WO2015099376A1 - Iron particles, manufacturing method for same, and manufacturing device for same - Google Patents

Iron particles, manufacturing method for same, and manufacturing device for same Download PDF

Info

Publication number
WO2015099376A1
WO2015099376A1 PCT/KR2014/012638 KR2014012638W WO2015099376A1 WO 2015099376 A1 WO2015099376 A1 WO 2015099376A1 KR 2014012638 W KR2014012638 W KR 2014012638W WO 2015099376 A1 WO2015099376 A1 WO 2015099376A1
Authority
WO
WIPO (PCT)
Prior art keywords
decarburization
iron particles
iron
particles
gas
Prior art date
Application number
PCT/KR2014/012638
Other languages
French (fr)
Korean (ko)
Inventor
김현수
이상호
조민영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2015099376A1 publication Critical patent/WO2015099376A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to iron particles, a method for producing the same, and an apparatus for producing the same. More specifically, the present invention relates to iron particles comprising a ferrite structure and a martensite structure by decarburizing fine particles converted from molten iron, a manufacturing method thereof, and a manufacturing apparatus thereof.
  • the molten iron produced in the blast furnace contains a large amount of carbon. Therefore, it is necessary to remove the carbon contained in the molten iron by blowing oxygen into the molten iron. Since cast iron which solidifies molten iron without removing carbon has brittleness, it cannot be used for general purposes. Therefore, oxygen is injected into molten iron and oxygen is reacted with carbon to generate carbon monoxide to remove carbon in the molten iron.
  • metals having excellent oxygen affinity such as aluminum, silicon, or titanium are used to remove oxygen injected for decarburization.
  • Oxygen in molten iron can be removed by forming oxides with oxygen using these metals. In this way, the process of injecting carbon and removing oxygen again to remove oxygen is repeated.
  • some oxides remain in the form of inclusions on the steel sheet, which adversely affects the physical properties of the steel sheet.
  • iron particles including a ferrite structure and martensite structure by decarburization.
  • a method for producing the above-described iron particles and to provide the above-described iron particle production apparatus.
  • Method for producing iron particles i) providing molten iron, ii) atomizing the molten iron to convert to fine particles, and iii) decarburization comprising steam, hydrogen and nitrogen in the fine particles Adding a gas to decarburize the particulates to provide a plurality of iron particles.
  • the decarburization gas may further include one or more gases selected from the group consisting of carbon dioxide and carbon monoxide.
  • the decarburization gas may have a temperature of 700 ° C. to 1100 ° C. More preferably, the temperature of the decarburized gas may be 1000 ° C to 1100 ° C.
  • the fine particles may fall downward and the decarburized gas may be blown upwards to decarburize the fine particles.
  • Method for producing iron particles according to an embodiment of the present invention may further comprise the step of compression molding a plurality of iron particles.
  • the plurality of iron particles may include martensite structures and ferrite structures surrounding the martensite structures, and the martensite structures may include two or more martensite structures spaced apart from each other.
  • the fine particles are charged into a decarburization reactor including a dispersion plate, the decarburized gas is injected through gas injection holes formed in the dispersion plate, and the fine particles are injected through the plurality of gas injection holes.
  • the decarburized gas may be contacted with decarburized gas.
  • Iron particles according to an embodiment of the present invention prepared by the above method, i) martensite structure, and ii) a ferrite structure surrounding the martensite structure, and has a predetermined particle size.
  • the particle size may be greater than zero and less than or equal to 100 ⁇ m. More preferably, the particle size may be greater than zero and less than or equal to 10 ⁇ m.
  • the ratio of the average thickness of the ferrite structure to the average radius of the iron particles may be greater than zero and less than or equal to one. More preferably, the ratio may be 0.1 to 0.9.
  • Iron device manufacturing apparatus i) an atomizing device for converting molten iron into fine particles, ii) a decarburization reactor connected to the atomizing device to decarburize the fine particles to provide a plurality of iron particles, and iii) a decarburization gas supply device connected to the decarburization reactor to supply decarburization gas to the decarburization reactor.
  • Iron particle manufacturing apparatus may further include a compression molding machine connected to the decarburization reactor for compression molding a plurality of iron particles.
  • the decarburization reactor comprises: i) an injection port connected to the atomizing device and supplied with fine particles, ii) a dispersion plate having a plurality of gas injection holes directed toward the injection hole, and iii) connected to a decarburization gas supply device, Installed may include a decarburization gas inlet through which decarburization gas is introduced.
  • the dispersion plate may be inclined downward of the decarburization reactor, and an opening for dropping the plurality of iron particles may be formed at the center of the dispersion plate.
  • the martensite structure having excellent strength exists inside the iron particles, and the flexible ferrite structure is wrapped around the iron particles, which is advantageous for forming the iron particles.
  • the iron particles can be compressed to be made very small, and the properties of the martensite structure and the ferrite structure can be used together, steel materials excellent in both strength and ductility can be produced. That is, the iron particles may be injected into a mold to produce a steel having a desired shape, or roll pressed to produce steel in various forms such as a thin plate or a ribbon.
  • FIG. 1 is a schematic cross-sectional view of iron particles contained in iron particles according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method of manufacturing iron particles of FIG. 1.
  • FIG. 3 is a schematic diagram of a decarburization reactor used in the method for producing iron particles according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a steel produced using the iron particles of FIG.
  • spherical as used below is to be interpreted to include all shapes in which the surface is formed in a round shape. Therefore, the sphere is interpreted to include all spheres or ellipses with the same distance from the center to the surface.
  • FIG. 1 schematically shows a cross-sectional structure of iron particles 100 included in steel 200 (shown in FIG. 4) according to an embodiment of the present invention.
  • the cross-sectional structure of the iron particles 100 of FIG. 1 is merely for illustrating the present invention, but the present invention is not limited thereto. Therefore, the cross-sectional structure of the iron particles 100 can be modified in other forms.
  • the spherical iron particles 100 include a martensite structure 10 and a ferrite structure 20. besides. The iron particles 100 may further include other components.
  • the martensite structure 10 is produced by quenching carbon steel and has a non-parallel single-phase structure produced from the diffusionless transformation of austenite. That is, the martensite structure 10 is a transformation product in which austenite is transformed by diffusionless shear stress and is produced in place of pearlite and bainite. When the quench rate of the carbon steel occurs so rapidly as to prevent carbon diffusion, it is transformed into the martensite structure 10. The quenching prevents the carbon atoms from escaping and is trapped in the crystal. The trapped carbon atoms are redistributed at room temperature and bind to the potential, thus preventing the movement of the potential. Furthermore, the carbon atoms form clusters and act as obstacles, thereby increasing the strength of the martensite structure 10.
  • the martensite structure 10 is a plate-like structure in which fine twins exist in parallel in the plate-like structure, and have a high dislocation density. Therefore, since twins and dislocation densities interfere with dislocation movement, the strength of the martensite structure 10 can be further increased.
  • the iron particles 100 contain martensite structure 10 having a high strength as a nucleus therein according to the above-described mechanism, and therefore have high strength on the one hand.
  • the ferrite structure 20 is formed surrounding the martensite structure 10.
  • the ferrite structure 20 is a solid solution formed by melting impurities in iron having a body-centered cubic crystal. Since the ferrite structure 20 is a solid solution based on alpha iron, its appearance is the same as that of pure iron and has ductility. Due to the ferrite structure 20, the iron particles 100 are preferable for molding and are advantageous for the atomic diffusion reaction. Therefore, the iron particles 100 may be used in various ways when surface modification is required.
  • the ferrite structure 20 is formed in a spherical shape surrounding the martensite structure 10.
  • Iron particles 100 have a predetermined particle size. That is, the particle size of the iron particles 100 may be greater than zero and 100 ⁇ m or less.
  • the reaction rate of tantalum of the iron particles 100 may be controlled by the diffusion rate of carbon. In other words, by increasing the diffusion rate of carbon, the overall decarburization reaction is controlled by the chemical reaction between the steam in the mixed gas and carbon present in the molten iron. Therefore, the particle size of the iron particles 100 is adjusted to the above range. In this case, the decarburization reaction can be completed within a few tens of seconds, for example, so that the decarburization reactor can be made compact. More preferably, the particle size of the iron particles 100 may be greater than 0 and 10 ⁇ m or less.
  • the ratio of the average thickness t20 of the ferrite structure 20 to the average radius t10 + t20 of the iron particles 100 illustrated in FIG. 1 may be greater than zero and less than or equal to one. Since the martensite structure 10 is made in the form of a nucleus, the average radius t10 + t20 of the iron particles 100 is the average distance from the center 10C of the martensite structure 10 to the surface of the iron particles 100. It can be defined as.
  • the above ratio is too large, the strength of the iron particles 100 is improved but difficult to mold.
  • the above ratio is too small, it is good to form the iron particles 100, but the strength is lowered. Therefore, it is desirable to adjust the ratio in the above-described range. More preferably, the above ratio may be 0.1 to 0.9.
  • the manufacturing method of the iron particles 100 of FIG. 1 will be described in more detail with reference to FIG. 2.
  • the thickness t20 of the ferrite structure 20 may be adjusted by adjusting the decarburization reaction time. That is, by increasing the decarburization reaction time, the thickness t20 of the ferrite structure 20 may be increased. On the contrary, when the decarburization reaction time is reduced, the thickness t20 of the ferrite structure 20 may be reduced. Therefore, the thickness t20 of the ferrite structure 20 may be adjusted to a desired size according to the use purpose of the iron particles 100. For example, when the iron particles 100 are manufactured by decarburizing the solid particles at 1100 ° C., the decarburization reaction may be completed within 1 minute during decarburization so that the thickness t20 of the ferrite structure 20 is 50 ⁇ m.
  • FIG. 2 schematically shows a flowchart of a method of manufacturing iron particles 100 of FIG. 1.
  • the manufacturing method of the iron particle of FIG. 2 is only for illustration of this invention, Comprising: This invention is not limited to this. Therefore, the production method of the iron particles can be modified in various forms.
  • the method for producing iron particles includes: i) providing molten iron (S10), ii) atomizing molten iron and converting it into fine particles (S20), and iii) steam and hydrogen in the fine particles. And adding a decarburization gas including nitrogen to decarburize the fine particles to provide a plurality of iron particles (S30).
  • the method for producing iron particles may further include other steps as necessary.
  • the method may further include preparing the iron particles by compression molding the iron particles.
  • molten iron is manufactured in step S10. That is, molten iron is manufactured by charging coke and sintered ore into the blast furnace and blowing hot air to reduce and melt the sintered ore with carbon.
  • molten iron may not be limited to the blast furnace, and molten gas may be supplied from other steelmaking processes such as a melt-reduction steelmaking process using an melt gasifier or an electric arc furnace (EAF).
  • EAF electric arc furnace
  • the molten iron is discharged to the outside through the outlet at the bottom of the blast furnace. Since molten iron is formed by the reaction with coke, it contains carbon.
  • step S20 the molten iron is atomized and converted into fine particles. That is, molten iron is converted into fine particles in the atomizing device.
  • the fine particles can be quickly decarburized in a subsequent process.
  • the detailed structure of the atomizing device will be easily understood by those skilled in the art, and thus the detailed description thereof will be omitted.
  • step S30 of FIG. 2 will be described in more detail with reference to FIG. 3.
  • FIG. 3 schematically illustrates a decarburization reactor 30 used in the method of manufacturing the steel 200 according to an embodiment of the present invention.
  • the structure of the decarburization reactor 30 of FIG. 3 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the structure of the decarburization reactor 30 can be modified in other forms.
  • step S30 of FIG. 2 decarburization gas including steam, hydrogen, and nitrogen is added to the microparticles to decarburize the microparticles to provide a plurality of iron particles.
  • the prepared microparticles 40 may be transported and temporarily stored in the charging hole 301.
  • the fine particles 40 are decarburized while passing through the decarburization reactor 30.
  • the decarburization reactor 30 includes a molten iron inlet 301, a decarburization gas inlet 303, a dispersion plate 305, an iron particle outlet 307, and a gas outlet 309. do.
  • a fluidized bed is formed by a mixed gas, thereby easily decarburizing solid particles.
  • the decarburization reactor 30 is connected to an atomizing device (not shown) to decarburize the fine particles 40 to provide a plurality of iron particles 42.
  • decarburized gas is connected to the decarburization reactor 30 to supply decarburized gas to the decarburization reactor 30.
  • the decarburization gas is supplied to the decarburization reactor 30 through the decarburization gas inlet 303.
  • the fine particles are charged into the decarburization reactor 30 through the charging hole 301 and then decarburized by steam, hydrogen and nitrogen supplied through the decarburization gas inlet 303 and then discharged through the iron particle outlet 307. do.
  • the decarburized gas is contacted with the fine particles to complete the decarburization reaction very quickly and then is discharged to the outside through the gas outlet 309.
  • MnO, SiO 2 dust, steam, carbon dioxide, hydrogen and nitrogen may be discharged through the gas outlet 309.
  • the decarburization gas 44 including steam, hydrogen, and nitrogen is blown upward and fed to the decarburization reactor 30 to decarburize the fine particles 42.
  • the steam is in contact with the fine particles 42 falling downward as described in Formula 1 below to remove the carbon contained in the fine particles 42.
  • carbon dioxide and hydrogen are generated and discharged to the outside through the gas outlet 309.
  • hydrogen is used as a component of the decarburization gas 44 to reduce the fine particles 42. If hydrogen is not used, the fine particles 42 can be oxidized.
  • nitrogen contained in the mixed gas 44 adjusts the average thickness of the ferrite structure 20 while ensuring the fluidization rate. Therefore, as the amount of nitrogen increases, the average thickness of the ferrite structure 20 can be reduced.
  • carbon monoxide and carbon dioxide may also be used as the decarburization gas.
  • the mixed gas 44 is in contact with the fine particles 42 to produce the iron particles 100 while decarburizing the fine particles 42 and dispersed in the decarburization reactor 30 so as to be discharged to the outside through the iron particle outlet 307.
  • Plate 305 is provided.
  • the dispersion plate 305 is formed to be inclined downward of the decarburization reactor 30 to face the iron particle outlet 307.
  • the decarburization gas inlet 303 is positioned below the distribution plate 305 to supply decarburization gas 44.
  • the decarburization gas supply device is connected to the decarburization reactor 30 to supply decarburization gas 44 to the decarburization reactor 30.
  • step S40 of FIG. 2 the solid particles are decarburized using the mixed gas to provide iron particles. That is, a plurality of gas injection holes 3051 are formed in the dispersion plate 305 of FIG. 3. Since the high velocity decarburization gas is injected through the gas injection holes 3051, the fine particles 42 may be in contact with the decarburization gas 44 to be efficiently decarburized.
  • the temperature of the decarburization gas 44 may be 700 ° C to 1100 ° C. If the temperature of the decarburization gas 44 is too low, the carbon removal efficiency of the fine particles 42 may decrease. In addition, when the temperature of the decarburization gas 44 is too high, the fine particles 42 may deteriorate.
  • the temperature of the decarburization gas 44 is adjusted to the above-mentioned range. More preferably, the temperature of the decarburization gas 44 may be 1000 ° C to 1100 ° C.
  • the iron particles 100 fall downward through an opening formed in the center of the dispersion plate 305. The iron particles 100 may be separated from the decarburization gas 44 and discharged to the outside through the iron particles outlet 307.
  • a method of manufacturing a steel sheet using strip casting after removing sulfur, phosphorus, and silicon from molten iron in advance is known.
  • the surface of the steel sheet is decarburized using an oxidizing gas.
  • the surface state of the steel sheet is not good and the decarburization time is too long, about 10 minutes or more, and the decarburization reactor has to be formed in a long form to solve this problem.
  • molten iron is atomized to provide fine particles and then decarburized. Therefore, not only the decarburization time is very short, but also the decarburization reactor can be miniaturized. In addition, since the process does not undergo a complicated process such as strip casting, the process can be easily performed. And a 1 mm-thick thin plate can be manufactured as steel materials, for example by compression molding.
  • a steel material by compression molding the iron particles produced by the above-described method. That is, for example, after cooling the high-temperature iron particles produced by using the decarburization reactor 30 of FIG. 3, the steel sheets may be manufactured by rolling and molding them into a mold to produce a steel product having a desired shape or by pressing a roll. have.
  • the steel produced by the above-described method will be described in more detail with reference to FIG. 4.
  • FIG. 4 schematically shows a cross-sectional structure of the steel material 200 manufactured using the iron particles 100 of FIG. 1.
  • the cross-sectional structure of the steel material 200 of FIG. 4 is merely for illustrating the present invention, but the present invention is not limited thereto. Therefore, the cross-sectional structure of the steel 200 can be modified in other forms.
  • the steel 200 may be formed in a dual phase in which the martensite structure 10 and the ferrite structure 20 are mixed. Since the two or more martensite structures 10 are spaced apart from each other, the steel 200 has properties of the composite by having both the strength due to the martensite structure 10 and the ductility due to the ferrite structure 20 together. Therefore, since the steel 200 can be used in fields requiring both strength and ductility, its utilization is high. In particular, since the ferrite structure 20 is entangled like a mesh in a state where the martensite structure 10 is not in contact with each other, it exhibits excellent mechanical properties different from that of a general steel sheet.
  • iron particles 40 g were prepared using the same method as described above. Iron particles were decarburized horizontally at 1000 ° C. for 5 minutes in an atmosphere containing 10 vol% steam and 90 vol% hydrogen. The initial carbon concentration of the iron particles was 3.41 wt%. The decarburized iron particles were compression molded at 500 MPa at a pressure of 300 MPa to measure porosity. Detailed experimental procedures are easily understood by those skilled in the art, and thus detailed descriptions thereof will be omitted.
  • iron particles were prepared. Iron particles were horizontally decarburized at 800 ° C. for 10 minutes in an atmosphere containing 20 vol% carbon dioxide and 80 vol% carbon monoxide. The initial carbon concentration of the iron particles was 3.41 wt%. The decarburized iron particles were compression molded at 500 MPa at a pressure of 300 MPa to measure porosity. The rest of the experiment was the same as in Experiment 1.
  • iron particles were prepared. Iron particles were horizontally decarburized at 1000 ° C. for 10 minutes in an atmosphere containing 20 vol% carbon dioxide and 80 vol% carbon monoxide. The initial carbon concentration of the iron particles was 3.41 wt%. The decarburized iron particles were compression molded at 500 MPa at a pressure of 300 MPa to measure porosity.

