WO2015093259A1 - 超音波プローブとその素子回路、並びに、それを利用した超音波診断装置 - Google Patents

超音波プローブとその素子回路、並びに、それを利用した超音波診断装置 Download PDF

Info

Publication number
WO2015093259A1
WO2015093259A1 PCT/JP2014/081586 JP2014081586W WO2015093259A1 WO 2015093259 A1 WO2015093259 A1 WO 2015093259A1 JP 2014081586 W JP2014081586 W JP 2014081586W WO 2015093259 A1 WO2015093259 A1 WO 2015093259A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
circuit
ultrasonic probe
transducer
current source
Prior art date
Application number
PCT/JP2014/081586
Other languages
English (en)
French (fr)
Inventor
琢真 西元
五十嵐 豊
徹 矢崎
今川 健吾
勇作 勝部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/102,542 priority Critical patent/US10799213B2/en
Priority to JP2015553451A priority patent/JP6163563B2/ja
Publication of WO2015093259A1 publication Critical patent/WO2015093259A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4405Device being mounted on a trolley
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental

Definitions

  • the present invention relates to an ultrasonic probe and its element circuit, and an ultrasonic diagnostic apparatus using the same, and more particularly to a technique for miniaturizing the ultrasonic probe and its element circuit.
  • Ultrasonic diagnostic apparatuses are widely used as X-ray CT apparatuses, MRI apparatuses, and the like as apparatuses capable of observing the inside of a living body easily and in real time, and in recent years, from conventional image diagnosis, puncture observation
  • the application has been expanded to use for treatment support such as contrast medium observation.
  • ultrasonic diagnostic apparatuses are required to have higher image quality than ever before.
  • Patent Document 1 there is a medical diagnostic system that allows various data used in an ultrasonic diagnostic apparatus to be effectively used by an external apparatus without constructing a large-scale medical system. Proposed.
  • the ultrasonic probe that constitutes the detection unit in the ultrasonic diagnostic apparatus includes a large number of two-dimensionally arranged element circuits including a transmission circuit that drives the vibrator together with the vibrator. It is also composed of a so-called 2D array IC. Therefore, in particular, in an ultrasonic probe of an ultrasonic diagnostic apparatus that is required to have high image quality, the number of element circuits has reached about 10,000 with the reduction in size of the vibrator. It has been pointed out that the size of the 2D array IC is greatly increased, and further, the cost is increased.
  • the present invention has been achieved in view of the above-described problems in the prior art, and is particularly applicable to an ultrasonic probe that requires high image quality, and greatly increases the size of a 2D array IC. It is possible to form a large number of transducers and transmission circuits that drive them without having to do so, and to provide a technology that enables cost reduction. More specifically, this technology is adopted. It is an object of the present invention to provide an ultrasonic probe, an element circuit thereof, and an ultrasonic diagnostic apparatus using the ultrasonic probe.
  • a 2D array transducer in which a plurality of transducers are arranged two-dimensionally and each transducer of the 2D array transducer are different from each other with a predetermined delay amount.
  • a 2D array IC is provided that includes a drive circuit provided for each and a common current source that supplies a drive current to the vibrator of the 2D array vibrator on the IC substrate.
  • An ultrasonic probe is provided in which the number n of common current sources formed on the IC substrate is smaller than the number N of drive circuits formed on the IC substrate.
  • an IC for driving each transducer of a 2D array transducer in which a plurality of transducers are two-dimensionally arranged with a predetermined delay amount at different timings.
  • An element circuit formed on a substrate each of which includes a transmission circuit provided for each transducer of the 2D array transducer, a delay control circuit that gives the predetermined delay amount, and each transducer And a common current source that supplies a drive current to the transducer of the 2D array transducer, the transmission circuit, the delay control circuit, and the reception circuit are:
  • the common current source is formed by a number n smaller than the number N of transducers of the 2D array transducer.
  • an ultrasonic diagnostic apparatus including at least an apparatus main body including a control unit and an ultrasonic probe electrically connected to the apparatus main body.
  • the ultrasonic probe is provided with the ultrasonic probe or the element circuit described above.
