1370 and executed by the processors 1310 and 1360.
  • the memories 1320 and 1370 may be inside or outside the processors 1310 and 1360, and may be connected to the processors 1310 and 1360 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치가 개시되어 있다. 무선랜에서 파워 세이브 모드 기반의 동작 방법은 STA이 파워 세이브 모드로 전환 후 AP에 의해 전송되는 제1 비콘 프레임의 수신을 위해 청취 인터벌을 기반으로 슬립 모드에서 액티브 모드로 전환되는 단계, 제1 비콘 프레임이 STA에 대해 버퍼된 데이터를 지시하는 경우, STA이 액티브 모드로의 전환 시점에 시작된 타이머의 만료 전까지 AP에 의해 전송되는 STA에 대한 프레임을 모니터링하는 단계와 STA이 타이머의 만료 후에 상기 슬립 모드로 전환되는 단계를 포함하되, 타이머는 프레임이 전송되는 경우 리셋될 수 있다.

Description

무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
본 발명은 무선 통신에 관한 것으로 보다 상세하게는 무선랜(wireless local area network, WLAN)에서 파워 세이브 모드를 기반으로 동작하는 방법 및 장치에 관한 것이다.
IEEE 802.11 표준에서는 무선랜 STA(station)의 수명을 증가시키기 위하여 파워 절약 메커니즘(power save mechanism)(또는 파워 절약 모드(power save mode))이 사용될 수 있다. 파워 절약 모드를 기반으로 동작하는 STA은 파워 절약을 위하여 어웨이크 상태(awake state) 또는 도즈 상태(doze state)로 동작할 수 있다. 어웨이크 상태는 프레임의 송신 또는 수신이나 채널 스캐닝과 같은 STA의 정상 동작이 가능한 상태이다. 반면, 도즈 상태는 전력 소모를 극단적으로 줄여서 프레임의 송신 또는 수신이 불가능하며 채널 스캐닝도 불가능한 상태이다. 평소에는 STA이 파워 절약 모드로 동작할 경우, STA은 도즈 상태에 있다가 필요한 경우, 어웨이크 상태로 전환하여 전력 소모를 줄일 수 있다.
STA이 도즈 상태에서 오래 동작하는 경우, STA의 전력 소모가 줄어든다. 따라서, STA의 수명이 늘어날 수 있다. 그러나 도즈 상태에서는 프레임의 송신 또는 수신이 불가능하다. 따라서, STA은 도즈 상태로 오래 머무를 수 없다. 도즈 상태에서 펜딩된 프레임이 발생한 경우, STA은 어웨이크 상태로 전환하여 프레임을 AP로 전송할 수 있다. 그러나 STA이 도즈 상태에 있고 AP에 STA으로 전송할 펜딩된 프레임이 존재하는 경우, STA은 AP로부터 펜딩된 프레임을 수신할 수 없고, AP에 펜딩된 프레임이 존재한다는 것도 알 수 없다. 따라서 STA은 AP에 펜딩된 프레임의 존재 여부에 대한 정보를 획득하고, AP에 펜딩된 프레임을 수신하기 위해 주기적으로 어웨이크 상태로 전환하여 동작할 수 있다.
AP은 STA의 어웨이크 상태 동작 타이밍에 대한 정보를 획득하고, STA의 어웨이크 상태 동작 타이밍에 맞추어 AP에 펜딩된 프레임의 존재 여부에 대한 정보를 전송할 수 있다.
구체적으로 도즈 상태의 STA은 AP로부터 수신할 프레임의 존재 여부에 대한 정보를 수신하기 위해 주기적으로 도즈 상태에서 어웨이크 상태로 전환하여 비콘 프레임을 수신할 수 있다. AP는 비콘 프레임에 포함된 TIM(traffic indication map)을 기반으로 각 STA으로 전송할 프레임의 존재 여부에 대해 알려줄 수 있다. TIM은 STA으로 전송될 유니캐스트 프레임의 존재를 알려주기 위해 사용되며, DTIM(delivery traffic indication map)은 STA으로 전송될 멀티캐스트 프레임/브로드캐스트 프레임의 존재를 알려주기 위해 사용될 수 있다.
본 발명의 목적은 무선랜에서 파워 세이브 모드 기반의 동작 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 무선랜에서 파워 세이브 모드 기반의 동작 장치를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 무선랜에서 파워 세이브 모드 기반의 동작 방법은 STA(station)이 상기 파워 세이브 모드로 전환 후 AP(access point)에 의해 전송되는 제1 비콘 프레임의 수신을 위해 청취 인터벌을 기반으로 슬립 모드에서 액티브 모드로 전환되는 단계, 상기 제1 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 STA이 상기 액티브 모드로의 전환 시점에 시작된 타이머의 만료 전까지 상기 AP에 의해 전송되는 상기 STA에 대한 프레임을 모니터링하는 단계와 상기 STA이 상기 타이머의 만료 후에 상기 슬립 모드로 전환되는 단계를 포함할 수 있되, 상기 타이머는 상기 프레임이 전송되는 경우 리셋될 수 있다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 다른 측면에 따른 무선랜에서 파워 세이브 모드를 기반으로 동작하는 STA(station)은 무선 신호를 송신 또는 수신하기 위해 구현된 RF(radio frequency)부와 상기 RF부와 동작 가능하도록(operatively) 연결되는 프로세서를 포함하되, 상기 프로세서는 상기 파워 세이브 모드로 전환 후 AP(access point)에 의해 전송되는 제1 비콘 프레임의 수신을 위해 청취 인터벌을 기반으로 상기 STA의 동작 모드를 슬립 모드에서 액티브 모드로 전환하고 상기 제1 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 액티브 모드로의 전환 시점에 시작된 타이머의 만료 전까지 상기 AP에 의해 전송되는 상기 STA에 대한 프레임을 모니터링하고, 상기 타이머의 만료 후에 상기 STA의 동작 모드를 상기 슬립 모드로 전환하도록 구현될 수 있되, 상기 타이머는 상기 프레임이 전송되는 경우 리셋될 수 있다.
파워 세이브 모드로 동작하는 STA이 PS(power saving)-poll 프레임의 전송 없이 AP로부터 펜딩된 하향링크 데이터를 수신할 수 있다. 따라서, PS-poll 프레임의 전송을 위한 시그널링 오버헤드가 감소되고 전송 딜레이가 감소될 수 있다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 2는 무선랜에서 스캐닝 방법을 나타낸 개념도이다.
도 3은 AP와 STA의 스캐닝 절차 이후에 수행되는 인증 절차 및 결합 절차를 나타낸 개념도이다.
도 4는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 5는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 6은 본 발명의 실시예에 따른 파워 세이브 방법을 나타낸 개념도이다.
도 7은 본 발명의 실시예에 따른 따른 파워 세이브 방법을 나타낸 개념도이다.
도 8은 본 발명의 실시예에 따른 따른 파워 세이브 방법을 나타낸 개념도이다.
도 9는 본 발명의 실시예에 따른 비 PS-poll 모드 설정 요소를 나타낸 개념도이다.
도 10은 본 발명의 실시예에 따른 STA의 파워 세이브 동작을 나타낸 개념도이다.
도 11은 본 발명의 실시예에 따른 비 PS-poll 모드 TIM 요소를 나타낸 개념도이다.
도 12는 본 발명의 실시예에 따른 프레임을 전달하는 PPDU 포맷을 나타낸 개념도이다.
도 13은 본 발명의 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(Basic Service Set)의 구조를 나타낸다.
도 1의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.
BSS는 적어도 하나의 STA, 분산 서비스(Distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(Distribution System, DS, 110)을 포함할 수 있다.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 120)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.
도 1의 하단은 IBSS를 나타낸 개념도이다.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-4, 155-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-4, 155-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다.
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.
이하, 본 발명의 실시예에서는 AP에서 STA으로 전송되는 데이터(또는 프레임)를 하향링크 데이터(또는 하향링크 프레임), STA에서 AP로 전송되는 데이터(또는 프레임)를 상향링크 데이터(또는 상향링크 프레임)이라는 용어로 표현할 수 있다. 또한, AP에서 STA으로의 전송은 하향링크 전송, STA에서 AP로의 전송은 상향링크 전송이라는 용어로 표현할 수 있다.
도 2는 무선랜에서 스캐닝 방법을 나타낸 개념도이다.
도 2를 참조하면, 스캐닝 방법은 패시브 스캐닝(passive scanning, 200)과 액티브 스캐닝(active scanning, 250)으로 구분될 수 있다.
도 2의 좌측을 참조하면, 패시브 스캐닝(200)은 AP(200)가 주기적으로 브로드캐스트하는 비콘 프레임(230)에 의해 수행될 수 있다. 무선랜의 AP(200)는 비콘 프레임(230)을 특정 주기(예를 들어, 100msec)마다 non-AP STA(240)으로 브로드캐스트 한다. 비콘 프레임(230)에는 현재의 네트워크에 대한 정보가 포함될 수 있다. non-AP STA(240)은 주기적으로 브로드캐스트되는 비콘 프레임(230)을 수신함으로서 네트워크 정보를 수신하여 인증/결합(authentication/association) 과정을 수행할 AP(210)와 채널에 대한 스캐닝을 수행할 수 있다.
패시브 스캐닝 방법(200)은 non-AP STA(240)이 프레임을 전송할 필요가 없이 AP(210)에서 전송되는 비콘 프레임(230)을 수신만 하면 된다. 따라서, 패시브 스캐닝 (200)은 네트워크에서 데이터의 송신/수신에 의해 발생되는 전체적인 오버헤드가 작다는 장점이 있다. 하지만, 비콘 프레임(230)의 주기에 비례하여 수동적으로 스캐닝을 수행할 수 밖에 없기 때문에 스캐닝을 수행하는데 걸리는 시간이 액티브 스캐닝 방법과 비교하여 상대적으로 늘어난다는 단점이 있다. 비콘 프레임에 대한 구체적인 설명은 2011년 11월에 개시된 IEEE Draft P802.11-REVmb™/D12, November 2011 ‘IEEE Standard for Information Technology Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications(이하, IEEE 802.11)’의 8.3.3.2 beacon frame에 개시되어 있다. IEEE 802.11 ai에서는 추가적으로 다른 포맷의 비콘 프레임을 사용할 수도 있고 이러한 비콘 프레임을 FILS(fast initial link setup) 비콘 프레임이라고 할 수 있다. 또한, 측정 파일롯 프레임(measurement pilot frame)은 비콘 프레임의 일부 정보만을 포함하는 프레임으로 스캐닝 절차에서 사용할 수 있다. 측정 파일롯 프레임은 IEEE 802.11 8.5.8.3 measurement pilot format에 개시되어 있다.
