WO2015098154A1 - Power conversion device and power conversion device control method - Google Patents

Power conversion device and power conversion device control method Download PDF

Info

Publication number
WO2015098154A1
WO2015098154A1 PCT/JP2014/067305 JP2014067305W WO2015098154A1 WO 2015098154 A1 WO2015098154 A1 WO 2015098154A1 JP 2014067305 W JP2014067305 W JP 2014067305W WO 2015098154 A1 WO2015098154 A1 WO 2015098154A1
Authority
WO
WIPO (PCT)
Prior art keywords
level value
current
current level
value
power converter
Prior art date
Application number
PCT/JP2014/067305
Other languages
French (fr)
Japanese (ja)
Inventor
敏 井堀
雄作 小沼
浩之 富田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2015098154A1 publication Critical patent/WO2015098154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a power converter and a method for controlling the power converter.
  • the overcurrent detection circuit 32 inputs the currents Iufb, Ivfb, and Iwfb detected by the current detector 12, and any one of the currents Iufb, Ivfb, and Iwfb is
  • the value exceeds the allowable demagnetization current value input from the allowable demagnetization current calculation circuit 32 it is determined that an overcurrent failure has occurred and a failure is displayed, and the gate signal to the PWM controller 22 is immediately cut off.
  • the rise detection circuit 34 determines that the magnet temperature has risen abnormally and displays a failure and performs PWM control.
  • the gate signal to the device 22 is immediately interrupted.
  • the paragraph [0005] further states that “the cut-off current setting value for demagnetization protection is detected by the motor ambient temperature and is variable depending on this temperature”.
  • the protection device 10 for preventing demagnetization of the magnet reads the outside air temperature by the temperature detector 13, and when the outside air temperature is low, the demagnetizing current is A low current value commensurate with the above can be set as the cut-off current setting value when the outside air temperature is high.
  • JP 2006-223037 A Japanese Unexamined Patent Publication No. 7-67390
  • the permanent magnet that generates the magnetic flux of the PM motor has a characteristic that irreversible demagnetization occurs when the temperature of the magnet and the current flowing to the armature side exceed a predetermined region.
  • Patent Document 1 and Patent Document 2 both describe a method for determining a cutoff current for demagnetization protection of a PM motor, but demagnetization protection is applied to a switching element constituting an inverter in a power converter. There is no disclosure about safeguarding against breaking currents for.
  • the power converter is preliminarily provided with an allowable protection current level value that is a current level value for safely operating the switching elements constituting the inverse converter. There is no disclosure about the relationship with the breaking current.
  • the allowable demagnetization current level value which is the cutoff current value for demagnetization protection
  • the allowable protection current level value provided in advance to protect the switching element the power converter is shut off at the cutoff current.
  • the demagnetization protection of the motor cannot be performed, the switching elements constituting the inverter cannot be safely protected.
  • a power converter a forward converter that converts an AC voltage into a DC voltage, a DC intermediate circuit that has a smoothing capacitor that smoothes the DC voltage converted by the forward converter, and is output from the power converter
  • a current detection circuit for detecting a current
  • an inverse converter that converts a DC voltage smoothed by the DC intermediate circuit into an AC voltage
  • a control circuit that controls a switching element included in the inverse converter; In the control circuit, the switching element of the inverse converter is controlled based on a current threshold value determined based on a first current level value and a second current level value.
  • the control method of the power converter device and power converter device which can make the demagnetization protection of PM motor and the protection of the switching element which comprises the inverter of a power converter device compatible can be provided. .
  • Example 1 The form in Example 1 of the power converter device by this application is demonstrated below using figures.
  • FIG. 1 is an example of a configuration diagram of a power converter according to the present application.
  • FIG. 1 shows a case where an AC power source is used as an arbitrary input power source.
  • Forward converter 1 converts AC power into DC power.
  • the smoothing capacitor 2 is provided in the DC intermediate circuit.
  • the reverse converter 3 converts DC power into AC power having an arbitrary frequency.
  • an IGBT is mounted as a typical switching element.
  • the switching element is not limited to the IGBT, and any element having a form as a switching element may be used.
  • the cooling fan 6 cools the power modules in the forward converter 1 and the reverse converter 3.
  • the digital operation panel 7 sets, changes, abnormal states and monitor displays various control data of the power converter.
  • the operation panel 7 is provided with a display unit capable of displaying an abnormality. When an abnormality is detected in the power conversion device, the display is displayed on the display unit.
  • the type of the operation panel 7 of the present embodiment is not particularly limited. However, the operation panel 7 is configured as a digital operation panel so that the operation can be performed while viewing the display on the display unit in consideration of the operability of the apparatus user. .
  • the display unit is not necessarily configured integrally with the operation panel 7, but it is desirable that the display unit be configured integrally so that an operator of the operation panel 7 can operate while viewing the display.
  • Various control data of the power converter input from the operation panel 7 is stored in a storage unit (not shown).
  • the control circuit 5 controls the switching elements of the inverter 3 based on various control data input from the digital operation panel 7 and controls the entire power converter 10.
  • An arithmetic device is mounted, and is configured to perform necessary control processing in accordance with various control data input from the digital operation panel 7.
  • a microcomputer control arithmetic unit that performs an operation based on information from storage data of a storage unit that stores various control data is mounted.
  • the current detector CT detects the U-phase and W-phase line currents of the motor.
  • FIG. 1 shows an example in which two CTs are used, but three CTs may be used to detect line currents of each U phase, V phase, and W phase.
  • the drive circuit 8 drives the switching element of the inverse converter 3 based on a command from the control circuit 5.
  • a switching regulator circuit (DC / DC converter) is mounted in the drive circuit 8, and each DC voltage necessary for the operation of the power converter is generated and supplied to each component.
  • the temperature detector 9 detects the temperature of the permanent magnet of the PM motor.
  • the PM / IM selection signal 11 is a signal for externally setting whether to drive the PM motor or the induction motor IM.
  • the PM / IM selection signal 11 is described as being set from the outside. However, the PM / IM selection signal 11 may be selected from the operation panel 7 as well as from the outside.
  • both the PM motor and the induction motor IM cannot be driven simultaneously.
  • the induction motor IM does not have a permanent magnet, unlike the PM motor, there is no demagnetization phenomenon unique to the PM motor. That is, the allowable demagnetization current level itself is not necessary.
  • an allowable demagnetizing current level must be provided so that a demagnetization phenomenon does not occur.
  • the allowable protection current level for protecting these switching elements depends on the rated current of the switching element mounted on the power converter, and the allowable demagnetization current level value for preventing magnet demagnetization is the magnet of the PM motor. Since it depends on the characteristics, there is no fixed magnitude relationship between the allowable protection current level value and the allowable demagnetization current level value, and the allowable demagnetization current level is not always lower than the allowable protection current level value.
  • the inverter 3 By stopping the operation of the internal switching element, the switching element can be protected.
  • the lower value of the allowable demagnetization current level value and the allowable protection current level value is automatically set as the overcurrent protection level value, and the current value detected by the current detector is excessive.
  • the switching element can be protected by stopping the operation of the switching element inside the inverse converter 3.
  • the DC power supply + side is connected to the DC terminal P side, and the DC power supply -side is connected to the DC terminal N side.
  • the AC terminals R, S, and T may be connected, the DC power supply + side may be connected to this connection point, and the DC power supply N side may be connected to the DC power supply negative side.
  • the positive side of the DC power source may be connected to the P side, the AC terminals R, S, and T may be connected, and the negative side of the DC power source may be connected to this connection point.
  • Example 2 The form in Example 2 of the power converter device by this application is demonstrated using a figure below.
  • FIG. 2 is an example of another configuration diagram of the power converter according to the present application.
  • Fig. 1 The difference from Fig. 1 is the detection position of the current detector.
  • SH1 and SHd are shunt resistors for current detection, SH1 detects the current on the N side of the DC intermediate circuit, and SHi is a U-phase which is each switching element of the lower arm constituting the inverter 3. It is connected to the V-phase and W-phase IGBTs, and SHd is connected to a diode connected in parallel to each switching element IGBT.
  • the shunt resistor SHi provided on the DC bus side of the power converter is a current detector that detects a combined current flowing through each IGBT, and the shunt resistor SHd flows through a diode connected in parallel to each IGBT. It is a current detector that detects a combined current.
  • the current flowing through the motor can be detected by a shunt resistor provided on the DC bus side of the power converter.
  • the shunt resistors SHi and SHd are connected to the IGBT and diode of the lower arm constituting the U phase, but may be connected to the IGBT and diode of the upper arm constituting the U phase to detect the current.
  • Example 3 of the power converter device by this application is demonstrated using a figure below.
  • FIG. 3 is a control block diagram (first embodiment) of the power converter according to the present application.
  • FIG. 3 is a control block diagram inside the control circuit 5 disclosed in FIGS. 1 and 2;
  • An IGBT is mounted as a switching element constituting the inverse converter 3, and a safe operating area (upper limit of current and voltage) is determined for the IGBT.
  • the power conversion device In order to operate the switching element safely, the power conversion device is provided with an overcurrent protection level and an overvoltage protection level that must not be exceeded in advance, and this overcurrent protection level is an allowable protection current level for protecting the switching element. This is the value (first overcurrent protection level value in FIG. 3) 31.
  • the induction motor IM is not equipped with a permanent magnet unlike the PM motor, so there is no demagnetization phenomenon unique to the PM motor. For this reason, there is no need for an allowable demagnetizing current level for protecting the induction motor, and it is only necessary to have an allowable protective current level for protecting the switching element of the power converter.
  • an allowable protection current level value (second allowable demagnetization current level value) 32 that is a demagnetization current peculiar to the PM motor is set on the digital operation panel 7 so that irreversible demagnetization does not occur.
  • the allowable protection current level value (first overcurrent protection level value) 31 and the allowable demagnetization current level value (second allowable demagnetization current level value) 32 are compared by a comparator 33, whichever is the lower current level.
  • the value is automatically set as the overcurrent protection level value 35 of the power converter.
  • the permissible protection current level value (first overcurrent protection level value) 31 and the permissible demagnetization current level value (second permissible demagnetization current level value) 32 are compared, and the lower level value is set as the power.
  • the reason why the overcurrent protection level value of the converter is automatically set is that the allowable demagnetization current level value (second allowable demagnetization current level value) 32 set on the digital operation panel 7 protects the switching element. Is higher than the permissible protection current level value (first overcurrent protection level value) 31 provided in advance, the permissible demagnetization current level value (second permissible demagnetization current level value) 32 is used as the overcurrent of the power converter. This is because when the current protection level value is automatically set, the switching element is destroyed when the overcurrent occurs, and the function as the power conversion device is lost.
  • the operator sets the allowable demagnetization current level value (second allowable demagnetization current level value) 32 on the digital operation panel 7, an erroneous input (a level value higher than the actual demagnetization current level value and This is because it is possible to prevent the switching element from being destroyed due to the case where a value higher than the first overcurrent protection level value is set. That is, both demagnetization protection of the PM motor and protection of the switching element constituting the inverse converter can be achieved.
  • the allowable protection current level is a value depending on the rated current of the switching element mounted on the power converter
  • the allowable protection current level may be set in advance. Further, since the allowable demagnetization current level value depends on the magnet characteristics of the PM motor, a predetermined value may be set according to the PM motor to be used.
  • the overcurrent protection level value may be a value set with a width based on the smaller one of the allowable protection current level value and the allowable demagnetization current level value.
  • the overcurrent protection level value determined based on the above may be determined by inputting from the outside, the digital operation panel 7 or the like.
  • the power converter When PM is selected by the PM / IM selection signal 11, the power converter is operated using the overcurrent protection level value determined based on both the allowable protection current level value and the allowable demagnetization current level value. , IM is selected, the power converter is operated with the allowable protection current level value as the overcurrent protection level value.
  • the present application is characterized in that the power converter is operated using the overcurrent protection level value determined based on both the allowable protection current level value and the allowable demagnetization current level value. Further, the present application is characterized in that an overcurrent protection level value is obtained by a different method depending on whether it is IM or PM, and the power converter is operated based on the overcurrent protection level value.
  • Example 4 of the power converter device by this application is demonstrated using a figure below.
  • FIG. 4 is a control block diagram (second embodiment) of the power converter according to the present application.
  • the second allowable demagnetizing current level value 42 of the PM motor and the ambient temperature value 46 of the PM motor are individually set on the digital operation panel 7.
  • the temperature and allowable demagnetization current correlation circuit 47 Based on the second allowable demagnetization current level value 42, the ambient temperature value 46, and the detection value of the current detection circuit 44, the temperature and allowable demagnetization current correlation circuit 47 generates a third allowable demagnetization current level value of the PM motor. 48, and two or more level values of the allowable protection current level value (first overcurrent protection level value) 41, the second allowable demagnetization current level value 42, and the third allowable demagnetization current level value 48 are obtained. Are compared by the comparator 43, and the lowest level value among these level values is automatically set to the overcurrent protection level value of the power converter. After the overcurrent protection level value 45 is determined, the power converter is operated using the overcurrent protection level value 45 as in FIG.
  • the smaller level value is the allowable protection level value 41. If smaller than that, it is possible to achieve both demagnetization protection of the PM motor and protection of the switching elements constituting the inverse converter.
  • FIG. 6 shows an example of a correlation diagram between the set ambient temperature value Ta and the allowable demagnetization current Iad using the armature current detection value Ia as a parameter. What is necessary is just to obtain
  • the allowable demagnetizing current Iad may be obtained from this curve equation or linear equation.
  • the correlation data between the armature current detection value Ia and the temperature rise value ⁇ T of the permanent magnet is stored in a nonvolatile memory in advance, and the set ambient temperature value Ta is added to the temperature rise value ⁇ T read from the nonvolatile memory to make it permanent.
  • the temperature T of the magnet may be obtained, and the allowable demagnetization current Iad may be obtained from the correlation data between the temperature and the allowable demagnetization current.
  • the correlation data of the armature current detection value Ia, the set ambient temperature value Ta, and the allowable demagnetizing current Iad is stored in advance in a non-volatile memory, and the allowable demagnetizing current Iad is obtained from the non-volatile memory. It is a more realistic system configuration to be configured to read.
  • the temperature increase value of the PM motor relative to the current detection value Ia flowing through the PM motor may be ⁇ T instead of the temperature increase of the permanent magnet.
  • the point A is the case of the detection current Ia1
  • the third allowable demagnetization current level value at the set ambient temperature value Ta1 is Iad1. Since this allowable demagnetization current level value Iad1 is higher than the first overcurrent protection level value for protecting the switching element, in order to achieve both demagnetization protection of the motor and protection of the switching element, The first overcurrent protection level value which is the lowest level value is automatically set to the overcurrent protection level value of the power converter.
  • the PM motor can be demagnetized. Obviously, the switching elements constituting the inverse converter cannot be protected.
  • the third allowable demagnetization current level value when the set ambient temperature value is Ta1 is Iad2. Since this allowable demagnetizing current level value Iad2 is lower than the first overcurrent protection level value for protecting the switching element, in order to achieve both the demagnetization protection of the motor and the protection of the switching element, The third allowable demagnetizing current level value Iad2 that is the lowest level value is automatically set to the overcurrent protection level value of the power converter.
  • the overcurrent protection level value of the power conversion device at point A and point B is automatically set to a different value so that both demagnetization protection of the PM motor and protection of the switching elements constituting the reverse converter can be achieved.
  • the overcurrent protection level value is automatically set to the same reason as described in the third embodiment.
  • Example 5 of the power converter device by this application is demonstrated using a figure below.
  • FIG. 5 is a control block diagram (third embodiment) of the power converter according to the present application.
  • the third allowable demagnetizing current level of the PM motor is obtained by the correlation circuit 57 between the temperature and the allowable demagnetizing current.
  • the value 58 is obtained, and at least two of the allowable protection current level value (first overcurrent protection level value) 51, the second allowable demagnetization current level value 52, and the third allowable demagnetization current level value 58 are used. The lowest level value among these level values is automatically set as the overcurrent protection level value 55 of the power converter.
  • FIG. 7 shows an example of a correlation diagram between the detected temperature T and the allowable demagnetizing current Iad. What is necessary is just to obtain
  • the third allowable demagnetizing current level value at the detection temperature T1 is Iad3. Since this allowable demagnetization current level value Iad3 is higher than the first overcurrent protection level value for protecting the switching element, in order to achieve both motor demagnetization protection and switching element protection, The first overcurrent protection level value which is the lowest level value is automatically set to the overcurrent protection level value of the power converter.
  • the third allowable demagnetizing current level value at the detection temperature T2 is Iad4. Since this allowable demagnetizing current level value Iad4 is lower than the first overcurrent protection level value for protecting the switching element, in order to achieve both the demagnetization protection of the motor and the protection of the switching element, the third allowable demagnetizing current level value Iad4, which is the lowest level value, is automatically set to the overcurrent protection level value of the power converter.
  • the overcurrent protection level value of the power conversion device at point C and point D is automatically set to a different value so that both demagnetization protection of the PM motor and protection of the switching elements constituting the inverse converter can be achieved.
  • the two or more level values of the first overcurrent protection level value, the second allowable demagnetizing current level value, and the third allowable demagnetizing current level value are compared, and the lowest level value is converted into power.
  • the reason why the overcurrent protection level value of the apparatus is automatically set is the same as the reason described in the third and fourth embodiments.
  • the present application by automatically setting the allowable demagnetization current level value and the low allowable protection current level value as the allowable protection current level value, the demagnetization prevention of the magnet and the power conversion device Therefore, it is possible to provide a power conversion apparatus and a PM motor control method that can achieve both protections, and the user's merit is extremely high without operating the equipment while having anxiety.
  • SYMBOLS 1 Forward converter, 2 ... Smoothing capacitor, 3 ... Reverse converter, 4 ... Overcurrent protection level value determination circuit, 5 ... Control circuit, 6 ... Cooling fan, 7 ... Digital operation panel, 8 ... Drive circuit, DESCRIPTION OF SYMBOLS 9 ... Temperature detector, 10 ... Power converter, 11 ... PM / IM selection signal, PM ... Synchronous motor with permanent magnet, IM ... Induction motor, CT ... Current detector, SH1, SHi, SHd ... Current on the DC bus side Shunt resistance for detection, Ia ... armature current, f (Ia) ... Meaning of function of Ia