  • an ultrasonic probe and its element circuit which can reduce the cost, and an ultrasonic diagnostic apparatus using the ultrasonic probe.
  • FIG. 1 is a diagram illustrating an overall configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. It is a figure which shows the detailed structure of 2D array IC of the said ultrasonic diagnostic apparatus. It is a figure explaining the outline
  • FIG. 1 attached herewith shows the overall configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • an ultrasonic diagnostic apparatus includes an apparatus main body 200 and an ultrasonic probe 201 which is disposed outside the apparatus main body and is electrically connected between the apparatus main body 200 via an electric wire or the like. It consists of.
  • a CPU Central Processor Unit
  • various power supply circuits which constitute an arithmetic processing unit that controls the entire apparatus and performs individual control
  • a drive circuit that generates a drive signal for the ultrasonic probe, an image processing circuit that processes a signal from the ultrasonic probe, and the like are provided.
  • the apparatus main body 200 has a structure that can be freely moved on the floor surface by a caster or the like attached to the bottom surface thereof.
  • the ultrasonic probe 201 arranged outside the apparatus main body 200 has a large number of transducers (for example, as many as about 10,000) on its surface two-dimensionally ( A 2D array transducer 202 arranged in a plane and a 2D array IC 102 in which circuits for driving the transducers are arranged two-dimensionally (in a plane) are provided.
  • One circuit is electrically connected to one vibrator arranged in two dimensions of the 2D array vibrator 202.
  • FIG. 2 shows a detailed structure of the 2D array IC 102 described above.
  • the 2D array IC 102 includes, for example, a control circuit, I / F circuits 110 (two in this example), a common current source unit 100, and a plurality of subarrays on a semiconductor IC substrate.
  • Each element circuit includes a reception circuit 104, a wave transmission circuit 105, and a delay control circuit 106, as is apparent from the drawing, and element circuits (EL00 to EL07) in the same row.
  • element circuits EL00 to EL07
  • each transducer of the 2D array transducer 202 that inputs a drive signal from the transmission circuit 105 and outputs a reception signal to the reception circuit 104 is denoted by reference numeral 2021.
  • the 2D array transducer 202 see FIG.
  • the common current source unit 100 is usually composed of a high-voltage MOS as shown in FIG. 5 as an example.
  • the wave transmission circuit 105 is composed of, for example, a level shift circuit and a switching element.
  • the drive signal from the traveling wave circuit 105 has a predetermined timing. Is applied. Further, following the traveling wave circuit 105, the traveling wave circuit 20 is delayed by a predetermined delay amount (see the arrow in the figure) based on an externally input signal (see the wave in the figure). Is connected to a delay control circuit 106 that outputs to
  • the drive timing of each transducer 2021 of the 2D array transducer 202 is controlled, and the focus point (that is, the point where the ultrasonic waves overlap) is operated. It is possible to generate an image based on a signal obtained by receiving ultrasonic waves from each focus point.
  • the timing of transmitting the ultrasonic wave from the transducer 2021 of the 2D array transducer 202 is delayed by the respective delay control circuits 106, so that the transducer is driven.
  • the timing is different for each element circuit (EL00 to EL63). An example thereof is shown in FIG. 4 attached herewith, and the operation thereof will be described.
  • an element circuit (EL00) driven at time ⁇ t1 is indicated by reference numeral 501 in the upper part of FIG.
  • element circuits (EL01, EL08, EL09) that are driven at time ⁇ t2 are indicated by reference numeral 502.
  • element circuits (EL03, EL10, EL16, EL17, EL18) that are subsequently driven at time ⁇ t3 are denoted by reference numeral 503.
  • the positive-side current source or negative-side current source of the common current source unit 100 is connected to the positive-side current wiring 101a or the negative-side current by the action of the element circuit (EL00).
  • An electric current is supplied to the transmission circuit 105 via the wiring 101b, a voltage is applied to the transducer 2021 of the 2D array transducer 202, and an ultrasonic wave is transmitted.
  • the positive-side current source or the negative-side current source of the common current source unit 100 supplies current to the transmission circuit 105 via the positive-side current wiring 101a or the negative-side current wiring 101b, and the 2D array transducer 202 The ultrasonic wave is transmitted to the vibrator 2021 via the voltage.
