WO2015087751A1 - 時刻補正装置、計測装置、時刻補正方法 - Google Patents

時刻補正装置、計測装置、時刻補正方法 Download PDF

Info

Publication number
WO2015087751A1
WO2015087751A1 PCT/JP2014/081952 JP2014081952W WO2015087751A1 WO 2015087751 A1 WO2015087751 A1 WO 2015087751A1 JP 2014081952 W JP2014081952 W JP 2014081952W WO 2015087751 A1 WO2015087751 A1 WO 2015087751A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
internal clock
measurement
relational expression
synchronization
Prior art date
Application number
PCT/JP2014/081952
Other languages
English (en)
French (fr)
Inventor
亮太 赤井
鮫島 裕
智博 尾崎
優樹 井上
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2015087751A1 publication Critical patent/WO2015087751A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/26Setting the time according to the time information carried or implied by the radio signal the radio signal being a near-field communication signal
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS

Definitions

  • the present invention relates to a time correction technique for correcting an internal clock of a wireless terminal in a wireless network.
  • wireless sensor networks are used in health monitoring for diagnosing and grasping the health status of structures such as bridges and tunnels.
  • the wireless sensor network is composed of a plurality of wireless sensor nodes. By collecting and analyzing sensor information measured by the plurality of sensor nodes, early detection of abnormality is expected.
  • a sensor node generally used for a wireless sensor network is required to have low power consumption because it is premised on battery driving.
  • it is necessary to perform wireless communication and the power consumption of the wireless communication is generally much larger than the power consumption of other operations during measurement. Therefore, if continuous data is measured at the sensor node and wireless communication is performed for time synchronization at each measurement, there is a problem that power consumption increases.
  • Patent Document 1 has a problem that time synchronization cannot be performed under a situation where wireless communication cannot be performed.
  • the present invention has been made in consideration of the above problems, and can suppress the time of the internal clock of the wireless terminal in the wireless network even in a situation where wireless communication cannot be performed while suppressing power consumption by wireless communication.
  • the purpose is to provide technology.
  • the time correction apparatus is a time correction apparatus that corrects the time of an internal clock of a wireless terminal in a wireless network, and includes a synchronization time information acquisition unit that acquires a correspondence between an internal clock time and a reference time, Time correction means for obtaining a relational expression between the internal clock time and the reference time based on the correspondence between the internal clock time and the reference time at the time, and calculating a reference time corresponding to the internal clock time based on the relational expression. It is characterized by that.
  • the reference time corresponding to the internal clock time at an arbitrary time can be obtained by using the above relational expression.
  • This relational expression can be obtained by only obtaining the correspondence between the internal clock time and the reference time several times. That is, it is not necessary to acquire the reference time by wireless communication at all points where the reference time is required, and the power consumption can be suppressed.
  • the above relational expression includes a relational expression (function) in an arbitrary format as long as it is a relational expression that approximates the internal clock time and the reference time at a plurality of time points acquired by the synchronization time information acquisition means. For example, if the correspondence between the internal clock time and the reference time is two points, a linear expression (straight line) can be adopted as the relational expression. When there are three or more corresponding points, a polynomial obtained by regression analysis such as a least square method or a polynomial obtained by interpolation such as spline interpolation can be employed.
  • a correspondence (second correspondence) between the internal clock time and the reference time is obtained for each of a plurality of correspondence groups each consisting of a correspondence between a plurality of internal clock times and a reference time, and regression analysis is performed using the plurality of second correspondences.
  • the above relational expression may be calculated by interpolation or interpolation.
  • the wireless network in claim 1 is an arbitrary system composed of wireless terminals capable of wireless communication, and although not limited, a wireless sensor network including sensor nodes as wireless terminals can be given as an example.
  • the time correction apparatus may be provided in a wireless terminal having an internal clock for calculating a corresponding reference time, or may be provided in a node different from the wireless terminal.
  • the reference time is a time based on an arbitrary time information source.
  • accurate time information such as Coordinated Universal Time (UTC) or GPS time can be adopted.
  • UTC Coordinated Universal Time
  • GPS time By adopting these times as the reference time, each wireless terminal in the wireless network can be made to coincide with an accurate time.
  • the reference time may be time information deviated from Coordinated Universal Time or GPS time.
  • the same time information acquisition means in claim 1 may be configured to acquire the reference time from a GPS satellite signal or a reference radio wave and acquire the internal clock time at that time, for example.
  • the synchronization time information acquisition unit may acquire the reference time indirectly instead of directly acquiring the reference time. That is, when the time correction device is mounted on a wireless terminal other than the wireless terminal having the internal clock, the wireless terminal acquires the reference time and the internal clock time at that time, and the synchronization time information acquisition means receives the reference time from the wireless terminal. And the correspondence between the internal clock time and the internal clock time.
  • the time correction apparatus is characterized in that the relational expression is a linear expression based on the correspondence between the internal clock time and the reference time at two time points.
  • the time correction apparatus is a polynomial that approximates the correspondence between the internal clock time and the reference time at three or more time points.
  • the reference time at any time point can be calculated more accurately. it can.
  • the time correction unit calculates a reference time corresponding to the internal clock time by using the relational expression obtained at the time correction at a certain time for time correction at another time. It is characterized by that.
  • the internal clock can be corrected with high accuracy using a relational expression based on the correspondence between the internal clock time acquired at a time different from the time when the time correction is performed and the reference time. That is, since the correspondence between the internal clock time and the reference time at the time correction target time is not required, the time can be corrected even if the reference time at the time correction target time cannot be acquired (or is not acquired).
  • the time correction apparatus is characterized in that the time correction means updates the relational expression each time the synchronization time information acquisition means acquires a reference time corresponding to an internal clock time. According to this configuration, the reference time can be calculated based on the latest information.
  • the time correction device configured to use the relational expression based on the most recent predetermined number of correspondences each time the synchronization time information acquisition unit acquires a reference time corresponding to an internal clock time. Is calculated.
  • the most recent predetermined number may be a predetermined number or a number determined (changed) based on other information.
  • the relational expression since the relational expression is calculated based on the most recent predetermined number of correspondences, the relational expression can be obtained based on the correspondence relation close to the current time, and the reference time can be obtained more accurately. Can do.
  • the time correction device is characterized in that the synchronization time information acquisition means acquires the reference time from a synchronization time information sender node.
  • the time correction apparatus can acquire the reference time by wireless communication, and can acquire the reference time with relatively low cost and low power consumption.
  • the time correction device can acquire the reference time information if it can wirelessly communicate with the synchronous time information sender node, restrictions on the installation of the time correction device are reduced.