Abstract

Provided is a method for manufacturing iron particles comprising ferrite structure and martensite structure by means of decarbonization. The method for manufacturing iron particles comprises : i) a step of providing molten iron; ii) a step of transforming the molten iron into fine particles by atomizing; and iii) a step of providing a plurality of iron particles by decarbonizing the fine particles by applying a decarbonizing gas comprising steam, hydrogen and nitrogen to the fine particles.

Description

철입자, 그 제조 방법 및 그 제조 장치Iron particles, the method of manufacturing the same, and the apparatus
본 출원은 2013년 12월 26일에 한국특허청에 출원한 한국출원 제10-2013-0164459호와 결부되어 있다.This application is related to Korean Patent Application No. 10-2013-0164459 filed with the Korean Patent Office on December 26, 2013.
본 발명은 철입자, 그 제조 방법 및 그 제조 장치에 관한 것이다. 더욱 상세하게는, 본 발명은 용철이 변환된 미립자를 탈탄하여 페라이트 구조체와 마르텐사이트 구조체를 포함하는 철입자, 그 제조 방법 및 그 제조 장치에 관한 것이다.The present invention relates to iron particles, a method for producing the same, and an apparatus for producing the same. More specifically, the present invention relates to iron particles comprising a ferrite structure and a martensite structure by decarburizing fine particles converted from molten iron, a manufacturing method thereof, and a manufacturing apparatus thereof.
고로에서 생산된 용철은 다량의 탄소를 포함한다. 따라서 용철에 산소를 취입하여 용철에 포함된 탄소를 제거할 필요가 있다. 탄소를 제거하지 않고, 용철을 그대로 응고시킨 주철은 취성을 가지므로, 일반 용도에는 사용할 수 없다. 따라서 용철에 산소를 주입하고 산소를 탄소와 반응시켜서 일산화탄소를 생성시켜 용철중의 탄소를 제거한다.The molten iron produced in the blast furnace contains a large amount of carbon. Therefore, it is necessary to remove the carbon contained in the molten iron by blowing oxygen into the molten iron. Since cast iron which solidifies molten iron without removing carbon has brittleness, it cannot be used for general purposes. Therefore, oxygen is injected into molten iron and oxygen is reacted with carbon to generate carbon monoxide to remove carbon in the molten iron.
한편, 탈탄을 위해 주입된 산소를 제거하기 위해 알루미늄, 실리콘 또는 티타늄 등의 산소 친화력이 우수한 금속들을 사용한다. 이러한 금속들을 이용하여 산소와 산화물을 형성함으로써 용철내의 산소를 제거할 수 있다. 이와 같이 산소를 제거하기 위해 탄소를 장입하고, 다시 산소를 제거하는 과정을 반복하므로, 공정이 비효율적이다. 또한, 일부 산화물은 강판에 개재물 형태로 그대로 남아서 강판의 물성에 나쁜 영향을 미친다.Meanwhile, metals having excellent oxygen affinity such as aluminum, silicon, or titanium are used to remove oxygen injected for decarburization. Oxygen in molten iron can be removed by forming oxides with oxygen using these metals. In this way, the process of injecting carbon and removing oxygen again to remove oxygen is repeated. In addition, some oxides remain in the form of inclusions on the steel sheet, which adversely affects the physical properties of the steel sheet.
탈탄에 의해 페라이트 구조체와 마르텐사이트 구조체를 포함하는 철입자를 제공하고자 한다. 또한, 전술한 철입자의 제조 방법을 제공하고자 한다. 그리고 전술한 철입자 제조 장치를 제공하고자 한다.It is intended to provide iron particles including a ferrite structure and martensite structure by decarburization. In addition, to provide a method for producing the above-described iron particles. And to provide the above-described iron particle production apparatus.
본 발명의 일 실시예에 따른 철입자의 제조 방법은, i) 용철을 제공하는 단계, ii) 용철을 아토마이징하여 미립자로 변환하는 단계, 및 iii) 미립자에 스팀, 수소 및 질소를 포함하는 탈탄가스를 가하여 미립자를 탈탄해 복수의 철입자들을 제공하는 단계를 포함한다. Method for producing iron particles according to an embodiment of the present invention, i) providing molten iron, ii) atomizing the molten iron to convert to fine particles, and iii) decarburization comprising steam, hydrogen and nitrogen in the fine particles Adding a gas to decarburize the particulates to provide a plurality of iron particles.
복수의 철입자들을 제공하는 단계에서, 탈탄가스는 이산화탄소와 일산화탄소로 이루어진 군에서 선택된 하나 이상의 가스를 더 포함할 수 있다. 탈탄가스의 온도는 700℃ 내지 1100℃일 수 있다. 좀더 바람직하게는, 탈탄가스의 온도는 1000℃ 내지 1100℃일 수 있다. 복수의 철입자들을 제공하는 단계에서, 미립자는 하측 방향으로 낙하하고, 탈탄 가스는 상측 방향으로 취입되어 미립자를 탈탄할 수 있다. In the providing of the plurality of iron particles, the decarburization gas may further include one or more gases selected from the group consisting of carbon dioxide and carbon monoxide. The decarburization gas may have a temperature of 700 ° C. to 1100 ° C. More preferably, the temperature of the decarburized gas may be 1000 ° C to 1100 ° C. In the providing of the plurality of iron particles, the fine particles may fall downward and the decarburized gas may be blown upwards to decarburize the fine particles.
본 발명의 일 실시예에 따른 철입자의 제조 방법은 복수의 철입자들을 압축 성형하는 단계를 더 포함할 수 있다. 복수의 철입자들은 마르텐사이트 구조체들과 마르텐사이트 구조체들을 둘러싸는 페라이트 구조체들을 포함하고, 마르텐사이트 구조체들은 상호 이격된 둘 이상의 마르텐사이트 구조체들을 포함할 수 있다.Method for producing iron particles according to an embodiment of the present invention may further comprise the step of compression molding a plurality of iron particles. The plurality of iron particles may include martensite structures and ferrite structures surrounding the martensite structures, and the martensite structures may include two or more martensite structures spaced apart from each other.
복수의 철입자들을 제공하는 단계에서, 미립자는 분산판을 포함하는 탈탄 반응로에 장입되고, 탈탄가스는 분산판에 형성된 가스 분사공들을 통하여 분사되며, 미립자는 복수의 가스 분사공들을 통하여 분사되는 탈탄가스와 접촉하여 탈탄될 수 있다. In the providing of the plurality of iron particles, the fine particles are charged into a decarburization reactor including a dispersion plate, the decarburized gas is injected through gas injection holes formed in the dispersion plate, and the fine particles are injected through the plurality of gas injection holes. The decarburized gas may be contacted with decarburized gas.
전술한 방법으로 제조한 본 발명의 일 실시예에 따른 철입자는, i) 마르텐사이트 구조체, 및 ii) 마르텐사이트 구조체를 둘러싸는 페라이트 구조체를 포함하고, 기설정된 입도를 가진다. Iron particles according to an embodiment of the present invention prepared by the above method, i) martensite structure, and ii) a ferrite structure surrounding the martensite structure, and has a predetermined particle size.
입도는 0보다 크고 100㎛ 이하일 수 있다. 좀더 바람직하게는, 입도는 0보다 크고 10㎛ 이하일 수 있다. 철입자의 평균 반경에 대한 페라이트 구조체의 평균 두께의 비는 0보다 크고 1 이하일 수 있다. 좀더 바람직하게는, 비는 0.1 내지 0.9일 수 있다.The particle size may be greater than zero and less than or equal to 100 μm. More preferably, the particle size may be greater than zero and less than or equal to 10 μm. The ratio of the average thickness of the ferrite structure to the average radius of the iron particles may be greater than zero and less than or equal to one. More preferably, the ratio may be 0.1 to 0.9.
본 발명의 일 실시예에 따른 철입자 제조 장치는, i) 용철을 미립자로 변환시키는 아토마이징 장치, ii) 아토마이징 장치와 연결되어 미립자를 탈탄해 복수의 철입자들을 제공하는 탈탄 반응로, 및 iii) 탈탄 반응로와 연결되어 탈탄 반응로에 탈탄 가스를 공급하는 탈탄가스 공급장치를 포함한다.Iron device manufacturing apparatus according to an embodiment of the present invention, i) an atomizing device for converting molten iron into fine particles, ii) a decarburization reactor connected to the atomizing device to decarburize the fine particles to provide a plurality of iron particles, and iii) a decarburization gas supply device connected to the decarburization reactor to supply decarburization gas to the decarburization reactor.
본 발명의 일 실시예에 따른 철입자 제조 장치는 탈탄 반응로와 연결되어 복수의 철입자들을 압축 성형하는 압축 성형기를 더 포함할 수 있다. 탈탄 반응로는, i) 아토마이징 장치와 연결되어 미립자가 공급되는 주입구, ii) 주입구를 향하는 복수의 가스 분사공들이 형성된 분산판, 및 iii) 탈탄가스 공급장치와 연결되고, 분산판의 아래에 설치되어 탈탄 가스가 유입되는 탈탄가스 취입구를 포함할 수 있다. 분산판은 탈탄 반응로의 아래를 향해 경사지고, 분산판의 중심에 복수의 철입자들을 낙하시키는 개구부가 형성될 수 있다.Iron particle manufacturing apparatus according to an embodiment of the present invention may further include a compression molding machine connected to the decarburization reactor for compression molding a plurality of iron particles. The decarburization reactor comprises: i) an injection port connected to the atomizing device and supplied with fine particles, ii) a dispersion plate having a plurality of gas injection holes directed toward the injection hole, and iii) connected to a decarburization gas supply device, Installed may include a decarburization gas inlet through which decarburization gas is introduced. The dispersion plate may be inclined downward of the decarburization reactor, and an opening for dropping the plurality of iron particles may be formed at the center of the dispersion plate.
