WO2015099451A1 - Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same - Google Patents

Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same Download PDF

Info

Publication number
WO2015099451A1
WO2015099451A1 PCT/KR2014/012815 KR2014012815W WO2015099451A1 WO 2015099451 A1 WO2015099451 A1 WO 2015099451A1 KR 2014012815 W KR2014012815 W KR 2014012815W WO 2015099451 A1 WO2015099451 A1 WO 2015099451A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin sheet
epoxy
printed circuit
circuit board
Prior art date
Application number
PCT/KR2014/012815
Other languages
French (fr)
Korean (ko)
Inventor
유의덕
김인욱
박광석
정수임
김형규
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2015099451A1 publication Critical patent/WO2015099451A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1152Replicating the surface structure of a sacrificial layer, e.g. for roughening

Definitions

  • the present invention provides an insulation resin sheet for forming an insulation layer of a build-up printed circuit board and a method for manufacturing the same, which may achieve high density microcircuit pattern, good adhesion and moisture absorption and heat resistance at the same time, including the insulation resin sheet as an insulation layer. It relates to a flexible printed circuit board and a method of manufacturing the same.
  • a film manufactured through a sputtering method and a chemical etching method may be used as a material for implementing a conventional microcircuit.
  • the sputtering method deposits a metal thin film on an untreated (or dry plasma treated) polyimide film through a sputter process, and a pattern through a semi-additive process on a metal thin film formed through the process. It is a method of implementing microcircuits by plating. In this case, only the intermolecular force is acting between the resin material constituting the substrate and the metal thin film layer, so that initial adhesion can be secured, but the problem of deterioration of adhesion, which is the core of the technology, is caused by thermal shock and chemical resistance.
  • Another method, chemical etching is to form a surface roughness through the selective etching of the Smearing Material in the insulating layer resin material to form a metal thin film through electroless copper plating.
  • the metal thin film formed through the above process is plated through a semi-additive process to implement a microcircuit.
  • the surface roughness of the film can be freely controlled through selective etching.
  • polyimide there is a problem in that the chemical resistance of the resin material, which is an insulating layer, is weakened when the roughness is formed.
  • the interlayer adhesion between the substrates was poor and not satisfactory in terms of hygroscopic heat resistance characteristics.
  • the present invention has been made to solve the above problems of the conventional microcircuit method, and after forming an epoxy insulating layer and a thermoplastic polyimide layer on the polyimide film sequentially, and then a specific roughness on the surface of the thermoplastic polyimide By forming, to implement a fine circuit pattern implementation technology and high adhesion at the same time.
  • an object of the present invention is to provide an insulating resin sheet having a novel laminated structure capable of simultaneously exhibiting a fine circuit pattern and exhibiting good adhesion and moisture absorption heat resistance characteristics while solving problems of the conventional microcircuit method.
  • the present invention includes a flexible printed circuit board and a method for manufacturing the same by including an insulating layer formed by using the insulating resin sheet, which can reduce defects in the process of forming a circuit and simultaneously improve interlayer adhesion strength, heat resistance and long-term reliability. Another purpose is to provide.
  • the present invention is a polyimide film; An epoxy insulating layer formed on one or both surfaces of the polyimide film; And an insulating resin sheet for forming a flexible printed circuit board (FPCB) formed on the epoxy insulating layer and including a thermoplastic polyimide (TPI) film layer having a predetermined surface roughness.
  • FPCB flexible printed circuit board
  • TPI thermoplastic polyimide
  • the epoxy insulating layer comprises: (a) a high equivalent first epoxy resin having an epoxy equivalent (EEW) in the range of 400-1000 g / eq; (b) low equivalent second epoxy resins having an epoxy equivalent weight (EEW) in the range of 100-300 g / eq; (c) dimer acid-modified epoxy resins; (d) benzoxazine resins; And (e) two or more curing agents, wherein at least one of the first epoxy resin and the second epoxy resin is formed by curing a thermosetting resin composition having a polydispersity index (PDI) of 2 or less.
  • PDI polydispersity index
  • the surface roughness (Ra) of the thermoplastic polyimide layer is preferably in the range of 0.2 to 3.0 ⁇ m
  • the thermoplastic polyimide layer may be polyimide, polyamide, polyamideimide, and polyamic acid. It may be formed by applying a liquid composition and then curing the resin composition comprising at least one resin selected from the group consisting of resins.
  • the thickness of the polyimide film is in the range of 5 ⁇ m to 100 ⁇ m
  • the thickness of the epoxy insulating layer is in the range of 1 ⁇ m to 50 ⁇ m
  • the thickness of the thermoplastic polyimide layer is in the range of 1 ⁇ m to 50 ⁇ m.
  • a support layer may be further included on the thermoplastic polyimide layer, and may further include a release layer between the thermoplastic polyimide layer and the support layer.
  • the present invention is the above-mentioned insulating resin sheet; And a copper foil layer formed on the upper and lower surfaces of the thermoplastic polyimide layer of the insulating resin sheet, respectively.
  • the present invention is the above-mentioned insulating resin sheet; Copper foil plating layers respectively formed on the upper and lower surfaces of the thermoplastic polyimide layer of the said insulated resin sheet, and have a predetermined pattern; And a plurality of through holes provided to penetrate the insulating resin sheet and plated to electrically connect patterns of copper foil plating layers respectively formed on upper and lower surfaces thereof.
  • this invention provides the manufacturing method of the above-mentioned insulating resin sheet.
  • the manufacturing method comprises the steps of (i) coating an epoxy insulating layer forming thermosetting resin composition on one or both surfaces of the polyimide film and drying to form an epoxy insulating layer; (ii) coating a composition for forming a thermoplastic polyimide layer on the epoxy insulating layer and then drying to form a thermoplastic polyimide layer; And (iii) laminating the polyimide film and the copper foil having a predetermined surface roughness, wherein the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil are disposed to be in contact with each other, and then heated and pressurized onto the surface of the thermoplastic polyimide layer. And transferring the surface roughness surface of the copper foil.
  • the present invention provides a method of manufacturing a flexible printed circuit board using the above-described insulating resin sheet.
  • the manufacturing method includes the steps of (I) forming one or more holes in the above-mentioned insulating resin sheet; (II) desmearing the surface of the insulating resin sheet and the inside of the hole to form roughness; (III) forming an electroless plating layer on the roughness surface and the inner surface of the hole of the insulating resin sheet; (IV) forming a pattern using a photoresist on the formed electroless plating layer; (V) forming a circuit layer by electroplating on the pattern; And (VI) exfoliating the photoresist and removing the exposed electroless plating layer.
  • the present invention provides a polyimide film capable of imparting flexibility of a substrate, an epoxy insulating layer having excellent adhesion to other substrates and plating adhesion; And an insulating resin sheet in which a thermoplastic polyimide layer having a predetermined roughness surface is formed on the surface is sequentially stacked, and thus, a finer circuit can be realized, and high adhesion and excellent moisture absorption and heat resistance characteristics can be obtained.
  • the thickness of the flexible printed circuit board can be significantly reduced, and the manufacturing flexibility can be secured by minimizing the structural bending characteristics as a final product.
  • 1 to 3 are cross-sectional views showing the configuration of an insulating resin sheet according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of an insulating resin sheet according to an embodiment of the present invention.
  • FIG. 5 is a scanning electron microscope (SEM) photograph of a microcircuit pattern of the insulating resin sheet prepared in Example 1 by applying a semi-additive method.
  • thermoplastic polyimide layer 40 release film
  • a build-up material capable of forming an insulating layer when manufacturing a printed circuit board
  • it is characterized by providing a novel insulating resin sheet exhibiting 'excellent adhesion to the substrate and the plating layer' and 'hygroscopic heat resistance characteristics'.
  • the said insulating resin sheet is a (A) polyimide film; (B) an epoxy insulating layer formed on one side or both sides of the polyimide film; And (C) a thermoplastic polyimide layer formed on the epoxy insulating layer and having a predetermined surface roughness formed on the surface thereof, respectively, sequentially stacked (see FIGS. 1 and 2).
  • the epoxy insulating layer is a resin layer mixed with an optimized dimer acid-modified epoxy resin and a benzoxazine-based resin, and improves the interlayer adhesion strength of the polyimide film and the thermoplastic polyimide layer based on the excellent binding force expressed from the benzoxazine. It is possible to prevent the drilling failure due to the decrease in adhesion during the PCB manufacturing process. In addition, it is possible to exhibit low hygroscopic properties and excellent hygroscopic heat-resistance characteristics expressed from ring-opening polymerization of intramolecular benzoxazine rings.
  • thermoplastic polyimide layer is formed by the electroless copper plating layer formed by the plating process after the plating process due to the anchoring effect of fine roughness formed through the transfer of the mat surface of the copper foil and the intermolecular occurring at the interface. Adhesion strength can be improved more.
  • the thermoplastic polyimide layer is positioned below the pattern layer, the impurities having an impurity such as an additive is low compared to the substrate having the epoxy resin as an insulating layer, and thus the ion migration characteristics by the accelerated test are relatively low.
  • an insulating resin sheet having high adhesion and excellent moisture absorption and heat resistance characteristics can be provided by introducing an epoxy resin insulating layer having high adhesion with polyimide.
  • the insulating resin sheet of the present invention can increase the degree of freedom of product design by applying a flexible polyimide (PI) film.
  • PI polyimide
  • the insulating resin sheet of the present invention comprises a polyimide film 10; An epoxy insulating layer 20 formed on one or both surfaces of the polyimide film; And a thermoplastic polyimide layer 30 formed on the epoxy insulating layer and having a predetermined surface roughness formed thereon, each having a structure in which they are sequentially stacked.
  • the polyimide film 10 not only serves as a base support film that physically supports the insulated resin sheet, but also has a heat resistance and flexibility, thereby increasing the degree of freedom in product design. have.
  • the polyimide film may contain an inorganic filler, if necessary, to adjust the substrate thermal expansion coefficient (CTE).
  • Polyimide (PI) resin is a polymer material having an imide ring, and exhibits excellent heat resistance, ductility, chemical resistance, abrasion resistance and weather resistance based on the chemical stability of the imide ring. Thermal expansion coefficient, low breathability and excellent electrical properties.
  • the polyimide film may have a film to sheet shape having self-supportability.
  • a commercially available polyimide film may be used, or the condensation reaction of a diamine compound and a tetra carboxylic acid compound according to a method known in the art may be followed by coating and drying / curing such a reactant on a substrate. It may be prepared by.
  • the thickness of the polyimide film can be appropriately adjusted in consideration of the handleability of the film, physical rigidity, thermal expansion coefficient, thinning of the substrate, high density wiring, and the like. For example, it may be in the range of 5 to 100 ⁇ m, preferably in the range of 12.5 to 50 ⁇ m, and more preferably in the range of 12.5 to 25 ⁇ m.
  • the surface of the polyimide film may be a surface treatment such as matt treatment, corona treatment.
  • the polyimide film layer is known in the art
  • Conventional inorganic fillers may be included.
  • Non-limiting examples of inorganic fillers that can be used include silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, glass fibers, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, boron nitride, silicon nitride, talc, mica and the like.
  • the amount of the inorganic filler to be used is not particularly limited and may be appropriately adjusted in consideration of the bending property and mechanical properties described above.
  • the polyimide (PI) film which concerns on this invention may contain the laser energy absorptive component in order to further improve the workability of the hole by a laser.
  • the laser energy absorbing component known ones such as carbon powder, metal compound powder, metal powder or black dye can be used. Moreover, these can use any 1 type or 2 or more types together.
  • Examples of the carbon powder include powders of carbon black such as furnace black, channel black, acetylene black, thermal black, anthracene black, graphite powder, or a mixture thereof.
  • Examples of the metal compounds include titania such as titanium oxide, magnesia such as magnesium oxide, iron oxide such as iron oxide, nickel oxide such as nickel oxide, zinc oxide such as manganese dioxide and zinc oxide, silicon dioxide, aluminum oxide, and rare earth oxide, Cobalt oxides such as cobalt oxide, tin oxides such as tin oxide, tungsten oxides such as tungsten oxide, silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, barium sulfate, rare earth sulfides, or mixtures thereof Powder and the like.
  • the metal powder examples include silver, aluminum, bismuth, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, antimony, silicon, tin, titanium, vanadium, tungsten, zinc, or powders of alloys or mixtures thereof.
  • Carbon powder is preferable from a viewpoint of the conversion efficiency with respect to heat of laser energy, versatility, etc. as a laser energy absorbent component.
  • the upper limit of the average particle diameter of the laser energy absorbent component is preferably in the range of 0.01 ⁇ m to 20 ⁇ m from the viewpoint of efficiently absorbing laser energy.
  • a polyimide (PI) film is mainly described as the base support film, but any other resin is not particularly limited as long as it is a resin film having heat resistance, flexibility, smoothness, and low water absorption.
  • any other resin is not particularly limited as long as it is a resin film having heat resistance, flexibility, smoothness, and low water absorption.
  • PET polyethylene terephthalate
  • polyamideimide film polyamide film
  • polytetrafluoroethylene film polycarbonate film
  • polycarbonate film or a form in which two or more thereof are mixed
  • conventional plastic films known in the art also falls within the scope of the present invention.
  • the epoxy insulating layer 20 is formed on one side or both sides of the polyimide film 10, respectively, and the adhesion between the polyimide film, the thermoplastic polyimide layer, and the copper foil layer is better. It contains the hardened layer formed by hardening
  • thermosetting composition for forming the epoxy insulating layer together with a high equivalent first epoxy resin, a low equivalent second epoxy resin and a curing agent having a narrow molecular weight distribution (Narrow dispersity, ND) as a component thereof has a low molecular weight index (PDI) And an optimized dimer acid-modified epoxy resin and a benzoxazine-based resin.
  • Polydispersity Index is a criterion indicating the extent of the molecular weight distribution of the polymer, and is defined as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
  • PDI polydispersity index
  • the resin having a narrow molecular weight distribution is significantly reduced in the content of relatively high high molecular weight material (eg High Mw species) and low molecular weight material (eg Oligomer), The distribution is generally uniform. Since the ND resin has a relatively high content of a high molecular weight material, as the viscosity is lowered, wetting property of the coating surface is excellent. It has good coating properties and contributes to improved adhesion.
  • relatively high molecular weight material eg High Mw species
  • low molecular weight material eg Oligomer
  • the degree of viscosity decrease of the resin is low, and the filling property is excellent.
  • low viscosity and gel time increase due to narrow dispersity contribute to stable press formability with primer adhesive copper foil (low adhesive strength) PPG (or product). This means improvement in adhesion.
  • the Tg, Td properties are improved by reducing the content of oligomers, which are low molecular weight materials, which contributes to improved heat resistance and reliability. Therefore, in the present invention, by applying the ND resin, it is possible to improve not only the adhesive strength but also the heat resistance and the glass transition temperature (Tg).
  • the adhesive strength may be increased and flame retardancy may be exhibited. That is, in the benzoxazine resin, the benzoxazine ring in the molecule is ring-opened to form a non-halogen primer resin layer together with the epoxy resin.
  • the non-halogen resin layer not only has excellent flame retardancy, but also the low dielectric properties of the benzoxazine resin. Due to its flame retardancy, low hygroscopicity and high glass transition temperature (Tg), it can exhibit excellent mechanical properties.
  • thermosetting resin composition for forming an epoxy insulating layer include: (a) a high equivalent first epoxy resin having an epoxy equivalent (EEW) in the range of 400-1,000 g / eq; (b) low equivalent second epoxy resins having an epoxy equivalent (EEW) in the range of 100-300 g / eq; (c) dimer acid-modified epoxy resins; (d) benzoxazine resins; And (e) two or more curing agents, and at least one of the resins (a) and (b) may include an ND epoxy resin having a polydispersity index (PDI) of 2 or less.
  • PDI polydispersity index
  • it may further include a curing accelerator.
  • this is not particularly limited.
  • the first component of the thermosetting resin composition for forming an epoxy insulating layer according to the present invention is an epoxy resin.
  • the epoxy resin of the present invention is not particularly limited as long as it contains two or more epoxy groups in the molecule.
  • Non-limiting examples of the epoxy resins that can be used include bisphenol A, bisphenol F, cresol novolac, dicyclopentazene, trisphenylmethane, naphthalene, biphenyl type and hydrogenated epoxy resins thereof, alone or in combination. More than one species can be used by mixing. In particular, when using a hydrogenated epoxy resin, it is preferable to use bisphenol A or a biphenyl type epoxy resin.
  • two or more kinds of epoxy resins having different equivalents are mixed as epoxy resins, and at least one or more of epoxy resins having different equivalents has a polydispersity index (PDI) of ND having a narrow molecular weight distribution of 2.0 or less. (narrow dispersity) It is characterized by using a resin.
  • PDI polydispersity index
  • an epoxy equivalent weight (EEW) epoxy resin has a good melt property at low melt viscosity and adhesion, and a high equivalent epoxy resin (EEW) has plasticity in itself. It is possible to further improve molding characteristics such as bending property (bending workability) and punching property of the copper foil or laminate for printed circuit board. Therefore, when an epoxy resin having a degree of polymerization (n) or an equivalent difference is mixed as in the present invention, in addition to the effect due to the use of an ND resin having a narrow molecular weight distribution, high adhesiveness, excellent moisture resistance reliability, moldability, and the like can be exhibited. have.
  • first epoxy resin having an epoxy equivalent of about 400 to 1000 g / eq and a low equivalent second epoxy resin having an epoxy equivalent of about 100 to 300 g / eq as the epoxy resin.
  • first epoxy resin and the second epoxy resin may be used alone, or two or more kinds of resins having the aforementioned equivalent ranges may be used.
  • the weight average molecular weight (Mw) of the first epoxy resin is in the range of 1,000 to 3,000, and the weight average molecular weight (Mw) of the second epoxy resin is preferably in the range of 500 to 2,000.
  • the use ratio of the first epoxy resin and the second epoxy resin may be 50 to 90: 10 to 50 weight ratio, preferably 50 to 70: 30 to 50 range. have.
  • the first epoxy resin, the second epoxy resin, or both thereof may have a polydispersity index (PDI) of 2 or less, preferably 1 to 1.7, and more preferably 1.1 to 1.5.
  • PDI polydispersity index
  • T g glass transition temperature of the epoxy resin
  • it may range from 80 to 250 ° C, or may be from 90 to 200 ° C.
  • the present invention may further include a conventional epoxy resin known in the art, and is not particularly limited thereto.
  • the content of the epoxy resin may be in the range of 20 to 70 parts by weight with respect to 100 parts by weight of the total resin composition, preferably in the range of 30 to 60 parts by weight, more preferably. Preferably from 40 to 60 parts by weight.
  • the content of the epoxy resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
  • the third component of the thermosetting resin composition for forming an epoxy insulating layer according to the present invention is a dimer acid-modified epoxy resin.
  • the dimer acid-modified epoxy resin forms an adhesive composition by a curing reaction, it is easy to form a cured product given flexibility by structural factors of the dimer acid-modified portion, and by imparting elastomeric properties to the adhesive layer (insulator)
  • the adhesiveness, heat resistance, and moisture resistance of the copper base which is a metal base, and an adhesive bond layer (insulator) can be improved.
  • Non-limiting examples of the dimer acid-modified epoxy resin that can be used are KSR-200 (Kukdo Chemical), SER-200 (Shin-A T & C), etc. These may be used alone or in combination of two or more.
  • examples of the dimer acid-modified epoxy resin include an epoxy resin represented by the following Chemical Formula 1, but are not limited thereto.
  • the dimer acid-modified epoxy resin has a modification rate of about 5 to 30%, cracking and peeling phenomena do not occur during punching processing, and thus heat resistance and moisture resistance may be further improved.
  • the epoxy equivalent and viscosity of the dimer acid-modified epoxy resin are not particularly limited, but when the epoxy equivalent is about 100 to 500 g / eq and the viscosity is about 5,000 to 30,000 cps, the cohesive breakage does not occur, Formability such as bending workability) and punching workability and heat resistance and moisture resistance can be further improved.
  • the content of the dimer acid-modified epoxy resin may be in the range of about 5 to 40 parts by weight based on 100 parts by weight of the mixture of the epoxy resin and the curing agent, preferably 5 to It may range from 30 parts by weight.
  • the content of the dimer acid-modified epoxy resin falls within the above-mentioned range, molding processability, heat resistance, adhesiveness and the like of the resin composition are good.
  • thermosetting resin composition for epoxy insulating layer formation which concerns on this invention is benzoxazine type resin.
  • the benzoxazine resin is a thermosetting resin mainly containing a compound having a benzoxazine ring, and is not particularly limited as long as it is a resin having a benzoxazine ring and cured by the ring-opening reaction of the benzoxazine ring.
  • the benzoxazine resin is a condensate of an oxazine and a benzene ring, and generally can be synthesized by reacting phenols, amines, and formaldehyde.
  • a compound having a single benzoxazine ring (ring) in a molecule, a compound having a benzoxazine structure at both ends, or a polyvalent oxazine compound having a plurality of benzoxazine rings in a molecule can be used.
  • the benzoxazine resin may be ring-opened and cured by heating to provide a cured product having excellent heat resistance and flame resistance. Moreover, it can also react with an epoxy resin and can form hardened
  • benzoxazine having a polyol content of 80% or more.
  • benzoxazine-based resins of various structures can be applied, it is preferable to use BPF-type benzoxazine-based resins because of excellent hygroscopicity and reactivity.
  • the content of the benzoxazine-based resin may be in the range of 5 to 50 parts by weight, preferably 10 to 40 parts by weight, based on 100 parts by weight of the mixture of the epoxy resin and the curing agent. It may be a minor range.
  • the content of the benzoxazine resin falls within the above range, the curability, flame retardancy, low hygroscopicity, and adhesion of the resin composition are good.
  • thermosetting resin composition for forming an epoxy insulating layer according to the present invention is a curing agent commonly used in the art.
  • the curing agent may be appropriately selected and used depending on the type of epoxy resin, and is not particularly limited as long as it is usually used as a curing agent for epoxy resins.
  • a curing agent a first curing agent participating in the ring-opening reaction of the benzoxazine resin; And it is preferable to mix with the epoxy resin and the 2nd hardening agent which advances hardening reaction.
  • non-limiting examples of the first curing agent include a phenol novolak curing agent, an imidazole, an amine curing agent, and the like, and the structure thereof is not particularly limited.
  • phenol novolak-based curing agents are preferred because they can further improve heat resistance and adhesion.
  • the second hardener examples include cresol novolac, bisphenol A novolac, naphthalene type, amine hardener, aminotriazine novolac, and the like, and the structure thereof is not particularly limited. These may be used alone or in combination of two or more thereof.
  • At least one of the first and second curing agents preferably has a polydispersity index (PDI) of 2 or less, more preferably 1 to 1.7, still more preferably 1.1 to 1.5.
  • PDI polydispersity index
  • the first hardener or the second hardener may have a PDI of 2 or less, or both of them may use a PDI of 2 or less.
  • the content of the curing agent may be appropriately adjusted according to the content of the epoxy resin.
  • the curing agent and the epoxy resin may be reduced from 20 to 50:50 to 50%. It is preferable to mix and use in 80 weight ratio.
  • it may further include a conventional curing accelerator known in the art.
  • the curing accelerator may be appropriately selected and used depending on the type of the epoxy resin and the curing agent.
  • curing accelerators that can be used include amine-based, phenol-based, and imidazole-based curing accelerators, and more specific examples thereof include amine complexes of boron trifluoride, imidazole derivatives, organic acids such as phthalic anhydride, and trimellitic anhydride. have.
  • the curing accelerators include imidazole derivative curing accelerators, specifically 1-methylimidazole, 2-methylimidazole, 2-ethyl 4-methyl imidazole, 2-phenylimidazole. , 2-phenyl4-methyl imidazole, cyanoethylation derivatives thereof, carboxylic acid derivatives, hydroxymethyl group derivatives, and the like, but are not limited thereto.
  • These hardening accelerators can be used individually by 1 type, or can also use 2 or more types together.
  • the amount of the curing accelerator may be in the range of about 0.005 to 0.05 parts by weight, preferably 0.01 to 0.04, based on 100 parts by weight of the mixture of the epoxy resin and the curing agent.
  • thermosetting resin composition for forming the epoxy insulating layer of the present invention inorganic fillers, flame retardants, and other thermosetting resins and thermoplastics not generally described above, which are generally known in the art, as long as they do not impair the intrinsic properties of the resin composition.
  • Various polymers such as resins and oligomers thereof, solid rubber particles or other additives such as UV absorbers, antioxidants, polymerization initiators, dyes, pigments, dispersants, thickeners, leveling agents, and the like may be further included.
  • Examples include flame retardants such as organophosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, and metal hydroxides; Organic fillers such as silicone powder, nylon powder, and fluororesin powder, and thickeners such as orbene and benton; Polymeric antifoaming agents or leveling agents such as silicone-based and fluorine-based resins; Adhesion imparting agents such as imidazole series, thiazole series, triazole series, and silane coupling agents; Phthalocyanine, carbon black, etc. can be mentioned a coloring agent.
  • flame retardants such as organophosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, and metal hydroxides
  • Organic fillers such as silicone powder, nylon powder, and fluororesin powder, and thickeners such as orbene and benton
  • Polymeric antifoaming agents or leveling agents such as silicone-based and fluorine-based resins
  • Adhesion imparting agents such as imidazole
  • thermoplastic resin can be mix
  • thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyimides, polyamideimide, polyethersulfone, polysulfone and the like. Any one of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
  • the epoxy insulating layer 20 according to the present invention is formed by directly coating a thermosetting resin composition for forming an epoxy insulating layer on one or both surfaces of the polyimide film 10.
  • the thickness of the epoxy insulating layer 20 formed by including the above-described components is not particularly limited, and may be, for example, in the range of 1 to 50 ⁇ m, and preferably in the range of 10 to 30 ⁇ m.
  • the epoxy insulating layer 20 may exhibit excellent adhesion between the polyimide film 10 and the thermoplastic polyimide layer 30 by chemical bonding of a benzoxazine ring and a dangling bond on the polyimide surface. Can be.
  • the dimer acid-modified epoxy resin which is a component of the resin composition can also increase the peel strength by imparting elasticity of the polyimide film 10 and the thermoplastic polyimide layer 30 from the elastomeric properties according to the molecular structure.
  • the adhesion with the polyimide film 10 may preferably range from 0.7 to 2.0 kgf / cm 2 .
  • thermoplastic polyimide layer 30 is formed on the surface of the epoxy insulating layer 20, or on the upper and lower surfaces thereof, and a predetermined roughness surface is formed on the surface thereof. Adhesion with is improved.
  • thermoplastic polyimide (TPI) layer is cured after liquid coating a resin composition for forming a thermoplastic polyimide layer comprising at least one resin selected from the group consisting of polyimide, polyamide, polyamideimide, and polyamic acid resin. It includes that formed. Or commercially available soluble polyimide (soluble PI).
  • the composition for forming a thermoplastic polyimide layer may be composed of a polyimide (PI) -based first resin and a surfactant, and may further include a second resin such as an epoxy resin as necessary.
  • PI polyimide
  • the polyimide (PI) is generally synthesized by condensation polymerization of an aromatic dianhydride and an aromatic diamine (or aromatic diisocyanate), and the polyimide is preferably a thermosetting polyimide.
  • Non-limiting examples of the polyimide resin that can be used include polyimide, polyamideimide, composite resins thereof and the like.
  • the polyimide-based resin may be prepared by imidization of a polyamic acid varnish obtained through imidation reaction of a typical dianhydride and diamine known in the art.
  • the content of the polyimide-based resin may range from 70 to 100 parts by weight with respect to 100 parts by weight of the total resin composition, preferably 80 to 100 parts by weight. have.
  • the content of the polyimide resin falls within the above-mentioned range, the curability, molding processability, and adhesion of the resin composition are good.
  • the surfactant can be used without limitation to conventional surfactant components known in the art.
  • the said surfactant is a component which has the effect of adjusting the surface tension of the said resin composition varnish for thermoplastic polyimide layer formation, and improving coating property, coating property, uniformity, etc. with respect to copper foil which is a coating base material.
  • Non-limiting examples of the surfactants that can be used include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants or mixtures of one or more thereof.
  • the content of the surfactant may be in the range of 0.001 to 0.1 parts by weight based on 100 parts by weight of the total resin composition, and preferably in the range of 0.001 to 0.05 parts by weight.
  • the content of the surfactant falls within the above-mentioned range, the coating property, the coatability, and the uniformity of the resin composition on the substrate are good.
  • the resin composition for thermoplastic polyimide layer formation which concerns on this invention can contain 2nd resin, such as an epoxy resin, as needed.
  • the epoxy resin may be used without limitation conventional epoxy resin known in the art, and may be the same as or different from the components used in the composition for forming the epoxy insulating layer described above.
  • the content of the epoxy resin may be in the range of 0 to 30 parts by weight based on 100 parts by weight of the total resin composition, and preferably in the range of 0 to 20 parts by weight.
  • the content of the epoxy resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
  • the resin composition for forming a thermoplastic polyimide layer of the present invention may further include an additive such as an inorganic filler.
  • an additive such as an inorganic filler.
  • the inorganic filler include silica, alumina, aluminum hydroxide, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, or titanate, but are not limited thereto.
  • thermoplastic resin can be mix
  • thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyethersulfones, polysulfones, and the like. Any one of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
  • thermoplastic polyimide layer 30 the above-described composition for forming a thermoplastic polyimide layer is directly coated on the surface of the epoxy insulating layer 20 and dried, and then the surface roughness surface of the copper foil is transferred to a predetermined surface roughness surface. It can be prepared by forming a.
  • the surface roughness Ra of the thermoplastic polyimide layer 30 may range from 0.2 ⁇ m to 3.0 ⁇ m.
  • the method of transferring is not particularly limited, and for example, may be achieved by laminating a copper foil and a thermoplastic polyimide layer having a predetermined roughness surface on a surface thereof and then pressing the same.
  • the thickness of the thermoplastic polyimide layer 30 may be in a range of 1 to 50 ⁇ m, preferably 10 to 30 ⁇ m. It can be a range.
  • the sum of the thicknesses of the epoxy insulating layer 20 and the thermoplastic polyimide layer 30 may be in the range of 1 to 30% of the total thickness, and preferably in the range of 1 to 20%. have.
  • the insulating resin sheet according to the present invention may further include a support layer 40 on the thermoplastic polyimide layer 30.
  • a plastic film may be used as the support, and a metal foil such as a release paper, a copper foil, or an aluminum foil may also be used as the support.
  • a metal foil such as a release paper, a copper foil, or an aluminum foil
  • the plastic film that can be used include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate; Polycarbonate, acrylic resin, cyclic polyolefin, triacetyl cellulose, polyether sulfide, polyether ketone, polyimide and the like.
  • a release layer treated with a release agent between the polyimide layer 30 and the support layer 40 As the release agent used in the release layer, if the thermoplastic polyimide layer is completely peelable from the support, it is not particularly limited to its components, and conventional release agent components known in the art may be used. Non-limiting examples thereof include an epoxy-based release agent, a release agent made of a fluororesin, a silicone release agent, an alkyd resin release agent, a water-soluble polymer, and the like.
  • the plastic film may be matt, corona treated, or may form a release layer on the treated surface.
  • the thickness of the support layer 40 is not particularly limited, but may be in the range of 10 to 150 ⁇ m, and preferably in the range of 25 to 50 ⁇ m.
  • the total thickness of the insulating resin sheet may be in the range of 7 to 200 ⁇ m, preferably in the range of 10 to 150 ⁇ m.
  • the insulating resin sheet for forming a flexible printed circuit board according to the present invention may be manufactured by the following method. However, this is not particularly limited.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of an insulating resin sheet according to an embodiment of the present invention.
  • thermosetting resin composition for forming the epoxy insulating layer is coated and dried to dry the epoxy insulating layer Forming; (ii) coating a composition for forming a thermoplastic polyimide layer on the epoxy insulating layer and then drying to form a thermoplastic polyimide layer; And (iii) laminating the polyimide film and the copper foil having a predetermined surface roughness, wherein the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil are disposed to be in contact with each other, and then heated and pressurized onto the surface of the thermoplastic polyimide layer. It can be configured to include a step characterized by transferring the surface roughness surface of the copper foil.
  • the resin composition for forming the epoxy insulating layer when applied on the polyimide film base material, for example, a roll coater, bar coater, coater coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater It can be carried out by applying a thermosetting resin composition on a substrate with a transfer roll coater, gravure coater, spray coater and the like, and drying for 1 to 30 minutes at a temperature of 50 to 130 °C.
  • the above-described coating method can be used in the same manner.
  • organic solvents examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, and propylene glycol monomethyl ether acetate.
  • acetic acid esters such as carbitol acetate, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. You may use an organic solvent 1 type or in combination of 2 or more types.
  • the step (iii) may be carried out by laminating the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil so as to contact each other, and then heating and pressing. At this time, it is preferable to completely cure the thermoplastic polyimide resin composition through a roll lamination or a press process.
  • the conditions of the roll lamination, press process, etc. are not particularly limited, and may be appropriately adjusted under conventional conditions known in the art.
  • FCCL Flexible Copper Clad Laminate
  • This invention provides the flexible copper foil laminated board using the above-mentioned insulated resin sheet.
  • the flexible copper foil laminate refers to a laminate in which a polyimide film and a copper foil are bonded as a material of a flexible printed circuit board (FPCB).
  • FPCB flexible printed circuit board
  • the flexible copper foil laminate comprises an insulating resin sheet; And copper foil layers formed on upper and lower surfaces of the thermoplastic polyimide layer of the insulating resin sheet, respectively.
  • the copper foil layer may use any conventional copper foil known in the art without limitation, and includes all copper foils manufactured by a rolling method and an electrolytic method.
  • it may be formed by an electroplating layer, an electroless plating layer, or a sputtering method.
  • the copper foil layer may have a predetermined surface roughness Ra, in which case the surface roughness is not particularly limited, and may be, for example, in a range of 0.2 ⁇ m to 3.0 ⁇ m.
  • the thickness of the copper foil layer is not particularly limited, and may be less than 3 ⁇ m in consideration of the thickness and mechanical properties of the final product.
  • a predetermined pattern may already be formed in the said copper foil layer.
  • the present invention provides a printed circuit board, preferably a flexible printed circuit board (FPCB), manufactured using an insulating sheet.
  • a printed circuit board preferably a flexible printed circuit board (FPCB), manufactured using an insulating sheet.
  • FPCB flexible printed circuit board
  • the printed circuit board refers to a printed circuit board laminated in a single layer or two or three or more layers by a plating through hole method, a buildup method, or the like.
  • the flexible printed circuit board of the present invention is easy to form the roughness and the plating after the semi-additive method to implement a fine circuit pattern, as well as to minimize the side of the pattern generated during the electroplating Surface roughness can form a dense and regular shape can have excellent plating adhesion.
  • the printed circuit board is an insulating resin sheet; Copper foil plating layers respectively formed on the upper and lower surfaces of the thermoplastic polyimide layer of the said insulated resin sheet, and have a predetermined pattern; And a plurality of through holes provided to penetrate the insulating resin sheet and plated to electrically connect patterns of copper foil plating layers respectively formed on upper and lower surfaces thereof.
  • the line / space (L / S) of the circuit pattern may range from 2 ⁇ m / 2 ⁇ m to 30 ⁇ m / 30 ⁇ m, but is not particularly limited thereto.
  • the printed circuit board according to the present invention can be manufactured by conventional methods known in the art, for example, semi-additive, except for using the above-described insulating resin sheet.
  • the manufacturing method For a preferred embodiment of the manufacturing method, (I) forming at least one hole in the above-mentioned insulating resin sheet; (II) desmearing the surface of the film and the inside of the hole to form roughness; (III) forming an electroless plating layer on the rough surface and the inner surface of the hole of the film; (IV) forming a pattern using a photoresist on the formed electroless plating layer; (V) forming a circuit layer by electroplating on the pattern; And (VI) exfoliating the photoresist and removing the exposed electroless plating layer.
  • One or more holes are formed in the insulating resin sheet.
  • a laser is irradiated to the said insulated resin sheet, and a hole is formed.
  • the laser may use an excimer laser, a UV laser, a carbon dioxide gas (CO 2 ).
  • the insulating resin sheet of the present invention is already formed on the outermost rough surface, not only does not require a special chemical etching process, but even if the chemical etching process, even better than the polyimide (PI) chemical resistance
  • PI polyimide
  • the thermoplastic polyimide layer (TPI) is present at the outside, a decrease in plating adhesion due to chemical etching may be minimized.
  • the desmear process removes resin residues (smear) after laser irradiation by oxidizing agents such as permanganate, dichromate, etc., and this step removes the surface of the insulating resin sheet and the inner surface of the hole by laser processing.
  • the roughness surface which has a suitable roughness (roughness) is formed by processing.
  • the surface of the smooth insulated resin sheet can be harmonized simultaneously, and the adhesiveness of the electrically conductive wiring circuit formed by the metal plating which follows is improved.
  • an etching process may be further performed to maintain a horizontal roughness surface having an appropriate roughness on the insulating resin sheet after the desmear process.
  • the surface of the insulated resin sheet after a desmear process has preferable roughness for forming a fine circuit pattern.
  • the surface roughness range of the insulating resin sheet after the desmear process may be in the range of 50 nm to 1,000 nm, preferably in the range of 100 nm to 500 nm.
  • An electroless plating layer is formed on the roughness surface and the hole inner surface of the insulating resin sheet.
  • Electroless plating is performed on the roughness surface and the inner surface of the hole to form a relatively thin plating layer.
  • Such an electroless plating layer is to secure the adhesive strength to the thermoplastic polyimide layer in advance in order to raise the fine circuit pattern layer to be formed thereon.
  • the adhesion between the circuit electrode to be formed and the substrate has a close relationship, and an electroless plating layer is formed between the substrate and the circuit electrode.
  • the electroless plating layer is formed using the surface-coated catalyst as an active point, ultimately there is no adhesion with the substrate. Therefore, when the roughness of the substrate surface is large, the adhesion between them is maintained well by the anchor effect, but when the roughness is not present on the substrate surface, the adhesiveness tends to be lowered. Therefore, it is preferable to obtain a good circuit shape by adjusting it to have a surface roughness of about 0.1 times or less of the formed circuit width.
  • the said electroless plating layer used as the seed layer of an electrolytic plating layer is generally 0.1-5 micrometers.
  • a pattern is formed on the formed electroless plating layer using photoresist.
  • a fine circuit pattern is formed by coating a photoresist as a lithography process and forming an opening for forming an outer layer pattern.
  • the photoresist may be a dry film or the like.
  • a circuit layer by electroplating is formed on the pattern.
  • a conductor layer for forming the fine circuit pattern in the opening of the photoresist layer is formed by electroplating.
  • the electrolytic plating layer forms a new circuit layer connected to the plated copper foil layer by the hole.
  • the thickness of the electroplating layer is preferably in the range of about 1 ⁇ m to 100 ⁇ m.
  • the line / space of the circuit pattern formed in this step may be less than 30 ⁇ m / 30 ⁇ m, preferably in the range of 2 ⁇ m / 2 ⁇ m ⁇ 30 ⁇ m / 30 ⁇ m, more preferably 2 ⁇ m / 2 ⁇ m ⁇ 20 ⁇ m / 20 May be in the ⁇ m range.
  • the line space L / S of the circuit pattern formed in the present invention is 10 ⁇ m / 10 ⁇ m (see FIG. 5).
  • circuit pattern is completed by removing the unnecessary photoresist layer and removing the exposed electroless plating layer.
  • the manufacturing is completed by further performing a manufacturing process of a conventional printed circuit board known in the art, such as an electronic device mounting process.
  • the above-described method of manufacturing a printed circuit board is not to be manufactured by sequentially performing the above-described steps, but may be performed by modifying or selectively mixing the steps of each process according to design specifications.
  • the epoxy resin composition was prepared by mixing a first epoxy resin, a second epoxy resin, a first curing agent, a second curing agent, a dimer acid-modified epoxy resin, a benzoxazine-based resin, a curing accelerator, and the like.
  • the amount of each unit used is parts by weight, where "parts by weight” is based on 100 parts by weight of a mixture of a high equivalent epoxy resin, a low equivalent epoxy resin, and a curing agent.
  • thermoplastic polyimide composition which is a soluble polyimide of soluble DIC
  • the coating layer was formed to a thickness of 4 ⁇ m, and then dried in a 150 ° C. dryer for about 5 to 10 minutes. Thereafter, after lamination using a copper foil having a roughness surface formed on the manufactured thermoplastic polyimide layer, the insulating resin sheet was manufactured by pressing.
  • a flexible printed circuit board was fabricated by performing the hole processing, the desmear treatment, the electroless plating layer formation, and the circuit formation process, respectively, according to the semi additive process using the insulating resin sheet prepared above. It was. The thickness of the plating layer formed at this time was 12 ⁇ m.
  • the insulating resin sheet and the flexible printed circuit board were manufactured in the same manner as in the above embodiment.
  • the amount of each composition is used in parts by weight.
  • a printed circuit board was manufactured in the same manner as in the above example, except that general polyimide (PI) for general FCCL was used.
  • PI general polyimide
  • PI adhesion 1-5 ⁇ m epoxy resin was coated on the untreated polyimide film using a slot die coater (* thin film coatable micro coater). After drying for 2 minutes at 150 °C by B-stage, 5 ⁇ m coated thermosetting polyimide, lamination at 200 °C with Matt surface of 12 ⁇ m (1 / 3Oz) copper foil, evaluation specification of IPC-TM-650 2.4.8 The circuit pattern was formed in the laminated body for printed circuit boards by this. Thereafter, the formed circuit patterns were pulled in the 90 ° direction to measure and evaluate the time points at which the circuit patterns (copper layers) were peeled off.
  • Hygroscopic heat resistance After leaving for 24 hours in a constant temperature and humidity chamber at 85 ° C., 85%, primer resin layer by floating the laminate for printed circuit board at Solder 288 ° C. according to IPC TM-650 2. 4. 13 evaluation standard. The time until the separation phenomenon between the copper foil and the copper foil was measured and evaluated.
  • HAST It was evaluated according to the JEDEC JESD22-A110 evaluation standard.
  • ND hardener 1 phenol novolac hardener (KOLON KPH-F2003, PDI: 1.40 / EEW 106.8)
  • Hardener 2 ATN (aminotrazine novolac) hardener
  • the insulating resin sheet of the present invention showed excellent properties in terms of adhesion to the polyimide film, water absorption, heat absorption and HAST (Highly Accelerated Stress Test) (see Table 1).
  • Ra value was measured using a non-contact 3D Optical Profiler (Bruker Contour GT).
  • the Ra value is an average value of the heights calculated over the entire measurement area. More specifically, the absolute value of the height that changes in the measurement area is measured and arithmetic averaged from an average line surface. It is the value measured by obtaining roughness.
  • Rate of change To quantify the change in plating adhesion measured after high temperature thermal shock, the value obtained by subtracting the changed adhesive force through the high temperature thermal shock to the initial adhesive strength and then dividing by the percentage.
  • the insulating resin sheet of the present invention exhibited excellent properties in terms of surface roughness, adhesion, plating adhesion, high temperature adhesion, and rate of change (see Table 2). Therefore, it is possible to manufacture a reliable build-up printed circuit board in the future, and it is judged that it will be usefully used as a constituent material of a small and lightweight new semiconductor package.

