WO2015093862A1 - Powder for fuel cell electrode, fuel cell, and methods for producing same - Google Patents

Powder for fuel cell electrode, fuel cell, and methods for producing same Download PDF

Info

Publication number
WO2015093862A1
WO2015093862A1 PCT/KR2014/012515 KR2014012515W WO2015093862A1 WO 2015093862 A1 WO2015093862 A1 WO 2015093862A1 KR 2014012515 W KR2014012515 W KR 2014012515W WO 2015093862 A1 WO2015093862 A1 WO 2015093862A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
powder
cell electrode
metal
manufacturing
Prior art date
Application number
PCT/KR2014/012515
Other languages
French (fr)
Korean (ko)
Inventor
장재명
박주옥
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Publication of WO2015093862A1 publication Critical patent/WO2015093862A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell electrode powder, a fuel cell, and a manufacturing method thereof, and more particularly, to a fuel cell electrode powder made of an amorphous metal, a fuel cell using the same as an electrode, and a manufacturing method thereof.
  • Proton Exchange Membrane Fuel Cells among the hydrogen-powered generators are configured as shown in FIG. 1.
  • the anode and the cathode are material layers for oxidizing hydrogen and reducing oxygen.
  • Anodes and cathodes are key elements in power production.
  • the positive electrode and the negative electrode are generally composed of a carbon support (hereinafter Pt / C) in which nano-sized platinum particles are dispersed.
  • the anode and cathode composed of Pt / C are superior to any known materials in terms of power production efficiency.
  • carbon monoxide Carbon Monooxide
  • the present invention has been made to solve the above problems of the prior art, the object of the present invention is to eliminate the use of expensive platinum, to reduce the manufacturing cost of the fuel cell.
  • an object of the present invention is to eliminate the carbon carrier, simplify the electrode manufacturing process, and prevent the oxidation of carbon by carbon monoxide to ensure operational reliability.
  • an object of the present invention is to improve the performance of a fuel cell through maximization of catalytic reactivity.
  • the present invention melting the metal; Powdering the molten metal with rapid cooling to form an amorphous metal powder; Precipitating the amorphous metal powder in an electrolyte solution; And it provides a fuel cell electrode powder manufacturing method comprising the step of applying a current to the electrolyte.
  • the metal comprises any one of Ni, Fe, Co and Zr, and at least two or more of Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al.
  • the step of making the amorphous metal powder comprises the steps of making the molten metal into coarse powder using a vacuum atomizer, and the coarse powder into any one of ball milling, jet milling and high energy milling (SPEX milling). Through the step of making the fine powder.
  • the coarse powder has a particle diameter of 10 ⁇ 30 ⁇ m
  • the fine powder has a particle diameter of 0.5 ⁇ 1 ⁇ m.
  • the electrolyte is an acid solution in which acid is mixed with water and the acid has a concentration of 0.05-0.1 M.
  • the acid comprises at least one of H 2 SO 4 in HCl, HNO 3 .
  • a current of 0.3 ⁇ 1 mA / cm 2 of alternating current 10 ⁇ 100 Hz is applied to the electrolyte.
  • the fuel cell electrode powder has a needle-like protrusion having a protruding length of 1 to 6 nm on its surface.
  • the rapid cooling is cooled to 100 ⁇ 10000 °C / s.
  • the present invention comprises the steps of preparing a fuel cell electrode powder by the fuel cell electrode powder manufacturing method; Preparing a slurry by diluting the fuel cell electrode powder in a solvent; And applying the slurry to a hydrogen conductive membrane to form a fuel cell electrode.
  • the solvent is an aqueous or alcoholic solvent.
  • the fuel cell electrode powder is diluted in a concentration of 20 to 40% by weight in the solvent.
  • the slurry is applied to both surfaces of the hydrogen conductive membrane in a thickness of 1 to 3 ⁇ m by screen printing or ink printing.
  • the solvent is evaporated by heating at 100 to 150 ° C. for 2 hours or more.