또한, FILS 탐색 프레임(FILS discovery frame)이 정의될 수도 있다. FILS 탐색 프레임은 각 AP에서 비콘 프레임의 전송 주기 사이에서 전송되는 프레임으로 비콘 프레임보다 짧은 주기를 가지고 전송되는 프레임일 수 있다. 즉, FILS 탐색 프레임은 비콘 프레임의 전송 주기보다 작은 값의 주기를 가지고 전송되는 프레임이다. FILS 탐색 프레임은 탐지 프레임을 전송하는 AP의 식별자 정보(SSID, BSSID)를 포함할 수 있다. FILS 탐색 프레임은 STA으로 비콘 프레임이 전송되기 전에 전송되어 해당 채널에 AP가 존재함을 STA이 미리 탐색하도록 할 수 있다. 하나의 AP에서 FILS 탐색 프레임이 전송되는 간격을 FILS 탐색 프레임 전송 간격이라고 한다. FILS 탐색 프레임에는 비콘 프레임에 포함되는 정보의 일부가 포함되어 전송될 수 있다.
도 2의 우측을 참조하면, 액티브 스캐닝(250)에서는 non-AP STA(290)이 프로브 요청 프레임(270)을 AP(260)로 전송하여 주도적으로 스캐닝을 수행할 수 있다.
AP(260)에서는 non-AP STA(290)으로부터 프로브 요청 프레임(270)을 수신한 후 프레임 충돌(frame collision)을 방지하기 위해 랜덤 시간 동안 기다린 후 프로브 응답 프레임(280)에 네트워크 정보를 포함하여 non-AP STA(290)으로 전송할 수 있다. non-AP STA(290)은 수신한 프로브 응답 프레임(280)을 기초로 네트워크 정보를 얻고 스캐닝 과정을 중지할 수 있다.
액티브 스캐닝(250)의 경우, non-AP STA(290)이 주도적으로 스캐닝을 수행하므로 스캐닝에 사용되는 시간이 짧다는 장점이 있다. 하지만, non-AP STA(290)이 프로브 요청 프레임(270)을 전송해야 하므로 프레임 송신 및 수신을 위한 네트워크 오버헤드가 증가한다는 단점이 있다. 프로브 요청 프레임(270)은 IEEE 802.11 8.3.3.9 절에 개시되어 있고 프로브 응답 프레임(280)은 IEEE 802.11 8.3.3.10에 개시되어 있다.
스캐닝이 끝난 후 AP와 non-AP STA은 인증(authentication) 절차와 결합(association) 절차를 수행할 수 있다.
도 3은 AP와 STA의 스캐닝 절차 이후에 수행되는 인증 절차 및 결합 절차를 나타낸 개념도이다.
도 3을 참조하면, 패시브/액티브 스캐닝을 수행한 후 스캐닝된 AP 중 하나의 AP와 인증 절차 및 결합 절차를 수행할 수 있다.
인증(authentication) 및 결합(association) 절차는 예를 들어, 2-방향 핸드쉐이킹(2-way handshaking)을 통해 수행될 수 있다. 도 3의 좌측은 패시브 스캐닝 후 인증 및 결합 절차를 나타낸 개념도이고 도 3의 우측은 액티브 스캐닝 후 인증 및 결합 절차를 나타낸 개념도이다.
인증 절차 및 결합 절차는 액티브 스캐닝 방법 또는 패시브 스캐닝을 사용하였는지 여부와 상관없이 인증 요청 프레임(authentication request frame, 310)/인증 응답 프레임(authentication response frame, 320) 및 결합 요청 프레임(association request frame, 330)/결합 응답 프레임(association response frame, 340)을 AP(300, 350)와 non-AP STA(305, 355) 사이에서 교환함으로써 동일하게 수행될 수 있다.
인증 절차에서는 non-AP STA(305, 355)는 인증 요청 프레임(310)을 AP(300, 350)로 전송할 수 있다. AP(300, 350)는 인증 요청 프레임(310)에 대한 응답으로 인증 응답 프레임(320)을 non-AP STA(305, 355)으로 전송할 수 있다. 인증 프레임 포맷(authentication frame format)에 대해서는 IEEE 802.11 8.3.3.11에 개시되어 있다.
결합 절차에서는 non-AP STA(305, 355)은 결합 요청 프레임(association request frame, 330)을 AP(300, 305)로 전송할 수 있다. 결합 요청 프레임(330)에 대한 응답으로 AP(305, 355)는 결합 응답 프레임(340)을 non-AP STA(300, 350)으로 전송할 수 있다. AP로 전송된 결합 요청 프레임(330)에는 non-AP STA(305, 355)의 성능(capability)에 관한 정보가 포함되어 있다. non-AP STA(305, 355)의 성능 정보를 기초로 AP(300, 350)는 non-AP STA(305, 355)에 대한 지원이 가능한지 여부를 판단할 수 있다. non-AP STA(305, 355)에 대한 지원이 가능한 경우 AP(300, 350)는 결합 응답 프레임(340)을 non-AP STA(305, 355)로 전송할 수 있다. 결합 응답 프레임(340)은 결합 요청 프레임(340)에 대한 수락 여부와 그 이유, 자신이 지원 가능한 성능 정보(capability information)를 포함할 수 있다. 결합 프레임 포맷(association frame format)에 대해서는 IEEE 802.11 8.3.3.5/8.3.3.6에 개시되어 있다.
AP와 non-AP STA 사이에서 결합 절차가 수행된 이후, AP와 non-AP STA 사이에서 정상적인 데이터의 송신 및 수신이 수행될 수 있다. AP와 non-AP STA 사이의 결합 절차가 실패한 경우, 결합이 실패한 이유를 기반으로 다시 AP와 결합 절차를 수행하거나 다른 AP와 결합 절차를 수행할 수도 있다.
STA이 AP와 결합되는 경우, STA은 AP로부터 결합 ID(association identifier, AID)를 할당받을 수 있다. STA으로 할당된 AID는 하나의 BSS 내에서는 유일한 값일 수 있고, 현재 AID는 1~2007 중 하나의 값일 수 있다. AID를 위해 14bit가 할당되어 있어서 최대 16383까지 AID의 값으로서 사용 가능하지만 2008~16383의 값은 보존(reserved)되어 있다.
IEEE 802.11 표준에서는 무선랜의 STA의 수명을 증가시키기 위하여 파워 세이브 메커니즘이 제공된다.
파워 세이브를 위하여 STA은 액티브 모드(active mode)(어웨이크 상태(awake state))와 슬립 모드(sleep mode)(도즈 상태(doze state))인 두 가지 모드(또는 상태)를 기반으로 동작할 수 있다. 어웨이크 상태 또는 도즈 상태를 기반으로 STA은 파워 세이브 모드로 동작할 수 있다.
액티브 모드(또는 어웨이크 상태)의 STA은 프레임의 송신 또는 수신, 채널 스캐닝 등과 같은 정상적인 동작을 수행할 수 있다. 반면, 슬립 모드(또는 도즈 상태)의 STA은 전력 소모를 줄이기 위해 프레임의 송신 또는 수신을 수행하지 않고 채널 스캐닝도 수행하지 않는다. 파워 세이브 모드로 동작하는 STA은 전력 소모를 줄이기 위해 도즈 상태로 유지되고 필요한 경우, 어웨이크 상태로 전환(또는 천이(transition))되어 AP와 통신을 수행할 수 있다.
STA의 도즈 상태의 유지 시간이 증가할수록 STA의 전력 소모는 감소하고 STA의 수명도 또한 증가할 수 있다. 그러나 도즈 상태에서는 STA의 프레임의 송신 또는 수신이 불가능하다. STA에 펜딩된 상향링크 프레임이 존재하는 경우, STA은 도즈 상태에서 액티브 상태로 전환하고 상향링크 프레임을 AP로 전송할 수 있다. 반대로 AP에 도즈 상태의 STA으로 전송할 펜딩된 프레임이 존재하는 경우, AP는 STA의 어웨이크 모드로의 전환시까지 STA으로 펜딩된 프레임을 전송할 수 없다.
따라서, STA은 가끔씩 도즈 상태에서 어웨이크 상태로 전환되고 AP로부터 STA에 대해 펜딩된 프레임이 존재하는지 여부에 대한 정보를 수신할 수 있다. AP는 STA의 어웨이크 상태로의 전환 시간을 고려하여 STA에 대해 펜딩된 하향링크 데이터의 존재에 대한 정보를 STA으로 전송할 수 있다.
구체적으로 STA은 STA에 대해 펜딩된 프레임의 존재 여부에 대한 정보를 수신하기 위해 주기적으로 도즈 상태에서 어웨이크 상태로 전환되어 비콘 프레임을 수신할 수 있다. 비콘 프레임은 STA의 패시브 스캐닝을 위해 사용되는 프레임으로서 AP의 능력(capability)에 대한 정보를 포함할 수 있다. AP는 주기적(예를 들어, 100msec)으로 비콘 프레임을 STA으로 전송할 수 있다.
도 4는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 4를 참조하면, AP는 주기적으로 비콘 프레임을 전송할 수 있고, STA은 비콘 프레임의 전송 타이밍을 고려하여 주기적으로 도즈 상태에서 어웨이크 상태로 전환되어 비콘 프레임을 수신할 수 있다.
비콘 프레임에는 TIM 요소(traffic indication map element)가 포함될 수 있다. TIM 요소는 AP에 펜딩된 STA에 대한 하향링크 데이터에 대한 정보를 전송하기 위해 사용될 수 있다. 예를 들어, TIM 요소는 비트맵 기반으로 STA으로 펜딩된 프레임에 대한 정보를 전송할 수 있다.
TIM 요소는 TIM 또는 DTIM(delivery TIM)으로 구분될 수 있다. TIM은 STA으로 유니캐스트 기반으로 전송될 펜딩된 하향링크 데이터의 존재를 지시할 수 있다. DTIM은 브로드캐스트/멀티캐스트 기반으로 전송될 펜딩된 하향링크 데이터의 존재를 지시할 수 있다.
도 4의 상단은 AP가 PS(power saving)-poll 프레임에 대해 즉각 응답을 기반으로 하향링크 프레임을 전송하는 방법에 대해 개시한다.
도 4의 상단을 참조하면, STA은 비콘 프레임(400)의 TIM을 기반으로 AP로부터 STA에 대해 펜딩된 하향링크 데이터의 존재에 대한 정보를 수신할 수 있다. STA은 PS-poll 프레임(410)을 AP로 전송할 수 있다. AP는 STA으로부터 PS-poll 프레임(410)을 수신하고, PS-poll 프레임(410)에 대한 즉각 응답(immediate response)으로 하향링크 프레임(420)을 STA으로 전송할 수 있다. AP의 PS-poll 프레임에 대한 즉각 응답은 PS-poll 프레임을 수신하고 SIFS(short interframe space) 후에 수행될 수 있다.
STA은 하향링크 프레임에 대한 응답으로 ACK 프레임(430)을 전송할 수 있다. AP의 STA에 대해 펜딩된 하향링크 데이터의 전송이 종료되는 경우, STA은 도즈 상태로 다시 전환(또는 천이(transition))될 수 있다.
도 4의 하단은 PS-poll 프레임에 대해 연기된 응답(deferred response)을 기반으로 한 AP의 하향링크 프레임의 전송 방법을 개시한다.
도 4의 하단을 참조하면, STA은 비콘 프레임(440)의 TIM을 기반으로 AP로부터 STA에 대해 펜딩된 하향링크 데이터의 존재에 대한 정보를 수신할 수 있다. STA은 PS-poll 프레임(450)을 AP로 전송할 수 있다. AP는 STA으로부터 PS-poll 프레임(450)을 수신하고, PS-poll 프레임(450)에 대한 응답으로 ACK 프레임(460)을 STA으로 전송할 수 있다. AP는 ACK 프레임(460)의 전송 이후 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임(470)을 STA으로 전송할 수 있다. STA은 ACK 프레임(460)의 수신 이후에 AP에 의해 STA으로 전송되는 하향링크 프레임(470)을 모니터링할 수 있다.
마찬가지로 AP의 STA에 대해 펜딩된 하향링크 데이터의 전송이 종료되는 경우, STA은 어웨이크 상태에서 도즈 상태로 다시 전환(또는 천이(transition))될 수 있다.
도 5는 비콘 프레임 기반의 파워 세이브 방법을 나타낸 개념도이다.
