WO2015096329A1 - 有机发光二极管像素电路及其驱动方法、显示面板 - Google Patents

有机发光二极管像素电路及其驱动方法、显示面板 Download PDF

Info

Publication number
WO2015096329A1
WO2015096329A1 PCT/CN2014/076245 CN2014076245W WO2015096329A1 WO 2015096329 A1 WO2015096329 A1 WO 2015096329A1 CN 2014076245 W CN2014076245 W CN 2014076245W WO 2015096329 A1 WO2015096329 A1 WO 2015096329A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
thin film
control signal
film transistor
emitting diode
Prior art date
Application number
PCT/CN2014/076245
Other languages
English (en)
French (fr)
Inventor
谭文
祁小敬
胡理科
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/424,789 priority Critical patent/US9626035B2/en
Publication of WO2015096329A1 publication Critical patent/WO2015096329A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to an organic light emitting diode pixel circuit, a driving method thereof, and a display panel. Background technique
  • OLED display devices have many advantages such as large viewing angle, fast response, high contrast, energy saving, and adaptability, and thus have been widely used.
  • each pixel has an organic light emitting diode controlled by circuitry on the array substrate, and the basic organic light emitting diode pixel circuit includes two thin film transistors (drive tube and switch tube) And a capacitor (2T1C), but in order to eliminate the threshold voltage drift of the drive tube, the structure of the organic light emitting diode pixel circuit is generally more complicated, for example, as shown in FIG. 1, including 6 thin film transistors and 1 Capacitance (6T1C;).
  • cell touch technology refers to a mode in which a touch circuit is integrated in a pixel circuit, which is easy to implement to make the product thin and light, and can improve touch reliability.
  • a conventional touch circuit is shown in FIG. 2, wherein the photodiode senses illumination and generates a touch signal (if there is no touch, the light can be irradiated onto the photodiode, and if there is a touch, the light is blocked); or, another A conventional touch circuit is shown in FIG. 3. When a touch occurs, the capacitance value of the sensing capacitor changes, and a touch signal is generated thereby.
  • the touch circuit usually includes a plurality of devices, and the OLED pixel circuit also includes a large number of devices (such as 6T1C). Therefore, if the touch circuit is integrated into the OLED pixel circuit, The number of devices in the OLED pixel circuit is too large, and there is no space in the pixel to accommodate so many devices. The component (especially with the increase in resolution, the pixel size is getting smaller and smaller, the problem is more obvious), which makes the in-cell touch technology unable to combine with the organic light emitting diode display device. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a touch-sensitive organic light-emitting diode pixel circuit with simple structure and easy implementation, in view of the problem that the existing in-cell touch technology cannot be combined with the organic light emitting diode display device. Its driving method, display panel.
  • the technical solution adopted to solve the technical problem of the present invention is an organic light emitting diode pixel circuit, which comprises a light emitting module, a light emitting control module, a driving module, a threshold compensation module, and a data signal input module;
  • the light emitting module includes an organic light emitting diode for emitting light
  • the illumination control module is configured to control whether the illumination module emits light
  • the driving module is configured to drive the lighting control module to control the lighting of the lighting module
  • the threshold compensation module is configured to perform threshold voltage compensation on the driving module
  • a data signal input module for introducing a data signal
  • the OLED pixel circuit further includes a touch sensing module and a touch detection module.
  • the touch sensing module is configured to generate a touch sensing signal and output to the driving module; the touch detecting module is configured to detect the touch sensing signal and provide an initial voltage for the threshold compensation module;
  • the driving module further amplifies the touch sensing signal generated by the touch sensing module and sends the touch sensing signal to the touch detecting module.
  • the driving module includes a first thin film transistor; the gate of the first thin film transistor is connected to the first node, and the other two poles are respectively connected to the second node and the third node; wherein the first node is a threshold
  • the connection point of the compensation module and the touch sensing module, and the second node is an illumination control module, a threshold compensation module, and a touch detection module
  • the connection point of the block, the third node is the connection point of the illumination control module and the data signal input module.
  • the touch sensing module includes a seventh thin film transistor and a detecting device for detecting a touch, wherein a gate of the seventh thin film transistor is connected to a first control signal, and the other two poles are respectively connected to the first node and Detect the device.
  • the detecting device is a photodiode or a sensing capacitor.
  • the light emission control module includes a fourth thin film transistor and a fifth thin film transistor; a gate of the fourth thin film transistor is connected to a second control signal, and the other two electrodes are respectively connected to the light emitting module and the second node, wherein the The gate of the five thin film transistor is connected to the first control signal of the current stage, and the other two poles are respectively connected to the third node and the first power supply voltage.
  • one end of the organic light emitting diode of the light emitting module is connected to the fourth thin film transistor, and the other end is connected to the second power voltage.
  • the threshold compensation module includes a second thin film transistor and a storage capacitor; a gate of the second thin film transistor is connected to a third control signal, and the other two poles are respectively connected to the first node and the second node, and the storing Both ends of the capacitor are respectively connected to the first node and the first power supply voltage.
  • the touch detection module includes a third thin film transistor; a gate of the third thin film transistor is connected to a first control signal, and the other two electrodes are respectively connected to the second node and the initial voltage/detection port.
  • the data signal input module comprises a sixth thin film transistor; the gate of the sixth thin film transistor is connected to the first control signal of the first stage, and the other two electrodes respectively connect the data signal and the third node.
  • the first control signal is a scan signal.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the sixth thin film transistor, and the seventh thin film transistor are N-type thin film transistors; and the fifth thin film transistor is P Thin film transistor.
  • a technical solution adopted to solve the technical problem of the present invention is a display panel, The above-described organic light emitting diode pixel circuit is included.
  • the technical solution adopted to solve the technical problem of the present invention is a driving method of the above OLED pixel circuit, which includes:
  • the first control signal of the upper stage is a high level
  • the third control signal is a high level
  • the initial voltage/detection port provides an initial voltage
  • the first control signal and the second control signal of the current level are at a low level.
  • the first control signal of the upper stage is a high level, and the first control signal, the second control signal and the third control signal of the current level are at a low level;
  • the first control signal of the upper stage is a high level
  • the first control signal, the second control signal and the third control signal of the current level are at a low level
  • the initial voltage/detection port receives the touch sensing signal
  • the first control signal of the upper stage is a high level
  • the third control signal is a high level
  • the initial voltage/detection port provides an initial voltage
  • the first control signal and the second control signal of the current level are at a low level.
