WO2015096511A1 - 飞机结构件智能数控加工编程***及方法 - Google Patents

飞机结构件智能数控加工编程***及方法 Download PDF

Info

Publication number
WO2015096511A1
WO2015096511A1 PCT/CN2014/086105 CN2014086105W WO2015096511A1 WO 2015096511 A1 WO2015096511 A1 WO 2015096511A1 CN 2014086105 W CN2014086105 W CN 2014086105W WO 2015096511 A1 WO2015096511 A1 WO 2015096511A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
tool
processing
programming
plan
Prior art date
Application number
PCT/CN2014/086105
Other languages
English (en)
French (fr)
Inventor
杜宝瑞
初宏震
陈树林
赵丹
Original Assignee
沈阳飞机工业(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳飞机工业(集团)有限公司 filed Critical 沈阳飞机工业(集团)有限公司
Publication of WO2015096511A1 publication Critical patent/WO2015096511A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM

Definitions

  • the invention relates to an intelligent numerical control machining programming system and method for an aircraft structural component, which is applied to the NC machining program programming of a large-scale integral structural part of an aircraft, improves the automation and intelligent level of the NC programming, and shortens the numerical control programming cycle of the aircraft structural component and improves the cycle. Processing efficiency of structural parts.
  • This technical invention belongs to the field of aircraft digital manufacturing technology.
  • the root causes are as follows: First, the process preparation and programming technology are less intelligent, and rely too much on the long-term accumulated experience of the programmers in a specific production environment.
  • the programming is not standardized and the program quality is unstable;
  • the programming process has a low degree of automation, and a large number of processing operation parameters need to be set by human-computer interaction, the workload is large, and the programming cycle is long.
  • the method is to introduce intelligent technology such as artificial intelligence, neural network and expert system into the existing automatic machining system based on 3D geometric model, which has certain ability of recognition, analysis, judgment and decision making, which can be based on parts and blanks.
  • the geometric model automatically identifies the machining feature model and, based on this, develops a rational machining process, determines and sets work options, and simplifies the process.
  • the goal is to free people from heavy and repetitive work.
  • the system comprehensively considers various factors such as blanks, parts, tools and machine tools, and automatically completes the NC machining program from the blank to the whole process of the product, thus greatly improving the program. The efficiency and quality of the compilation.
  • the academic research hotspots mainly include processing feature recognition, feature optimization sequencing, tool selection, optimization of machining parameters, tool motion path calculation, 5-axis machining tool axis direction control and simulation verification. Many researchers have achieved certain results.
  • R.B.Karadkar et al. studied and developed a feature-based 2.5-axis part process planning and design system in 1996 to realize the automatic planning of 2.5-axis part process, providing a basis for subsequent CAM automation programming. Huikang K.Miao et al.
  • CAM companies use the knowledge-based processing features as the basic elements of the process, aiming at reducing the process time, using the map Ways to describe and optimize the process and implement it on CATIA.
  • CAM companies are also following the introduction of intelligent technology in their respective CNC programming systems, launching partially intelligent CAM systems, such as the FeatureCAM system and the ESPRIT system, both based on features and knowledge, using automatic feature recognition technology.
  • partially intelligent CAM systems such as the FeatureCAM system and the ESPRIT system
  • the use of full-featured software, features and knowledge base technology makes part programming easier and simpler, greatly reducing machining programming time.
  • such systems require more manual interactions, and complex parts are not applicable, and there is still a long distance from the actual application.
  • the present invention provides an intelligent numerical control machining programming system for aircraft structural parts (INCPro), which drives intelligent programming of aircraft structural parts according to a process scheme, and realizes intelligent, standardized and self-optimized programming.
  • IOCPro intelligent numerical control machining programming system for aircraft structural parts
  • the program is highly compliant with the process requirements and reflects the programmer's thinking.
  • an intelligent numerical control machining programming system for aircraft structural parts the system adopts CAD/CAM system as a platform, including process resource and knowledge base management module and automatic programming subsystem, and its characteristics It is: the system further includes a model detection module, a process plan automatic generation module, and a numerical control program intelligent optimization module;
  • the CAD/CAM system platform provides platform support for INCPro.
  • the system first establishes a three-dimensional part model and a blank model of the aircraft structural part on the platform to provide basic input data for the system;
  • the "CNC machining” module of the platform is automatically used to automatically generate the machining operation tree and perform tool path calculation, machining simulation and post processing to realize automatic generation of NC machining files;
  • the process resource and the knowledge base management module provide a basic support data for the system, an interface for supporting data exchange with other modules, and a management function for supporting the database; wherein the support database includes a process knowledge base, a machine tool parameter library, and an artifact Material library, tool parameters and material library, CNC machining cutting parameter library, process plan template library and other resource libraries; secondly, through the establishment of other modules and data interfaces supporting the database, data transmission, calling and management between different modules is completed. Support the connection between the database and the entire INCPro to realize the sharing and management of data resources; in addition, the management of the supporting database includes the query, deletion, insertion, modification, preservation and reasoning of various supporting data to facilitate the viewing and updating of various supporting data;
  • the model detection module is responsible for automatic detection of the part model, and specifically includes: (1) part model design error: the designed part model contains structures that do not exist in the actual product, including residual bodies and narrow slits; (2) Incomplete labeling information: Automatically identify geometric and non-geometric information in the part model according to the MBD model definition criteria; (3) Insufficient structural process: based on existing process resources (including tools, tooling, machine tools, etc.) and processes
  • the method automatically detects the structure of the part model which is not good or even completely unworkable; realizes the automatic review of the correctness and processability of the part model; according to the review result, prompts the type, location and modification method of the problem, and Some common errors are automatically modified to ensure the correctness of the part model.
  • the process scheme automatically generates a module, and provides a macroscopic process plan for automatically generating a process-driven NC program, wherein the process plan is represented by a multi-fork tree, including parts, machine tools, workstations, processes, steps, programs, tools.
  • the process plan automatic generation module establishes the process plan template library, classifies the existing aircraft structural parts and summarizes the general process flow of the structural parts, and establishes a processing plan template for each type of typical structural parts, including machine tools, stations, processes, Then, based on the manufacturing feature selection method of the processing feature, the machine tool, the tool, the tooling resource are selected, and the processing plan template is integrated, and the NC machining process plan of the aircraft structural part is automatically generated;
  • the automatic programming subsystem is a core module for intelligent programming of aircraft structural components, and mainly comprises: (1) automatic feature recognition: according to the three-dimensional geometric model and the blank model of the aircraft structural member, the feature of the component is determined by the hierarchical feature recognition method. Identify, obtain all the processing features of the part, and store the feature recognition result in the form of tree structure; (2) Intelligent reasoning of the process plan: according to the type of part, the number of processing side, the type of blank and the result of feature recognition, combined with process resources and Supporting data in the knowledge base module, intelligent knowledge reasoning automatically recommending the machining plan template of the part from the process template template library; (3) automatic tool selection: selecting the machining tool based on the geometric parameters of the feature and the machining stage, for example based on the cutting volume ratio (4) intelligent construction and sorting of the machining unit: the tool is integrated into the machining plan template to form a complete process plan, and then the process described by the process plan drives the machining unit to be automatically constructed, that is, according to the tool.
  • the numerical control program intelligent optimization module is responsible for selecting resources and scheduling in the intelligent programming process.
  • the machining sequence is optimized, for the following: (1) Tool selection optimization: The roughing tool selection method based on the cutting volume ratio is used. According to the given tool library list, the aircraft structure is calculated from the tool library according to the diameter. The volume of all machining areas that can be cut by the tool is considered to be a suitable roughing tool when there is a volume of the tool to be cut that is more than 80% of the volume to be machined. In addition, the shortest machining time is the optimization target.
  • Optimize the corner machining and sidewall finishing tools select a variety of tooling schemes for the matching corner machining features and sidewall contour machining, and determine the corner characteristics and sidewall profile by calculating the machining time of the tool under different schemes.
  • the tool with machining characteristics realizes the optimization of the corner feature and the side wall finishing tool;
  • the roughing layering optimization for the multi-sag structure in the aircraft structural parts, to achieve the minimum layering roughing time, the premise is guaranteed
  • the bottom web of each cavity feature after machining can be finished with a finishing web cutter
  • the sub-level is intelligently optimized to achieve the minimum of rough machining to improve roughing efficiency;
  • machining unit path optimization optimization at two levels: macro layer and tool layer; According to the process described in the process plan, all CNC machining units are automatically sorted according to the macro process (including machine tools, stations, processes, steps and tools); at the tool level, the machining units associated with each tool are Four-level grouping, firstly divide the machining unit associated with the tool into multiple secondary unit groups according to
  • the group is sorted in order; further, the top-down overall hierarchical ordering of the three-level unit group is performed to form a four-level unit group; finally, the processing path is minimized as the optimization target, and the processing unit in the four-level unit group is adopted.
  • Simulated annealing algorithm for path Optimize the sorting to optimize the processing path within the four-level unit group. In this way, the process unit-driven processing unit can be optimized and sorted, and the geometric and process level sorting can be comprehensively considered, which can significantly improve the sorting efficiency and quality.
  • Step 3) Enter the model detection module, combine the part model processability to perform quality inspection on the part model, and correct the local error structure that cannot meet the actual process requirements, so that the part model meets the processing requirements to ensure the input part model. Correctness
  • Step 4) To enter the automatic programming module, firstly, according to the part type and processing side information set in step 2), the corresponding machining coordinate system is set for each machining side, and then the parts are all in each machining coordinate system.
  • the topological surface is used for face type recognition. Based on this, the hole structure such as countersunk hole, countersunk hole, vertebral hole and cylindrical straight hole are identified, and the transverse hole and the oblique hole are deleted, which facilitates the smooth realization of feature recognition;
  • the generalized groove feature recognition method based on the layered machining idea is used to identify the machining features of the parts, that is, to create the layered layer and the part entity to intersect and obtain the intersection line of each layer and its inner and outer ring relationship.
  • Step 5 After the feature recognition in step 4), manually interact to select whether to load the existing phase Like the part process plan, if you select “Yes”, the process plan of intelligently searching similar parts from the processing plan library, and then manually optimize the selection by interaction; otherwise, the process plan automatically generates modules, according to the process experience knowledge and part type.
  • Knowledge reasoning determine the template of the current part of the process plan, including machine tools, workstations, processes, work steps, etc., and then automatically select the tool based on the machining features to determine the tool parameters and cutting parameters required to process different features during each machining stage, and The processing plan template and the tool selection result are combined to generate a complete process plan; after the process plan is constructed by the above method, a tree structure comprising seven nodes is formed, wherein the seven-level node is specifically: part node, machine node, and processing side Nodes, process nodes, step nodes, program nodes and tool nodes; manually can be interactively modified and checked for validity, and finally confirmed to save; if the part is first processed, its process plan will be automatically added to the processing plan library for the next Sub-similar parts call, guarantee scheme Uniformity and standardization;
  • Step 6) Enter the automatic programming module again, first extract the tool used in each step from the process plan generated in step 5), and based on the geometric tool selection method, establish a matching relationship between the tool and the machining feature to ensure that the machining feature is Different processing stages have suitable tools for processing; then, according to the macro process flow described by the process plan and the tool's machinability, and based on the real-time calculation of the residual area, the toolable area can be solved and the machining operation can be optimized. Calculate the geometric parameters and other information required for the machining operation to automatically construct the machining unit, and complete the construction of the NC machining unit sequence of the aircraft structural member;
  • Step 7) In the process of constructing the NC machining unit in step 6), it is necessary to enter the CNC machining intelligent optimization module to perform optimization operations such as roughing layer optimization and processing path optimization to realize the optimization of the NC program;
  • the machining program generated by the tool path is set to the corresponding machining operation by setting the strategy parameters, machining parameters, geometric parameters, tool parameters and machining macro parameters of each machining unit, respectively, to complete the automatic generation of the machining operation, and then The tool path calculation and machining simulation are performed for all machining operations, that is, the intelligent programming of the aircraft structural parts NC program is completed; finally, the NC machining tool path is converted into the NC code of the corresponding numerical control system through the front and rear processing program.
  • the invention has the beneficial effects that compared with the current interactive numerical control programming and rapid programming, the invention focuses on the development of a model detection module, a process plan automatic generation module and a numerical control program intelligent optimization module, which first ensures the input into the programming system.