  • the time correction device is characterized in that the synchronization time information acquisition means acquires the reference time information from a GPS device. Even with this configuration, the time correction apparatus can acquire the reference time information.
  • the measurement device is a measurement device in a wireless network, and includes a measurement unit, an internal clock that provides an internal clock time in its own node, measurement data measured by the measurement unit, and the measurement A measurement data storage means for storing the internal clock time at the time in association with the time correction device according to any one of claims 1 to 8, wherein the time correction device performs the measurement.
  • a reference time corresponding to the internal clock time is calculated.
  • the measurement unit it is possible to acquire the reference time when the measurement is performed by the measurement unit. Since the exact time of measurement can be known, for example, measurement data obtained from a plurality of measurement devices can be aggregated, and analysis based on the measurement data measured at the same time can be performed.
  • the physical quantity measured by the measuring means in claim 9 may be any physical quantity.
  • Examples of the measuring means include an acceleration sensor, a speed sensor, a distance measuring sensor, a stress sensor, an optical sensor, and a temperature sensor.
  • the measurement apparatus further includes measurement data storage means for storing the measurement data measured by the measurement means and the internal clock time when the measurement is performed, and the time correction means includes: A reference time corresponding to an internal clock time at the time of the measurement stored in the measurement data storage means is calculated.
  • the measurement data and the internal clock time are stored in association with each other, and the reference time at the time of measurement can be calculated later. Further, according to this configuration, the reference time at the time of measurement can be calculated using the correspondence between the internal clock time after the time of measurement and the reference time.
  • the measuring device may calculate the reference time based on the above relational expression at the time of measurement.
  • the measurement unit repeatedly performs measurement within a predetermined measurement period, and the time correction unit performs at least the measurement period before, after the measurement period, and during the measurement period.
  • the relational expression is obtained based on the correspondence between the internal clock time and the reference time at a plurality of time points including any one of them. According to this configuration, the reference time during the measurement period can be accurately calculated using the above relational expression.
  • the measurement device is one in which the measurement unit repeatedly performs measurement within a predetermined measurement period, and the time correction unit includes internal components at a plurality of time points including before the measurement period and after the measurement period.
  • the relational expression is obtained based on the correspondence between the clock time and the reference time. According to this configuration, even when the measurement period is long, the reference time at least at the start of measurement and at the end of measurement can be obtained. Therefore, the reference time can be accurately obtained over the entire measurement period.
  • the radio terminal according to claim 12 may further obtain the relational expression based on the correspondence between the internal clock time and the reference time during the measurement period. As the number of corresponding points for obtaining the relational expression increases and the time interval increases, the reference time can be obtained with higher accuracy over a longer period. In the configuration that does not use the correspondence during the measurement period, there is an advantage that it is possible to avoid adversely affecting the measurement by the measurement means by acquiring the reference time.
  • the present invention can be understood as a time correction device or a wireless terminal having at least a part of the above means. Further, the present invention can be understood as a wireless network system having the above wireless terminal. The present invention can also be understood as a time correction method having at least a part of the above processing, a computer program for causing a computer to execute the method, or a computer-readable recording medium storing the computer program.
  • the present invention it is possible to correct the time of the internal clock of the wireless terminal in the wireless network even in a situation where wireless communication cannot be performed while suppressing power consumption by wireless communication.
  • This embodiment is a structure health monitoring system using a sensor network.
  • FIG. 1 the outline
  • the structure health monitoring system has a tree structure as shown in FIG. 1 and is configured to aggregate measurement data acquired by sensor nodes.
  • Examples of structures to be diagnosed by the structure health monitoring system of the present embodiment include outdoor structures such as bridges, tunnels, and railways. In addition to outdoor buildings, machines such as motors and semiconductor equipment may be targeted.
  • the sensor node 10 is a node that measures various physical quantities, and is installed in various places such as a bridge.
  • the measurement data acquired by the sensor node 10 is transmitted to the sink node 30 by wireless communication.
  • the sensor node 10 is low-cost and low-power, whereas the sink node 30 is a node rich in power capacity and computing resources.
  • the time synchronization sender node 20 is a node that acquires a reference time and transmits it to the sensor node 10 as synchronization time information.
  • the time synchronization sender node 20 can accurately synchronize the time of each sensor node 10, and therefore measurement data at the same time can be acquired from each sensor node 10.
  • the overall system configuration is not limited to the above configuration.
  • a plurality of systems shown in FIG. 1 may be prepared, and a server node that acquires sensor data from each sink node may be provided, so that a tree structure with a plurality of layers may be used.
  • measurement data can be analyzed by a sink node or a higher-level server.
  • FIG. 2 is a diagram illustrating functional blocks of the sensor node 10, the time synchronization sender node 20, and the sink node 30 that constitute the wireless sensor network.
  • the time synchronization sender node 20 includes a reference time information acquisition unit 201 and a synchronization time information distribution unit 202.
  • the reference time information acquisition unit 201 acquires time information from, for example, a GPS satellite signal or a standard radio wave. Each node in the wireless sensor network is synchronized at this time. Therefore, the time information acquired by the reference time information acquisition unit 201 is referred to as reference time information or simply as reference time.
  • reference time information acquisition unit 201 When only time synchronization between sensor nodes in the wireless sensor network system is required, it is not always necessary to use an accurate time as a reference time, and any master clock in the system may be used as a reference time. .
  • the synchronization time information distribution unit 202 is a functional unit that distributes the reference time information to the sensor node 10 by wireless communication.
  • the synchronization time information distribution unit 202 may transmit the synchronization time information using an existing well-known protocol (FTSP, SNTP, etc.).
  • the sensor node 10 includes a power supply unit 100, an internal clock 102 as a load unit 101, a measurement unit 103, a measurement data storage unit 104, a synchronization time information acquisition unit 105, a synchronization time information storage unit 106, a time correction processing unit 107, a measurement A data communication unit 108 and a control unit 109 are provided.
  • Each function of the load unit 101 may be realized by an integrated circuit such as an ASIC, may be realized by a processor executing a program stored in a memory, or may be realized by a combination thereof. .
  • the internal clock 102 is a circuit having a clock function, holds and updates internal clock information, and outputs it as a clock signal to each function unit in the apparatus.
  • an internal clock time or a sensor node time it is referred to as an internal clock time or a sensor node time.
  • the measuring unit 103 includes a plurality of sensors 103a.
  • the physical quantity measured by the sensor 103a may be arbitrary, and the sensor 103a is one or more of an acceleration sensor, a speed sensor, a distance measurement sensor, a stress sensor, an optical sensor, a temperature sensor, and the like.
  • the measurement unit 103 stores the data measured by the sensor 103a in the measurement data storage unit 104. At this time, the measurement time is acquired from the internal clock 102, and the measurement data and the internal clock time are stored in association with each other.