  • the 2D array IC 102 for driving the 2D array transducer 202 the respective element circuits (EL00 to EL62) for driving and controlling each transducer 2021, and these Unlike the element circuit, since it is configured by the common current source unit 100 provided in common to the vibrator, the current source provided in the common current source unit 100 is set to 1 for the vibrator as in the related art. Compared with the case of providing one-to-one, it can be greatly reduced. In particular, since the current source unit 100 is usually composed of a high-voltage MOS element, the conventional structure shows most of the circuit board, but in comparison with that, the current source is shared as in the present invention. By doing so, it is possible to reduce the number thereof, and it is possible to reduce the cost as well as to reduce the size of the IC that is the circuit board.
  • the number of current sources in the common current source unit 100 takes into account the above-described beam forming and the like, in other words, out of the total number N of the transducers 2021 constituting the 2D array transducer 202.
  • Drive out of 64 element circuits (EL00 to EL63) (total number: 64 ⁇ 40 2560) formed in all 40 subarrays 103 (S00 to S39) formed in the 2D array IC 102. It can be seen that the number of current sources should be prepared by the number n of the vibrators to be operated (N> n).
  • the common current source unit 100 when the common current source unit 100 is configured with a positive current source and a negative current source, and these are selectively used, the number of current sources is further increased. Those skilled in the art will readily understand that this can be reduced. Alternatively, depending on the characteristics of the vibrator, the common current source unit 100 can be configured with only a positive current source or a negative current source.
  • the common current source unit 100 is formed by taking it out from the subarray 103 in the 2D array IC 102. Instead of this, for example, FIG. As also shown, it can be provided so as to be inserted into the center of the sub-array 103. According to such a circuit configuration, the electrical distance from each subarray 103 to the common current source unit 100 can be made more uniform, and an ultrasonic probe with better transmission performance can be obtained.
  • the timing of transmitting the ultrasonic wave from the transducer 2021 of the 2D array transducer 202 is set to the lower right direction from the upper left corner (501) in each subarray 103 as shown in FIG.
  • the present invention is not limited to this, and can also be applied to transmission of ultrasonic waves at various timings.
  • each of the common current source units 100 is configured to supply a constant current to eight subarrays 103 arranged in the row direction.
  • the common current source unit 100 uses element circuits provided corresponding to the vibrators 2021 of the 2D array vibrator 202 in the row direction using the subarray 103 (that is, the element circuits (EL00 to EL63) as a unit).
  • the present invention is not limited to this, and the common current source unit 100 includes all the transducers of the 2D array transducer 202, In other words, all the element circuits constituting the 2D array IC 102 need only have a capacity sufficient to serve as a constant current source for the number of vibrators or element circuits that are driven simultaneously.
  • the current source that is conventionally provided for each transmission (element) circuit is configured as a common current source, and By providing a current supply capability that is consumed by the vibrators that are driven simultaneously, the area of the high-voltage MOS element that occupies a large area on the IC substrate is reduced. As a result, the cost was reduced by reducing the circuit size. Accordingly, an ultrasonic diagnostic apparatus that can be connected to a narrow-pitch vibrator and can be further reduced in size and image quality is realized.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments are described in detail for the entire system in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • SYMBOLS 200 Apparatus main body, 201 ... Ultrasonic probe, 2021 ... Vibrator, 202 ... 2D array transducer, 100 ... Common current source part, 101a ... Positive side current wiring, 101b ... Negative side current wiring, 102 ... 2D array IC, DESCRIPTION OF SYMBOLS 103 ... Subarray, 104 ... Reception circuit, 105 ... Transmission circuit, 106 ... Delay control circuit, element circuit ... EL00 to EL63