  • the present invention is made of a powder of an amorphous metal, the metal is any one of Ni, Fe, Co and Zr, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al It provides a fuel cell electrode powder comprising at least two or more.
  • the present invention also provides a fuel cell, wherein the fuel cell electrode powder of claim 15 is applied to a hydrogen conductive membrane.
  • the present invention by replacing the conventional Pt / C, by producing an electrode using AM, it is possible to eliminate the use of expensive Pt which is a problem of the conventional Pt / C electrode, the production cost of the fuel cell There is an effect to reduce the.
  • the present invention since the carbon carrier can be removed, when applied to the negative electrode, it is possible to simplify the manufacturing process of the electrode, it is possible to prevent the oxidation of carbon by carbon monoxide, it is possible to secure operating reliability compared to the Pt / C electrode Do.
  • the present invention is easy to maximize the catalyst reactivity through the change in composition and surface treatment, it is possible to continuously improve the performance of the fuel cell.
  • FIG. 1 is a structural diagram of a PEMFC.
  • FIG. 2 is a view showing a degradation mechanism of a conventional Pt / C electrode.
  • FIG 3 is a view showing a contrast between the conventional Pt / C electrode and the manufacturing process of the AM electrode according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a cyclic voltametry process.
  • FIG. 5 is a view showing the surface state of the powder (fuel powder) for the fuel cell electrode manufactured according to an embodiment of the present invention.
  • an anode and a cathode for PEMFC are manufactured using an amorphous metal (AM) having excellent electrochemical activity.
  • AM amorphous metal
  • Pt / C electrodes have a problem in that reliability is deteriorated by a deterioration mechanism generated during operation of a fuel cell.
  • agglomeration and crystallization do not occur up to 500-600 ° C. depending on the composition when manufacturing the electrode using AM, and there is no risk of dropping out of the catalyst, which is advantageous for securing reliability.
  • the AM can be produced through rapid cooling (100 to 10000 ° C / s) of molten metal.
  • the composition of the metal includes any one of Ni, Fe, Co, and Zr, and at least two or more of Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al. Therefore, the metal has a composition of at least ternary system or more.
  • the composition is Ni 1-wx M1 w M2 x , Fe 1-wx M1 w M2 x , Co 1-wx M1 w M2 x , or Zr 1-wx M1 w M2 x
  • M1 and M2 are two elements selected from Pt, P, Be, Si, C, Ag, Mg, Ga, and Al.
  • the composition is Ni 1-wxyz M1 w M2 x M3 y M4 z , Fe 1-wxyz M1 w M2 x M3 y M4 z , Co 1-wxyz M1 w M2 x M3 y M4 z , or Zr 1-wxyz M1 w M2 x M3 y M4 z , where M1, M2, M3 and M4 are four elements selected from Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, Al becomes
  • AM may be prepared in the form of a plate or powder by rapid cooling.
  • it is preferable to form an electrode by preparing a powder of 0.5 to 1 ⁇ m in order to improve the performance of the PEMFC.
  • Powder is prepared by using a vacuum atomizer (Vacuum Atomizer) to produce a coarse powder (particle diameter: 10 ⁇ 30 ⁇ m), and fine powder (particle diameter: 0.5 ⁇ 1 ⁇ m using ball milling, jet milling, spex milling, etc.) Manufacture.
  • a vacuum atomizer Vauum Atomizer
  • AM can be applied to various compositions when alloying, it is very free to choose the composition for the performance.
  • AM can secure excellent corrosion resistance and mechanical strength that crystalline metal does not have.
  • AM since AM has excellent electrochemical activity for the oxidation / reduction reaction of fuel and oxygen compared to the crystalline metal, microcrystals are distributed on the metal surface, thereby inducing an excellent electrochemical reaction compared to the crystalline metal.
  • the prepared powder is diluted to a concentration of 20 to 40% by weight in an aqueous or ethanol solvent to prepare a slurry.
  • the slurry is coated on both sides of the hydrogen conductive membrane by screen printing and ink printing to a thickness of 1 to 3 ⁇ m, and then heated at 100 to 150 ° C. for at least 2 hours to evaporate the solvent to fix the electrode.