  • the synchronization time information acquisition unit 105 acquires the synchronization time information from the time synchronization sender node 20 by wireless communication.
  • the synchronization time information acquisition unit 105 obtains a correspondence relationship between the internal clock time and the reference time from the internal clock time from which the synchronization time information is acquired and the reference time and distribution error obtained from the synchronization time information.
  • the synchronization time information acquired by the synchronization time information acquisition unit 105 and the correspondence between the internal clock time and the reference time are stored in the synchronization time information storage unit 106.
  • a pair of the internal clock time and the reference time indicating the same time is hereinafter referred to as a reference point.
  • the time correction processing unit 107 corrects the internal clock time based on the synchronization time information stored in the synchronization time information storage unit 106.
  • the time correction processing unit 107 calculates a reference time corresponding to the internal clock time (including the current time and the time before and after the current time) at an arbitrary time.
  • the time correction processing unit 107 calculates a reference time corresponding to the internal clock time stored in the measurement data storage unit 104 in association with the measurement data, based on the synchronization time information. Thereby, the exact time (reference time) when measurement is performed by the measurement unit 103 can be obtained. At this time, the internal clock 102 may be adjusted. Details of the time correction processing by the time correction processing unit 107 will be described in detail later.
  • the measurement data communication unit 108 transmits the measurement data subjected to the time correction process to the sink node 30 by wireless communication.
  • the wireless communication system is not particularly limited.
  • the control unit 109 controls the entire process in the sensor node 10. In particular, based on the internal clock, measurement processing by the measurement unit 103, acquisition processing of synchronization time information by the synchronization time information acquisition unit 105, time correction processing by the time correction processing unit 107, and measurement data transmission processing by the measurement data communication unit 108 are performed. Control.
  • the measurement process by the measurement unit 103 is periodically performed. For example, a measurement period of 1 minute can be taken once every 10 minutes. Within each measurement period, measurement is repeatedly performed by the sensor 103a. For example, sensor information is acquired every 50 milliseconds.
  • the specific time intervals shown here are merely examples, and the values may be arbitrary.
  • the acquisition timing of synchronization time information and the timing of time correction processing will be described in detail later.
  • the transmission process of the measurement data may be arbitrary as long as the timing is after the time correction process is performed.
  • the sink node 30 is a node (measurement data receiving node) that receives and aggregates measurement data from the plurality of sensor nodes 10.
  • the sink node 30 is a node that is relatively excellent in power supply capacity and computing resources.
  • the sink node 30 includes a measurement data acquisition unit 301 and a measurement data storage unit 302.
  • the measurement data acquisition unit 301 is a functional unit that receives measurement data transmitted from the sensor node 10.
  • the measurement data acquired by the measurement data acquisition unit 301 is stored in the measurement data storage unit 302.
  • the sink node 30 also has a function unit that transmits measurement data stored in the measurement data storage unit 302 to an external data server.
  • FIG. 3 is a flowchart showing a flow of measurement processing and measurement data transmission processing performed by the sensor node 10. Processing performed by the sensor node 10 will be described with reference to FIG.
  • Sensor node 10 performs continuous measurement periodically. For example, measurement is performed once every 10 minutes for 1 minute. Therefore, the control unit 109 of the sensor node 10 waits for the measurement period to start based on the time information from the internal clock 102 (S1).
  • the synchronization time information acquisition unit 105 acquires the synchronization time information from the time synchronization sender node 20 and stores it in the synchronization time information storage unit 106 (S3). Note that the start of measurement and acquisition of synchronization time information may be performed simultaneously (in parallel), or measurement may be started after acquisition of synchronization time information first. When the synchronization time information is performed first, it is preferable to acquire the synchronization time information before the measurement start time so that the measurement can be started at the designated time.
  • the measurement unit 103 (sensor 103a) periodically acquires measurement data and stores it in the measurement data storage unit 104 (S4).
  • the measurement interval is, for example, 50 milliseconds.
  • the sensor data is stored in association with the internal clock time obtained from the internal clock 102.
  • the control unit 109 determines whether or not a predetermined synchronization time information acquisition timing has arrived during the measurement period (S5).
  • the synchronization time information acquisition unit 105 acquires the synchronization time information from the time synchronization sender node 20 and stores it in the synchronization time information storage unit 106. Note that it is preferable to set the acquisition timing of the synchronization time information and the measurement timing by the measurement unit so that they do not overlap in consideration of the software load.
  • the synchronization time information acquisition unit 105 acquires the synchronization time information from the time synchronization sender node 20 and stores it in the synchronization time information storage unit 106 (S7).
  • the acquisition of the synchronization time information after this measurement period may be performed immediately after the last measurement data acquisition, or may be performed after a certain interval.
  • the time correction processing unit 107 performs time correction processing (S8 to S9). Specifically, a relational expression between the sensor node time and the reference time is derived based on the synchronization time information (a plurality of reference points) stored in the synchronization time information storage unit 106 (S8), and based on this relational expression. Then, a reference time corresponding to the sensor node time stored in the measurement data storage unit 104 in association with the measurement data is calculated (S9). At this time, setting adjustment such as sensitivity correction of the internal clock 102 may be performed.
  • the sensitivity correction is a clock frequency sensitivity correction, and is a process of correcting the time required to advance one clock.
  • measurement data obtained by correcting the sensor node time with the reference time is transmitted from the measurement data communication unit 108 to the sink node (S10).
  • a series of measurement processes in one measurement period is completed by the above process.
  • the sensor node waits until the next measurement period starts.
  • the time correction process and the measurement data transmission process are performed every time one measurement period ends.
  • the time correction process is performed after a plurality of measurement periods are completed. Also good.
  • the measurement data transmission process may also be performed after a plurality of time correction processes are completed.
  • the synchronization time information is acquired before the measurement period, during the measurement period, and after the measurement period. Therefore, a plurality of reference points as shown in FIG. 4A are stored in the synchronization time information storage unit 106.
  • one reference point is acquired before and after the measurement period, and two reference points are acquired during the measurement period.
  • the time correction processing unit 107 calculates a relational expression representing the relationship between the sensor node time and the reference time based on these reference points (that is, the correspondence between the sensor node time and the reference time).
  • the relational expression can be expressed in the form of a function T (L) that gives a reference time T corresponding to an arbitrary internal clock time L.
  • FIG. 4A shows an example in which a straight line (primary expression) representing the relationship between the sensor node time and the reference time is obtained by linear approximation using least square approximation.
  • the relational expression T (L) representing the reference time T corresponding to an arbitrary internal clock time L can be obtained as follows. Note that n is the number of reference points, and Ti and Li represent the reference time and internal clock time for the i-th reference point.