  • the first control signal of the current level is a high level
  • the third control signal is a high level
  • the first control signal and the second control signal of the previous stage are at a low level
  • the second control signal is at a high level, and the first control signal of the first stage, the first control signal of the first stage, and the third control signal are at a low level.
  • the second power voltage is greater than an initial voltage
  • the initial voltage is greater than a maximum data voltage
  • the maximum data voltage is greater than a minimum data voltage
  • the minimum data voltage is greater than the first power voltage.
  • the touch function is realized by adding a small number of devices by rationally arranging the circuit and sharing the device, and the structure is simple and easy to implement.
  • FIG. 1 is a schematic structural view of a conventional OLED pixel circuit
  • FIG. 2 is a schematic structural view of a conventional touch circuit
  • 3 is a schematic structural view of another conventional touch circuit
  • FIG. 4 is a schematic structural view of an organic light emitting diode pixel circuit according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural diagram of another organic light emitting diode pixel circuit according to Embodiment 1 of the present invention.
  • FIG. 6 is a timing chart of driving signals of an organic light emitting diode pixel circuit according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a level relationship of signals in an OLED pixel circuit according to Embodiment 1 of the present invention.
  • the reference numerals are: 11, the lighting module; 12, the lighting control module; 13, the driving module; 14, the wide value compensation module; 15, the touch sensing module; 16, the touch detection module; 17, the data signal input module; Tl, a first thin film transistor; ⁇ 2 , a second thin film transistor; ⁇ 3 , a third thin film transistor; ⁇ 4, a fourth thin film transistor; ⁇ 5, a fifth thin film transistor; ⁇ 6, a sixth thin film transistor; ⁇ 7, a seventh thin film transistor; Dl, organic LED; D2, photodiode; Cl, storage capacitor; C2, sensing capacitor; CR2, second control signal; CR3, third control signal; Pl, first node; P2, second node; P3, third node; R/V, initial voltage/detection port; Vini, initial voltage; Vs(n), current level scan signal; Vs(n-1), upper level scan signal; Vdata, data signal; VDD, first power supply voltage; VSS, second supply voltage; VDH, maximum data voltage; VDL, minimum
  • the embodiment provides an organic light emitting diode pixel circuit.
  • the array substrate of the OLED display device includes a plurality of pixels arranged in an array, and each pixel has an organic light emitting diode pixel circuit.
  • the circuit controls each pixel to independently emit light of the desired color.
  • each OLED pixel circuit includes a light emitting module 11 , a light emitting control module 12 , a touch sensing module 15 , a driving module 13 , a touch detecting module 16 , a threshold compensation module 14 , and data Signal input module 17.
  • the light emitting module 11 includes an organic light emitting diode D1 for emitting light; the light emitting control module 12 is configured to control whether the light emitting module 11 emits light; the touch sensing module 15 is configured to generate a touch sensing signal and output the same to the driving module 13; the driving module 13 The driving module 11 is configured to emit light, and the touch sensing signal generated by the touch sensing module 15 is amplified and sent to the touch detecting module 16; the touch detecting module 16 is configured to detect the touch sensing signal transmitted from the driving module 13 and is a threshold value.
  • the compensation module 14 provides an initial voltage Vini, wherein the initial voltage Vini is used to place the circuit in a desired initial state, the specific process of which will be described later; the threshold compensation module 14 is used to perform threshold voltage compensation on the driving module 13; The signal input module 17 is for introducing a data signal Vdata.
  • the driving module 13 includes a first thin film transistor T1; the gate of the first thin film transistor T1 is connected to the first node P1, and the other two poles are respectively connected to the second node P2 and the third node P3; wherein, the first node P1 is a threshold
  • each thin film transistor includes three poles of a gate, a source and a drain, wherein the source and the drain are generally defined by a current direction, and there is no difference in structure between them. Therefore, in this embodiment, "The other two poles" refer to the source and drain of the thin film transistor.
  • the current direction of the thin film transistor changes in different stages, it is not limited to which one is the source and which is the drain, as long as they are respectively connected to the Need a location.
  • the touch sensing module 15 includes a seventh thin film transistor T7 and a detecting device for detecting a touch.
  • the gate of the seventh thin film transistor T7 is connected to the first control signal of the first stage, and the other two poles are respectively connected to the first node P1 and detected. Device.
  • connecting "a signal” means that the position of the circuit is connected to a corresponding signal line or port, so that the signal line or port connection can transmit a corresponding signal to the bit.
  • the "first control signal” may be a scan signal. That is to say, the scan signal provided by the gate line can be used as the first control signal, so that it is not necessary to provide an additional signal line, and the circuit structure can be simplified.
  • the scanning signal Vs(n) of the current level refers to a signal provided by a gate line of a pixel corresponding to the circuit
  • the scanning signal Vs(nl) of the previous stage is provided by a gate line of a pixel of a row of the pixel corresponding to the circuit.
  • the signal therefore, when the voltage of the previous-stage scan signal Vs(nl) changes from a high level to a low level, the voltage of the scanning signal Vs(n) of the present stage changes from a low level to a high level.
  • the detecting device is a photodiode D2 or a sensing capacitor C2.
  • the detecting device refers to a device that can generate different touch sensing signals according to whether a touch occurs, which may preferably be a photodiode D2 or a sensing capacitor C2, and their specific operation modes are described in detail later.
  • the illumination control module 12 includes a fourth thin film transistor T4 and a fifth thin film transistor T5; the gate of the fourth thin film transistor T4 is connected to the second control signal CR2, and the other two electrodes are respectively connected to the light emitting module 11 and the second node P2, The gate of the fifth thin film transistor T5 is connected to the first control signal of the current stage, and the other two electrodes are respectively connected to the third node P3 and the first power supply voltage VSS.
  • first power supply voltage VSS and the “second power supply voltage VDD” refer to two reference voltages for supplying power to the circuit operation, wherein usually the second power supply voltage VDD has a higher level, that is, it can serve as an anode, and The level of the first supply voltage VSS is low (e.g., grounded), i.e., it can function as a cathode.
  • the voltages used in the circuit satisfy: the second power supply voltage 00>the initial voltage Vini>the maximum data voltage VDH>the minimum data voltage VDL>the first power supply voltage VSS.
  • data voltage refers to the voltage of the data signal Vdata supplied from the data line, and the magnitude of the voltage corresponds to the luminance of the pixel unit, so it is also called “grayscale voltage”.
  • the organic light emitting diode D1 of the light emitting module 11 is connected to the fourth end.
  • the thin film transistor T4 has the other end connected to the second power supply voltage VDD.
  • the threshold compensation module 14 includes a second thin film transistor T2 and a storage capacitor C1; the gate of the second thin film transistor T2 is connected to the third control signal CR3, and the other two poles are respectively connected to the first node P1 and the second node P2, and are stored.
  • the first node P1 and the first power supply voltage VSS are respectively connected to both ends of the capacitor C1.