Abstract

The present invention relates to an insulation resin sheet for forming a flexible printed circuit board (FPCB), a method for manufacturing the same, and a flexible printed circuit board comprising the insulation resin sheet, the insulation resin sheet comprising: a polyimide film; an epoxy insulation layer formed on one surface or both surfaces of the polyimide film; and a thermoplastic polyimide layer, which is formed on the epoxy insulation layer, and which has a predetermined surface roughness formed on the surface thereof. The present invention can provide an insulation resin sheet capable of simultaneously implementing good adhesiveness securing, resistance to heat, and a micro-circuit pattern, and a buildup printed circuit board using the same.

Description

연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판Insulation resin sheet for flexible printed circuit board formation and manufacturing method thereof, printed circuit board including same
본 발명은 고밀도 미세회로 패턴 구현, 양호한 접착성 및 흡습 내열 특성을 동시에 확보할 수 있는 빌드업 인쇄 회로기판의 절연층 형성용 절연 수지 시트 및 이의 제조방법, 상기 절연 수지 시트를 절연층으로 포함하는 연성 인쇄 회로기판 및 이의 제조방법에 관한 것이다. The present invention provides an insulation resin sheet for forming an insulation layer of a build-up printed circuit board and a method for manufacturing the same, which may achieve high density microcircuit pattern, good adhesion and moisture absorption and heat resistance at the same time, including the insulation resin sheet as an insulation layer. It relates to a flexible printed circuit board and a method of manufacturing the same.
최근 휴대전화 및 태블릿 PC (Tablet PC)와 같은 전자제품의 고성능화, 고속화, 고밀도화가 급격하게 진행됨에 따라, FPCB 기판에 대한 박형화 및 고밀도화가 가속되고 있다. 이러한 기술 트렌드에 대응하기 위해 미세회로 패턴 구현 기술과 그에 알맞은 도금 밀착 신뢰성 및 저조도 소재를 필요로 한다.Recently, as high performance, high speed, and high density of electronic products such as mobile phones and tablet PCs (Tablet PCs) are rapidly progressed, thinning and high density of FPCB substrates are accelerating. In order to cope with these technical trends, a micro circuit pattern realization technology and a suitable plating adhesion reliability and low light material are required.
종래 미세회로를 구현하기 위한 소재로는 스퍼터 공법과 화학 에칭(Chemical Etching) 공법을 통해 제작된 필름을 예로 들 수 있다. 상기 스퍼터 공법은 스퍼터 공정을 통해 무처리된 (혹은 건식 Plasma 처리) 폴리이미드 필름 상에 금속 박막을 증착하고, 상기 공정을 통해 형성된 금속 박막 필름 상에 세미어디티브(semi-additive) 공정을 통해 패턴도금하여 미세회로를 구현하는 방법이다. 이 경우, 기판을 구성하는 수지 재료와 금속 박막층 간에 분자간력 만이 작용하고 있어 초기 밀착력은 확보할 수 있으나, 열충격, 내약품성 등에 의해 이 기술의 핵심인 밀착력이 저하되는 문제가 초래된다.As a material for implementing a conventional microcircuit, for example, a film manufactured through a sputtering method and a chemical etching method may be used. The sputtering method deposits a metal thin film on an untreated (or dry plasma treated) polyimide film through a sputter process, and a pattern through a semi-additive process on a metal thin film formed through the process. It is a method of implementing microcircuits by plating. In this case, only the intermolecular force is acting between the resin material constituting the substrate and the metal thin film layer, so that initial adhesion can be secured, but the problem of deterioration of adhesion, which is the core of the technology, is caused by thermal shock and chemical resistance.
또 다른 방법인 화학에칭(Chemical Etching) 공법은 절연층 수지 재료 내 Smearing Material의 선택적 에칭을 통해 표면 조도를 형성하여 무전해 동도금을 통해 금속 박막을 형성하는 것이다. 상기 공정을 통해 형성된 금속 박막 필름은 세미어디티브 공정을 통해 패턴 도금하여 미세회로를 구현하게 된다. 이 경우 선택적 에칭을 통해 필름 표면 조도를 자유자재로 조절할 수 있다는 장점이 있으나, 폴리이미드의 경우 내화학성이 낮아 조도 형성시 절연층인 수지 재료의 내화학성 약화가 초래되는 문제점이 있다. 또한 기재 간의 층간 접착력이 저조할 뿐만 아니라 흡습내열 특성면에서 만족스럽지 못하였다.Another method, chemical etching (Chemical Etching) is to form a surface roughness through the selective etching of the Smearing Material in the insulating layer resin material to form a metal thin film through electroless copper plating. The metal thin film formed through the above process is plated through a semi-additive process to implement a microcircuit. In this case, there is an advantage that the surface roughness of the film can be freely controlled through selective etching. However, in the case of polyimide, there is a problem in that the chemical resistance of the resin material, which is an insulating layer, is weakened when the roughness is formed. In addition, the interlayer adhesion between the substrates was poor and not satisfactory in terms of hygroscopic heat resistance characteristics.
본 발명은 전술한 종래 미세회로 공법의 문제점을 해결하기 위해서 안출된 것으로서, 폴리이미드 필름 상에 에폭시 절연층과 열가소성 폴리이미드층을 순차적으로 형성한 후, 상기 열가소성 폴리이미드의 표면 상에 특정 조도를 형성하여, 미세회로 패턴 구현 기술과 고접착력을 동시에 구현하고자 한다. The present invention has been made to solve the above problems of the conventional microcircuit method, and after forming an epoxy insulating layer and a thermoplastic polyimide layer on the polyimide film sequentially, and then a specific roughness on the surface of the thermoplastic polyimide By forming, to implement a fine circuit pattern implementation technology and high adhesion at the same time.
이에, 본 발명은 종래 미세회로 공법의 문제점을 해결하면서, 미세회로 패턴 구현과 양호한 접착성 및 흡습 내열 특성을 동시에 발휘할 수 있는 신규 적층 구조의 절연 수지 시트를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an insulating resin sheet having a novel laminated structure capable of simultaneously exhibiting a fine circuit pattern and exhibiting good adhesion and moisture absorption heat resistance characteristics while solving problems of the conventional microcircuit method.
또한 본 발명은 상기 절연 수지 시트를 이용하여 형성된 절연층을 포함함으로써, 회로 형성과정에서 불량을 감소시키고, 층간 접착강도, 내열성 및 장기 신뢰성 향상을 동시에 발휘할 수 있는 연성 인쇄회로기판 및 이의 제조방법을 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention includes a flexible printed circuit board and a method for manufacturing the same by including an insulating layer formed by using the insulating resin sheet, which can reduce defects in the process of forming a circuit and simultaneously improve interlayer adhesion strength, heat resistance and long-term reliability. Another purpose is to provide.
본 발명은 폴리이미드 필름; 상기 폴리이미드 필름의 일면 또는 양면 상에 형성된 에폭시 절연층; 및 상기 에폭시 절연층 상에 형성되고, 표면에 소정의 표면 조도가 형성되는 열가소성 폴리이미드(TPI) 필름층을 포함하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트를 제공한다. The present invention is a polyimide film; An epoxy insulating layer formed on one or both surfaces of the polyimide film; And an insulating resin sheet for forming a flexible printed circuit board (FPCB) formed on the epoxy insulating layer and including a thermoplastic polyimide (TPI) film layer having a predetermined surface roughness.
본 발명의 바람직한 일례에 따르면, 상기 에폭시 절연층은 (a) 에폭시 당량(EEW)이 400-1000 g/eq 범위인 고당량 제1에폭시 수지; (b) 에폭시 당량(EEW)이 100-300 g/eq 범위인 저당량 제2에폭시 수지; (c) 다이머산 변성 에폭시 수지; (d) 벤조옥사진계 수지; 및 (e) 2종 이상의 경화제를 포함하며, 상기 제1에폭시 수지와 제2에폭시 수지 중 1종 이상은 다분산지수(PDI)가 2 이하로 조절되는 열경화성 수지 조성물을 경화하여 형성된 것이 바람직하다. According to a preferred embodiment of the present invention, the epoxy insulating layer comprises: (a) a high equivalent first epoxy resin having an epoxy equivalent (EEW) in the range of 400-1000 g / eq; (b) low equivalent second epoxy resins having an epoxy equivalent weight (EEW) in the range of 100-300 g / eq; (c) dimer acid-modified epoxy resins; (d) benzoxazine resins; And (e) two or more curing agents, wherein at least one of the first epoxy resin and the second epoxy resin is formed by curing a thermosetting resin composition having a polydispersity index (PDI) of 2 or less.
본 발명의 바람직한 다른 일례에 따르면, 상기 열가소성 폴리이미드층의 표면 조도(Ra)는 0.2 내지 3.0 ㎛ 범위인 것이 바람직하며, 상기 열가소성 폴리이미드층은 폴리이미드, 폴리아미드, 폴리아미드이미드, 및 폴리아믹산 수지로 구성된 군으로부터 선택되는 1종 이상의 수지를 포함하는 수지 조성물을 액상 도포한 후 경화하여 형성된 것일 수 있다.According to another preferred embodiment of the present invention, the surface roughness (Ra) of the thermoplastic polyimide layer is preferably in the range of 0.2 to 3.0 μm, and the thermoplastic polyimide layer may be polyimide, polyamide, polyamideimide, and polyamic acid. It may be formed by applying a liquid composition and then curing the resin composition comprising at least one resin selected from the group consisting of resins.
여기서, 상기 폴리이미드 필름의 두께는 5 ㎛ 내지 100 ㎛ 범위이고, 상기 에폭시 절연층의 두께는 1 ㎛ 내지 50 ㎛ 범위이고, 상기 열가소성 폴리이미드층의 두께는 1 ㎛ 내지 50 ㎛ 범위인 것이 바람직하다.Herein, the thickness of the polyimide film is in the range of 5 μm to 100 μm, the thickness of the epoxy insulating layer is in the range of 1 μm to 50 μm, and the thickness of the thermoplastic polyimide layer is in the range of 1 μm to 50 μm. .
본 발명의 바람직한 일례에 따르면, 상기 열가소성 폴리이미드층 상에 지지체층을 더 포함할 수 있으며, 또한 상기 열가소성 폴리이미드층과 지지체층 사이에 이형층을 더 포함할 수 있다. According to a preferred embodiment of the present invention, a support layer may be further included on the thermoplastic polyimide layer, and may further include a release layer between the thermoplastic polyimide layer and the support layer.
또한 본 발명은 전술한 절연 수지 시트; 및 상기 절연 수지 시트의 열가소성 폴리이미드층의 상하면 상에 각각 형성된 동박층을 포함하는 연성 동박 적층판(FCCL)을 제공한다.In addition, the present invention is the above-mentioned insulating resin sheet; And a copper foil layer formed on the upper and lower surfaces of the thermoplastic polyimide layer of the insulating resin sheet, respectively.
아울러, 본 발명은 전술한 절연 수지 시트; 상기 절연 수지 시트의 열가소성 폴리이미드층의 상하면 상에 각각 형성되고, 소정의 패턴을 갖는 동박 도금층; 및 상기 절연 수지 시트가 관통되도록 마련되고, 상하면 상에 각각 형성된 동박 도금층의 패턴을 전기적으로 연결하기 위해 도금된 복수의 관통홀을 포함하는 연성 인쇄회로기판을 제공한다.In addition, the present invention is the above-mentioned insulating resin sheet; Copper foil plating layers respectively formed on the upper and lower surfaces of the thermoplastic polyimide layer of the said insulated resin sheet, and have a predetermined pattern; And a plurality of through holes provided to penetrate the insulating resin sheet and plated to electrically connect patterns of copper foil plating layers respectively formed on upper and lower surfaces thereof.
추가로, 본 발명은 전술한 절연 수지 시트의 제조방법을 제공한다.Furthermore, this invention provides the manufacturing method of the above-mentioned insulating resin sheet.
본 발명의 바람직한 일례에 따르면, 상기 제조방법은 (i) 폴리이미드 필름의 일면 또는 양면 상에, 에폭시 절연층 형성용 열경화성 수지 조성물을 코팅한 후 건조하여 에폭시 절연층을 형성하는 단계; (ii) 상기 에폭시 절연층 상에 열가소성 폴리이미드층 형성용 조성물을 코팅한 후 건조하여 열가소성 폴리이미드층을 형성하는 단계; 및 (iii) 상기 폴리이미드 필름과 소정의 표면 조도가 형성된 동박을 적층하되, 폴리이미드 필름의 열가소성 폴리이미드층과 동박의 표면 조도면이 서로 접하도록 배치한 후 가열 가압하여 열가소성 폴리이미드층 표면 상에 동박의 표면 조도면을 전사하는 단계를 포함하여 구성될 수 있다.According to a preferred embodiment of the present invention, the manufacturing method comprises the steps of (i) coating an epoxy insulating layer forming thermosetting resin composition on one or both surfaces of the polyimide film and drying to form an epoxy insulating layer; (ii) coating a composition for forming a thermoplastic polyimide layer on the epoxy insulating layer and then drying to form a thermoplastic polyimide layer; And (iii) laminating the polyimide film and the copper foil having a predetermined surface roughness, wherein the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil are disposed to be in contact with each other, and then heated and pressurized onto the surface of the thermoplastic polyimide layer. And transferring the surface roughness surface of the copper foil.
나아가, 본 발명은 전술한 절연 수지 시트를 이용한 연성 인쇄회로기판의 제조방법을 제공한다.Furthermore, the present invention provides a method of manufacturing a flexible printed circuit board using the above-described insulating resin sheet.
본 발명의 바람직한 일례에 따르면, 상기 제조방법은 (I) 전술한 절연 수지 시트 내에 하나 이상의 홀을 형성하는 단계; (Ⅱ) 상기 절연 수지 시트의 표면 및 홀 내부를 디스미어 처리하여 조도를 형성하는 단계; (Ⅲ) 상기 절연 수지 시트의 조도면과 홀 내부면에 무전해 도금층을 형성하는 단계; (Ⅳ) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성하는 단계; (V) 상기 패턴 상에 전해 도금에 의한 회로층을 형성하는 단계; 및 (Ⅵ) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거하는 단계를 포함하여 구성될 수 있다. According to a preferred embodiment of the present invention, the manufacturing method includes the steps of (I) forming one or more holes in the above-mentioned insulating resin sheet; (II) desmearing the surface of the insulating resin sheet and the inside of the hole to form roughness; (III) forming an electroless plating layer on the roughness surface and the inner surface of the hole of the insulating resin sheet; (IV) forming a pattern using a photoresist on the formed electroless plating layer; (V) forming a circuit layer by electroplating on the pattern; And (VI) exfoliating the photoresist and removing the exposed electroless plating layer.
본 발명에서는 기판의 유연성(flexibility)을 부여할 수 있는 폴리이미드 필름, 다른 기재와의 접착력 및 도금 접착력이 우수한 에폭시 절연층; 및 표면에 소정의 조도면이 형성된 열가소성 폴리이미드층이 순차적으로 적층된 절연 수지 시트를 사용하므로, 보다 정밀한 미세회로 구현이 가능하며, 고접착력 및 우수한 흡습 내열 특성을 확보할 수 있다. The present invention provides a polyimide film capable of imparting flexibility of a substrate, an epoxy insulating layer having excellent adhesion to other substrates and plating adhesion; And an insulating resin sheet in which a thermoplastic polyimide layer having a predetermined roughness surface is formed on the surface is sequentially stacked, and thus, a finer circuit can be realized, and high adhesion and excellent moisture absorption and heat resistance characteristics can be obtained.
또한 폴리이미드 필름을 적용함에 따라 기판에 유연성을 부여할 수 있으며, 제품 설계의 자유도를 높일 수 있다. In addition, by applying a polyimide film, it is possible to impart flexibility to the substrate and increase the degree of freedom of product design.
나아가, 연성 인쇄회로기판의 두께를 현저히 감소시킬 수 있으며, 최종물로서의 구조적 휘어짐 특성을 최소화하여 제조 용이성을 확보할 수 있다.Furthermore, the thickness of the flexible printed circuit board can be significantly reduced, and the manufacturing flexibility can be secured by minimizing the structural bending characteristics as a final product.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 절연 수지 시트의 구성을 나타내는 단면도이다. 1 to 3 are cross-sectional views showing the configuration of an insulating resin sheet according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 절연 수지 시트의 제조공정을 나타내는 단면도이다.4 is a cross-sectional view showing a manufacturing process of an insulating resin sheet according to an embodiment of the present invention.
도 5는 실시예 1에서 제조된 절연 수지 시트를 세미어디티브(Semi Additive) 공법을 적용해 구현한 미세회로 패턴의 주사전자현미경(SEM) 사진이다. FIG. 5 is a scanning electron microscope (SEM) photograph of a microcircuit pattern of the insulating resin sheet prepared in Example 1 by applying a semi-additive method.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10: 폴리이미드 필름 20: 에폭시 절연층10 polyimide film 20 epoxy insulating layer
30: 열가소성 폴리이미드층 40: 이형필름30: thermoplastic polyimide layer 40: release film
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명에서는 인쇄회로기판 제조시 절연층을 형성할 수 있는 빌드업 재료로서, '기재 및 도금층과의 우수한 접착력'과 '흡습내열 특성'을 발휘하는 신규 절연 수지 시트를 제공하는 것을 특징으로 한다.In the present invention, as a build-up material capable of forming an insulating layer when manufacturing a printed circuit board, it is characterized by providing a novel insulating resin sheet exhibiting 'excellent adhesion to the substrate and the plating layer' and 'hygroscopic heat resistance characteristics'.
상기 절연 수지 시트는 (A) 폴리이미드 필름; (B) 상기 폴리이미드 필름의 일면 또는 양면 상에 형성된 에폭시 절연층; 및 (C) 상기 에폭시 절연층 상에 형성되고, 표면에 소정의 표면 조도가 형성되는 열가소성 폴리이미드층이 각각 순차적으로 적층된 구조를 갖는다(도 1~2 참조).The said insulating resin sheet is a (A) polyimide film; (B) an epoxy insulating layer formed on one side or both sides of the polyimide film; And (C) a thermoplastic polyimide layer formed on the epoxy insulating layer and having a predetermined surface roughness formed on the surface thereof, respectively, sequentially stacked (see FIGS. 1 and 2).
여기서, 에폭시 절연층은 최적화된 다이머산 변성 에폭시 수지와 벤조옥사진계 수지를 혼용한 수지층으로, 벤조옥사진으로부터 발현되는 우수한 결합력을 바탕으로 폴리이미드 필름과 열가소성 폴리이미드층의 층간 밀착강도를 높여 PCB 제조공정 중에 밀착력 저하에 의한 드릴링(Drilling) 불량을 방지할 수 있다. 또한 분자 내 벤조옥사진 환의 개환중합으로부터 발현되는 저흡습특성과 우수한 흡습내열 특성을 발휘할 수 있다.Here, the epoxy insulating layer is a resin layer mixed with an optimized dimer acid-modified epoxy resin and a benzoxazine-based resin, and improves the interlayer adhesion strength of the polyimide film and the thermoplastic polyimide layer based on the excellent binding force expressed from the benzoxazine. It is possible to prevent the drilling failure due to the decrease in adhesion during the PCB manufacturing process. In addition, it is possible to exhibit low hygroscopic properties and excellent hygroscopic heat-resistance characteristics expressed from ring-opening polymerization of intramolecular benzoxazine rings.
열가소성 폴리이미드층은 동박의 매트(MATTE)면 전사를 통해 형성된 미세조도의 투묘 효과(Anchoring Effect)와 계면에서 일어나는 분자간력(Intermolecular) 으로 인해, 이후 도금공정에 의해 형성되는 무전해 동도금층과의 접착강도를 보다 향상시킬 수 있다. 또한 열가소성 폴리이미드층이 패턴층 하부에 위치할 경우, 에폭시 수지를 절연층으로 하는 기재(substrate) 대비 첨가제 등의 불순물이 함유량이 낮아 가속시험에 의한 이온마이그레이션 특성이 상대적으로 낮은 장점을 가지고 있다.The thermoplastic polyimide layer is formed by the electroless copper plating layer formed by the plating process after the plating process due to the anchoring effect of fine roughness formed through the transfer of the mat surface of the copper foil and the intermolecular occurring at the interface. Adhesion strength can be improved more. In addition, when the thermoplastic polyimide layer is positioned below the pattern layer, the impurities having an impurity such as an additive is low compared to the substrate having the epoxy resin as an insulating layer, and thus the ion migration characteristics by the accelerated test are relatively low.
한편 용해성 폴리이미드를 사용하여 폴리이미드 필름상에 코팅할 경우 이미 경화 완료된 폴리이미드와 용해성 폴리이미드 두 수지재료 간의 층간 밀착력이 낮아 절연 수지 전체의 도금 접착력을 저하시키는 문제점이 있다. 이에, 본 발명에서는 폴리이미드와의 고밀착력 특성을 가진 에폭시 수지 절연층을 도입함으로써 고접착, 우수한 흡습내열 특성을 가진 절연 수지 시트를 제공할 수 있다.On the other hand, when coating on a polyimide film using a soluble polyimide, there is a problem in that the adhesion between the two resin materials already hardened polyimide and soluble polyimide is low, thereby lowering the plating adhesion of the entire insulating resin. Accordingly, in the present invention, an insulating resin sheet having high adhesion and excellent moisture absorption and heat resistance characteristics can be provided by introducing an epoxy resin insulating layer having high adhesion with polyimide.
아울러, 본 발명의 절연 수지 시트는 유연성을 가지는 폴리이미드(PI) 필름을 적용함에 따라 제품 설계의 자유도를 높일 수 있다. 또한 전체 두께 감소, 기판의 유연성(flexibility) 부여 및 고밀도 미세회로 패턴 구현을 동시에 발휘할 수 있다. In addition, the insulating resin sheet of the present invention can increase the degree of freedom of product design by applying a flexible polyimide (PI) film. In addition, it is possible to simultaneously reduce the overall thickness, provide flexibility of the substrate, and realize high-density microcircuit patterns.
<연성 인쇄회로기판 형성용 절연 수지 시트><Insulation resin sheet for flexible printed circuit board formation>