  • the correctness of the part model and the good processability can effectively reduce the problems of computational instability and inaccurate results caused by problems in the automatic programming process.
  • the multi-fork tree structure is unified and abstracted.
  • the process plan, the process plan of different aircraft structural parts is made into a template, which can realize the templating and standardization of the process, and the process plan of automatically generating the parts can be automatically generated after being integrated with various manufacturing resources based on feature selection.
  • the process plan is reasonable, highly consistent with the actual process, and the process plan automatically generates high efficiency; further, the development of the intelligent optimization module optimizes several key stages in the NC programming process, and the tool optimization can be selected. , processing path optimization, etc., can be significantly Quality CNC machining process, greatly improve the processing efficiency of mass production of aircraft structural parts.
  • FIG. 1 is a schematic view of an intelligent numerical control machining programming system for an aircraft structural member according to the present invention.
  • FIG. 2 is a general functional framework of an intelligent numerical control machining programming system for an aircraft structural member of the present invention.
  • FIG. 3 is a flow chart showing the implementation of an intelligent numerical control machining programming system for an aircraft structural member according to the present invention.
  • Figure 1 is a schematic diagram of the intelligent numerical control machining programming system (INCPro) of the aircraft structural parts.
  • the intelligent programming of the aircraft structural parts is driven by the technological scheme, and the intelligent, standardized and self-optimized programming is realized.
  • the programmed program is highly conformed to the process requirements. And can reflect the programmer's thinking.
  • the main idea is: according to the idea of layered roughing method, the layered feature recognition method is used to identify and construct the machining features of the parts, and the process plan template of the parts is selected based on the type and characteristics of the machining features contained in the parts.
  • Aircraft structural parts have their own process plan templates); then, based on the geometric parameters of the machining features, the tools are selected for each process/work step processing feature in the process plan template, and the tool is integrated with the process plan template to construct a macroscopic process.
  • the scheme includes work station, process, work step and various processing resources; then the process plan is used to drive the automatic construction of the NC machining unit, and based on the real-time calculation of the residual model, the NC machining unit is automatically built according to the tool's machinability, and then the process is
  • the macro process described in the scheme drives the processing unit to intelligently optimize the sorting to meet the process and shortest path requirements, and combines the serialized processing unit with the process plan to generate a sequence of NC machining units.
  • NC machining unit sequence is mapped to the present There is CAD/CAM CNC machining module, one plus The unit is instantiated into a machining operation, and the machining tool calculation can be completed by all machining operations, and converted into NC code by post processing, and finally the automatic generation of the part NC program is completed; the system is shown in Fig. 2 as CAD/
  • the CAM system is a platform, including five major modules: process resource and knowledge base management 1, model detection 2, automatic generation of process plan 3, automatic programming subsystem 4, and intelligent optimization of numerical control program.
  • the CAD/CAM system platform provides platform support for INCPro.
  • the system first establishes a three-dimensional part model and a blank model of the aircraft structural part on the platform, and provides basic input data for the system; in addition, according to the automatic programming module Processing unit, applying the "CNC machining" module of the platform Automatically generate machining operation tree and perform tool path calculation, machining simulation and post-processing to realize automatic generation of CNC machining files;
  • the process resource and knowledge base management module 1 provides a basic support data for the system, an interface for supporting data exchange with other modules, and a management function for supporting the database; wherein the support database includes a process knowledge base, a machine tool parameter library, Workpiece material library, tool parameters and material library, CNC machining cutting parameter library, process plan template library and other resource libraries; secondly, data transfer, call and management between different modules are realized by establishing data interfaces between other modules and supporting databases. Complete the connection between the supporting database and the entire INCPro to realize the sharing and management of data resources.
  • the management of the supporting database includes the query, deletion, insertion, modification, saving and reasoning of various supporting data to facilitate the viewing and updating of various supporting data. ;
  • the model detection module 2 is mainly responsible for automatic detection of the part model, and specifically includes: (1) part model design error: the designed part model contains structures that do not exist in the actual product, including residual bodies and narrow slits; The annotation information is incomplete: according to the MBD model definition standard, it is automatically recognized whether the geometric and non-geometric information in the part model is complete; (3) the structural process is insufficient: according to the existing process resources (including tools, tooling, machine tools, etc.) The process method automatically detects the structure of the part model that is not good or even completely unworkable; realizes the automatic review of the correctness and processability of the part model; according to the review result, prompts the type, location and modification method of the problem, and Automatically modify some common errors to ensure the correctness of the part model;
  • the process scheme automatically generates the module 3, and provides a macroscopic process plan for realizing automatic generation of the process-driven NC program, wherein the process plan is represented by a multi-fork tree, including parts, machine tools, workstations, processes, steps, programs,
  • the tool and feature eight-level node can describe the macroscopic machining process;
  • the module contains the following functions: (1) Establish a process plan template library: divide the existing aircraft components Class and summarize the general process flow of these structural parts, and establish a processing plan template for each type of typical structural parts, including machine tools, workstations, processes, and steps; (2) automatic generation of process plans: selection of manufacturing resources based on features The method selects the resources of machine tools, tools, tooling, etc., and integrates with the processing plan template to automatically generate the NC machining process plan of the aircraft structural parts;
  • the automatic programming subsystem 4 is a core module for intelligent programming of aircraft structural components, and mainly comprises: (1) automatic feature recognition: according to the three-dimensional geometric model and the blank model of the aircraft structural member, the layered feature recognition method is used for the part Feature recognition, obtain all processing features of the part, and store the feature recognition result in the form of tree structure; (2) Intelligent reasoning of process scheme: combined with process resources according to the type of part, the number of processing side, the type of blank and the result of feature recognition And the supporting data in the knowledge base module, intelligent knowledge reasoning automatically proposes the machining plan template of the part from the process template template library; (3) automatic tool selection: selecting the machining tool based on the geometric parameters of the feature and the machining stage, for example based on the cutting volume The selection of the roughing tool is selected; (4) The intelligent structure and sorting of the machining unit: the tool is integrated into the machining plan template to form a complete process plan, and then the process described by the process plan drives the machining unit to be automatically constructed, that is, according to the tool Processing capacity, based
  • the numerical control program intelligent optimization module 5 is mainly responsible for optimizing the resources selected in the intelligent programming process, the arranged processing sequence, etc., specifically: (1) tool selection optimization: using cutting volume based Compared with the roughing tool selection method, according to the given tool library list, the volume of all machining areas that can be cut by each tool is calculated from the tool library in turn according to the diameter. When there is a tool that can cut more than 80% of the volume For the machining area volume, the tool is considered to be a suitable roughing tool; in addition, the shortest machining time is the optimization target, and the corner machining and the side wall finishing tool are optimized, and the qualified corner machining features and the sidewall inner shape are satisfied.
  • the machining selects a variety of tooling schemes for machining.
  • the tool for determining the corner feature and the profile machining feature in the side wall is realized, and the corner feature and the side wall finishing tool are optimized.
  • Rough machining Layer optimization For the multi-sag structure in aircraft structural parts, to achieve the minimum of layering roughing time, it is ensured that the bottom web of each cavity feature after roughing can be finished with a finishing web cutter.
  • the genetic algorithm is used to intelligently optimize the sub-levels to achieve the minimum level of rough processing to improve Processing efficiency; (3) Optimization of processing unit path: optimization at two levels: macro layer and tool layer; in the macro layer, according to the process described in the process plan, all CNC machining units are in accordance with the macro process (including machine tools, Automatic sorting of stations, processes, steps and tools); in the tool layer, the machining units associated with each tool are grouped in four stages. First, the machining unit associated with the tool is divided into multiple secondary units according to the type of work step.
  • the processing unit group is processed before the target processing unit group; secondly, the processing unit group is subdivided according to the type of the step of the processing unit to form a three-level unit group, and according to the process flow Sorting the three-level unit groups sequentially; and then, sorting the three-level unit groups from top to bottom, forming a fourth Unit group; finally, to the shortest machining path optimization target, the four units of the group of processing units path simulated annealing algorithm optimized sequence, to optimize the machining path of the four cell groups. In this way, the process can be realized.
  • the optimized processing of the processing unit is driven by a combination of geometric and process-level sequencing, which can significantly improve sorting efficiency and quality.
  • Step 1) Enter the “CNC Machining” module (S1) of the CAD/CAM platform and enter the INCPro system (S2) to load the 3D model and the blank model of the aircraft structural part;
  • S3 Type of parts
  • S4 Number of processing sides
  • S5 blank type
  • Step 3) Enter the model detection module 2, combine the part model processability to perform quality inspection on the part model (S6), and correct the local error structure that cannot meet the actual process requirements (S7), so that the part model satisfies the processing technology. Requirements to ensure the correctness of the input part model;
  • Step 4) Entering the automatic programming module 4, firstly, according to the part type and processing side information set in step 2), the corresponding machining coordinate system (S8) is set for each machining side, and then in each machining coordinate system. Face type identification (S9) is applied to all the topological faces of the part. Based on this, the hole structure such as countersunk hole, countersunk hole, vertebral hole and cylindrical straight hole are identified, and the transverse hole and the oblique hole are deleted, so that the feature recognition is smooth.
  • the generalized groove feature recognition method based on the layered machining idea is used to identify the machining feature of the part (S10), that is, the layered layer is created to intersect with the part entity and the intersection line of each layer is obtained.
  • the relationship between the ring and its inner and outer rings, the relationship between each layer is determined by the relationship, and then the topological surface of the part dependent on the edge line in the intersection ring is extracted, and then all the faces dependent on the edge line in the intersection ring are combined to form a generalized groove feature. And constructing a generalized slot feature structure tree of the aircraft structural member according to the relationship between the longitudinal faces (S11);
  • Step 5) After the feature recognition in step 4), the manual interaction selects whether to load the existing similar part process plan (S12), and if yes, the process plan of intelligently searching for similar parts from the processing plan library is selected. Then, the selection is optimized by manual interaction; otherwise, the process plan automatic generation module 3 is entered, and knowledge reasoning is performed according to the process experience knowledge and the part type (S13), and the current part process plan template (S14) is determined, including the machine tool, the work station, Process, step, etc., and then automatically select the tool based on the machining feature (S15), determine the tool parameters and cutting parameters required to process different features in each machining stage (S16), and combine the machining plan template and the tool selection result.
  • the process plan automatic generation module 3 is entered, and knowledge reasoning is performed according to the process experience knowledge and the part type (S13), and the current part process plan template (S14) is determined, including the machine tool, the work station, Process, step, etc., and then automatically select the tool based on the machining feature (S15), determine
  • Step 6) Entering the automatic programming module 4 again, first extracting the tool used in each step from the process plan generated in step 5), and based on the geometric tool selection method, establishing a matching relationship between the tool and the machining feature (S22), Ensure that the machining features have the right tool for machining in different machining stages; then, according to the macro process flow described by the process plan and the tool's machinability, and solve the tool's machinable area based on the real-time calculation of the residual area (S23) ), optimizing the selection of the machining operation and calculating the geometric parameters required for the machining operation to automatically construct the machining unit (S24), completing the construction of the NC machining unit of the aircraft structural member (S25);
  • Step 7) In the process of constructing the NC machining unit in step 6), it is necessary to enter the NC machining intelligent optimization module 5 to perform optimization operations such as roughing layer optimization (S26) and processing path optimization (S27) to realize optimization of the NC program. Finally improve the efficiency of CNC machining;
  • Step 8) Finally, in the CAM system, a machining operation tree corresponding to the sequence of the NC machining unit of the aircraft structural member is automatically generated (S29), wherein the machining operation uses a tool, a set of machining parameters and a parameterized tool path.
  • the generated machining program sets the strategy parameter, the machining parameter, the geometric parameter, the tool parameter and the machining macro parameter of each machining unit in the sequence of the NC machining unit to the corresponding machining operations respectively, thereby completing the automatic generation of the machining operation, and then Then, the tool path calculation (S30) and the machining simulation (S31) are performed for all machining operations, that is, the intelligent programming of the aircraft structural parts NC program is completed; finally, the NC machining tool path is converted into the corresponding numerical control system by the front and rear processing program (S32). NC code (S33).