  • the touch detection module 16 includes a third thin film transistor T3; the third thin film transistor T3 is connected to the first control signal of the first stage, and the other two electrodes are respectively connected to the second node P2 and the initial voltage/detection port R/V.
  • the data signal input module 17 includes a sixth thin film transistor T6; the gate of the sixth thin film transistor T6 is connected to the first control signal of the first stage, and the other two electrodes are respectively connected to the data signal Vdata and the third node P3.
  • the first thin film transistor T1, the second thin film transistor ⁇ 2, the third thin film transistor ⁇ 3, the fourth thin film transistor ⁇ 4, the sixth thin film transistor ⁇ 6, and the seventh thin film transistor ⁇ 7 are ⁇ -type thin film transistors; and the fifth thin film The transistor ⁇ 5 is a ⁇ -type thin film transistor.
  • the thin film transistors other than the fifth thin film transistor ⁇ 5 in the circuit are preferably ⁇ -type thin film transistors, that is, they are turned on when the gate is at a high level, and turned off at a low level; and the fifth thin film transistor ⁇ 5 is a ⁇ A thin film transistor, that is, it is turned on when the gate is at a low level, and turned off at a high level.
  • the type of the above thin film transistor is not essential, and if the type of the thin film transistor is changed, the corresponding driving voltage may be changed. It can be seen that, compared with the conventional 6T1C circuit, the OLED pixel circuit of the embodiment only adds an additional thin film transistor and a detecting device, thereby realizing the integration of the touch function, so that the structure is simple, easy to implement, and easy.
  • the in-cell touch technology is combined with an organic light emitting diode display device.
  • the above-described organic light emitting diode pixel circuit driving method will be further explained. As shown in FIG. 6, the driving method specifically includes:
  • the fourth thin film transistor T4 is turned off, the organic light emitting diode D1 does not emit light; and the second thin film transistor T2 and the third thin film transistor T3 are turned on, and the initial voltage Vini from the initial voltage/detection port R/V charges the storage capacitor C1.
  • the gate of the corresponding first thin film transistor T1 also reaches the initial voltage Vini, so that it enters an amplified state (saturated state).
  • the illumination phase wherein the previous scan signal Vs(n-l) is at a high level, and the remaining control signals are at a low level.
  • the signal provided by the initial voltage/detection port R/V has no effect on the operation of the circuit at this time, so the signal is not limited here, but from the perspective of convenient control, the initial voltage/detection port R/V The initial voltage Vini can continue to be supplied.
  • the third control signal CR3 is turned to a low level, so that the second thin film transistor T2 is turned off, and the storage capacitor C1 is no longer charged, and enters the detection phase.
  • the detecting device is the photodiode D2
  • the photodiode D2 if no touch occurs, the photodiode D2 is irradiated with light to generate a leakage current, and the storage capacitor C1 is discharged at a relatively fast speed; and if a touch occurs, the photo-electricity is irradiated
  • the light of the diode D2 is blocked, the photodiode D2 has no leakage current or leakage current, and the storage capacitor C1 does not discharge or discharge slowly; therefore, different voltages are generated on the storage capacitor C1 according to different touch conditions (ie, touch sensing signals) ).
  • the sensing process is different but the principle is similar: if a touch occurs, the sensing capacitor C2 changes (for example, the distance between the two poles of the capacitor), and correspondingly, the storage capacitor C1 The voltage change on the first; if no touch occurs, the sense capacitor C2 does not change, and accordingly, the voltage on the storage capacitor C1 does not change; thus, depending on the touch condition, the storage capacitor C1 can also generate different voltages (ie, Touch sensing signal).
  • the detecting phase wherein the upper level scanning signal Vs(n-l) is a high level, and the initial voltage/detecting port R/V receives the touch sensing signal.
  • the third thin film transistor T3 is turned on and the second thin film transistor T2 is turned off, and the gate voltage of the first thin film transistor T1 is equal to the voltage on the storage capacitor C1 (ie, touch Touching the sensing signal), thereby, the first thin film transistor T1 can amplify the voltage of its gate, and the initial voltage/detection port R/V can be read to the first thin film transistor T1 through an external read circuit.
  • the gate voltage that is, the amplified touch sensing signal, is determined to determine whether a touch has occurred.
  • charging phase wherein the upper level scan signal Vs(nl) is high level, the third control signal CR3 is high level, the initial voltage/detection port R/V provides an initial voltage Vini, and the remaining control signals are low level .
  • the second thin film transistor T2 is turned on again, so that the storage capacitor C1 and the gate of the first thin film transistor T1 are charged again to Vini.
  • the level of the upper-stage scan signal Vs(nl) and the current-stage scan signal Vs(n) is inverted, so that the third thin film transistor T3 and the seventh thin film transistor ⁇ 7 are turned off, and the initial voltage/detection port R/V And the detection device is disconnected from the circuit; therefore, the initial voltage/detection port R/V signal does not affect the circuit operation at this time.
  • the sixth thin film transistor ⁇ 6 is turned on, and the data signal Vdata (e.g., from the data line) is connected to the gate of the first thin film transistor T1 (i.e., the storage capacitor C1) through the first thin film transistor T1 and the second thin film transistor ⁇ 2.
  • the storage capacitor C1 Since the maximum data voltage VDH is smaller than the initial voltage Vini (that is, the voltage of the storage capacitor C1 at this time), the storage capacitor C1 is inevitably discharged through the data line until the voltage reaches: Vdata+Vgs, where Vgs is the gate of the first thin film transistor T1.
  • the source voltage, and at this time, the gate-source voltage is equal to the threshold voltage Vth of the first thin film transistor T1, so that the voltage on the storage capacitor C1 (ie, the voltage of the gate of the first thin film transistor T1) is equal to: Vdata+Vth.
  • the other control signals are all at the low level, so the sixth thin film transistor T6 and the second thin film transistor ⁇ 2 are also turned off (the data signal Vdata starts to charge the pixels of other rows)
  • the fourth thin film transistor T4 and the fifth thin film transistor ⁇ 5 are turned on, current flows through the organic light emitting diode D1, and the organic light emitting diode
  • the pole tube D1 starts to emit light for display.
  • the source of the first thin film transistor T1 is connected to the first power supply voltage VSS, and its gate voltage is as follows: Vdata+Vth, so that the gate-source voltage Vgs is: Vdata+Vth-VSS.
  • the brightness of the organic light emitting diode D1 is determined by the current flowing through it, which is the saturation current It of the first thin film transistor T1, and the saturation current formula is:
  • the embodiment provides a display panel including the above-described organic light emitting diode pixel circuit.
  • the display panel of the embodiment includes the above-mentioned organic light emitting diode pixel circuit, so that the structure is simple, easy to implement, and has a touch function. It is to be understood that the above embodiments are merely exemplary embodiments employed to explain the principles of the invention, but the invention is not limited thereto. Various modifications and improvements can be made by those skilled in the art without departing from the spirit and scope of the invention. These modifications and improvements are also considered to be within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种有机发光二极管像素电路及其驱动方法、显示面板,所述有机发光二极管像素电路包括:发光模块(11),包括用于发光的有机发光二极管(D1);发光控制模块(12),用于控制发光模块(11)发光;驱动模块(13),驱动发光控制模块(12)以控制发光模块(11)发光;阈值补偿模块(14),用于对驱动模块(13)进行阈值电压补偿;和数据信号输入模块(17),用于引入数据信号(Vdata)。所述有机发光二极管像素电路还包括:触摸感应模块(15),产生触摸感应信号;和触摸检测模块(16),用于检测触摸感应信号,并为阈值补偿模块(14)提供初始电压(Vini),其中驱动模块(13)还将触摸感应模块(15)产生的触摸感应信号放大后输送给触摸检测模块(16)。该方案可实现现有的内嵌式触控技术与有机发光二极管显示装置相结合。