  • relational expression is not limited to a linear expression, and may be approximated by a second or higher order polynomial as shown in FIG. Even in the case of approximation by a second-order or higher-order polynomial, although specific mathematical expressions are omitted, each coefficient can be calculated using the least square method in the same manner as described above. Note that the approximation is not limited to polynomial approximation and may be approximated by a function other than polynomial.
  • relational expression T (L) representing the reference time T corresponding to an arbitrary internal clock time L can be obtained as follows.
  • a polynomial that passes through all reference points using interpolation such as spline interpolation may be used as a relational expression.
  • the time correction processing unit 107 calculates a reference time corresponding to the sensor node time stored in the measurement data storage unit 104 based on the relational expression, and the reference time when the measurement unit 103 performs the measurement. Can be requested.
  • the reference time corresponding to the sensor node time at an arbitrary time can be accurately obtained by only acquiring the synchronization time information from the time synchronization sender node 20 several times. That is, in order to improve the accuracy of time synchronization, it is not necessary to increase the number of times of wireless communication for acquiring synchronization time information. Therefore, accurate time synchronization is possible without increasing the power consumption.
  • the synchronization time information is acquired before and after the measurement period and during the measurement period.
  • the acquisition timing may be arbitrary.
  • a relational expression between the sensor node time and the reference time may be obtained based on a plurality of reference points before the start of the measurement period.
  • the synchronization time information is acquired only in step S3, and steps S5 to S6 and S7 are omitted.
  • the time after the acquisition time of the synchronization time information is corrected. Since the relational expression is obtained before the measurement period, time correction can be performed immediately during the measurement period.
  • the synchronization time information acquisition unit 105 can acquire a plurality of synchronization time information from the time synchronization sender node 20 in a relatively short period of time.
  • a relational expression between the sensor node time and the reference time may be obtained based on a plurality of reference points after the end of the measurement period.
  • the time before the acquisition time of the synchronization time information is corrected.
  • the synchronization time information is acquired only in step S7, and steps S3 and S5 to S6 are omitted. Since the time correction process is performed after the measurement period, the processing load during measurement is reduced. Therefore, it is effective when the processing load during measurement is large, such as when performing high-frequency sampling, and time synchronization processing cannot be performed during measurement (not appropriate).
  • a relational expression between the sensor node time and the reference time may be obtained based on a plurality of reference points during the measurement period.
  • the time before and after the acquisition time of the synchronization time information is corrected.
  • the synchronization time information is acquired only in step S6, and steps S3 and S7 are omitted.
  • the time correction according to the present embodiment is one synchronization time before the measurement period, after the measurement period, or during the measurement period.
  • a relational expression between the sensor node time and the reference time is obtained based on the information group, and can be regarded as a process of correcting the time using this relational expression.
  • reference point groups may be acquired in each of the measurement period, after the measurement period, and during the measurement period, and time correction may be performed using a relational expression obtained therefrom.
  • reference point groups 61, 2, and 63 before, during, and after the measurement period are shown.
  • a correspondence 61a between the internal clock time and the reference time is obtained from a plurality of reference points (black circles in the enlarged view) included in the reference point group 61.
  • correspondences 62a and 63a between the internal clock time and the reference time are obtained from the reference point groups 62 and 63, respectively.
  • a relational expression may be obtained by regression analysis or interpolation using the correspondences 61a, 62a, 63a.
  • the correspondence 61a, 62a, 63a may be determined arbitrarily. For example, a relational expression is calculated from the reference points in each of the reference point groups 61, 62, 63, and an arbitrary point on the relational expression is calculated.
  • the correspondence 61a, 62a, and 63a can be used.
  • reference point groups at a plurality of arbitrary time points such as a combination before and after the measurement period, a combination before and during the measurement period, and a combination during and after the measurement period.
  • the reference time corresponding to the sensor node time at the time of measurement is obtained after the end of the measurement period.
  • the reference time at that time is obtained for each measurement. Since the functional configuration of this embodiment is the same as that of the first embodiment, description thereof is omitted. In the following description, differences from the first embodiment will be mainly described regarding the measurement process and the time correction process.
  • FIG. 7 is a flowchart showing a flow of measurement processing and measurement data transmission processing of the sensor node 10 in the present embodiment. The same number is attached
  • Steps S1 to S3 are the same as in the first embodiment. However, a difference is that a plurality of reference points are acquired in step S3, and a relational expression between the sensor node time and the reference time is obtained based on the plurality of reference points in the next step S11.
  • the reference time at the measurement time can be calculated during the measurement period (S12). If it demonstrates with reference to Fig.8 (a), the two reference points 81 and 82 will be acquired before the measurement period start, and the relational expression 83 will be calculated from these reference points. Therefore, the reference time corresponding to the sensor node time can be calculated using this relational expression 83 immediately after the start of measurement.
  • the point that the synchronization time information is acquired when the acquisition timing of the synchronization time information arrives during the measurement period is the same as in the first embodiment.
  • the relational expression between the sensor node time and the reference time is recalculated (updated) (S12). This will be described with reference to FIG. In FIG. 8B, the timing for acquiring new synchronization time information has arrived, and a new reference point 84 has been acquired. At this time, the relational expression 85 is calculated from the two latest reference points 82 and 84, and thereafter, the reference time corresponding to the sensor node time is calculated using the relational expression 85.
  • the reference time corresponding to the current time can be obtained immediately at any time.
  • the relational expression is calculated from the two most recent reference points.
  • the number of the nearest reference points to calculate the relational expression may be arbitrary.
  • a straight line (primary expression) is used as the relational expression.
  • a relational expression using an arbitrary function as described in the first embodiment can be used.
  • a relational expression may be calculated from corresponding points obtained from two or more reference point groups.
  • measurement data acquisition (S4), synchronization time information acquisition and relational expression calculation (S5 to S6), and reference time corresponding to the internal clock time (S13) are performed in this order. However, these processes may be performed in parallel. Alternatively, the relational expression in steps S5 to S6 may be calculated first to calculate the reference clock at that time simultaneously with the acquisition of the measurement data.
  • the time synchronization sender node is omitted from the sensor network.
  • FIG. 9 shows functional blocks of the sensor node 10 and the sink node 30 according to the present embodiment.
  • the sensor node 10 according to the present embodiment includes a reference time information acquisition unit 110 instead of the synchronization time information acquisition unit 105.
  • the reference time information acquisition unit 110 is a GPS receiver that acquires GPS time from, for example, a GPS satellite signal.
  • the sensor node 10 acquires the reference time directly from a GPS satellite radio wave or the like instead of acquiring the reference time from the time synchronization sender node.