철입자의 내부에는 우수한 강도를 가진 마르텐사이트 구조체가 존재하고, 그 주위를 연성의 페라이트 구조체가 감싸고 있으므로, 철입자를 성형하기에 유리하다. 또한, 철입자를 압축하여 매우 작게 만들 수 있고, 마르텐사이트 구조체와 페라이트 구조체의 특성을 함께 이용할 수 있으므로, 강도와 연성이 모두 우수한 강재를 제조할 수 있다. 즉, 철입자를 몰드에 주입하여 원하는 형상의 강재로 제조하거나 롤 프레싱하여 박판 또는 리본 등 다양한 형태의 강재를 제조할 수 있다. 한편, 용철에 산소를 주입하지 않고도 강재에 포함된 산화물 등의 개재물을 용이하게 제거할 수 있으며, 강재에 포함된 산소의 함량을 고려하지 않아도 되므로 철입자의 물성을 크게 향상시킬 수 있다. 또한, 제강 공정에서의 이산화탄소 발생량을 저감시킬 수 있으며, 탄탈 시간을 크게 줄일 수 있으므로 제조 비용을 절감할 수 있다.The martensite structure having excellent strength exists inside the iron particles, and the flexible ferrite structure is wrapped around the iron particles, which is advantageous for forming the iron particles. In addition, since the iron particles can be compressed to be made very small, and the properties of the martensite structure and the ferrite structure can be used together, steel materials excellent in both strength and ductility can be produced. That is, the iron particles may be injected into a mold to produce a steel having a desired shape, or roll pressed to produce steel in various forms such as a thin plate or a ribbon. On the other hand, it is possible to easily remove the inclusions, such as oxides contained in the steel without injecting oxygen into the molten iron, it is possible to greatly improve the physical properties of the iron particles because it does not have to consider the content of oxygen contained in the steel. In addition, the amount of carbon dioxide generated in the steelmaking process can be reduced, and tantalum time can be greatly reduced, thereby reducing manufacturing costs.
도 1은 본 발명의 일 실시예에 따른 철입자에 포함된 철입자의 개략적인 단면도이다.1 is a schematic cross-sectional view of iron particles contained in iron particles according to an embodiment of the present invention.
도 2는 도 1의 철입자의 제조 방법의 개략적인 순서도이다.FIG. 2 is a schematic flowchart of a method of manufacturing iron particles of FIG. 1.
도 3은 본 발명의 일 실시예에 따른 철입자의 제조 방법에서 사용하는 탈탄 반응로의 개략적인 도면이다.3 is a schematic diagram of a decarburization reactor used in the method for producing iron particles according to an embodiment of the present invention.
도 4는 도 1의 철입자를 사용하여 제조한 강재의 개략적인 단면도이다.4 is a schematic cross-sectional view of a steel produced using the iron particles of FIG.
여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the term "comprising" embodies a particular characteristic, region, integer, step, operation, element, and / or component, and other specific characteristics, region, integer, step, operation, element, component, and / or group. It does not exclude the presence or addition of.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
이하에서 사용하는 "구형"이라는 용어는 표면이 라운드 형태로 형성된 모든 형상을 포함하는 것으로 해석된다. 따라서 구형은 중심으로부터 표면까지의 거리가 모두 동일한 완전 구형이나 타원형을 모두 포함하는 것으로 해석된다.The term "spherical" as used below is to be interpreted to include all shapes in which the surface is formed in a round shape. Therefore, the sphere is interpreted to include all spheres or ellipses with the same distance from the center to the surface.
도 1의 본 발명의 일 실시예에 따른 강재(200)(도 4에 도시)에 포함된 철입자(100)의 단면 구조를 개략적으로 나타낸다. 도 1의 철입자(100)의 단면 구조의 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 철입자(100)의 단면 구조를 다른 형태로도 변형할 수 있다.1 schematically shows a cross-sectional structure of iron particles 100 included in steel 200 (shown in FIG. 4) according to an embodiment of the present invention. The cross-sectional structure of the iron particles 100 of FIG. 1 is merely for illustrating the present invention, but the present invention is not limited thereto. Therefore, the cross-sectional structure of the iron particles 100 can be modified in other forms.
도 1에 도시한 바와 같이, 구형의 철입자(100)는 마르텐사이트 구조체(10)와 페라이트 구조체(20)를 포함한다. 이외에. 철입자(100)는 다른 성분을 더 포함할 수도 있다. As shown in FIG. 1, the spherical iron particles 100 include a martensite structure 10 and a ferrite structure 20. besides. The iron particles 100 may further include other components.
마르텐사이트 구조체(10)는 탄소강을 담금질하여 생성되며, 오스테나이트의 무확산 변태로부터 제조된 비평행 상태의 단일상 구조를 가진다. 즉, 마르텐사이트 구조체(10)는 오스테나이트가 무확산 전단 응력에 의해 변태된 조직으로서 펄라이트와 베이나이트 대신에 생성되는 변태 생성물이다. 탄소강의 급냉 속도가 탄소 확산을 방해할 정도로 급속히 일어날 때 마르텐사이트 구조체(10)로 변태된다. 급냉에 의해 탄소원자가 미처 빠져 나가지 못하고 결정내에 갇힌다. 갇힌 탄소원자는 상온에서 재분배되어 전위와 결합함으로써 전위의 이동을 방해한다. 나아가, 탄소 원자는 클러스터를 형성하여 장애물로 작용하므로, 마르텐사이트 구조체(10)의 강도를 증가시킨다. 또한, 마르텐사이트 구조체(10)는 판상 조직으로서 판상 조직내에 미세한 쌍정이 평행하게 존재하며, 높은 전위밀도를 가진다. 따라서 쌍정과 전위밀도가 전위이동을 방해하므로, 마르텐사이트 구조체(10)의 강도를 더욱 증가시킬 수 있다. 철입자(100)는 전술한 메커니즘에 따라 높은 강도를 가지는 마르텐사이트 구조체(10)를 그 내부에 핵으로서 포함하므로, 한편으로는 높은 강도를 가진다.The martensite structure 10 is produced by quenching carbon steel and has a non-parallel single-phase structure produced from the diffusionless transformation of austenite. That is, the martensite structure 10 is a transformation product in which austenite is transformed by diffusionless shear stress and is produced in place of pearlite and bainite. When the quench rate of the carbon steel occurs so rapidly as to prevent carbon diffusion, it is transformed into the martensite structure 10. The quenching prevents the carbon atoms from escaping and is trapped in the crystal. The trapped carbon atoms are redistributed at room temperature and bind to the potential, thus preventing the movement of the potential. Furthermore, the carbon atoms form clusters and act as obstacles, thereby increasing the strength of the martensite structure 10. In addition, the martensite structure 10 is a plate-like structure in which fine twins exist in parallel in the plate-like structure, and have a high dislocation density. Therefore, since twins and dislocation densities interfere with dislocation movement, the strength of the martensite structure 10 can be further increased. The iron particles 100 contain martensite structure 10 having a high strength as a nucleus therein according to the above-described mechanism, and therefore have high strength on the one hand.
한편, 도 1에 도시한 바와 같이, 페라이트 구조체(20)는 마르텐사이트 구조체(10)를 둘러싸서 형성된다. 페라이트 구조체(20)는 체심입방결정을 가진 철에 불순물이 용융되어 형성된 고용체이다. 페라이트 구조체(20)는 α철을 기본으로 한 고용체이므로, 그 외관은 순철과 동일하며, 연성을 가진다. 페라이트 구조체(20)로 인하여 철입자(100)는 성형하기에 바람직하며 원자 확산 반응에 유리하다. 따라서 철입자(100)는 표면 개질이 필요한 경우, 다양하게 활용될 수 있다.Meanwhile, as shown in FIG. 1, the ferrite structure 20 is formed surrounding the martensite structure 10. The ferrite structure 20 is a solid solution formed by melting impurities in iron having a body-centered cubic crystal. Since the ferrite structure 20 is a solid solution based on alpha iron, its appearance is the same as that of pure iron and has ductility. Due to the ferrite structure 20, the iron particles 100 are preferable for molding and are advantageous for the atomic diffusion reaction. Therefore, the iron particles 100 may be used in various ways when surface modification is required.
철입자(100)의 외부는 페라이트 구조체(20)로 인해 연성을 가지고, 그 내부는 마르텐사이트 구조체(10)로 인해 어느 정도의 강도를 확보할 수 있으므로, 철입자(100)는 강성과 연성의 이중적인 특성을 가진다. 페라이트 구조체(20)는 마르텐사이트 구조체(10)를 둘러싸면서 구형으로 형성된다.Since the outside of the iron particles 100 is ductile due to the ferrite structure 20, the inside of the iron particles 100 can be secured to some extent due to the martensite structure 10, the iron particles 100 are rigid and flexible It has a dual characteristic. The ferrite structure 20 is formed in a spherical shape surrounding the martensite structure 10.