Description

Figure imgf000003_0001
有机发光二极管像素电路及其驱动方法、 显示面板 技术领域
本发明属于触控技术领域, 具体涉及一种有机发光二极管像 素电路及其驱动方法、 显示面板。 背景技术
有机发光二极管 (OLED)显示装置具有视角大、 响应速度快、 对比度高、 节能、 适应性强等诸多优点, 因此获得了越来越广泛 的应用。
在有机发光二极管显示装置中, 每个像素中具有一个有机发 光二极管, 该有机发光二极管是靠阵列基板上的电路控制的, 基 本的有机发光二极管像素电路包括两个薄膜晶体管(驱动管和开 关管)和一个电容 (2T1C), 但为了消除驱动管的阔值电压漂移, 故 通常有机发光二极管像素电路的结构更为复杂, 例如, 其可如图 1 所示, 包括 6个薄膜晶体管和 1个电容 (6T1C;)。
另外, 随着技术的发展, 越来越多的显示装置开始具有触控 功能。内嵌式触控 (In cell touch)技术是指将触控电路集成在像素电 路中的模式, 其易于实现使产品轻薄化, 并可提高触控可靠性。
一种常规的触控电路如图 2所示, 其中的光电二极管可感应 光照并产生触摸信号 (若无触摸则光线可照射到光电二极管上, 若 有触摸则光线被挡住);或者, 另一种常规的触控电路如图 3所示, 当有触摸发生时, 其感应电容的电容值发生变化, 并由此产生触 摸信号。
如前所述, 触控电路中通常包括多个器件, 而有机发光二极 管像素电路中也包括大量器件 (如 6T1C), 因此, 若要将触控电路 集成到有机发光二极管像素电路中, 则会导致有机发光二极管像 素电路中的器件数量过多, 而像素中却没有空间容纳如此多的器 件 (尤其随着分辨率的提高, 像素尺寸越来越小, 该问题就更加明 显), 这导致内嵌式触控技术无法与有机发光二极管显示装置相结 合。 发明内容
本发明所要解决的技术问题包括, 针对现有的内嵌式触控技 术无法与有机发光二极管显示装置相结合的问题, 提供一种结构 简单、 易实现的能触控的有机发光二极管像素电路及其驱动方法、 显示面板。
解决本发明技术问题所采用的技术方案是一种有机发光二极 管像素电路, 其包括发光模块、 发光控制模块、 驱动模块、 阔值 补偿模块、 数据信号输入模块; 其中
发光模块包括用于发光的有机发光二极管;
发光控制模块用于控制发光模块是否发光;
驱动模块用于驱动发光控制模块控制发光模块发光; 阔值补偿模块用于对驱动模块进行阈值电压补偿;
数据信号输入模块用于引入数据信号;
所述有机发光二极管像素电路还包括触摸感应模块和触摸检 测模块,
触摸感应模块用于产生触摸感应信号并输出给驱动模块; 触摸检测模块, 其用于检测触摸感应信号, 并为阔值补偿模 块提供初始电压;
其中所述驱动模块还将触摸感应模块产生的触摸感应信号放 大后输送给触摸检测模块
优选的是, 所述驱动模块包括第一薄膜晶体管; 所述第一薄 膜晶体管的栅极连接第一节点, 另外两极分别连接第二节点和第 三节点; 其中, 所述第一节点为阔值补偿模块、 触摸感应模块的 连接点, 第二节点为发光控制模块、 阔值补偿模块、 触摸检测模 块的连接点, 第三节点为发光控制模块、 数据信号输入模块的连 接点。
进一步优选的是, 所述触摸感应模块包括第七薄膜晶体管和 用于检测触摸的检测器件, 所述第七薄膜晶体管的栅极连接上一 级第一控制信号, 另外两极分别连接第一节点和检测器件。
进一步优选的是, 所述检测器件为光电二极管或感应电容。 进一步优选的是, 所述发光控制模块包括第四薄膜晶体管和 第五薄膜晶体管; 所述第四薄膜晶体管的栅极连接第二控制信号, 另外两极分别连接发光模块和第二节点, 所述第五薄膜晶体管的 栅极连接本级第一控制信号, 另外两极分别连接第三节点和第一 电源电压。
进一步优选的是, 所述发光模块的有机发光二极管一端连接 所述第四薄膜晶体管, 另一端连接第二电源电压。
进一步优选的是, 所述阔值补偿模块包括第二薄膜晶体管和 存储电容; 所述第二薄膜晶体管的栅极连接第三控制信号, 另外 两极分别连接第一节点和第二节点, 所述存储电容两端分别连接 第一节点和第一电源电压。
进一步优选的是, 所述触摸检测模块包括第三薄膜晶体管; 所述第三薄膜晶体管的栅极连接上一级第一控制信号, 另外两极 分别连接第二节点和初始电压 /检测端口。
进一步优选的是, 所述数据信号输入模块包括第六薄膜晶体 管; 所述第六薄膜晶体管的栅极连接本级第一控制信号, 另外两 极分别连接数据信号和所述第三节点。
进一步优选的是, 所述第一控制信号为扫描信号。
进一步优选的是, 所述第一薄膜晶体管、 第二薄膜晶体管、 第三薄膜晶体管、 第四薄膜晶体管、 第六薄膜晶体管、 第七薄膜 晶体管为 N型薄膜晶体管; 所述第五薄膜晶体管为 P型薄膜晶体 管。 解决本发明技术问题所采用的技术方案是一种显示面板, 其 包括上述的有机发光二极管像素电路。 解决本发明技术问题所采用的技术方案是一种上述有机发光 二极管像素电路的驱动方法, 其包括:
初始化阶段, 所述上一级第一控制信号为高电平, 第三控制 信号为高电平, 初始电压 /检测端口提供初始电压, 本级第一控制 信号和第二控制信号为低电平;
光照阶段, 所述上一级第一控制信号为高电平, 本级第一控 制信号、 第二控制信号和第三控制信号为低电平;
检测阶段, 所述上一级第一控制信号为高电平, 本级第一控 制信号、 第二控制信号和第三控制信号为低电平, 初始电压 /检测 端口接收触摸感应信号;
充电阶段, 所述上一级第一控制信号为高电平, 第三控制信 号为高电平, 初始电压 /检测端口提供初始电压, 本级第一控制信 号和第二控制信号为低电平;
写入阶段, 所述本级第一控制信号为高电平, 第三控制信号 为高电平, 上一级第一控制信号和第二控制信号为低电平;
发光阶段, 所述第二控制信号为高电平, 本级第一控制信号、 上一级第一控制信号和第三控制信号为低电平。
优选的是, 所述第二电源电压大于初始电压, 所述初始电压 大于最大数据电压, 所述最大数据电压大于最小数据电压, 所述 最小数据电压大于第一电源电压。 本发明的有机发光二极管像素电路及其驱动方法、 显示面板 中, 通过对电路进行合理的布局、 器件公用, 从而在只增加少量 器件的情况下实现了触控功能, 其结构简单、 易实现。 附图说明
图 1为现有的一种有机发光二极管像素电路的结构示意图; 图 2为现有的一种触控电路的结构示意图; 图 3为现有的另一种触控电路的结构示意图; 图 4为本发明实施例 1的一种有机发光二极管像素电路的结 构示意图;