도 5에서는 비콘 프레임(500)을 통해 DTIM이 전송되는 경우가 개시된다. 비콘 프레임(500)은 DTIM을 포함할 수 있다. 전술한 바와 같이 DTIM은 브로드캐스트/멀티캐스트 기반으로 전송될 펜딩된 하향링크 데이터의 존재를 지시할 수 있다.
도 5을 참조하면, AP는 DTIM을 포함하는 비콘 프레임(500)을 STA으로 전송할 수 있다. STA은 DTIM을 포함하는 비콘 프레임(500)을 수신한 후 PS-poll 프레임의 전송없이 어웨이크 상태를 유지하고 하향링크 프레임(520)의 전송을 모니터링할 수 있다. AP는 멀티캐스트 방법 또는 브로드캐스트 방법을 통해 하향링크 프레임(520)을 STA으로 전송할 수 있다.
도 4 및 도 5에서 개시한 기존의 TIM 요소 기반의 파워 세이브 메커니즘(또는 파워 세이브 방법)은 아래와 같은 문제점을 가질 수 있다. 우선 PS-poll 프레임의 시그널링 오버헤드가 존재할 수 있다. STA은 TIM을 수신하고 하향링크 데이터를 수신하기 위해 PS-poll 프레임을 AP로 전송해야 한다. STA은 도즈 상태에서 어웨이크 상태로 전환된 이후, 경쟁 기반의 액세스를 통해 PS-poll 프레임을 AP로 전송할 수 있다. 복수의 STA이 동시에 어웨이크 모드로 전환되어 PS-poll 프레임을 전송하는 경우, 복수의 STA 간의 경쟁으로 인해 PS-poll 프레임의 전송이 어려울 수 있다. 또한, STA 간의 경쟁으로 인해 STA의 AP로부터 비콘 프레임을 수신한 이후 하향링크 프레임을 수신하기까지의 딜레이가 클 수 있다. STA은 TIM을 수신하고 하향링크 데이터를 수신하기 전 PS-poll 프레임의 전송, PS-poll 프레임에 대한 ACK 프레임의 수신 절차가 필요하다.
이하, 본 발명의 실시예에서는 파워 세이브 모드로 동작하는 STA의 시그널링 오버헤드 및 하향링크 데이터의 수신 딜레이를 감소시키기 위한 방법이 개시된다. 이하, 도즈 상태는 슬립 모드, 어웨이크 상태는 액티브 모드와 동일한 의미로 사용될 수 있다. 도즈 상태에서는 STA에 의한 프레임의 송신 또는 수신이 수행되지 않을 수 있다.
이하, 본 발명의 실시예에서 AP에서 STA으로의 전송은 하향링크 전송이라는 용어로 표현될 수 있다. 햐향링크 전송을 통해 전송되는 PPDU, 프레임 및 데이터 각각은 하향링크 PPDU, 하향링크 프레임 및 하향링크 데이터라는 용어로 표현될 수 있다. PPDU는 PPDU 헤더와 PSDU(physical layer service data unit)(또는 MPDU(MAC protocol data unit))를 포함하는 데이터 단위일 수 있다. PPDU 헤더는 PHY 헤더와 PHY 프리앰블을 포함할 수 있고, PSDU(또는 MPDU)는 프레임을 포함하거나 프레임을 지시할 수 있다.
또한, STA에서 AP로의 전송은 하향링크 전송이라는 용어로 표현될 수 있다. 상향링크 전송을 통해 전송되는 PPDU, 프레임 및 데이터 각각은 상향링크 PPDU, 상향링크 프레임 및 상향링크 데이터라는 용어로 표현될 수 있다.
도 6은 본 발명의 실시예에 따른 파워 세이브 방법을 나타낸 개념도이다.
도 6에서는 비 PS-poll 구간(period)(600)과 PS-poll 구간(610)이 정의되고, STA의 비 PS poll 구간(600)과 PS-poll 구간(610) 상에서 AP에 의해 전송된 하향링크 프레임(또는 하향링크 데이터)의 수신 방법이 개시된다.
비 PS-poll 구간(non PS-poll period)(600)에서는 STA은 PS-poll 프레임의 전송없이 펜딩된 하향링크 프레임(버퍼된(또는 펜딩된) 하향링크 데이터(buffered(or pending) downlink data))(635)을 수신할 수 있다. 구체적으로 STA은 STA에 대해 펜딩된 하향링크 데이터를 지시하는 TIM을 포함하는 비콘 프레임(630)을 수신한 경우, AP로 PS-poll 프레임을 전송하지 않고, AP로부터 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임(635)를 수신할 수 있다. STA은 비 PS-poll 구간(600)에서 일정 시간 구간 동안 어웨이크 상태(또는 액티브 모드)로 동작할 수 있다. 비 PS-poll 구간(600)에서 STA의 하향링크 프레임 수신 동작은 비 PS-poll 모드 동작이라는 용어로 표현될 수 있다.
비 PS-poll 구간(600)의 시작 시점은 STA의 비 파워 세이브 모드(non power save mode)(또는 액티브 모드)에서 파워 세이브 모드로 전환 이후 첫번째 어웨이크 상태로의 전환 시점 또는 STA의 STA의 파워 세이브 모드로 전환 이후 첫번째 비콘 프레임(630)의 수신 시점일 수 있다. 이하, 설명의 편의상 비 PS-poll 구간(600)의 시작 시점은 어웨이크 상태로의 전환(또는 천이(transition)) 시점으로 가정하여 설명한다. 비 PS-poll 구간(600)의 길이(또는 듀레이션)은 비 PS-poll 구간(600)의 길이(또는 종료)를 결정하는 타이머를 기반으로 결정될 수 있다. 비 PS-poll 구간(600)의 길이(또는 비 PS-poll 구간(600)의 종료 여부)를 결정하기 위한 타이머는 비 PS-poll 구간 타이머(620)라는 용어로 표현될 수 있다.
비 PS-poll 구간 타이머(620)는 비 PS-poll 구간(600)의 시작 시점에서 시작될 수 있다. 비 PS-poll 구간 타이머(620)는 STA이 AP로부터의 하향링크 프레임을 수신하지 않은 경우(또는 AP에 의해 STA에 대한 하향링크 프레임(635)이 전송되지 않는 경우), 설정된 타이머 값이 감소되어 만료 시점에서 만료될 수 있다. 비 PS-poll 구간 타이머(620)는 만료 시점 이전에 STA이 AP로부터의 하향링크 프레임(635)을 수신한다면(또는 AP에 의해 STA에 대한 하향링크 프레임(635)이 전송된다면), 다시 재시작(또는 리셋(reset))될 수 있다.
본 발명의 다른 실시예에 따르면, 비 PS-poll 모드로 동작하는 STA에 의해 수신된 비콘 프레임(630)에 포함된 TIM이 STA에 펜딩된 하향링크 데이터의 존재를 지시하는 경우, 비 PS-Poll 구간 타이머(620)가 시작될 수도 있다.
비 PS-poll 구간 타이머(620)가 만료되는 경우, 비 PS-poll 구간(600)은 종료되고 STA은 도즈 상태로 전환될 수 있다.
비 PS-Poll 구간 타이머(620)가 시작되는 경우, 비 PS-Poll 구간 타이머(620)는 설정된 초기값부터 0으로 감소될 수 있다. 비 PS-Poll 구간 타이머(620)의 초기값은 STA과 AP의 초기 액세스 절차에서 AP에 의해 전송되는 결합 응답 프레임을 통해 전송될 수 있다. 비 PS-poll 구간 타이머(620)의 초기값은 고정된 값이거나, 별도로 설정된 변화 가능한 값일 수 있다.
비 PS-poll 구간(600)의 종료 이후 도즈 상태로 전환된 STA은 청취 인터벌을 기반으로 어웨이크 상태로 전환되어 비콘 프레임(640)을 수신할 수 있다. PS-poll 구간(610)은 STA의 비 PS-poll 구간(600) 이후 청취 인터벌을 기반으로 어웨이크 상태로의 전환 시점 또는 STA의 STA의 비 PS-poll 구간(600) 이후 청취 인터벌을 기반으로 어웨이크 상태로 전환 후 비콘 프레임(640)의 수신 시점에 시작될 수 있다. 이하, 이하, 설명의 편의상 PS-poll 구간(610)의 시작 시점은 청취 인터벌을 기반으로 어웨이크 상태로의 전환 시점으로 가정하여 설명한다. PS-poll 구간(610)에서 STA의 하향링크 프레임 수신 동작은 PS-poll 모드 동작이라는 용어로 표현될 수 있다.
PS poll 모드로 동작하는 STA은 도 4 및 도 5에서 전술한 바와 같이 PS-poll 프레임(650) 기반의 하향링크 프레임 수신 동작을 수행할 수 있다. 구체적으로 STA이 STA에 대해 펜딩된 하향링크 데이터를 지시하는 TIM을 포함하는 비콘 프레임(640)을 수신하는 경우, STA은 AP로 PS-Poll 프레임(650)을 전송할 수 있다. AP는 STA으로 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임(645)을 수신할 수 있다. AP에 STA에 대해 펜딩된 하향링크 프레임이 존재하지 않는 경우, STA은 도즈 상태로 전환될 수 있다. PS-poll 구간(610)에서 동작하는 STA은 PS-poll 모드로 동작하는 STA이라는 용어로 표현될 수 있다.
PS-poll 구간(610) 이후 도즈 상태로 전환된 STA은 청취 인터벌을 기반으로 어웨이크 상태로 다시 전환되어 다시 비 PS-poll 모드로 동작하여 비콘 프레임(670) 을 AP로부터 수신할 수 있다. 구체적으로 다음 비 PS-poll 구간(660)은 STA의 PS-poll 구간(610) 이후 청취 인터벌을 기반으로 어웨이크 상태로의 전환 시점 또는 STA의 STA의 PS-poll 구간(610) 이후 청취 인터벌을 기반으로 어웨이크 상태로 전환 후 비콘 프레임(670)의 수신 시점에 시작될 수 있다. 마찬가지로 비 PS-poll 구간 타이머(620)가 만료되는 경우, 비 PS-poll 구간(660)은 종료될 수 있다. 이하, 설명의 편의상 비 PS-poll 구간(660)의 시작 시점은 어웨이크 상태로의 전환 시점으로 가정하여 설명한다.
아래와 같은 조건이 만족되는 경우, 비 PS-poll 구간(또는 비 PS-poll 모드)이 시작(initiation)될 수 있다.
STA이 비 파워 세이브 모드(또는 액티브 모드)에서 파워 세이브 모드로 전환되고 첫번째 비콘 프레임의 수신을 위해 어웨이크 상태로 전환되는 경우(또는 파워 세이브 모드로 전환 이후 청취 인터벌을 기반으로 어웨이크 상태로 처음 전환되는 경우), 비 PS-poll 구간이 시작될 수 있다. 청취 인터벌은 비콘 프레임의 수신을 위한 STA의 어웨이크 상태로의 전환 간격일 수 있다. 다른 표현으로 청취 인터벌은 파워 세이브 모드로 동작하는 STA이 비콘 프레임을 청취(listen)하기 위해 얼마나 자주 어웨이크 상태로 전환되는지(웨이크업하는지)를 지시할 수 있다.
또는 STA이 PS-poll 구간 상에서 AP로부터 STA에 대해 펜딩된 하향링크 데이터(새로운 하향링크 데이터 및 버퍼된(또는 펜딩된) 하향링크 데이터)를 수신하고 도즈 상태로 전환된 경우, 다음 청취 인터벌을 기반으로 한 어웨이크 상태로의 전환 이후, 비 PS-poll 구간이 시작될 수 있다.
본 발명의 실시예에 따르면, 매체(medium)의 SNR이 특정 SNR(signal to noise ratio) 임계값(threshold)을 만족하지 못하는 경우, STA은 비 PS-poll 모드로 동작하지 않을 수 있다. 즉, 비 PS-poll 구간이 STA으로 할당되지 않을 수 있다. 비 PS-poll 구간의 할당을 결정하기 위한 SNR 임계값은 STA의 초기 액세스 절차 상에서 송신 또는 수신되는 결합 요청 프레임 및 결합 응답 프레임에 포함될 수 있다. 구체적으로 STA가 SNR 임계값에 대한 정보를 포함하는 결합 요청 프레임을 전송하거나 AP가 SNR 임계값에 대한 정보를 포함하는 결합 응답 프레임을 전송할 수 있다.
또한, 본 발명의 실시예에 따르면, STA의 이동성(mobility)가 이동성 임계값(threshold)보다 큰 경우, STA은 비 PS-poll 모드로 동작하지 않을 수도 있다. 이에 대해서는 구체적으로 후술한다.
도 7은 본 발명의 실시예에 따른 따른 파워 세이브 방법을 나타낸 개념도이다.
도 7에서는 비 PS-poll 구간 및 PS-poll 구간 상에서 STA의 하향링크 데이터의 수신이 개시된다.
