JPH01290701A - Production of reformed iron powder - Google Patents

Production of reformed iron powder

Info

Publication number
JPH01290701A
JPH01290701A JP63121512A JP12151288A JPH01290701A JP H01290701 A JPH01290701 A JP H01290701A JP 63121512 A JP63121512 A JP 63121512A JP 12151288 A JP12151288 A JP 12151288A JP H01290701 A JPH01290701 A JP H01290701A
Authority
JP
Japan
Prior art keywords
iron powder
layer
converter
obtd
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121512A
Other languages
Japanese (ja)
Inventor
Naonori Moritama
森玉 直徳
Yoshitake Saho
佐保 巧建
Tsutomu Ishita
井下 力
Yonejiro Nagaoka
米治郎 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63121512A priority Critical patent/JPH01290701A/en
Publication of JPH01290701A publication Critical patent/JPH01290701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To improve the packability to a forming flask and sinterability and to improve dimensional accuracy and sintering strength by oxidizing the surface layer of the iron powder obtd. by separating and gridning from the dust generated in a converter, then reducing the same. CONSTITUTION:The surface layer of the iron powder 1 obtd. by separating and grinding from the dust generated in the converter is oxidized to form the surface oxide layer 2. The inside layer 3 covered by the surface oxide layer 2 is in a dense state. The carbon contained in the iron powder 1 is removed in this oxidation stage. The porous surface layer 4 having high void volume is formed when the surface oxide layer 2 is reduced. The internally solid iron powder 1 is thus obtd. This iron powder 1 is adequately usable as a sintering raw material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉で発生したダストから回収された鉄粉を
改質し、焼結性に優れた原料を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a raw material with excellent sinterability by modifying iron powder recovered from dust generated in a converter.

〔従来の技術〕[Conventional technology]

焼結原料の鉄粉としては、鉄鉱石、ミルスケール等を還
元することにより得られた還元鉄粉と、溶鋼を霧化して
粒状にしたアトマイズド鉄粉が使用されている。
As the iron powder used as the raw material for sintering, reduced iron powder obtained by reducing iron ore, mill scale, etc., and atomized iron powder obtained by atomizing molten steel into granules are used.

このうち、還元鉄粉は、大きな比表面積をもっており、
優れた焼結性を示す。しかし、多孔質構造のために、型
枠に充填して成形するときスプリングバックがあること
や、焼結時に収縮が大きいこと等が原因して、焼結製品
の寸法精度が低くなる。また、鉄粉相互の間の凝集力が
小さく、内部の空隙を完全に無くすことが困難なため、
焼結体の強度が劣りがちである。他方、アトマイズド鉄
粉は、内部が中実であることから型枠に対する充填が容
易に行われ、得られた焼結体の寸法精度は優れたものと
なる。しかし、このアトマイズド鉄粉は、比表面積が小
さなことから、表面活性、焼結性等に劣る。
Among these, reduced iron powder has a large specific surface area,
Shows excellent sinterability. However, due to the porous structure, the dimensional accuracy of the sintered product decreases due to springback when it is filled into a mold and molded, and large shrinkage during sintering. In addition, the cohesive force between iron powder is small and it is difficult to completely eliminate internal voids.
The strength of the sintered body tends to be poor. On the other hand, since the atomized iron powder has a solid interior, it can be easily filled into a mold, and the resulting sintered body has excellent dimensional accuracy. However, since this atomized iron powder has a small specific surface area, it is inferior in surface activity, sinterability, etc.

ところで、転炉等の冶金用炉から排出されたダストを成
分毎に分別し、これらの成分を有用な資源として再利用
することが行われている。このような再生資源として、
鉄粉がある。この鉄粉は、たとえば転炉で発生したダス
トをベンチュリースフラッパ等の湿式分級機で排ガスと
分離し、そのダストから鉄分を磁選し、摩鉱により表面
酸化層を剥離することによって製造している(特開昭5
4−127804号公報、特開昭54−127810号
公報等参照)。
Incidentally, dust discharged from a metallurgical furnace such as a converter is separated into its components, and these components are reused as useful resources. As such recycled resources,
There is iron powder. This iron powder is manufactured by, for example, separating the dust generated in a converter from the exhaust gas using a wet classifier such as a Venturi flapper, magnetically separating the iron from the dust, and removing the surface oxidized layer by grinding. (Unexamined Japanese Patent Publication No. 5
4-127804, JP-A-54-127810, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにして転炉で発生したダストから得られた鉄粉
は、ショツトブラスト用、磁粉探傷用。
The iron powder obtained from the dust generated in the converter is used for shot blasting and magnetic particle testing.