图 5为本发明实施例 1的另一种有机发光二极管像素电路的 结构示意图;
图 6为本发明实施例 1的一种有机发光二极管像素电路的驱 动信号时序图;
图 7为本发明实施例 1的一种有机发光二极管像素电路中信 号的电平大小关系图;
其中附图标记为: 11、 发光模块; 12、 发光控制模块; 13、 驱动模块; 14、 阔值补偿模块; 15、 触摸感应模块; 16、 触摸检 测模块; 17、 数据信号输入模块; Tl、 第一薄膜晶体管; Τ2、 第 二薄膜晶体管; Τ3、 第三薄膜晶体管; Τ4、 第四薄膜晶体管; Τ5、 第五薄膜晶体管; Τ6、 第六薄膜晶体管; Τ7、 第七薄膜晶体管; Dl、 有机发光二极管; D2、 光电二极管; Cl、 存储电容; C2、 感 应电容; CR2、 第二控制信号; CR3、 第三控制信号; Pl、 第一节 点; P2、 第二节点; P3、 第三节点; R/V、 初始电压 /检测端口; Vini、 初始电压; Vs(n)、 本级扫描信号; Vs(n-1)、 上一级扫描信 号; Vdata、 数据信号; VDD、 第一电源电压; VSS、 第二电源电 压; VDH、 最大数据电压; VDL、 最小数据电压。 具体实施方式
为使本领域技术人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明作进一步详细描述。 实施例 1 :
如图 4至图 7所示, 本实施例提供一种有机发光二极管像素 电路。
其中, 在有机发光二极管显示装置的阵列基板上, 包括多个 排成阵列的像素, 每个像素中具有一个有机发光二极管像素电路, 该电路可控制各像素独立发出所需颜色的光。
具体的, 如图 4、 图 5所示, 每个有机发光二极管像素电路 包括发光模块 11、发光控制模块 12、 触摸感应模块 15、 驱动模块 13、 触摸检测模块 16、 阔值补偿模块 14、 数据信号输入模块 17。 其中, 发光模块 11 包括用于发光的有机发光二极管 D1 ; 发光控 制模块 12用于控制发光模块 11是否发光; 触摸感应模块 15用于 产生触摸感应信号并将其输出给驱动模块 13;驱动模块 13用于驱 动发光模块 11发光, 并将触摸感应模块 15产生的触摸感应信号 放大后输送给触摸检测模块 16;触摸检测模块 16用于检测从驱动 模块 13传来的触摸感应信号, 并为阔值补偿模块 14提供初始电 压 Vini, 其中, 初始电压 Vini用于将电路置于所需的初始状态, 其具体过程在之后叙述; 阔值补偿模块 14用于对驱动模块 13进 行阔值电压补偿;数据信号输入模块 17用于引入数据信号 Vdata。
优选的, 驱动模块 13 包括第一薄膜晶体管 T1; 第一薄膜晶 体管 T1的栅极连接第一节点 P1 , 另外两极分别连接第二节点 P2 和第三节点 P3; 其中, 第一节点 P1为阔值补偿模块 14、 触摸感 应模块 15的连接点, 第二节点 P2为发光控制模块 12、 阔值补偿 模块 14、 触摸检测模块 16的连接点, 第三节点 P3为发光控制模 块 12、 数据信号输入模块 17的连接点。
显然, 每个薄膜晶体管包括栅极、 源极、 漏极共三个极, 其 中源极和漏极通常是通过电流方向限定的, 而在结构上二者并无 区别, 因此, 本实施例中 "另外两极" 是指薄膜晶体管的源极和 漏极, 但因薄膜晶体管在不同阶段中的电流方向是变化的, 故不 限定其中哪个为源极, 哪个为漏极, 只要它们分别连接至所需位 置即可。
更优选的, 触摸感应模块 15包括第七薄膜晶体管 T7和用于 检测触摸的检测器件,第七薄膜晶体管 T7的栅极连接上一级第一 控制信号, 另外两极分别连接第一节点 P1和检测器件。
其中, 连接 "某信号" 是指电路的该位置与相应的信号线或 端口连接, 从而该信号线或端口连接可将相应的信号传递到该位 置。
其中, 作为本实施例的一种优选方式, "第一控制信号" 可 以是扫描信号。 也就是说, 可用栅极线提供的扫描信号作为第一 控制信号, 这样, 就不必再设置额外的信号线, 可使电路结构简 化。
其中,本级扫描信号 Vs(n)是指对应电路所在像素的栅极线提 供的信号, 而上一级扫描信号 Vs(n-l)是指对应电路所在像素上一 行的像素的栅极线提供的信号, 因此当上一级扫描信号 Vs(n-l)的 电压由高电平变为低电平时,本级扫描信号 Vs(n)的电压正好由低 电平变为高电平。
更优选的, 检测器件为光电二极管 D2或感应电容 C2。
其中, 检测器件是指可根据是否发生触摸而产生不同触摸感 应信号的器件, 其优选可为光电二极管 D2或感应电容 C2, 它们 的具体运作方式在之后详细描述。
更优选的, 发光控制模块 12包括第四薄膜晶体管 T4和第五 薄膜晶体管 T5; 第四薄膜晶体管 T4 的栅极连接第二控制信号 CR2, 另外两极分别连接发光模块 11和第二节点 P2, 第五薄膜晶 体管 T5的栅极连接本级第一控制信号,另外两极分别连接第三节 点 P3和第一电源电压 VSS。
其中, "第一电源电压 VSS" 和 "第二电源电压 VDD" 是指 为电路运行供电的两个参比电压,其中通常第二电源电压 VDD的 电平较高, 即其可作为阳极, 而第一电源电压 VSS的电平较低 (例 如可为接地), 即其可作为阴极。
优选的, 如图 7所示, 电路中使用的各电压满足: 第二电源 电压 00>初始电压 Vini>最大数据电压 VDH>最小数据电压 VDL>第一电源电压 VSS。
其中, "数据电压" 是指由数据线提供的数据信号 Vdata的 电压, 该电压的大小对应像素单元的发光亮度, 故也称为 "灰阶 电压" 。
更优选的, 发光模块 11的有机发光二极管 D1—端连接第四 薄膜晶体管 T4, 另一端连接第二电源电压 VDD。
更优选的, 阔值补偿模块 14包括第二薄膜晶体管 T2和存储 电容 C1; 第二薄膜晶体管 T2的栅极连接第三控制信号 CR3 , 另 外两极分别连接第一节点 P1和第二节点 P2,存储电容 C1两端分 别连接第一节点 P1和第一电源电压 VSS。
更优选的, 触摸检测模块 16包括第三薄膜晶体管 T3; 第三 薄膜晶体管 T3栅极连接上一级第一控制信号,另外两极分别连接 第二节点 P2和初始电压 /检测端口 R/V。
更优选的, 数据信号输入模块 17 包括第六薄膜晶体管 T6; 第六薄膜晶体管 T6的栅极连接本级第一控制信号,另外两极分别 连接数据信号 Vdata和第三节点 P3。