도 7을 참조하면, STA은 파워 세이브 모드로 동작함을 지시하는 정보를 포함하는 프레임(파워 세이브 모드 전환 지시 프레임(700))을 AP로 전송할 수 있다. 예를 들어, STA은 파워 세이브 모드로 동작함을 지시하기 위한 파워 세이브 비트(power saving bit, PS bit)를 1로 설정한 파워 세이브 모드 전환 지시 프레임(700)을 AP로 전송하여 STA의 파워 세이브 모드로의 전환을 AP로 알릴 수 있다.
STA은 AP로부터 파워 세이브 모드 전환 지시 프레임(700)에 대한 ACK 프레임(710)을 AP로부터 수신하고, 도즈 상태로 전환될 수 있다.
STA은 도즈 상태로 전환 후 청취 인터벌을 기반으로 어웨이크 모드로 전환되어 파워 세이브 모드로 전환 이후 첫번째 비콘 프레임(720)을 수신할 수 있다.
본 발명의 실시예에 따르면, STA이 논 파워 세이브 모드에서 파워 세이브 모드로 전환되고 청취 인터벌을 기반으로 어웨이크 상태로 전환되는 경우, 비 PS-poll 구간의 시작될 수 있다. STA은 비 PS-poll 구간 상에서 비 PS-poll 모드로 동작할 수 있다. 구체적으로 STA은 비 PS-poll 구간에서 PS-poll 프레임을 전송하지 않을 수 있다. STA은 비 PS-poll 구간이 시작된 경우, 비 PS-Poll 구간 타이머를 동작시킬 수 있다. 비 PS-poll 구간의 종료 여부를 결정하기 위한 STA의 비 PS-Poll 구간 타이머가 비 PS-poll 구간의 시작의 시작과 함께 시작될 수 있다.
STA은 비콘 프레임(720)의 TIM을 기반으로 STA에 대해 펜딩된 하향링크 데이터의 존재 여부에 대해 판단할 수 있다. 예를 들어, 비콘 프레임에 포함된 TIM이 STA에 펜딩된 하향링크 데이터의 존재를 지시하는 경우, STA은 AP에 의해 STA으로 전송되는 하향링크 프레임(730, 740)을 모니터링할 수 있다.
비 PS-poll 모드로 동작하는 STA은 PS-poll 프레임의 전송 없이 비 PS-poll 구간 타이머의 만료시까지 하향링크 프레임(730, 740)를 모니터링할 수 있다.
비 PS-poll 구간 타이머의 만료시까지 STA에 대한 하향링크 프레임(730, 740)을 수신하지 못한 경우, STA은 도즈 상태로 전환될 수 있다. 비 PS-poll 구간 타이머의 만료 시점이 비-PS poll 구간의 종료 시점일 수 있다. STA은 비-PS poll 구간의 종료 후 도즈 상태를 청취 인터벌을 기반으로 어웨이크 상태로 다시 전환될 때까지 유지할 수 있다.
도 7에서와 같이 비 PS-poll 구간 타이머의 만료전까지 STA에 대한 하향링크 프레임(730)을 수신한 경우, STA은 어웨이크 상태를 유지할 수 있다. STA이 비 PS-poll 구간 타이머의 만료전까지 STA에 대한 하향링크 프레임(730, 740)을 수신한 경우, STA은 비 PS-poll 구간 타이머를 초기값으로 리셋하고 어웨이크 상태를 유지하고 STA에 대한 추가적인 하향링크 프레임을 모니터링할 수 있다. 비 PS-poll 구간 타이머의 리셋 후 비 PS-poll 구간 타이머의 만료시까지 STA에 대한 추가적인 하향링크 프레임을 수신하지 못한 경우, STA은 도즈 상태로 전환될 수 있다. 또는 비 PS-poll 구간에서 STA이 STA에 대해 펜딩된 데이터가 없음을 지시하는 TIM을 포함하는 비콘 프레임(750)을 수신한 경우, 비 PS-poll 구간 타이머의 동작을 중단하고 도즈 상태로 전환될 수도 있다.
STA은 비 PS-poll 구간 이후 청취 인터벌을 기반으로 어웨이크 상태로 다시 전환되어 PS poll 모드로 동작할 수 있다. PS-poll 모드로 동작하는 STA은 비콘 프레임(760)에 포함된 TIM을 기반으로 STA에 대해 펜딩된 하향링크 데이터의 존재 여부에 대해 판단할 수 있다. STA에 대해 펜딩된 하향링크 데이터가 존재하지 않는 경우, STA은 다시 도즈 상태로 전환될 수 있다. 반대로 STA에 대해 펜딩된 하향링크 데이터가 존재하지 않는 경우, STA은 PS-poll 프레임(770)을 AP로 전송할 수 있고, PS-poll 프레임(770)에 대한 ACK 프레임을 수신하고 새로운 하향링크 데이터(또는 버퍼된(또는 펜딩된) 하향링크 데이터)를 포함하는 하향링크 프레임(780, 790)를 수신할 수 있다.
AP에 펜딩된 하향링크 데이터가 없는 경우(예를 들어, 전송된 하향링크 프레임의 MoreData 필드가 0으로 설정된 경우), PS poll 모드로 동작하는 STA은 도즈 상태로 전환될 수 있다.
STA이 비 PS-poll 구간에서 비 PS-poll 구간 타이머의 종료로 인해 펜딩된 하향링크 데이터를 수신하지 못한 경우가 발생할 수도 있다. 이러한 경우에도 STA은 PS-poll 구간에서 PS-poll 모드 동작을 기반으로 STA에 펜딩된 하향링크 데이터를 수신할 수 있다.
STA은 PS-poll 모드 동작 및 도즈 상태로의 전환 이후, 청취 인터벌을 기반으로 어웨이크 상태로 전환되어 비 PS-poll 모드로 동작할 수 있다. STA은 비콘 프레임(795)을 수신하고 비 PS-poll 구간 타이머를 기반으로 PS-poll 프레임의 전송 없이 하향링크 데이터를 모니터링할 수 있다.
도 8은 본 발명의 실시예에 따른 따른 파워 세이브 방법을 나타낸 개념도이다.
도 8에서는 비 PS-poll 구간 및 PS-poll 구간 상에서 복수의 STA의 하향링크 데이터의 수신이 개시된다. 도 8에서는 비콘 프레임(810, 825, 850)에 포함된 TIM이 STA1 및 STA2 각각에 대해 펜딩된 하향링크 데이터를 지시하는 경우를 가정한다.
도 8을 참조하면, STA1과 STA2 각각은 파워 세이브 모드로의 전환을 지시하는 파워 세이브 모드 전환 지시 프레임(800, 805)을 AP로 전송하고 논 파워 세이브 모드에서 파워 세이브 모드로 전환될 수 있다.
STA1 및 STA2 각각은 AP로부터 파워 세이브 모드 전환 지시 프레임(800, 805)에 대한 ACK 프레임을 AP로부터 수신하고, 도즈 상태로 전환될 수 있다.
STA 1 및 STA2는 도즈 상태로 전환 후 청취 인터벌을 기반으로 어웨이크 모드로 전환되고 비 PS-poll 모드를 기반으로 동작하여 AP로부터 하향링크 프레임(815, 820)을 수신할 수 있다. 예를 들어, STA1은 비 PS-poll 구간 타이머가 만료 이전까지 어웨이크 상태를 유지하고 AP에 의해 전송되는 STA1에 대한 하향링크 프레임(815)을 모니터링할 수 있다. AP는 STA1에 대해 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임1(815)을 STA1으로 전송할 수 있다. STA1은 하향링크 프레임1(815)을 수신하고 하향링크 프레임1(815)에 대한 ACK 프레임을 AP로 전송할 수 있다. STA1은 하향링크 프레임1(815)의 수신 후 비 PS-poll 구간 타이머를 리셋할 수 있다. 리셋된 비 PS-poll 구간 타이머는 STA1에 대한 추가의 하향링크 프레임이 전송되지 않는 경우, 만료될 수 있다. STA1은 비 PS-poll 구간 타이머가 만료된 경우, 도즈 상태로 전환될 수 있다.
마찬가지로 STA2는 비 PS-poll 구간 타이머가 만료 이전까지 어웨이크 상태를 유지하고 AP에 의해 전송되는 STA2에 대한 하향링크 프레임(820)을 모니터링할 수 있다. AP는 STA2에 대해 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임2(820)를 STA2로 전송할 수 있다. STA2는 하향링크 프레임2(820)를 수신하고 하향링크 프레임2(820)에 대한 ACK 프레임을 AP로 전송할 수 있다. STA2는 하향링크 프레임2(820)의 수신 후 비 PS-poll 구간 타이머를 리셋할 수 있다. 리셋된 비 PS-poll 구간 타이머는 STA2에 대한 추가의 하향링크 프레임이 전송되지 않는 경우, 만료될 수 있다. STA2은 비 PS-poll 구간 타이머가 만료된 경우, 도즈 상태로 전환될 수 있다.
비 PS-poll 구간을 참조하면, 비 PS-poll 모드로 동작하는 STA1 및 STA2 각각에 의한 PS-poll 프레임의 전송이 수행되지 않을 수 있다. STA1 및 STA2 각각에 의한 PS-poll 프레임의 전송이 수행되지 않는 경우, PS-poll 프레임으로 인한 매체의 혼잡도 및 PS-poll 프레임의 전송을 위한 시그널링 오버헤드가 감소할 수 있다. 또한, STA1 및 STA2 각각은 PS-poll 프레임을 전송하지 않고 하향링크 프레임을 수신할 수 있다. 따라서, STA1 및 STA2 각각의 하향링크 프레임의 수신 딜레이가 감소할 수 있다.
비 PS-poll 모드로 동작 후 도즈 상태로 전환된 STA 1 및 STA2 각각은 청취 인터벌을 기반으로 어웨이크 모드로 전환되어 PS-poll 모드로 동작할 수 있다. 도 8에서는 STA1 및 STA2의 청취 인터벌이 동일한 경우를 가정한다.
STA1 및 STA2 각각은 경쟁 기반의 채널 액세스를 통해 PS-poll 프레임 (830, 840)을 AP로 전송할 수 있다. 도 8에서는 STA1이 STA2보다 먼저 채널 액세스 권한을 획득한 경우를 가정한다. STA1은 STA2보다 먼저 채널 액세스 권한을 획득하고 PS-poll 프레임1(830)을 AP로 전송할 수 있다. STA1은 AP로 PS-poll 프레임1(830)에 대한 응답으로 ACK 프레임을 수신할 수 있다. AP는 ACK 프레임의 전송 이후, STA1에 대해 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임3(835)을 전송할 수 있다. STA1은 하향링크 프레임3(835)에 대한 응답으로 ACK 프레임을 AP로 전송할 수 있다. STA1은 하향링크 프레임3(835)에 포함된 추가 펜딩된 하향링크 데이터의 존재 여부를 지시하는 필드(예를 들어, MoreData 필드)가 추가 펜딩된 하향링크 데이터의 부존재를 지시하는 경우 도즈 상태로 전환될 수 있다.
STA1에 의한 매체 점유가 종료된 경우, STA2는 경쟁 기반의 채널 액세스를 통해 채널 액세스 권한을 획득하여 PS-poll 프레임2를 AP로 전송할 수 있다. STA2는 AP로 PS-poll 프레임2(840)에 대한 응답으로 ACK 프레임을 수신할 수 있다. AP는 ACK 프레임의 전송 이후, STA2에 대해 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임4(845)을 전송할 수 있다. STA2는 하향링크 프레임4(845)에 대한 응답으로 ACK 프레임을 AP로 전송할 수 있다. STA2는 하향링크 프레임4(845)에 포함된 추가 펜딩된 하향링크 데이터의 존재 여부를 지시하는 필드(예를 들어, MoreData 필드)가 추가 펜딩된 하향링크 데이터의 부존재를 지시하는 경우 도즈 상태로 전환될 수 있다.
STA1 및/또는 STA2가 비 PS-poll 구간에서 비 PS-poll 구간 타이머의 종료로 인해 펜딩된 하향링크 데이터를 수신하지 못한 경우에도 STA1 및/또는 STA2가 PS-poll 구간에서 STA1 및 STA2의 PS-poll 모드 동작을 기반으로 STA1 및/또는 STA2에 대해 펜딩된 하향링크 데이터를 수신할 수 있다.
STA1 및 STA2는 PS-poll 모드로 동작 및 도즈 상태로의 전환 이후, 청취 인터벌을 기반으로 다시 어웨이크 상태로 전환되어 다시 비 PS-poll 모드로 동작할 수 있다. STA1 및 STA2 각각은 비콘 프레임(850)을 수신하고 비 PS-poll 구간 타이머를 기반으로 PS-poll 프레임의 전송 없이 하향링크 데이터(860)를 모니터링할 수 있다.
도 9는 본 발명의 실시예에 따른 비 PS-poll 모드 설정 요소를 나타낸 개념도이다.
도 9에서는 STA의 비 PS-poll 모드 기반의 동작을 위한 비 PS-poll 모드 설정 요소(또는 비 PS-poll 모드 파라메터 집합 요소(parameter set element))가 개시된다.