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트에 대하여 상세히 설명한다. Hereinafter, an insulating resin sheet for forming a flexible printed circuit board (FPCB) according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1~2를 참조하여 설명하면, 본 발명의 절연 수지 시트는, 폴리이미드 필름(10); 상기 폴리이미드 필름의 일면 또는 양면 상에 형성된 에폭시 절연층(20); 및 상기 에폭시 절연층 상에 형성되고, 표면에 소정의 표면 조도가 형성되는 열가소성 폴리이미드층(30)을 포함하고, 이들이 각각 순차적으로 적층된 구조를 갖는다. 1 to 2, the insulating resin sheet of the present invention comprises a polyimide film 10; An epoxy insulating layer 20 formed on one or both surfaces of the polyimide film; And a thermoplastic polyimide layer 30 formed on the epoxy insulating layer and having a predetermined surface roughness formed thereon, each having a structure in which they are sequentially stacked.
<폴리이미드(PI) 필름><Polyimide (PI) film>
본 발명의 절연 수지 시트에 있어서, 폴리이미드 필름(10)은 절연 수지 시트를 물리적으로 지지해주는 베이스 지지 필름 역할을 할 뿐만 아니라, 내열성, 유연성(flexibility)을 가짐에 따라 제품 설계의 자유도를 높일 수 있다. 이때 폴리이미드 필름은 필요에 따라 무기 충전제를 함유하여 기판 열팽창 계수(CTE) 조절이 가능하다. In the insulated resin sheet of the present invention, the polyimide film 10 not only serves as a base support film that physically supports the insulated resin sheet, but also has a heat resistance and flexibility, thereby increasing the degree of freedom in product design. have. In this case, the polyimide film may contain an inorganic filler, if necessary, to adjust the substrate thermal expansion coefficient (CTE).
폴리이미드(polyimide, PI) 수지는 이미드(imide) 고리를 가지는 고분자 물질로서, 이미드 고리의 화학적 안정성을 기초로 하여 우수한 내열성, 연성, 내화학성, 내마모성과 내후성 등을 발휘하며, 그 외에도 낮은 열팽창율, 낮은 통기성 및 뛰어난 전기적 특성 등을 나타낸다. Polyimide (PI) resin is a polymer material having an imide ring, and exhibits excellent heat resistance, ductility, chemical resistance, abrasion resistance and weather resistance based on the chemical stability of the imide ring. Thermal expansion coefficient, low breathability and excellent electrical properties.
상기 폴리이미드 필름은 자기 지지성을 가지는 필름 내지 시트 형상일 수 있다. 이때 범용적으로 시판되는 폴리이미드 필름을 사용할 수 있고, 또는 당업계에 공지된 방법에 따라 디아민 화합물과 테트라 카르복실산 화합물을 축합반응한 후 이러한 반응물을 기재(substrate) 상에 도포 및 건조/경화하여 제조될 수도 있다. The polyimide film may have a film to sheet shape having self-supportability. In this case, a commercially available polyimide film may be used, or the condensation reaction of a diamine compound and a tetra carboxylic acid compound according to a method known in the art may be followed by coating and drying / curing such a reactant on a substrate. It may be prepared by.
상기 폴리이미드 필름의 두께는 필름의 취급성, 물리적 강성, 열팽창계수, 기판의 박형화, 고밀도 배선 등을 고려하여 적절히 조절할 수 있다. 일례로 5 내지 100 ㎛ 범위일 수 있으며, 바람직하게는 12.5 내지 50 ㎛ 범위이며, 보다 바람직하게는 12.5 내지 25 ㎛ 범위일 수 있다. 상기 폴리이미드 필름의 표면은 매트 처리, 코로나 처리 등의 표면처리가 실시된 것일 수 있다.The thickness of the polyimide film can be appropriately adjusted in consideration of the handleability of the film, physical rigidity, thermal expansion coefficient, thinning of the substrate, high density wiring, and the like. For example, it may be in the range of 5 to 100 μm, preferably in the range of 12.5 to 50 μm, and more preferably in the range of 12.5 to 25 μm. The surface of the polyimide film may be a surface treatment such as matt treatment, corona treatment.
한편 폴리이미드 필름층과 동박층과의 열팽창계수(CTE) 차이를 감소시켜 최종 제품의 휨 특성, 저팽창화, 기계적 물성, 저응력화를 효과적으로 향상시키기 위해서, 상기 폴리이미드 필름층은 당 업계에 알려진 통상적인 무기 충전제를 포함할 수 있다. 사용 가능한 무기 충전제의 비제한적인 예로는, 실리카, 탄산칼슘, 탄산마그네슘, 알루미나, 마그네시아, 클레이, 탈크, 규산칼슘, 산화티탄, 산화안티몬, 유리섬유, 붕산알루미늄, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 티탄산마그네슘, 티탄산비스무스, 산화티탄, 지르콘산바륨, 지르콘산칼슘, 질화붕소, 질화규소, 활석(talc), 운모(mica) 등이 있다. 이러한 무기 충전제의 사용량은 특별한 제한이 없으며, 전술한 휨특성, 기계적 물성 등을 고려하여 적절히 조절할 수 있다.On the other hand, in order to reduce the difference in the coefficient of thermal expansion (CTE) between the polyimide film layer and the copper foil layer to effectively improve the warpage characteristics, low expansion, mechanical properties, low stress of the final product, the polyimide film layer is known in the art Conventional inorganic fillers may be included. Non-limiting examples of inorganic fillers that can be used include silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, glass fibers, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, boron nitride, silicon nitride, talc, mica and the like. The amount of the inorganic filler to be used is not particularly limited and may be appropriately adjusted in consideration of the bending property and mechanical properties described above.
본 발명에 따른 폴리이미드(PI) 필름은, 레이저에 의한 홀의 가공성을 더욱 향상시키기 위해서, 레이저 에너지 흡수성 성분을 함유하여도 좋다. 레이저 에너지 흡수성 성분으로서는 카본분, 금속 화합물분, 금속분 또는 흑색 염료 등의 공지의 것을 사용할 수 있다. 또한, 이들은 어느 1종이나 또는 2종 이상을 병용할 수 있다. The polyimide (PI) film which concerns on this invention may contain the laser energy absorptive component in order to further improve the workability of the hole by a laser. As the laser energy absorbing component, known ones such as carbon powder, metal compound powder, metal powder or black dye can be used. Moreover, these can use any 1 type or 2 or more types together.
카본분으로는 퍼니스 블랙(furnace black), 채널 블랙, 아세틸렌 블랙, 서멀 블랙(thermal black), 안트라센블랙 등의 카본 블랙의 분말, 흑연 분말, 또는 이들의 혼합물의 분말 등을 들 수 있다. 금속 화합물분으로는 산화티탄 등의 티타니아류, 산화마그네슘 등의 마그네시아류, 산화철 등의 철 산화물, 산화니켈 등의 니켈 산화물, 이산화망간, 산화아연 등의 아연 산화물, 이산화규소, 산화알루미늄, 희토류 산화물, 산화코발트 등의 코발트 산화물, 산화주석 등의 주석 산화물, 산화텅스텐 등의 텅스텐 산화물, 탄화규소, 탄화텅스텐, 질화붕소, 질화규소, 질화티탄, 질화알루미늄, 황산바륨, 희토류산황화물, 또는 이들의 혼합물의 분말 등을 들 수 있다. 금속분으로서는 은, 알루미늄, 비스머스, 코발트, 구리, 철, 마그네슘, 망간, 몰리브덴, 니켈, 팔라듐, 안티몬, 규소, 주석, 티탄, 바나듐, 텅스텐, 아연, 또는 이들의 합금 또는 혼합물의 분말 등을 들 수 있다. 레이저 에너지 흡수성 성분은 레이저 에너지의 열에 대한 변환 효율이나, 범용성 등의 관점에서, 카본분이 바람직하다. 또한, 레이저 에너지 흡수성 성분의 평균 입경의 상한치는 레이저 에너지를 효율적으로 흡수한다는 관점에서, 0.01 ㎛ 내지 20 ㎛ 범위가 바람직하다.Examples of the carbon powder include powders of carbon black such as furnace black, channel black, acetylene black, thermal black, anthracene black, graphite powder, or a mixture thereof. Examples of the metal compounds include titania such as titanium oxide, magnesia such as magnesium oxide, iron oxide such as iron oxide, nickel oxide such as nickel oxide, zinc oxide such as manganese dioxide and zinc oxide, silicon dioxide, aluminum oxide, and rare earth oxide, Cobalt oxides such as cobalt oxide, tin oxides such as tin oxide, tungsten oxides such as tungsten oxide, silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, barium sulfate, rare earth sulfides, or mixtures thereof Powder and the like. Examples of the metal powder include silver, aluminum, bismuth, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, antimony, silicon, tin, titanium, vanadium, tungsten, zinc, or powders of alloys or mixtures thereof. Can be. Carbon powder is preferable from a viewpoint of the conversion efficiency with respect to heat of laser energy, versatility, etc. as a laser energy absorbent component. The upper limit of the average particle diameter of the laser energy absorbent component is preferably in the range of 0.01 µm to 20 µm from the viewpoint of efficiently absorbing laser energy.
한편, 본 발명에서는 베이스 지지 필름으로서 폴리이미드(PI) 필름을 주로 설명하고 있으나, 그 외 내열성, 가요성, 평활성, 저흡수율을 갖는 수지 필름이라면, 특별히 제한되지 않는다. 일례로, 폴리에틸렌테레프탈레이트(PET) 필름, 폴리에틸렌나프탈레이트 필름, 폴리아미드이미드 필름, 폴리아미드 필름, 폴리테트라플루오로에틸렌 필름, 폴리카보네이트 필름, 또는 이들의 2종 이상이 혼합되는 형태 등의 당업계에 알려진 통상적인 플라스틱 필름을 사용하는 것도 본 발명의 범주에 속한다.In the present invention, a polyimide (PI) film is mainly described as the base support film, but any other resin is not particularly limited as long as it is a resin film having heat resistance, flexibility, smoothness, and low water absorption. For example, the art such as polyethylene terephthalate (PET) film, polyethylene naphthalate film, polyamideimide film, polyamide film, polytetrafluoroethylene film, polycarbonate film, or a form in which two or more thereof are mixed The use of conventional plastic films known in the art also falls within the scope of the present invention.
<에폭시 절연층><Epoxy insulation layer>
본 발명의 절연 수지 시트에 있어서, 상기 에폭시 절연층(20)은 폴리이미드 필름(10)의 일면 또는 양면 상에 각각 형성되며, 폴리이미드 필름, 열가소성 폴리이미드층, 및 동박층과의 접착력을 보다 향상시킬 수 있는 열경화 수지 조성물을 경화시켜 형성된 경화층을 포함한다. In the insulating resin sheet of the present invention, the epoxy insulating layer 20 is formed on one side or both sides of the polyimide film 10, respectively, and the adhesion between the polyimide film, the thermoplastic polyimide layer, and the copper foil layer is better. It contains the hardened layer formed by hardening | curing the thermosetting resin composition which can be improved.
상기 에폭시 절연층 형성용 열경화성 조성물은, 이의 구성 성분으로 다분자지수(PDI)가 낮아 좁은 분자량 분포(narrow dispersity, ND)를 갖는 고당량 제1에폭시 수지, 저당량 제2에폭시 수지 및 경화제와 함께, 최적화된 다이머산 변성 에폭시 수지와 벤조옥사진계 수지를 혼용(混用)하는 것을 특징으로 한다.The thermosetting composition for forming the epoxy insulating layer, together with a high equivalent first epoxy resin, a low equivalent second epoxy resin and a curing agent having a narrow molecular weight distribution (Narrow dispersity, ND) as a component thereof has a low molecular weight index (PDI) And an optimized dimer acid-modified epoxy resin and a benzoxazine-based resin.
다분산지수(Polydispersity Index, PDI)는 고분자의 분자량 분포의 넓이를 나타내는 기준이 되며, 수평균 분자량(Mn)에 대한 무게평균 분자량(Mw)의 비로 정의된다. Polydispersity Index (PDI) is a criterion indicating the extent of the molecular weight distribution of the polymer, and is defined as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
일반적으로 고분자 화합물을 합성할 때 고분자 사슬이 만들어지는데, 고분자는 중합도에 따라 서로 다른 분자량을 갖게 된다. 이러한 분자 분포의 폭을 표시하는 척도가 다분산지수(PDI)로서, PDI가 클수록 분자량 분포가 넓으며, 1에 가까우면 가까울수록 좋은 물성을 가진 단일 분자량의 고분자에 해당된다.In general, when the polymer compound is synthesized, a polymer chain is made, and the polymer has different molecular weights depending on the degree of polymerization. A measure of the width of the molecular distribution is a polydispersity index (PDI). The larger the PDI, the wider the molecular weight distribution. The closer to 1, the closer the polymer is to a single molecular weight polymer having good physical properties.
본 발명에서 사용되는 좁은 분자량 분포(narrow dispersity)를 가진 수지(ND resin)는 상대적으로 높은 고분자량 물질(예, High Mw species)과 저분자량 물질(예, Oligomer)의 함량이 현저히 감소되고, 분자량 분포가 대체로 균일하다. 이러한 ND 수지는 상대적으로 고분자량 물질의 함량이 감소되었기 때문에, 점도가 낮아짐에 따라 코팅 표면에 대한 Wetting성이 우수해진다. 이는 코팅성이 양호하며, 접착력 향상에 기여한다. In the present invention, the resin having a narrow molecular weight distribution (narrow dispersity) (ND resin) is significantly reduced in the content of relatively high high molecular weight material (eg High Mw species) and low molecular weight material (eg Oligomer), The distribution is generally uniform. Since the ND resin has a relatively high content of a high molecular weight material, as the viscosity is lowered, wetting property of the coating surface is excellent. It has good coating properties and contributes to improved adhesion.
또한 동일 온도 조건하에서 수지의 점성 저하 정도가 낮아 충진성이 우수하다. 그리고 Narrow dispersity로 인한 낮은 점도 및 Gel time 증가는 프라이머 접착 동박이 (접착력이 낮은) PPG (또는 제품)와의 안정적인 Press 성형성에 기여한다. 이는 곧 접착력 향상을 의미한다. In addition, under the same temperature conditions, the degree of viscosity decrease of the resin is low, and the filling property is excellent. And low viscosity and gel time increase due to narrow dispersity contribute to stable press formability with primer adhesive copper foil (low adhesive strength) PPG (or product). This means improvement in adhesion.
아울러, 저분자량 물질인 올리고머의 함량 감소로 Tg, Td 특성이 향상되며, 이는 내열 및 신뢰성 향상에 기여한다. 따라서 본 발명에서는 ND 수지를 적용함으로써, 접착 강도 증가는 물론 내열성 및 유리전이온도(Tg) 또한 개선시킬 수 있다. In addition, the Tg, Td properties are improved by reducing the content of oligomers, which are low molecular weight materials, which contributes to improved heat resistance and reliability. Therefore, in the present invention, by applying the ND resin, it is possible to improve not only the adhesive strength but also the heat resistance and the glass transition temperature (Tg).
나아가 본 발명에서는 기존 에폭시 수지 조성물에 벤조옥사진계 수지를 적용함으로써, 접착 강도 증가와 동시에 난연성을 나타낼 수 있다. 즉, 벤조옥사진계 수지는 분자 내 벤조옥사진 환이 개환 중합하여 에폭시 수지와 함께 비할로겐 프라이머 수지층을 형성하는데, 이러한 비할로겐 수지층은 난연성이 우수할 뿐만 아니라, 벤조옥사진 수지의 저유전 특성, 난연성, 저흡습성 및 높은 유리전이온도(Tg)로 인해 우수한 기계 특성을 발휘할 수 있다.Furthermore, in the present invention, by applying the benzoxazine-based resin to the existing epoxy resin composition, the adhesive strength may be increased and flame retardancy may be exhibited. That is, in the benzoxazine resin, the benzoxazine ring in the molecule is ring-opened to form a non-halogen primer resin layer together with the epoxy resin. The non-halogen resin layer not only has excellent flame retardancy, but also the low dielectric properties of the benzoxazine resin. Due to its flame retardancy, low hygroscopicity and high glass transition temperature (Tg), it can exhibit excellent mechanical properties.
전술한 에폭시 절연층 형성용 열경화성 수지 조성물의 바람직한 일례를 들면, (a) 에폭시 당량(EEW)이 400-1,000 g/eq 범위인 고당량 제1에폭시 수지; (b) 에폭시 당량(EEW)이 100-300 g/eq범위인 저당량 제2에폭시 수지; (c) 다이머산 변성 에폭시 수지; (d) 벤조옥사진계 수지; 및 (e) 2종 이상의 경화제를 포함하며, 상기 (a)와 (b) 수지 중 적어도 1종 이상은 다분산지수(PDI)가 2 이하인 ND 에폭시 수지를 포함하여 구성될 수 있다. 여기에, 추가로 경화촉진제를 더 포함할 수 있다. 그러나 이에 특별히 한정되지 않는다.Preferable examples of the above-mentioned thermosetting resin composition for forming an epoxy insulating layer include: (a) a high equivalent first epoxy resin having an epoxy equivalent (EEW) in the range of 400-1,000 g / eq; (b) low equivalent second epoxy resins having an epoxy equivalent (EEW) in the range of 100-300 g / eq; (c) dimer acid-modified epoxy resins; (d) benzoxazine resins; And (e) two or more curing agents, and at least one of the resins (a) and (b) may include an ND epoxy resin having a polydispersity index (PDI) of 2 or less. Here, it may further include a curing accelerator. However, this is not particularly limited.
(a~b) 에폭시 수지(a ~ b) epoxy resin
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물의 첫번째 성분은 에폭시 수지이다. The first component of the thermosetting resin composition for forming an epoxy insulating layer according to the present invention is an epoxy resin.
본 발명의 에폭시 수지는 분자 중에 2개 이상의 에폭시기를 포함하는 것이라면, 특별히 한정되지 않는다. The epoxy resin of the present invention is not particularly limited as long as it contains two or more epoxy groups in the molecule.
사용 가능한 에폭시 수지의 비제한적인 예로는 비스페놀A, 비스페놀F, 크레졸노볼락, 디시클로펜타젠, 트리스페닐메탄, 나프탈렌, 바이페닐형 및 이들의 수소 첨가 에폭시 수지 등이 있는데, 이들은 단독으로 또는 2종 이상이 혼합하여 사용할 수 있다. 특히, 수소 첨가 에폭시 수지를 사용할 경우에는 비스페놀A 또는 바이페닐형 에폭시 수지를 사용하는 것이 바람직하다.Non-limiting examples of the epoxy resins that can be used include bisphenol A, bisphenol F, cresol novolac, dicyclopentazene, trisphenylmethane, naphthalene, biphenyl type and hydrogenated epoxy resins thereof, alone or in combination. More than one species can be used by mixing. In particular, when using a hydrogenated epoxy resin, it is preferable to use bisphenol A or a biphenyl type epoxy resin.
한편, 본 발명에서는 에폭시 수지로서, 당량이 상이한 에폭시 수지를 2종 이상 혼용(混用)하며, 이중 당량이 상이한 에폭시 수지 중 적어도 1종 이상은 다분산지수(PDI)가 2.0 이하인 좁은 분자량 분포의 ND(narrow dispersity) 수지를 사용하는 것을 특징으로 한다. Meanwhile, in the present invention, two or more kinds of epoxy resins having different equivalents are mixed as epoxy resins, and at least one or more of epoxy resins having different equivalents has a polydispersity index (PDI) of ND having a narrow molecular weight distribution of 2.0 or less. (narrow dispersity) It is characterized by using a resin.
상기와 같이 당량이 상이한 에폭시 수지를 혼용하면, 저당량(epoxy equivalent weight, EEW) 에폭시 수지는 낮은 용융점도 및 접착에 있어서 양호한 습윤성을 가지며, 고당량 에폭시 수지(EEW)는 그 자체로 가소성을 가져 동박 또는 인쇄회로기판용 적층체의 벤딩성(굽힘 가공성) 및 펀칭성 등과 같은 성형 특성을 보다 더 향상시킬 수 있다. 따라서 본 발명에서와 같이 중합도 (n) 또는 당량차가 있는 에폭시 수지를 혼용하는 경우, 좁은 분자량 분포를 갖는 ND 수지의 사용으로 인한 효과와 더불어, 높은 접착성, 탁월한 내습 신뢰도, 성형성 등을 나타낼 수 있다. When epoxy resins having different equivalents are mixed as described above, an epoxy equivalent weight (EEW) epoxy resin has a good melt property at low melt viscosity and adhesion, and a high equivalent epoxy resin (EEW) has plasticity in itself. It is possible to further improve molding characteristics such as bending property (bending workability) and punching property of the copper foil or laminate for printed circuit board. Therefore, when an epoxy resin having a degree of polymerization (n) or an equivalent difference is mixed as in the present invention, in addition to the effect due to the use of an ND resin having a narrow molecular weight distribution, high adhesiveness, excellent moisture resistance reliability, moldability, and the like can be exhibited. have.
이에 따라, 본 발명에서는 에폭시 수지로서, 에폭시 당량이 약 400 ~ 1000g/eq인 고당량 제1에폭시 수지와 에폭시 당량이 약 100 ~ 300 g/eq인 저당량 제2에폭시 수지를 혼합하여 사용하는 것이 바람직하다. 이때, 제1에폭시 수지와 제2에폭시 수지는 각각 단독으로 사용되거나 또는 전술한 당량 범위를 갖는 2종 이상의 수지를 혼용될 수 있다. Accordingly, in the present invention, it is preferable to mix and use a high equivalent first epoxy resin having an epoxy equivalent of about 400 to 1000 g / eq and a low equivalent second epoxy resin having an epoxy equivalent of about 100 to 300 g / eq as the epoxy resin. desirable. In this case, the first epoxy resin and the second epoxy resin may be used alone, or two or more kinds of resins having the aforementioned equivalent ranges may be used.
상기 제1에폭시 수지의 중량 평균 분자량(Mw)이 1,000 내지 3,000 범위이며, 제2에폭시 수지의 중량 평균 분자량(Mw)이 500 내지 2,000 범위인 것이 바람직하다. The weight average molecular weight (Mw) of the first epoxy resin is in the range of 1,000 to 3,000, and the weight average molecular weight (Mw) of the second epoxy resin is preferably in the range of 500 to 2,000.
또한, 본 발명의 에폭시 수지에 있어서, 상기 제1에폭시 수지와 제2에폭시 수지의 사용 비율은 50~90 : 10~50 중량 비율일 수 있으며, 바람직하게는 50~70 : 30~50 범위일 수 있다.In addition, in the epoxy resin of the present invention, the use ratio of the first epoxy resin and the second epoxy resin may be 50 to 90: 10 to 50 weight ratio, preferably 50 to 70: 30 to 50 range. have.
상기 제1에폭시 수지, 제2에폭시 수지, 또는 이들 모두는 다분산지수(PDI)가 2 이하일 수 있으며, 바람직하게는 1 내지 1.7이며, 보다 바람직하게는 1.1 내지 1.5 범위이다. 또한 상기 에폭시 수지의 유리전이온도 (Tg)는 높을수록 바람직하다. 일례로 80 내지 250℃ 범위일 수 있으며, 또는 90 내지 200℃일 수 있다. The first epoxy resin, the second epoxy resin, or both thereof may have a polydispersity index (PDI) of 2 or less, preferably 1 to 1.7, and more preferably 1.1 to 1.5. In addition, the higher the glass transition temperature (T g ) of the epoxy resin is, the more preferable. For example, it may range from 80 to 250 ° C, or may be from 90 to 200 ° C.
전술한 제1에폭시 수지와 제2에폭시 수지 이외에, 본 발명에서는 당 업계에 알려진 통상적인 에폭시 수지를 더 포함할 수 있으며, 이의 성분, 함량 등에 특별히 한정되지 않는다. In addition to the first epoxy resin and the second epoxy resin described above, the present invention may further include a conventional epoxy resin known in the art, and is not particularly limited thereto.