철입자(100)는 기설정된 입도를 가진다. 즉, 철입자(100)의 입도는 0보다 크고 100㎛ 이하일 수 있다. 철입자(100)를 탄탈하는 반응 속도는 탄소의 확산 속도에 의해 조절될 수 있다. 즉 탄소의 확산 속도를 증가시켜 전체적인 탈탄 반응을 혼합 가스내의 스팀과 용철내에 존재하는 탄소와의 화학 반응으로 조절한다. 따라서 철입자(100)의 입도를 전술한 범위로 조절한다. 이 경우, 예를 들면 수십초 이내에 탈탄 반응을 완료할 수 있으므로 탈탄 반응로를 소형으로 제작할 수 있다. 더욱 바람직하게는, 철입자(100)의 입도는 0보다 크고 10㎛ 이하일 수 있다. Iron particles 100 have a predetermined particle size. That is, the particle size of the iron particles 100 may be greater than zero and 100 μm or less. The reaction rate of tantalum of the iron particles 100 may be controlled by the diffusion rate of carbon. In other words, by increasing the diffusion rate of carbon, the overall decarburization reaction is controlled by the chemical reaction between the steam in the mixed gas and carbon present in the molten iron. Therefore, the particle size of the iron particles 100 is adjusted to the above range. In this case, the decarburization reaction can be completed within a few tens of seconds, for example, so that the decarburization reactor can be made compact. More preferably, the particle size of the iron particles 100 may be greater than 0 and 10 μm or less.
한편, 도 1에 도시한 철입자(100)의 평균 반경(t10+t20)에 대한 페라이트 구조체(20)의 평균 두께(t20)의 비는 0보다 크고 1 이하일 수 있다. 마르텐사이트 구조체(10)는 핵 형태로 제조되므로, 철입자(100)의 평균 반경(t10+t20)은 마르텐사이트 구조체(10)의 중심(10C)으로부터 철입자(100)의 표면까지의 평균 거리로 정의될 수 있다. 여기서, 전술한 비가 너무 크면 철입자(100)의 강도는 향상되지만 성형하기가 어렵다. 또한, 전술한 비가 너무 작은 경우, 철입자(100)를 성형하기는 좋지만 그 강도가 저하된다. 따라서 전술한 범위로 비를 조절하는 것이 바람직하다. 더욱 바람직하게는, 전술한 비는 0.1 내지 0.9일 수 있다. 이하에서는 도 2를 참조하여 도 1의 철입자(100)의 제조 방법을 좀더 상세하게 설명한다.Meanwhile, the ratio of the average thickness t20 of the ferrite structure 20 to the average radius t10 + t20 of the iron particles 100 illustrated in FIG. 1 may be greater than zero and less than or equal to one. Since the martensite structure 10 is made in the form of a nucleus, the average radius t10 + t20 of the iron particles 100 is the average distance from the center 10C of the martensite structure 10 to the surface of the iron particles 100. It can be defined as. Here, if the above ratio is too large, the strength of the iron particles 100 is improved but difficult to mold. In addition, when the above ratio is too small, it is good to form the iron particles 100, but the strength is lowered. Therefore, it is desirable to adjust the ratio in the above-described range. More preferably, the above ratio may be 0.1 to 0.9. Hereinafter, the manufacturing method of the iron particles 100 of FIG. 1 will be described in more detail with reference to FIG. 2.
페라이트 구조체(20)의 두께(t20)는 탈탄 반응 시간을 조절하여 조절할 수 있다. 즉, 탈탄 반응 시간을 증가시키면 페라이트 구조체(20)의 두께(t20)를 증가시킬 수 있다. 반대로, 탈탄 반응 시간을 감소시키면, 페라이트 구조체(20)의 두께(t20)를 감소시킬 수 있다. 따라서 철입자(100)의 사용 용도에 따라 페라이트 구조체(20)의 두께(t20)를 원하는 크기로 조절할 수 있다. 예를 들면, 1100℃에서 고상 입자를 탈탄하여 철입자(100)를 제조하는 경우, 페라이트 구조체(20)의 두께(t20)가 50㎛가 되도록 탈탄시 1분 이내에 탈탄 반응이 완료될 수 있다.The thickness t20 of the ferrite structure 20 may be adjusted by adjusting the decarburization reaction time. That is, by increasing the decarburization reaction time, the thickness t20 of the ferrite structure 20 may be increased. On the contrary, when the decarburization reaction time is reduced, the thickness t20 of the ferrite structure 20 may be reduced. Therefore, the thickness t20 of the ferrite structure 20 may be adjusted to a desired size according to the use purpose of the iron particles 100. For example, when the iron particles 100 are manufactured by decarburizing the solid particles at 1100 ° C., the decarburization reaction may be completed within 1 minute during decarburization so that the thickness t20 of the ferrite structure 20 is 50 μm.
도 2는 도 1의 철입자(100)의 제조 방법의 순서도를 개략적으로 나타낸다. 도 2의 철입자의 제조 방법은 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 철입자의 제조 방법을 다양한 형태로 변형할 수 있다.FIG. 2 schematically shows a flowchart of a method of manufacturing iron particles 100 of FIG. 1. The manufacturing method of the iron particle of FIG. 2 is only for illustration of this invention, Comprising: This invention is not limited to this. Therefore, the production method of the iron particles can be modified in various forms.
도 2에 도시한 바와 같이, 철입자의 제조 방법은, i) 용철을 제공하는 단계(S10), ii) 용철을 아토마이징하여 미립자로 변환하는 단계(S20), 및 iii) 미립자에 스팀, 수소 및 질소를 포함하는 탈탄가스를 가하여 미립자를 탈탄해 복수의 철입자들을 제공하는 단계(S30)를 포함한다. 이외에, 철입자의 제조 방법은 필요에 따라 다른 단계들을 더 포함할 수 있다. 예를 들면, 철입자를 압축 성형하여 철입자로 제조하는 단계를 더 포함할 수 있다.As shown in FIG. 2, the method for producing iron particles includes: i) providing molten iron (S10), ii) atomizing molten iron and converting it into fine particles (S20), and iii) steam and hydrogen in the fine particles. And adding a decarburization gas including nitrogen to decarburize the fine particles to provide a plurality of iron particles (S30). In addition, the method for producing iron particles may further include other steps as necessary. For example, the method may further include preparing the iron particles by compression molding the iron particles.
먼저, 단계(S10)에서는 용철을 제조한다. 즉, 고로에 코크스 및 소결광을 장입하고 열풍을 불어넣어 탄소에 의해 소결광을 환원 및 용융시킴으로써 용철을 제조한다. 단, 용철 제공이 고로에만 한정될 필요는 없으며 용융가스화로를 사용한 용융환원제철공정 또는 전기로 공정(electric arc furnace, EAF) 등의 다른 제선 공정으로부터도 용철 제공이 가능하다. 용철은 고로 하부의 출선구를 통하여 외부로 배출된다. 출선된 용철은 코크스와의 반응에 의해 형성되므로, 탄소를 포함한다.First, molten iron is manufactured in step S10. That is, molten iron is manufactured by charging coke and sintered ore into the blast furnace and blowing hot air to reduce and melt the sintered ore with carbon. However, molten iron may not be limited to the blast furnace, and molten gas may be supplied from other steelmaking processes such as a melt-reduction steelmaking process using an melt gasifier or an electric arc furnace (EAF). The molten iron is discharged to the outside through the outlet at the bottom of the blast furnace. Since molten iron is formed by the reaction with coke, it contains carbon.
다음으로, 단계(S20)에서는 용철을 아토마이징하여 미립자로 변환한다. 즉, 아토마이징 장치에서 용철을 미립자로 변환시킨다. 아토마이징에 의하여 미립자를 제공함으로써 후속 공정에서 미립자를 빠르게 탈탄할 수 있다. 아토마이징 장치의 세부 구조는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로 그 상세한 설명을 생략한다. 이하에서는 도 3을 참조하여 도 2의 단계(S30)에 대하여 좀더 상세하게 설명한다.Next, in step S20, the molten iron is atomized and converted into fine particles. That is, molten iron is converted into fine particles in the atomizing device. By providing the fine particles by atomizing, the fine particles can be quickly decarburized in a subsequent process. The detailed structure of the atomizing device will be easily understood by those skilled in the art, and thus the detailed description thereof will be omitted. Hereinafter, step S30 of FIG. 2 will be described in more detail with reference to FIG. 3.
도 3은 본 발명의 일 실시예에 따른 강재(200)의 제조 방법에서 사용하는 탈탄 반응로(30)를 개략적으로 나타낸다. 도 3의 탈탄 반응로(30)의 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 탈탄 반응로(30)의 구조를 다른 형태로도 변형할 수 있다.3 schematically illustrates a decarburization reactor 30 used in the method of manufacturing the steel 200 according to an embodiment of the present invention. The structure of the decarburization reactor 30 of FIG. 3 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the structure of the decarburization reactor 30 can be modified in other forms.
도 2의 단계(S30)에서는 미립자에 스팀, 수소 및 질소를 포함하는 탈탄가스를 가하여 미립자를 탈탄해 복수의 철입자들을 제공한다. 도 3에 도시한 바와 같이, 제조된 미립자(40)가 이송되어 장입구(301)에 임시적으로 저장될 수 있다. 미립자(40)는 탈탄 반응로(30)를 통과하면서 탈탄된다.In step S30 of FIG. 2, decarburization gas including steam, hydrogen, and nitrogen is added to the microparticles to decarburize the microparticles to provide a plurality of iron particles. As shown in FIG. 3, the prepared microparticles 40 may be transported and temporarily stored in the charging hole 301. The fine particles 40 are decarburized while passing through the decarburization reactor 30.