  • the sensor node 10 acquires the reference time directly from a GPS satellite radio wave or the like instead of acquiring the reference time from the time synchronization sender node.
  • any master clock in the system may be used as the reference time.
  • the contents of the process are the same as those in the first and second embodiments.
  • the GPS receiver reference time information acquisition unit
  • the reference time at an arbitrary time is estimated based on the reference time acquired from the GPS receiver at several points.
  • the sensor node 10 may include a synchronization time information acquisition unit that acquires synchronization time information from the time synchronization sender node in addition to the configuration of the present embodiment.
  • the synchronization time information is received from the time synchronization sender node via the synchronization time information acquisition unit, and if it cannot be received, the reference time is obtained from the GPS receiver (reference time information acquisition unit). To get. Thereby, time synchronization can be performed more reliably while suppressing an increase in power consumption in the sensor node.
  • FIG. 10 shows functional blocks of each node in the present embodiment.
  • the structure demonstrated here is a structure based on 1st Embodiment, the same deformation
  • transformation is added also to 2nd and 3rd embodiment.
  • the time correction processing unit 107 is omitted from the sensor node 10 in this embodiment, and the measurement data / synchronized time information communication unit 111 is provided instead of the measurement data communication unit 108.
  • the measurement data / synchronization time information communication unit 111 corresponds to the measurement data stored in the measurement data storage unit 104 and the internal clock time at the time of measurement, and the correspondence between the internal clock time stored in the synchronization time information storage unit 106 and the reference time. (Reference point) is transmitted to the sink node 30.
  • the sync node 30 is different from the first embodiment in that it includes a measurement data / synchronization time information acquisition unit 303 and a time correction processing unit 304.
  • the measurement data / synchronization time information acquisition unit 303 acquires the measurement data and the internal clock time at the time of measurement and the correspondence (reference point) between the internal clock time and the reference time transmitted from the sensor node 10.
  • the time correction processing unit 304 calculates a reference time corresponding to the internal clock time at the measurement data acquisition time of the sensor node 10 using the acquired reference point, and associates the reference time with the measurement data to measure the measurement data.
  • the content of the time correction processing in the time correction processing unit 304 can be performed by the processing described in the first and second embodiments, and thus description thereof is omitted here.
  • the function of acquiring a reference point from the sensor node 10 corresponds to the synchronization time information acquisition means in the present invention.
  • the time correction process at the sensor node 10 can be omitted, advantageous effects such as a reduction in processing load on the sensor node 10 and a reduction in power consumption can be obtained.
  • a wireless sensor network system is used for a health monitoring system of an outdoor structure such as a bridge or a tunnel
  • the application destination of the wireless sensor network system is not limited to the above.