비 PS-poll 모드 설정 요소는 별도의 프레임을 통해 전송될 수도 있지만, STA의 AP에 대한 초기 액세스시 STA과 AP 사이에서 송신 또는 수신되는 프레임(예를 들어, 비콘 프레임, 결합 요청 프레임 또는 결합 응답 프레임)을 통해 전송될 수도 있다.
비 PS-poll 모드 설정 요소는 요소 ID 필드(900), 길이 필드(910), 비 PS-poll 모드 타이머(non PS-poll mode timer) 필드(920), SNR 임계값(SNR threshold) 필드(930), 이동성 임계값(mobility threshold) 필드(940)를 포함할 수 있다.
요소 ID 필드(900)는 비 PS-poll 모드 설정 요소를 지시하기 위한 식별자 정보를 포함할 수 있다.
길이 필드(910)는 비 PS-poll 모드 타이머 필드, SNR 임계값 필드, 이동성 임계값 필드의 길이에 대한 정보를 포함할 수 있다.
비 PS-poll 모드 타이머 필드(920)는 STA의 비 PS-poll 모드로의 기본(default) 동작 시간에 대한 정보를 포함할 수 있다. 기본 동작 시간은 STA이 하향링크 프레임을 수신하지 못하였을 경우, 어웨이크 상태를 유지하는 시간일 수 있다. 다른 표현으로 비 PS-poll 모드 타이머 필드(920)는 비 PS-poll 구간 타이머의 초기값에 대한 정보를 포함할 수 있다.
비 PS-poll 구간 타이머의 초기값(또는 비 PS-poll 모드로의 기본 동작 시간)은 청취 인터벌의 배수일 수 있다. 예를 들어, 비 PS-poll 모드 타이머 필드(920)의 값이 1인 경우, STA이 (2*비콘 인터벌(Beacon Interval)) 동안 비 PS-poll 모드로 동작할 수 있다. 또는 비 PS-poll 모드 타이머 필드(920)의 값이 2인 경우, STA이 (3*Beacon Interval) 동안 비 PS-Poll 모드로 동작할 수 있다. 또 다른 방법으로 비 PS-poll 모드 타이머 필드(920)는 ms(micro second) 단위의 STA의 비 PS-poll 모드 동작을 위한 시간 구간에 대한 정보를 직접적으로 포함할 수도 있다.
SNR 임계값 필드(930)는 STA의 비 PS-poll 모드로의 동작을 위한 매체의 최소 SNR(또는 SNR 임계값)에 대한 정보를 포함할 수 있다. 전술한 바와 같이 STA은 매체의 SNR이 최소 SNR 이상인 경우, 비 PS-poll 모드로 동작할 수 있다.
이동성 임계값 필드(940)는 STA의 비 PS-poll 모드로의 동작을 위한 STA의 최소 이동성(또는 이동성 임계값)에 대한 정보를 포함할 수 있다. STA은 이동성이 최소 이동성 이하인 경우에만, 비 PS-poll 모드로의 동작을 수행할 수 있다.
STA의 동작 모드가 비 파워 세이브 모드에서 파워 세이브 모드로 전환한 후 STA은 기본적으로 비 PS-poll 모드를 기반으로 동작할 수 있다.
도 10은 본 발명의 실시예에 따른 STA의 파워 세이브 동작을 나타낸 개념도이다.
도 10에서는 비 PS-poll 모드 동작을 위한 별도의 비트맵을 기반으로 한 STA의 비 PS-poll 모드 동작이 개시된다.
도 10을 참조하면, STA의 비 PS-poll 모드 동작을 위한 별도의 비트맵에 대한 정보를 포함하는 비 PS-poll 모드 TIM이 정의될 수 있다. 비 PS-poll 모드 TIM은 STA의 비 PS-poll 모드 동작을 기반으로 한 하향링크 데이터(또는 하향링크 프레임)의 수신을 지시할 수 있다. STA은 청취 인터벌을 기반으로 비콘 프레임(1000)을 수신하고, 비콘 프레임(1000)은 비 PS-poll 모드 TIM을 포함할 수 있다. 비 PS-poll 모드 TIM은 비트맵 필드(예를 들어, 부분 가상 비트맵(partial virtual bitmap))을 포함할 수 있고 비트맵 필드는 비 PS-poll 모드 TIM 비트맵에 대한 정보를 포함할 수 있다. 비 PS-poll 모드 TIM 비트맵이 STA에 펜딩된 데이터를 지시하는 경우, STA은 비 PS-poll 모드로 동작할 수 있다.
비콘 프레임(1000)의 레가시 TIM과 비 PS-poll 모드 TIM을 포함할 수 있다.
레가시 TIM은 STA에 대해 펜딩된 하향링크 데이터를 지시하기 위한 레가시 가상 TIM 비트맵을 포함할 수 있다. 비 PS-poll 모드 TIM은 STA에 대해 펜딩된 하향링크 데이터를 지시하기 위한 비 PS-poll 모드 TIM 비트맵을 포함할 수 있다. 레가시 TIM을 기반으로 STA에 대해 펜딩된 하향링크 데이터가 지시된 경우, STA은 PS-poll 모드로 동작하여 하향링크 프레임을 수신할 수 있다. 비 PS-poll TIM을 기반으로 STA에 대해 펜딩된 하향링크 데이터가 지시된 경우, STA은 비 PS-poll 모드로 동작하여 하향링크 프레임을 수신할 수 있다.
AP에 의해 전송되는 비콘 프레임(1000)은 레가시 TIM과 비 PS-poll 모드 TIM을 포함할 수 있다.
비콘 프레임(1000)의 레가시 TIM이 STA에 펜딩된 하향링크 데이터를 지시하는 경우, STA은 PS-poll 모드로 동작하여 하향링크 데이터를 AP로부터 수신할 수 있다. 구체적으로 레가시 TIM에 포함된 레가시 가상 TIM 비트맵 상에서 STA에 대한 비트 값이 STA에 대해 펜딩된 하향링크 데이터를 지시하는 경우(또는 STA이 레가시 TIM의 레가시 가상 TIM 비트맵 상의 STA의 위치에서 양성 지시(positive indication)를 탐지(detect)한 경우), STA은 PS-poll 모드를 기반으로 동작하여 하향링크 데이터를 AP로부터 수신할 수 있다.
도 10과 같이 비콘 프레임(1000)의 비 PS-poll 모드 TIM이 STA에 펜딩된 상향링크 데이터를 지시하는 경우, STA은 비 PS-poll 모드를 기반으로 동작하여 하향링크 데이터를 AP로부터 수신할 수 있다. 구체적으로 비 PS-poll 모드 TIM의 비 PS-poll 모드 TIM 비트맵 상에서 STA에 대한 비트 값이 STA에 대해 펜딩된 하향링크 데이터를 지시하는 경우(또는 STA이 비 PS-poll 모드 TIM의 비 PS-poll 모드 TIM 비트맵 상의 STA의 위치에서 양성 지시를 탐지한 경우), STA은 비 PS-poll 모드를 기반으로 동작하여 하향링크 데이터를 AP로부터 수신할 수 있다.
즉, STA은 비 PS-poll 구간 타이머를 동작시키고 비 PS-poll 구간 타이머가 만료된 경우, 도즈 상태로 전환될 수 있다.
AP는 하나의 STA에 대해 펜딩된 하향링크 데이터를 레가시 가상 TIM 비트맵 및 비 PS-poll 모드 TIM 비트맵 중 하나의 비트맵을 기반으로 지시할 수 있다. STA은 레가시 가상 TIM 비트맵 및 비 PS-poll 모드 TIM 비트맵 중 펜딩된 하향링크 데이터의 존재를 지시한 하나의 비트맵을 기반으로 PS-poll 모드 또는 비 PS-poll 모드로 동작할 수 있다.
도 11은 본 발명의 실시예에 따른 비 PS-poll 모드 TIM 요소를 나타낸 개념도이다.
도 11에서는 STA의 비 PS-poll 모드 기반의 동작을 위한 비 PS-poll 모드 TIM 요소(element)가 개시된다.
비 PS-poll 모드 TIM 요소는 비콘 프레임을 통해 전송될 수도 있다.
비 PS-poll 모드 TIM 요소는 요소 ID 필드(1100), 길이 필드(1110), DTIM 카운트(count) 필드(1120), DTIM 기간(period) 필드(1130), 비트맵 제어 필드(1140), 부분 가상 비트맵 필드(1150)를 포함할 수 있다.
요소 ID 필드(1100), 길이 필드(1110), DTIM 카운트(count) 필드(1120), DTIM 기간 필드(1130), 비트맵 제어 필드(1140), 부분 가상 비트맵 필드(1150)를 포함할 수 있다.
요소 ID 필드(1100)는 비 PS-poll 모드 TIM 요소를 지시하기 위한 식별자 정보를 포함할 수 있다.
길이 필드(1110)는 DTIM 카운트 필드, DTIM 기간 필드, 비트맵 제어 필드, 부분 가상 비트맵 필드의 길이에 대한 정보를 포함할 수 있다.
DTIM 카운트 필드(1120)는 다음 DTIM 전에 얼마나 많은 비콘 프레임이 나타나는지 여부를 지시할 수 있다. DTIM 카운트가 0인 경우, 현재 TIM이 DTIM임을 지시할 수 있다.
DTIM 기간 필드(1130)는 연속된 DTIM 간에 비콘 인터벌의 개수에 대한 정보를 포함할 수 있다. 만약, 모든 TIM이 DTIM인 경우, DTIM 기간 필드의 값은 1일 수 있다.
비트맵 제어 필드(1140)는 부분 가상 비트맵 필드의 해석을 위한 비트맵 오프셋 정보를 포함할 수 있다.
부분 가상 비트맵 필드(1150)는 전술한 비 PS-poll 모드 TIM 비트맵에 대한 정보를 포함할 수 있다. STA은 부분 가상 비트맵 필드(1150)에 포함된 비 PS-poll 모드 TIM 비트맵를 기반으로 비 PS-poll 모드 기반의 동작을 수행할지 여부에 대해 결정할 수 있다.
도 12는 본 발명의 실시예에 따른 프레임을 전달하는 PPDU 포맷을 나타낸 개념도이다.
도 12에서는 본 발명의 실시예에 따른 PPDU 포맷에 대해 개시한다. PPDU는 PPDU 헤더 및 MPDU(MAC protocol data unit)(또는 PSDU(physical layer service data unit))를 포함할 수 있다. 프레임은 MPDU에 대응될 수 있다. PPDU 포맷의 PPDU 헤더는 PPDU의 PHY 헤더 및 PHY 프리앰블을 포함하는 의미로 사용될 수 있다.
도 12에 개시되는 PPDU 포맷은 전술한 하향링크 프레임, ACK 프레임 등을 전달(carrying)하기 위해 사용될 수 있다.
도 12의 상단을 참조하면, 하향링크 PPDU의 PPDU 헤더는 L-STF(legacy-short training field), L-LTF(legacy-long training field), L-SIG(legacy-signal), HE-SIG A(high efficiency-signal A), HE-STF(high efficiency-short training field), HE-LTF(high efficiency-long training field), HE-SIG B(high efficiency-signal-B)를 포함할 수 있다. PHY 헤더에서 L-SIG까지는 레가시 부분(legacy part), L-SIG 이후의 HE(high efficiency) 부분(HE part)으로 구분될 수 있다.
L-STF(1200)는 짧은 트레이닝 OFDM 심볼(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF(1200)는 프레임 탐지(frame detection), AGC(automatic gain control), 다이버시티 탐지(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF(1210)는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF(1210)는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 예측을 위해 사용될 수 있다.
L-SIG(1220)는 제어 정보를 전송하기 위해 사용될 수 있다. L-SIG(1220)는 데이터 전송률(rate), 데이터 길이(length)에 대한 정보를 포함할 수 있다.