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A permanent magnet for generating the magnetic flux of a PM motor has such a characteristic that when the temperature of the magnet and the current flowing on the armature side exceed a predetermined range, irreversible demagnetization occurs. If the irreversible demagnetization occurs, there have been problems, including the start-up failure of the PM motor, the shrinking of an operation load range, and the demagnetization of the magnet. A power conversion device comprises: a converter for converting an AC voltage to a DC voltage; a DC intermediate circuit having a smoothing capacitor for smoothing the DC voltage converted by the converter; a current detection circuit for detecting the current output from the power conversion device; an inverter for converting the DC voltage smoothed by the DC intermediate circuit to an AC voltage; and a control circuit for controlling switching elements included in the inverter. The control circuit controls the switching elements of the inverter on the basis of a current threshold value determined according to a first current level value and a second current level value.

Description

電力変換装置および電力変換装置の制御方法Power converter and control method of power converter
 本発明は、電力変換装置および電力変換装置の制御方法に関する。 The present invention relates to a power converter and a method for controlling the power converter.
 特許文献1の段落[0013]には、「過電流検出回路32は電流検出器12で検出された電流Iufb、Ivfb、Iwfbを入力し、Iufb、Ivfb、Iwfbの各電流のうちいずれかが、許容減磁電流演算回路32から入力された許容減磁電流値以上になった場合、過電流故障と判断し故障表示を行うとともにPWM 制御器22へのゲート信号を即時に遮断する。磁石温度異常上昇検出回路34は温度検出器6より入力された磁石温度値が定数設定器33で設定された磁石温度許容上限値Tmaxを越えた場合、磁石温度異常上昇と判断し故障表示を行うとともにPWM制御器22へのゲート信号を即時に遮断する。」ことが開示されている。 In paragraph [0013] of Patent Document 1, “the overcurrent detection circuit 32 inputs the currents Iufb, Ivfb, and Iwfb detected by the current detector 12, and any one of the currents Iufb, Ivfb, and Iwfb is When the value exceeds the allowable demagnetization current value input from the allowable demagnetization current calculation circuit 32, it is determined that an overcurrent failure has occurred and a failure is displayed, and the gate signal to the PWM controller 22 is immediately cut off. When the magnet temperature value input from the temperature detector 6 exceeds the allowable magnet temperature upper limit value Tmax set by the constant setting unit 33, the rise detection circuit 34 determines that the magnet temperature has risen abnormally and displays a failure and performs PWM control. The gate signal to the device 22 is immediately interrupted. "
 また、特許文献2の段落[0005]の[作用]には、「減磁保護のための遮断電流設定値をモータ周囲温度を検出し、この温度により可変とする。」ことが、さらに、段落[0010]には、「このように、本実施例によれば、磁石の減磁防止のための保護装置10が温度検出器13によって外気温度を読み取り、外気温が低い場合には減磁電流に見合った低い電流値を、外気温が高い場合は高い電流値を遮断電流設定値とすることができる。」点が開示されている。 Further, in paragraph [0005] of [Patent Document 2], the paragraph [0005] further states that “the cut-off current setting value for demagnetization protection is detected by the motor ambient temperature and is variable depending on this temperature”. [0010] "In this way, according to this embodiment, the protection device 10 for preventing demagnetization of the magnet reads the outside air temperature by the temperature detector 13, and when the outside air temperature is low, the demagnetizing current is A low current value commensurate with the above can be set as the cut-off current setting value when the outside air temperature is high.
特開2006-223037号公報JP 2006-223037 A 特開平7-67390号公報Japanese Unexamined Patent Publication No. 7-67390
 PMモータの磁束を生成する永久磁石は、磁石の温度と電機子側に流れる電流が所定の領域を超えると不可逆減磁が発生するという特性をもっている。 The permanent magnet that generates the magnetic flux of the PM motor has a characteristic that irreversible demagnetization occurs when the temperature of the magnet and the current flowing to the armature side exceed a predetermined region.
 この不可逆減磁が発生するとPMモータの始動不良、運転負荷範囲の縮退、磁石の消磁という問題があった。 When this irreversible demagnetization occurred, there were problems such as poor starting of the PM motor, degeneration of the operating load range, and demagnetization of the magnet.
 特許文献1と特許文献2には、いずれもPMモータの減磁保護のための遮断電流を決定する方法が記載されているが、電力変換装置の逆変換器を構成するスイッチング素子を減磁保護のための遮断電流から安全に保護する点についての開示はない。 Patent Document 1 and Patent Document 2 both describe a method for determining a cutoff current for demagnetization protection of a PM motor, but demagnetization protection is applied to a switching element constituting an inverter in a power converter. There is no disclosure about safeguarding against breaking currents for.
 電力変換装置には、逆変換器を構成するスイッチング素子を安全に動作させる電流レベル値である許容保護電流レベル値が予め設けられているが、この許容保護電流レベル値と減磁保護のための遮断電流との関係については一切開示されていない。 The power converter is preliminarily provided with an allowable protection current level value that is a current level value for safely operating the switching elements constituting the inverse converter. There is no disclosure about the relationship with the breaking current.
 つまり、減磁保護のための遮断電流値である許容減磁電流レベル値がスイッチング素子を保護するために予め設けられた許容保護電流レベル値より高い場合、遮断電流時に電力変換装置を遮断しても、モータの減磁保護はできるが逆変換器を構成するスイッチング素子を安全に保護することはできないという問題が発生する。 In other words, if the allowable demagnetization current level value, which is the cutoff current value for demagnetization protection, is higher than the allowable protection current level value provided in advance to protect the switching element, the power converter is shut off at the cutoff current. However, there is a problem that although the demagnetization protection of the motor can be performed, the switching elements constituting the inverter cannot be safely protected.
 すなわち、PMモータの減磁保護と逆変換器を構成するスイッチング素子の保護を両立できないという問題がある。 That is, there is a problem that PM motor demagnetization protection and switching element constituting the reverse converter cannot be protected at the same time.
 上記目的を達成する手段は下記の通りである。 The means to achieve the above purpose are as follows.
 電力変換装置であって、交流電圧を直流電圧に変換する順変換器と、前記順変換器にて変換した直流電圧を平滑する平滑コンデンサを有する直流中間回路と、該電力変換装置から出力される電流を検出する電流検出回路と、前記直流中間回路にて平滑化された直流電圧を交流電圧に変換する逆変換器と、前記逆変換器の備えるスイッチング素子を制御する制御回路と、を備え、前記制御回路では、第一の電流レベル値と第二の電流レベル値とに基づき決定した電流閾値に基づき前記逆変換器のスイッチング素子を制御することを特徴とする電力変換装置である。 A power converter, a forward converter that converts an AC voltage into a DC voltage, a DC intermediate circuit that has a smoothing capacitor that smoothes the DC voltage converted by the forward converter, and is output from the power converter A current detection circuit for detecting a current; an inverse converter that converts a DC voltage smoothed by the DC intermediate circuit into an AC voltage; and a control circuit that controls a switching element included in the inverse converter; In the control circuit, the switching element of the inverse converter is controlled based on a current threshold value determined based on a first current level value and a second current level value.
 本発明によれば、PMモータの減磁保護と電力変換装置の逆変換器を構成するスイッチング素子の保護を両立することが可能な電力変換装置および電力変換装置の制御方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the control method of the power converter device and power converter device which can make the demagnetization protection of PM motor and the protection of the switching element which comprises the inverter of a power converter device compatible can be provided. .
本願に係る電力変換装置の構成図の一例である。It is an example of the block diagram of the power converter device which concerns on this application. 本願に係る電力変換装置の他の構成図の一例である。It is an example of the other block diagram of the power converter device which concerns on this application. 本願に係る電力変換装置の制御ブロック図(第一の形態)である。It is a control block diagram (1st form) of the power converter device which concerns on this application. 本願に係る電力変換装置の制御ブロック図(第二の形態)である。It is a control block diagram (2nd form) of the power converter device which concerns on this application. 本願に係る電力変換装置の制御ブロック図(第三の形態)である。It is a control block diagram (3rd form) of the power converter device which concerns on this application. 本願に係る設定周囲温度と許容減磁電流の相関図の一例である。It is an example of the correlation diagram of the setting ambient temperature which concerns on this application, and permissible demagnetizing current. 本願に係る検出温度と許容減磁電流の相関図の一例である。It is an example of the correlation diagram of the detection temperature which concerns on this application, and permissible demagnetizing current.
 以下図面を用いて本願について説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、本願は図示例に限定されるものではない。 Hereinafter, this application will be described with reference to the drawings. In addition, the same reference number is attached | subjected about the common structure in each figure. The present application is not limited to the illustrated example.
 本願による電力変換装置の実施例1における形態を以下に図を用いて説明する。 The form in Example 1 of the power converter device by this application is demonstrated below using figures.
 図1は本願に係る電力変換装置の構成図の一例である。 FIG. 1 is an example of a configuration diagram of a power converter according to the present application.