도 3에 도시한 바와 같이, 탈탄 반응로(30)는 용철 장입구(301), 탈탄가스 취입구(303), 분산판(305), 철입자 배출구(307) 및 가스배출구(309)를 포함한다. 탈탄 반응로(30)의 내부에는 혼합가스에 의해 유동층이 형성되어 고상 입자를 쉽게 탈탄시킬 수 있다. 탈탄 반응로(30)는 아토마이징 장치(미도시)와 연결되어 미립자(40)를 탈탄해 복수의 철입자들(42)을 제공한다. 한편, 도 3에는 도시하지 않았지만 탈탄가스가 탈탄 반응로(30)와 연결되어 탈탄 반응로(30)에 탈탄 가스를 공급할 수 있다. 탈탄가스는 탈탄가스 취입구(303)를 통하여 탈탄 반응로(30)에 공급된다.As shown in FIG. 3, the decarburization reactor 30 includes a molten iron inlet 301, a decarburization gas inlet 303, a dispersion plate 305, an iron particle outlet 307, and a gas outlet 309. do. In the decarburization reactor 30, a fluidized bed is formed by a mixed gas, thereby easily decarburizing solid particles. The decarburization reactor 30 is connected to an atomizing device (not shown) to decarburize the fine particles 40 to provide a plurality of iron particles 42. Meanwhile, although not shown in FIG. 3, decarburized gas is connected to the decarburization reactor 30 to supply decarburized gas to the decarburization reactor 30. The decarburization gas is supplied to the decarburization reactor 30 through the decarburization gas inlet 303.
미립자는 장입구(301)를 통하여 탈탄 반응로(30) 내부로 장입된 후 탈탄가스 취입구(303)를 통해 공급되는 스팀, 수소 및 질소에 의해 탈탄된 후 철입자 배출구(307)를 통해 배출된다. 탈탄 가스는 미립자와 접촉하여 탈탄 반응을 매우 빠르게 완료한 후 가스배출구(309)를 통해 외부로 배출된다. 가스배출구(309)를 통하여 MnO, SiO2 더스트, 스팀, 이산화탄소, 수소 및 질소 등이 배출될 수 있다.The fine particles are charged into the decarburization reactor 30 through the charging hole 301 and then decarburized by steam, hydrogen and nitrogen supplied through the decarburization gas inlet 303 and then discharged through the iron particle outlet 307. do. The decarburized gas is contacted with the fine particles to complete the decarburization reaction very quickly and then is discharged to the outside through the gas outlet 309. MnO, SiO 2 dust, steam, carbon dioxide, hydrogen and nitrogen may be discharged through the gas outlet 309.
스팀, 수소 및 질소를 포함하는 탈탄 가스(44)는 상측 방향으로 취입되어 미립자(42)를 탈탄하기 위하여 탈탄 반응로(30)에 공급된다. 스팀은 하기의 화학식 1에 기재한 바와 같이 하측 방향으로 낙하하는 미립자(42)와 접촉하여 미립자(42)에 포함된 탄소를 제거한다. 그 결과, 이산화탄소와 수소가 생성되어 가스배출구(309)를 통하여 외부로 배출된다. 또한, 미립자(42)를 환원시키기 위하여 탈탄가스(44)의 성분으로서 수소를 사용한다. 수소를 사용하지 않는 경우, 미립자(42)는 산화될 수 있다.The decarburization gas 44 including steam, hydrogen, and nitrogen is blown upward and fed to the decarburization reactor 30 to decarburize the fine particles 42. The steam is in contact with the fine particles 42 falling downward as described in Formula 1 below to remove the carbon contained in the fine particles 42. As a result, carbon dioxide and hydrogen are generated and discharged to the outside through the gas outlet 309. In addition, hydrogen is used as a component of the decarburization gas 44 to reduce the fine particles 42. If hydrogen is not used, the fine particles 42 can be oxidized.
[화학식 1] [Formula 1]
2H2O + C → CO2 + 2H2 2H 2 O + C → CO 2 + 2H 2
한편, 혼합가스(44)에 포함된 질소는 유동화 속도를 확보하면서 페라이트 구조체(20)의 평균 두께를 조절한다. 따라서 질소의 양이 많을수록 페라이트 구조체(20)의 평균 두께를 저감시킬 수 있다. 이외에, 일산화탄소와 이산화탄소도 탈탄 가스로 사용할 수 있다.On the other hand, nitrogen contained in the mixed gas 44 adjusts the average thickness of the ferrite structure 20 while ensuring the fluidization rate. Therefore, as the amount of nitrogen increases, the average thickness of the ferrite structure 20 can be reduced. In addition, carbon monoxide and carbon dioxide may also be used as the decarburization gas.
혼합가스(44)가 미립자(42)와 접촉하여 미립자(42)를 탈탄시키면서 철입자(100)를 제조한 후 철입자 배출구(307)를 통해 외부 배출되도록 탈탄 반응로(30)의 내부에는 분산판(305)이 제공된다. 분산판(305)은 철입자 배출구(307) 위를 향하도록 탈탄 반응로(30)의 아래를 향하여 경사져서 형성된다. 분산판(305)의 하부에는 탈탄가스 취입구(303)가 위치하여 탈탄 가스(44)를 공급한다. 도 3에는 도시하지 않았지만, 탈탄가스 공급장치가 탈탄 반응로(30)와 연결되어 탈탄 반응로(30)에 탈탄 가스(44)를 공급한다.The mixed gas 44 is in contact with the fine particles 42 to produce the iron particles 100 while decarburizing the fine particles 42 and dispersed in the decarburization reactor 30 so as to be discharged to the outside through the iron particle outlet 307. Plate 305 is provided. The dispersion plate 305 is formed to be inclined downward of the decarburization reactor 30 to face the iron particle outlet 307. The decarburization gas inlet 303 is positioned below the distribution plate 305 to supply decarburization gas 44. Although not shown in FIG. 3, the decarburization gas supply device is connected to the decarburization reactor 30 to supply decarburization gas 44 to the decarburization reactor 30.
도 2의 단계(S40)에서는 혼합 가스를 이용해 고상입자를 탈탄하여 철입자를 제공한다. 즉, 도 3의 분산판(305)에는 복수의 가스 분사공들(3051)이 형성된다. 가스 분사공들(3051)을 통하여 빠른 유속의 탈탄 가스가 분사되므로, 미립자(42)가 탈탄 가스(44)와 접촉하여 효율적으로 탈탄될 수 있다. 여기서, 탈탄 가스(44)의 온도는 700℃ 내지 1100℃일 수 있다. 탈탄 가스(44)의 온도가 너무 낮은 경우, 미립자(42)의 탄소 제거 효율이 저하될 수 있다. 또한, 탈탄 가스(44)의 온도가 너무 높은 경우, 미립자(42)가 열화될 수 있다. 따라서 탈탄 가스(44)의 온도를 전술한 범위로 조절한다. 좀더, 바람직하게는, 탈탄 가스(44)의 온도는 1000℃ 내지 1100℃일 수 있다. 철입자(100)는 분산판(305)의 중심에 형성된 개구부를 통하여 하측 방향으로 낙하한다. 그리고 철입자(100)는 탈탄 가스(44)와 분리되어 철입자 배출구(307)를 통해 외부로 배출될 수 있다.In step S40 of FIG. 2, the solid particles are decarburized using the mixed gas to provide iron particles. That is, a plurality of gas injection holes 3051 are formed in the dispersion plate 305 of FIG. 3. Since the high velocity decarburization gas is injected through the gas injection holes 3051, the fine particles 42 may be in contact with the decarburization gas 44 to be efficiently decarburized. Here, the temperature of the decarburization gas 44 may be 700 ° C to 1100 ° C. If the temperature of the decarburization gas 44 is too low, the carbon removal efficiency of the fine particles 42 may decrease. In addition, when the temperature of the decarburization gas 44 is too high, the fine particles 42 may deteriorate. Therefore, the temperature of the decarburization gas 44 is adjusted to the above-mentioned range. More preferably, the temperature of the decarburization gas 44 may be 1000 ° C to 1100 ° C. The iron particles 100 fall downward through an opening formed in the center of the dispersion plate 305. The iron particles 100 may be separated from the decarburization gas 44 and discharged to the outside through the iron particles outlet 307.
한편, 용철에서 황, 인, 실리콘 등을 사전에 제거한 후 스트립 캐스팅을 이용하여 강판을 제조하는 방법이 알려져 있다. 여기서는 산화가스를 사용하여 강판 표면을 탈탄 처리한다. 이 경우, 표면에는 페라이트 구조체가 존재하고, 내부에는 마르텐사이트 구조체가 존재하는 복합 구조의 강판이 제조되므로, 이러한 특성을 요구하는 다양한 제품에 적용할 수 있다. 그러나 탈탄으로 인해 강판의 표면 상태가 좋지 않고 탈탄 시간이 약 10분 이상으로 너무 길어지고, 이를 해소하기 위해서는 탈탄 반응로를 길게 대형으로 형성해야 한다. 또한, 높은 탄소 함량을 가지는 강판을 스트립 캐스팅으로 제조하는 공정에 의해 제조하기 어렵다.Meanwhile, a method of manufacturing a steel sheet using strip casting after removing sulfur, phosphorus, and silicon from molten iron in advance is known. Here, the surface of the steel sheet is decarburized using an oxidizing gas. In this case, since a steel plate of a composite structure in which a ferrite structure exists on the surface and a martensite structure exists inside is manufactured, it can be applied to various products requiring such characteristics. However, due to the decarburization, the surface state of the steel sheet is not good and the decarburization time is too long, about 10 minutes or more, and the decarburization reactor has to be formed in a long form to solve this problem. In addition, it is difficult to manufacture a steel sheet having a high carbon content by a process for producing by strip casting.
이와는 대조적으로, 본 발명의 일 실시예에서는 용철을 아토마이징하여 미립자로 제공한 후 탈탄한다. 따라서 탈탄 시간이 매우 짧을 뿐만 아니라 이로 인해 탈탄 반응로를 소형화할 수 있다. 또한, 스트립 캐스팅 등의 복잡한 공정을 거치지 않으므로, 공정을 용이하게 수행할 수 있다. 그리고 압축 성형 등의 방법을 통하여 예를 들면 강재로서 1mm 두께의 박판을 제조할 수 있다.In contrast, in one embodiment of the present invention, molten iron is atomized to provide fine particles and then decarburized. Therefore, not only the decarburization time is very short, but also the decarburization reactor can be miniaturized. In addition, since the process does not undergo a complicated process such as strip casting, the process can be easily performed. And a 1 mm-thick thin plate can be manufactured as steel materials, for example by compression molding.