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물에서, 상기 에폭시 수지의 함량은 전체 수지 조성물 100 중량부 대비 20 내지 70 중량부 범위일 수 있으며, 바람직하게는 30 내지 60 중량부 범위이며, 더욱 바람직하게는 40 내지 60 중량부 범위일 수 있다. 에폭시 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.In the thermosetting resin composition for forming an epoxy insulating layer according to the present invention, the content of the epoxy resin may be in the range of 20 to 70 parts by weight with respect to 100 parts by weight of the total resin composition, preferably in the range of 30 to 60 parts by weight, more preferably. Preferably from 40 to 60 parts by weight. When the content of the epoxy resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
(c) 다이머산 변성 에폭시 수지(c) dimer acid-modified epoxy resin
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물의 세번째 성분은 다이머산 변성 에폭시 수지이다. The third component of the thermosetting resin composition for forming an epoxy insulating layer according to the present invention is a dimer acid-modified epoxy resin.
상기 다이머산 변성 에폭시 수지는 경화 반응에 의해 접착제 조성물을 형성할 때, 다이머산 변성 부분의 구조적 요인에 의해 가요성을 부여한 경화물을 형성하기 쉽고, 접착제층(절연체)에 엘라스토머적인 성질을 부여함으로써 금속 베이스인 동박과 접착제층(절연체)의 밀착성, 내열성 및 내습특성을 향상시킬 수 있다. When the dimer acid-modified epoxy resin forms an adhesive composition by a curing reaction, it is easy to form a cured product given flexibility by structural factors of the dimer acid-modified portion, and by imparting elastomeric properties to the adhesive layer (insulator) The adhesiveness, heat resistance, and moisture resistance of the copper base which is a metal base, and an adhesive bond layer (insulator) can be improved.
사용 가능한 다이머산 변성 에폭시 수지의 비제한적인 예로는 KSR-200(국도화학), SER-200(신아 T&C) 등이 있는데, 이들은 단독으로 사용하거나 또는 2종 이상이 혼합하여 사용될 수 있다. Non-limiting examples of the dimer acid-modified epoxy resin that can be used are KSR-200 (Kukdo Chemical), SER-200 (Shin-A T & C), etc. These may be used alone or in combination of two or more.
바람직하게는, 다이머산 변성 에폭시 수지의 예로는 하기 화학식 1로 표시되는 에폭시 수지가 있는데, 이에 제한되지 않는다.Preferably, examples of the dimer acid-modified epoxy resin include an epoxy resin represented by the following Chemical Formula 1, but are not limited thereto.
화학식 1
Figure PCTKR2014012815-appb-C000001
Formula 1
Figure PCTKR2014012815-appb-C000001
이러한 다이머산 변성 에폭시 수지는 변성율이 약 5 내지 30%일 경우, 펀칭 가공시 크랙 및 박리 현상이 발생되지 않으면서, 내열성 및 내습성이 보다 더 향상될 수 있어 바람직하다. When the dimer acid-modified epoxy resin has a modification rate of about 5 to 30%, cracking and peeling phenomena do not occur during punching processing, and thus heat resistance and moisture resistance may be further improved.
또한, 다이머산 변성 에폭시 수지의 에폭시 당량 및 점도는 특별히 제한되지 않으나, 에폭시 당량이 약 100 내지 500 g/eq이고, 점도가 약 5,000 내지 30,000 cps일 경우, 응집 파괴가 일어나지 않으면서, 벤딩성(굽힘 가공성) 및 펀칭 가공성 등의 성형성과 내열성 및 내습성이 보다 더 향상될 수 있다.In addition, the epoxy equivalent and viscosity of the dimer acid-modified epoxy resin are not particularly limited, but when the epoxy equivalent is about 100 to 500 g / eq and the viscosity is about 5,000 to 30,000 cps, the cohesive breakage does not occur, Formability such as bending workability) and punching workability and heat resistance and moisture resistance can be further improved.
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물에서, 상기 다이머산 변성 에폭시 수지의 함량은 에폭시 수지 및 경화제의 혼합물 100 중량부 기준으로 약 5 내지 40 중량부 범위일 수 있으며, 바람직하게는 5 내지 30 중량부 범위일 수 있다. 다이머산 변성 에폭시 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 성형 가공성, 내열성, 접착성 등이 양호하다. In the thermosetting resin composition for forming an epoxy insulating layer according to the present invention, the content of the dimer acid-modified epoxy resin may be in the range of about 5 to 40 parts by weight based on 100 parts by weight of the mixture of the epoxy resin and the curing agent, preferably 5 to It may range from 30 parts by weight. When the content of the dimer acid-modified epoxy resin falls within the above-mentioned range, molding processability, heat resistance, adhesiveness and the like of the resin composition are good.
(d) 벤조옥사진계 수지(d) Benzoxazine Resin
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물의 구성 성분 중 다른 하나는 벤조옥사진계 수지이다.The other one of the components of the thermosetting resin composition for epoxy insulating layer formation which concerns on this invention is benzoxazine type resin.
벤조옥사진계 수지는 벤조옥사진 고리를 가지는 화합물을 주성분으로 하는 열경화성 수지로서, 벤조옥사진 고리를 가지고 벤조옥사진 고리의 개환반응에 의해 경화하는 수지라면 특별히 한정되지 않는다.The benzoxazine resin is a thermosetting resin mainly containing a compound having a benzoxazine ring, and is not particularly limited as long as it is a resin having a benzoxazine ring and cured by the ring-opening reaction of the benzoxazine ring.
상기 벤조옥사진계 수지는 옥사진과 벤젠 고리의 축합물이며, 일반적으로, 페놀류, 아민류, 포름알데히드를 반응시킴으로써 합성될 수 있다. 본 발명에서는, 분자 내 단일 벤조옥사진 고리(환)을 갖는 화합물, 양 말단에 벤조옥사진 구조를 갖는 화합물, 또는 분자 내에 복수의 벤조옥사진 고리를 갖는 다가 옥사진 화합물을 사용할 수 있다. The benzoxazine resin is a condensate of an oxazine and a benzene ring, and generally can be synthesized by reacting phenols, amines, and formaldehyde. In the present invention, a compound having a single benzoxazine ring (ring) in a molecule, a compound having a benzoxazine structure at both ends, or a polyvalent oxazine compound having a plurality of benzoxazine rings in a molecule can be used.
본 발명에서 벤조옥사진계 수지는 가열에 의해 개환 중합 및 경화되어 내열성, 난연성이 우수한 경화물을 제공할 수 있다. 또한, 에폭시 수지와도 반응할 수 있어 가교 밀도가 높은 난연성, 인성이 우수한 경화물을 형성할 수 있고, 인 함유 에폭시 수지와의 반응 경화물에서는, 인을 함유한 에폭시 수지와 벤조옥사진 폴리머의 가교체를 형성하는 것이 가능해져, 난연성이 우수한 경화물을 형성할 수 있다.In the present invention, the benzoxazine resin may be ring-opened and cured by heating to provide a cured product having excellent heat resistance and flame resistance. Moreover, it can also react with an epoxy resin and can form hardened | cured material excellent in flame retardancy and toughness with high crosslinking density, and reaction hardened | cured material with a phosphorus containing epoxy resin WHEREIN: The phosphorus containing epoxy resin and benzoxazine polymer It becomes possible to form a crosslinked body and can form the hardened | cured material excellent in flame retardancy.
본 발명에서는 폴리올(Polyol) 함량이 80% 이상인 벤조옥사진을 사용하는 것이 바람직하다. 또한 다양한 구조의 벤조옥사진계 수지를 적용할 수 있으나, BPF형 벤조옥사진계 수지를 사용하는 것이 흡습성 및 반응성이 우수하여 바람직하다. In the present invention, it is preferable to use benzoxazine having a polyol content of 80% or more. In addition, although benzoxazine-based resins of various structures can be applied, it is preferable to use BPF-type benzoxazine-based resins because of excellent hygroscopicity and reactivity.
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물에서, 상기 벤조옥사진계 수지의 함량은 에폭시 수지와 경화제의 혼합물 100 중량부를 기준으로 5 내지 50 중량부 범위일 수 있으며, 바람직하게는 10 내지 40 중량부 범위일 수 있다. 벤조옥사진계 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 난연성, 저흡습성, 및 접착력이 양호하다. In the thermosetting resin composition for forming an epoxy insulating layer according to the present invention, the content of the benzoxazine-based resin may be in the range of 5 to 50 parts by weight, preferably 10 to 40 parts by weight, based on 100 parts by weight of the mixture of the epoxy resin and the curing agent. It may be a minor range. When the content of the benzoxazine resin falls within the above range, the curability, flame retardancy, low hygroscopicity, and adhesion of the resin composition are good.
(e) 경화제(e) curing agent
본 발명에 따른 에폭시 절연층 형성용 열경화성 수지 조성물의 구성 성분 중 다른 하나는 당 업계에 통상적으로 사용되는 경화제이다.The other of the components of the thermosetting resin composition for forming an epoxy insulating layer according to the present invention is a curing agent commonly used in the art.
상기 경화제는 에폭시 수지의 종류에 따라 적절하게 선택하여 사용할 수 있으며, 에폭시 수지의 경화제로서 통상 사용되는 것이라면 특별히 제한되지 않는다.The curing agent may be appropriately selected and used depending on the type of epoxy resin, and is not particularly limited as long as it is usually used as a curing agent for epoxy resins.
본 발명에서는 경화제로서, 벤조옥사진계 수지의 개환반응에 참여하는 제1경화제; 및 에폭시 수지와 경화반응을 진행하는 제2경화제를 혼용하는 것이 바람직하다.In the present invention, as a curing agent, a first curing agent participating in the ring-opening reaction of the benzoxazine resin; And it is preferable to mix with the epoxy resin and the 2nd hardening agent which advances hardening reaction.
여기서, 제1경화제의 비제한적인 예로는, 페놀노볼락 경화제, 이미다졸, 아민계 경화제 등이 있으며, 그 구조에 특별한 제한이 없다. 이중에서 페놀노볼락계 경화제가 내열성 및 접착성을 더 향상시킬 수 있어 바람직하다.Here, non-limiting examples of the first curing agent include a phenol novolak curing agent, an imidazole, an amine curing agent, and the like, and the structure thereof is not particularly limited. Of these, phenol novolak-based curing agents are preferred because they can further improve heat resistance and adhesion.
또한 상기 제2경화제의 비제한적인 예로는 크레졸노볼락, 비스페놀A노볼락, 나프탈렌형, 아민경화제, 아미노트리아진 노볼락 등이 있으며, 그 구조에 특별한 제한이 없다. 이들은 단독으로 사용될 수 있으며, 또는 2종 이상이 혼합하여 사용될 수 있다. Further non-limiting examples of the second hardener include cresol novolac, bisphenol A novolac, naphthalene type, amine hardener, aminotriazine novolac, and the like, and the structure thereof is not particularly limited. These may be used alone or in combination of two or more thereof.
상기 제1경화제와 제2경화제 중 적어도 하나 이상은 다분산지수(PDI)가 2 이하인 것을 사용하는 것이 바람직하며, 보다 바람직하게는 1 내지 1.7이며, 더욱 바람직하게는 1.1 내지 1.5 범위이다. 이때 제1경화제 또는 제2경화제가 PDI가 2 이하일 수 있으며, 또는 이들 모두가 PDI가 2 이하인 것을 사용할 수 있다. At least one of the first and second curing agents preferably has a polydispersity index (PDI) of 2 or less, more preferably 1 to 1.7, still more preferably 1.1 to 1.5. In this case, the first hardener or the second hardener may have a PDI of 2 or less, or both of them may use a PDI of 2 or less.
상기 경화제의 함량은 에폭시 수지의 함량에 따라 적절하게 조절될 수 있다. 다만, 내열성 및 접착 강도를 보다 더 향상시키면서, 절연층의 경질화로 인해 벤딩성(굽힘 가공성) 및 펀칭 가공성 등과 같은 성형 특성이 저하되는 것을 방지하기 위해, 경화제와 에폭시 수지를 20 ~ 50 : 50 ~ 80 중량 비율로 혼합하여 사용하는 것이 바람직하다.The content of the curing agent may be appropriately adjusted according to the content of the epoxy resin. However, in order to further improve the heat resistance and the adhesive strength, in order to prevent deterioration of molding characteristics such as bending property (bending workability) and punching workability due to the hardening of the insulating layer, the curing agent and the epoxy resin may be reduced from 20 to 50:50 to 50%. It is preferable to mix and use in 80 weight ratio.
(f) 경화 촉진제 (f) curing accelerator
본 발명에서는, 필요에 따라 당 업계에 알려진 통상적인 경화촉진제를 더 포함할 수 있다.In the present invention, if necessary, it may further include a conventional curing accelerator known in the art.
이때 경화촉진제는 에폭시 수지 및 경화제의 종류에 따라 적절하게 선택하여 사용할 수 있다. 사용 가능한 경화촉진제의 예로는 아민계, 페놀계, 이미다졸계 경화촉진제 등이 있으며, 보다 구체예로는 삼불화붕소의 아민 착체, 이미다졸 유도체, 무수 프탈산 및 무수 트리멜리트산 등의 유기산 등이 있다. In this case, the curing accelerator may be appropriately selected and used depending on the type of the epoxy resin and the curing agent. Examples of curing accelerators that can be used include amine-based, phenol-based, and imidazole-based curing accelerators, and more specific examples thereof include amine complexes of boron trifluoride, imidazole derivatives, organic acids such as phthalic anhydride, and trimellitic anhydride. have.
상기 경화촉진제의 바람직한 비제한적인 예로는, 이미다졸 유도체 경화촉진제가 있고, 구체적으로 1-메틸이미다졸, 2-메틸이미다졸, 2-에틸 4-메틸 이미다졸, 2-페닐이미다졸, 2-페닐4-메틸 이미다졸, 이들의 시아노에틸레이션 유도체, 카르복실산 유도체, 히드록시메틸기 유도체 등이 있는데, 이에 한정되지 않는다. 이들 경화 촉진제는 1종 단독으로 이용할 수 있으며 또는 2종 이상을 병용할 수도 있다. Preferred non-limiting examples of the curing accelerators include imidazole derivative curing accelerators, specifically 1-methylimidazole, 2-methylimidazole, 2-ethyl 4-methyl imidazole, 2-phenylimidazole. , 2-phenyl4-methyl imidazole, cyanoethylation derivatives thereof, carboxylic acid derivatives, hydroxymethyl group derivatives, and the like, but are not limited thereto. These hardening accelerators can be used individually by 1 type, or can also use 2 or more types together.
상기 경화촉진제의 함량은 에폭시 수지 및 경화제의 혼합물 100 중량부를 기준으로 약 0.005 내지 0.05 중량부 범위일 수 있으며, 바람직하게는 0.01 내지 0.04 범위일 수 있다.The amount of the curing accelerator may be in the range of about 0.005 to 0.05 parts by weight, preferably 0.01 to 0.04, based on 100 parts by weight of the mixture of the epoxy resin and the curing agent.
한편, 본 발명의 에폭시 절연층 형성용 열경화성 수지 조성물은, 상기 수지 조성물의 고유 특성을 해하지 않는 한, 필요에 따라 당 업계에 일반적으로 알려진 무기물 필러, 난연제, 상기에서 기재되지 않은 다른 열경화성 수지나 열가소성 수지 및 이들의 올리고머와 같은 다양한 고분자, 고체상 고무 입자 또는 자외선 흡수제, 항산화제, 중합개시제, 염료, 안료, 분산제, 증점제, 레벨링제 등과 같은 기타 첨가제 등을 추가로 포함할 수 있다. 일례로, 유기인계 난연제, 유기계 질소 함유 인 화합물, 질소 화합물, 실리콘계 난연제, 금속 수산화물 등의 난연제; 실리콘계 파우더, 나일론 파우더, 불소수지 파우더 등의 유기충전제, 오르벤, 벤톤 등의 증점제; 실리콘계, 불소수지계 등의 고분자계 소포제 또는 레벨링제; 이미다졸계, 티아졸계, 트리아졸계, 실란계 커플링제 등의 밀착성 부여제; 프탈로시아닌, 카본 블랙 등이 착색제 등을 들 수 있다. On the other hand, the thermosetting resin composition for forming the epoxy insulating layer of the present invention, inorganic fillers, flame retardants, and other thermosetting resins and thermoplastics not generally described above, which are generally known in the art, as long as they do not impair the intrinsic properties of the resin composition. Various polymers such as resins and oligomers thereof, solid rubber particles or other additives such as UV absorbers, antioxidants, polymerization initiators, dyes, pigments, dispersants, thickeners, leveling agents, and the like may be further included. Examples include flame retardants such as organophosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, and metal hydroxides; Organic fillers such as silicone powder, nylon powder, and fluororesin powder, and thickeners such as orbene and benton; Polymeric antifoaming agents or leveling agents such as silicone-based and fluorine-based resins; Adhesion imparting agents such as imidazole series, thiazole series, triazole series, and silane coupling agents; Phthalocyanine, carbon black, etc. can be mentioned a coloring agent.
상기 에폭시 절연층 형성용 열경화성 수지 조성물에는 경화 후의 수지 조성물에 적당한 가요성을 부여하는 것 등을 목적으로 하여, 열가소성 수지를 배합할 수 있다. 이러한 열가소성 수지의 예를 들면, 페녹시 수지, 폴리비닐아세탈 수지, 폴리이미드, 폴리아미드이미드, 폴리에테르설폰, 폴리설폰 등을 들 수 있다. 이들의 열가소성 수지는 어느 1종만을 단독으로 사용하여도 좋고, 2종 이상을 병용하여도 좋다.A thermoplastic resin can be mix | blended with the said thermosetting resin composition for epoxy insulation layer formation for the purpose of providing suitable flexibility to the resin composition after hardening, etc. Examples of such thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyimides, polyamideimide, polyethersulfone, polysulfone and the like. Any one of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
본 발명에 따른 에폭시 절연층(20)은, 폴리이미드 필름(10)의 일면 또는 양면에 에폭시 절연층 형성용 열경화성 수지 조성물을 직접 코팅하여 형성하는 것이다.The epoxy insulating layer 20 according to the present invention is formed by directly coating a thermosetting resin composition for forming an epoxy insulating layer on one or both surfaces of the polyimide film 10.
전술한 성분을 포함하여 형성되는 에폭시 절연층(20)의 두께는 특별한 제한이 없으며, 일례로 1 내지 50 ㎛ 범위일 수 있으며, 바람직하게는 10 내지 30 ㎛ 범위일 수 있다. The thickness of the epoxy insulating layer 20 formed by including the above-described components is not particularly limited, and may be, for example, in the range of 1 to 50 μm, and preferably in the range of 10 to 30 μm.
또한 상기 에폭시 절연층(20)은 벤조옥사진 고리와 폴리이미드 표면의 댕글링본드(Dangling Bond)의 화학적 결합에 의해 폴리이미드 필름(10)과 열가소성 폴리이미드층(30)과의 우수한 접착력을 발휘할 수 있다. 수지 조성물의 성분인 다이머산 변성 에폭시 수지 역시 분자 구조에 따른 엘라스터머적 성질로부터 폴리이미드 필름(10)과 열가소성 폴리이미드층(30)과의 탄성을 부여함으로써 박리 강도를 높일 수 있다. 일례로 폴리이미드 필름(10)과의 접착력은 바람직하게는 0.7 내지 2.0 kgf/cm2 범위를 나타낼 수 있다. In addition, the epoxy insulating layer 20 may exhibit excellent adhesion between the polyimide film 10 and the thermoplastic polyimide layer 30 by chemical bonding of a benzoxazine ring and a dangling bond on the polyimide surface. Can be. The dimer acid-modified epoxy resin which is a component of the resin composition can also increase the peel strength by imparting elasticity of the polyimide film 10 and the thermoplastic polyimide layer 30 from the elastomeric properties according to the molecular structure. In one example, the adhesion with the polyimide film 10 may preferably range from 0.7 to 2.0 kgf / cm 2 .
<열가소성 폴리이미드층><Thermoplastic polyimide layer>
본 발명의 절연 수지 시트에 있어서, 상기 열가소성 폴리이미드층(30)은 에폭시 절연층(20)의 표면, 또는 상하면 상에 형성되는 것으로서, 표면에 소정의 조도면이 형성되어 있으므로, 이후 형성되는 동박 도금층과의 접착성이 향상된다. In the insulating resin sheet of the present invention, the thermoplastic polyimide layer 30 is formed on the surface of the epoxy insulating layer 20, or on the upper and lower surfaces thereof, and a predetermined roughness surface is formed on the surface thereof. Adhesion with is improved.
상기 열가소성 폴리이미드(TPI)층은 폴리이미드, 폴리아미드, 폴리아미드이미드, 및 폴리아믹산 수지로 구성된 군으로부터 선택되는 1종 이상의 수지를 포함하는 열가소성 폴리이미드층 형성용 수지 조성물을 액상 도포한 후 경화하여 형성된 것을 포함한다. 또는 상용화된 용해성 폴리이미드(soluble PI)를 사용할 수 있다.The thermoplastic polyimide (TPI) layer is cured after liquid coating a resin composition for forming a thermoplastic polyimide layer comprising at least one resin selected from the group consisting of polyimide, polyamide, polyamideimide, and polyamic acid resin. It includes that formed. Or commercially available soluble polyimide (soluble PI).
이때, 상기 열가소성 폴리이미드층 형성용 조성물은, 폴리이미드(PI)계 제1수지와 계면활성제로 구성될 수 있으며, 필요에 따라 에폭시 수지 등의 제2수지를 더 포함할 수 있다.In this case, the composition for forming a thermoplastic polyimide layer may be composed of a polyimide (PI) -based first resin and a surfactant, and may further include a second resin such as an epoxy resin as necessary.
상기 폴리이미드(PI)는 일반적으로 방향족의 이무수물 및 방향족 디아민 (또는 방향족 디이소시아네이트)을 축중합하여 합성되며, 상기 폴리이미드는 열경화형 폴리이미드가 바람직하다. 사용 가능한 폴리이미드계 수지의 비제한적인 예로는, 폴리이미드, 폴리아마이드이미드, 또는 이들의 복합 수지 등이 있다.The polyimide (PI) is generally synthesized by condensation polymerization of an aromatic dianhydride and an aromatic diamine (or aromatic diisocyanate), and the polyimide is preferably a thermosetting polyimide. Non-limiting examples of the polyimide resin that can be used include polyimide, polyamideimide, composite resins thereof and the like.
여기서, 상기 폴리이미드계 수지는 당 업계에 알려진 통상적인 디안하이드라이드와 디아민의 이미드화 반응을 통하여 얻어지는 폴리아믹산 바니쉬를 이미드화 반응하여 제조될 수 있다. Herein, the polyimide-based resin may be prepared by imidization of a polyamic acid varnish obtained through imidation reaction of a typical dianhydride and diamine known in the art.
본 발명에 따른 열가소성 폴리이미드층 형성용 수지 조성물에서, 상기 폴리이미드계 수지의 함량은 전체 수지 조성물 100 중량부 대비 70 내지 100 중량부 범위일 수 있으며, 바람직하게는 80 내지 100 중량부 범위일 수 있다. 폴리이미드계 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.In the resin composition for forming a thermoplastic polyimide layer according to the present invention, the content of the polyimide-based resin may range from 70 to 100 parts by weight with respect to 100 parts by weight of the total resin composition, preferably 80 to 100 parts by weight. have. When the content of the polyimide resin falls within the above-mentioned range, the curability, molding processability, and adhesion of the resin composition are good.
본 발명의 열가소성 폴리이미드층 형성용 수지 조성물에서, 계면활성제는 당 업계에 알려진 통상적인 계면활성제 성분을 제한 없이 사용할 수 있다. In the resin composition for forming a thermoplastic polyimide layer of the present invention, the surfactant can be used without limitation to conventional surfactant components known in the art.