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Gynecology & Obstetrics (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 高画質化が可能で、サイズの低減や低コスト化を可能にする超音波プローブと素子回路、超音波診断装置を提供する。 複数の振動子を2次元に配置された2Dアレイ振動子と、前記2Dアレイ振動子の各振動子を所定の遅延量をもって異なるタイミングで駆動するため、それぞれに対して設けられた駆動回路と、当該2Dアレイ振動子の振動子に駆動電流を供給する共通電流源とを、IC基板上に形成した2DアレイICとを備えた超音波プローブであって、前記IC基板上に形成された共通電流源の数nが、前記IC基板上に形成された駆動回路の数Nよりも小さい超音波プローブ。

Description

超音波プローブとその素子回路、並びに、それを利用した超音波診断装置
 本発明は、超音波プローブとその素子回路、並びに、それを利用した超音波診断装置に関し、特に、超音波プローブとその素子回路の小型化のための技術に関する。
 超音波診断装置は、X線CT装置やMRI装置等と共に、生体内を容易かつリアルタイムに観察することが出来る装置として広く利用されており、更に、近年においては、従来の画像診断から、穿刺観察、造影剤観察などの治療支援への活用へもその用途を拡大しており、かかる背景からも、超音波診断装置では、従来にも増した高画質化が求められている。
 例えば、以下の特許文献1によれば、大規模な医療システムを構築することなく、超音波診断装置で使用される各種データを外部の装置で有効に活用できるようにする医療用の診断システムが提案されている。
 また、以下の特許文献2によれば、正電圧供給回路及び負電圧供給回路における消費電力を抑制することができる超音波振動子駆動回路として、パルサー回路において、振動子に流し込む電流を電流源で制御し、正負の対称性を向上する技術が既に開示されている。
特開2004-8535号公報 特開2012-239496号公報
 ところで、超音波診断装置において検出部を構成する超音波プローブは、後にも詳細に述べるが、振動子と共に当該振動子を駆動する送波回路等を含む素子回路を、多数、2次元に配置された、所謂、2DアレイICから構成されている。そのため、特に、高画質化が求められている超音波診断装置の超音波プローブでは、振動子の小型化と共に、当該素子回路の数は、約1万個にも達してしまい、このとこが、2DアレイICのサイズが大幅に増大し、更には、高コスト化を招いてしまうなどの課題が指摘されていた。
 そこで、本発明は、上述した従来技術における問題点に鑑みて達成されたものであり、特に、高画質化が求められる超音波プローブにも適用可能であり、2DアレイICのサイズを大幅に増大することなく、振動子やそれを駆動する送波回路を多数形成することを可能とし、もって、低コスト化を可能にする技術を提供するものであり、より具体的には、かかる技術を採用した超音波プローブとその素子回路、更には、それを利用した超音波診断装置を提供することをその目的とする。
 上記の目的を達成するために、本発明によれば、まず、複数の振動子を2次元に配置された2Dアレイ振動子と、前記2Dアレイ振動子の各振動子を所定の遅延量をもって異なるタイミングで駆動するため、それぞれに対して設けられた駆動回路と、当該2Dアレイ振動子の振動子に駆動電流を供給する共通電流源とを、IC基板上に形成した2DアレイICとを備えた超音波プローブであって、前記IC基板上に形成された共通電流源の数nが、前記IC基板上に形成された駆動回路の数Nよりも小さい超音波プローブが提供される。
 また、本発明によれば、上記の目的を達成するため、複数の振動子を2次元に配置された2Dアレイ振動子の各振動子を所定の遅延量をもって異なるタイミングで駆動するための、IC基板上に形成された素子回路であって、前記2Dアレイ振動子の各振動子に対してそれぞれ設けられた送波回路と、前記所定の遅延量を与える遅延制御回路と、前記各振動子からの信号を受信する受信回路と、前記2Dアレイ振動子の振動子に駆動電流を供給する共通電流源を備えたものにおいて、前記送波回路、前記遅延制御回路、及び、前記受信回路は、前記2Dアレイ振動子の振動子の数Nだけ形成され、前記共通電流源は、前記2Dアレイ振動子の振動子の数Nよりも少ない数nだけ形成されている素子回路が提供される。
 加えて、本発明によれば、上記の目的を達成するため、少なくとも制御部を備えた装置本体と、前記装置本体と電気的に接続された超音波プローブとを備えた超音波診断装置であって、前記超音波プローブは、前記に記載した超音波プローブ又は素子回路を備えている超音波診断装置が提供される。
 上述した本発明によれば、高画質化が求められる超音波プローブにも適用可能であり、2DアレイICのサイズを大幅に増大することなく、振動子やそれを駆動する送波回路を多数形成することを可能とし、もって、低コスト化を可能にする超音波プローブとその素子回路、更には、それを利用した超音波診断装置が提供される。