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

飞机结构件智能数控加工编程***及方法,该***以现有CAD/CAM***为平台,包括模型检测(2)、工艺方案自动生成(3)、工艺资源与知识库管理(1)、自动编程子***(4)、数控程序智能优化(5)等五大模块。该***建立在三维模型基础上,较***和准确地体现并支持飞机结构件数控加工编程的专业化流程,可大量减少工艺准备及编程过程中所需的人机交互操作,有效解决基于通用平台和人工经验的交互式编程导致的程序不稳定、编程周期长等问题,能显著提高数控加工准备和编程的效率与质量,提升CAD/CAM***的专业化和智能化水平。

Description

飞机结构件智能数控加工编程***及方法 技术领域
本发明涉及一种飞机结构件智能数控加工编程***及方法,应用于飞机大型整体结构件的数控加工程序编制,提高数控程序编制的自动化和智能化水平,以缩短飞机结构件数控编程周期并提高结构件的加工效率。该技术发明属于飞机数字化制造技术领域。
背景技术
数控编程技术的发展已有五十多年的历史,它是随世界第一台三坐标数控铣床问世而诞生并迅速发展起来,经历了由手工编程发展至数控语言自动编程再上升为基于三维几何模型的数控自动编程的过程。纵观其发展,推动这一变迁的是生动的生产实践对数控加工编程技术的要求。目前,经过国内外专家学者广泛和深入研究,数控加工编程技术已得到了显著的发展,取得了***成果,为进一步提高编程的自动化水平,目前,数控编程技术已经逐步进入智能数控编程的发展阶段,将形成智能数控编程。
计算机、编程以及高速切削加工等相关技术的快速发展和广泛应用推动了飞机结构件制造技术的发展,在现代飞机结构中越来越多地采用经由数控加工而成的整体零件来代替装配式组合件,减轻了飞机自重,缩短了飞机结构件的加工和装配时间,并且有效提高了飞机结构的整体性能。但是,整体结构件具有结构复杂、制造精度要求高且加工难度大等特点,当前在通用CAM平台中基于三维几何模型的工艺准备及交互数控编程方式已成为影响飞机结构件制造周 期及质量的瓶颈因素之一。究其根源,主要有以下两个方面:一是工艺准备及编程技术智能化程度低,过分依赖于程编人员在特定生产环境下长期积累的经验知识,编程不规范并且程序质量不稳定;二是编程过程自动化程度低,需要通过人机交互方式设置大量的加工操作参数,重复工作量大,编程周期长。
这种单纯依靠程编人员的经验采用交互方式指定加工区域和设置加工参数已远远满足不了生产实践对数控加工程序编制快速、便捷的需求。因此旨在提高自动化和智能化程度的智能数控编程技术引起学术界和工业界的广泛关注和高度重视。方法是将人工智能、神经网络和专家***等智能技术引入到现有的基于三维几何模型的数控加工自动编程***中,使其具有一定的识别、分析、判断和决策能力,能够根据零件和毛坯的几何模型自动识别加工特征模型,并据此制定合理的加工工艺流程,确定和设置工作选项,最大程度简化操作过程。目标是使人从繁重的重复性工作中解放出来,由***综合考虑毛坯、零件、刀具和机床等各种因素,自动完成从毛坯到产品整个加工过程的数控加工程序编制,从而极大地提高程序编制的效率和质量。
然而,自动化与智能化数控加工编程尚处于研究和探索阶段,需要解决的问题还很多,有待于进一步的深入研究。学术界研究热点主要包括加工特征识别、特征优化排序、刀具选取、加工参数优化选取、刀具运动轨迹计算、5轴加工刀轴方向控制以及仿真验证等方面。众多研究人员已经取得了一定的成果,R.B.Karadkar等在1996年研究并开发了包含基于特征的2.5轴零件工艺规划设计***,实现2.5轴零件工艺的自动规划,为后续的CAM自动化编程提供基础。Huikang K.Miao等在IDEAS平台进行二次开发实现了基于加工特征的工艺规划,有效地实现了CAD/CAPP/CAM的集成,但是该***也只适用于2.5轴零件。 为提高编程***的自动化程度,Millan k.Yeung将人工智能引入到编程***中,通过加工特征的自动识别及刀具的优化选取,开发了智能工艺规划***,并且***的柔性化、简单化便于新知识、新工艺的扩展。另外,为解决由于现代机械产品复杂程度的逐步增加而导致工艺编程过程繁琐、复杂等问题,Ulrich Berger等将基于知识的加工特征作为工艺过程的基本元素,以减少工艺时间为目标,采用图的方式描述及优化工艺过程,并在CATIA上进行实现。各CAM公司也紧随其后陆续在各自的数控编程***中引入智能技术,推出具有部分智能的CAM***,如FeatureCAM***和ESPRIT***,这两个***均基于特征及知识、使用自动特征识别技术的全功能软件,特征和知识库技术的使用,使得零件加工编程更方便、更简单,极大地缩短了加工编程时间。但目前该类***还需要较多的人工交互操作,并且不适用复杂零件,离实际应用尚有一段距离。
发明内容
为了解决上述存在的技术问题,本发明提供一种飞机结构件智能数控加工编程***(简称INCPro),根据工艺方案驱动飞机结构件的智能编程,实现了编程的智能化、规范化和自优化,编制的程序高度符合工艺要求,并能体现编程员的思想。
本发明的目的是通过下述技术方案实现的:一种飞机结构件智能数控加工编程***,该***以CAD/CAM***为平台,包括工艺资源与知识库管理模块及自动编程子***,其特征在于:***还包括模型检测模块、工艺方案自动生成模块、及数控程序智能优化模块;
所述的CAD/CAM***平台,为INCPro提供平台支撑,***首先在该平台上建立飞机结构件的三维零件模型及毛坯模型,为***提供基础输入数据;此外, 根据自动编程模块所构建的加工单元,应用该平台的“数控加工”模块自动生成加工操作树并进行刀轨计算、加工仿真及后置处理,实现数控加工文件的自动生成;
所述的工艺资源与知识库管理模块,为***提供基础支撑数据、支撑数据与其他模块进行数据交换的接口,以及支撑数据库的管理功能;其中,支撑数据库包括工艺知识库、机床参数库、工件材料库、刀具参数及材料库、数控加工切削参数库、工艺方案模板库及其他资源库;其次,通过建立其他模块与支撑数据库的数据接口,实现不同模块间的数据传输、调用与管理,完成支撑数据库与整个INCPro的连接,实现数据资源的共享与管理;此外,支撑数据库的管理包括各种支撑数据的查询、删除、***、修改、保存以及推理,方便各种支撑数据的查看与更新;
所述的模型检测模块,负责对零件模型进行自动化检测,具体包括:(1)零件模型设计错误:设计的零件模型中包含了实际产品不存在的结构,包括残留体、窄缝;(2)标注信息不完整:根据MBD模型定义标准,自动识别零件模型中的几何和非几何信息是否完整;(3)结构工艺性不足:根据已有的工艺资源(包括刀具、工装、机床等)及工艺方法,自动检测零件模型中存在的工艺性不好甚至完全不可加工的结构;实现对零件模型正确性、工艺性的自动审查;根据审查结果,提示问题的类型、位置及修改的方法,并且针对一些常见错误进行自动修改,以该方法保证零件模型的正确性;
所述的工艺方案自动生成模块,为实现工艺过程驱动的数控程序自动生成提供宏观的工艺方案,其中工艺方案采用多叉树表示,包括零件、机床、工位、工序、工步、程序、刀具、特征八级节点,可以描述宏观的加工工艺过程;通 过工艺方案自动生成模块建立工艺方案模板库,对现有的飞机结构件进行分类并总结结构件的一般工艺流程,针对每类典型结构件建立了加工方案模板,包括机床、工位、工序、工步;然后,基于加工特征的制造资源选取方法选取机床、刀具、工装资源,并与加工方案模板相融合,自动生成飞机结构件的数控加工工艺方案;
所述的自动编程子***,是飞机结构件智能编程的核心模块,主要包含:(1)自动特征识别:根据飞机结构件的三维几何模型和毛坯模型,采用分层特征识别方法进行零件的特征识别,获取零件所有的加工特征,并以树状结构形式存储特征识别结果;(2)工艺方案智能推理:根据零件类型、加工侧个数、毛坯类型及特征识别结果等条件,结合工艺资源与知识库模块中的支撑数据,进行智能知识推理从工艺方案模板库中自动推荐零件的加工方案模板;(3)刀具自动选取:基于特征的几何参数及加工阶段选取加工刀具,例如基于切削体积比的粗加工刀具选取;(4)加工单元智能构造与排序:将刀具融合到加工方案模板中形成完整的工艺方案,再由工艺方案描述的工艺过程驱动加工单元自动构造,即根据刀具的可加工能力,基于加工过程中的残留区域提取出每把刀具可加工的区域、智能推理选取最优加工操作并且计算出加工操作所需的几何参数,形成每把刀具的加工单元序列,由工艺方案与加工单元相融合构成完整的数控加工单元序列;(5)加工操作自动生成:将数控加工单元序列自动映射到CAD/CAM***的“数控加工”模块中的加工操作树,并自动设置每个加工操作的几何参数、策略参数、刀具参数、速度参数以及进退刀连接,并进行刀轨计算和加工仿真;