 図1の電力変換装置10は、PM(Permanent Magnet)モータあるいはIM(Induction Motor)に電力を供給するための順変換器1、平滑用コンデンサ2、逆変換器3、過電流保護レベル値の決定回路4、制御回路5、冷却ファン6、デジタル操作パネル7、ドライブ回路8、温度検出器9を備えて構成される。図1では、任意の入力電源として交流電源を用いた場合を示す。 1 includes a forward converter 1, a smoothing capacitor 2, an inverse converter 3, and an overcurrent protection level value for supplying power to a PM (Permanent Magnet) motor or an IM (Induction Motor). The circuit 4 includes a control circuit 5, a cooling fan 6, a digital operation panel 7, a drive circuit 8, and a temperature detector 9. FIG. 1 shows a case where an AC power source is used as an arbitrary input power source.
 順変換器1は、交流電力を直流電力に変換する。 Forward converter 1 converts AC power into DC power.
 平滑用コンデンサ2は、直流中間回路に備えられている。 The smoothing capacitor 2 is provided in the DC intermediate circuit.
 逆変換器3は、直流電力を任意の周波数の交流電力に変換する。逆変換器3内には、代表的なスイッチング素子として例えばIGBTが搭載されている。ここで、スイッチング素子としてはIGBTに限定されるものではなく、スイッチング素子としての形態を有するものであれば良い。 The reverse converter 3 converts DC power into AC power having an arbitrary frequency. In the inverse converter 3, for example, an IGBT is mounted as a typical switching element. Here, the switching element is not limited to the IGBT, and any element having a form as a switching element may be used.
 冷却ファン6は、順変換器1及び逆変換器3内のパワーモジュールを冷却する。 The cooling fan 6 cools the power modules in the forward converter 1 and the reverse converter 3.
 デジタル操作パネル7は、電力変換装置の各種制御データを設定、変更、異常状態及びモニタ表示を行う。操作パネル7には異常表示が可能な表示部が設けられており、電力変換装置における異常が検出されると当該表示部に表示される。本実施例の操作パネル7としては、特に種類が限られるものではないが、デジタル操作パネルとして装置使用者の操作性を考慮して表示部の表示を見ながら操作が行えるように構成している。 The digital operation panel 7 sets, changes, abnormal states and monitor displays various control data of the power converter. The operation panel 7 is provided with a display unit capable of displaying an abnormality. When an abnormality is detected in the power conversion device, the display is displayed on the display unit. The type of the operation panel 7 of the present embodiment is not particularly limited. However, the operation panel 7 is configured as a digital operation panel so that the operation can be performed while viewing the display on the display unit in consideration of the operability of the apparatus user. .
 なお、表示部は必ずしも操作パネル7と一体に構成する必要はないが、操作パネル7の操作者が、表示を見ながら操作できるように一体構成とすることが望ましい。 The display unit is not necessarily configured integrally with the operation panel 7, but it is desirable that the display unit be configured integrally so that an operator of the operation panel 7 can operate while viewing the display.
 操作パネル7から入力された電力変換装置の各種制御データは図示しない記憶部に格納される。 Various control data of the power converter input from the operation panel 7 is stored in a storage unit (not shown).
 制御回路5は、デジタル操作パネル7によって入力される各種の制御データに基づいて逆変換器3のスイッチング素子を制御すると共に、電力変換装置10全体の制御を司る働きをするもので、マイコン(制御演算装置)が搭載されており、デジタル操作パネル7から入力される各種の制御データに応じて必要な制御処理が行なえるように構成されている。 The control circuit 5 controls the switching elements of the inverter 3 based on various control data input from the digital operation panel 7 and controls the entire power converter 10. An arithmetic device) is mounted, and is configured to perform necessary control processing in accordance with various control data input from the digital operation panel 7.
 内部構成は省略するが、各種の制御データが格納された記憶部の記憶データからの情報に基づいて演算を行うマイコン(制御演算装置)が搭載されている。 Although the internal configuration is omitted, a microcomputer (control arithmetic unit) that performs an operation based on information from storage data of a storage unit that stores various control data is mounted.
 電流検出器CTは、モータのU相、W相の線電流を検出する。V相の線電流は、交流条件(iu+iv+iw=0)から、iv=-(iu+iw)として求められる。 The current detector CT detects the U-phase and W-phase line currents of the motor. The V-phase line current is obtained as iv = − (iu + iw) from the AC condition (iu + iv + iw = 0).
 図1ではCTを2個用いる例を示したが、CTを3個使用し、各U相、V相、W相の線電流を検出してもよい。 FIG. 1 shows an example in which two CTs are used, but three CTs may be used to detect line currents of each U phase, V phase, and W phase.
 ドライブ回路8は、制御回路5からの指令に基づいて逆変換器3のスイッチング素子を駆動する。ドライブ回路8内にはスイッチングレギュレータ回路(DC/DCコンバータ)が搭載されており、電力変換装置の運転に必要な各直流電圧を生成し、これらを各構成に対して供給する。 The drive circuit 8 drives the switching element of the inverse converter 3 based on a command from the control circuit 5. A switching regulator circuit (DC / DC converter) is mounted in the drive circuit 8, and each DC voltage necessary for the operation of the power converter is generated and supplied to each component.
 温度検出器9は、PMモータの永久磁石の温度を検出する。 The temperature detector 9 detects the temperature of the permanent magnet of the PM motor.
 PM/IM選択信号11は、PMモータを駆動するか誘導電動機IMを駆動するかを外部から設定する信号である。図1では、PM/IM選択信号11は外部から設定するように記載されているが、外部からだけでなく、操作パネル7から選択できるようにしてあってもよい。当然、PMモータと誘導電動機IMを同時に両方駆動することはできない。また、誘導電動機IMは、PMモータと異なり永久磁石を搭載していないため、PMモータ特有の減磁現象は存在しない。すなわち、許容減磁電流レベル自体が必要ない。 The PM / IM selection signal 11 is a signal for externally setting whether to drive the PM motor or the induction motor IM. In FIG. 1, the PM / IM selection signal 11 is described as being set from the outside. However, the PM / IM selection signal 11 may be selected from the operation panel 7 as well as from the outside. Of course, both the PM motor and the induction motor IM cannot be driven simultaneously. Further, since the induction motor IM does not have a permanent magnet, unlike the PM motor, there is no demagnetization phenomenon unique to the PM motor. That is, the allowable demagnetization current level itself is not necessary.
 一台の電力変換装置でPMモータと誘導電動機IMのどちらかを駆動可能なため、誘導電動機IMを選択した場合、誘導電動機を保護するための許容減磁電流レベルは必要なく、電力変換装置のスイッチング素子を保護するための許容保護電流レベルが存在すればよい。 Since either a PM motor or an induction motor IM can be driven by a single power conversion device, when the induction motor IM is selected, there is no need for an allowable demagnetizing current level for protecting the induction motor. It suffices if there is an allowable protection current level for protecting the switching element.
 しかし、PMモータを選択した場合、減磁現象が発生しないように許容減磁電流レベルを設けなければならない。これらのスイッチング素子を保護するための許容保護電流レベルは電力変換装置に搭載されたスイッチング素子の定格電流に依存し、磁石の減磁を防止するための許容減磁電流レベル値はPMモータの磁石特性に依存するため、許容保護電流レベル値と許容減磁電流レベル値との間に決まった大小関係はなく、許容減磁電流レベルの方が許容保護電流レベル値より低くなるとは限らない。 However, when a PM motor is selected, an allowable demagnetizing current level must be provided so that a demagnetization phenomenon does not occur. The allowable protection current level for protecting these switching elements depends on the rated current of the switching element mounted on the power converter, and the allowable demagnetization current level value for preventing magnet demagnetization is the magnet of the PM motor. Since it depends on the characteristics, there is no fixed magnitude relationship between the allowable protection current level value and the allowable demagnetization current level value, and the allowable demagnetization current level is not always lower than the allowable protection current level value.
 このため、誘導電動機IMを選択した場合には、前記電流検出器で検出された電流値がスイッチング素子を保護するために予め設定された許容保護電流レベル値を超えた場合に、逆変換器3内部のスイッチング素子の動作を停止させることで、スイッチング素子の保護が可能となる。 For this reason, when the induction motor IM is selected, when the current value detected by the current detector exceeds a preset allowable protection current level value for protecting the switching element, the inverter 3 By stopping the operation of the internal switching element, the switching element can be protected.
 また、PMモータを選択した場合には、許容減磁電流レベル値と許容保護電流レベル値のうち低い値を過電流保護レベル値として自動設定し、前記電流検出器で検出された電流値が過電流保護レベル値を超えた場合に、逆変換器3内部のスイッチング素子の動作を停止させることで、スイッチング素子の保護が可能となる。 When a PM motor is selected, the lower value of the allowable demagnetization current level value and the allowable protection current level value is automatically set as the overcurrent protection level value, and the current value detected by the current detector is excessive. When the current protection level value is exceeded, the switching element can be protected by stopping the operation of the switching element inside the inverse converter 3.
 上記方法により、IMおよびPMのいずれのモータを用いた場合であっても、磁石の減磁防止と電力変換装置の保護を両立可能な電力変換装置および電力変換装置の制御方法を提供することができる。 By the above method, it is possible to provide a power conversion device and a control method for the power conversion device that can achieve both prevention of demagnetization of the magnet and protection of the power conversion device, regardless of whether the motor of IM or PM is used. it can.
 このことは、例えばクレーン設備において、巻上げ・巻下げ装置にPMモータを選択し、走行・横行装置に誘導電動機IMを選択した場合、巻上げ・巻下げと走行を交互に選択するパターンにおいても適切に保護できるため不安を抱きながら設備稼働することがなくユーザメリットは極めて大きい。 For example, in a crane facility, when a PM motor is selected as a hoisting / lowering device and an induction motor IM is selected as a traveling / traversing device, it is appropriate even in a pattern in which hoisting / lowering and traveling are selected alternately. Because it can be protected, the equipment does not operate with anxiety and the user's merit is extremely large.