本発明の一実施の形態になる超音波診断装置の全体構成を示す図である。 上記超音波診断装置の2DアレイICの詳細構造を示す図である。 上記2DアレイICを含む超音波プローブによるビーム・フォーミングの概要を説明する図である。 上記超音波プローブを構成する2DアレイICの動作を説明する図である。 上記2DアレイICにおける共通電流源を含む動作を説明する図である。 上記2DアレイICの変形例を示す図である。 上記2DアレイICの他の変形例を示す図である。 上記2DアレイICの更に他の変形例を示す図である。
 以下、本発明の実施の形態について、添付の図面を参照しながら、詳細に説明する。
 添付の図1は、本発明の一実施例になる超音波診断装置の全体構成が示されている。図にも示すように、本発明になる超音波診断装置は、装置本体200と、当該装置本体の外部に配置され、かつ、その間を電線等を介して電気的に接続された超音波プローブ201とから構成される。なお、当該装置本体200の筺体内部には、図示しないが、当該装置全体の制御や個別の制御を行う演算処理部を構成するCPU(Central Processor Unit)や各種の記憶装置、各種の電源回路、超音波プローブの駆動信号を生成する駆動回路、超音波プローブからの信号を処理する画像処理回路等が設けられている。更には、やはり図示しないキーボードやマウス等を含む入力装置や、例えば、液晶ディスプレイ装置203等を含む出力装置を備えている。なお、この装置本体200は、その底面に取り付けられたキャスタ等により、床面上を自在に移動可能な構造となっている。
 当該装置本体200の外部に配置された超音波プローブ201は、図からも明らかなように、その表面に多数(例えば、約1万個にも達する場合もある)の振動子を2次元に(平面状に)配置した2Dアレイ振動子202と、振動子を駆動する回路を2次元に(平面状に)配置多数した2DアレイIC102を備えている。なお、当該2Dアレイ振動子202の2次元に配置した1つの振動子につき、1つの回路が電気的に接続されている。
 続いて、図2には、上述した2DアレイIC102の詳細構造を示す。図の下部に示すように、2DアレイIC102は、例えば、半導体IC基板上に、制御回路、I/F回路110(本例では、2個)と共に、共通電流源部100、そして、複数のサブアレイ103(本例では、5行×8列=40個:S00~S39)が、2次元に配置されている。そして、これらサブアレイS00~S39は、図の上部に示すように、それぞれ、(8×8=)64個の素子回路(EL00~EL63:図には、その一部のみが示されている)が形成されている。
 そして、各素子回路(EL00~EL63)は、図からも明らかなように、受信回路104、送波回路105、遅延制御回路106を含んでおり、そして、同じ行の素子回路(EL00~EL07)は、一対の電流配線、即ち、正側電流配線101aと負側電流配線101bにより、上述した共通電流源部100へ電気的に接続されている。なお、この図中には、説明のため、送波回路105から駆動信号を入力すると共に、受信回路104に対して受信信号を出力する2Dアレイ振動子202の各振動子が、符号2021により示されているが、しかしながら、実際には、上述のように、2DアレイIC102とは異なる2Dアレイ振動子202(図1を参照)に設けられている。また、共通電流源部100は、以下の図5にもその一例が示されるように、通常、高圧MOSにより構成されている。また、送波回路105は、図示のように、例えば、レベルシフト回路とスイッチング素子等から構成されている。
 次に、上記にその構成を説明した超音波プローブ201により行われるビーム・フォーミングの概要について図3を参照しながら説明する。この図からも明らかなように、複数の振動子2011を平面状に配置してなる2Dアレイ振動子202には、走波回路105からの駆動信号(図中の波を参照)が所定のタイミングで印加される。また、この走波回路105の後段には、外部から入力される信号(図中の波を参照)に基づき、それぞれ、所定の遅延量だけ遅延させて(図の矢印を参照)走波回路20へ出力する遅延制御回路106が接続されている。
 かかる超音波プローブの構成によれば、図にも示すように、2Dアレイ振動子202の各振動子2021の駆動タイミングを制御し、もって、フォーカス・ポイント(即ち、超音波が重なり合うポイント)を操作することが出来、そして、各フォーカス・ポイントからの超音波を受信して得られた信号に基づいて、画像を生成することが可能となる。
 ここで、超音波プローブでは、上述したように、2Dアレイ振動子202の振動子2021から超音波を送信するタイミングは、それぞれの遅延制御回路106で遅延制御されることから、振動子を駆動するタイミングは、各素子回路(EL00~EL63)毎に異なる。その一例を、添付の図4に示すと共に、その動作について説明する。
 まず、図4の上段には、時間Δt1で駆動する素子回路(EL00)が符号501で示されている。その後、時間Δt2で駆動する素子回路(EL01、EL08、EL09)が符号502で示されている。更に、その後、時間Δt3で駆動する素子回路(EL03、EL10、EL16、EL17、EL18)が符号503で示されている。
 この時、時間Δt1では、図5にも示すように、素子回路(EL00)の働きにより、共通電流源部100の正側電流源又は負側電流源が、正側電流配線101a又は負側電流配線101bを介して、送波回路105に電流を供給し、2Dアレイ振動子202の振動子2021に電圧を印加して、超音波を送信することとなる。また、図示はしないが、時間Δt2では、3個の素子回路(EL01、EL08、EL09)の働きにより、更に、時間Δt3では、5個の素子回路(EL03、EL10、EL16、EL17、EL18)の働きにより、共通電流源部100の正側電流源又は負側電流源が、正側電流配線101a又は負側電流配線101bを介して、送波回路105に電流を供給し、2Dアレイ振動子202の振動子2021に電圧を印介して、超音波を送信することとなる。