상기 계면활성제는 상기 열가소성 폴리이미드층 형성용 수지 조성물 바니쉬의 표면 장력을 조절해주어, 코팅 기재인 동박에 대한 코팅성과 도포성, 균일성 등을 향상시키는 작용을 갖는 성분이다. The said surfactant is a component which has the effect of adjusting the surface tension of the said resin composition varnish for thermoplastic polyimide layer formation, and improving coating property, coating property, uniformity, etc. with respect to copper foil which is a coating base material.
사용 가능한 계면활성제의 비제한적인 예로는, 불소계 계면활성제, 실리콘계 계면활성제, 비이온계 계면활성제 또는 이들의 1종 이상 혼합 형태 등이 있다.Non-limiting examples of the surfactants that can be used include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants or mixtures of one or more thereof.
본 발명에 따른 열가소성 폴리이미드층 형성용 수지 조성물에서, 상기 계면활성제의 함량은 전체 수지 조성물 100 중량부 대비 0.001 내지 0.1 중량부 범위일 수 있으며, 바람직하게는 0.001 내지 0.05 중량부 범위일 수 있다. 계면활성제의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 기재에 대한 코팅성 및 도포성, 균일성이 양호하다.In the resin composition for forming a thermoplastic polyimide layer according to the present invention, the content of the surfactant may be in the range of 0.001 to 0.1 parts by weight based on 100 parts by weight of the total resin composition, and preferably in the range of 0.001 to 0.05 parts by weight. When the content of the surfactant falls within the above-mentioned range, the coating property, the coatability, and the uniformity of the resin composition on the substrate are good.
본 발명에 따른 열가소성 폴리이미드층 형성용 수지 조성물은, 필요에 따라 에폭시 수지 등의 제2수지를 포함할 수 있다. The resin composition for thermoplastic polyimide layer formation which concerns on this invention can contain 2nd resin, such as an epoxy resin, as needed.
상기 에폭시 수지는 당 업계에 알려진 통상적인 에폭시 수지를 제한 없이 사용할 수 있으며, 전술한 에폭시 절연층 형성용 조성물에 사용되는 성분과 동일하거나 또는 상이할 수 있다. The epoxy resin may be used without limitation conventional epoxy resin known in the art, and may be the same as or different from the components used in the composition for forming the epoxy insulating layer described above.
본 발명에 따른 열가소성 폴리이미드층 형성용 수지 조성물에서, 상기 에폭시 수지의 함량은 전체 수지 조성물 100 중량부 대비 0 내지 30 중량부 범위일 수 있으며, 바람직하게는 0 내지 20 중량부 범위일 수 있다. 에폭시 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.In the resin composition for forming a thermoplastic polyimide layer according to the present invention, the content of the epoxy resin may be in the range of 0 to 30 parts by weight based on 100 parts by weight of the total resin composition, and preferably in the range of 0 to 20 parts by weight. When the content of the epoxy resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
전술한 성분 이외에, 본 발명의 열가소성 폴리이미드층 형성용 수지 조성물은 무기물 필러 등의 첨가제를 추가로 포함할 수 있다. 사용 가능한 무기물 필러로는 실리카, 알루미나, 수산화알미늄, 탄산칼슘, 클레이, 활석, 질화규소, 질화붕소, 산화티탄, 티탄산바륨, 또는 티탄산염 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. In addition to the above components, the resin composition for forming a thermoplastic polyimide layer of the present invention may further include an additive such as an inorganic filler. Examples of the inorganic filler that can be used include silica, alumina, aluminum hydroxide, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, or titanate, but are not limited thereto.
상기 열가소성 폴리이미드층 형성용 수지 조성물에는 경화 후의 수지 조성물에 적당한 가요성을 부여하는 것 등을 목적으로 하여, 열가소성 수지를 배합할 수 있다. 이러한 열가소성 수지의 예를 들면, 페녹시 수지, 폴리비닐아세탈 수지, 폴리에테르설폰, 폴리설폰 등을 들 수 있다. 이들의 열가소성 수지는 어느 1종만을 단독으로 사용하여도 좋고, 2종 이상을 병용하여도 좋다.A thermoplastic resin can be mix | blended with the said resin composition for thermoplastic polyimide layer formation for the purpose of providing suitable flexibility to the resin composition after hardening, etc. Examples of such thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyethersulfones, polysulfones, and the like. Any one of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
본 발명에 따른 열가소성 폴리이미드층(30)은, 에폭시 절연층(20)의 표면 상에 전술한 열가소성 폴리이미드층 형성용 조성물을 직접 코팅하고 건조한 후, 동박의 표면 조도면을 전사시켜 소정의 표면 조도면을 형성함으로써 제조될 수 있다. In the thermoplastic polyimide layer 30 according to the present invention, the above-described composition for forming a thermoplastic polyimide layer is directly coated on the surface of the epoxy insulating layer 20 and dried, and then the surface roughness surface of the copper foil is transferred to a predetermined surface roughness surface. It can be prepared by forming a.
이때 열가소성 폴리이미드층(30)의 표면 조도(Ra)는 0.2 ㎛ 내지 3.0 ㎛ 범위일 수 있다. 상기 전사하는 방법은 특별히 제한되지 않으며, 일례로 표면에 소정의 조도면이 형성된 동박과 열가소성 폴리이미드층을 적층한 후 가압함으로써 이루어질 수 있다. In this case, the surface roughness Ra of the thermoplastic polyimide layer 30 may range from 0.2 μm to 3.0 μm. The method of transferring is not particularly limited, and for example, may be achieved by laminating a copper foil and a thermoplastic polyimide layer having a predetermined roughness surface on a surface thereof and then pressing the same.
또한 본 발명에 따른 절연 수지 시트의 물리적 강성, 내열흡습성, 접착력 및 박형화 등을 고려할 때, 상기 열가소성 폴리이미드층(30)의 두께는 1 내지 50 ㎛ 범위일 수 있으며, 바람직하게는 10 내지 30 ㎛ 범위일 수 있다. In addition, in consideration of physical rigidity, heat absorption and moisture resistance, adhesion, and thinning of the insulating resin sheet according to the present invention, the thickness of the thermoplastic polyimide layer 30 may be in a range of 1 to 50 μm, preferably 10 to 30 μm. It can be a range.
본 발명에 따른 절연 수지 시트에서, 에폭시 절연층(20)과 열가소성 폴리이미드층(30)의 두께의 합은 전체 두께의 1 내지 30% 범위일 수 있으며, 바람직하게는 1 내지 20% 범위일 수 있다. In the insulating resin sheet according to the present invention, the sum of the thicknesses of the epoxy insulating layer 20 and the thermoplastic polyimide layer 30 may be in the range of 1 to 30% of the total thickness, and preferably in the range of 1 to 20%. have.
하기 도 3에 도시된 바와 같이, 본 발명에 따른 절연 수지 시트는 상기 열가소성 폴리이미드층(30) 상에 지지체층(40)을 더 포함할 수 있다. As shown in FIG. 3, the insulating resin sheet according to the present invention may further include a support layer 40 on the thermoplastic polyimide layer 30.
상기 지지체로는 플라스틱 필름을 사용할 수 있으며, 이형지나 동박, 알루미늄박 등의 금속박 등도 지지체로서 사용될 수 있다. 사용 가능한 플라스틱 필름의 예로는 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트 등의 폴리에스테르; 폴리카보네이트, 아크릴 수지, 환상 폴리올레핀, 트리아세틸셀룰로스, 폴리에테르설파이드, 폴리에테르케톤, 폴리이미드 등이 있다. A plastic film may be used as the support, and a metal foil such as a release paper, a copper foil, or an aluminum foil may also be used as the support. Examples of the plastic film that can be used include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate; Polycarbonate, acrylic resin, cyclic polyolefin, triacetyl cellulose, polyether sulfide, polyether ketone, polyimide and the like.
이때 지지체로서 플라스틱 필름을 사용하는 경우, 용이하게 박리 가능 하기 위해서, 폴리이미드층(30)과 지지체층(40) 사이에 이형제로 처리된 이형층을 더 포함하는 것이 바람직하다. 상기 이형층에 사용되는 이형제로는 열가소성 폴리이미드층이 지지체로부터 온전히 박리 가능하다면, 이의 성분에 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 이형제 성분을 사용할 수 있다. 이의 비제한적인 예로는, 에폭시 기반 이형제, 불소 수지로 이루어진 이형제, 실리콘계 이형제, 알키드 수지계 이형제, 수용성 고분자 등을 들 수 있다. At this time, when using a plastic film as the support, in order to be easily peeled, it is preferable to further include a release layer treated with a release agent between the polyimide layer 30 and the support layer 40. As the release agent used in the release layer, if the thermoplastic polyimide layer is completely peelable from the support, it is not particularly limited to its components, and conventional release agent components known in the art may be used. Non-limiting examples thereof include an epoxy-based release agent, a release agent made of a fluororesin, a silicone release agent, an alkyd resin release agent, a water-soluble polymer, and the like.
상기 플라스틱 필름은 매트 처리, 코로나 처리된 것일 수 있으며, 상기 처리면 위에 이형층을 형성할 수도 있다.The plastic film may be matt, corona treated, or may form a release layer on the treated surface.
상기 지지체층(40)의 두께는 특별히 한정되지 않지만, 10 내지 150 ㎛ 범위일 수 있으며, 바람직하게는 25 내지 50 ㎛의 범위일 수 있다. The thickness of the support layer 40 is not particularly limited, but may be in the range of 10 to 150 μm, and preferably in the range of 25 to 50 μm.
본 발명에 따른 바람직한 일례에 있어서, 상기 절연 수지 시트의 총 두께는 7 내지 200 ㎛ 범위일 수 있으며, 바람직하게는 10 내지 150 ㎛ 범위일 수 있다. In one preferred embodiment according to the invention, the total thickness of the insulating resin sheet may be in the range of 7 to 200 ㎛, preferably in the range of 10 to 150 ㎛.
<절연 수지 시트의 제조방법><Manufacturing method of insulating resin sheet>
본 발명에 따른 연성 인쇄회로기판 형성용 절연 수지 시트는 하기 방법에 의해 제조될 수 있다. 그러나 이에 특별히 한정되는 것은 아니다. The insulating resin sheet for forming a flexible printed circuit board according to the present invention may be manufactured by the following method. However, this is not particularly limited.
도 4는 본 발명의 일 실시예에 따른 절연 수지 시트의 제조공정을 나타내는 단면도이다. 4 is a cross-sectional view showing a manufacturing process of an insulating resin sheet according to an embodiment of the present invention.
도 4를 참조하여 상기 절연 수지 시트의 제조방법의 바람직한 실시형태를 들면, (i) 폴리이미드 필름의 일면 또는 양면 상에, 에폭시 절연층 형성용 열경화성 수지 조성물을 코팅한 후 건조하여 에폭시 절연층을 형성하는 단계; (ii) 상기 에폭시 절연층 상에 열가소성 폴리이미드층 형성용 조성물을 코팅한 후 건조하여 열가소성 폴리이미드층을 형성하는 단계; 및 (iii) 상기 폴리이미드 필름과 소정의 표면 조도가 형성된 동박을 적층하되, 폴리이미드 필름의 열가소성 폴리이미드층과 동박의 표면 조도면이 서로 접하도록 배치한 후 가열 가압하여 열가소성 폴리이미드층 표면 상에 동박의 표면 조도면을 전사하는 것을 특징으로 하는 단계를 포함하여 구성될 수 있다.For a preferred embodiment of the method for producing the insulating resin sheet with reference to Figure 4, (i) on one or both sides of the polyimide film, the thermosetting resin composition for forming the epoxy insulating layer is coated and dried to dry the epoxy insulating layer Forming; (ii) coating a composition for forming a thermoplastic polyimide layer on the epoxy insulating layer and then drying to form a thermoplastic polyimide layer; And (iii) laminating the polyimide film and the copper foil having a predetermined surface roughness, wherein the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil are disposed to be in contact with each other, and then heated and pressurized onto the surface of the thermoplastic polyimide layer. It can be configured to include a step characterized by transferring the surface roughness surface of the copper foil.
상기 단계 (i)에서, 에폭시 절연층 형성용 수지 조성물을 폴리이미드 필름 기재 상에 도포하는 경우, 일례로 롤 코터, 바 코터, 코머 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 롤 코터, 그라비아 코터, 분무 코터 등으로 기재 상에 열경화성 수지 조성물을 도포하고, 50 내지 130℃의 온도에서 1 내지 30분간 건조하여 수행할 수 있다. 또한 상기 단계 (ii)에서 열가소성 폴리이미드층 형성용 조성물을 도포하는 경우에도, 전술한 코팅방법을 동일하게 사용할 수 있다. In the step (i), when the resin composition for forming the epoxy insulating layer is applied on the polyimide film base material, for example, a roll coater, bar coater, coater coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater It can be carried out by applying a thermosetting resin composition on a substrate with a transfer roll coater, gravure coater, spray coater and the like, and drying for 1 to 30 minutes at a temperature of 50 to 130 ℃. In addition, in the case of applying the composition for forming the thermoplastic polyimide layer in the step (ii), the above-described coating method can be used in the same manner.
상기 절연성 수지층 형성용 수지 조성물을 조제시, 사용 가능한 유기 용제의 예를 들면, 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤류, 아세트산에틸, 아세트산부틸, 셀로솔브아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 카비톨아세테이트 등의 아세트산 에스테르류, 셀로솔브, 부틸카비톨 등의 카비톨류, 톨루엔, 크실렌 등의 방향족 탄화수소류, 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등을 들 수 있다. 유기 용제는 1종을 사용하거나 2종 이상을 조합하여 사용하여도 좋다. Examples of organic solvents that can be used when preparing the resin composition for insulating resin layer formation include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, and propylene glycol monomethyl ether acetate. And acetic acid esters such as carbitol acetate, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. You may use an organic solvent 1 type or in combination of 2 or more types.
여기서, 상기 단계 (iii)는 폴리이미드 필름의 열가소성 폴리이미드층과 동박의 표면 조도면을 서로 접하도록 적층한 후, 가열 가압하여 실시할 수 있다. 이때 롤 라미네이션(Roll Lamination) 또는 프레스(Press) 공정을 통해 상기 열가소성 폴리이미드 수지 조성물을 완전 경화하는 것이 바람직하다. Here, the step (iii) may be carried out by laminating the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil so as to contact each other, and then heating and pressing. At this time, it is preferable to completely cure the thermoplastic polyimide resin composition through a roll lamination or a press process.
본 발명에서, 상기 롤 라미네이션, 프레스 공정 등의 조건은 특별히 한정되지 않으며, 당 분야에 알려진 통상적인 조건 하에서 적절히 조절될 수 있다. In the present invention, the conditions of the roll lamination, press process, etc. are not particularly limited, and may be appropriately adjusted under conventional conditions known in the art.
<연성 동박 적층판(FCCL)><Flexible Copper Clad Laminate (FCCL)>
본 발명은 전술한 절연 수지 시트를 이용하는 연성 동박 적층판을 제공한다. This invention provides the flexible copper foil laminated board using the above-mentioned insulated resin sheet.
상기 연성 동박 적층판은 연성 인쇄회로기판(FPCB)의 재료로서, 폴리이미드 필름과 동박이 결합된 적층체를 지칭한다. 상기 연성 동박 적층판은 본 발명에 따른 절연 수지 시트를 이용함으로써, 전체 적층 두께를 감소시킴과 더불어 최종제품의 설계 자유도를 높이면서, 고접착력, 우수한 흡습내열 특성, 및 고밀도 미세회로 패턴을 구현할 수 있다. The flexible copper foil laminate refers to a laminate in which a polyimide film and a copper foil are bonded as a material of a flexible printed circuit board (FPCB). By using the insulating resin sheet according to the present invention, the flexible copper foil laminate may reduce the overall lamination thickness and increase the design freedom of the final product, and may realize high adhesion, excellent moisture absorption and heat resistance, and high density microcircuit pattern. .
본 발명에 따른 바람직한 일례를 들면, 상기 연성 동박 적층판(FCCL)은 절연 수지 시트; 및 상기 절연 수지 시트의 열가소성 폴리이미드층의 상하면 상에 각각 형성되는 동박층을 포함하여 구성될 수 있다.As a preferable example according to the present invention, the flexible copper foil laminate (FCCL) comprises an insulating resin sheet; And copper foil layers formed on upper and lower surfaces of the thermoplastic polyimide layer of the insulating resin sheet, respectively.
이때 상기 동박층은 당 분야에 알려진 통상적인 동박을 제한없이 사용할 수 있으며, 압연법 및 전해법으로 제조되는 모든 동박을 포함한다. 일례로 전해도금층, 무전해도금층이거나 또는 스퍼터링법 등에 의해 형성될 수 있다. In this case, the copper foil layer may use any conventional copper foil known in the art without limitation, and includes all copper foils manufactured by a rolling method and an electrolytic method. For example, it may be formed by an electroplating layer, an electroless plating layer, or a sputtering method.
상기 동박층은 소정의 표면조도(Ra)가 형성되어 있을 수 있는데, 이때 표면조도는 특별히 제한되지 않으며, 일례로 0.2 ㎛ 내지 3.0 ㎛ 범위일 수 있다. The copper foil layer may have a predetermined surface roughness Ra, in which case the surface roughness is not particularly limited, and may be, for example, in a range of 0.2 μm to 3.0 μm.
또한 상기 동박층의 두께는 특별히 제한되지 않으며, 최종물의 두께와 기계적 특성을 고려하여 3 ㎛ 미만일 수 있다. 상기 동박층에는 소정의 패턴이 이미 형성되어 있을 수도 있다.In addition, the thickness of the copper foil layer is not particularly limited, and may be less than 3 μm in consideration of the thickness and mechanical properties of the final product. A predetermined pattern may already be formed in the said copper foil layer.
<인쇄회로기판 및 이의 제조방법>Printed Circuit Board and Manufacturing Method Thereof
본 발명은 절연시트를 이용하여 제조되는 인쇄회로기판, 바람직하게는 연성 인쇄회로기판(FPCB)을 제공한다.The present invention provides a printed circuit board, preferably a flexible printed circuit board (FPCB), manufactured using an insulating sheet.
본 발명에서 인쇄회로기판이란, 도금 스루홀법이나 빌드업법 등에 의해 단층, 또는 2~3층 이상으로 적층된 인쇄회로기판을 지칭한다. 본 발명의 연성 인쇄회로기판은 세미어디티브(semi-additive)법에 의해 조도 형성 및 이후 도금 형성이 용이하여 미세 회로 패턴 구현이 가능할 뿐만 아니라, 전기 도금 실시시 발생하는 패턴 측면의 패임을 최소화하여 표면조도가 조밀하고 규칙적인 형상을 형성하여 우수한 도금 접착력을 가질 수 있다. 또한, 전체 적층 두께를 감소시킴과 더불어 최종제품의 설계 자유도를 높이면서 고밀도 미세회로 패턴을 구현할 수 있다. In the present invention, the printed circuit board refers to a printed circuit board laminated in a single layer or two or three or more layers by a plating through hole method, a buildup method, or the like. The flexible printed circuit board of the present invention is easy to form the roughness and the plating after the semi-additive method to implement a fine circuit pattern, as well as to minimize the side of the pattern generated during the electroplating Surface roughness can form a dense and regular shape can have excellent plating adhesion. In addition, it is possible to realize a high density microcircuit pattern while reducing the overall stack thickness and increasing design freedom of the final product.
본 발명에 따른 바람직한 일례를 들면, 상기 인쇄회로기판은 절연 수지 시트; 상기 절연 수지 시트의 열가소성 폴리이미드층의 상하면 상에 각각 형성되고, 소정의 패턴을 갖는 동박 도금층; 및 상기 절연 수지 시트가 관통되도록 마련되고, 상하면 상에 각각 형성된 동박 도금층의 패턴을 전기적으로 연결하기 위해 도금된 복수의 관통홀을 포함하여 구성될 수 있다. For a preferred example according to the present invention, the printed circuit board is an insulating resin sheet; Copper foil plating layers respectively formed on the upper and lower surfaces of the thermoplastic polyimide layer of the said insulated resin sheet, and have a predetermined pattern; And a plurality of through holes provided to penetrate the insulating resin sheet and plated to electrically connect patterns of copper foil plating layers respectively formed on upper and lower surfaces thereof.
여기서, 상기 회로패턴의 라인/스페이스(line & space, L/S)는 2㎛/2㎛ ~ 30㎛/30㎛ 범위일 수 있으나, 이에 특별히 제한되지 않는다.Here, the line / space (L / S) of the circuit pattern may range from 2 μm / 2 μm to 30 μm / 30 μm, but is not particularly limited thereto.
본 발명에 따른 인쇄회로기판은 전술한 절연 수지 시트를 사용하는 것을 제외하고는, 당 분야에 알려진 통상적인 방법, 일례로 세미-어디티브법(semi-additive)에 의해 제조될 수 있다.The printed circuit board according to the present invention can be manufactured by conventional methods known in the art, for example, semi-additive, except for using the above-described insulating resin sheet.
상기 제조방법의 바람직한 일 실시형태를 들면, (I) 전술한 절연 수지 시트 내에 하나 이상의 홀을 형성하는 단계; (Ⅱ) 상기 필름의 표면 및 홀 내부를 디스미어 처리하여 조도를 형성하는 단계; (Ⅲ) 상기 필름의 조도면과 홀 내부면에 무전해 도금층을 형성하는 단계; (Ⅳ) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성하는 단계; (V) 상기 패턴 상에 전해 도금에 의한 회로층을 형성하는 단계; 및 (Ⅵ) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거하는 단계를 포함하여 구성될 수 있다.For a preferred embodiment of the manufacturing method, (I) forming at least one hole in the above-mentioned insulating resin sheet; (II) desmearing the surface of the film and the inside of the hole to form roughness; (III) forming an electroless plating layer on the rough surface and the inner surface of the hole of the film; (IV) forming a pattern using a photoresist on the formed electroless plating layer; (V) forming a circuit layer by electroplating on the pattern; And (VI) exfoliating the photoresist and removing the exposed electroless plating layer.
이하, 본 발명의 일 실시예에 따른 인쇄회로기판의 제조공정에 대하여 상세히 설명한다. 그러나 하기 예시된 공정으로만 한정되는 것은 아니다.Hereinafter, a manufacturing process of a printed circuit board according to an embodiment of the present invention will be described in detail. However, it is not limited only to the process illustrated below.
1) 절연 수지 시트 내에 하나 이상의 홀을 형성한다.1) One or more holes are formed in the insulating resin sheet.