HE-SIG A(1230)는 하향링크 PPDU를 수신할 타겟 STA을 지시하기 위한 STA의 식별 정보를 포함할 수 있다. STA은 HE-SIG A(1230)에 포함되는 정보를 타겟 STA의 식별자 정보를 기반으로 PPDU의 수신할지 여부에 대해 결정할 수 있다. 하향링크 PPDU의 HE-SIG A(1230)를 기반으로 STA이 지시된 경우, STA은 하향링크 PPDU에 대한 추가적인 디코딩을 수행할 수 있다. 또한, HE-SIG A(1230)는 하향링크 데이터를 수신할 자원(주파수 자원(또는 서브 밴드)(OFDMA(orthogonal frequency division multiplexing) 기반 전송시) 또는 시공간 스트림 자원(MIMO(multilple input multiple output) 기반 전송시))에 대한 정보를 포함할 수도 있다.
HE-STF(1240)는 MIMO 환경 또는 OFDMA 환경에서 자동 이득 제어 추정(automatic gain control estimation)을 향상시키기 위하여 사용될 수 있다.
HE-LTF(1250)는 MIMO 환경 또는 OFDMA 환경에서 채널을 추정하기 위하여 사용될 수 있다.
HE-SIG B(1260)는 각 STA에 대한 PSDU(Physical layer service data unit)의 길이 MCS(modulation and coding scheme)에 대한 정보 및 테일 비트 등을 포함할 수 있다.
HE-STF(1240) 및 HE-STF(1240) 이후의 필드에 적용되는 IFFT(inverse fast fourier transform)의 크기와 HE-STF(1240) 이전의 필드에 적용되는 IFFT의 크기는 서로 다를 수 있다. 예를 들어, HE-STF(1240) 및 HE-STF(1240) 이후의 필드에 적용되는 IFFT의 크기는 HE-STF(1240) 이전의 필드에 적용되는 IFFT의 크기보다 4배 클 수 있다. STA이 하향링크 프레임을 수신한 경우, STA은 하향링크 프레임의 HE-SIG A(1230)를 디코딩하고 HE-SIG A(1330)에 포함된 타겟 STA의 식별자 정보를 기반으로 HE-SIG A(1230) 이후 필드의 디코딩 여부를 결정할 수 있다. 이러한 경우, HE-SIG A(1230)에 포함된 타겟 STA의 식별자 정보가 STA의 식별자를 지시하는 경우, STA은 HE-STF(1240) 및 HE-STF(1240) 이후 필드부터 변경된 FFT 사이즈를 기반으로 디코딩을 수행할 수 있다. 반대로 HE-SIG A(1230)에 포함된 타겟 STA의 식별자 정보가 STA의 식별자를 지시하지 않는 경우, STA은 디코딩을 중단하고 NAV(network allocation vector) 설정을 할 수 있다. HE-STF(1240)의 CP(cyclic prefix)는 다른 필드의 CP보다 큰 크기를 가질 수 있고, 이러한 CP 구간 동안 STA은 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다.
도 12의 상단에서 개시된 PPDU의 포맷을 구성하는 필드의 순서는 변할 수도 있다. 예를 들어, 도 12의 중단에서 개시된 바와 같이 HE 부분의 HE-SIG B(1215)가 HE-SIG A(1205)의 바로 이후에 위치할 수도 있다. STA은 HE-SIG A(1205) 및 HE-SIG B(1215)까지 디코딩하고 필요한 제어 정보를 수신하고 NAV 설정을 할 수 있다. 마찬가지로 HE-STF(1225) 및 HE-STF(1225) 이후의 필드에 적용되는 IFFT의 크기는 HE-STF(1225) 이전의 필드에 적용되는 IFFT의 크기와 다를 수 있다.
STA은 HE-SIG A(1205) 및 HE-SIG B(1215)를 수신할 수 있다. HE-SIG A(1205)의 타겟 STA의 식별자에 의해 하향링크 PPDU의 수신이 지시되는 경우, STA은 HE-STF(1225)부터는 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다. 반대로 STA은 HE-SIG A(1205)를 수신하고, HE-SIG A(1205)를 기반으로 하향링크 PPDU의 수신이 지시되지 않는 경우, NAV(network allocation vector) 설정을 할 수 있다.
도 12의 하단을 참조하면, DL(downlink) MU(multi-user) 전송을 위한 하향링크 PPDU 포맷이 개시된다. 하향링크 PPDU는 OFDMA를 기반으로 서로 다른 하향링크 전송 자원(주파수 자원 또는 공간적 스트림)을 통해 STA으로 전송될 수 있다. 즉, DL MU 전송을 위한 하향링크 PPDU 포맷을 기반으로 복수의 서브밴드를 통해 복수의 STA으로 하향링크 데이터가 전송될 수 있다. 전술한 실시예에서는 AP가 하나의 STA으로 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임을 전송하는 경우를 가정하였다. 하지만, 본 발명의 다른 실시예에 따르면, 어웨이크 상태의 복수의 STA으로 DL MU 전송을 위한 하향링크 PPDU 포맷으로 하향링크 데이터를 전송할 수도 있다.
하향링크 PPDU 상에서 HE-SIG B(1245)의 이전 필드는 서로 다른 하향링크 전송 자원 각각에서 듀플리케이트된 형태로 전송될 수 있다. HE-SIG B(1245)는 전체 전송 자원 상에서 인코딩된 형태로 전송될 수 있다. HE-SIG B(1245) 이후의 필드는 하향링크 PPDU를 수신하는 복수의 STA 각각을 위한 개별 정보를 포함할 수 있다.
하향링크 PPDU에 포함되는 필드가 하향링크 전송 자원 각각을 통해 각각 전송되는 경우, 필드 각각에 대한 CRC가 하향링크 PPDU에 포함될 수 있다. 반대로, 하향링크 PPDU에 포함되는 특정 필드가 전체 하향링크 전송 자원 상에서 인코딩되어 전송되는 경우, 필드 각각에 대한 CRC가 하향링크 PPDU에 포함되지 않을 수 있다. 따라서, CRC에 대한 오버 헤드가 감소될 수 있다. 즉, 본 발명의 실시예에 따른 DL MU 전송을 위한 하향링크 PPDU 포맷은 전체 전송 자원 상에서 인코딩된 형태의 HE-SIG B(1245)를 사용함으로써 하향링크 프레임의 CRC 오버헤드를 감소시킬 수 있다.
DL MU 전송을 위한 하향링크 PPDU 포맷도 마찬가지로 HE-STF(1255) 및 HE-STF(1255) 이후의 필드는 HE-STF(1255) 이전의 필드와 다른 IFFT 사이즈를 기반으로 인코딩될 수 있다. 따라서, STA은 HE-SIG A(1235) 및 HE-SIG B(1245)를 수신하고, HE-SIG A(1235)를 기반으로 하향링크 PPDU의 수신을 지시받은 경우, HE-STF(1255)부터는 FFT 사이즈를 변화시켜 하향링크 PPDU에 대한 디코딩을 수행할 수 있다.
도 13은 본 발명의 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 13을 참조하면, 무선 장치(1300)는 상술한 실시예를 구현할 수 있는 STA로서, AP(1300) 또는 비 AP STA(non-AP station)(또는 STA)(1350)일 수 있다.
AP(1300)는 프로세서(1310), 메모리(1320) 및 RF부(radio frequency unit, 1330)를 포함한다.
RF부(1330)는 프로세서(1310)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(1310)는 본 발명에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1310)는 전술한 본 발명의 실시예에 따른 무선 장치의 동작을 수행하도록 구현될 수 있다. 프로세서는 도 1 내지 12의 실시예에서 개시한 무선 장치의 동작을 수행할 수 있다.
예를 들어, 프로세서(1310)는 STA이 논 PS-poll 모드로 동작하는 경우, PS-poll 프레임의 수신 없이 STA에 대해 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임을 STA으로 전송할 수 있다. 또한, STA이 PS-poll 모드로 동작하는 경우, STA에 의해 PS-poll 프레임이 전송되는 경우, STA에 대해 펜딩된 하향링크 데이터를 포함하는 하향링크 프레임을 STA으로 전송할 수 있다.
프로세서는 타이머(비 PS-poll 모드 타이머) 기반의 상기 프레임의 수신을 위한 비 PS-poll 모드 파라메터 집합 요소를 STA으로 전송할 수 있다. 프로세서는 비 PS-poll 모드 파라메터 집합 요소는 비 PS-poll 모드 타이머 필드, SNR(signal to noise ratio) 임계값 필드, 이동성 임계값 필드를 포함할 수 있다.
비 PS-poll 모드 타이머 필드는 타이머의 초기 설정 값에 대한 정보를 포함하고, SNR 임계값 필드는 STA의 타이머 기반의 프레임의 수신 동작을 위한 SNR의 임계값에 대한 정보를 포함하고, 이동성 임계값 필드는 STA의 타이머 기반의 프레임의 수신 동작을 위한 이동성의 임계값에 대한 정보를 포함할 수 있다.
STA(1350)는 프로세서(1360), 메모리(1370) 및 RF부(radio frequency unit, 1380)를 포함한다.
RF부(1380)는 프로세서(1360)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(1360)는 본 발명에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1320)는 전술한 본 발명의 실시예에 따른 무선 장치의 동작을 수행하도록 구현될 수 있다. 프로세서는 도 1 내지 12의 실시예에서 무선 장치의 동작을 수행할 수 있다.
예를 들어, 프로세서(1360)는 파워 세이브 모드로 전환 후 AP(access point)에 의해 전송되는 제1 비콘 프레임의 수신을 위해 청취 인터벌을 기반으로 STA의 동작 모드를 슬립 모드에서 액티브 모드로 전환하고 제1 비콘 프레임이 STA에 대해 버퍼된 데이터를 지시하는 경우, 액티브 모드로의 전환 시점에 시작된 타이머(비 PS-poll 모드 타이머)의 만료 전까지 상기 AP에 의해 전송되는 상기 STA에 대한 프레임을 모니터링하고, 타이머의 만료 후에 상기 STA의 동작 모드를 상기 슬립 모드로 전환하도록 구현될 수 있다. 타이머는 상기 프레임이 전송되는 경우 리셋될 수 있다.
또한, 프로세서(1360)는 청취 인터벌을 기반으로 AP에 의해 전송되는 제2 비콘 프레임의 수신을 위해 동작 모드를 슬립 모드에서 액티브 모드로 전환하고, 제2 비콘 프레임이 STA에 대해 버퍼된 데이터를 지시하는 경우, AP로 PS(power saving)-poll 프레임을 전송하고, AP로부터 전송되는 PS-poll 프레임에 기반하여 폴링된 프레임을 모니터링하고, 폴링된 프레임의 전송의 종료가 지시되는 경우, 동작 모드를 슬립 모드로 전환할 수 있다. 제2 비콘 프레임은 제1 비콘 프레임 이후에 전송될 수 있다.
또한, 프로세서(1360)는 청취 인터벌을 기반으로 AP에 의해 전송되는 제3 비콘 프레임의 수신을 위해 동작 모드를 슬립 모드에서 액티브 모드로 전환하고, 제3 비콘 프레임이 STA에 대해 버퍼된 데이터를 지시하는 경우, 액티브 모드로의 전환 시점에 시작된 타이머의 만료 전까지 AP로부터 전송되는 STA에 대한 프레임을 모니터링하도록 구현될 수 있다. 제3 비콘 프레임은 상기 제2 비콘 프레임 이후에 전송될 수 있다.
프로세서(1310, 1360)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(1320, 1370)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1330, 1380)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다.
실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1320, 1370)에 저장되고, 프로세서(1310, 1360)에 의해 실행될 수 있다. 메모리(1320, 1370)는 프로세서(1310, 1360) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1310, 1360)와 연결될 수 있다.