 このように、本発明になる超音波プローブでは、2Dアレイ振動子202を駆動するための2DアレイIC102を、各振動子2021を駆動・制御するそれぞれの素子回路(EL00~EL62)と、これらの素子回路とは異なり、振動子に対して共通に設けられた共通電流源部100により構成したことから、当該共通電流源部100に設ける電流源を、従来のように、振動子に対して1対1で設ける場合と比較し、大幅に縮小することが可能となる。特に、電流源部100は、通常、高圧MOS素子により構成されることから、従来の構造では、回路基板の大半を示すこととなるが、それに比較し、本発明のように電流源を共通化することによれば、その数を減少させることができ、回路基板であるICのサイズの縮小と共に、それにより、低コスト化を図ることが可能となる。
 より具体的には、上記共通電流源部100における電流源の数は、上述したビーム・フォーミング等を考慮に入れ、2Dアレイ振動子202を構成する振動子2021の総数Nのうち、換言すれば、上記2DアレイIC102に形成される40個のサブアレイ103(S00~S39)の全てに形成された64個の素子回路(EL00~EL63)(全数:64×40=2560個)のうち、同時に駆動される振動子の数nの分だけ、電流源の数を用意すればよいことが分かる(N>n)。また、特に、上述した実施例のように、共通電流源部100を正側電流源と負側電流源で構成し、これらを選択的に使用する場合には、電流源の数を、更に、減少することが可能となることは、当業者であれば容易に理解されるであろう。或いは、振動子の特性によっては、共通電流源部100を、正側電流源又は負側電流源だけで構成することも可能である。
 また、上記の例では、特に、上記の図2に示したように、上記共通電流源部100を、2DアレイIC102において、サブアレイ103から取り出して形成したが、これに代えて、例えば、図6にも示すように、サブアレイ103の中央部に挿入するように設けることも可能である。なお、かかる回路構成によれば、各サブアレイ103から共通電流源部100までの電気的な距離をより均一にすることが可能となり、より発信性能に優れた超音波プローブを得ることができる。
 また、上記の例では、2Dアレイ振動子202の振動子2021から超音波を送信するタイミングを、上記図4に示すように、各サブアレイ103において、その左上の角部(501)から右下方向に向かって徐々に広がるものとして説明したが、本発明は、これにのみ限定することなく、その他、様々なタイミングでの超音波の送信にも適用することができる。
 例えば、添付の図7には、同時に駆動される領域801、即ち、行方向において隣接する2個、そして、列方向に隣接する5個(全10個)のサブアレイ103が、順次、図に矢印で示す方向に移動するタイミングで2Dアレイ振動子202の振動子2021を駆動することも可能である。この例では、共通電流源部100は、それぞれ、行方向に配列された8個のサブアレイ103に定電流を供給するように構成されている。そして、この場合には、各行の共通電流源部100は、2個のサブアレイ103、即ち、64×2=128個の素子回路分の容量を備えればよい。
 また、図8は、3行3列分の9個のサブアレイ103からなる矩形の同時駆動領域801が順次移動する例を示しているが、この場合にも、各行の共通電流源部100は、3個のサブアレイ103、即ち、64×3=192個の素子回路分の容量を備えればよい。
 以上の例では、共通電流源部100は、2Dアレイ振動子202の振動子2021に対応して設けられた素子回路を、サブアレイ103(即ち、素子回路(EL00~EL63)を単位として、行方向に並んだ複数のサブアレイに対して定電流を供給するものとして説明したが、本発明は、これに限定することなく、当該共通電流源部100は、2Dアレイ振動子202の全ての振動子、換言すれば、2DアレイIC102を構成する全ての素子回路に対し、同時に駆動される振動子又は素子回路の数の定電流源とし働くに十分な容量を備えていればよい。
 即ち、以上に詳述した本発明になる超音波プローブとその素子回路によれば、従来は各送波(素子)回路毎に設けられていた電流源を、共通電流源として構成し、かつ、同時に駆動する振動子が消費する分の電流供給能力を持つようにすることにより、特に、IC基板上に大きな面積を占有する高圧MOS素子の面積を低減する。これにより、回路サイズを縮小することで、その低コスト化を実現した。また、これに伴い、狭ピッチの振動子への接続を可能とし、もって、更なる小型化や高画質化が可能な超音波診断装置が実現される。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
 200…装置本体、201…超音波プローブ、2021…振動子、202…2Dアレイ振動子、100…共通電流源部、101a…正側電流配線、101b…負側電流配線、102…2DアレイIC、103…サブアレイ、104…受信回路、105…送波回路、106…遅延制御回路、素子回路…EL00~EL63