Abstract

The present invention provides a method for producing powder for a fuel cell electrode comprising the steps of: melting a metal; producing amorphous metal powder by pulverizing while rapidly cooling the melted metal; suspending the amorphous metal powder in an electrolyte; and applying a current to the electrolyte. Additionally, the present invention provides a method for producing a fuel cell comprising the steps of: producing powder for a fuel cell electrode by means of said method for producing powder a fuel cell electrode; producing a slurry by diluting the powder for a fuel cell electrode by means of a solvent; and creating a fuel cell electrode by spreading the slurry on a hydrogen-conducting membrane. Moreover, the present invention provides powder for a fuel cell electrode comprising the powder of an amorphous metal, wherein the metal comprises any one from among Ni, Fe, Co and Zr, and two or more from among Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al. DRAWING: Fig. 3 AA Process for producing AM electrode BB Melt metal CC Produce coarse powder DD Increase surface area EE Produce slurry FF Process for producing Pt/C electrode GG Liquefy Pt metal HH Produce graphite powder for deposition II Produce Pt nanopowder (approximately 10 nm) JJ Induce pores and aggregate KK Deposit via dispersion and ultrasound LL Catalyst immobilization

Description

연료전지 전극용 분말, 연료전지 및 그 제조방법Fuel cell electrode powder, fuel cell and manufacturing method thereof
본 발명은 연료전지 전극용 분말, 연료전지 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 비정질 금속으로 이루어지는 연료전지 전극용 분말과 이를 전극으로 이용하는 연료전지와 그 제조방법에 관한 것이다.The present invention relates to a fuel cell electrode powder, a fuel cell, and a manufacturing method thereof, and more particularly, to a fuel cell electrode powder made of an amorphous metal, a fuel cell using the same as an electrode, and a manufacturing method thereof.
수소를 연료로 하는 발전장치 중 양성자교환 맴브레인연료전지(Proton Exchange Membrane Fuel Cells, 이하 PEMFC)는 도 1과 같이 구성된다. 구성요소 중 양극과 음극은 수소의 산화 및 산소의 환원을 위한 소재층이다. 양극과 음극은, 전력 생산에서 핵심적인 요소이다. 양극과 음극은, 나노 크기의 백금입자가 분산된 탄소 지지체(이하 Pt/C)로 구성되어지는 것이 일반적이다.Proton Exchange Membrane Fuel Cells (PEMFC) among the hydrogen-powered generators are configured as shown in FIG. 1. Among the components, the anode and the cathode are material layers for oxidizing hydrogen and reducing oxygen. Anodes and cathodes are key elements in power production. The positive electrode and the negative electrode are generally composed of a carbon support (hereinafter Pt / C) in which nano-sized platinum particles are dispersed.
Pt/C로 구성된 양극과 음극은 전력생산 효율 면에서는 기존에 알려진 어떠한 재료 보다도 우수하다. 그러나, 백금의 고가격으로 인한 제조 단가의 상승의 단점을 가진다. 또한, 도 2에 도시한 바와 같이, 작동 중, 나노 크기의 백금 입자의 성장, 흑연에서 탈락 등으로 성능의 열화가 발생하여, PEMFC의 작동 신뢰성에 단점으로 작용하고 있다. 또한 수소 연료 중에 포함된 일산화 탄소(Carbon Monooxide)에 의한 탄소 지지체의 산화가 발생하여 성능의 열화가 발생한다.The anode and cathode composed of Pt / C are superior to any known materials in terms of power production efficiency. However, there is a disadvantage of an increase in manufacturing cost due to the high price of platinum. In addition, as shown in FIG. 2, performance deteriorates due to growth of nano-sized platinum particles, dropping out of graphite, and the like, which is a disadvantage in operating reliability of PEMFC. In addition, the oxidation of the carbon support by carbon monoxide (Carbon Monooxide) contained in the hydrogen fuel occurs, the performance degradation occurs.
작동신뢰성 문제를 해결하기 위하여 탄소 지지체를 삭제하고, 백금을 스퍼터링하여 촉매를 제작하는 등의 시도가 있었으나 (KR 2002-0092930, KR 2006-0131733), 백금의 스퍼터링시 불가피하게 손실이 발생하여 제조단가의 절감에 있어 한계가 발생한다.In order to solve the operation reliability problem, there have been attempts to manufacture the catalyst by removing the carbon support and sputtering platinum (KR 2002-0092930, KR 2006-0131733), but inevitably loss occurs during the sputtering of platinum. There is a limit to the savings.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 고가의 백금의 사용을 배제하여, 연료전지의 제조 단가를 절감할 수 있도록 하는데 목적이 있다. The present invention has been made to solve the above problems of the prior art, the object of the present invention is to eliminate the use of expensive platinum, to reduce the manufacturing cost of the fuel cell.