所述的数控程序智能优化模块负责对智能编程过程中选取的资源、安排的 加工顺序等进行优化,具体为:(1)刀具选取优化:采用基于切削体积比的粗加工刀具选取方法,根据给定的刀具库列表,从刀具库中依次按照直径大小计算飞机结构件中每把刀具可切削的所有加工区域体积,当存在一把刀具可切削的体积大于80%的待加工区域体积,则认为该把刀具为合适的粗加工刀具;另外,以最短加工时间为优化目标,对转角加工和侧壁精加工刀具进行优化,对符合条件的转角加工特征和侧壁内外形加工选取多种刀具方案进行加工,通过计算不同方案下刀具的加工时间确定转角特征和侧壁内外形加工特征的刀具,实现转角特征和侧壁精加工刀具的优化选取;(2)粗加工分层优化:针对飞机结构件中多下陷结构,以实现分层粗加工时间最少为前提,保证在粗加工后每个槽腔特征的底部腹板可采用精加工腹板刀具一刀完成精加工的前提下,采用遗传算法对分层面进行智能优化,实现粗加工分层面的最少,以提高粗加工效率;(3)加工单元路径优化:分宏观层和刀具层两个层面进行优化;在宏观层,根据工艺方案描述的工艺过程,将所有的数控加工单元按照宏观的工艺过程(包括机床、工位、工序、工步及刀具)进行自动排序;在刀具层,对每把刀具关联的加工单元进行四级分组,首先将刀具关联的加工单元按照工步类型的不同分成多个二级单元组(包括两种类型:补加工单元组和目标加工单元组,其中补加工单元组在当前工步下对之前工步的补加工单元集,而目标加工单元则是当前工步指定要加工的单元集),并将补加工单元组先于目标加工单元组进行加工;其次,将补加工单元组根据加工单元所在工步的类型对其进行再次分组,形成三级单元组,并按照工艺流程顺序对这些三级单元组进行依次排序;再有,对三级单元组进行自上而下的整体分层排序,形成四级单元组;最后,以加工路径最短为优化目标,对四级单元组内的加工单元采用模拟退火算法进行路径 优化排序,实现四级单元组内加工路径的优化。采用这种方式可以实现工艺方案驱动的加工单元优化排序,综合考虑了几何级和工艺级的排序,可以显著提高排序效率和质量。
一种前述飞机结构件智能数控加工编程***的实现方法,具体步骤如下:
步骤1):进入CAD/CAM平台的“数控加工”模块,并进入“飞机结构件智能数控加工编程***”,载入飞机结构件三维模型和毛坯模型;
步骤2):进行零件基本信息的设定,具体有:(1)零件的类型:壁板、框、梁、肋、接头等;(2)加工侧个数:包括单面、双面以及多面;(3)毛坯类型:包括板材、型材、锻件以及铸件;
步骤3):进入模型检测模块,结合零件模型工艺性对零件模型进行质量检测,并对不能满足实际工艺要求的局部错误结构进行相应的修正,使零件模型满足加工工艺要求,以保证输入零件模型的正确性;
步骤4):进入自动编程模块,首先需要根据步骤2)中设定的零件类型与加工侧信息为每个加工侧设定对应的加工坐标系,然后在每个加工坐标系下对零件所有的拓扑面进行面类型识别,以此为基础识别埋头孔、沉头孔、椎孔、圆柱直孔等孔结构,并删除横向孔和斜向孔,便于特征识别的顺利实现;在每个加工坐标系下,采用基于分层加工思想的广义槽特征识别方法对零件进行加工特征识别,即创建分层层面与零件实体求交并获取出每层的交线环及其内外环关系,由该关系确定每层的加工区域,然后提取出交线环中边线依赖的零件拓扑面,再将交线环中所有边线依赖的面进行组合,进而组成广义槽特征,再根据纵向面之间的关联关系构建出飞机结构件广义槽特征结构树;
步骤5):经过步骤4)中的特征识别后,人工交互选择是否载入现有的相 似零件工艺方案,如果选择“是”则从加工方案库中智能搜索相似零件的工艺方案,再由人工通过交互的方式优化选取;否则进入工艺方案自动生成模块,根据工艺经验知识和零件类型进行知识推理,确定当前零件的工艺方案模板,包括机床、工位、工序、工步等,再基于加工特征自动选取刀具,确定各加工阶段过程中加工不同特征所需要的刀具参数和切削参数,并将加工方案模板和刀具选取结果进行合并,生成完整的工艺方案;通过上述方式构建工艺方案后,形成包含七级节点的树状结构,其中七级节点具体为:零件节点、机床节点、加工侧节点、工序节点、工步节点、程序节点及刀具节点;人工可交互修改并且进行有效性检查,最后确认保存;如果零件为首次加工,其工艺方案将自动添加到加工方案库中,以供下次相似零件的调用,保证方案的统一性和规范性;
步骤6):再次进入自动编程模块,首先从步骤5)生成的工艺方案中提取出各工步使用的刀具,并基于几何的刀具选取方法,将刀具与加工特征建立匹配关系,保证加工特征在不同的加工阶段有合适的刀具进行加工;然后,根据工艺方案描述的宏观工艺流程以及刀具的可加工能力,并在残留区域实时计算的基础上求解出刀具的可加工区域、优化选取加工操作并计算加工操作所需的几何参数等信息以自动构建加工单元,完成飞机结构件数控加工单元序列的构建;
步骤7):在步骤6)数控加工单元构建过程中,需要进入数控加工智能优化模块,进行粗加工分层优化、加工路径优化等优化工作,实现数控程序的优化;
步骤8):最后,在CAM***中,自动生成与飞机结构件数控加工单元序列对应的加工操作树,其中加工操作是使用一把刀具、一组加工参数及一条参数 化刀轨所生成的加工程序,将每个加工单元的策略参数、加工参数、几何参数、刀具参数以及加工宏参数分别设置到对应的加工操作中,即可完成加工操作的自动生成,然后再对所有加工操作进行刀轨计算和加工仿真,即完成飞机结构件数控程序的智能编制;最后,通过前后置处理程序将数控加工刀轨转换为相应数控***的NC代码。
本发明的有益效果:相对于目前的交互式数控编程及快速编程而言,本发明着重发展了模型检测模块、工艺方案自动生成模块及数控程序智能优化模块,首先进一步保证了输入到编程***中的零件模型正确性以及良好的工艺性,可以有效减少自动编程过程中产生的由于模型质量存在问题导致的计算不稳定、结果不准确等问题;其次,采用多叉树结构统一化、抽象化表示工艺方案,将不同飞机结构件的工艺方案做成模板,可以实现工艺的模板化、规范化,另外与基于特征选取的各类制造资源融合后,即可自动生成零件的工艺方案,这种方式生成的工艺方案合理性强,与实际工艺过程高度吻合,并且工艺方案自动生成的效率高;再有,智能优化模块的开发,对数控编程过程中的多个关键阶段进行优化,可实现刀具优化选取、加工路径优化等,可显著提高数控加工程序的质量,大幅提高批量生产飞机结构件的加工效率。
附图说明
图1为本发明飞机结构件智能数控加工编程***的模式图。
图2为本发明飞机结构件智能数控加工编程***的总体功能框架。
图3为本发明飞机结构件智能数控加工编程***的实现流程图。
具体实施方式
下面结合附图对本发明的实施例进行详细的说明,本实施例是在以本发明 技术方案为前提下进行实施,给出了详细的实施方式和具体的实现过程,但是本发明的保护范围不限于下述实施实例。
图1为飞机结构件智能数控加工编程***(简称INCPro)的模式图,由工艺方案驱动飞机结构件的智能编程,实现了编程的智能化、规范化和自优化,编制的程序高度符合工艺要求,并能体现编程员的思想。其主要思想为:根据分层粗加工方法思想,采用分层特征识别方法识别并构造零件的加工特征,并基于零件包含的加工特征类型及特点智能推理选取零件的工艺方案模板(每个类型的飞机结构件均有各自的工艺方案模板);然后,基于加工特征的几何参数对工艺方案模板中各工序/工步加工的特征选取刀具,并将刀具与工艺方案模板相融合,构造宏观的工艺方案,包括工位、工序、工步及各类加工资源;再采用工艺方案驱动数控加工单元自动构造,在残留模型实时计算的基础上根据刀具的可加工能力自动构建数控加工单元,然后以工艺方案描述的宏观工艺过程驱动加工单元进行智能优化排序以符合工艺及最短路径要求,并将序列化后的加工单元与工艺方案相融合生成数控加工单元序列;最后,将数控加工单元序列映射到现有CAD/CAM数控加工模块,一个加工单元实例化成一个加工操作,由所有的加工操作即可完成加工刀轨计算,并通过后置处理转换为NC代码,最终完成零件数控程序的自动生成;此***如图2所示以CAD/CAM***为平台,包括工艺资源与知识库管理①、模型检测②、工艺方案自动生成③、自动编程子***④、数控程序智能优化⑤等五大模块。
其中,所述的CAD/CAM***平台,为INCPro提供平台支撑,***首先在该平台上建立飞机结构件的三维零件模型及毛坯模型,为***提供基础输入数据;此外,根据自动编程模块所构建的加工单元,应用该平台的“数控加工”模块 自动生成加工操作树并进行刀轨计算、加工仿真及后置处理,实现数控加工文件的自动生成;