한편, 전술한 방법으로 제조한 철입자를 압축 성형하여 강재를 제조할 수 있다. 즉, 예를 들면 도 3의 탈탄 반응로(30)를 이용하여 제조된 고온의 철입자를 냉각한 후 성형틀에 장입 및 몰딩하여 원하는 형상의 강제품을 제조하거나 롤 프레싱하여 박판을 제조할 수 있다. 이하에서는 도 4를 통하여 전술한 방법으로 제조된 강재에 대해 좀더 상세하게 설명한다.On the other hand, it is possible to manufacture a steel material by compression molding the iron particles produced by the above-described method. That is, for example, after cooling the high-temperature iron particles produced by using the decarburization reactor 30 of FIG. 3, the steel sheets may be manufactured by rolling and molding them into a mold to produce a steel product having a desired shape or by pressing a roll. have. Hereinafter, the steel produced by the above-described method will be described in more detail with reference to FIG. 4.
도 4는 도 1의 철입자(100)를 사용하여 제조한 강재(200)의 단면 구조를 개략적으로 나타낸다. 도 4의 강재(200)의 단면 구조는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 강재(200)의 단면 구조를 다른 형태로도 변형할 수 있다.FIG. 4 schematically shows a cross-sectional structure of the steel material 200 manufactured using the iron particles 100 of FIG. 1. The cross-sectional structure of the steel material 200 of FIG. 4 is merely for illustrating the present invention, but the present invention is not limited thereto. Therefore, the cross-sectional structure of the steel 200 can be modified in other forms.
도 4에 도시한 바와 같이, 강재(200)는 마르텐사이트 구조체(10)와 페라이트 구조체(20)가 혼합된 형태의 이중상(dual phase)으로 성형될 수 있다. 둘 이상의 마르텐사이트 구조체들(10)이 상호 이격되어 존재하므로, 강재(200)는 마르텐사이트 구조체(10)에 기인한 강도와 페라이트 구조체(20)에 기인한 연성을 함께 가져서 복합재의 특성을 가진다. 따라서 강재(200)를 강도와 연성이 함께 요구되는 분야에 사용될 수 있으므로, 그 활용도가 높다. 특히, 마르텐사이트 구조체(10)가 서로 접촉하지 않은 상태로 페라이트 구조체(20)이 그물망처럼 얽혀 있으므로, 일반적인 강판과는 상이한 우수한 기계적 특성을 나타낸다.As shown in FIG. 4, the steel 200 may be formed in a dual phase in which the martensite structure 10 and the ferrite structure 20 are mixed. Since the two or more martensite structures 10 are spaced apart from each other, the steel 200 has properties of the composite by having both the strength due to the martensite structure 10 and the ductility due to the ferrite structure 20 together. Therefore, since the steel 200 can be used in fields requiring both strength and ductility, its utilization is high. In particular, since the ferrite structure 20 is entangled like a mesh in a state where the martensite structure 10 is not in contact with each other, it exhibits excellent mechanical properties different from that of a general steel sheet.
이하에서는 실험예를 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through experimental examples. These experimental examples are only for illustrating the present invention, and the present invention is not limited thereto.
실험예 1Experimental Example 1
전술한 방법과 동일한 방법을 사용하여 40g의 철입자를 제조하였다. 철입자를 수평로에 1000℃에서 10vol%의 스팀과 90vol%의 수소를 포함하는 분위기에서 5분 동안 탈탄하였다. 철입자의 초기 탄소 농도는 3.41wt% 이었다. 그리고 탈탄한 철입자를 500℃에서 300MPa의 압력으로 압축 성형하여 그 기공률을 측정하였다. 상세한 실험 과정은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있으므로, 그 상세한 설명을 생략한다.40 g of iron particles were prepared using the same method as described above. Iron particles were decarburized horizontally at 1000 ° C. for 5 minutes in an atmosphere containing 10 vol% steam and 90 vol% hydrogen. The initial carbon concentration of the iron particles was 3.41 wt%. The decarburized iron particles were compression molded at 500 MPa at a pressure of 300 MPa to measure porosity. Detailed experimental procedures are easily understood by those skilled in the art, and thus detailed descriptions thereof will be omitted.
실험예 2Experimental Example 2
30g의 철입자를 제조하였다. 철입자를 수평로에 800℃에서 20vol%의 이산화탄소와 80vol%의 일산화탄소를 포함하는 분위기에서 10분 동안 탈탄하였다. 철입자의 초기 탄소 농도는 3.41wt% 이었다. 그리고 탈탄한 철입자를 500℃에서 300MPa의 압력으로 압축 성형하여 그 기공률을 측정하였다. 나머지 실험 과정은 실험예 1과 동일하였다.30 g of iron particles were prepared. Iron particles were horizontally decarburized at 800 ° C. for 10 minutes in an atmosphere containing 20 vol% carbon dioxide and 80 vol% carbon monoxide. The initial carbon concentration of the iron particles was 3.41 wt%. The decarburized iron particles were compression molded at 500 MPa at a pressure of 300 MPa to measure porosity. The rest of the experiment was the same as in Experiment 1.
실험예 3Experimental Example 3
실험예 2와 동일한 조건으로 실험하여 철입자를 압축 성형하고, 그 기공률을 측정하였다.Experiments were carried out under the same conditions as in Experimental Example 2, and the iron particles were compression molded, and the porosity was measured.
실험예 4Experimental Example 4
30g의 철입자를 제조하였다. 철입자를 수평로에 1000℃에서 20vol%의 이산화탄소와 80vol%의 일산화탄소를 포함하는 분위기에서 10분 동안 탈탄하였다. 철입자의 초기 탄소 농도는 3.41wt% 이었다. 그리고 탈탄한 철입자를 500℃에서 300MPa의 압력으로 압축 성형하여 그 기공률을 측정하였다.30 g of iron particles were prepared. Iron particles were horizontally decarburized at 1000 ° C. for 10 minutes in an atmosphere containing 20 vol% carbon dioxide and 80 vol% carbon monoxide. The initial carbon concentration of the iron particles was 3.41 wt%. The decarburized iron particles were compression molded at 500 MPa at a pressure of 300 MPa to measure porosity.
실험 결과Experiment result
실험예 1의 실험 결과Experimental result of Experimental Example 1
실험예 1에서는 철입자를 탈탄한 결과, 그 탄소 농도가 2.50wt%로 낮아졌다. 그리고 탈탄된 철입자를 압축 성형한 성형체의 기공률을 측정한 결과, 12vol%의 기공률이 얻어졌다.In Experiment 1, as a result of decarburizing iron particles, the carbon concentration was lowered to 2.50 wt%. As a result of measuring the porosity of the compact obtained by compression-molding decarburized iron particles, a porosity of 12 vol% was obtained.
실험예 2의 실험 결과Experimental result of Experimental Example 2
실험예 2에서는 철입자를 탈탄한 결과, 그 탄소 농도가 2.93wt%로 낮아졌다. 그리고 탈탄된 철입자를 압축 성형한 성형체의 기공률을 측정한 결과, 28.6vol%의 기공률이 얻어졌다.In Experimental Example 2, when the carbon particles were decarburized, the carbon concentration was lowered to 2.93 wt%. As a result of measuring the porosity of the compact obtained by compression molding the decarburized iron particles, a porosity of 28.6 vol% was obtained.
실험예 3의 실험 결과Experimental result of Experimental Example 3
실험예 3에서는 철입자를 탈탄한 결과, 그 탄소 농도가 2.86wt%로 낮아졌다. 그리고 탈탄된 철입자를 압축 성형한 성형체의 기공률을 측정한 결과, 26.1vol%의 기공률이 얻어졌다.In Experimental Example 3, when the iron particles were decarburized, the carbon concentration was lowered to 2.86 wt%. As a result of measuring the porosity of the compact obtained by compression molding of the decarburized iron particles, a porosity of 26.1 vol% was obtained.
실험예 4의 실험 결과Experimental result of Experimental Example 4
실험예 4에서는 철입자를 탈탄한 결과, 그 탄소 농도가 2.73wt%로 낮아졌다. 그리고 탈탄된 철입자를 압축 성형한 성형체의 기공률을 측정한 결과, 18.3vol%의 기공률이 얻어졌다.In Experiment 4, as a result of decarburizing the iron particles, the carbon concentration was lowered to 2.73 wt%. As a result of measuring the porosity of the compact obtained by compression molding of the decarburized iron particles, a porosity of 18.3 vol% was obtained.
실험예 1 내지 실험예 4를 통하여 스팀과 수소를 이용하여 낮은 기공률을 가지는 압축 성형체를 얻을 수 있었다. 또한, 일산화탄소와 이산화탄소를 부가적으로 이용하는 경우, 낮은 기공률을 가지는 압축 성형체를 얻을 수 있었다. 그리고 좀더 고온에서 탈탄하는 경우, 압축 성형체의 기공률을 더욱 낮출 수 있었다. 즉, 1000℃ 내지 1100℃에서 탈탄하는 경우, 압축 성형체의 기공률을 더욱 낮출 수 있었다.Through Experimental Example 1 to Experimental Example 4 it was possible to obtain a compression molded article having a low porosity using steam and hydrogen. In addition, when carbon monoxide and carbon dioxide were additionally used, a compression molded article having a low porosity could be obtained. And when decarburizing at a higher temperature, the porosity of the compression molded body could be further lowered. That is, when decarburizing at 1000 degreeC-1100 degreeC, the porosity of a compression molded object was further lowered.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 여기에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 다양하게 변형하여 실시하는 것이 가능하고, 이것도 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it is within the scope of the present invention.