또한, 본 발명은, 탄소 담지체를 삭제하여, 전극의 제조공정의 단순화 시키고, 일산화탄소에 의한 탄소의 산화를 방지하여 작동 신뢰성을 확보할 수 있도록 하는데 목적이 있다. In addition, an object of the present invention is to eliminate the carbon carrier, simplify the electrode manufacturing process, and prevent the oxidation of carbon by carbon monoxide to ensure operational reliability.
또한, 본 발명은, 촉매 반응성의 극대화를 통하여, 연료전지의 성능을 향상시키는데 목적이 있다.In addition, an object of the present invention is to improve the performance of a fuel cell through maximization of catalytic reactivity.
상기한 목적을 달성하기 위하여, 본 발명은, 금속을 용융하는 단계; 용융된 금속을 급속 냉각 하면서 분말화하여 비정질 금속 분말로 만드는 단계; 상기 비정질 금속 분말을 전해액 중에 침전시키는 단계; 및 상기 전해액에 전류를 인가하는 단계를 포함하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법을 제공한다. In order to achieve the above object, the present invention, melting the metal; Powdering the molten metal with rapid cooling to form an amorphous metal powder; Precipitating the amorphous metal powder in an electrolyte solution; And it provides a fuel cell electrode powder manufacturing method comprising the step of applying a current to the electrolyte.
바람직하게는, 상기 금속은 Ni, Fe, Co 및 Zr 중 어느 하나와, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, 및 Al중 적어도 둘 이상을 포함한다.Preferably, the metal comprises any one of Ni, Fe, Co and Zr, and at least two or more of Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al.
바람직하게는, 상기 비정질 금속 분말로 만드는 단계는, 용융된 금속을 진공 아토마이저를 이용하여 조분말로 만드는 단계와, 상기 조분말을 볼 밀링, 제트 밀링 및 고에너지 밀링 (SPEX 밀링) 중 어느 하나를 통하여 미분말로 만드는 단계를 포함한다. Preferably, the step of making the amorphous metal powder comprises the steps of making the molten metal into coarse powder using a vacuum atomizer, and the coarse powder into any one of ball milling, jet milling and high energy milling (SPEX milling). Through the step of making the fine powder.
바람직하게는, 상기 조분말은 10~30㎛의 입경을 갖고, 상기 미분말은 0.5~1㎛의 입경을 갖는다. Preferably, the coarse powder has a particle diameter of 10 ~ 30㎛, the fine powder has a particle diameter of 0.5 ~ 1㎛.
바람직하게는, 상기 전해액은 산이 물에 혼합된 산성 용액이고 상기 산은 0.05~0.1 M 농도를 갖는다. Preferably, the electrolyte is an acid solution in which acid is mixed with water and the acid has a concentration of 0.05-0.1 M.
바람직하게는, 상기 산은 HCl, HNO3 중 H2SO4 중 적어도 하나를 포함한다. Preferably, the acid comprises at least one of H 2 SO 4 in HCl, HNO 3 .
바람직하게는, 상기 전류를 인가하는 단계에서는, 상기 전해액에 교류 10~100 Hz의 0.3~1 mA/㎠의 전류를 인가한다. Preferably, in the step of applying the current, a current of 0.3 ~ 1 mA / cm 2 of alternating current 10 ~ 100 Hz is applied to the electrolyte.
바람직하게는, 상기 연료전지 전극용 분말은 표면에 돌출 길이가 1~6nm인 침상 돌기를 갖는다. Preferably, the fuel cell electrode powder has a needle-like protrusion having a protruding length of 1 to 6 nm on its surface.
바람직하게는, 상기 급속 냉각은 100~10000 ℃/s로 냉각한다.Preferably, the rapid cooling is cooled to 100 ~ 10000 ℃ / s.
또한, 본 발명은, 상기 연료전지 전극용 분말 제조방법에 의하여 연료전지 전극용 분말을 제조하는 단계; 상기 연료전지 전극용 분말을 용매에 희석하여 슬러리를 제조하는 단계; 및 상기 슬러리를 수소전도성 멤브레인에 도포하여 연료전지 전극을 성막하는 단계를 포함하는 것을 특징으로 하는 연료전지 제조방법을 제공한다. In addition, the present invention comprises the steps of preparing a fuel cell electrode powder by the fuel cell electrode powder manufacturing method; Preparing a slurry by diluting the fuel cell electrode powder in a solvent; And applying the slurry to a hydrogen conductive membrane to form a fuel cell electrode.
바람직하게는, 상기 용매는 수계 또는 알코올계 용매이다.Preferably, the solvent is an aqueous or alcoholic solvent.
바람직하게는, 상기 슬러리를 제조하는 단계에서는, 상기 연료전지 전극용 분말을 상기 용매에 20~40 중량%의 농도로 희석한다.Preferably, in the step of preparing the slurry, the fuel cell electrode powder is diluted in a concentration of 20 to 40% by weight in the solvent.
바람직하게는, 상기 연료전지 전극을 성막하는 단계에서는, 상기 슬러리를 상기 수소전도성 멤브레인의 양면에 스크린 프린팅 또는 잉크 프린팅으로 1~3㎛의 두께로 도포한다. Preferably, in the forming of the fuel cell electrode, the slurry is applied to both surfaces of the hydrogen conductive membrane in a thickness of 1 to 3 μm by screen printing or ink printing.
바람직하게는, 상기 연료전지 전극을 성막하는 단계에서는, 상기 슬러리를 도포한 후, 100~150℃에서 2 시간 이상 가열하여 용매를 증발시킨다. Preferably, in the forming of the fuel cell electrode, after applying the slurry, the solvent is evaporated by heating at 100 to 150 ° C. for 2 hours or more.