 また、任意の入力電源として交流電源ではなく、直流電源を供給する場合には、直流端子P側に直流電源の+側を接続し、直流端子N側に直流電源の-側を接続すればよい。 In addition, when supplying a DC power supply instead of an AC power supply as an arbitrary input power supply, the DC power supply + side is connected to the DC terminal P side, and the DC power supply -side is connected to the DC terminal N side. .
 さらには、交流端子RとSとTを接続し、この接続点に直流電源の+側を接続し、直流端子N側に直流電源の-側を接続してもよいし、逆に、直流端子P側に直流電源の+側を接続し、交流端子RとSとTを接続し、この接続点に直流電源の-側を接続してもよい。 Furthermore, the AC terminals R, S, and T may be connected, the DC power supply + side may be connected to this connection point, and the DC power supply N side may be connected to the DC power supply negative side. The positive side of the DC power source may be connected to the P side, the AC terminals R, S, and T may be connected, and the negative side of the DC power source may be connected to this connection point.
 本願による電力変換装置の実施例2における形態を以下に図を用いて説明する。 The form in Example 2 of the power converter device by this application is demonstrated using a figure below.
 図2は、本願に係る電力変換装置の他の構成図の一例である。 FIG. 2 is an example of another configuration diagram of the power converter according to the present application.
 図1と共通の構成および同一の機能については、やはり同一の参照番号を付してある。 The same reference numerals are assigned to the same configurations and the same functions as those in FIG.
 図1と異なるのは、電流検出器の検出位置である。 The difference from Fig. 1 is the detection position of the current detector.
 SH1、SHi、SHdは電流検出用のシャント抵抗器であり、SH1は直流中間回路のN側の電流を検出し、SHiは逆変換器3を構成する下アームの各スイッチング素子であるU相とV相とW相のIGBTに接続され、SHdは各スイッチング素子であるIGBTに並列に接続されたダイオードに接続されている。 SH1, SHi and SHd are shunt resistors for current detection, SH1 detects the current on the N side of the DC intermediate circuit, and SHi is a U-phase which is each switching element of the lower arm constituting the inverter 3. It is connected to the V-phase and W-phase IGBTs, and SHd is connected to a diode connected in parallel to each switching element IGBT.
 すなわち、電力変換装置の直流母線側に設けられたシャント抵抗器SHiは、各IGBTに流れる合成電流を検出する電流検出器であり、シャント抵抗器SHdは各IGBTに並列に接続されたダイオードに流れる合成電流を検出する電流検出器である。 That is, the shunt resistor SHi provided on the DC bus side of the power converter is a current detector that detects a combined current flowing through each IGBT, and the shunt resistor SHd flows through a diode connected in parallel to each IGBT. It is a current detector that detects a combined current.
 電力変換装置の直流母線側に設けられたシャント抵抗器でモータに流れる電流を検出できる。 The current flowing through the motor can be detected by a shunt resistor provided on the DC bus side of the power converter.
 また、シャント抵抗SHi、SHdは、U相を構成する下アームのIGBTとダイオードに接続されているがU相を構成する上アームのIGBTとダイオードに接続して電流を検出してもよい。 The shunt resistors SHi and SHd are connected to the IGBT and diode of the lower arm constituting the U phase, but may be connected to the IGBT and diode of the upper arm constituting the U phase to detect the current.
 本願による電力変換装置の実施例3における形態を以下に図を用いて説明する。 The form in Example 3 of the power converter device by this application is demonstrated using a figure below.
 図3は、本願に係る電力変換装置の制御ブロック図(第一の形態)である。 FIG. 3 is a control block diagram (first embodiment) of the power converter according to the present application.
 図1および図2に開示した制御回路5の内部における制御ブロック図である。 FIG. 3 is a control block diagram inside the control circuit 5 disclosed in FIGS. 1 and 2;
 逆変換器3を構成するスイッチング素子としてIGBTが搭載されており、IGBTには安全動作領域(電流と電圧の上限)が決められている。スイッチング素子を安全に動作させるため、電力変換装置には予め超えてはならない過電流保護レベルと過電圧保護レベルが設けられており、この過電流保護レベルがスイッチング素子を保護するための許容保護電流レベル値(図3の第一の過電流保護レベル値)31である。 An IGBT is mounted as a switching element constituting the inverse converter 3, and a safe operating area (upper limit of current and voltage) is determined for the IGBT. In order to operate the switching element safely, the power conversion device is provided with an overcurrent protection level and an overvoltage protection level that must not be exceeded in advance, and this overcurrent protection level is an allowable protection current level for protecting the switching element. This is the value (first overcurrent protection level value in FIG. 3) 31.
 誘導電動機IMは、PMモータと異なり永久磁石を搭載していないため、PMモータ特有の減磁現象は存在しない。このため、誘導電動機を保護するための許容減磁電流レベルは必要なく、電力変換装置のスイッチング素子を保護するための許容保護電流レベルが存在すればよい。 The induction motor IM is not equipped with a permanent magnet unlike the PM motor, so there is no demagnetization phenomenon unique to the PM motor. For this reason, there is no need for an allowable demagnetizing current level for protecting the induction motor, and it is only necessary to have an allowable protective current level for protecting the switching element of the power converter.
 ところが、PMモータには電機子側に流れる電流が所定の領域を超えると不可逆減磁が発生する。この不可逆減磁が発生するとPMモータの始動不良、運転負荷範囲の縮退、磁石の消磁というモータとしての働きができない状態に陥る。 However, in the PM motor, irreversible demagnetization occurs when the current flowing on the armature side exceeds a predetermined region. When this irreversible demagnetization occurs, the PM motor fails to start, the operating load range is degenerated, and the magnet cannot be demagnetized.
 このため、不可逆減磁が発生しないようにPMモータ特有の減磁電流である許容保護電流レベル値(第二の許容減磁電流レベル値)32をデジタル操作パネル7で設定する。 For this reason, an allowable protection current level value (second allowable demagnetization current level value) 32 that is a demagnetization current peculiar to the PM motor is set on the digital operation panel 7 so that irreversible demagnetization does not occur.
 許容保護電流レベル値(第一の過電流保護レベル値)31と許容減磁電流レベル値(第二の許容減磁電流レベル値)32を比較器33で比較し、いずれか低い方の電流レベル値を電力変換装置の過電流保護レベル値35として自動的に設定する。そして、電流検出器CTにより検出された電流検出器信号が予め設定された過電流保護レベル値35を超えた場合には、電流検出回路34からSig1をドライブ回路8に送信し、逆変換器3内部のスイッチング素子であるIGBTの動作を停止する構成にしてある。 The allowable protection current level value (first overcurrent protection level value) 31 and the allowable demagnetization current level value (second allowable demagnetization current level value) 32 are compared by a comparator 33, whichever is the lower current level. The value is automatically set as the overcurrent protection level value 35 of the power converter. When the current detector signal detected by the current detector CT exceeds a preset overcurrent protection level value 35, Sig1 is transmitted from the current detection circuit 34 to the drive circuit 8, and the inverse converter 3 The operation of the IGBT which is an internal switching element is stopped.
 ここで、許容保護電流レベル値(第一の過電流保護レベル値)31と許容減磁電流レベル値(第二の許容減磁電流レベル値)32とを比較し、いずれか低いレベル値を電力変換装置の過電流保護レベル値に自動的に設定する理由は、デジタル操作パネル7で設定した許容減磁電流レベル値(第二の許容減磁電流レベル値)32とがスイッチング素子を保護するために予め設けられた許容保護電流レベル値(第一の過電流保護レベル値)31より高い場合、この許容減磁電流レベル値(第二の許容減磁電流レベル値)32を電力変換装置の過電流保護レベル値に自動的に設定すると過電流発生時にスイッチング素子を破壊し電力変換装置としての機能を消失するからである。 Here, the permissible protection current level value (first overcurrent protection level value) 31 and the permissible demagnetization current level value (second permissible demagnetization current level value) 32 are compared, and the lower level value is set as the power. The reason why the overcurrent protection level value of the converter is automatically set is that the allowable demagnetization current level value (second allowable demagnetization current level value) 32 set on the digital operation panel 7 protects the switching element. Is higher than the permissible protection current level value (first overcurrent protection level value) 31 provided in advance, the permissible demagnetization current level value (second permissible demagnetization current level value) 32 is used as the overcurrent of the power converter. This is because when the current protection level value is automatically set, the switching element is destroyed when the overcurrent occurs, and the function as the power conversion device is lost.
 また、許容減磁電流レベル値(第二の許容減磁電流レベル値)32を操作者がデジタル操作パネル7で設定するため、誤入力(実際の減磁電流レベル値より高いレベル値で、かつ第一の過電流保護レベル値より高い値を設定した場合)によるスイッチング素子の破壊を未然に防止することができるためである。すなわち、PMモータの減磁保護と逆変換器を構成するスイッチング素子の保護を両立できる。 Further, since the operator sets the allowable demagnetization current level value (second allowable demagnetization current level value) 32 on the digital operation panel 7, an erroneous input (a level value higher than the actual demagnetization current level value and This is because it is possible to prevent the switching element from being destroyed due to the case where a value higher than the first overcurrent protection level value is set. That is, both demagnetization protection of the PM motor and protection of the switching element constituting the inverse converter can be achieved.
 ここで、許容保護電流レベルは電力変換装置に搭載されたスイッチング素子の定格電流に依存する値であるため、許容保護電流レベルは予め設定されていてもよい。また、許容減磁電流レベル値はPMモータの磁石特性に依存するため、使用するPMモータに応じて予め決められた値を設定するようにしてもよい。 Here, since the allowable protection current level is a value depending on the rated current of the switching element mounted on the power converter, the allowable protection current level may be set in advance. Further, since the allowable demagnetization current level value depends on the magnet characteristics of the PM motor, a predetermined value may be set according to the PM motor to be used.