其中, 优选的, 第一薄膜晶体管 Tl、 第二薄膜晶体管 Τ2、 第三薄膜晶体管 Τ3、 第四薄膜晶体管 Τ4、 第六薄膜晶体管 Τ6、 第七薄膜晶体管 Τ7为 Ν型薄膜晶体管; 而第五薄膜晶体管 Τ5为 Ρ型薄膜晶体管。
也就是说,电路中除了第五薄膜晶体管 Τ5外的其他薄膜晶体 管优选均为 Ν型薄膜晶体管, 即其在栅极为高电平时导通, 低电 平时截止; 而第五薄膜晶体管 Τ5则为 Ρ型薄膜晶体管, 即其在栅 极为低电平时导通, 高电平时截止。
当然, 应当理解, 以上薄膜晶体管的类型不是必须的, 若薄 膜晶体管的类型发生变化, 则只要相应的驱动电压也变化即可。 可见, 相对于传统的 6T1C 电路, 本实施例的有机发光二极 管像素电路只是加入了一个额外的薄膜晶体管和检测器件即实现 了将触控功能融入其中, 故其结构简单, 易于实现, 可容易的将 内嵌式触控技术与有机发光二极管显示装置相结合。 下面, 结合上述有机发光二极管像素电路的驱动方法对其进 行进一步解释。 如图 6所示, 该驱动方法具体包括:
S01、 初始化阶段, 其中上一级扫描信号 Vs(n-l)为高电平, 第三控制信号 CR3为高电平,初始电压 /检测端口 R/V提供初始电 压 Vini, 其余控制信号为低电平。
此时,第四薄膜晶体管 T4截止,有机发光二极管 D1不发光; 而第二薄膜晶体管 T2和第三薄膜晶体管 T3导通, 来自初始电压 / 检测端口 R/V的初始电压 Vini为存储电容 C1充电, 相应的第一 薄膜晶体管 T1的栅极也达到初始电压 Vini,从而其进入放大状态 (饱和状态)。
502、 光照阶段, 其中上一级扫描信号 Vs(n-l)为高电平, 其 余控制信号为低电平。
应当注意的是,此时初始电压 /检测端口 R/V提供的信号对电 路运行并无影响, 故此处对其信号并不限定, 但从方便控制的角 度考虑, 初始电压 /检测端口 R/V可继续提供初始电压 Vini。
此时, 第三控制信号 CR3转为低电平,故第二薄膜晶体管 T2 截止, 存储电容 C1不再被充电, 而进入检测阶段。
如图 4所示, 当检测器件为光电二极管 D2时, 若未发生触 摸, 则光电二极管 D2被光照射, 产生漏电流, 存储电容 C1以较 快速度放电; 而若发生触摸, 则照向光电二极管 D2的光被挡住, 光电二极管 D2无漏电流或漏电流较小, 存储电容 C1不放电或放 电较慢; 因此, 根据触摸状况的不同, 存储电容 C1上产生不同的 电压(即触摸感应信号)。
如图 5所示, 当检测器件为感应电容 C2时,其感应过程不同 但原理类似: 若发生触摸, 则感应电容 C2发生变化 (例如电容两 极片间的距离变化) , 相应的, 存储电容 C1上的电压变化; 若未 发生触摸, 则感应电容 C2不变化, 相应的, 存储电容 C1上的电 压也不变; 这样, 根据触摸状况的不同, 存储电容 C1上也可产生 不同的电压(即触摸感应信号)。
503、 检测阶段, 其中上一级扫描信号 Vs(n-l)为高电平, 初 始电压 /检测端口 R/V接收触摸感应信号。
此时, 第三薄膜晶体管 T3导通而第二薄膜晶体管 T2截止, 而第一薄膜晶体管 T1的栅极电压等于存储电容 C1上的电压(即触 摸感应信号), 由此, 第一薄膜晶体管 T1 可对其栅极的电压进行 放大, 初始电压 /检测端口 R/V可通过外接的读取电路读取 (Read) 到第一薄膜晶体管 T1的栅极电压,也就是获得经放大的触摸感应 信号, 从而确定是否发生触摸。
504、 充电阶段, 其中上一级扫描信号 Vs(n-l)为高电平, 第 三控制信号 CR3为高电平,初始电压 /检测端口 R/V提供初始电压 Vini, 其余控制信号为低电平。
此时, 第二薄膜晶体管 T2再次导通, 从而存储电容 C1和第 一薄膜晶体管 T1的栅极再次被充电至 Vini。
505、 写入阶段, 其中本级扫描信号 Vs(n)为高电平, 第三控 制信号 CR3为高电平, 其余控制信号为低电平。
此时, 上一级扫描信号 Vs(n-l)与本级扫描信号 Vs(n)的电平 发生反转, 从而第三薄膜晶体管 T3、 第七薄膜晶体管 Τ7截止, 初始电压 /检测端口 R/V和检测器件与电路断开; 因此, 此时初始 电压 /检测端口 R/V的信号也不影响电路运行。
同时, 第六薄膜晶体管 Τ6导通, 数据信号 Vdata (如来自数据 线)通过第一薄膜晶体管 Tl、 第二薄膜晶体管 Τ2与第一薄膜晶体 管 T1的栅极 (也就是存储电容 C1)连通。
由于最大数据电压 VDH都小于初始电压 Vini (即此时存储电 容 C1的电压), 故存储电容 C1必然会通过数据线放电, 直至电压 达到: Vdata+Vgs, 其中 Vgs为第一薄膜晶体管 T1的栅源电压, 而此时栅源电压即等于第一薄膜晶体管 T1的阔值电压 Vth, 故此 时存储电容 C1上的电压(即第一薄膜晶体管 T1栅极的电压)即等 于: Vdata+Vth。
506、 发光阶段, 其中第二控制信号 CR2为高电平, 其余控 制信号为低电平。
此时, 除第二控制信号 CR2为高电平外, 其他控制信号均为 低电平, 故第六薄膜晶体管 T6、 第二薄膜晶体管 Τ2也截止 (数据 信号 Vdata开始为其他行的像素充电), 第四薄膜晶体管 T4、 第五 薄膜晶体管 Τ5导通, 电流流过有机发光二极管 D1 , 有机发光二 极管 Dl开始发光进行显示。
此时, 第一薄膜晶体管 T1的源极连接第一电源电压 VSS,其 栅极电压如前所述为: Vdata+Vth , 故其栅源电压 Vgs 为: Vdata+Vth-VSS。 而有机发光二极管 Dl的亮度是由流过其的电流 决定的, 该电流即为第一薄膜晶体管 T1的饱和电流 It, 而饱和电 流公式为:
It=k(Vgs-Vth)2/2
= k(Vdata+Vth-VSS-Vth)2/2
= k(Vdata-VSS)2/2
可见, 此时饱和电流 It仅与数据信号 Vdata相关(因为第一电 源电压 VSS为定值), 而与第一薄膜晶体管 T1的阔值电压 Vth无 关, 故以上电路可消除第一薄膜晶体管 T1的阔值电压漂移, 准确 进行显示。 实施例 2:
本实施例提供一种显示面板, 其包括上述的有机发光二极管 像素电路。
本实施例的显示面板包括上述的有机发光二极管像素电路, 故其结构简单, 易于实现, 具有触控功能。 可以理解的是, 以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。