또한, 본 발명은, 비정질 금속의 분말로 이루어지고, 상기 금속은 Ni, Fe, Co 및 Zr 중 어느 하나와, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, 및 Al중 적어도 둘 이상을 포함하는 것을 특징으로 하는 연료전지 전극용 분말을 제공한다.In addition, the present invention is made of a powder of an amorphous metal, the metal is any one of Ni, Fe, Co and Zr, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al It provides a fuel cell electrode powder comprising at least two or more.
또한, 본 발명은 상기 제15항의 연료전지 전극용 분말이 수소전도성 멤브레인에 도포된 것을 특징으로 하는 연료전지를 제공한다.The present invention also provides a fuel cell, wherein the fuel cell electrode powder of claim 15 is applied to a hydrogen conductive membrane.
상기한 구성에 따르면, 본 발명은, 종래의 Pt/C를 대체하여, AM을 활용하여 전극을 제조함으로써, 종래의 Pt/C 전극의 문제점인 고가의 Pt 사용 배제가 가능하여 연료전지의 제조 단가를 절감할 수 있는 효과가 있다. According to the above configuration, the present invention, by replacing the conventional Pt / C, by producing an electrode using AM, it is possible to eliminate the use of expensive Pt which is a problem of the conventional Pt / C electrode, the production cost of the fuel cell There is an effect to reduce the.
또한, 본 발명은, 탄소 담지체의 삭제가 가능하므로 음극에 적용될 경우, 전극의 제조공정을 단순화 시킬 수 있고, 일산화탄소에 의한 탄소의 산화방지가 가능하므로 Pt/C 전극대비 작동 신뢰성의 확보가 가능하다.In addition, the present invention, since the carbon carrier can be removed, when applied to the negative electrode, it is possible to simplify the manufacturing process of the electrode, it is possible to prevent the oxidation of carbon by carbon monoxide, it is possible to secure operating reliability compared to the Pt / C electrode Do.
또한, 본 발명은 조성의 변화 및 표면 처리를 통하여 촉매 반응성의 극대화가 용이하므로 연료전지의 지속적인 성능향상이 가능하다.In addition, the present invention is easy to maximize the catalyst reactivity through the change in composition and surface treatment, it is possible to continuously improve the performance of the fuel cell.
도 1은 PEMFC의 구조도이다.1 is a structural diagram of a PEMFC.
도 2는 종래의 Pt/C 전극의 열화 기구를 보여주는 도면이다. 2 is a view showing a degradation mechanism of a conventional Pt / C electrode.
도 3은 종래의 Pt/C 전극과 본 발명의 일 실시예에 따른 AM 전극의 제조 공정을 대비하여 보여주는 도면이다. 3 is a view showing a contrast between the conventional Pt / C electrode and the manufacturing process of the AM electrode according to an embodiment of the present invention.
도 4는 싸이클릭볼타메트리 공정 개요도이다.4 is a schematic diagram of a cyclic voltametry process.
도 5는 본 발명의 일 실시예에 따라 제조된 연료전지 전극용 분말 (분말 알갱이 하나)의 표면 상태를 보여주는 도면이다.5 is a view showing the surface state of the powder (fuel powder) for the fuel cell electrode manufactured according to an embodiment of the present invention.
본 발명에서는 종래 PEMFC에서 사용되는 Pt/C의 가격문제와 신뢰성 향상을 위하여 전기화학적 활성도가 우수한 비정질 금속(Amorphous Metal, 이하 AM)을 활용하여 PEMFC용 양극 및 음극을 제조한다. Pt/C전극은 연료전지 작동 중 발생하는 열화기구에 의해 신뢰성이 열화되는 문제가 있다. 그러나, AM을 활용하여 전극을 제조시 조성에 따라 500~600℃ 까지 응집 및 결정화가 발생하지 않으며, 촉매의 탈락 위험이 없어 신뢰성의 확보에 유리하다.In the present invention, in order to improve the price and reliability of Pt / C used in the conventional PEMFC, an anode and a cathode for PEMFC are manufactured using an amorphous metal (AM) having excellent electrochemical activity. Pt / C electrodes have a problem in that reliability is deteriorated by a deterioration mechanism generated during operation of a fuel cell. However, agglomeration and crystallization do not occur up to 500-600 ° C. depending on the composition when manufacturing the electrode using AM, and there is no risk of dropping out of the catalyst, which is advantageous for securing reliability.
또한 종래 기술과 대비하여, 탄소 지지체의 삭제가 가능하므로 탄소 지지체의 열화에 의한 성능열화를 방지할 수 있다. 또한, 공정상 탄소의 제조 및 담지 공정의 삭제가 가능하므로 제조 비용 경쟁력이 우수하다 (도 3).In addition, compared to the prior art, since the carbon support can be removed, performance deterioration due to deterioration of the carbon support can be prevented. In addition, it is possible to eliminate the manufacturing and supporting process of carbon in the process, it is excellent in manufacturing cost competitiveness (Fig. 3).