粉末冶金用鉄粉等の用途に使用されている。しかし、こ
れを粉末冶金用の原料として使用する場合、その特性が
アトマイズド鉄粉に比較的近く、焼結性に劣るものであ
る。また、そのままでは、炭素含有量が高く、得られた
焼結体に対する加工性及び材料強度自体等に問題がある
It is used for applications such as iron powder for powder metallurgy. However, when this is used as a raw material for powder metallurgy, its properties are relatively similar to those of atomized iron powder, and its sinterability is poor. In addition, if left as is, the carbon content is high and there are problems with the workability of the obtained sintered body and the material strength itself.

そこで、本発明は、転炉ダストから得られた鉄粉の表面
状態を改質することによって、型枠に対する充填性、焼
結性等が良好で、寸法精度、焼結強度に優れた焼結体を
製造することができる改メ鉄粉を得ることを目的とする
Therefore, by modifying the surface condition of iron powder obtained from converter dust, the present invention aims to produce a sintered powder that has good filling properties in formwork, sinterability, etc., and has excellent dimensional accuracy and sintering strength. The purpose is to obtain modified iron powder that can be used to produce iron powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の改質鉄粉の製造方法は、その目的を達成するた
めに、転炉で発生したダストから分離・摩鉱して得られ
た鉄粉の表面層を酸化し、次いで該表面層を還元するこ
とを特徴とする。
In order to achieve its purpose, the method for producing modified iron powder of the present invention oxidizes the surface layer of iron powder obtained by separating and grinding the dust generated in a converter, and then oxidizes the surface layer. It is characterized by giving back.

〔作用〕[Effect]

転炉ダストから得られた鉄粉は、第1図(a)に示すよ
うに比較的球状に近い形状になっている。そして、この
鉄粉1は、内部と同様に緻密で金属鉄を主成分とする表
面層をもっており、反応性が悪い。また、球表面の平滑
な鉄粉は、充填圧着成形時に各粒子間の結合が悪く、成
型性は皆無に等しい。第1表は、この鉄粉の組成の一例
を示すものである。
The iron powder obtained from the converter dust has a relatively spherical shape as shown in FIG. 1(a). The iron powder 1 has a surface layer that is dense and mainly composed of metallic iron like the inside, and has poor reactivity. In addition, iron powder with a smooth spherical surface has poor bonding between particles during filling and compression molding, resulting in almost no moldability. Table 1 shows an example of the composition of this iron powder.

第       1       表 (単位:重量%) この鉄粉lを酸化すると、第1図(b)に示すように表
面酸化層2が形成する。しかし、この表面酸化層2に覆
われた内層3は、緻密なままの状態である。この酸化工
程において、鉄粉1に含まれている炭素は、Fe+O→
FeOの反応を介して、2 F e O+C−CO2の
反応に従って脱炭される。
Table 1 (Unit: Weight %) When this iron powder 1 is oxidized, a surface oxidation layer 2 is formed as shown in FIG. 1(b). However, the inner layer 3 covered with this surface oxidized layer 2 remains dense. In this oxidation process, the carbon contained in the iron powder 1 changes from Fe+O→
Through the reaction of FeO, it is decarburized according to the reaction of 2 Fe O + C-CO2.

この表層における脱炭反応によって該表層の炭素濃度は
極度に低下するため、内層部から炭素が拡散されつつ順
次内層も脱炭される。
Since the carbon concentration in the surface layer is extremely reduced by this decarburization reaction in the surface layer, the inner layer is also gradually decarburized while carbon is diffused from the inner layer.

ついで、表面酸化層2を還元すると、第1図(C)に示
すように、空隙率の高い多孔質表面層4が形成される。
Then, when the surface oxidized layer 2 is reduced, a porous surface layer 4 with a high porosity is formed as shown in FIG. 1(C).

このような酸化・還元工程によって、表面層のみが多孔
質であり、内部が中実となった鉄粉1が得られる。この
鉄粉lは、前述した還元鉄粉及びアトマイズド鉄粉双方
がもつ長所を兼ね備えており、優れた焼結原料として凛
用される。
Through such an oxidation/reduction step, iron powder 1 is obtained in which only the surface layer is porous and the inside is solid. This iron powder 1 has the advantages of both the reduced iron powder and the atomized iron powder described above, and can be used as an excellent sintering raw material.

また、第2表に示すように炭素含有量も低いものとなっ
ているため、この原料から焼結して得られた製品の加工
性も優れたものとなる。
Furthermore, as shown in Table 2, since the carbon content is low, the workability of products obtained by sintering this raw material is also excellent.