 また、過電流保護レベル値は、許容保護電流レベル値と許容減磁電流レベル値のいずれのか小さい方のレベル値に基づき幅を持たせて設定された値であってもよい。 Further, the overcurrent protection level value may be a value set with a width based on the smaller one of the allowable protection current level value and the allowable demagnetization current level value.
 また、必ずしも制御回路5の中で許容保護電流レベル値と許容減磁電流レベル値のいずれか小さい値を算出することは必要ではなく、既知の許容保護電流レベル値と許容減磁電流レベル値とに基づき決まる過電流保護レベル値を、外部やデジタル操作パネル7などから入力することによって決定しても良い。 In addition, it is not always necessary to calculate a smaller value of the allowable protection current level value and the allowable demagnetization current level value in the control circuit 5, and the known allowable protection current level value and allowable demagnetization current level value The overcurrent protection level value determined based on the above may be determined by inputting from the outside, the digital operation panel 7 or the like.
 また、PM/IM選択信号11にてPMが選択された場合は、許容保護電流レベル値と許容減磁電流レベル値の両方に基づき決定した過電流保護レベル値を用いて電力変換装置を動作させ、IMが選択された場合は、許容保護電流レベル値を過電流保護レベル値として電力変換装置を動作させるものである。 When PM is selected by the PM / IM selection signal 11, the power converter is operated using the overcurrent protection level value determined based on both the allowable protection current level value and the allowable demagnetization current level value. , IM is selected, the power converter is operated with the allowable protection current level value as the overcurrent protection level value.
 つまり、本願は、許容保護電流レベル値と許容減磁電流レベル値の両方に基づき決定した過電流保護レベル値を用いて電力変換装置を動作させる点に特徴の一つを有する。また、本願は、IMかPMかにより、異なる方法にて過電流保護レベル値を求め、当該過電流保護レベル値に基づき電力変換装置を動作させる点に特徴の一つを有する。 That is, the present application is characterized in that the power converter is operated using the overcurrent protection level value determined based on both the allowable protection current level value and the allowable demagnetization current level value. Further, the present application is characterized in that an overcurrent protection level value is obtained by a different method depending on whether it is IM or PM, and the power converter is operated based on the overcurrent protection level value.
 本願による電力変換装置の実施例4における形態を以下に図を用いて説明する。 The form in Example 4 of the power converter device by this application is demonstrated using a figure below.
 図4は、本願に係る電力変換装置の制御ブロック図(第二の形態)である。 FIG. 4 is a control block diagram (second embodiment) of the power converter according to the present application.
 図3と共通の構成および同一の機能については、やはり同一の参照番号を付してある。 The same reference numerals are assigned to the same configurations and the same functions as those in FIG.
 PMモータの第二の許容減磁電流レベル値42とPMモータの周囲温度値46を個別にデジタル操作パネル7で設定する。第二の許容減磁電流レベル値42と周囲温度値46と電流検出回路44の検出値とから、温度と許容減磁電流の相関回路47により、PMモータの第三の許容減磁電流レベル値48を求め、許容保護電流レベル値(第一の過電流保護レベル値)41と第二の許容減磁電流レベル値42と第三の許容減磁電流レベル値48の内二つ以上のレベル値を比較器43で比較し、これらのレベル値の中で最も低いレベル値を電力変換装置の過電流保護レベル値に自動的に設定する。過電流保護レベル値45が決定した後は図3と同様に、当該過電流保護レベル値45を用いて電力変換装置を動作させる。 The second allowable demagnetizing current level value 42 of the PM motor and the ambient temperature value 46 of the PM motor are individually set on the digital operation panel 7. Based on the second allowable demagnetization current level value 42, the ambient temperature value 46, and the detection value of the current detection circuit 44, the temperature and allowable demagnetization current correlation circuit 47 generates a third allowable demagnetization current level value of the PM motor. 48, and two or more level values of the allowable protection current level value (first overcurrent protection level value) 41, the second allowable demagnetization current level value 42, and the third allowable demagnetization current level value 48 are obtained. Are compared by the comparator 43, and the lowest level value among these level values is automatically set to the overcurrent protection level value of the power converter. After the overcurrent protection level value 45 is determined, the power converter is operated using the overcurrent protection level value 45 as in FIG.
 過電流保護レベル値を設定するに当たり、第二の許容減磁電流レベル値42と第三の許容減磁電流レベル値とを比較する場合は、いずれか小さいほうのレベル値が許容保護レベル値41よりも小さい場合に、PMモータの減磁保護と逆変換器を構成するスイッチング素子の保護を両立できるという効果を奏する。 In setting the overcurrent protection level value, when comparing the second allowable demagnetization current level value 42 and the third allowable demagnetization current level value, the smaller level value is the allowable protection level value 41. If smaller than that, it is possible to achieve both demagnetization protection of the PM motor and protection of the switching elements constituting the inverse converter.
 図6に電機子電流検出値Iaをパラメータとした設定周囲温度値Taと許容減磁電流Iadの相関図の一例を示す。この相関曲線図を用いて求めればよい。 FIG. 6 shows an example of a correlation diagram between the set ambient temperature value Ta and the allowable demagnetization current Iad using the armature current detection value Ia as a parameter. What is necessary is just to obtain | require using this correlation curve figure.
 図6の相関図を一本の直線で近似しても、数本の直線で近似しても本願の意図は変わらない。 6) Even if the correlation diagram of FIG. 6 is approximated by a single straight line or approximated by several straight lines, the intention of the present application does not change.
 この曲線式あるいは直線式から、許容減磁電流Iadを求めればよい。 The allowable demagnetizing current Iad may be obtained from this curve equation or linear equation.
 また、PMモータに流れる電機子電流検出値Iaに対する永久磁石の温度上昇(ΔT∝f(Ia))の相関を予め測定あるいは演算しておけば、各検出電流値における永久磁石の温度(T)を電機子電流検出値による温度上昇値ΔT∝f(Ia)と設定周囲温度値Taの和として、T=ΔT+Taとして求められる。 Further, if the correlation of the temperature rise (ΔT∝f (Ia)) of the permanent magnet to the armature current detection value Ia flowing through the PM motor is measured or calculated in advance, the temperature (T) of the permanent magnet at each detection current value. Is obtained as T = ΔT + Ta as the sum of the temperature rise value ΔT∝f (Ia) based on the armature current detection value and the set ambient temperature value Ta.
 つまり、電機子電流検出値Iaと永久磁石の温度上昇値ΔTの相関データを予め不揮発性のメモリに記憶させ、不揮発性のメモリから読み出した温度上昇値ΔTに設定周囲温度値Taを足して永久磁石の温度Tを求め、温度と許容減磁電流の相関データから許容減磁電流Iadを求めてもよい。 That is, the correlation data between the armature current detection value Ia and the temperature rise value ΔT of the permanent magnet is stored in a nonvolatile memory in advance, and the set ambient temperature value Ta is added to the temperature rise value ΔT read from the nonvolatile memory to make it permanent. The temperature T of the magnet may be obtained, and the allowable demagnetization current Iad may be obtained from the correlation data between the temperature and the allowable demagnetization current.
 さらには、電機子電流検出値Iaと設定周囲温度値Taと許容減磁電流Iadの相関回路に、これらの相関データを予め不揮発性のメモリに記憶させ不揮発性のメモリから許容減磁電流Iadを読み出す構成にしておく方がより現実的なシステム構成である。 Further, the correlation data of the armature current detection value Ia, the set ambient temperature value Ta, and the allowable demagnetizing current Iad is stored in advance in a non-volatile memory, and the allowable demagnetizing current Iad is obtained from the non-volatile memory. It is a more realistic system configuration to be configured to read.
 永久磁石の温度上昇の代わりにPMモータに流れる電流検出値Iaに対するPMモータの温度上昇値をΔTとしてもよい。 The temperature increase value of the PM motor relative to the current detection value Ia flowing through the PM motor may be ΔT instead of the temperature increase of the permanent magnet.
 ここで、図6におけるA点とB点について説明する。 Here, the points A and B in FIG. 6 will be described.
 A点は、検出電流Ia1の場合であり、設定周囲温度値Ta1時における第三の許容減磁電流レベル値はIad1である。この許容減磁電流レベル値Iad1は、スイッチング素子を保護するための第一の過電流保護レベル値より高いため、モータの減磁保護とスイッチング素子の保護を両立するために、両レベル値の中で最も低いレベル値である第一の過電流保護レベル値が電力変換装置の過電流保護レベル値に自動的に設定される。 The point A is the case of the detection current Ia1, and the third allowable demagnetization current level value at the set ambient temperature value Ta1 is Iad1. Since this allowable demagnetization current level value Iad1 is higher than the first overcurrent protection level value for protecting the switching element, in order to achieve both demagnetization protection of the motor and protection of the switching element, The first overcurrent protection level value which is the lowest level value is automatically set to the overcurrent protection level value of the power converter.
 万一、第三の許容減磁電流レベル値Iad1を電力変換装置の過電流保護レベル値に設定した場合(Iad1>第一の過電流保護レベル値)、PMモータの減磁保護はできても逆変換器を構成するスイッチング素子を保護することができないことは明らかである。 If the third allowable demagnetizing current level value Iad1 is set to the overcurrent protection level value of the power converter (Iad1> first overcurrent protection level value), the PM motor can be demagnetized. Obviously, the switching elements constituting the inverse converter cannot be protected.
 B点は、検出電流Ianの場合であり、設定周囲温度値がTa1時における第三の許容減磁電流レベル値はIad2である。この許容減磁電流レベル値Iad2は、スイッチング素子を保護するための第一の過電流保護レベル値より低いため、モータの減磁保護とスイッチング素子の保護を両立するために、両レベル値の中で最も低いレベル値である第三の許容減磁電流レベル値Iad2が電力変換装置の過電流保護レベル値に自動的に設定される。 B point is the case of the detection current Ian, and the third allowable demagnetization current level value when the set ambient temperature value is Ta1 is Iad2. Since this allowable demagnetizing current level value Iad2 is lower than the first overcurrent protection level value for protecting the switching element, in order to achieve both the demagnetization protection of the motor and the protection of the switching element, The third allowable demagnetizing current level value Iad2 that is the lowest level value is automatically set to the overcurrent protection level value of the power converter.