Claims (10)

  1.  複数の振動子を2次元に配置された2Dアレイ振動子と、
     前記2Dアレイ振動子の各振動子を所定の遅延量をもって異なるタイミングで駆動するため、それぞれに対して設けられた駆動回路と、当該2Dアレイ振動子の振動子に駆動電流を供給する共通電流源とを、IC基板上に形成した2DアレイICとを備えた超音波プローブであって、
     前記IC基板上に形成された共通電流源の数nが、前記IC基板上に形成された駆動回路の数Nよりも小さいことを特徴とする超音波プローブ。
  2.  前記請求項1に記載した超音波プローブにおいて、前記IC基板上に形成された共通電流源の数nは、前記IC基板上に形成されたN個の駆動回路のうち、同一のタイミングで駆動される振動子を駆動する前記駆動回路の電流源として十分な容量を満たすように設定されていることを特徴とする超音波プローブ。
  3.  前記請求項2に記載した超音波プローブにおいて、前記同一タイミングで駆動される振動子は複数個であり、前記IC基板上に形成された共通電流源の数nは、前記複数個の最大値に対応して設定されていることを特徴とする超音波プローブ。
  4.  前記請求項3に記載した超音波プローブにおいて、前記異なるタイミングで駆動する前記振動子の数は、それぞれ、異なっていることを特徴とする超音波プローブ。
  5.  前記請求項3に記載した超音波プローブにおいて、前記異なるタイミングで駆動する前記振動子の数は、同数であることを特徴とする超音波プローブ。
  6.  複数の振動子を2次元に配置された2Dアレイ振動子の各振動子を所定の遅延量をもって異なるタイミングで駆動するための、IC基板上に形成された素子回路であって、
     前記2Dアレイ振動子の各振動子に対してそれぞれ設けられた送波回路と、
     前記所定の遅延量を与える遅延制御回路と、
     前記各振動子からの信号を受信する受信回路と、
     前記2Dアレイ振動子の振動子に駆動電流を供給する共通電流源を備えたものにおいて、
     前記送波回路、前記遅延制御回路、及び、前記受信回路は、前記2Dアレイ振動子の振動子の数Nだけ形成され、
     前記共通電流源は、前記2Dアレイ振動子の振動子の数Nよりも少ない数nだけ形成されていることを特徴とする素子回路。
  7.  前記請求項6に記載した素子回路において、前記前記送波回路、前記遅延制御回路、及び、前記受信回路は、それぞれ、サブアレイとして形成されると共に、前記共通電流源は、前記サブアレイとは異なるIC基板上の領域に形成されていることを特徴とする素子回路。
  8.  前記請求項7に記載した素子回路において、前記共通電流源は、前記IC基板上において、前記サブアレイの中央部に配置されていることを特徴とする素子回路。
  9.  前記請求項6に記載した素子回路において、前記共通電流源は、高圧MOS素子により形成されていることを特徴とする素子回路。
  10.  少なくとも制御部を備えた装置本体と、
     前記装置本体と電気的に接続された超音波プローブとを備えた超音波診断装置であって、
     前記超音波プローブは、前記請求項1~9の何れか一項に記載した超音波プローブ又は素子回路を備えていることを特徴とする超音波診断装置。
PCT/JP2014/081586 2013-12-19 2014-11-28 超音波プローブとその素子回路、並びに、それを利用した超音波診断装置 WO2015093259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/102,542 US10799213B2 (en) 2013-12-19 2014-11-28 Ultrasound probe, element circuit thereof, and ultrasound diagnostic device using same
JP2015553451A JP6163563B2 (ja) 2013-12-19 2014-11-28 超音波プローブとその素子回路、並びに、それを利用した超音波診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013262585 2013-12-19
JP2013-262585 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015093259A1 true WO2015093259A1 (ja) 2015-06-25

Family

ID=53402612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081586 WO2015093259A1 (ja) 2013-12-19 2014-11-28 超音波プローブとその素子回路、並びに、それを利用した超音波診断装置

Country Status (3)