  • the above wireless sensor network system can be applied to a health monitoring system other than outdoor structures such as semiconductor equipment and motors, and any other measurement system.
  • a wireless sensor network system including a sensor node is described as an example.
  • the present invention is applicable to a wireless sensor network system including an arbitrary wireless terminal. That is, a wireless terminal having an internal clock to be corrected does not necessarily have a sensor (measuring unit).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electric Clocks (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 無線ネットワークにおける無線端末の内部クロックの時刻を補正する時刻補正装置であって、内部クロック時刻に対応する基準時刻を取得する同期時刻情報取得手段と、複数の時点における内部クロック時刻と基準時刻の対応に基づいて内部クロック時刻と基準時刻との関係式を求め、当該関係式に基づいて内部クロック時刻に対応する基準時刻を算出する時刻補正手段と、を備える。

Description

時刻補正装置、計測装置、時刻補正方法
 本発明は、無線ネットワークにおける無線端末の内部クロックを補正する時刻補正技術に関する。
 近年、橋梁やトンネルなどの構造物の健康状態を診断・把握するヘルスモニタリングにおいて、無線センサネットワークを用いることが想定されている。無線センサネットワークは、複数の無線センサノードから構成される。これら複数のセンサノードが計測するセンサ情報を集約して解析することで異常の早期発見が期待される。
 健康状態の診断のためには、各センサノードの時刻を正確に同期し、時間軸を揃えることが好ましい。既存の時刻同期手法として、特許文献1に記載のものがある。この技術は、マスタ装置とスレーブ装置の間の通信遅延による影響を排除して、高精度な時刻同期を可能とするものである。
特開2009-111654号公報
 特許文献1の技術を用いることで時刻同期が可能となるが、時刻同期後にセンサノードの内部クロックにずれが生じる場合がある。特に、センサノードが屋外や工場内などに設置される場合には、温度変化などの環境変化によって内部クロックにずれが生じる場合がある。したがって、特許文献1の技術を採用する場合には、計測タイミングなどの同期したいタイミングごとに時刻同期を実施する必要が生じる。
 ところで、一般に無線センサネットワークに用いられるセンサノードにおいては電池駆動が前提となるため低消費電力であることが求められる。時刻同期を行うためには無線通信を行う必要があり、無線通信の消費電力は一般に、計測時その他動作の消費電力に対して非常に大きなものとなっている。したがって、センサノードにおいて連続的なデータを計測し、各計測の度に時刻同期のために無線通信を行うと、消費電力が大きくなってしまうという問題が生じる。
 また特許文献1の技術では、無線通信が行えない状況下では、時刻同期が行えないという問題も生じる。
 本発明は上記課題を考慮してなされたものであり、無線通信による消費電力を抑制しつつ、無線通信が行えない状況下であっても無線ネットワークにおける無線端末の内部クロックの時刻を補正可能な技術を提供することを目的とする。
 請求項1に係る時刻補正装置は、無線ネットワークにおける無線端末の内部クロックの時刻を補正する時刻補正装置であって、内部クロック時刻と基準時刻の対応を取得する同期時刻情報取得手段と、複数の時点における内部クロック時刻と基準時刻の対応に基づいて内部クロック時刻と基準時刻との関係式を求め、当該関係式に基づいて内部クロック時刻に対応する基準時刻を算出する時刻補正手段と、を備えることを特徴とする。
 請求項1に係る時刻補正装置によれば、上記関係式を用いることで、任意の時点における内部クロック時刻に対応する基準時刻を求めることができる。そして、この関係式は、内部クロック時刻と基準時刻との対応を数回取得するだけで求めることができる。すなわち、基準時刻が必要な全ての時点で無線通信によって基準時刻を取得する必要がなくなり、消費電力量を抑制することができる。
 上記の関係式は、同期時刻情報取得手段によって取得した複数の時点における内部クロック時刻と基準時刻を近似した関係式であれば、任意の形式の関係式(関数)を含む。例えば、内部クロック時刻と基準時刻の対応が2点であれば、関係式として一次式(直線)が採用可能である。対応点が3つ以上の場合には、最小二乗法などの回帰分析によって求められる多項式や、スプライン補間などの補間によって求められる多項式を採用可能である。あるいは、複数の内部クロック時刻と基準時刻の対応からなる複数の対応群のそれぞれについて内部クロック時刻と基準時刻の対応(第2の対応)を求め、これら複数の第2の対応を用いて回帰分析や補間などによって上記関係式を算出してもよい。
 請求項1における無線ネットワークは無線通信が可能な無線端末から構成される任意のシステムであり、限定はされないが、センサノードを無線端末として含む無線センサネットワークを例として挙げることができる。
 なお、請求項1に係る時刻補正装置は、対応する基準時刻を算出する内部クロックを有する無線端末に設けられてもよいし、この無線端末とは異なるノードに設けられてもよい。
 基準時刻は、任意の時刻情報源をもとにした時刻である。基準時刻は、例えば、協定世界時(UTC)やGPS時刻のような正確な時刻情報を採用可能である。基準時刻として、これらの時刻を採用することで無線ネットワーク内の各無線端末において正確な時刻に一致させることができる。一方、システム内の各ノードの時刻を一致させることが目的であれば、基準時刻は協定世界時やGPS時刻からずれた時刻情報であっても構わない。
 請求項1における同時刻情報取得手段は、例えば、上記の基準時刻をGPS衛星信号や基準電波から取得し、その時点での内部クロック時刻を取得する構成とすることができる。なお、同期時刻情報取得手段は、基準時刻を直接取得しなくても、間接的に取得するものであってもよい。すなわち、時刻補正装置が前記内部クロックを有する無線端末以外に搭載される場合には、無線端末で基準時刻とその時点の内部クロック時刻を取得し、同期時刻情報取得手段は、無線端末から基準時刻と内部クロック時刻との対応を取得するようにしてもよい。
 請求項2に係る時刻補正装置は、前記関係式が、2つの時点における内部クロック時刻と基準時刻の対応に基づく一次式である、ことを特徴とする。
 請求項2に係る構成によれば、2つの時点における内部クロック時刻と基準時刻の対応を取得するだけで、任意の時点について基準時刻を算出することが可能となる。また、一次式を用いているので、計算処理負荷が軽減する。
 請求項3に係る時刻補正装置は、3つ以上の時点における内部クロック時刻と基準時刻の対応を近似した多項式である、ことを特徴とする。
 請求項3に係る構成によれば、3つ以上の時点における内部クロック時刻と基準時刻の対応から近似した多項式を採用しているので、任意の時点における基準時刻をより精度良くに算出することができる。
 請求項4に係る時刻補正装置は、前記時刻補正手段は、ある時点の時刻補正時に求めた前記関係式を他の時点の時刻補正に用いて、前記内部クロック時刻に対応する基準時刻を算出する、ことを特徴とする。
 請求項4に係る構成によれば、時刻補正を行う時点とは異なる時点において取得された内部クロック時刻と基準時刻の対応に基づく関係式を用いて、内部クロックの補正を精度良く行える。すなわち、時刻補正対象時点での内部クロック時刻と基準時刻の対応を必要しないので、時刻補正対象時点での基準時刻を取得できなくても(あるいは取得しなくても)時刻補正が行える。
 請求項5に係る時刻補正装置は、前記同期時刻情報取得手段が内部クロック時刻に対応する基準時刻を取得する度に、前記時刻補正手段が前記関係式を更新する、ことを特徴とする。この構成によれば、最新の情報に基づいて基準時刻を算出することができる。