AM은 용융된 금속을 급속 냉각 (100 ~ 10000 ℃/s)을 통하여 제조 할 수 있다. 여기서, 금속의 조성은 Ni, Fe, Co 및 Zr 중 어느 하나와, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, 및 Al중 적어도 둘 이상을 포함한다. 따라서, 금속은 적어도 3원계 이상의 조성을 갖는다. 예컨대, 3원계 조성을 갖는 금속의 경우, 그 조성은 Ni1-w-xM1wM2x, Fe1-w-xM1wM2x, Co1-w-xM1wM2x, 또는 Zr1-w-xM1wM2x 이며 이때 M1 및M2는 Pt, P, Be, Si, C, Ag, Mg, Ga, Al에서 선택된 2종의 원소가 된다. 또한, 5 원계 조성을 갖는 금속의 경우, 그 조성은 Ni1-w-x-y-zM1wM2xM3yM4z, Fe1-w-x-y-zM1wM2xM3yM4z, Co1-w-x-y-zM1wM2xM3yM4z, 또는 Zr1-w-x-y-zM1wM2xM3yM4z이며 이때 M1,M2,M3 및M4는 Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, Al에서 선택된 4종의 원소가 된다. AM can be produced through rapid cooling (100 to 10000 ° C / s) of molten metal. Here, the composition of the metal includes any one of Ni, Fe, Co, and Zr, and at least two or more of Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al. Therefore, the metal has a composition of at least ternary system or more. For example, in the case of a metal having a ternary composition, the composition is Ni 1-wx M1 w M2 x , Fe 1-wx M1 w M2 x , Co 1-wx M1 w M2 x , or Zr 1-wx M1 w M2 x At this time, M1 and M2 are two elements selected from Pt, P, Be, Si, C, Ag, Mg, Ga, and Al. In addition, in the case of a metal having a five-membered composition, the composition is Ni 1-wxyz M1 w M2 x M3 y M4 z , Fe 1-wxyz M1 w M2 x M3 y M4 z , Co 1-wxyz M1 w M2 x M3 y M4 z , or Zr 1-wxyz M1 w M2 x M3 y M4 z , where M1, M2, M3 and M4 are four elements selected from Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, Al Becomes
급속 냉각에 의하여 AM을 판형 또는 분말 상으로 제조할 수 있는데, 본 발명에서는 PEMFC의 성능 개선을 위하여 0.5 ~ 1 ㎛ 수준의 분말 상으로 제조하여 전극을 형성하는 것이 바람직하다. 분말의 제조는 진공 아토마이져(Vacuum Atomizer)를 활용하여 조분말(입경: 10~30㎛)을 제작한 후, ball milling, jet milling, spex milling 등을 활용하여 미분말 (입경: 0.5 ~ 1 ㎛)제작한다. AM may be prepared in the form of a plate or powder by rapid cooling. In the present invention, it is preferable to form an electrode by preparing a powder of 0.5 to 1 μm in order to improve the performance of the PEMFC. Powder is prepared by using a vacuum atomizer (Vacuum Atomizer) to produce a coarse powder (particle diameter: 10 ~ 30㎛), and fine powder (particle diameter: 0.5 ~ 1 ㎛ using ball milling, jet milling, spex milling, etc.) Manufacture.
AM은 합금화 시 다양한 조성을 적용할 수 있으므로, 성능향상을 위한 조성 선정이 매우 자유롭다. AM can be applied to various compositions when alloying, it is very free to choose the composition for the performance.
AM은 결정 금속이 가지지 못하는 우수한 내부식성과 기계적 강도를 확보할 수 있다. 또한 AM은 결정금속과 비교하여 연료 및 산소의 산화/환원 반응을 위한 전기화학적 활성도가 우수한 미소결정이 금속 표면에 분포되어 있어 결정계 금속에 비해 우수한 전기화학 반응을 유도할 수 있다.AM can secure excellent corrosion resistance and mechanical strength that crystalline metal does not have. In addition, since AM has excellent electrochemical activity for the oxidation / reduction reaction of fuel and oxygen compared to the crystalline metal, microcrystals are distributed on the metal surface, thereby inducing an excellent electrochemical reaction compared to the crystalline metal.
PEMFC의 전력생산 효율 극대화를 위해서는 분말 형태의 AM의 반응 비표면적 향상이 필수적이며, 이를 위하여 분말을 산성 용액 중에 침전시켜 싸이클릭볼타메트리 공정을 적용한다.(도 4) 반응 비표면적 향상은 싸이클릭볼타메트리 공정에 의하여 표면에 나노크기(1~6nm)의 침상 돌기를 형성함으로서 달성할 수 있다.(도 5) 이때 싸이클릭볼타메트리를 위한 산성 용액으로, 0.05M ~ 0.1M의 HCl, HNO3, H2SO4 산이 물에 혼합된 용액을 전해액으로 활용한다. 싸이클릭볼타메트리시 교류 10~100 Hz의 0.3~1 mA/㎠의 전류를 인가하여 분말의 표면적을 증가시킨다.In order to maximize the power production efficiency of PEMFC, it is necessary to improve the reaction specific surface area of AM in powder form, and to this end, the powder is precipitated in an acidic solution and a cyclic voltammetry process is applied (FIG. 4). It can be achieved by forming a nano-sized (1 ~ 6nm) needle protrusion on the surface by the click voltammetry process (Fig. 5) at this time, as an acid solution for cyclic voltammetry, HCl of 0.05M ~ 0.1M , HNO 3 , H 2 SO 4 acid is used as the electrolyte solution mixed with water. Cyclic voltammetry increases the surface area of the powder by applying a current of 0.3-1 mA / cm2 at an alternating current of 10-100 Hz.
제조된 분말을 수계 또는 에탄올계 용매에 중량 20~40 %의 농도로 희석하여 슬러리를 제작한다. 슬러리를 스크린 프린팅 및 잉크 프린팅으로 수소전도성 멤브레인 양면에 1~3 ㎛의 두께로 도포한 후 100~150℃에서 2시간이상 가열하여 용매를 증발 시킨 뒤 고정시켜 전극을 형성한다.The prepared powder is diluted to a concentration of 20 to 40% by weight in an aqueous or ethanol solvent to prepare a slurry. The slurry is coated on both sides of the hydrogen conductive membrane by screen printing and ink printing to a thickness of 1 to 3 μm, and then heated at 100 to 150 ° C. for at least 2 hours to evaporate the solvent to fix the electrode.