Claims (17)

  1. 용철을 제공하는 단계,Providing molten iron,
    상기 용철을 아토마이징하여 미립자로 변환하는 단계, 및Atomizing the molten iron into fine particles, and
    상기 미립자에 스팀, 수소 및 질소를 포함하는 탈탄가스를 가하여 상기 미립자를 탈탄해 복수의 철입자들을 제공하는 단계Decarburizing the microparticles by applying decarburization gas including steam, hydrogen, and nitrogen to the microparticles to provide a plurality of iron particles
    를 포함하는 철입자의 제조 방법.Method for producing iron particles comprising a.
  2. 제1항에서,In claim 1,
    상기 복수의 철입자들을 제공하는 단계에서, 상기 탈탄가스는 이산화탄소와 일산화탄소로 이루어진 군에서 선택된 하나 이상의 가스를 더 포함하는 철입자의 제조 방법.In the providing of the plurality of iron particles, the decarburization gas further comprises at least one gas selected from the group consisting of carbon dioxide and carbon monoxide.
  3. 제2항에서,In claim 2,
    상기 탈탄가스의 온도는 700℃ 내지 1100℃인 철입자의 제조 방법.The temperature of the decarburization gas is 700 to 1100 ℃ manufacturing method of iron particles.
  4. 제3항에서,In claim 3,
    상기 탈탄가스의 온도는 1000℃ 내지 1100℃인 철입자의 제조 방법.The temperature of the decarburization gas is 1000 to 1100 ℃ manufacturing method of iron particles.
  5. 제1항에서,In claim 1,
    상기 복수의 철입자들을 제공하는 단계에서, 상기 미립자는 하측 방향으로 낙하하고, 상기 탈탄 가스는 상측 방향으로 취입되어 상기 미립자를 탈탄하는 철입자의 제조 방법.In the providing of the plurality of iron particles, the fine particles fall in the downward direction, the decarburization gas is blown in the upward direction to decarburize the fine particles.
  6. 제1항에서,In claim 1,
    상기 복수의 철입자들을 압축 성형하는 단계를 더 포함하는 철입자의 제조 방법.The method of manufacturing iron particles further comprising the step of compression molding the plurality of iron particles.
  7. 제6항에서,In claim 6,
    상기 복수의 철입자들은 마르텐사이트 구조체들과 상기 마르텐사이트 구조체들을 둘러싸는 페라이트 구조체들을 포함하고, 상기 마르텐사이트 구조체들은 상호 이격된 둘 이상의 마르텐사이트 구조체들을 포함하는 철입자의 제조 방법.Wherein the plurality of iron particles comprises martensite structures and ferrite structures surrounding the martensite structures, and the martensite structures comprise two or more martensite structures spaced apart from each other.
  8. 제1항에서,In claim 1,
    상기 복수의 철입자들을 제공하는 단계에서, 상기 미립자는 분산판을 포함하는 탈탄 반응로에 장입되고, 상기 탈탄가스는 상기 분산판에 형성된 가스 분사공들을 통하여 분사되며, 상기 미립자는 상기 복수의 가스 분사공들을 통하여 분사되는 상기 탈탄가스와 접촉하여 탈탄되는 철입자의 제조 방법.In the providing of the plurality of iron particles, the fine particles are charged into a decarburization reactor including a dispersion plate, the decarburization gas is injected through gas injection holes formed in the dispersion plate, and the fine particles are injected into the plurality of gases. Method for producing iron particles that are decarburized in contact with the decarburization gas injected through the injection holes.
  9. 제1항에 따라 제조한 철입자로서,As iron particles prepared according to claim 1,
    마르텐사이트 구조체, 및Martensite structure, and
    상기 마르텐사이트 구조체를 둘러싸는 페라이트 구조체Ferrite structure surrounding the martensite structure
    를 포함하고, 기설정된 입도를 가지는 철입자.To include, the iron particles having a predetermined particle size.
  10. 제9항에서,In claim 9,
    상기 입도는 0보다 크고 100㎛ 이하인 철입자.The particle size is greater than 0 and less than 100 ㎛ iron particles.
  11. 제10항에서,In claim 10,
    상기 입도는 0보다 크고 10㎛ 이하인 철입자.The particle size is greater than 0 and less than 10㎛ iron particles.
  12. 제9항에서,In claim 9,
    상기 철입자의 평균 반경에 대한 상기 페라이트 구조체의 평균 두께의 비는 0보다 크고 1 이하인 철입자.The ratio of the average thickness of the ferrite structure to the average radius of the iron particles is greater than 0 and less than 1 iron particles.
  13. 제12항에서,In claim 12,
    상기 비는 0.1 내지 0.9인 철입자.The ratio is iron particles of 0.1 to 0.9.
  14. 용철을 미립자로 변환시키는 아토마이징 장치,Atomizing device for converting molten iron into fine particles,
    상기 아토마이징 장치와 연결되어 상기 미립자를 탈탄해 복수의 철입자들을 제공하는 탈탄 반응로, 및A decarburization reactor connected to the atomizing device to decarburize the fine particles to provide a plurality of iron particles, and
    상기 탈탄 반응로와 연결되어 상기 탈탄 반응로에 탈탄 가스를 공급하는 탈탄가스 공급장치A decarburization gas supply device connected to the decarburization reactor to supply decarburization gas to the decarburization reactor
    를 포함하는 철입자 제조 장치.Iron particle production apparatus comprising a.
  15. 제14항에서,The method of claim 14,
    상기 탈탄 반응로와 연결되어 상기 복수의 철입자들을 압축 성형하는 압축 성형기를 더 포함하는 철입자 제조 장치.And a compression molding machine connected to the decarburization reactor for compression molding the plurality of iron particles.
  16. 제14항에서,The method of claim 14,
    상기 탈탄 반응로는,The decarburization reactor,
    상기 아토마이징 장치와 연결되어 상기 미립자가 공급되는 주입구,An injection hole connected with the atomizing device and supplied with the fine particles;
    상기 주입구를 향하는 복수의 가스 분사공들이 형성된 분산판, 및A dispersion plate having a plurality of gas injection holes facing the injection hole, and
    상기 탈탄가스 공급장치와 연결되고, 상기 분산판의 아래에 설치되어 상기 탈탄 가스가 유입되는 탈탄가스 취입구A decarburization gas inlet connected to the decarburization gas supply device and installed under the dispersion plate to introduce the decarburization gas into
    를 포함하는 철입자 제조장치.Iron particle manufacturing apparatus comprising a.
  17. 제14항에서,The method of claim 14,
    상기 분산판은 상기 탈탄 반응로의 아래를 향해 경사지고, 상기 분산판의 중심에 상기 복수의 철입자들을 낙하시키는 개구부가 형성된 철입자 제조장치.The dispersion plate is inclined toward the bottom of the decarburization reactor, the iron particle manufacturing apparatus formed with an opening in the center of the dispersion plate to drop the plurality of iron particles.
PCT/KR2014/012638 2013-12-26 2014-12-22 Iron particles, manufacturing method for same, and manufacturing device for same WO2015099376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0164459 2013-12-26
KR1020130164459A KR101532018B1 (en) 2013-12-26 2013-12-26 Iron powder, method and apparatus for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2015099376A1 true WO2015099376A1 (en) 2015-07-02