 請求項6に係る時刻補正装置は、前記時刻補正手段が、前記同期時刻情報取得手段が内部クロック時刻に対応する基準時刻を取得する度に、直近の所定数の前記対応に基づいて前記関係式を算出する、ことを特徴とする。直近の所定数とは、あらかじめ定められた数であってもよいし、その他の情報に基づいて決定(変更)される数であってもよい。請求項6に係る構成によれば、直近の所定数の対応に基づいて関係式を算出するので、現時点に近しい対応関係に基づいて関係式を求めることができ、基準時刻をより精度良く求めることができる。
 請求項7に係る時刻補正装置は、前記同期時刻情報取得手段が、同期時刻情報センダノードから前記基準時刻を取得する、ことを特徴とする。この構成によれば、時刻補正装置は、無線通信によって基準時刻を取得することができ、比較的低コストおよび低消費電力で基準時刻が取得できる。また、時刻補正装置は同期時刻情報センダノードと無線通信可能であれば基準時刻情報を取得できるので、時刻補正装置の設置に係る制約が軽減される。
 請求項8に係る時刻補正装置は、前記同期時刻情報取得手段は、GPS装置から前記基準時刻情報を取得する、ことを特徴とする。この構成によっても、時刻補正装置は基準時刻情報を取得することが可能である。
 請求項9に係る計測装置は、無線ネットワークにおける計測装置であって、計測手段と、自ノード内に内部クロック時刻を提供する内部クロックと、前記計測手段によって計測された計測データと、当該計測の際の内部クロック時刻とを関連づけて記憶する計測データ記憶手段と、請求項1から8のいずれか1項に記載の時刻補正装置と、を備え、前記時刻補正装置は、前記計測を行った際の内部クロック時刻に対応する基準時刻を算出する、ことを特徴とする。
 請求項9の構成によれば、計測手段によって計測を行った際の基準時刻を取得することができる。計測の正確な時刻が分かるので、例えば、複数の計測装置から得られる計測データを集約して、同時刻に計測された計測データに基づく解析が行える。
 請求項9における計測手段が計測する物理量は、任意の物理量であってよい。計測手段として、例えば、加速度センサ、速度センサ、測距センサ、応力センサ、光センサ、温度センサなどを挙げられる。
 請求項10に係る計測装置は、前記計測手段によって計測された計測データと、当該計測を行った際の内部クロック時刻とを関連づけて記憶する計測データ記憶手段を更に備え、前記時刻補正手段は、前記計測データ記憶手段に記憶された前記計測の際の内部クロック時刻に対応する基準時刻を算出する、ことを特徴とする。
 請求項10の構成によれば、計測手段による計測時には計測データと内部クロック時刻とを関連づけて記憶しておき、事後的に計測時の基準時刻を算出することができる。また、この構成によれば、計測時よりも後の内部クロック時刻と基準時刻の対応を用いて、計測時の基準時刻を算出することができる。
 なお、請求項9に係る計測装置は、計測時に上記関係式に基づいて基準時刻を算出してもよい。
 請求項11に係る無線端末は、前記計測手段が、所定の計測期間内に繰り返し計測を行うものであり、前記時刻補正手段が、前記計測期間前、前記計測期間後、前記計測期間中の少なくともいずれかを含む複数の時点における内部クロック時刻と基準時刻の対応に基づいて、前記関係式を求める、ことを特徴とする。この構成によれば、上記関係式を用いて計測期間中の基準時刻を精度良く算出することができる。
 請求項12に係る計測装置は、前記計測手段が、所定の計測期間内に繰り返し計測を行うものであり、前記時刻補正手段が、前記計測期間前および前記計測期間後を含む複数の時点における内部クロック時刻と基準時刻の対応に基づいて、前記関係式を求める、ことを特徴とする。この構成によれば、計測期間が長い場合であっても、少なくとも計測開始時と計測終了時における基準時刻が得られるので、計測期間全体にわたって基準時刻を精度良く求めることができる。
 請求項12に係る無線端末は、さらに、計測期間中の内部クロック時刻と基準時刻の対応にも基づいて前記関係式を求めてもよい。関係式を求めるための対応点が増え、その時間的な間隔が増えるほど、長い期間にわたって精度良く基準時刻を求めることができる。なお、計測期間中の対応関係を用いない構成では、基準時刻の取得によって計測手段による計測に悪影響を与えることが避けられるという利点がある。
 なお、本発明は、上記手段の少なくとも一部を有する時刻補正装置または無線端末として捉えることができる。また、本発明は上記の無線端末を有する無線ネットワークシステムとして捉えることができる。また、本発明は上記処理の少なくとも一部を有する時刻補正方法、またはその方法をコンピュータに実行させるためのコンピュータプログラム、あるいは当該コンピュータプログラムを記憶したコンピュータ読み取り可能な記録媒体として捉えることもできる。上記構成および処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
 本発明によれば、無線通信による消費電力を抑制しつつ、無線通信が行えない状況下であっても無線ネットワークにおける無線端末の内部クロックの時刻が補正可能となる。
実施形態にかかる構造物ヘルスモニタリングシステムの概要を示す図。 第1および第2の実施形態にかかる無線センサネットワークシステムを構成する各ノードの機能ブロック図。 第1の実施形態のセンサノードにおける処理を示すフローチャート。 第1の実施形態の時刻補正における関係式を説明する図。 第1の実施形態の時刻補正における関係式の別の例を説明する図。 第1の実施形態の時刻補正における関係式の別の例を説明する図。 第2の実施形態のセンサノードにおける処理を示すフローチャート。 第2の実施形態の時刻補正における関係式を説明する図。 第3の実施形態にかかる無線センサネットワークシステムを構成する各ノードの機能ブロック図。 第4の実施形態にかかる無線センサネットワークシステムを構成する各ノードの機能ブロック図。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
<実施形態1>
(全体概要)
 本実施形態はセンサネットワークを用いた構造物ヘルスモニタリングシステムである。図1に、本実施形態の構造物ヘルスモニタリングシステムの概要を示す。構造物ヘルスモニタリングシステムは、図1に示すようにツリー構造を有しておりセンサノードによって取得された計測データが集約される構成となっている。本実施形態の構造物ヘルスモニタリングシステムが診断対象とする構造物として、橋梁・トンネル・鉄道などの屋外構造物が例示できる。また、屋外建造物以外にも、モータや半導体設備など機械を対象としてもよい。
 センサノード10は種々の物理量を計測するノードであり、例えば橋梁などの種々の場所に設置される。センサノード10が取得した計測データは無線通信によりシンクノード30へ送信される。センサノード10は低コスト・低電力であるのに対し、シンクノード30は電力容量や演算資源が豊富なノードである。時刻同期センダノード20は、基準時刻を取得してセンサノード10へ同期時刻情報として送信するノードである。時刻同期センダノード20によって、各センサノード10の時刻を正確に同期することができ、したがって各センサノード10から同時刻での計測データを取得することができる。
 なお、システム全体の構成は上記の構成に限られない。図1に示すシステムを複数用意し、それぞれのシンクノードからセンサデータを取得するサーバノードを設けるなどして、複数階層のツリー構造としてもよい。また、シンクノードやその上位のサーバなどで計測データの解析を行うことができる。
(構成)
 図2は、無線センサネットワークを構成するセンサノード10、時刻同期センダノード20、およびシンクノード30の機能ブロックを示す図である。
 [時刻同期センダノード]
 時刻同期センダノード20は、基準時刻情報取得部201および同期時刻情報配信部202を備える。基準時刻情報取得部201は、例えば、GPS衛星信号や標準電波などから時刻情報を取得する。無線センサネットワーク内の各ノードはこの時刻に同期される。したがって、基準時刻情報取得部201が取得する時刻情報を基準時刻情報あるいは単に基準時刻と称する。なお、無線センサネットワークシステム内のセンサノード間での時刻同期のみが必要な場合は、基準時刻として必ずしも正確な時刻を使用しなくてもよく、システム内の任意のマスタ時計を基準時刻としてもよい。
 同期時刻情報配信部202は、基準時刻情報を無線通信によってセンサノード10へ配信する機能部である。同期時刻情報配信部202は、既存の公知のプロトコル(FTSP、SNTPなど)によって同期時刻情報を送信すればよい。