상기 절연 수지 시트에 레이저를 조사하여 홀을 형성한다. 상기 레이저는 엑시머 레이저, UV 레이저, 탄산 가스(CO2) 레이터 등을 사용할 수 있다. A laser is irradiated to the said insulated resin sheet, and a hole is formed. The laser may use an excimer laser, a UV laser, a carbon dioxide gas (CO 2 ).
본 단계를 거치게 되면, 상기 절연 수지 시트 전체를 관통하는 홀이 형성된다.Through this step, a hole penetrating the entire insulating resin sheet is formed.
2) 상기 절연 수지 시트의 표면 및 홀 내부면을 디스미어 처리하여 조도를 형성한다.2) Desmearing the surface of the insulating resin sheet and the inner surface of the hole to form roughness.
종래 화학적 식각(chemical etching)은 절연층을 강염기성 용액으로 화학적 에칭하는 방법으로, 에칭액의 농도, 에칭시간 및 온도 등의 조절을 통해 조도(Ra/Rz)값 조절이 가능하다. 그러나 폴리이미드(PI)를 사용하는 경우, 폴리이미드의 낮은 내화학성으로 인해 화학적 식각법 적용시 도금 접착력이 낮아지게 된다. Conventional chemical etching (chemical etching) is a method of chemically etching the insulating layer with a strong base solution, it is possible to adjust the roughness (Ra / Rz) value by adjusting the concentration, etching time and temperature of the etching solution. However, when the polyimide (PI) is used, the plating adhesion is reduced when the chemical etching method is applied due to the low chemical resistance of the polyimide.
이에 비해, 본 발명의 절연 수지 시트는 이미 최외각면에 조도면이 형성되어 있어 특별한 화학적 식각 공정이 불요(不要)할 뿐만 아니라, 설령 화학적 식각공정을 실시하더라도 폴리이미드(PI) 보다 내화학성이 우수한 열가소성 폴리이미드층(TPI)가 외부에 존재함에 따라 화학적 식각에 따른 도금 접착력 저하를 최소화할 수 있다. On the other hand, the insulating resin sheet of the present invention is already formed on the outermost rough surface, not only does not require a special chemical etching process, but even if the chemical etching process, even better than the polyimide (PI) chemical resistance As the thermoplastic polyimide layer (TPI) is present at the outside, a decrease in plating adhesion due to chemical etching may be minimized.
한편 디스미어(desmear) 공정은 레이저 조사 후의 수지 잔사 등(스미어)을 과망간산염, 중크롬산염 등의 산화제 등에 의해 제거하는 공정으로서, 본 단계를 거치면 레이저 가공에 의한 절연 수지 시트의 표면 및 홀의 내면을 가공하여 적절한 거칠기(조도)를 갖는 조도면이 형성된다. On the other hand, the desmear process removes resin residues (smear) after laser irradiation by oxidizing agents such as permanganate, dichromate, etc., and this step removes the surface of the insulating resin sheet and the inner surface of the hole by laser processing. The roughness surface which has a suitable roughness (roughness) is formed by processing.
이때 디스미어 처리가 불충분하고, 디스미어 내성이 충분히 확보되어 있지 않으면 홀에 금속 도금 처리를 실시해도 스미어가 원인으로 상층 금속 배선과 하층 금속 배선의 통전성이 충분히 확보되지 않게 될 수 있다. 또, 평활한 절연 수지 시트의 표면을 동시에 조화(粗化)할 수 있어 계속되는 금속 도금에 의해 형성되는 도전 배선 회로의 밀착성을 올릴 수 있다.At this time, if the desmear treatment is insufficient and the desmear resistance is not sufficiently secured, even if the hole is subjected to the metal plating treatment, the conduction of the upper metal wiring and the lower metal wiring may not be sufficiently secured due to the smear. Moreover, the surface of the smooth insulated resin sheet can be harmonized simultaneously, and the adhesiveness of the electrically conductive wiring circuit formed by the metal plating which follows is improved.
필요에 따라, 디스미어 공정 이후 상기 절연 수지 시트 위에 적절한 거칠기를 가지는 수평 조도면을 유지하기 위해서, 식각 공정(etching)을 추가로 수행할 수도 있다. If necessary, an etching process may be further performed to maintain a horizontal roughness surface having an appropriate roughness on the insulating resin sheet after the desmear process.
디스미어 공정 이후 절연 수지 시트의 표면은 미세 회로 패턴을 형성하기 위한 바람직한 조도를 갖는 것이 바람직하다. 일례로, 상기 디스미어 공정 이후 절연 수지 시트의 표면 거칠기 범위는 50 nm ~ 1,000 nm 범위일 수 있으며, 바람직하게는 100 nm ~ 500 nm 범위일 수 있다. It is preferable that the surface of the insulated resin sheet after a desmear process has preferable roughness for forming a fine circuit pattern. In one example, the surface roughness range of the insulating resin sheet after the desmear process may be in the range of 50 nm to 1,000 nm, preferably in the range of 100 nm to 500 nm.
3) 상기 절연 수지 시트의 조도면과 홀 내부면에 무전해 도금층을 형성한다.3) An electroless plating layer is formed on the roughness surface and the hole inner surface of the insulating resin sheet.
상기 조도면과 홀 내면에 무전해 도금을 수행하여 비교적 얇은 도금층을 형성한다. 이러한 무전해 도금층은 그 위에 형성될 미세 회로 패턴층을 올리기 위하여 열가소성 폴리이미드층에 미리 접착 강도를 확보하여 주기 위한 것이다. Electroless plating is performed on the roughness surface and the inner surface of the hole to form a relatively thin plating layer. Such an electroless plating layer is to secure the adhesive strength to the thermoplastic polyimide layer in advance in order to raise the fine circuit pattern layer to be formed thereon.
일반적으로, 형성되는 회로 전극과 기판과의 접착성은 밀접한 관계를 가지고, 기판과 회로 전극 사이에는 무전해 도금층이 형성된다. 여기서, 상기 무전해 도금층은 표면 도포된 촉매를 활성점으로 하여 형성되기 때문에, 궁극적으로는 기판과의 접착성은 없다. 그러므로 기판 표면의 조도가 큰 경우에는 이들 사이의 접착은 앵커 효과에 의해 양호하게 유지되지만, 기판 표면에 조도가 없다면 그 접착성은 낮아지는 경향을 보인다. 따라서 형성되는 회로폭의 0.1 배 정도 이하의 표면 조도를 갖도록 조절하는 것이 양호한 회로 형상을 얻을 수 있어 바람직하다.In general, the adhesion between the circuit electrode to be formed and the substrate has a close relationship, and an electroless plating layer is formed between the substrate and the circuit electrode. Here, since the electroless plating layer is formed using the surface-coated catalyst as an active point, ultimately there is no adhesion with the substrate. Therefore, when the roughness of the substrate surface is large, the adhesion between them is maintained well by the anchor effect, but when the roughness is not present on the substrate surface, the adhesiveness tends to be lowered. Therefore, it is preferable to obtain a good circuit shape by adjusting it to have a surface roughness of about 0.1 times or less of the formed circuit width.
이때, 전해 도금층의 시드층이 되는 상기 무전해 도금층은, 일반적으로 0.1 내지 5 ㎛ 범위인 것이 바람직하다.At this time, it is preferable that the said electroless plating layer used as the seed layer of an electrolytic plating layer is generally 0.1-5 micrometers.
4) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성한다. 4) A pattern is formed on the formed electroless plating layer using photoresist.
상기 무전해 도금층 위에 원하는 회로 패턴을 형성하기 위하여, 리소그래피 공정으로서 포토레지스트를 코팅하고, 외층 패턴을 형성하기 위한 개구부를 형성하는 과정을 거쳐서 미세 회로 패턴을 형성한다.In order to form a desired circuit pattern on the electroless plating layer, a fine circuit pattern is formed by coating a photoresist as a lithography process and forming an opening for forming an outer layer pattern.
여기서, 상기 포토레지스트는 드라이 필름(dry film) 등을 사용할 수 있다.Here, the photoresist may be a dry film or the like.
5) 상기 패턴 상에 전해 도금에 의한 회로층을 형성한다. 5) A circuit layer by electroplating is formed on the pattern.
이후, 상기 포토레지스트층의 개구부에 상기 미세 회로 패턴를 형성하기 위한 도체층을 전해 도금에 의해 형성한다. Thereafter, a conductor layer for forming the fine circuit pattern in the opening of the photoresist layer is formed by electroplating.
본 단계를 거치면, 상기 전해 도금층은 상기 홀에 의하여 상기 도금 동박층과 연결되는 새로운 회로층을 형성하게 된다. 여기서, 상기 전해 도금층의 두께는 약 1 ㎛ 내지 100 ㎛ 범위인 것이 바람직하다.Through this step, the electrolytic plating layer forms a new circuit layer connected to the plated copper foil layer by the hole. Here, the thickness of the electroplating layer is preferably in the range of about 1 ㎛ to 100 ㎛.
본 단계에서 형성된 회로 패턴의 라인/스페이스는 30㎛ / 30㎛ 미만일 수 있으며, 바람직하게는 2㎛/2㎛ ~ 30㎛/30㎛ 범위, 더욱 바람직하게는 2㎛/2㎛ ~ 20㎛/20㎛ 범위일 수 있다. 실제로, 본 발명에서 형성된 회로 패턴의 라인 스페이스(L/S)는 10㎛ / 10㎛ 라는 것을 확인할 수 있다(도 5 참조).The line / space of the circuit pattern formed in this step may be less than 30㎛ / 30㎛, preferably in the range of 2㎛ / 2㎛ ~ 30㎛ / 30㎛, more preferably 2㎛ / 2㎛ ~ 20㎛ / 20 May be in the μm range. In fact, it can be seen that the line space L / S of the circuit pattern formed in the present invention is 10 μm / 10 μm (see FIG. 5).
6) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거한다.6) The photoresist is peeled off and the exposed electroless plating layer is removed.
마지막으로, 불필요한 포토레지스트층을 제거하고 노출된 상기 무전해 도금층을 제거하는 단계를 거쳐서 회로 패턴을 완성한다.Finally, the circuit pattern is completed by removing the unnecessary photoresist layer and removing the exposed electroless plating layer.
이후 필요한 경우, 당 업계에 알려진 통상적인 인쇄회로기판의 제조 공정, 예컨대 전자소자 실장 공정 등을 더 수행함으로써 제작이 완료된다. If necessary, the manufacturing is completed by further performing a manufacturing process of a conventional printed circuit board known in the art, such as an electronic device mounting process.
전술한 인쇄회로기판의 제조방법은 상기 설명된 각 단계를 순차적으로 수행하여 제조되어야 하는 것이 아니라, 설계 사양에 따라 각 공정의 단계가 변형되거나 선택적으로 혼용되어 수행될 수 있다. The above-described method of manufacturing a printed circuit board is not to be manufactured by sequentially performing the above-described steps, but may be performed by modifying or selectively mixing the steps of each process according to design specifications.
이하 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples, but the following Examples and Experimental Examples are merely illustrative of one embodiment of the present invention, and the scope of the present invention is not limited to the following Examples and Experimental Examples.
[실시예 1~5][Examples 1-5]
1-1. 에폭시 절연층 형성용 수지 조성물의 제조1-1. Preparation of Resin Composition for Epoxy Insulation Layer Formation
하기 표 1에 기재된 조성에 따라 제1에폭시 수지, 제2에폭시 수지, 제1경화제, 제2경화제, 다이머산 변성 에폭시 수지, 벤조옥사진계 수지, 경화촉진제 등을 혼합하여 에폭시 수지 조성물을 각각 제조하였다. 하기 표 1에서 각 조성물의 사용량 단위는 중량부이며, 여기서, "중량부"는 고당량 에폭시 수지, 저당량 에폭시 수지 및 경화제의 혼합물 100 중량부를 기준으로 한 것이다.According to the composition shown in Table 1, the epoxy resin composition was prepared by mixing a first epoxy resin, a second epoxy resin, a first curing agent, a second curing agent, a dimer acid-modified epoxy resin, a benzoxazine-based resin, a curing accelerator, and the like. . In Table 1 below, the amount of each unit used is parts by weight, where "parts by weight" is based on 100 parts by weight of a mixture of a high equivalent epoxy resin, a low equivalent epoxy resin, and a curing agent.
1-2. 절연 수지 시트 및 연성 인쇄회로기판 제조1-2. Insulation resin sheet and flexible printed circuit board manufacturing
본 발명의 평가를 위하여, Dupont사의 Kapton Polyimide 필름(38 ㎛) 15FN019 를 이용하여 양면에 상기 실시예 1-1의 에폭시 절연층을 3~4 ㎛ 코팅한 후 150℃의 건조기로에서 5~10분 정도 건조시켰다. For the evaluation of the present invention, using the Kapton Polyimide film (38 ㎛) 15FN019 of Dupont Co. 3 to 4 ㎛ coated on both sides of the epoxy insulating layer of Example 1-1 for 5 to 10 minutes in a dryer at 150 ℃ It was dried to some extent.
이후 상기 형성된 에폭시 절연층 상에 용해성 DIC사의 용해성 폴리이미드인 UNIDIC-V800 열가소성 폴리이미드 조성물을 4㎛ 두께로 코팅층을 형성한 후, 150℃의 건조기로에서 5~10분 정도 건조시켜 제작하였다. 이후 제조된 열가소성 폴리이미드층 상에 조도면이 형성된 동박을 이용하여 라미네이션한 후 가압하여 절연 수지 시트를 제조하였다. After the UNIDIC-V800 thermoplastic polyimide composition, which is a soluble polyimide of soluble DIC, was formed on the epoxy insulating layer formed thereon, the coating layer was formed to a thickness of 4 μm, and then dried in a 150 ° C. dryer for about 5 to 10 minutes. Thereafter, after lamination using a copper foil having a roughness surface formed on the manufactured thermoplastic polyimide layer, the insulating resin sheet was manufactured by pressing.
상기에서 제조된 절연 수지 시트를 이용하여 세미어디티브(Semi additive process) 방법에 따라 홀 가공, 디스미어 처리, 무전해 도금층 형성, 및 회로 형성 공정을 각각 실시하여 연성 인쇄회로기판(FPCB)을 제작하였다. 이때 형성된 도금층의 두께는 12 ㎛ 이었다. A flexible printed circuit board (FPCB) was fabricated by performing the hole processing, the desmear treatment, the electroless plating layer formation, and the circuit formation process, respectively, according to the semi additive process using the insulating resin sheet prepared above. It was. The thickness of the plating layer formed at this time was 12 μm.
[비교예 1~2][Comparative Examples 1 and 2]
하기 표 1에 기재된 조성에 따른 것을 제외하고는, 상기 실시예와 동일한 방법으로 절연 수지 시트 및 연성 인쇄회로기판을 각각 제조하였다. 하기 표 1에서 각 조성물의 사용량 단위는 중량부이다. Except that according to the composition shown in Table 1, the insulating resin sheet and the flexible printed circuit board were manufactured in the same manner as in the above embodiment. In Table 1, the amount of each composition is used in parts by weight.
[비교예 3]Comparative Example 3
일반 FCCL용 범용 폴리이미드(PI)를 사용한 것을 제외하고는, 상기 실시예와 동일한 방법으로 인쇄회로기판을 제조하였다. A printed circuit board was manufactured in the same manner as in the above example, except that general polyimide (PI) for general FCCL was used.
[실험예 1] 물성 평가 (1)Experimental Example 1 Evaluation of Physical Properties (1)
실시예 1~5 및 비교예 1~3에서 각각 제조된 연성 인쇄회로기판에 대하여 하기 실험을 하였고, 그 결과를 하기 표 1에 각각 나타내었다.The following experiments were performed on the flexible printed circuit boards prepared in Examples 1 to 5 and Comparative Examples 1 to 3, respectively, and the results are shown in Table 1 below.
1) PI 밀착력: Slot Die 코팅기(*박막 코팅 가능한 마이크로 코팅기)를 사용하여 표면처리되지 않은 폴리이미드 필름상에 1~5 ㎛ 에폭시 수지를 코팅하였다. 150℃ 온도 하에서 약 2분간 B-stage로 건조한 후 열경화성 폴리이미드를 5㎛ 코팅하여 12㎛ (1/3Oz) 동박의 Matt면과 200℃에서 Lamination한 후 IPC-TM-650 2.4.8의 평가 규격에 의해 인쇄 회로 기판용 적층체에 회로 패턴을 형성하였다. 이후 형성된 회로 패턴을 90° 방향에서 끌어올려 회로 패턴(구리층)이 박리되는 시점을 측정하여 평가하였다.1) PI adhesion: 1-5 μm epoxy resin was coated on the untreated polyimide film using a slot die coater (* thin film coatable micro coater). After drying for 2 minutes at 150 ℃ by B-stage, 5㎛ coated thermosetting polyimide, lamination at 200 ℃ with Matt surface of 12㎛ (1 / 3Oz) copper foil, evaluation specification of IPC-TM-650 2.4.8 The circuit pattern was formed in the laminated body for printed circuit boards by this. Thereafter, the formed circuit patterns were pulled in the 90 ° direction to measure and evaluate the time points at which the circuit patterns (copper layers) were peeled off.
2) 흡수율: IPC-TM-650 2.6.2.1의 평가 규격에 따라 평가하였다.2) Absorption rate: According to the evaluation standard of IPC-TM-650 2.6.2.1.
3) 흡습내열성: 85℃, 85%의 항온 항습 챔버에서 24시간 동안 방치한 후 IPC TM-650 2. 4. 13 평가 규격에 따라 Solder 288℃에서 인쇄회로 기판용 적층체를 Floating하여 프라이머 수지층과 동박 간의 분리 현상이 일어나는 시점까지의 시간을 측정하여 평가하였다.3) Hygroscopic heat resistance: After leaving for 24 hours in a constant temperature and humidity chamber at 85 ° C., 85%, primer resin layer by floating the laminate for printed circuit board at Solder 288 ° C. according to IPC TM-650 2. 4. 13 evaluation standard. The time until the separation phenomenon between the copper foil and the copper foil was measured and evaluated.
4) HAST: JEDEC JESD22-A110 평가 규격에 따라 평가하였다.4) HAST: It was evaluated according to the JEDEC JESD22-A110 evaluation standard.
표 1
Figure PCTKR2014012815-appb-T000001
Table 1
Figure PCTKR2014012815-appb-T000001
Corporation
1) ND에폭시 수지1: PDI: 1.57/ EEW: 600g/eq1) ND epoxy resin 1: PDI: 1.57 / EEW: 600g / eq
2) ND에폭시 수지 2: PDI: 1.26/ EEW: 190g/eq2) ND epoxy resin 2: PDI: 1.26 / EEW: 190g / eq
3) 다이머산 변성 에폭시 수지: 국도 화학 KSR-2003) Dimer acid modified epoxy resin: Kukdo Chemical KSR-200
4) ND 경화제1: phenol novolac hardener (코오롱 KPH-F2003, PDI: 1.40/ EEW 106.8)4) ND hardener 1: phenol novolac hardener (KOLON KPH-F2003, PDI: 1.40 / EEW 106.8)
5) 경화제 2: ATN (aminotrazine novolac) 경화제 5) Hardener 2: ATN (aminotrazine novolac) hardener
6) 경화촉진제: 2E4Mz (이미다졸 촉매)6) Curing accelerator: 2E4Mz (imidazole catalyst)
실험 결과, 본 발명의 절연 수지 시트는 폴리이미드 필름과의 밀착력, 흡수율, 흡습내열, HAST(Highly Accelerated Stress Test) 면에서 모두 뛰어난 특성을 보였다(표 1 참조). As a result of the experiment, the insulating resin sheet of the present invention showed excellent properties in terms of adhesion to the polyimide film, water absorption, heat absorption and HAST (Highly Accelerated Stress Test) (see Table 1).
[실시예 6~10][Examples 6-10]
하기 표 2에 기재된 바와 같이, 프라이머 조성, 조화 공정, 시드(Seed)층의 구현방법을 실시하여 연성 인쇄회로기판을 각각 제작하였다. As shown in Table 2 below, a primer composition, a roughening process, and a method of implementing a seed layer were implemented to fabricate flexible printed circuit boards, respectively.
[비교예 4~6][Comparative Examples 4-6]
하기 표 2에 기재된 바와 같이 실시하여 연성 회로기판을 각각 제작하였다. As described in Table 2 below, flexible circuit boards were fabricated, respectively.
[실험예 2] 물성 평가 (2)Experimental Example 2 Evaluation of Physical Properties (2)
실시예 6~10 및 비교예 4~6에서 각각 제조된 연성 인쇄회로기판에 대하여 하기 실험을 하였고, 그 결과를 하기 표 2에 각각 나타내었다.The following experiments were performed on the flexible printed circuit boards prepared in Examples 6 to 10 and Comparative Examples 4 to 6, respectively, and the results are shown in Table 2 below.
1) 표면 조도: 표면 거칠기를 측정하기 위하여, 비접촉식 3D Optical Profiler(Bruker사 Contour GT)를 이용하여 Ra 값을 측정하였다. Ra 값은 전 측정 영역에 걸쳐 계산되는 높이의 평균치이고, 보다 구체적으로는 측정 영역내에서 변화하는 높이의 절대치를 평균 라인(Line)인 표면으로부터 측정하고 산술 평균한 것으로, 여기에서는 10점의 평균 거칠기를 구한 것에 따라 측정한 값이다.1) Surface roughness: In order to measure the surface roughness, the Ra value was measured using a non-contact 3D Optical Profiler (Bruker Contour GT). The Ra value is an average value of the heights calculated over the entire measurement area. More specifically, the absolute value of the height that changes in the measurement area is measured and arithmetic averaged from an average line surface. It is the value measured by obtaining roughness.
2) 라인/스페이스(Line/Space): 미세회로 구현 가능성 검증을 위하여, 세미어디티브 공법을 통해 구현된 패턴의 선폭과 폭간 거리를 현미경을 통해 측정한 값이다.2) Line / Space: To verify the feasibility of implementing a microcircuit, the line width and the distance between the patterns implemented through the semi-additive method were measured through a microscope.
3) 도금 접착력(Peel Strength): 도금층과 절연체 사이의 접착강도를 측정하기 위하여, IPC-TM-650 2.4.8의 시험 규격에 준하여 측정하였다.3) Peel Strength: In order to measure the adhesive strength between the plated layer and the insulator, it was measured according to the test standard of IPC-TM-650 2.4.8.
4) 고온 접착력(Peel Strength): 고온 열충격에 따른 도금층과 절연체 사이의 접착강도를 측정하기 위하여, 150℃ 오븐에서 168시간 방치 후 IPC-TM-650 2.4.8의 시험 규격에 준하여 측정하였다.4) High Temperature Peel Strength: In order to measure the adhesive strength between the plated layer and the insulator according to the high temperature thermal shock, it was measured in accordance with the test standard of IPC-TM-650 2.4.8 after 168 hours in an oven at 150 ℃.
5) 변화율: 고온 열충격 후 측정된 도금 접착력의 변화를 수치화 하기 위해 고온 열충격을 통해 변화된 접착력을 초기 접착력으로 빼준 후 나눈 값을 백분율화 한 것이다.5) Rate of change: To quantify the change in plating adhesion measured after high temperature thermal shock, the value obtained by subtracting the changed adhesive force through the high temperature thermal shock to the initial adhesive strength and then dividing by the percentage.
표 2
Figure PCTKR2014012815-appb-T000002
TABLE 2
Figure PCTKR2014012815-appb-T000002
실험 결과, 본 발명의 절연 수지 시트는 표면 조도, 밀착력, 도금 접착력, 고온 접착력 및 변화율 면에서 모두 뛰어난 특성을 보였다(표 2 참조). 따라서 향후 신뢰성이 높은 빌드업 인쇄회로기판을 제조할 수 있으며, 소형, 경량의 신규 반도체 패키지의 구성 재료로서 유용하게 사용될 것으로 판단된다.As a result of the experiment, the insulating resin sheet of the present invention exhibited excellent properties in terms of surface roughness, adhesion, plating adhesion, high temperature adhesion, and rate of change (see Table 2). Therefore, it is possible to manufacture a reliable build-up printed circuit board in the future, and it is judged that it will be usefully used as a constituent material of a small and lightweight new semiconductor package.