Claims

1. 一种有机发光二极管像素电路, 包括: 发光模块, 其中包 括用于发光的有机发光二极管; 发光控制模块, 其用于控制发光 模块是否发光; 驱动模块, 其用于驱动发光控制模块以控制发光 模块发光; 阈值补偿模块, 其用于对驱动模块进行阈值电压补偿; 和数据信号输入模块, 其用于引入数据信号;
所述有机发光二极管像素电路的特征在于, 还包括: 触摸感应模块, 其用于产生触摸感应信号; 和
触摸检测模块, 其用于检测触摸感应信号, 并为阔值补偿模 块提供初始电压,
其中所述驱动模块还将触摸感应模块产生的触摸感应信号放 大后输送给触摸检测模块。
2. 根据权利要求 1所述的有机发光二极管像素电路, 其特征 在于,
所述触摸感应模块包括第七薄膜晶体管和用于检测触摸的检 测器件, 所述第七薄膜晶体管的栅极连接上一级第一控制信号, 另外两极分别连接第一节点和检测器件; 其中, 所述第一节点为 与阔值补偿模块、 驱动模块的连接点。
3. 根据权利要求 2所述的有机发光二极管像素电路, 其特征 在于,
所述驱动模块包括第一薄膜晶体管; 所述第一薄膜晶体管的 栅极连接第一节点, 另外两极分别连接第二节点和第三节点, 其 中, 第二节点为与发光控制模块、 阔值补偿模块、 触摸检测模块 的连接点, 第三节点为与发光控制模块、 数据信号输入模块的连 接点。
4. 根据权利要求 3所述的有机发光二极管像素电路, 其特征 在于,
所述检测器件为光电二极管或感应电容, 并且所述检测器件 的另一端与第一电源连接。
5. 根据权利要求 3或 4所述的有机发光二极管像素电路, 其 特征在于,
所述发光控制模块包括第四薄膜晶体管和第五薄膜晶体管; 所述第四薄膜晶体管的栅极连接第二控制信号, 另外两极分别连 接发光模块和第二节点, 所述第五薄膜晶体管的栅极连接本级第 一控制信号, 另外两极分别连接第三节点和第一电源电压。
6. 根据权利要求 5所述的有机发光二极管像素电路, 其特征 在于,
所述发光模块的有机发光二极管一端连接所述第四薄膜晶体 管, 另一端连接第二电源电压。
7. 根据权利要求 6所述的有机发光二极管像素电路, 其特征 在于,
所述阔值补偿模块包括第二薄膜晶体管和存储电容; 所述第 二薄膜晶体管的栅极连接第三控制信号, 另外两极分别连接第一 节点和第二节点, 所述存储电容两端分别连接第一节点和第一电 源电压。
8. 根据权利要求 7所述的有机发光二极管像素电路, 其特征 在于,
所述触摸检测模块包括第三薄膜晶体管; 所述第三薄膜晶体 管的栅极连接上一级第一控制信号, 另外两极分别连接第二节点 和初始电压 /检测端口。
9. 根据权利要求 8所述的有机发光二极管像素电路, 其特征 在于,
所述数据信号输入模块包括第六薄膜晶体管; 所述第六薄膜 晶体管的栅极连接本级第一控制信号, 另外两极分别连接数据信 号和所述第三节点。
10. 根据权利要求 9 所述的有机发光二极管像素电路, 其特 征在于,
所述第一控制信号为扫描信号。
11. 根据权利要求 10所述的有机发光二极管像素电路, 其特 征在于,
所述第一薄膜晶体管、 第二薄膜晶体管、 第三薄膜晶体管、 第四薄膜晶体管、 第六薄膜晶体管、 第七薄膜晶体管为 N型薄膜 晶体管;
所述第五薄膜晶体管为 P型薄膜晶体管。
12、 一种显示面板, 其特征在于, 包括权利要求 1至 11中任 意一项所述的有机发光二极管像素电路。
13、 一种有机发光二极管像素电路的驱动方法, 其特征在于, 所述有机发光二极管像素电路为权利要求 11所述的有机发光二极 管像素电路, 且所述驱动方法包括:
初始化阶段, 所述上一级第一控制信号为高电平, 第三控制 信号为高电平, 初始电压 /检测端口提供初始电压, 本级第一控制 信号和第二控制信号为低电平;
光照阶段, 所述上一级第一控制信号为高电平, 本级第一控 制信号、 第二控制信号和第三控制信号为低电平;
检测阶段, 所述上一级第一控制信号为高电平, 本级第一控 制信号、 第二控制信号和第三控制信号为低电平, 初始电压 /检测 端口接收触摸感应信号; 充电阶段, 所述上一级第一控制信号为高电平, 第三控制信 号为高电平, 初始电压 /检测端口提供初始电压, 本级第一控制信 号和第二控制信号为低电平;
写入阶段, 所述本级第一控制信号为高电平, 第三控制信号 为高电平, 上一级第一控制信号和第二控制信号为低电平;
发光阶段, 所述第二控制信号为高电平, 本级第一控制信号、 上一级第一控制信号和第三控制信号为低电平。
14. 根据权利要求 13所述的驱动方法, 其特征在于, 所述第二电源电压大于初始电压, 所述初始电压大于最大数 据电压, 所述最大数据电压大于最小数据电压, 所述最小数据电 压大于第一电源电压。
PCT/CN2014/076245 2013-12-27 2014-04-25 有机发光二极管像素电路及其驱动方法、显示面板 WO2015096329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/424,789 US9626035B2 (en) 2013-12-27 2014-04-25 OLED pixel circuit, driving method thereof and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310741569.9 2013-12-27
CN201310741569.9A CN103700345B (zh) 2013-12-27 2013-12-27 有机发光二极管像素电路及其驱动方法、显示面板

Publications (1)

Publication Number Publication Date
WO2015096329A1 true WO2015096329A1 (zh) 2015-07-02

Family

ID=50361855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076245 WO2015096329A1 (zh) 2013-12-27 2014-04-25 有机发光二极管像素电路及其驱动方法、显示面板

Country Status (3)