第       2       表 (単位:重量%) なお、酸化工程で形成する表面酸化層2は、鉄粉1の重
量を基準として、2〜30%の割合で設けるが、好まし
くは5〜25%が良い。表面酸化層2の生成率をこの範
囲に維持しておくとき、中実の内層3及び多孔質表面層
4両者の特徴が活かされる。これに対して、表面酸化層
2の生成率が2%未満では、鉄粉1表面の活性化が不充
分であり、焼結性がさほど向上しない。また、表面酸化
層2の生成率が30%を超えるとき、内層3の割合が小
さくなり、還元鉄粉の欠点が現れるとともに処理時間、
処理コストともに悪化する。この表面酸化層2の生成率
は、酸化工程時の加熱温度、加熱時間、雰囲気ガスの酸
化力等によって調整することができる。
Table 2 (Unit: Weight %) The surface oxidized layer 2 formed in the oxidation step is provided at a ratio of 2 to 30%, preferably 5 to 25%, based on the weight of the iron powder 1. When the production rate of the surface oxidized layer 2 is maintained within this range, the characteristics of both the solid inner layer 3 and the porous surface layer 4 are utilized. On the other hand, if the generation rate of the surface oxidized layer 2 is less than 2%, the activation of the surface of the iron powder 1 is insufficient, and the sinterability is not improved much. Moreover, when the generation rate of the surface oxidized layer 2 exceeds 30%, the proportion of the inner layer 3 becomes small, and the disadvantages of reduced iron powder appear, and the processing time increases.
Both processing costs will worsen. The production rate of this surface oxidized layer 2 can be adjusted by adjusting the heating temperature, heating time, oxidizing power of the atmospheric gas, etc. during the oxidation step.

〔実施例〕〔Example〕

以下、実施例により本発明の特徴を具体的に説明する。 Hereinafter, the features of the present invention will be specifically explained with reference to Examples.

第1表に示した組成をもつ鉄粉を、N260%。Iron powder having the composition shown in Table 1 was mixed with 60% N2.

025%、  H2O35%の酸化雪囲気で650℃に
加熱し、表面酸化層を形成した。このとき、加熱時間を
変更することにより、表面酸化層2の生成率を5〜30
%の範囲に調整した。次いで、この鉄粉をN220%、
  N275%、005%の還元3囲気で550℃に加
熱することにより、表面酸化層を還元して多孔質表面層
を形成した。前述の第2表は、この還元処理された状態
での鉄粉の組成を示す。
The sample was heated to 650° C. in an oxidized snow atmosphere containing 0.25% H2O and 35% H2O to form a surface oxidation layer. At this time, by changing the heating time, the generation rate of the surface oxidized layer 2 can be increased from 5 to 30%.
Adjusted to % range. Next, this iron powder was mixed with 20% N2,
The surface oxide layer was reduced by heating to 550° C. in a reducing atmosphere of 75% N2 and 005% to form a porous surface layer. Table 2 above shows the composition of the iron powder in the reduced state.

このようにして処理された鉄粉を60 X25 X15
+nmの内部空間をもつ型枠に充填し、加圧・成形した
後、800 ℃で焼結した。
The iron powder treated in this way is 60 x 25 x 15
The material was filled into a mold having an internal space of +nm, pressed and molded, and then sintered at 800°C.

第2図は、表面酸化層の生成率が鉄粉の焼結体の寸法精
度に与える影響を表したグラフである。
FIG. 2 is a graph showing the influence of the production rate of the surface oxidized layer on the dimensional accuracy of the sintered body of iron powder.

ここで寸法精度は成形原寸法を1としてその差を指数で
表示した。この図から明らかなように、多孔質表面層の
生成により、正確な形状をもつ焼結体を容易にal!造
することができた。
Here, the dimensional accuracy is expressed as an index based on the difference between the original molding dimensions and 1. As is clear from this figure, the formation of a porous surface layer makes it easy to form a sintered body with an accurate shape. I was able to build it.

また、得られた焼結体は、炭素含有量の低下に伴いその
硬度が低下し、加工性に優れたものであった。これに対
し、転炉ダストから得られた鉄粉を直接焼結して得られ
た焼結体は、硬度が極めて高く、その加工は極めて困難
であった。
Furthermore, the hardness of the obtained sintered body decreased as the carbon content decreased, and it had excellent workability. On the other hand, sintered bodies obtained by directly sintering iron powder obtained from converter dust have extremely high hardness and are extremely difficult to process.