Claims (19)

  1. 폴리이미드 필름; Polyimide film;
    상기 폴리이미드 필름의 일면 또는 양면 상에 형성된 에폭시 절연층; 및An epoxy insulating layer formed on one or both surfaces of the polyimide film; And
    상기 에폭시 절연층 상에 형성되고, 표면에 소정의 표면 조도가 형성되는 열가소성 폴리이미드층A thermoplastic polyimide layer formed on the epoxy insulating layer and having a predetermined surface roughness formed on the surface thereof.
    을 포함하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트. Insulation resin sheet for forming a flexible printed circuit board (FPCB) comprising a.
  2. 제1항에 있어서, 상기 에폭시 절연층은 The method of claim 1, wherein the epoxy insulating layer
    (a) 에폭시 당량(EEW)이 400-1000 g/eq 범위인 고당량 제1에폭시 수지; (a) a high equivalent first epoxy resin having an epoxy equivalent (EEW) in the range of 400-1000 g / eq;
    (b) 에폭시 당량(EEW)이 100-300 g/eq 범위인 저당량 제2에폭시 수지; (b) low equivalent second epoxy resins having an epoxy equivalent weight (EEW) in the range of 100-300 g / eq;
    (c) 다이머산 변성 에폭시 수지;(c) dimer acid-modified epoxy resins;
    (d) 벤조옥사진계 수지; 및(d) benzoxazine resins; And
    (e) 2종 이상의 경화제를 포함하며, 상기 제1에폭시 수지와 제2에폭시 수지 중 1종 이상은 다분산지수(PDI)가 2 이하인 열경화성 수지 조성물을 경화하여 형성된 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트.(e) A flexible printed circuit board comprising at least two curing agents, wherein at least one of the first epoxy resin and the second epoxy resin is formed by curing a thermosetting resin composition having a polydispersity index (PDI) of 2 or less. (FPCB) Insulation resin sheet for formation.
  3. 제2항에 있어서, 제1에폭시 수지의 중량 평균 분자량(Mw)이 1,000 내지 3.000 범위이며, 제2에폭시 수지의 중량 평균 분자량(Mw)이 500 내지 2,000 범위인 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트. The flexible printed circuit board of claim 2, wherein the weight average molecular weight (Mw) of the first epoxy resin is in the range of 1,000 to 3.000, and the weight average molecular weight (Mw) of the second epoxy resin is in the range of 500 to 2,000. FPCB) insulation resin sheet for formation.
  4. 제2항에 있어서, 제1에폭시 수지와 제2에폭시 수지의 사용 비율은 50~90 : 10~50 중량 비율인 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트.The insulating resin sheet for forming a flexible printed circuit board (FPCB) according to claim 2, wherein the use ratio of the first epoxy resin and the second epoxy resin is 50 to 90: 10 to 50 weight ratio.
  5. 제2항에 있어서, 상기 다이머산 변성 에폭시 수지는 변성율이 5 내지 30%이고, 에폭시 당량이 100 내지 500 g/eq인 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트. The insulating resin sheet for forming a flexible printed circuit board (FPCB) according to claim 2, wherein the dimer acid-modified epoxy resin has a modification rate of 5 to 30% and an epoxy equivalent of 100 to 500 g / eq.
  6. 제2항에 있어서, 상기 경화제는 벤조옥사진 수지의 개환반응을 진행하는 제1경화제; 및 에폭시 수지와 경화반응을 진행하는 제2경화제를 포함하며, According to claim 2, wherein the curing agent is a first curing agent for the ring-opening reaction of the benzoxazine resin; And a second hardening agent undergoing a curing reaction with the epoxy resin,
    상기 제1경화제와 제2경화제 중 적어도 하나 이상은 다분산지수(PDI)가 2 이하인 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트.At least one of the first hardener and the second hardener has a polydispersity index (PDI) of 2 or less, wherein the insulating resin sheet for forming a flexible printed circuit board (FPCB).
  7. 제6항에 있어서, 상기 제1경화제는 페놀로볼락 경화제, 이미다졸계 경화제 및 아민계 경화제로 구성된 군으로부터 선택되는 1종 이상이며,The method of claim 6, wherein the first curing agent is one or more selected from the group consisting of phenolovolak curing agents, imidazole curing agents and amine curing agents,
    제2경화제는 크레졸노볼락, 비스페놀A 노볼락, 나프탈렌형, 아민 경화제 및 아미노트리아진 노볼락으로 구성된 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트. The second curing agent is at least one member selected from the group consisting of cresol novolac, bisphenol A novolac, naphthalene type, amine curing agent, and aminotriazine novolac, insulated resin sheet for forming a flexible printed circuit board (FPCB).
  8. 제2항에 있어서, 상기 열경화성 수지 조성물은 에폭시 수지와 경화제의 혼합물 100 중량부를 기준으로, 상기 다이머산 변성 에폭시 수지(c) 5 내지 40 중량부, 및 벤조옥사진계 수지(d) 5 내지 50 중량부를 포함하며, According to claim 2, wherein the thermosetting resin composition is based on 100 parts by weight of the mixture of the epoxy resin and the curing agent, 5 to 40 parts by weight of the dimer acid-modified epoxy resin (c), and 5 to 50 parts by weight of benzoxazine-based resin (d) Includes wealth,
    상기 에폭시 수지와 경화제의 혼합물 100 중량부 기준으로 아민계, 페놀계 및 이미다졸계 화합물로 구성된 군으로부터 선택되는 1종 이상의 경화 촉진제를 0.005 내지 0.05 중량부 더 포함하는 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트. Flexible printed circuit board further comprises 0.005 to 0.05 parts by weight of at least one curing accelerator selected from the group consisting of amine-based, phenol-based and imidazole-based compounds based on 100 parts by weight of the mixture of the epoxy resin and the curing agent. (FPCB) Insulation resin sheet for formation.
  9. 제1항에 있어서, 상기 열가소성 폴리이미드층의 표면 조도(Ra)는 0.2 내지 3.0 ㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판(FPCB) 형성용 절연 수지 시트. The insulating resin sheet for forming a flexible printed circuit board (FPCB) according to claim 1, wherein the surface roughness Ra of the thermoplastic polyimide layer is in a range of 0.2 to 3.0 μm.
  10. 제1항에 있어서, 상기 열가소성 폴리이미드층은 폴리이미드, 폴리아미드, 폴리아미드이미드, 및 폴리아믹산 수지로 구성된 군으로부터 선택되는 1종 이상의 수지를 포함하는 수지 조성물을 액상 도포한 후 경화하여 형성된 것을 특징으로 하는 연성 인쇄회로기판(FPBC) 형성용 절연 수지 시트. The method of claim 1, wherein the thermoplastic polyimide layer is formed by curing the liquid composition after applying the resin composition containing at least one resin selected from the group consisting of polyimide, polyamide, polyamideimide, and polyamic acid resin. An insulating resin sheet for forming a flexible printed circuit board (FPBC).
  11. 제1항에 있어서, 상기 폴리이미드 필름의 두께는 5 ㎛ 내지 100 ㎛ 범위이고, According to claim 1, wherein the thickness of the polyimide film is in the range of 5 ㎛ to 100 ㎛,
    상기 에폭시 절연층의 두께는 1 ㎛ 내지 50 ㎛ 범위이고,The thickness of the epoxy insulating layer is in the range of 1 ㎛ to 50 ㎛,
    상기 열가소성 폴리이미드층의 두께는 1 ㎛ 내지 50 ㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판(FPBC) 형성용 절연 수지 시트. Insulating resin sheet for forming a flexible printed circuit board (FPBC), characterized in that the thickness of the thermoplastic polyimide layer is in the range of 1 ㎛ to 50 ㎛.
  12. 제1항에 있어서, 총 두께가 7 내지 200 ㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판(FPBC) 형성용 절연 수지 시트. The method of claim 1 wherein the total thickness is 7 Insulating resin sheet for forming a flexible printed circuit board (FPBC), characterized in that the range from to 200 ㎛.
  13. 제1항에 있어서, 상기 열가소성 폴리이미드층 상에 지지체층을 더 포함하는 것을 특징으로 하는 연성 인쇄회로기판(FPBC) 형성용 절연 수지 시트. The insulating resin sheet for forming a flexible printed circuit board (FPBC) according to claim 1, further comprising a support layer on the thermoplastic polyimide layer.
  14. 제13항에 있어서, 상기 열가소성 폴리이미드층과 지지체층 사이에 이형층을 더 포함하는 것을 특징으로 하는 연성 인쇄회로기판(FPBC) 형성용 절연 수지 시트. The insulating resin sheet for forming a flexible printed circuit board (FPBC) according to claim 13, further comprising a release layer between the thermoplastic polyimide layer and the support layer.
  15. 제1항 내지 제14항 중 어느 한 항에 기재된 절연 수지 시트; 및The insulated resin sheet in any one of Claims 1-14; And
    상기 절연 수지 시트의 열가소성 폴리이미드층의 상하면 상에 각각 형성된 동박층을 포함하는 연성 동박 적층판(FCCL).The flexible copper foil laminated board (FCCL) containing the copper foil layers formed on the upper and lower surfaces of the thermoplastic polyimide layer of the said insulated resin sheet, respectively.
  16. 제1항 내지 제14항 중 어느 한 항에 기재된 절연 수지 시트; The insulated resin sheet in any one of Claims 1-14;
    상기 절연 수지 시트의 열가소성 폴리이미드층의 상하면 상에 각각 형성되고, 소정의 패턴을 갖는 동박 도금층; 및Copper foil plating layers respectively formed on the upper and lower surfaces of the thermoplastic polyimide layer of the said insulated resin sheet, and have a predetermined pattern; And
    상기 절연 수지 시트가 관통되도록 마련되고, 상하면 상에 각각 형성된 동박 도금층의 패턴을 전기적으로 연결하기 위해 도금된 복수의 관통홀A plurality of through holes provided to penetrate the insulating resin sheet and plated to electrically connect the patterns of the copper foil plating layers respectively formed on the upper and lower surfaces thereof.
    을 포함하는 연성 인쇄회로기판.Flexible printed circuit board comprising a.
  17. (i) 폴리이미드 필름의 일면 또는 양면 상에, 에폭시 절연층 형성용 열경화성 수지 조성물을 코팅한 후 건조하여 에폭시 절연층을 형성하는 단계;(i) coating and drying the thermosetting resin composition for forming an epoxy insulating layer on one or both sides of the polyimide film to form an epoxy insulating layer;
    (ii) 상기 에폭시 절연층 상에 열가소성 폴리이미드층 형성용 조성물을 코팅한 후 건조하여 열가소성 폴리이미드층을 형성하는 단계; 및(ii) coating a composition for forming a thermoplastic polyimide layer on the epoxy insulating layer and then drying to form a thermoplastic polyimide layer; And
    (iii) 상기 폴리이미드 필름과 소정의 표면 조도가 형성된 동박을 적층하되, 폴리이미드 필름의 열가소성 폴리이미드층과 동박의 표면 조도면이 서로 접하도록 배치한 후 가열 가압하여 열가소성 폴리이미드층 표면 상에 동박의 표면 조도면을 전사하는 것을 특징으로 하는 단계(iii) laminating the polyimide film and the copper foil having a predetermined surface roughness, and arranging the thermoplastic polyimide layer of the polyimide film and the surface roughness surface of the copper foil to be in contact with each other, and then heating and pressing the copper foil on the surface of the thermoplastic polyimide layer. Transferring the surface roughness surface of the
    를 포함하는 제1항의 연성 인쇄회로기판(FPBC) 형성용 절연 수지 시트의 제조방법. The method of manufacturing an insulating resin sheet for forming a flexible printed circuit board (FPBC) according to claim 1.
  18. 제17항에 있어서, 상기 단계 (iii)는 롤 라미네이션(Roll Lamination) 또는 프레스(Press) 공정에 의해 상기 열가소성 폴리이미드층 형성용 조성물을 경화하는 것을 특징으로 하는 연성 인쇄회로기판 형성용 절연 수지 시트의 제조방법. The insulating resin sheet for forming a flexible printed circuit board according to claim 17, wherein the step (iii) comprises curing the thermoplastic polyimide layer forming composition by a roll lamination or press process. Manufacturing method.
  19. (I) 제1항 내지 제14항 중 어느 한 항에 기재된 절연 수지 시트 내에 하나 이상의 홀을 형성하는 단계;(I) forming at least one hole in the insulating resin sheet according to any one of claims 1 to 14;
    (Ⅱ) 상기 절연 수지 시트의 표면 및 홀 내부를 디스미어 처리하여 조도를 형성하는 단계;(II) desmearing the surface of the insulating resin sheet and the inside of the hole to form roughness;
    (Ⅲ) 상기 절연 수지 시트의 조도면과 홀 내부면에 무전해 도금층을 형성하는 단계;(III) forming an electroless plating layer on the roughness surface and the inner surface of the hole of the insulating resin sheet;
    (Ⅳ) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성하는 단계; (IV) forming a pattern using a photoresist on the formed electroless plating layer;
    (V) 상기 패턴 상에 전해 도금에 의한 회로층을 형성하는 단계; 및 (V) forming a circuit layer by electroplating on the pattern; And
    (Ⅵ) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거하는 단계(VI) exfoliating the photoresist and removing the exposed electroless plating layer
    를 포함하는 연성 인쇄회로기판의 제조방법. Method of manufacturing a flexible printed circuit board comprising a.
PCT/KR2014/012815 2013-12-27 2014-12-24 Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same WO2015099451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0166193 2013-12-27
KR1020130166193A KR101571086B1 (en) 2013-12-27 2013-12-27 Insulating resin sheet for flexible printed circuit board and method of manufacturing the same, and printed circuit board comprising the same