Claims (16)

  1. 금속을 용융하는 단계;
    용융된 금속을 급속 냉각 하면서 분말화하여 비정질 금속 분말로 만드는 단계;
    상기 비정질 금속 분말을 전해액 중에 침전시키는 단계; 및
    상기 전해액에 전류를 인가하는 단계를 포함하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    Melting the metal;
    Powdering the molten metal with rapid cooling to form an amorphous metal powder;
    Precipitating the amorphous metal powder in an electrolyte solution; And
    The fuel cell electrode powder manufacturing method comprising the step of applying a current to the electrolyte.
  2. 제1항에 있어서,
    상기 금속은 Ni, Fe, Co 및 Zr 중 어느 하나와, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, 및 Al중 적어도 둘 이상을 포함하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 1,
    The metal is any one of Ni, Fe, Co and Zr, and at least two or more of Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al for the fuel cell electrode Powder production method.
  3. 제1항에 있어서,
    상기 비정질 금속 분말로 만드는 단계는,
    용융된 금속을 진공 아토마이저를 이용하여 조분말로 만드는 단계와, 상기 조분말을 볼 밀링, 제트 밀링 및 고에너지 밀링 중 어느 하나를 통하여 미분말로 만드는 단계를 포함하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 1,
    The step of making the amorphous metal powder,
    Forming a molten metal into a coarse powder by using a vacuum atomizer, and forming the coarse powder into fine powders through any one of ball milling, jet milling, and high energy milling. Powder production method.
  4. 제3항에 있어서,
    상기 조분말은 10~30㎛의 입경을 갖고, 상기 미분말은 0.5~1㎛의 입경을 갖는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 3,
    The crude powder has a particle size of 10 ~ 30㎛, the fine powder has a particle size of 0.5 ~ 1㎛ characterized in that the fuel cell electrode powder manufacturing method.
  5. 제1항에 있어서,
    상기 전해액은 산이 물에 혼합된 산성 용액이고 상기 산은 0.05~0.1 M 농도를 갖는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 1,
    The electrolyte is an acid solution in which the acid is mixed with water and the acid has a concentration of 0.05 ~ 0.1 M fuel cell electrode powder manufacturing method.
  6. 제5항에 있어서,
    상기 산은 HCl, HNO3 중 H2SO4 중 적어도 하나를 포함하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 5,
    The acid is HCl, HNO 3 H 2 SO 4 of at least one method of producing a powder for a fuel cell electrode comprising the of.
  7. 제1항에 있어서,
    상기 전류를 인가하는 단계에서는, 상기 전해액에 교류 10~100 Hz의 0.3~1 mA/㎠의 전류를 인가하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 1,
    In the step of applying the current, a fuel cell electrode powder manufacturing method, characterized in that for applying a current of 0.3 ~ 1 mA / cm 2 of alternating current 10 ~ 100 Hz.
  8. 제1항에 있어서,
    상기 연료전지 전극용 분말은 표면에 돌출 길이가 1~6nm인 침상 돌기를 갖는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 1,
    The fuel cell electrode powder is a fuel cell electrode powder manufacturing method, characterized in that the protrusion length on the surface having a needle projection of 1 ~ 6nm.
  9. 제1항에 있어서,
    상기 급속 냉각은 100~10000 ℃/s로 냉각하는 것을 특징으로 하는 연료전지 전극용 분말 제조방법.
    The method of claim 1,
    The rapid cooling is a fuel cell electrode powder manufacturing method, characterized in that for cooling to 100 ~ 10000 ℃ / s.
  10. 제1항 내지 제9항 중 어느 한 항의 연료전지 전극용 분말 제조방법에 의하여 연료전지 전극용 분말을 제조하는 단계;
    상기 연료전지 전극용 분말을 용매에 희석하여 슬러리를 제조하는 단계; 및
    상기 슬러리를 수소전도성 멤브레인에 도포하여 연료전지 전극을 성막하는 단계를 포함하는 것을 특징으로 하는 연료전지 제조방법.
    Preparing a fuel cell electrode powder according to any one of claims 1 to 9;
    Preparing a slurry by diluting the fuel cell electrode powder in a solvent; And
    And depositing a fuel cell electrode by applying the slurry to a hydrogen conductive membrane.
  11. 제10항에 있어서,
    상기 용매는 수계 또는 알코올계 용매인 것을 특징으로 하는 연료전지 제조방법.
    The method of claim 10,
    The solvent is a fuel cell manufacturing method, characterized in that the aqueous or alcohol solvent.
  12. 제10항에 있어서,
    상기 슬러리를 제조하는 단계에서는, 상기 연료전지 전극용 분말을 상기 용매에 20~40 중량%의 농도로 희석하는 것을 특징으로 하는 연료전지 제조방법.
    The method of claim 10,
    In the preparing of the slurry, the fuel cell electrode powder is diluted to a concentration of 20 to 40% by weight in the solvent.
  13. 제10항에 있어서,
    상기 연료전지 전극을 성막하는 단계에서는, 상기 슬러리를 상기 수소전도성 멤브레인의 양면에 스크린 프린팅 또는 잉크 프린팅으로 1~3㎛의 두께로 도포하는 것을 특징으로 하는 연료전지 제조방법.
    The method of claim 10,
    In the forming of the fuel cell electrode, the slurry is coated on both sides of the hydrogen conductive membrane by screen printing or ink printing, characterized in that the fuel cell manufacturing method characterized in that the coating.
  14. 제10항에 있어서,
    상기 연료전지 전극을 성막하는 단계에서는, 상기 슬러리를 도포한 후, 100~150℃에서 2 시간 이상 가열하여 용매를 증발시키는 것을 특징으로 하는 연료전지 제조방법.
    The method of claim 10,
    In the forming of the fuel cell electrode, after applying the slurry, the fuel cell manufacturing method characterized in that the solvent is evaporated by heating at 100 ~ 150 ℃ for 2 hours or more.
  15. 비정질 금속의 분말로 이루어지고, 상기 금속은 Ni, Fe, Co 및 Zr 중 어느 하나와, Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, 및 Al중 적어도 둘 이상을 포함하는 것을 특징으로 하는 연료전지 전극용 분말.Made of a powder of amorphous metal, the metal comprising any one of Ni, Fe, Co, and Zr, and at least two or more of Pd, Pt, P, Be, Si, C, Ag, Mg, Ga, and Al Powder for fuel cell electrode, characterized in that.
  16. 제15항의 연료전지 전극용 분말이 수소전도성 멤브레인에 도포된 것을 특징으로 하는 연료전지.A fuel cell according to claim 15, wherein the fuel cell electrode powder is coated on a hydrogen conductive membrane.
PCT/KR2014/012515 2013-12-18 2014-12-18 Powder for fuel cell electrode, fuel cell, and methods for producing same WO2015093862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0157889 2013-12-18
KR20130157889 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093862A1 true WO2015093862A1 (en) 2015-06-25