所述的工艺资源与知识库管理模块①,为***提供基础支撑数据、支撑数据与其他模块进行数据交换的接口,以及支撑数据库的管理功能;其中,支撑数据库包括工艺知识库、机床参数库、工件材料库、刀具参数及材料库、数控加工切削参数库、工艺方案模板库及其他资源库;其次,通过建立其他模块与支撑数据库的数据接口,实现不同模块间的数据传输、调用与管理,完成支撑数据库与整个INCPro的连接,实现数据资源的共享与管理;此外,支撑数据库的管理包括各种支撑数据的查询、删除、***、修改、保存以及推理,方便各种支撑数据的查看与更新;
所述的模型检测模块②主要负责对零件模型进行自动化检测,具体包括:(1)零件模型设计错误:设计的零件模型中包含了实际产品不存在的结构,包括残留体、窄缝;(2)标注信息不完整:根据MBD模型定义标准,自动识别零件模型中的几何和非几何信息是否完整;(3)结构工艺性不足:根据已有的工艺资源(包括刀具、工装、机床等)及工艺方法,自动检测零件模型中存在的工艺性不好甚至完全不可加工的结构;实现对零件模型正确性、工艺性的自动审查;根据审查结果,提示问题的类型、位置及修改的方法,并且针对一些常见错误进行自动修改,以该方法保证零件模型的正确性;
所述的工艺方案自动生成模块③,为实现工艺过程驱动的数控程序自动生成提供宏观的工艺方案,其中工艺方案采用多叉树表示,包括零件、机床、工位、工序、工步、程序、刀具、特征八级节点,可以描述宏观的加工工艺过程;该模块包含以下功能:(1)建立了工艺方案模板库:对现有的飞机构件进行分 类并总结出这些结构件的一般工艺流程,并针对每类典型结构件建立了加工方案模板,包括机床、工位、工序、工步;(2)工艺方案自动生成:基于特征的制造资源选取方法选取机床、刀具、工装等资源,并与加工方案模板相融合,自动生成飞机结构件的数控加工工艺方案;
所述的自动编程子***④,是飞机结构件智能编程的核心模块,主要包含:(1)自动特征识别:根据飞机结构件的三维几何模型和毛坯模型,采用分层特征识别方法进行零件的特征识别,获取零件所有的加工特征,并以树状结构形式存储特征识别结果;(2)工艺方案智能推理:根据零件类型、加工侧个数、毛坯类型及特征识别结果等条件,结合工艺资源与知识库模块中的支撑数据,进行智能知识推理从工艺方案模板库中自动推荐零件的加工方案模板;(3)刀具自动选取:基于特征的几何参数及加工阶段选取加工刀具,例如基于切削体积比的粗加工刀具选取;(4)加工单元智能构造与排序:将刀具融合到加工方案模板中形成完整的工艺方案,再由工艺方案描述的工艺过程驱动加工单元自动构造,即根据刀具的可加工能力,基于加工过程中的残留区域提取出每把刀具可加工的区域、智能推理选取最优加工操作并且计算出加工操作所需的几何参数,形成每把刀具的加工单元序列,由工艺方案与加工单元相融合构成完整的数控加工单元序列;(5)加工操作自动生成:将数控加工单元序列自动映射到CAD/CAM***的“数控加工”模块中的加工操作树,并自动设置每个加工操作的几何参数、策略参数、刀具参数、速度参数以及进退刀连接,并进行刀轨计算和加工仿真;
所述的数控程序智能优化模块⑤主要负责对智能编程过程中选取的资源、安排的加工顺序等进行优化,具体为:(1)刀具选取优化:采用基于切削体积 比的粗加工刀具选取方法,根据给定的刀具库列表,从刀具库中依次按照直径大小计算每把刀具可切削的所有加工区域体积,当存在一把刀具可切削的体积大于80%的待加工区域体积,则认为该把刀具为合适的粗加工刀具;另外,以最短加工时间为优化目标,对转角加工和侧壁精加工刀具进行优化,对符合条件的转角加工特征和侧壁内外形加工选取多种刀具方案进行加工,通过计算不同方案下刀具的加工时间确定转角特征和侧壁内外形加工特征的刀具,实现转角特征和侧壁精加工刀具的优化选取;(2)粗加工分层优化:针对飞机结构件中的多下陷结构,以实现分层粗加工时间最少为前提,保证在粗加工后每个槽腔特征的底部腹板可采用精加工腹板刀具一刀完成精加工的前提下,采用遗传算法对分层面进行智能优化,实现粗加工分层面的最少,以提高粗加工效率;(3)加工单元路径优化:分宏观层和刀具层两个层面进行优化;在宏观层,根据工艺方案描述的工艺过程,将所有的数控加工单元按照宏观的工艺过程(包括机床、工位、工序、工步及刀具)进行自动排序;在刀具层,对每把刀具关联的加工单元进行四级分组,首先将刀具关联的加工单元按照工步类型的不同分成多个二级单元组(包括两种类型:补加工单元组和目标加工单元组,其中补加工单元组在当前工步下对之前工步的补加工单元集,而目标加工单元则是当前工步指定要加工的单元集),并将补加工单元组先于目标加工单元组进行加工;其次,将补加工单元组根据加工单元所在工步的类型对其进行再次分组,形成三级单元组,并按照工艺流程顺序对这些三级单元组进行依次排序;再有,对三级单元组进行自上而下的整体分层排序,形成四级单元组;最后,以加工路径最短为优化目标,对四级单元组内的加工单元采用模拟退火算法进行路径优化排序,实现四级单元组内加工路径的优化。采用这种方式可以实现工艺方 案驱动的加工单元优化排序,综合考虑了几何级和工艺级的排序,可以显著提高排序效率和质量。
图3是为本发明飞机结构件智能数控加工编程***实现的总流程,实现的具体步骤如下:
步骤1):进入CAD/CAM平台的“数控加工”模块(S1),并进入INCPro***(S2),载入飞机结构件三维模型和毛坯模型;
步骤2):进行零件基本信息的设定,具体有:(1)零件的类型(S3):壁板、框、梁、肋、接头等;(2)加工侧个数(S4):包括单面、双面以及多面;(3)毛坯类型(S5):包括板材、型材、锻件以及铸件;
步骤3):进入模型检测模块②,结合零件模型工艺性对零件模型进行质量检测(S6),并对不能满足实际工艺要求的局部错误结构进行相应的修正(S7),使零件模型满足加工工艺要求,以保证输入零件模型的正确性;
步骤4):进入自动编程模块④,首先需要根据步骤2)中设定的零件类型与加工侧信息为每个加工侧设定对应的加工坐标系(S8),然后在每个加工坐标系下对零件所有的拓扑面进行面类型识别(S9),以此为基础识别埋头孔、沉头孔、椎孔、圆柱直孔等孔结构,并删除横向孔和斜向孔,便于特征识别的顺利实现;在每个加工坐标系下,采用基于分层加工思想的广义槽特征识别方法对零件进行加工特征识别(S10),即创建分层层面与零件实体求交并获取出每层的交线环及其内外环关系,由该关系确定每层的加工区域,然后提取出交线环中边线依赖的零件拓扑面,再将交线环中所有边线依赖的面进行组合,进而组成广义槽特征,再根据纵向面之间的关联关系构建出飞机结构件广义槽特征结构树(S11);
步骤5):经过步骤4)中的特征识别后,人工交互选择是否载入现有的相似零件工艺方案(S12),如果选择“是”则从加工方案库中智能搜索相似零件的工艺方案,再由人工通过交互的方式优化选取;否则进入工艺方案自动生成模块③,根据工艺经验知识和零件类型进行知识推理(S13),确定当前零件的工艺方案模板(S14),包括机床、工位、工序、工步等,再基于加工特征自动选取刀具(S15),确定各加工阶段过程中加工不同特征所需要的刀具参数和切削参数(S16),并将加工方案模板和刀具选取结果进行合并,生成完整的工艺方案(S17);通过上述方式构建工艺方案后,形成包含七级节点(零件节点、机床节点、加工侧节点、工序节点、工步节点、程序节点及刀具节点)的树状结构,人工可交互修改(S19)并且进行有效性检查(S20),最后确认保存(S21);如果零件为首次加工,其工艺方案将自动添加到加工方案库中,以供下次相似零件的调用,保证方案的统一性和规范性;
步骤6):再次进入自动编程模块④,首先从步骤5)生成的工艺方案中提取出各工步使用的刀具,并基于几何的刀具选取方法,将刀具与加工特征建立匹配关系(S22),保证加工特征在不同的加工阶段有合适的刀具进行加工;然后,根据工艺方案描述的宏观工艺流程以及刀具的可加工能力,并在残留区域实时计算的基础上求解出刀具的可加工区域(S23)、优化选取加工操作并计算加工操作所需的几何参数等信息以自动构建加工单元(S24),完成飞机结构件数控加工单元的构建(S25);
步骤7):在步骤6)数控加工单元构建过程中,需要进入数控加工智能优化模块⑤,进行粗加工分层优化(S26)、加工路径优化(S27)等优化工作,实现数控程序的优化,最终提高数控加工效率;
步骤8):最后,在CAM***中,自动生成与飞机结构件数控加工单元序列对应的加工操作树(S29),其中加工操作是使用一把刀具、一组加工参数及一条参数化刀轨所生成的加工程序,将数控加工单元序列中每个加工单元的策略参数、加工参数、几何参数、刀具参数以及加工宏参数分别设置到对应的加工操作中,即可完成加工操作的自动生成,然后再对所有加工操作进行刀轨计算(S30)和加工仿真(S31),即完成飞机结构件数控程序的智能编制;最后,通过前后置处理程序(S32)将数控加工刀轨转换为相应数控***的NC代码(S33)。