この燃結性の向上理由としては、多孔質表面が相互にか
らみ合って強結合を形成しており、この多孔面が容易に
結合することから鉄粉自体の燃結性も大巾に向上すると
ともに、その特性も良好なものにできる。
The reason for this improvement in sinterability is that the porous surfaces are intertwined with each other to form strong bonds, and since these porous surfaces are easily bonded together, the sinterability of the iron powder itself is also greatly improved. At the same time, its characteristics can also be improved.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、転炉ダスト
から得られた鉄粉の表面を多孔質とすることにより、溶
結性に優れた原料が得られる。また、内部が質量の大き
な中実であるため、強度の大きな焼結体を製造すること
ができる。更に、酸化工程で脱炭も同時に行われるため
、焼結体の加工性も改善される。このように、本発明に
よるとき、焼結原料として好適な鉄粉が得られる。
As explained above, in the present invention, by making the surface of iron powder obtained from converter dust porous, a raw material with excellent weldability can be obtained. Moreover, since the inside is solid with a large mass, a sintered body with high strength can be manufactured. Furthermore, since decarburization is simultaneously performed in the oxidation step, the workability of the sintered body is also improved. Thus, according to the present invention, iron powder suitable as a sintering raw material is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化・還元によって変化する鉄粉の表面状態を
示し、第2図は寸法精度に与える表面酸化層生成率の影
響を表したグラフである。 1:鉄粉    2:表面酸化層 3:内層    4:多孔質表面層
FIG. 1 shows the surface condition of iron powder that changes due to oxidation and reduction, and FIG. 2 is a graph showing the influence of the surface oxide layer formation rate on dimensional accuracy. 1: Iron powder 2: Surface oxidized layer 3: Inner layer 4: Porous surface layer

Claims (1)

【特許請求の範囲】[Claims] 1、転炉で発生したダストから分離・摩鉱して得られた
鉄粉の表面層を酸化し、次いで該表面層を還元すること
を特徴とする改質鉄粉の製造方法。
1. A method for producing modified iron powder, which comprises oxidizing the surface layer of iron powder obtained by separating and grinding dust generated in a converter, and then reducing the surface layer.
JP63121512A 1988-05-17 1988-05-17 Production of reformed iron powder Pending JPH01290701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121512A JPH01290701A (en) 1988-05-17 1988-05-17 Production of reformed iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121512A JPH01290701A (en) 1988-05-17 1988-05-17 Production of reformed iron powder

Publications (1)

Publication Number Publication Date
JPH01290701A true JPH01290701A (en) 1989-11-22

Family

ID=14813036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121512A Pending JPH01290701A (en) 1988-05-17 1988-05-17 Production of reformed iron powder

Country Status (1)

Country Link
JP (1) JPH01290701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076234C (en) * 1995-12-09 2001-12-19 樊枝花钢铁(集团)公司钢铁研究院 Method of preparing iron powder and its products by using steelmaking converter smoke or slude
CN1087984C (en) * 1999-03-08 2002-07-24 中南工业大学 Method for preparing iron powder used in metallurgy from converter mud
US11427877B2 (en) * 2017-09-21 2022-08-30 Nucor Corporation Direct reduced iron (DRI) heat treatment, products formed therefrom, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076234C (en) * 1995-12-09 2001-12-19 樊枝花钢铁(集团)公司钢铁研究院 Method of preparing iron powder and its products by using steelmaking converter smoke or slude
CN1087984C (en) * 1999-03-08 2002-07-24 中南工业大学 Method for preparing iron powder used in metallurgy from converter mud
US11427877B2 (en) * 2017-09-21 2022-08-30 Nucor Corporation Direct reduced iron (DRI) heat treatment, products formed therefrom, and use thereof

Similar Documents

Publication Publication Date Title
JPH09125108A (en) Production of powder for sendust core with little loss
JPH01290701A (en) Production of reformed iron powder
JP2002121601A (en) Soft magnetic metal powder particle and treating method thereof, and soft magnetic compact and its manufacturing method
WO2002064844A1 (en) Method for producing sponge iron, and reduced iron powder and method for production thereof
JPS6248747B2 (en)
CS273319B2 (en) Method of ferrous powders production from fine loose powdered iron trioxide
JP3721993B2 (en) Method for producing sponge iron and reduced iron powder
JPH01165702A (en) Manufacture of alloy steel sintered compact having high density and high strength
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JPH01168845A (en) Iron-iron oxide sintered compact and its production
JP3918198B2 (en) Method for producing partially alloyed steel powder
US3418104A (en) Producing pulverulent iron for powder metallurgy by compacting feed stocks
JPH0478681B2 (en)
JPS61174354A (en) Manufacture of copper-containing sintered alloy excellent in high-temperature wear resistance
JPH04285141A (en) Manufacture of ferrous sintered body
JPS6227501A (en) Production of sintered soft magnetic parts
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
US3418105A (en) Iron powder for forming sintered articles of improved strength
JPH0270004A (en) Method for degreasing injection molded body
JP2003089812A (en) Method for manufacturing sponge iron, and reduced iron powder and its manufacturing method
JPS589138B2 (en) Method for manufacturing sintered compacts
JPS55154505A (en) Production of connecting rods
JPS63238226A (en) Production of sintered copper alloy for mechanical structural parts
JPS587682B2 (en) Method for producing reduced iron powder for powder metallurgy with excellent formability and compressibility
JPS5810459B2 (en) I'm sorry for the inconvenience.