Family

ID=53403119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012515 WO2015093862A1 (en) 2013-12-18 2014-12-18 Powder for fuel cell electrode, fuel cell, and methods for producing same

Country Status (1)

Country Link
WO (1) WO2015093862A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100374A (en) * 2000-07-21 2002-04-05 Japan Storage Battery Co Ltd Electrode for fuel cell and its manufacturing method
JP2003331855A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Cathode catalyst for solid polymer fuel cell and solid polymer fuel cell
KR20100108055A (en) * 2009-03-27 2010-10-06 삼성전자주식회사 Electrode catalyst for fuel cell, process for preparing electrode catalyst and fuel cell including electrode comprising electrode catalyst
JP2011092940A (en) * 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The Cathode electrode catalyst for fuel cell and fuel cell using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100374A (en) * 2000-07-21 2002-04-05 Japan Storage Battery Co Ltd Electrode for fuel cell and its manufacturing method
JP2003331855A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Cathode catalyst for solid polymer fuel cell and solid polymer fuel cell
KR20100108055A (en) * 2009-03-27 2010-10-06 삼성전자주식회사 Electrode catalyst for fuel cell, process for preparing electrode catalyst and fuel cell including electrode comprising electrode catalyst
JP2011092940A (en) * 2010-12-27 2011-05-12 Furukawa Electric Co Ltd:The Cathode electrode catalyst for fuel cell and fuel cell using the same

Similar Documents

Publication Publication Date Title
Chen et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting
Li et al. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
Wang et al. Strategies toward high‐performance cathode materials for lithium–oxygen batteries
US11600810B2 (en) Ultrathin lithium composite and preparation method and use thereof
Ye et al. Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices
TWI385851B (en) Solid oxide fuel cell and manufacture method thereof
US9502719B2 (en) Cathode catalysts for fuel cell application derived from polymer precursors
Jukk et al. Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets
Wang et al. Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation
US20180083292A1 (en) Cell catalyst composition and manufacturing method thereof, electrode material, and fuel cell
JP2016003396A (en) Synthesis of alloy nanoparticles as stable core for core-shell electrode catalysts
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
KR101495755B1 (en) Catalyst for generating hydrogen, hydrogen generating device, and method of manufactuing the catalyst
Ren et al. Li‐breathing air batteries catalyzed by mnnife/laser‐induced graphene catalysts
KR20130039456A (en) Nitrogen doped core/shell nanostructure catalyst and its preparation method
US11111576B2 (en) Method for producing nanostructured layers
Vu et al. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity
JP2008183508A (en) Composite material and its manufacturing method
WO2006129413A1 (en) Electrochemical electrode utilizing nickeliferous nanostructure of dendritic structure in active layer thereof and process for producing the same
JP2011092940A (en) Cathode electrode catalyst for fuel cell and fuel cell using the same
Gao et al. Oxide-derived nanostructured metallic-glass electrodes for efficient electrochemical hydrogen generation
Wen et al. Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg-H2O2 semi-fuel cell
Li et al. RETRACTED: Atomic layer deposition of NiS2 nanoparticles on surface-modified MoS2 nanosheets for improved electrocatalytic hydrogen evolution reaction in acid media
JP2012035178A (en) Method for manufacturing catalyst, and catalyst
JP2017091736A (en) Laminate and method for producing the same, membrane-electrode assembly for fuel cell, polymer electrolyte fuel cell, and direct methanol fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872508

Country of ref document: EP

Kind code of ref document: A1