Country Link
US (1) US9626035B2 (zh)
CN (1) CN103700345B (zh)
WO (1) WO2015096329A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413522B (zh) * 2013-07-31 2015-04-22 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN103700345B (zh) 2013-12-27 2015-09-23 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示面板
CN103996376B (zh) 2014-05-14 2016-03-16 京东方科技集团股份有限公司 像素驱动电路、驱动方法、阵列基板及显示装置
US9574757B2 (en) * 2014-06-06 2017-02-21 Konica Minolta, Inc. Organic electroluminescence module, smart device, and illumination device
CN104112427B (zh) 2014-07-21 2017-10-13 京东方科技集团股份有限公司 像素电路及其驱动方法和显示装置
CN104392699B (zh) * 2014-12-15 2018-05-01 合肥鑫晟光电科技有限公司 像素电路及其驱动方法、显示面板和显示装置
CN104575394B (zh) * 2015-02-03 2017-02-22 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN105118438B (zh) * 2015-09-21 2017-07-25 京东方科技集团股份有限公司 像素驱动电路、方法、像素电路和显示装置
CN105843443B (zh) * 2016-03-17 2018-09-11 京东方科技集团股份有限公司 一种触摸感测电路及显示装置
CN106057128B (zh) * 2016-08-24 2018-07-06 中国科学院上海高等研究院 一种电压编程型amoled像素电路及其驱动方法
CN106504703B (zh) * 2016-10-18 2019-05-31 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN106531084B (zh) 2017-01-05 2019-02-05 上海天马有机发光显示技术有限公司 有机发光显示面板及其驱动方法、有机发光显示装置
CN106782273A (zh) 2017-01-18 2017-05-31 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
US11635832B2 (en) 2017-02-17 2023-04-25 Novatek Microelectronics Corp. Method of driving touch panel and touch with display driver system using the same
CN106782333B (zh) * 2017-02-23 2018-12-11 京东方科技集团股份有限公司 Oled像素的补偿方法和补偿装置、显示装置
CN106710522A (zh) * 2017-02-24 2017-05-24 深圳市华星光电技术有限公司 Oled像素驱动电路及像素驱动方法
US10424247B2 (en) 2017-04-28 2019-09-24 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd AMOLED driving circuit and AMOLED display device
CN106910463B (zh) * 2017-04-28 2021-03-05 深圳市华星光电半导体显示技术有限公司 一种amoled驱动电路及显示装置
CN108877649B (zh) * 2017-05-12 2020-07-24 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN107016965B (zh) * 2017-05-26 2019-04-30 深圳市华星光电半导体显示技术有限公司 Oled显示装置的ovss电压降的补偿方法及像素驱动电路
CN107134259B (zh) * 2017-06-28 2019-04-30 京东方科技集团股份有限公司 像素电路、驱动方法、显示模组、驱动方法和显示装置
CN110164370B (zh) * 2018-05-14 2021-08-10 京东方科技集团股份有限公司 一种像素电路、补偿组件、显示装置及其驱动方法
WO2020103132A1 (zh) * 2018-11-23 2020-05-28 深圳市柔宇科技有限公司 一种像素电路、驱动方法及显示面板
CN109545134B (zh) * 2018-11-30 2020-07-03 昆山国显光电有限公司 一种oled显示面板驱动电路及驱动方法
CN112599100A (zh) * 2021-01-07 2021-04-02 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
CN113342212B (zh) * 2021-07-02 2023-03-21 业成科技(成都)有限公司 触控显示模组及其驱动方法、电子设备
CN114241975A (zh) * 2021-11-19 2022-03-25 北京大学深圳研究生院 一种多功能显示的像素电路和***
CN114170939B (zh) * 2021-12-02 2023-05-30 武汉华星光电技术有限公司 环境光监测电路及具有该环境光监测电路的显示面板
WO2023127168A1 (ja) * 2021-12-29 2023-07-06 シャープディスプレイテクノロジー株式会社 表示装置およびその駆動方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100097354A1 (en) * 2008-10-17 2010-04-22 Samsung Mobile Display Co., Ltd. Light sensing circuit, touch panel including the same, and method of driving the light sensing circuit
CN101943974A (zh) * 2009-07-03 2011-01-12 三星移动显示器株式会社 光敏电路、包括光敏电路的触控板和驱动光敏电路的方法
KR20110065768A (ko) * 2009-12-10 2011-06-16 엘지디스플레이 주식회사 터치 센서 내장 표시장치
CN103325343A (zh) * 2013-07-01 2013-09-25 京东方科技集团股份有限公司 一种像素电路、显示装置及像素电路的驱动方法
CN203300192U (zh) * 2013-06-26 2013-11-20 京东方科技集团股份有限公司 有源矩阵有机发光二极管amoled像素单元电路以及显示面板
CN203300191U (zh) * 2013-06-26 2013-11-20 京东方科技集团股份有限公司 有源矩阵有机发光二极管amoled像素单元电路以及显示面板
CN103700345A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520490A (ja) * 2003-03-12 2006-09-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エージングに対抗するためにタイミングに有効な光フィードバックを有する発光アクティブマトリクス表示装置
JP4055722B2 (ja) * 2003-11-10 2008-03-05 ソニー株式会社 アクティブマトリクス型有機el表示装置
KR101776064B1 (ko) * 2011-06-10 2017-09-08 삼성디스플레이 주식회사 터치 스크린 패널
CN103295525B (zh) * 2013-05-31 2015-09-30 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN103354078B (zh) * 2013-06-26 2016-01-06 京东方科技集团股份有限公司 有源矩阵有机发光二极管像素单元电路以及显示面板
CN103413524B (zh) * 2013-07-31 2015-06-17 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100097354A1 (en) * 2008-10-17 2010-04-22 Samsung Mobile Display Co., Ltd. Light sensing circuit, touch panel including the same, and method of driving the light sensing circuit
CN101943974A (zh) * 2009-07-03 2011-01-12 三星移动显示器株式会社 光敏电路、包括光敏电路的触控板和驱动光敏电路的方法
KR20110065768A (ko) * 2009-12-10 2011-06-16 엘지디스플레이 주식회사 터치 센서 내장 표시장치
CN203300192U (zh) * 2013-06-26 2013-11-20 京东方科技集团股份有限公司 有源矩阵有机发光二极管amoled像素单元电路以及显示面板
CN203300191U (zh) * 2013-06-26 2013-11-20 京东方科技集团股份有限公司 有源矩阵有机发光二极管amoled像素单元电路以及显示面板
CN103325343A (zh) * 2013-07-01 2013-09-25 京东方科技集团股份有限公司 一种像素电路、显示装置及像素电路的驱动方法
CN103700345A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示面板

Also Published As

Publication number Publication date
US9626035B2 (en) 2017-04-18
US20160041676A1 (en) 2016-02-11
CN103700345B (zh) 2015-09-23
CN103700345A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2015096329A1 (zh) 有机发光二极管像素电路及其驱动方法、显示面板
CN109523956B (zh) 像素电路及其驱动方法、显示装置
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016146053A1 (zh) 显示装置及其像素电路和驱动方法
WO2018205658A1 (zh) 像素电路驱动方法和显示装置
TWI375941B (en) Pixel circuit and display device
WO2015180419A1 (zh) 像素电路及其驱动方法和一种显示装置
KR100801375B1 (ko) 유기 el 소자 및 이의 구동방법
WO2016169388A1 (zh) 像素电路及其驱动方法和显示装置
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016155053A1 (zh) Amoled像素驱动电路及像素驱动方法
KR101413585B1 (ko) 전압 보상형 화소회로 및 그 구동방법
JP2019028454A (ja) 有機発光表示装置とその劣化センシング方法
WO2014205931A1 (zh) 有源矩阵有机发光二极管像素单元电路、显示面板以及电子产品
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2014205950A1 (zh) 有源矩阵有机发光二极管像素单元电路以及显示面板
WO2015192399A1 (zh) 有机发光二极管的像素驱动电路及像素驱动方法
WO2019109657A1 (zh) 像素电路及其驱动方法、显示装置
WO2019184391A1 (zh) 像素电路及其驱动方法、显示面板
WO2019137045A1 (zh) 像素电路及其驱动方法、显示面板
WO2015000275A1 (zh) 一种像素电路、显示装置及像素电路的驱动方法
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2015003465A1 (zh) 一种触摸显示驱动电路、驱动方法及显示装置
WO2014205932A1 (zh) 有源矩阵有机发光二极管像素单元电路、显示面板以及电子产品
WO2014190636A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14424789

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 03.11.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14873850

Country of ref document: EP

Kind code of ref document: A1