Country Link
US (1) US10799213B2 (ja)
JP (1) JP6163563B2 (ja)
WO (1) WO2015093259A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061414A1 (ja) * 2015-10-05 2018-07-12 株式会社日立製作所 超音波プローブおよびそれを用いた超音波診断装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184570A (ja) * 1991-05-24 1993-07-27 Hewlett Packard Co <Hp> 低過渡現象スイッチングシステム
JP2000316848A (ja) * 1999-05-11 2000-11-21 Hitachi Medical Corp 超音波診断装置
JP2001008934A (ja) * 1999-07-01 2001-01-16 Toshiba Corp 超音波診断装置の送信回路及び送信制御方法
JP2007503242A (ja) * 2003-08-25 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロビームフォーマのための送信アポダイゼイション制御
JP2008289780A (ja) * 2007-05-28 2008-12-04 Toshiba Corp 超音波診断装置および超音波プローブ
JP2013172799A (ja) * 2012-02-24 2013-09-05 Seiko Epson Corp 超音波装置、プローブ、電子機器、診断装置及び処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150683A (ja) * 1986-12-16 1988-06-23 Fuji Electric Co Ltd 超音波送受波整合器
JP4146671B2 (ja) 2002-06-07 2008-09-10 株式会社日立メディコ 医用診断システム
JP5717533B2 (ja) 2011-05-16 2015-05-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波振動子駆動回路及び超音波画像表示装置
CN104470729B (zh) * 2012-07-18 2018-02-06 皇家飞利浦有限公司 用于驱动负载,尤其是驱动超声换能器的驱动器设备和驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184570A (ja) * 1991-05-24 1993-07-27 Hewlett Packard Co <Hp> 低過渡現象スイッチングシステム
JP2000316848A (ja) * 1999-05-11 2000-11-21 Hitachi Medical Corp 超音波診断装置
JP2001008934A (ja) * 1999-07-01 2001-01-16 Toshiba Corp 超音波診断装置の送信回路及び送信制御方法
JP2007503242A (ja) * 2003-08-25 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロビームフォーマのための送信アポダイゼイション制御
JP2008289780A (ja) * 2007-05-28 2008-12-04 Toshiba Corp 超音波診断装置および超音波プローブ
JP2013172799A (ja) * 2012-02-24 2013-09-05 Seiko Epson Corp 超音波装置、プローブ、電子機器、診断装置及び処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017061414A1 (ja) * 2015-10-05 2018-07-12 株式会社日立製作所 超音波プローブおよびそれを用いた超音波診断装置

Also Published As

Publication number Publication date
JP6163563B2 (ja) 2017-07-12
US10799213B2 (en) 2020-10-13
US20160310104A1 (en) 2016-10-27
JPWO2015093259A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
EP3132441B1 (en) Architecture of single substrate ultrasonic imaging devices, related apparatuses
US11828884B2 (en) Ultrasound imaging transducer array with integrated apodization
JP4751671B2 (ja) モザイクセンサ配列走査の制御方法及びデバイス
JP5990929B2 (ja) 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波診断装置
JP6047936B2 (ja) 超音波トランスデューサー素子パッケージ、プローブ、プローブヘッド、電子機器、超音波診断装置および超音波トランスデューサー素子パッケージの製造方法
JP2014161707A (ja) 超音波トランスデューサーデバイス、超音波測定装置、ヘッドユニット、プローブ及び超音波画像装置
US20120277590A1 (en) Beamforming method and apparatus, and medical imaging system
JP6135185B2 (ja) 超音波トランスデューサーデバイス、ヘッドユニット、プローブ、超音波画像装置及び電子機器
JP6398616B2 (ja) 超音波測定装置及び超音波画像装置
JP2014195495A (ja) 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波画像装置
JP6163563B2 (ja) 超音波プローブとその素子回路、並びに、それを利用した超音波診断装置
JP6423543B2 (ja) 超音波探触子および超音波診断装置
US20200025919A1 (en) Two-Dimensional Ultrasound Imaging Transducer Array with a Non-Rectangular Active Sensing Region
JP6465161B2 (ja) 超音波トランスデューサーデバイス及び超音波測定装置
US9252352B2 (en) Ultrasonic transducer device, head unit, probe, and ultrasonic imaging apparatus
JP6364114B2 (ja) 超音波探触子およびそれを備える超音波診断装置
ITMI20102432A1 (it) Sistema di immagine ad ultrasuoni con dati in 4d e corrispondente processo di controllo
JP2001309497A (ja) 超音波プローブおよびこれを用いた超音波診断装置
JP2006524531A (ja) 超音波撮像のための高調波発生可能な二次元(2d)アレイ
Kruizinga et al. Towards 3D ultrasound imaging of the carotid artery using a programmable and tileable matrix array
JP7187350B2 (ja) 超音波プローブ及び超音波診断装置
JP2016107077A (ja) プローブ、及び被検体情報取得装置
JP2014197736A (ja) 超音波トランスデューサーデバイス、超音波トランスデューサーユニット、ヘッドユニット、超音波プローブ、超音波画像装置及び超音波トランスデューサーデバイスの制御方法
JPH04297243A (ja) 超音波診断装置
RACE BEAMFORMERY® 812 812 BEAMFORMER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553451

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102542

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872129

Country of ref document: EP

Kind code of ref document: A1