 A点とB点における電力変換装置の過電流保護レベル値を異なる値に自動設定し、PMモータの減磁保護と逆変換器を構成するスイッチング素子の保護を両立できることが本願の特徴である。 It is a feature of the present application that the overcurrent protection level value of the power conversion device at point A and point B is automatically set to a different value so that both demagnetization protection of the PM motor and protection of the switching elements constituting the reverse converter can be achieved.
 そして、電流検出器信号が設定された過電流保護レベル値を超えた場合に、Sig1をドライブ回路8に送信し、逆変換器内部のスイッチング素子であるIGBTの動作を停止する構成にしてある。 Then, when the current detector signal exceeds the set overcurrent protection level value, Sig1 is transmitted to the drive circuit 8, and the operation of the IGBT which is a switching element inside the inverse converter is stopped.
 ここで、第一の過電流保護レベル値と第二の許容減磁電流レベル値と第三の許容減磁電流レベル値のうち少なくとも2つを用いて比較し、最も低いレベル値を電力変換装置の過電流保護レベル値に自動的に設定するのは、実施例3に記載した理由と同一である。 Here, at least two of the first overcurrent protection level value, the second allowable demagnetizing current level value, and the third allowable demagnetizing current level value are compared, and the lowest level value is converted into the power converter. The overcurrent protection level value is automatically set to the same reason as described in the third embodiment.
 本願による電力変換装置の実施例5における形態を以下に図を用いて説明する。 The form in Example 5 of the power converter device by this application is demonstrated using a figure below.
 図5は、本願に係る電力変換装置の制御ブロック図(第三の形態)である。 FIG. 5 is a control block diagram (third embodiment) of the power converter according to the present application.
 図4と共通の構成および同一の機能については、やはり同一の参照番号を付してある。 The same reference numerals are assigned to the same configurations and the same functions as those in FIG.
 PMモータの第二の許容減磁電流レベル値52をデジタル操作パネル7で設定する。第二の許容減磁電流レベル値52とPMモータに設けられた温度検出器9の検出値とから、温度と許容減磁電流の相関回路57により、PMモータの第三の許容減磁電流レベル値58を求め、許容保護電流レベル値(第一の過電流保護レベル値)51と第二の許容減磁電流レベル値52と第三の許容減磁電流レベル値58のうち少なくとも2つを用いて比較し、これらのレベル値の中で最も低いレベル値を電力変換装置の過電流保護レベル値55に自動的に設定する。 ∙ Set the second allowable demagnetizing current level value 52 of the PM motor with the digital operation panel 7. Based on the second allowable demagnetizing current level value 52 and the detected value of the temperature detector 9 provided in the PM motor, the third allowable demagnetizing current level of the PM motor is obtained by the correlation circuit 57 between the temperature and the allowable demagnetizing current. The value 58 is obtained, and at least two of the allowable protection current level value (first overcurrent protection level value) 51, the second allowable demagnetization current level value 52, and the third allowable demagnetization current level value 58 are used. The lowest level value among these level values is automatically set as the overcurrent protection level value 55 of the power converter.
 実施例4と同様に、過電流保護レベル値を設定するに当たり、第二の許容減磁電流レベル値42と第三の許容減磁電流レベル値とを比較する場合は、いずれか小さいほうのレベル値が許容保護レベル値41よりも小さい場合に、PMモータの減磁保護と逆変換器を構成するスイッチング素子の保護を両立できるという効果を奏する。 Similarly to the fourth embodiment, when setting the overcurrent protection level value, when comparing the second allowable demagnetization current level value 42 and the third allowable demagnetization current level value, whichever level is smaller. When the value is smaller than the allowable protection level value 41, there is an effect that both demagnetization protection of the PM motor and protection of the switching elements constituting the inverse converter can be achieved.
 図7に検出温度Tと許容減磁電流Iadの相関図の一例を示す。この相関図を用いて求めればよい。 FIG. 7 shows an example of a correlation diagram between the detected temperature T and the allowable demagnetizing current Iad. What is necessary is just to obtain | require using this correlation diagram.
 ここで、図7におけるC点とD点について説明する。 Here, the points C and D in FIG. 7 will be described.
 C点は、検出温度T1時における第三の許容減磁電流レベル値はIad3である。この許容減磁電流レベル値Iad3は、スイッチング素子を保護するための第一の過電流保護レベル値より高いため、モータの減磁保護とスイッチング素子の保護を両立するために、両レベル値の中で最も低いレベル値である第一の過電流保護レベル値が電力変換装置の過電流保護レベル値に自動的に設定される。 At point C, the third allowable demagnetizing current level value at the detection temperature T1 is Iad3. Since this allowable demagnetization current level value Iad3 is higher than the first overcurrent protection level value for protecting the switching element, in order to achieve both motor demagnetization protection and switching element protection, The first overcurrent protection level value which is the lowest level value is automatically set to the overcurrent protection level value of the power converter.
 D点は、検出温度T2時における第三の許容減磁電流レベル値はIad4である。この許容減磁電流レベル値Iad4は、スイッチング素子を保護するための第一の過電流保護レベル値より低いため、モータの減磁保護とスイッチング素子の保護を両立するために、両レベル値の中で最も低いレベル値である第三の許容減磁電流レベル値Iad4が電力変換装置の過電流保護レベル値に自動的に設定される。 In point D, the third allowable demagnetizing current level value at the detection temperature T2 is Iad4. Since this allowable demagnetizing current level value Iad4 is lower than the first overcurrent protection level value for protecting the switching element, in order to achieve both the demagnetization protection of the motor and the protection of the switching element, The third allowable demagnetizing current level value Iad4, which is the lowest level value, is automatically set to the overcurrent protection level value of the power converter.
 C点とD点における電力変換装置の過電流保護レベル値を異なる値に自動設定し、PMモータの減磁保護と逆変換器を構成するスイッチング素子の保護を両立できることが本願の特徴である。 It is a feature of the present application that the overcurrent protection level value of the power conversion device at point C and point D is automatically set to a different value so that both demagnetization protection of the PM motor and protection of the switching elements constituting the inverse converter can be achieved.
 そして、やはり電流検出器信号が設定された過電流保護レベル値を超えた場合に、Sig1をドライブ回路8に送信し、逆変換器内部のスイッチング素子であるIGBTの動作を停止する構成にしてある。 When the current detector signal exceeds the set overcurrent protection level value, Sig1 is transmitted to the drive circuit 8, and the operation of the IGBT that is the switching element inside the inverse converter is stopped. .
 ここで、第一の過電流保護レベル値と第二の許容減磁電流レベル値と第三の許容減磁電流レベル値の内二つ以上のレベル値を比較し、最も低いレベル値を電力変換装置の過電流保護レベル値に自動設定するのは、やはり実施例3および実施例4に記載した理由と同一である。 Here, the two or more level values of the first overcurrent protection level value, the second allowable demagnetizing current level value, and the third allowable demagnetizing current level value are compared, and the lowest level value is converted into power. The reason why the overcurrent protection level value of the apparatus is automatically set is the same as the reason described in the third and fourth embodiments.
 検出温度と許容減磁電流の相関回路には、この相関データを予め不揮発性のメモリに記憶させ不揮発性のメモリから読み出す構成にしておく方がより現実的なシステム構成である。 In the correlation circuit between the detected temperature and the allowable demagnetizing current, it is more realistic system configuration to store this correlation data in a nonvolatile memory and read it from the nonvolatile memory.
 当然、過電流保護レベル値の決定回路4をマイコンの一部の機能で構成する方がより現実的なシステム構成である。 Of course, it is more realistic system configuration to configure the overcurrent protection level value determination circuit 4 with a part of the function of the microcomputer.
 以上の実施例で示したように、本願により、許容減磁電流レベル値と許容保護電流レベル値の低い値を許容保護電流レベル値として自動設定することにより、磁石の減磁防止と電力変換装置の保護を両立可能な電力変換装置およびPMモータの制御方法を提供できるため、不安を抱きながら設備稼働することがなくユーザメリットは極めて大きい。 As shown in the above embodiments, according to the present application, by automatically setting the allowable demagnetization current level value and the low allowable protection current level value as the allowable protection current level value, the demagnetization prevention of the magnet and the power conversion device Therefore, it is possible to provide a power conversion apparatus and a PM motor control method that can achieve both protections, and the user's merit is extremely high without operating the equipment while having anxiety.
1…順変換器、2…平滑用コンデンサ、3…逆変換器、4…過電流保護レベル値の決定回路、5…制御回路、6…冷却ファン、7…デジタル操作パネル、8…ドライブ回路、9…温度検出器、10…電力変換装置、11…PM/IM選択信号、PM…永久磁石付同期電動機、IM…誘導電動機、CT…電流検出器、SH1,SHi,SHd…直流母線側の電流検出用シャント抵抗、Ia…電機子電流、f(Ia)…Iaの関数の意味 DESCRIPTION OF SYMBOLS 1 ... Forward converter, 2 ... Smoothing capacitor, 3 ... Reverse converter, 4 ... Overcurrent protection level value determination circuit, 5 ... Control circuit, 6 ... Cooling fan, 7 ... Digital operation panel, 8 ... Drive circuit, DESCRIPTION OF SYMBOLS 9 ... Temperature detector, 10 ... Power converter, 11 ... PM / IM selection signal, PM ... Synchronous motor with permanent magnet, IM ... Induction motor, CT ... Current detector, SH1, SHi, SHd ... Current on the DC bus side Shunt resistance for detection, Ia ... armature current, f (Ia) ... Meaning of function of Ia