Claims (10)

  1. 무선랜에서 파워 세이브 모드 기반의 동작 방법은,
    STA(station)이 상기 파워 세이브 모드로 전환 후 AP(access point)에 의해 전송되는 제1 비콘 프레임의 수신을 위해 청취 인터벌을 기반으로 슬립 모드에서 액티브 모드로 전환되는 단계;
    상기 제1 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 STA이 상기 액티브 모드로의 전환 시점에 시작된 타이머의 만료 전까지 상기 AP에 의해 전송되는 상기 STA에 대한 프레임을 모니터링하는 단계; 및
    상기 STA이 상기 타이머의 만료 후에 상기 슬립 모드로 전환되는 단계를 포함하되,
    상기 타이머는 상기 프레임이 전송되는 경우 리셋되는 방법.
  2. 제1항에 있어서,
    상기 STA이 상기 청취 인터벌을 기반으로 상기 AP에 의해 전송되는 제2 비콘 프레임의 수신을 위해 상기 슬립 모드에서 상기 액티브 모드로 전환되되, 상기 제2 비콘 프레임은 상기 제1 비콘 프레임 이후에 전송되는, 단계;
    상기 제2 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 STA이 상기 AP로 PS(power saving)-poll 프레임을 전송하는 단계;
    상기 STA이 상기 AP로부터 전송되는 상기 PS-poll 프레임에 기반하여 폴링된 프레임을 모니터링하는 단계;
    상기 STA이 상기 폴링된 프레임의 전송의 종료가 지시되는 경우, 상기 슬립 모드로 전환되는 단계;
    상기 STA이 상기 청취 인터벌을 기반으로 상기 AP에 의해 전송되는 제3 비콘 프레임의 수신을 위해 상기 슬립 모드에서 상기 액티브 모드로 전환되되, 상기 제3 비콘 프레임은 상기 제2 비콘 프레임 이후에 전송되는 단계; 및
    상기 제3 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 STA이 상기 액티브 모드로의 전환 시점에 시작된 상기 타이머의 만료 전까지 상기 AP로부터 전송되는 상기 STA에 대한 프레임을 모니터링하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 STA은 상기 AP로부터 상기 타이머 기반의 상기 프레임의 수신을 위한 비 PS-poll 모드 파라메터 집합 요소를 수신하는 단계를 더 포함하고,
    상기 비 PS-poll 모드 파라메터 집합 요소는 비 PS-poll 모드 타이머 필드를 포함하고,
    상기 비 PS-poll 모드 타이머 필드는 상기 타이머의 초기 설정 값에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 초기 설정 값은 상기 청취 인터벌의 배수로 결정되는 것을 특징으로 하는 방법.
  5. 제3항에 있어서,
    상기 비 PS-poll 모드 파라메터 집합 요소는 SNR(signal to noise ratio) 임계값 필드, 이동성 임계값 필드를 더 포함하고,
    상기 SNR 임계값 필드는 상기 STA의 상기 타이머 기반의 상기 프레임의 수신 동작을 위한 SNR의 임계값에 대한 정보를 포함하고,
    상기 이동성 임계값 필드는 상기 STA의 상기 타이머 기반의 상기 프레임의 수신 동작을 위한 이동성의 임계값에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  6. 무선랜에서 파워 세이브 모드를 기반으로 동작하는 STA(station)에 있어서, 상기 STA는,
    무선 신호를 송신 또는 수신하기 위해 구현된 RF(radio frequency)부; 및
    상기 RF부와 동작 가능하도록(operatively) 연결되는 프로세서를 포함하되,
    상기 프로세서는 상기 파워 세이브 모드로 전환 후 AP(access point)에 의해 전송되는 제1 비콘 프레임의 수신을 위해 청취 인터벌을 기반으로 상기 STA의 동작 모드를 슬립 모드에서 액티브 모드로 전환하고
    상기 제1 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 액티브 모드로의 전환 시점에 시작된 타이머의 만료 전까지 상기 AP에 의해 전송되는 상기 STA에 대한 프레임을 모니터링하고,
    상기 타이머의 만료 후에 상기 STA의 동작 모드를 상기 슬립 모드로 전환하도록 구현되되,
    상기 타이머는 상기 프레임이 전송되는 경우 리셋되는 STA.
  7. 제6항에 있어서,
    상기 프로세서는 상기 청취 인터벌을 기반으로 상기 AP에 의해 전송되는 제2 비콘 프레임의 수신을 위해 상기 동작 모드를 상기 슬립 모드에서 상기 액티브 모드로 전환하고,
    상기 제2 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 AP로 PS(power saving)-poll 프레임을 전송하고,
    상기 AP로부터 전송되는 상기 PS-poll 프레임에 기반하여 폴링된 프레임을 모니터링하고,
    상기 폴링된 프레임의 전송의 종료가 지시되는 경우, 상기 동작 모드를 상기 슬립 모드로 전환하고
    상기 청취 인터벌을 기반으로 상기 AP에 의해 전송되는 제3 비콘 프레임의 수신을 위해 상기 동작 모드를 상기 슬립 모드에서 상기 액티브 모드로 전환하고,
    상기 제3 비콘 프레임이 상기 STA에 대해 버퍼된 데이터를 지시하는 경우, 상기 액티브 모드로의 전환 시점에 시작된 상기 타이머의 만료 전까지 상기 AP로부터 전송되는 상기 STA에 대한 프레임을 모니터링하도록 구현되되,
    상기 제2 비콘 프레임은 상기 제1 비콘 프레임 이후에 전송되고,
    상기 제3 비콘 프레임은 상기 제2 비콘 프레임 이후에 전송되는 것을 특징으로 하는 STA.
  8. 제6항에 있어서,
    상기 프로세서는 상기 AP로부터 상기 타이머 기반의 상기 프레임의 수신을 위한 비 PS-poll 모드 파라메터 집합 요소를 수신하고,
    상기 비 PS-poll 모드 파라메터 집합 요소는 비 PS-poll 모드 타이머 필드를 포함하고,
    상기 비 PS-poll 모드 타이머 필드는 상기 타이머의 초기 설정 값에 대한 정보를 포함하는 것을 특징으로 하는 STA.
  9. 제8항에 있어서,
    상기 초기 설정 값은 상기 청취 인터벌의 배수로 결정되는 것을 특징으로 하는 STA.
  10. 제8항에 있어서,
    상기 비 PS-poll 모드 파라메터 집합 요소는 SNR(signal to noise ratio) 임계값 필드, 이동성 임계값 필드를 더 포함하고,
    상기 SNR 임계값 필드는 상기 STA의 상기 타이머 기반의 상기 프레임의 수신 동작을 위한 SNR의 임계값에 대한 정보를 포함하고,
    상기 이동성 임계값 필드는 상기 STA의 상기 타이머 기반의 상기 프레임의 수신 동작을 위한 이동성의 임계값에 대한 정보를 포함하는 것을 특징으로 하는 STA.
PCT/KR2015/000300 2014-01-10 2015-01-12 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치 WO2015105392A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/110,688 US10091726B2 (en) 2014-01-10 2015-01-12 Method and apparatus for operating based on power save mode in wireless LAN
KR1020167017910A KR101832642B1 (ko) 2014-01-10 2015-01-12 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461925649P 2014-01-10 2014-01-10
US61/925,649 2014-01-10
US201562100068P 2015-01-06 2015-01-06
US62/100,068 2015-01-06