Family

ID=53479162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012638 WO2015099376A1 (en) 2013-12-26 2014-12-22 Iron particles, manufacturing method for same, and manufacturing device for same

Country Status (2)

Country Link
KR (1) KR101532018B1 (en)
WO (1) WO2015099376A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953105A (en) * 1995-08-14 1997-02-25 Kobe Steel Ltd Production of ferrous powder for powder metallurgy and apparatus therefor
JP2007070681A (en) * 2005-09-06 2007-03-22 Tokyo Institute Of Technology Method for producing iron fine particle
JP2007211302A (en) * 2006-02-10 2007-08-23 Jfe Steel Kk Finish heat treatment method for iron powder and finish heat treatment device
KR20120140521A (en) * 2011-06-21 2012-12-31 포항공과대학교 산학협력단 Steel sheet manufactured by decaburizing a solid pig iron and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953105A (en) * 1995-08-14 1997-02-25 Kobe Steel Ltd Production of ferrous powder for powder metallurgy and apparatus therefor
JP2007070681A (en) * 2005-09-06 2007-03-22 Tokyo Institute Of Technology Method for producing iron fine particle
JP2007211302A (en) * 2006-02-10 2007-08-23 Jfe Steel Kk Finish heat treatment method for iron powder and finish heat treatment device
KR20120140521A (en) * 2011-06-21 2012-12-31 포항공과대학교 산학협력단 Steel sheet manufactured by decaburizing a solid pig iron and method for manufacturing the same

Also Published As

Publication number Publication date
KR101532018B1 (en) 2015-06-26

Similar Documents

Publication Publication Date Title
CA2087609C (en) Process for preheating iron-containing reactor feed prior to being treated in a fluidized bed reactor
CN102206723B (en) Air-base direct reduction iron-making method for reducing iron concentrate powder by self-reforming of gas rich in methane
WO2012036488A2 (en) Method for producing ferrous powder
CN114231859B (en) FeSiB (C) amorphous soft magnetic alloy and preparation method thereof
Nascimento et al. Microstructures of self-reducing pellets bearing iron ore and carbon
Mochizuki et al. Reduction behavior and crushing strength of carbon-containing iron ore sinters prepared from tar recovered from coke oven gas
KR101053999B1 (en) Manufacturing method of amorphous alloy using molten iron
WO2015099376A1 (en) Iron particles, manufacturing method for same, and manufacturing device for same
WO2016148509A1 (en) Magnetite-based sintered ore and method of producing same
US3073695A (en) Method for producing iron powder having low carbon and oxygen contents
CN111001767B (en) High-saturation magnetic induction intensity iron-based amorphous soft magnetic alloy and preparation method thereof
Zheng et al. Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed
CA1075471A (en) Method of treating molten slags in steel-making process
WO2014104437A1 (en) Apparatus and method for processing molten iron
CA2168244C (en) Method for production of white microsilica
Prakash et al. Morphology and reduction kinetics of fluxed iron ore pellets
KR101693512B1 (en) Apparatus and method for manufacturing molten irons
Mookherjee et al. Thermogravimetric studies on the reduction of hematite ore fines by a surrounding layer of coal or char fines: Part 2. Non-isothermal kinetic studies
JP4173925B2 (en) Blast furnace operation method
KR101083797B1 (en) Method of reduced material and apparatus for performing the same
JP3685000B2 (en) Hot metal desiliconization method
WO2013125776A1 (en) Fiber made from quenched slag resulting from smelting reduction, and method for manufacturing same
CN116334336A (en) Method for producing chromium-containing molten iron
JPH01290701A (en) Production of reformed iron powder
CN115074477A (en) Short-process low-carbon smelting process for high-quality steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874909

Country of ref document: EP

Kind code of ref document: A1