Publications (1)

Publication Number Publication Date
WO2015099451A1 true WO2015099451A1 (en) 2015-07-02

Family

ID=53479215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012815 WO2015099451A1 (en) 2013-12-27 2014-12-24 Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same

Country Status (2)

Country Link
KR (1) KR101571086B1 (en)
WO (1) WO2015099451A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125596A (en) * 2021-03-24 2022-09-30 中国科学院苏州纳米技术与纳米仿生研究所 Surface treatment method and application
CN117467333A (en) * 2023-11-28 2024-01-30 济南市雋瀚电子材料有限公司 High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195530B2 (en) * 2019-01-11 2022-12-26 エルジー・ケム・リミテッド Film, metal-clad laminate, flexible substrate, method for producing film, method for producing metal-clad laminate, and method for producing flexible substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012894A (en) * 2001-07-03 2003-01-15 Hitachi Chem Co Ltd Epoxy resin composition, and insulation resin sheet and printed wiring board using the same
JP2006224644A (en) * 2005-01-18 2006-08-31 Kaneka Corp Insulating sheet, metallic layer and insulating sheet laminate, and printed wiring board using same
KR20110080419A (en) * 2010-01-05 2011-07-13 도레이첨단소재 주식회사 Resin composition for insulating film, insulating film using the same and manufacturing method thereof
KR20130120099A (en) * 2012-04-25 2013-11-04 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889250B2 (en) 2004-10-14 2014-11-18 Kaneka Corporation Plating target material, polyamic solution and polyimide resin solution which are used to form the plating target material, and printed-wiring board using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012894A (en) * 2001-07-03 2003-01-15 Hitachi Chem Co Ltd Epoxy resin composition, and insulation resin sheet and printed wiring board using the same
JP2006224644A (en) * 2005-01-18 2006-08-31 Kaneka Corp Insulating sheet, metallic layer and insulating sheet laminate, and printed wiring board using same
KR20110080419A (en) * 2010-01-05 2011-07-13 도레이첨단소재 주식회사 Resin composition for insulating film, insulating film using the same and manufacturing method thereof
KR20130120099A (en) * 2012-04-25 2013-11-04 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125596A (en) * 2021-03-24 2022-09-30 中国科学院苏州纳米技术与纳米仿生研究所 Surface treatment method and application
CN117467333A (en) * 2023-11-28 2024-01-30 济南市雋瀚电子材料有限公司 High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof

Also Published As

Publication number Publication date
KR101571086B1 (en) 2015-11-23
KR20150077224A (en) 2015-07-07

Similar Documents

Publication Publication Date Title
WO2017111254A1 (en) Electromagnetic wave shielding film and manufacturing method therefor
KR101140626B1 (en) Composition for polyimide resin and polyimide resin made from the composition for polyimide resin
WO2015080445A1 (en) Thermosetting resin composition having heat resistance and low dielectric loss characteristics, prepreg using same, and copper clad laminate
WO2016108491A1 (en) Thermal fusion multilayer polyimide film using crosslinked water-soluble thermoplastic polyamic acid, and preparation method thereof
WO2013100502A1 (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
WO2018004273A1 (en) Thermosetting resin composition, and prepreg and substrate using same
WO2016105131A1 (en) Method for manufacturing electromagnetic wave shielding film for flexible printed circuit board
WO2015102461A1 (en) Resin double layer-attached copper foil, multilayer printed circuit board including same, and manufacturing method thereof
WO2015105340A1 (en) Electromagnetic wave shielding film for flexible printed circuit board and manufacturing method therefor
WO2019124624A1 (en) Electromagnetic wave shielding film, method for manufacturing printed circuit board, and method for manufacturing electromagnetic wave shielding film
WO2015099451A1 (en) Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same
WO2015046956A1 (en) Modified polyphenylene oxide, and copper-clad laminate using same
KR101676119B1 (en) Insulating resin sheet for flexible printed circuit board and manufacturing method thereof, and printed circuit board comprising the same
WO2015088245A1 (en) Thermosetting resin composition for high frequency having low dielectric loss, prepreg using same, and copper clad laminate
WO2014104742A1 (en) Resin composition, and metal foil laminate comprising same
KR20160065628A (en) Insulating resin sheet for flexible printed circuit board and manufacturing method thereof, and printed circuit board comprising the same
WO2015046953A1 (en) Copper-clad laminate using modified polyphenylene oxide
WO2014109593A1 (en) Insulation resin film, substrate with thin metal layer and printed circuit board including insulation resin film, and method for fabricating circuit board including insulation resin film
WO2018004190A1 (en) Primer coating-copper clad and copper clad laminate
WO2014104739A1 (en) Epoxy resin composition having excellent adhesive properties and resin composite copper foil using same
KR101641405B1 (en) Insulating resin sheet for flexible printed circuit board and method of manufacturing the same, and printed circuit board comprising the same
WO2014092428A1 (en) Multilayer printed circuit board, and method for manufacturing same
WO2014104741A1 (en) Epoxy resin composition having excellent adhesive properties and resin composite copper foil using same
WO2020060265A1 (en) Multi-layer printed circuit board, method for manufacturing same, and semiconductor device using same
WO2020060197A1 (en) Thermocurable resin composition for coating metal thin film, resin-coated metal thin film using same, and metal foil laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 14.10.2016 (EPO FORM 1205A).

122 Ep: pct application non-entry in european phase

Ref document number: 14875741

Country of ref document: EP

Kind code of ref document: A1