Claims (14)

  1.  電力変換装置であって、
     交流電圧を直流電圧に変換する順変換器と、
     前記順変換器にて変換した直流電圧を平滑する平滑コンデンサを有する直流中間回路と、
     該電力変換装置から出力される電流を検出する電流検出回路と、
     前記直流中間回路にて平滑化された直流電圧を交流電圧に変換する逆変換器と、
     前記逆変換器の備えるスイッチング素子を制御する制御回路と、を備え、
     前記制御回路では、第一の電流レベル値と第二の電流レベル値とに基づき決定した電流閾値に基づき前記逆変換器のスイッチング素子を制御することを特徴とする電力変換装置。
    A power converter,
    A forward converter that converts AC voltage to DC voltage;
    A DC intermediate circuit having a smoothing capacitor for smoothing the DC voltage converted by the forward converter;
    A current detection circuit for detecting a current output from the power converter;
    An inverse converter that converts the DC voltage smoothed by the DC intermediate circuit into an AC voltage;
    A control circuit for controlling a switching element included in the inverse converter,
    The said control circuit controls the switching element of the said reverse converter based on the electric current threshold value determined based on the 1st electric current level value and the 2nd electric current level value, The power converter device characterized by the above-mentioned.
  2.  請求項1記載の電力変換装置であって、
     前記第一の電流レベル値は前記逆変換器のスイッチング素子を保護するための値であり、前記第二の電流レベル値は該電力変換装置により制御する負荷に基づき決まる値であることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The first current level value is a value for protecting a switching element of the inverter, and the second current level value is a value determined based on a load controlled by the power converter. Power converter.
  3.  請求項1記載の電力変換装置であって、
     前記第一の電流レベル値は前記逆変換器のスイッチング素子を保護するための値であり、前記第二の電流レベル値は該電力変換装置により制御する負荷の永久磁石の磁石特性に基づき決まる値であることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The first current level value is a value for protecting the switching element of the inverter, and the second current level value is a value determined based on the magnet characteristics of the permanent magnet of the load controlled by the power converter. The power converter characterized by being.
  4.  請求項1記載の電力変換装置であって、
     前記制御回路では、第一の電流レベル値と第二の電流レベル値とのいずれか小さい方の値に基づき電流閾値を決定することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    In the control circuit, the current threshold value is determined based on a smaller one of the first current level value and the second current level value.
  5.  請求項1記載の電力変換装置であって、
     前記制御回路では、第一の電流レベル値と第二の電流レベル値とのいずれか小さい方の値を電流閾値とすることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    In the control circuit, the smaller value of the first current level value and the second current level value is set as a current threshold value.
  6.  請求項1記載の電力変換装置であって、
     前記制御回路では、負荷としてPMが選択された場合には第一の電流レベルと第二の電流レベルとに基づき決定した電流閾値を用い、負荷としてIMが選択された場合には第一の電流レベルに基づき決定した電流閾値を用いて制御を行うことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The control circuit uses a current threshold determined based on the first current level and the second current level when PM is selected as the load, and the first current when IM is selected as the load. A power conversion device that performs control using a current threshold determined based on a level.
  7.  請求項1記載の電力変換装置であって、
     前記制御回路では、第一の電流レベル値と第二の電流レベル値と第三の電流レベル値に基づき決定した電流閾値に基づき前記逆変換器のスイッチング素子を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The control circuit controls the switching element of the inverse converter based on a current threshold value determined based on a first current level value, a second current level value, and a third current level value. apparatus.
  8.  電力変換装置の制御方法であって、
     交流電圧を直流電圧に変換する順変換工程と、
     前記順変換工程にて変換した直流電圧を平滑する平滑工程と、
     該電力変換装置から出力される電流を検出する電流検出工程と、
     前記平滑工程にて平滑化された直流電圧を交流電圧に変換する逆変換工程と、
     スイッチング素子を制御する制御工程と、を備え、
     前記制御工程では、第一の電流レベル値と第二の電流レベル値とに基づき決定した電流閾値に基づき前記スイッチング素子を制御することを特徴とする電力変換装置の制御方法。
    A method for controlling a power converter,
    A forward conversion step of converting an AC voltage into a DC voltage;
    A smoothing step of smoothing the DC voltage converted in the forward conversion step;
    A current detection step of detecting a current output from the power converter;
    An inverse conversion step of converting the DC voltage smoothed in the smoothing step into an AC voltage;
    A control process for controlling the switching element,
    In the control step, the switching element is controlled based on a current threshold value determined based on a first current level value and a second current level value.
  9.  請求項8記載の電力変換装置の制御方法であって、
     前記第一の電流レベル値は前記スイッチング素子を保護するための値であり、前記第二の電流レベル値は該電力変換装置により制御する負荷に基づき決まる値であることを特徴とする電力変換装置の制御方法。
    It is a control method of the power converter device of Claim 8, Comprising:
    The first current level value is a value for protecting the switching element, and the second current level value is a value determined based on a load controlled by the power conversion device. Control method.
  10.  請求項8記載の電力変換装置の制御方法であって、
     前記第一の電流レベル値は前記逆変換器のスイッチング素子を保護するための値であり、前記第二の電流レベル値は該電力変換装置により制御する負荷の永久磁石の磁石特性に基づき決まる値であることを特徴とする電力変換装置の制御方法。
    It is a control method of the power converter device of Claim 8, Comprising:
    The first current level value is a value for protecting the switching element of the inverter, and the second current level value is a value determined based on the magnet characteristics of the permanent magnet of the load controlled by the power converter. A control method for a power conversion device, wherein:
  11.  請求項8記載の電力変換装置の制御方法であって、
     前記制御工程では、第一の電流レベル値と第二の電流レベル値とのいずれか小さい方の値に基づき電流閾値を決定することを特徴とする電力変換装置の制御方法。
    It is a control method of the power converter device of Claim 8, Comprising:
    In the said control process, a current threshold value is determined based on the smaller one of a 1st current level value and a 2nd current level value, The control method of the power converter device characterized by the above-mentioned.
  12.  請求項8記載の電力変換装置の制御方法であって、
     前記制御工程では、第一の電流レベル値と第二の電流レベル値とのいずれか小さい方の値を電流閾値とすることを特徴とする電力変換装置の制御方法。
    It is a control method of the power converter device of Claim 8, Comprising:
    In the said control process, the smaller one of a 1st current level value and a 2nd current level value is made into a current threshold value, The control method of the power converter device characterized by the above-mentioned.
  13.  請求項8記載の電力変換装置の制御方法であって、
     前記制御工程では、負荷としてPMが選択された場合には第一の電流レベルと第二の電流レベルとに基づき決定した電流閾値を用い、負荷としてIMが選択された場合には第一の電流レベルに基づき決定した電流閾値を用いて制御を行うことを特徴とする電力変換装置の制御方法。
    It is a control method of the power converter device of Claim 8, Comprising:
    In the control step, when PM is selected as the load, a current threshold value determined based on the first current level and the second current level is used, and when IM is selected as the load, the first current is determined. A control method for a power converter, wherein control is performed using a current threshold value determined based on a level.
  14.  請求項8記載の電力変換装置の制御方法であって、
     前記制御工程では、第一の電流レベル値と第二の電流レベル値と第三の電流レベル値に基づき決定した電流閾値に基づき前記スイッチング素子を制御することを特徴とする電力変換装置の制御方法。
    It is a control method of the power converter device of Claim 8, Comprising:
    In the control step, the switching element is controlled based on a current threshold value determined based on the first current level value, the second current level value, and the third current level value. .
PCT/JP2014/067305 2013-12-27 2014-06-30 Power conversion device and power conversion device control method WO2015098154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-270916 2013-12-27
JP2013270916A JP2015126648A (en) 2013-12-27 2013-12-27 Power conversion device and control method for power conversion device