Claims (3)

  1. 飞机结构件智能数控加工编程***,该***以CAD/CAM***为平台,包括工艺资源与知识库管理模块及自动编程子***,其特征在于:***还包括模型检测模块、工艺方案自动生成模块、及数控程序智能优化模块;
    所述的模型检测模块,负责对零件模型进行自动化检测,具体包括:(1)零件模型设计错误;(2)标注信息不完整;(3)结构工艺性不足;实现对零件模型正确性、工艺性的自动审查;根据审查结果,提示问题的类型、位置及修改的方法,并且针对一些常见错误进行自动修改;
    所述的工艺方案自动生成模块,为实现工艺过程驱动的数控程序自动生成提供宏观的工艺方案,其中工艺方案采用多叉树表示,包括零件、机床、工位、工序、工步、程序、刀具、特征八级节点,可以描述宏观的加工工艺过程;通过工艺方案自动生成模块建立工艺方案模板库,对现有的飞机结构件进行分类并总结结构件的一般工艺流程,针对每类典型结构件建立了加工方案模板,包括机床、工位、工序、工步;然后,基于加工特征的制造资源选取方法选取机床、刀具、工装资源,并与加工方案模板相融合,自动生成飞机结构件的数控加工工艺方案;
    所述的数控程序智能优化模块负责对智能编程过程中选取的资源、安排的加工顺序等进行优化,具体为:(1)刀具选取优化:采用基于切削体积比的粗加工刀具选取方法,根据给定的刀具库列表,从刀具库中依次按照直径大小计算结构件中每把刀具可切削的槽腔加工区域体积,当存在一把刀具可切削的体积大于80%的待加工区域体积,则认为该把刀具为合适的粗加工刀具;另外, 以最短加工时间为优化目标,对转角加工和侧壁精加工刀具进行优化,对符合条件的转角加工特征和侧壁内外形加工选取多种刀具方案进行加工,通过计算不同方案下刀具的加工时间确定转角特征和侧壁内外形加工特征的刀具,实现转角特征和侧壁精加工刀具的优化选取;(2)粗加工分层优化:针对飞机结构件中的多下陷结构,以实现分层粗加工时间最少为前提,保证在粗加工后每个槽腔特征的底部腹板可采用精加工腹板刀具一刀完成加工的前提下,采用遗传算法对分层面进行智能优化,实现粗加工分层面的最少;(3)加工单元路径优化:分宏观层和刀具层两个层面进行优化;在宏观层,根据工艺方案描述的工艺过程,将所有的数控加工单元按照宏观的工艺过程,包括机床、工位、工序、工步及刀具,进行自动排序;在刀具层,对每把刀具关联的加工单元进行四级分组,首先将刀具关联的加工单元按照工步类型的不同分成多个二级单元组(包括两种类型:补加工单元组和目标加工单元组,其中补加工单元组在当前工步下对之前工步的补加工单元集,而目标加工单元则是当前工步指定要加工的单元集),并将补加工单元组先于目标加工单元组进行加工;其次,将补加工单元组根据加工单元所在工步的类型对其进行再次分组,形成三级单元组,并按照工艺流程顺序对这些三级单元组进行依次排序;再有,对三级单元组进行自上而下的整体分层排序,形成四级单元组;最后,以加工路径最短为优化目标,对四级单元组内的加工单元采用模拟退火算法进行路径优化排序,实现四级单元组内加工路径的优化。
  2. 根据权利要求1所述的飞机结构件智能数控加工编程***,其特征在于:所述的自动编程子***,主要包含:(1)自动特征识别:根据飞机结构件的三维几何模型和毛坯模型,采用分层特征识别方法进行零件的特征识别,获取零 件所有的加工特征,并以树状结构形式存储特征识别结果;(2)工艺方案智能推理:根据零件类型、加工侧个数、毛坯类型及特征识别结果等条件,结合工艺资源与知识库模块中的支撑数据,进行智能知识推理从工艺方案模板库中自动推荐零件的加工方案模板;(3)刀具自动选取:基于特征的几何参数及加工阶段选取加工刀具,例如基于切削体积比的粗加工刀具选取;(4)加工单元智能构造与排序:将刀具融合到加工方案模板中形成完整的工艺方案,再由工艺方案描述的工艺过程驱动加工单元自动构造,即根据刀具的可加工能力,基于加工过程中的残留区域提取出每把刀具可加工的区域、智能推理选取最优加工操作并且计算出加工操作所需的几何参数,形成每把刀具的加工单元序列,由工艺方案与加工单元相融合构成完整的数控加工单元序列;(5)加工操作自动生成:将数控加工单元序列自动映射到CAD/CAM***的“数控加工”模块中的加工操作树,并自动设置每个加工操作的几何参数、策略参数、刀具参数、速度参数以及进退刀连接,并进行刀轨计算和加工仿真。
  3. 一种如权利要求1所述飞机结构件智能数控加工编程***的实现方法,其特征在于:具体步骤如下:
    步骤1):进入CAD/CAM平台的“数控加工”模块,并进入“飞机结构件智能数控加工编程***”,载入飞机结构件三维模型和毛坯模型;
    步骤2):进行零件基本信息的设定,具体有:(1)零件的类型:壁板、框、梁、肋、接头等;(2)加工侧个数:包括单面、双面以及多面;(3)毛坯类型:包括板材、型材、锻件以及铸件;
    步骤3):进入模型检测模块,结合零件模型工艺性对零件模型进行质量检测,并对不能满足实际工艺要求的局部错误结构进行相应的修正,使零件模型 满足加工工艺要求,以保证输入零件模型的正确性;
    步骤4):进入自动编程模块,首先需要根据步骤2)中设定的零件类型与加工侧信息为每个加工侧设定对应的加工坐标系,然后在每个加工坐标系下对零件所有的拓扑面进行面类型识别,以此为基础识别埋头孔、沉头孔、椎孔、圆柱直孔等孔结构,并删除横向孔和斜向孔,便于特征识别的顺利实现;在每个加工坐标系下,采用基于分层加工思想的广义槽特征识别方法对零件进行加工特征识别,即创建分层层面与零件实体求交并获取出每层的交线环及其内外环关系,由该关系确定每层的加工区域,然后提取出交线环中边线依赖的零件拓扑面,再将交线环中所有边线依赖的面进行组合,进而组成广义槽特征,再根据纵向面之间的关联关系构建出飞机结构件广义槽特征结构树;
    步骤5):经过步骤4)中的特征识别后,人工交互选择是否载入现有的相似零件工艺方案,如果选择“是”则从加工方案库中智能搜索相似零件的工艺方案,再由人工通过交互的方式优化选取;否则进入工艺方案自动生成模块,根据工艺经验知识和零件类型进行知识推理,确定当前零件的工艺方案模板,包括机床、工位、工序、工步等,再基于加工特征自动选取刀具,确定各加工阶段过程中加工不同特征所需要的刀具参数和切削参数,并将加工方案模板和刀具选取结果进行合并,生成完整的工艺方案;通过上述方式构建工艺方案后,形成包含八级节点的树状结构,其中七级节点具体为:零件节点、机床节点、加工侧节点、工序节点、工步节点、程序节点、刀具节点及特征节点;人工可交互修改并且进行有效性检查,最后确认保存;如果零件为首次加工,其工艺方案将自动添加到加工方案库中;
    步骤6):再次进入自动编程模块,首先从步骤5)生成的工艺方案中提取 出各工步使用的刀具,并基于几何的刀具选取方法,将刀具与加工特征建立匹配关系,保证加工特征在不同的加工阶段有合适的刀具进行加工;然后,根据工艺方案描述的宏观工艺流程以及刀具的可加工能力,并在残留区域实时计算的基础上求解出刀具的可加工区域、优化选取加工操作并计算加工操作所需的几何参数等信息以自动构建加工单元,完成飞机结构件数控加工单元序列的构建;
    步骤7):在步骤6)数控加工单元构建过程中,需要进入数控加工智能优化模块,进行粗加工分层优化、加工路径优化等优化工作,实现数控程序的优化;
    步骤8):最后,在CAM***中,自动生成与飞机结构件数控加工单元序列对应的加工操作树,其中加工操作是使用一把刀具、一组加工参数及一条参数化刀轨所生成的加工程序,将每个加工单元的策略参数、加工参数、几何参数、刀具参数以及加工宏参数分别设置到对应的加工操作中,即可完成加工操作的自动生成,然后再对所有加工操作进行刀轨计算和加工仿真,即完成飞机结构件数控程序的智能编制;最后,通过前后置处理程序将数控加工刀轨转换为相应数控***的NC代码。
PCT/CN2014/086105 2013-12-24 2014-09-09 飞机结构件智能数控加工编程***及方法 WO2015096511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310723872.6A CN103699055B (zh) 2013-12-24 2013-12-24 飞机结构件智能数控加工编程***及方法
CN2013107238726 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015096511A1 true WO2015096511A1 (zh) 2015-07-02

Family

ID=50360622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086105 WO2015096511A1 (zh) 2013-12-24 2014-09-09 飞机结构件智能数控加工编程***及方法

Country Status (2)