Publications (1)

Publication Number Publication Date
WO2015105392A1 true WO2015105392A1 (ko) 2015-07-16

Family

ID=53524155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000300 WO2015105392A1 (ko) 2014-01-10 2015-01-12 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치

Country Status (3)

Country Link
US (1) US10091726B2 (ko)
KR (1) KR101832642B1 (ko)
WO (1) WO2015105392A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189142A1 (en) * 2016-04-26 2017-11-02 Intel IP Corporation Awake window protection

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10085211B2 (en) * 2014-09-02 2018-09-25 Apple Inc. Communication of processor state information
JP2016131312A (ja) * 2015-01-14 2016-07-21 国立大学法人京都大学 通信制御方法、及び、通信装置
US9961718B2 (en) * 2015-03-27 2018-05-01 Qualcomm Incorporated Discontinuous reception in LTE/LTE-A networks including contention-based frequency spectrum
US10624119B2 (en) * 2015-04-08 2020-04-14 Qualcomm Incorporated Transmission scheduling for contention based carrier
EP3294010B1 (en) * 2015-05-07 2020-02-12 Sony Corporation Information processing device, communication system, information processing method, and program
US9838107B2 (en) * 2015-10-16 2017-12-05 Lg Electronics Inc. Multiple beamforming training
US10616838B2 (en) * 2016-10-12 2020-04-07 Qualcomm Incorporated Signaling of transmit power related information
US11178566B2 (en) * 2017-11-17 2021-11-16 Texas Instruments Incorporated Power saving medium access in congested network environments
KR101986099B1 (ko) * 2018-01-05 2019-06-05 (주)에프씨아이 웨이크업 빈도를 줄이기 위한 필터링 방법 및 장치
WO2021162945A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Power saving mechanisms for software enabled access point (softap)
CN116456440B (zh) * 2023-06-14 2024-04-05 此芯科技(上海)有限公司 Wi-Fi热点管理方法、装置、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206762A (ja) * 2008-02-27 2009-09-10 Panasonic Corp 通信端末装置及び受信方法
US20100226299A1 (en) * 2009-03-06 2010-09-09 Nec Infrontia Corporation Wireless communication method for wireless lan system, wireless communication device and wireless terminal
KR20130085428A (ko) * 2010-12-07 2013-07-29 엘지전자 주식회사 무선랜 시스템에서 파워 세이브 모드 운영 방법 및 이를 지원하는 장치
KR20130139761A (ko) * 2012-06-13 2013-12-23 주식회사 케이티 무선랜 시스템에서 채널 액세스 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101807732B1 (ko) * 2010-03-09 2018-01-18 삼성전자주식회사 파워 세이빙을 위한 멀티 유저 무선 네트워크 및 멀티 유저 무선 네트워크에서 단말 및 액세스 포인트의 통신 방법
WO2013032139A2 (en) * 2011-08-27 2013-03-07 Lg Electronics Inc. Method and apparatus of transmitting paging frame and wakeup frame
US8902803B2 (en) * 2012-03-05 2014-12-02 Qualcomm Incorporated Systems and methods for reducing collisions after traffic indication map paging
US9363755B2 (en) * 2012-11-30 2016-06-07 Qualcomm Incorporated Power saving modes in wireless devices
US20140281623A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Wireless device including system-on-a-chip having low power consumption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206762A (ja) * 2008-02-27 2009-09-10 Panasonic Corp 通信端末装置及び受信方法
US20100226299A1 (en) * 2009-03-06 2010-09-09 Nec Infrontia Corporation Wireless communication method for wireless lan system, wireless communication device and wireless terminal
KR20130085428A (ko) * 2010-12-07 2013-07-29 엘지전자 주식회사 무선랜 시스템에서 파워 세이브 모드 운영 방법 및 이를 지원하는 장치
KR20130139761A (ko) * 2012-06-13 2013-12-23 주식회사 케이티 무선랜 시스템에서 채널 액세스 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189142A1 (en) * 2016-04-26 2017-11-02 Intel IP Corporation Awake window protection
US9872251B2 (en) 2016-04-26 2018-01-16 Intel IP Corporation Awake window protection
CN108886809A (zh) * 2016-04-26 2018-11-23 英特尔Ip公司 唤醒窗口保护
US10187854B2 (en) 2016-04-26 2019-01-22 Intel IP Corporation Awake window protection

Also Published As

Publication number Publication date
US10091726B2 (en) 2018-10-02
KR101832642B1 (ko) 2018-02-26
US20160337968A1 (en) 2016-11-17
KR20160096642A (ko) 2016-08-16

Similar Documents

Publication Publication Date Title
KR101832642B1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR101838419B1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR101900064B1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
JP6373415B2 (ja) 無線lanにおけるパワーセーブモードベースの動作方法及び装置
KR101851490B1 (ko) 무선랜에서 다른 bss에서 전송된 프레임을 기반으로 파워 세이브 모드로 동작하는 방법 및 장치
WO2015170942A1 (ko) 무선랜에서 파워 세이브 모드 동작을 위한 방법 및 장치
JP6313460B2 (ja) 無線lanにおけるパワーセーブモードに基づく動作方法及び装置
US9974022B2 (en) Method and apparatus for power saving mode-based operation in wireless LAN
US9961635B2 (en) Method and apparatus for operating based on power save mode in wireless LAN
US10104620B2 (en) Method and device for operation based on power save mode in WLAN
WO2015194787A1 (ko) 무선랜에서 파워 세이브 모드 기반의 주기적 데이터의 송신 및 수신 방법 및 장치
WO2015053581A1 (ko) 무선랜에서 하향링크 프레임을 수신하는 방법 및 장치
JP2017506014A (ja) 無線lanにおけるパワーセーブモードに基づく動作方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167017910

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15110688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735267

Country of ref document: EP

Kind code of ref document: A1