Publications (1)

Publication Number Publication Date
WO2015098154A1 true WO2015098154A1 (en) 2015-07-02

Family

ID=53478046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067305 WO2015098154A1 (en) 2013-12-27 2014-06-30 Power conversion device and power conversion device control method

Country Status (2)

Country Link
JP (1) JP2015126648A (en)
WO (1) WO2015098154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961095A (en) * 2017-05-12 2017-07-18 广东美的制冷设备有限公司 Current foldback circuit and air-conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863280A (en) * 2017-11-21 2018-03-30 胡琳 A kind of electronic equipment with break protecting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026409A (en) * 2004-07-16 2006-02-02 Lg Electronics Inc Washing machine and method for controlling the same
JP2010144607A (en) * 2008-12-18 2010-07-01 Sanden Corp Drive circuit integral-type electric compressor
JP2013192416A (en) * 2012-03-15 2013-09-26 Hitachi Appliances Inc Motor drive device, fluid compression system, and air conditioner
JP2013198235A (en) * 2012-03-19 2013-09-30 Hitachi Appliances Inc Motor drive, air conditioner including the same, and motor drive method
JP2013198234A (en) * 2012-03-19 2013-09-30 Hitachi Appliances Inc Motor drive and air conditioner including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026409A (en) * 2004-07-16 2006-02-02 Lg Electronics Inc Washing machine and method for controlling the same
JP2010144607A (en) * 2008-12-18 2010-07-01 Sanden Corp Drive circuit integral-type electric compressor
JP2013192416A (en) * 2012-03-15 2013-09-26 Hitachi Appliances Inc Motor drive device, fluid compression system, and air conditioner
JP2013198235A (en) * 2012-03-19 2013-09-30 Hitachi Appliances Inc Motor drive, air conditioner including the same, and motor drive method
JP2013198234A (en) * 2012-03-19 2013-09-30 Hitachi Appliances Inc Motor drive and air conditioner including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961095A (en) * 2017-05-12 2017-07-18 广东美的制冷设备有限公司 Current foldback circuit and air-conditioner
CN106961095B (en) * 2017-05-12 2019-02-12 广东美的制冷设备有限公司 Current foldback circuit and air conditioner

Also Published As

Publication number Publication date
JP2015126648A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5267591B2 (en) Method and apparatus for protecting PWM rectifier circuit
JP2006223037A (en) Motor controller and its control method
WO2010073552A1 (en) Apparatus for protecting power supply circuit of three-phase inverter
JP4114697B2 (en) Inverter control method
JP5260090B2 (en) Power converter
JP5428961B2 (en) Overcurrent protection device
JP5946880B2 (en) Motor control device having LCL filter protection function
US8994317B2 (en) Output control apparatus for electric motor and method for controlling output of electric motor
JP5743944B2 (en) Power converter
JP6165877B2 (en) Power converter and method for controlling permanent magnet synchronous motor
US20200112273A1 (en) Motor drive device
JP2009011042A (en) Method for protecting rush current prevention circuits, and inverter device
WO2015098154A1 (en) Power conversion device and power conversion device control method
JP2011062035A (en) Dynamic brake circuit protecting device
JP2010088233A (en) Control circuit of motor
JP2011120471A (en) Motor control method and apparatus of the same
WO2011151906A1 (en) Inverter apparatus
JP2004064864A (en) Controller of elevator
JP5978820B2 (en) Inverter control device
JP5659330B2 (en) Power converter
JP6381889B2 (en) Power conversion device and induction motor control method
JP2010110075A (en) Motor driving inverter device
JP2012100440A (en) Protective device of power supply unit for welding
JP4631575B2 (en) Inverter device
JP5353073B2 (en) Motor drive control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873242

Country of ref document: EP

Kind code of ref document: A1