Country Link
CN (1) CN103699055B (zh)
WO (1) WO2015096511A1 (zh)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108481037A (zh) * 2018-04-18 2018-09-04 衢州职业技术学院 一种齿套加工设备及加工方法
CN109408494A (zh) * 2018-11-01 2019-03-01 北京京航计算通讯研究所 基于表单自定义功能的型号生产履历生成方法
CN109446579A (zh) * 2018-09-28 2019-03-08 北京航天光华电子技术有限公司 一种电子产品装联工艺流程及装联精益工艺设计方法
CN109635354A (zh) * 2018-11-19 2019-04-16 江苏科技大学 一种面向船用柴油机箱体类零件的工艺路线智能优选方法
CN109636117A (zh) * 2018-11-15 2019-04-16 北京理工大学 一种装配信息集成管理***
CN109657321A (zh) * 2018-12-11 2019-04-19 上海航天电子通讯设备研究所 一种印制板组装件电子装联快速工艺设计***及使用方法
CN109919496A (zh) * 2019-03-12 2019-06-21 西北工业大学 一种飞机装配工艺设计规则知识管理方法及***
CN110147559A (zh) * 2018-02-11 2019-08-20 株洲中车时代电气股份有限公司 基于多物理场耦合的变流器多学科优化设计方法
CN110555272A (zh) * 2019-09-05 2019-12-10 上海海事大学 一种基于门座起重机变幅机构的智能配置***和方法
CN110928233A (zh) * 2019-09-25 2020-03-27 南京航空航天大学 面向大型整体结构零件加工变形控制的加工路径优化方法
CN110990907A (zh) * 2019-11-06 2020-04-10 江苏科技大学 基于特征-资源知识的船用柴油机关重件可制造性三级优化方法
CN111259630A (zh) * 2020-01-13 2020-06-09 浙江吉利汽车研究院有限公司 一种工艺文件生成装置及方法
CN111475970A (zh) * 2020-05-15 2020-07-31 中国电子科技集团公司第十四研究所 一种结构模型派生***及方法
CN111598364A (zh) * 2019-02-20 2020-08-28 上汽通用汽车有限公司 用于机械零部件的数字化工艺编排***
CN111813048A (zh) * 2020-06-30 2020-10-23 中国航发动力股份有限公司 功能集成数控程序生成方法、***、设备及可读存储介质
CN112191898A (zh) * 2020-09-14 2021-01-08 西安昆仑工业(集团)有限责任公司 一种半圆柱型腔粗加工数控加工方法
CN113157260A (zh) * 2021-04-28 2021-07-23 西安电子科技大学 一种面向cmm的零件质量检测程序自动生成方法
CN113239560A (zh) * 2021-05-25 2021-08-10 中国电子科技集团公司第十四研究所 一种基于模块化重构的工艺设计
CN113366481A (zh) * 2018-11-09 2021-09-07 欧特克公司 在计算机辅助设计与制造的2.5轴减材制造约束下的基于边界的生成式设计
CN113592772A (zh) * 2021-06-25 2021-11-02 河海大学 基于动态加工特征的复杂零件轮廓自适应精加工方法
CN113673845A (zh) * 2021-08-04 2021-11-19 上海航天精密机械研究所 基于刀具集中利用的孔加工排序方法和***
EP3816745A4 (en) * 2019-09-05 2021-11-24 Kitamura Machinery Co., Ltd. DEVICE FOR AUTOMATIC OPERATION OF A MACHINING CENTER USING CAD DATA
CN114185532A (zh) * 2022-02-15 2022-03-15 武汉慧联无限科技有限公司 一种图形化编程***
CN114227154A (zh) * 2021-12-07 2022-03-25 中航贵州飞机有限责任公司 框类零件转角的加工方法
CN114227145A (zh) * 2020-09-09 2022-03-25 南阳二机石油装备集团股份有限公司 一种密封环的智能化自适应加工方法
CN114357628A (zh) * 2022-01-11 2022-04-15 中航沈飞民用飞机有限责任公司 一种对mbd飞机紧固件在装配工艺设计中的三维可视化消耗式分配方法
TWI763233B (zh) * 2021-01-05 2022-05-01 財團法人工業技術研究院 用於自動生成加工製程特徵的處理方法及其系統
CN114491840A (zh) * 2022-01-17 2022-05-13 成都飞机工业(集团)有限责任公司 一种框类零件制备方法、***、存储介质及装置
CN114722158A (zh) * 2022-06-01 2022-07-08 中科航迈数控软件(深圳)有限公司 一种基于主题词聚类的数控机床制造工艺匹配方法及***
CN115113584A (zh) * 2022-08-26 2022-09-27 长春理工大学 基于实例及规则推理的数控自动编程方法
CN116048003A (zh) * 2023-02-09 2023-05-02 长春工业大学 一种全自动车床控制***
CN116756875A (zh) * 2023-06-21 2023-09-15 北方工业大学 基于柱坐标映射的批量叶片工艺模型多源信息关联方法
CN117291581A (zh) * 2023-11-24 2023-12-26 四川航空股份有限公司 一种飞机检修过程智能管控***及方法
CN117348524A (zh) * 2023-12-05 2024-01-05 沈阳秀展科技有限公司 一种根据图纸自动控制加工中心的cam***
CN117852226A (zh) * 2023-12-29 2024-04-09 中国矿业大学 一种基于关键截面的bim机电管线智能排布方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699055B (zh) * 2013-12-24 2016-08-17 沈阳飞机工业(集团)有限公司 飞机结构件智能数控加工编程***及方法
CN103955167B (zh) * 2014-05-06 2016-06-01 南京航空航天大学 基于动态可视化的数控加工进退刀轨迹干涉检查方法
CN104007699B (zh) * 2014-06-13 2017-10-17 沈阳飞机工业(集团)有限公司 基于工艺过程的飞机结构件自动编程加工单元优化排序方法
JP6088471B2 (ja) * 2014-08-28 2017-03-01 ファナック株式会社 加工動作の調整を容易にする数値制御装置
CN104375462B (zh) * 2014-11-03 2017-02-15 南京航空航天大学 基于特征的板类零件槽内型刀轨自动生成方法
CN104317249B (zh) * 2014-11-03 2017-02-01 南京航空航天大学 基于特征的板类零件槽特征自动分组加工方法
CN104360634B (zh) * 2014-11-12 2017-02-15 南京航空航天大学 基于特征的蒙皮镜像铣削数控程序快速生成方法
CN104460522A (zh) * 2014-12-23 2015-03-25 中铁宝桥集团有限公司 一种利用参数化编程的客专道岔钢轨件仿真加工方法
US9925625B2 (en) * 2015-05-04 2018-03-27 The Boeing Company Assembly of an aircraft structure assembly without shimming, locating fixtures or final-hole-size drill jigs
US10144530B1 (en) 2015-05-04 2018-12-04 The Boeing Company Model-based definition for machining aircraft parts
US9857789B2 (en) 2015-05-04 2018-01-02 The Boeing Company Model-based definition for machining aircraft parts
CN104950815A (zh) * 2015-06-29 2015-09-30 遵义宏港机械有限公司 一种数控铣床自动编码***
CN104932384A (zh) * 2015-06-29 2015-09-23 贵州桂荣科技有限公司 一种电子手环组装设备智能编码控制***
CN105159232A (zh) * 2015-08-20 2015-12-16 广州市德慷软件有限公司 一种处理工艺文件的方法及装置
CN105022346A (zh) * 2015-08-21 2015-11-04 北京航空航天大学 一种用于飞机复杂结构件的转角数控加工自动编程方法
CN105242639A (zh) * 2015-11-03 2016-01-13 南京航空航天大学 数控加工自定义加工特征方法
CN105344108B (zh) * 2015-11-27 2017-11-07 上汽大众汽车有限公司 汽车模型制作方法
CN105807720B (zh) * 2016-05-17 2018-07-06 深圳职业技术学院 手机模具成型零件数控编程及自动化加工控制装置
CN106557072B (zh) * 2016-11-21 2019-03-15 广州中国科学院工业技术研究院 数控加工设备执行程序的辅助编程方法
CN106647620A (zh) * 2016-11-24 2017-05-10 贵州兴富祥立健机械有限公司 基于智能数控平台的磨削中心
CN106815447B (zh) * 2017-02-03 2020-01-14 南京航空航天大学 基于历史数据的复杂结构件加工特征智能定义与分类方法
CN107423514B (zh) * 2017-07-31 2020-10-30 中航沈飞民用飞机有限责任公司 一种基于数字化结构进行飞机装配的工艺方法
CN107664982B (zh) * 2017-08-16 2020-03-24 沈阳航天新光集团有限公司 一种以平滑切削功率为目标对刀具轨迹进行优化的方法
CN107562015B (zh) * 2017-08-29 2020-03-24 沈阳航空航天大学 一种基于数控加工编程的工序几何模型构建方法
CN107862469B (zh) * 2017-11-23 2021-07-23 深圳市前海文仲信息技术有限公司 精密加工触屏可视化操作管理方法、移动终端和介质
CN108133088B (zh) * 2017-12-11 2021-05-25 中车工业研究院有限公司 Cad设计模型的自适应创建方法及***
CN108227627B (zh) * 2017-12-18 2020-11-06 江苏科技大学 一种用于船用柴油机关键件的数控程序编制方法
CN108197730A (zh) * 2017-12-23 2018-06-22 武汉益模科技股份有限公司 一种cnc机床加工流程优化方法
CN108228996B (zh) * 2017-12-28 2021-12-28 重庆平伟汽车科技股份有限公司 一种基于孔特征的对孔自动编程的***及方法
CN108405696B (zh) * 2018-02-06 2020-04-03 王玉国 一种智能旋压***及旋压加工方法
CN108229074A (zh) * 2018-02-11 2018-06-29 苏州市意可机电有限公司 一种三维软件用智能化刀具创建及使用方法
CN109032076B (zh) * 2018-07-05 2020-03-06 东华大学 一种复杂结构件制造特征数控加工参数生成方法
CN109033609B (zh) * 2018-07-20 2023-01-31 中航沈飞民用飞机有限责任公司 航空机加件面向智能制造的产品工艺编程仿真的方法
CN111103848B (zh) * 2018-10-29 2021-11-19 上海电气电站设备有限公司 加工汽轮机转子末叶***槽的数控程序的编制方法及***
CN109543311B (zh) * 2018-11-27 2023-07-28 中航通飞华南飞机工业有限公司 一种零部件制造技术状态三维可视化定义方法及***
CN109858370B (zh) * 2018-12-29 2021-06-15 武汉开目信息技术股份有限公司 零件三维模型中加工面的部分标识方法及装置
CN109901514B (zh) * 2019-03-21 2021-09-17 西北工业大学 面向工艺重用的复杂零件数控工艺优化调整方法
EP3736752A1 (en) * 2019-05-08 2020-11-11 Siemens Aktiengesellschaft Generating an assembly plan
CN110658784B (zh) * 2019-09-17 2022-08-26 华侨大学 一种工业机器人加工立体异型石材的普适性方法及***
CN110990997A (zh) * 2019-10-26 2020-04-10 重庆铁马工业集团有限公司 一种箱体参数化工艺模板的设计方案
CN111223081A (zh) * 2020-01-02 2020-06-02 天津瑟威兰斯科技有限公司 基于深度学习的零件开孔识别与检测方法及***
CN111242902A (zh) * 2020-01-02 2020-06-05 天津瑟威兰斯科技有限公司 基于卷积神经网络的零件识别与检测方法、***及设备
CN111783244A (zh) * 2020-06-19 2020-10-16 珠海格力大金精密模具有限公司 基于ug软件的零件加工刀路生成方法、计算机装置及计算机可读存储介质
CN111859629B (zh) * 2020-06-29 2024-01-30 昌河飞机工业(集团)有限责任公司 一种直升机动部件的检测规划方法及***
CN111880479A (zh) * 2020-07-22 2020-11-03 吉林省齐智科技有限公司 一种模具柔性制造全自动加工控制***及其控制方法
CN112031662B (zh) * 2020-08-20 2022-05-10 陕西海耐森石油科技有限公司 一种基于机床编程的pdc钻头加工方法
CN112286142A (zh) * 2020-09-23 2021-01-29 重庆平伟汽车科技股份有限公司 基于编程软件平台的模具实体加工位批量选择加工***及方法
CN112404535B (zh) * 2020-10-12 2023-06-27 沈阳沈飞国际商用飞机有限公司 一种用于飞机后机身装配完成后的精加工方法
CN112327755B (zh) * 2020-11-16 2021-09-14 广州傲创智能科技有限公司 一种模架的框被自动识别的方法
CN112305993B (zh) * 2020-11-16 2021-10-08 广州傲创智能科技有限公司 一种自动生成编程工艺的方法
CN113341882B (zh) * 2021-06-28 2022-06-14 成都飞机工业(集团)有限责任公司 一种基于加工知识的数控工艺设计及优化方法
CN113778023B (zh) * 2021-08-31 2023-05-05 上海航天精密机械研究所 基于模板的数控加工进退刀宏自动定制方法及***
CN113885437B (zh) * 2021-10-25 2024-06-18 珠海格力电器股份有限公司 数控***的自适应编程方法、装置、设备和数控***
CN114434092B (zh) * 2021-12-15 2023-03-14 成都飞机工业(集团)有限责任公司 一种航空板框类复杂零件的生产方法
CN115034000B (zh) * 2022-05-13 2023-12-26 深圳模德宝科技有限公司 一种工艺设计的方法
CN115204609B (zh) * 2022-06-20 2024-04-16 成都飞机工业(集团)有限责任公司 数控加工工艺程编质量评价方法、装置、设备及介质
CN115673392A (zh) * 2022-10-26 2023-02-03 歌尔股份有限公司 模具加工方法、装置、设备及存储介质
CN115629573B (zh) * 2022-12-21 2023-03-17 中科航迈数控软件(深圳)有限公司 一种加工程序自动编制方法、装置、终端设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11175123A (ja) * 1997-12-05 1999-07-02 Canon Inc 数値制御データ作成装置と加工具の選択方法、並びに記憶媒体
JP2001249710A (ja) * 2000-03-06 2001-09-14 Amada Co Ltd レーザ加工機のncデータ作成方法及びその装置並びにレーザ加工機のncデータ作成方法のプログラムを記憶した記憶媒体
CN101763068A (zh) * 2009-12-15 2010-06-30 沈阳飞机工业(集团)有限公司 飞机复杂构件快速数控加工准备***及方法
WO2012108093A1 (ja) * 2011-02-09 2012-08-16 株式会社日立製作所 加工パスの生成方法及び加工方法
CN103454974A (zh) * 2013-09-22 2013-12-18 沈阳飞机工业(集团)有限公司 复杂构件工艺方案驱动的智能数控编程方法
CN103699055A (zh) * 2013-12-24 2014-04-02 沈阳飞机工业(集团)有限公司 飞机结构件智能数控加工编程***及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478831A (zh) * 2010-11-23 2012-05-30 大连兆阳软件科技有限公司 一种新式榴弹数控机床自动编程***及其编程方法
CN102591261B (zh) * 2012-03-22 2014-04-16 沈阳飞机工业(集团)有限公司 大型机翼部件柔性制孔的多层次数控编程方法
CN102929210B (zh) * 2012-11-22 2014-07-16 南京航空航天大学 基于特征的数控加工过程控制和优化***及方法
CN103235556B (zh) * 2013-03-27 2015-08-19 南京航空航天大学 基于特征的复杂零件数控加工制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11175123A (ja) * 1997-12-05 1999-07-02 Canon Inc 数値制御データ作成装置と加工具の選択方法、並びに記憶媒体
JP2001249710A (ja) * 2000-03-06 2001-09-14 Amada Co Ltd レーザ加工機のncデータ作成方法及びその装置並びにレーザ加工機のncデータ作成方法のプログラムを記憶した記憶媒体
CN101763068A (zh) * 2009-12-15 2010-06-30 沈阳飞机工业(集团)有限公司 飞机复杂构件快速数控加工准备***及方法
WO2012108093A1 (ja) * 2011-02-09 2012-08-16 株式会社日立製作所 加工パスの生成方法及び加工方法
CN103454974A (zh) * 2013-09-22 2013-12-18 沈阳飞机工业(集团)有限公司 复杂构件工艺方案驱动的智能数控编程方法
CN103699055A (zh) * 2013-12-24 2014-04-02 沈阳飞机工业(集团)有限公司 飞机结构件智能数控加工编程***及方法

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147559A (zh) * 2018-02-11 2019-08-20 株洲中车时代电气股份有限公司 基于多物理场耦合的变流器多学科优化设计方法
CN108481037A (zh) * 2018-04-18 2018-09-04 衢州职业技术学院 一种齿套加工设备及加工方法
CN109446579A (zh) * 2018-09-28 2019-03-08 北京航天光华电子技术有限公司 一种电子产品装联工艺流程及装联精益工艺设计方法
CN109408494A (zh) * 2018-11-01 2019-03-01 北京京航计算通讯研究所 基于表单自定义功能的型号生产履历生成方法
CN113366481A (zh) * 2018-11-09 2021-09-07 欧特克公司 在计算机辅助设计与制造的2.5轴减材制造约束下的基于边界的生成式设计
CN109636117A (zh) * 2018-11-15 2019-04-16 北京理工大学 一种装配信息集成管理***
CN109635354A (zh) * 2018-11-19 2019-04-16 江苏科技大学 一种面向船用柴油机箱体类零件的工艺路线智能优选方法
CN109657321A (zh) * 2018-12-11 2019-04-19 上海航天电子通讯设备研究所 一种印制板组装件电子装联快速工艺设计***及使用方法
CN109657321B (zh) * 2018-12-11 2023-06-30 上海航天电子通讯设备研究所 一种印制板组装件电子装联快速工艺设计***及使用方法
CN111598364A (zh) * 2019-02-20 2020-08-28 上汽通用汽车有限公司 用于机械零部件的数字化工艺编排***
CN111598364B (zh) * 2019-02-20 2023-10-10 上汽通用汽车有限公司 用于机械零部件的数字化工艺编排***
CN109919496A (zh) * 2019-03-12 2019-06-21 西北工业大学 一种飞机装配工艺设计规则知识管理方法及***
CN109919496B (zh) * 2019-03-12 2023-11-14 西北工业大学 一种飞机装配工艺设计规则知识管理方法及***
EP3816745A4 (en) * 2019-09-05 2021-11-24 Kitamura Machinery Co., Ltd. DEVICE FOR AUTOMATIC OPERATION OF A MACHINING CENTER USING CAD DATA
US11947332B2 (en) 2019-09-05 2024-04-02 Kitamura Machinery Co., Ltd. CAD data-based automatic operation device of machining center
CN110555272A (zh) * 2019-09-05 2019-12-10 上海海事大学 一种基于门座起重机变幅机构的智能配置***和方法
CN110928233A (zh) * 2019-09-25 2020-03-27 南京航空航天大学 面向大型整体结构零件加工变形控制的加工路径优化方法
CN110928233B (zh) * 2019-09-25 2022-05-24 南京航空航天大学 面向大型整体结构零件加工变形控制的加工路径优化方法
CN110990907B (zh) * 2019-11-06 2024-03-01 江苏科技大学 基于特征-资源知识的船用柴油机关重件可制造性三级优化方法
CN110990907A (zh) * 2019-11-06 2020-04-10 江苏科技大学 基于特征-资源知识的船用柴油机关重件可制造性三级优化方法
CN111259630A (zh) * 2020-01-13 2020-06-09 浙江吉利汽车研究院有限公司 一种工艺文件生成装置及方法
CN111259630B (zh) * 2020-01-13 2023-11-03 浙江吉利汽车研究院有限公司 一种工艺文件生成装置及方法
CN111475970B (zh) * 2020-05-15 2024-02-02 中国电子科技集团公司第十四研究所 一种结构模型派生***及方法
CN111475970A (zh) * 2020-05-15 2020-07-31 中国电子科技集团公司第十四研究所 一种结构模型派生***及方法
CN111813048A (zh) * 2020-06-30 2020-10-23 中国航发动力股份有限公司 功能集成数控程序生成方法、***、设备及可读存储介质
CN114227145B (zh) * 2020-09-09 2023-11-14 南阳二机石油装备集团股份有限公司 一种密封环的智能化自适应加工方法
CN114227145A (zh) * 2020-09-09 2022-03-25 南阳二机石油装备集团股份有限公司 一种密封环的智能化自适应加工方法
CN112191898B (zh) * 2020-09-14 2022-11-22 西安昆仑工业(集团)有限责任公司 一种半圆柱型腔粗加工数控加工方法
CN112191898A (zh) * 2020-09-14 2021-01-08 西安昆仑工业(集团)有限责任公司 一种半圆柱型腔粗加工数控加工方法
TWI763233B (zh) * 2021-01-05 2022-05-01 財團法人工業技術研究院 用於自動生成加工製程特徵的處理方法及其系統
US11841690B2 (en) 2021-01-05 2023-12-12 Industrial Technology Research Institute Processing method and system for automatically generating machining feature
CN113157260A (zh) * 2021-04-28 2021-07-23 西安电子科技大学 一种面向cmm的零件质量检测程序自动生成方法
CN113157260B (zh) * 2021-04-28 2022-11-22 西安电子科技大学 一种面向cmm的零件质量检测程序自动生成方法
CN113239560A (zh) * 2021-05-25 2021-08-10 中国电子科技集团公司第十四研究所 一种基于模块化重构的工艺设计
CN113239560B (zh) * 2021-05-25 2023-09-19 中国电子科技集团公司第十四研究所 一种基于模块化重构的工艺设计方法
CN113592772B (zh) * 2021-06-25 2023-11-14 河海大学 基于动态加工特征的复杂零件轮廓自适应精加工方法
CN113592772A (zh) * 2021-06-25 2021-11-02 河海大学 基于动态加工特征的复杂零件轮廓自适应精加工方法
CN113673845B (zh) * 2021-08-04 2023-11-14 上海航天精密机械研究所 基于刀具集中利用的孔加工排序方法和***
CN113673845A (zh) * 2021-08-04 2021-11-19 上海航天精密机械研究所 基于刀具集中利用的孔加工排序方法和***
CN114227154B (zh) * 2021-12-07 2023-06-30 中航贵州飞机有限责任公司 框类零件转角的加工方法
CN114227154A (zh) * 2021-12-07 2022-03-25 中航贵州飞机有限责任公司 框类零件转角的加工方法
CN114357628A (zh) * 2022-01-11 2022-04-15 中航沈飞民用飞机有限责任公司 一种对mbd飞机紧固件在装配工艺设计中的三维可视化消耗式分配方法
CN114491840B (zh) * 2022-01-17 2024-06-11 成都飞机工业(集团)有限责任公司 一种框类零件制备方法、***、存储介质及装置
CN114491840A (zh) * 2022-01-17 2022-05-13 成都飞机工业(集团)有限责任公司 一种框类零件制备方法、***、存储介质及装置
CN114185532A (zh) * 2022-02-15 2022-03-15 武汉慧联无限科技有限公司 一种图形化编程***
CN114722158B (zh) * 2022-06-01 2022-09-02 中科航迈数控软件(深圳)有限公司 一种基于主题词聚类的数控机床制造工艺匹配方法及***
CN114722158A (zh) * 2022-06-01 2022-07-08 中科航迈数控软件(深圳)有限公司 一种基于主题词聚类的数控机床制造工艺匹配方法及***
CN115113584A (zh) * 2022-08-26 2022-09-27 长春理工大学 基于实例及规则推理的数控自动编程方法
CN116048003A (zh) * 2023-02-09 2023-05-02 长春工业大学 一种全自动车床控制***
CN116756875A (zh) * 2023-06-21 2023-09-15 北方工业大学 基于柱坐标映射的批量叶片工艺模型多源信息关联方法
CN116756875B (zh) * 2023-06-21 2024-03-01 北方工业大学 基于柱坐标映射的批量叶片工艺模型多源信息关联方法
CN117291581A (zh) * 2023-11-24 2023-12-26 四川航空股份有限公司 一种飞机检修过程智能管控***及方法
CN117291581B (zh) * 2023-11-24 2024-01-26 四川航空股份有限公司 一种飞机检修过程智能管控***及方法
CN117348524A (zh) * 2023-12-05 2024-01-05 沈阳秀展科技有限公司 一种根据图纸自动控制加工中心的cam***
CN117348524B (zh) * 2023-12-05 2024-01-30 沈阳秀展科技有限公司 一种根据图纸自动控制加工中心的cam***
CN117852226A (zh) * 2023-12-29 2024-04-09 中国矿业大学 一种基于关键截面的bim机电管线智能排布方法

Also Published As

Publication number Publication date
CN103699055A (zh) 2014-04-02
CN103699055B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015096511A1 (zh) 飞机结构件智能数控加工编程***及方法
CN101763068B (zh) 飞机复杂构件快速数控加工准备***及方法
CN109857395B (zh) 基于开放式数控***的凸轮轴智能磨削工艺软件数据库***的集成应用方法
CN104951590B (zh) 模具设计与制造的知识服务***及方法
CN106529028B (zh) 一种工艺规程的自动生成方法
CN110244657B (zh) 一种基于知识表达模型的复杂曲面数字化制造方法
Jong et al. Automatic process planning of mold components with integration of feature recognition and group technology
CN107562015B (zh) 一种基于数控加工编程的工序几何模型构建方法
CN103454974A (zh) 复杂构件工艺方案驱动的智能数控编程方法
CN105184013B (zh) 一种基于切削体的工序模型正序生成方法和装置
CN103365243A (zh) 转角侧铣加工轨迹快速生成方法
CN103197605A (zh) 基于标准模板和表达式驱动的齿轮滚削cnc自动编程方法
CN103279623B (zh) 一种钢结构相贯节点制造数据的采集、分析和校验方法
Xu et al. Automatic tool path generation from structuralized machining process integrated with CAD/CAPP/CAM system
Isnaini et al. Review of computer-aided process planning systems for machining operation–future development of a computer-aided process planning system–
CN110795835A (zh) 一种基于自动同步建模的三维工序模型逆向生成方法
CN107991991B (zh) 一种数控机床智能控制***的工作方法
CN113642236A (zh) 一种面向多学科的数字孪生图网络建模方法
CN113435086A (zh) 面向增减材复合制造的增减交替工序自动规划方法及***
CN112231966A (zh) 一种基于数字孪生的协作机器人可装配性预测***及方法
Zheng et al. KBE-based stamping process paths generated for automobile panels
Hua et al. GA-based synthesis approach for machining scheme selection and operation sequencing optimization for prismatic parts
CN116690988A (zh) 一种大型建筑模型3d打印***和方法
CN115755775A (zh) 一种基于cam云服务架构的特征刀轨动态生成***及方法
Wang et al. Intelligent manufacturing system of impeller for computer numerical control (CNC) programming based on KBE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875638

Country of ref document: EP

Kind code of ref document: A1