 [センサノード]
 センサノード10は、電源部100と、負荷部101である内部クロック102、計測部103、計測データ記憶部104、同期時刻情報取得部105、同期時刻情報記憶部106、時刻補正処理部107、計測データ通信部108、制御部109とを備える。負荷部101の各機能は、ASIC等の集積回路によって実現してもよいし、メモリに格納されたプログラムをプロセッサが実行することによって実現してもよいし、これらの組合せによって実現してもよい。
 内部クロック102は、時計機能を持った回路であり、内部の時計情報を保持・更新し、クロック信号として装置内の各機能部へ出力する。以下では、内部クロック102によって示される時刻を基準時刻と区別するために、内部クロック時刻あるいはセンサノード時刻と称する。
 計測部103は、複数のセンサ103aから構成される。センサ103aが計測する物理量は任意であってもよく、センサ103aは加速度センサ、速度センサ、測距センサ、応力センサ、光センサ、温度センサなどのうちのいずれか1つまたは複数である。計測部103は、センサ103aによって計測されたデータを計測データ記憶部104へ記憶する。この際、計測を行った時刻を内部クロック102から取得して、計測データと内部クロック時刻とを関連づけて記憶する。
 同期時刻情報取得部105は、時刻同期センダノード20から同期時刻情報を無線通信によって取得する。同期時刻情報取得部105は、同期時刻情報を取得した内部クロック時刻と、同期時刻情報から得られる基準時刻や配信誤差から、内部クロック時刻と基準時刻との対応関係が得られる。同期時刻情報取得部105が取得した同期時刻情報および内部クロック時刻と基準時刻との対応関係は、同期時刻情報記憶部106に記憶される。なお、同一時刻を示す内部クロック時刻と基準時刻のペアのことを、以下ではリファレンスポイントと称する。
 時刻補正処理部107は、同期時刻情報記憶部106に記憶された同期時刻情報に基づいて、内部クロック時刻の補正処理を行う。時刻補正処理部107は、任意時点の内部クロック時刻(現時点および現時点の前および後の時刻を含む)に対応する基準時刻を算出する。本実施形態では、時刻補正処理部107は、同期時刻情報に基づいて、計測データ記憶部104に計測データと関連づけて記憶されている内部クロック時刻に対応する基準時刻を算出する。これにより、計測部103によって計測を行った際の正確な時刻(基準時刻)を求めることができる。この際、内部クロック102の調整を行ってもよい。時刻補正処理部107による時刻補正処理の詳細については、後ほど詳しく説明する。
 計測データ通信部108は、時刻補正処理が施された計測データを、無線通信によってシンクノード30へ送信する。無線通信の方式は特に限定されない。
 制御部109は、センサノード10における全体の処理を制御する。特に、内部クロックに基づいて、計測部103による計測処理、同期時刻情報取得部105による同期時刻情報の取得処理、時刻補正処理部107による時刻補正処理と計測データ通信部108による計測データ送信処理を制御する。計測部103による計測処理は、定期的に行われる。例えば、10分間に1回1分間の計測期間をとることができる。各計測期間内では、センサ103aによって繰り返し計測が行われる。例えば、50ミリ秒毎にセンサ情報が取得される。ここで示した具体的な時間間隔は例示に過ぎず、その値は任意であって構わない。同期時刻情報の取得タイミングや時刻補正処理のタイミングについては後ほど詳しく説明する。計測データの送信処理は、時刻補正処理が行われた後のタイミングであれば、任意であって構わない。
 [シンクノード]
 シンクノード30は、複数のセンサノード10から計測データを受信・集約するノード(計測データ受信ノード)である。シンクノード30は、電源容量や演算資源に比較的優れたノードである。シンクノード30は、計測データ取得部301と計測データ記憶部302を備える。計測データ取得部301は、センサノード10から送信される計測データを受信する機能部である。計測データ取得部301によって取得された計測データは、計測データ記憶部302に記憶される。図2には示していないが、シンクノード30は、計測データ記憶部302に記憶されている計測データを、外部のデータサーバへ送信する機能部も有する。
(センサノードの全体処理)
 図3は、センサノード10が行う計測処理および計測データの送信処理の流れを示すフローチャートである。図3を参照しながら、センサノード10が行う処理について説明する。
 センサノード10は、定期的に連続的な計測を行う。例えば、10分間に1回1分間の計測を行うものである。したがって、センサノード10の制御部109は、内部クロック102からの時刻情報に基づき、計測期間が開始するのを待つ(S1)。計測期間が開始すると(S2)、同期時刻情報取得部105が、時刻同期センダノード20から同期時刻情報を取得して、同期時刻情報記憶部106に記憶する(S3)。なお、計測の開始と同期時刻情報の取得は同時に(並列に)行ってもよいし、同期時刻情報を先に取得してから計測を開始してもよい。同期時刻情報を先に行う場合には、指定された時刻に計測を開始できるように、計測開始時刻よりも前に同期時刻情報の取得を行うことが好ましい。
 計測期間中は、計測部103(センサ103a)が定期的に計測データを取得して、計測データ記憶部104へ記憶する(S4)。この計測の間隔は、例えば50ミリ秒とする。計測データを計測データ記憶部104に記憶する際には、センサデータに内部クロック102から得られる内部クロック時刻を関連づけて記憶する。
 制御部109は、計測期間中に、あらかじめ定められた同期時刻情報取得タイミングが到来したか判断する(S5)。同期時刻情報取得タイミングが到来している場合には、同期時刻情報取得部105が、時刻同期センダノード20から同期時刻情報を取得して、同期時刻情報記憶部106に記憶する。なお、同期時刻情報の取得タイミングと、計測部による計測タイミングは、ソフトウェアの負荷を考慮すると重複しないように設定することが好ましい。
 計測期間が終了すると、同期時刻情報取得部105が、時刻同期センダノード20から同期時刻情報を取得して、同期時刻情報記憶部106に記憶する(S7)。この計測期間後の同期時刻情報の取得は、最後の計測データ取得の直後に行ってもよいし、ある程度間隔を置いてから行ってもよい。
 その後、時刻補正処理部107が時刻補正処理(S8~S9)を行う。具体的には、同期時刻情報記憶部106に記憶された同期時刻情報(複数のリファレンスポイント)に基づいて、センサノード時刻と基準時刻との関係式を導出し(S8)、この関係式に基づいて計測データ記憶部104に計測データと関連づけて記憶されているセンサノード時刻に対応する基準時刻を算出する(S9)。この際、あわせて内部クロック102の感度補正などの設定調整を行ってもよい。なお、感度補正とは、クロック周波数の感度補正であり、1クロック進むのに要する時間を補正する処理である。
 時刻補正が終了したら、センサノード時刻を基準時刻で補正した計測データを、計測データ通信部108からシンクノードへ送信する(S10)。
 以上の処理によって1つの計測期間における一連の計測処理が終了する。センサノードは、次の計測期間が開始されるまで待機する。
 なお、図3のフローチャートでは、1つの計測期間が終了するごとに、時刻補正処理および計測データの送信処理を行っているが、複数の計測期間が完了してから時刻補正処理を行うようにしてもよい。また、計測データの送信処理も、複数回の時刻補正処理が完了してから行うようにしてもよい。
(時刻補正処理)
 次に、時刻補正処理部107が行う時刻補正処理(ステップS8およびS9)について、詳細に説明する。
 上述のように、計測期間の前、計測期間中、および計測期間の後において同期時刻情報を取得している。したがって、図4(a)に示すような複数点のリファレンスポイントが同期時刻情報記憶部106に記憶されている。なお、図4(a)では計測期間前後でそれぞれ1点、計測期間中に2点のリファレンスポイントが取得されている。時刻補正処理部107は、これらのリファレンスポイント(すなわち、センサノード時刻と基準時刻の対応)に基づいて、センサノード時刻と基準時刻の関係を表す関係式を算出する。関係式は、任意の内部クロック時刻Lに対応する基準時刻Tを与える関数T(L)の形式で表現することができる。
 図4(a)は、最小二乗近似を用いた線型近似により、センサノード時刻と基準時刻の関係を表す直線(一次式)を求めている例である。
 この場合、任意の内部クロック時刻Lに対応する基準時刻Tを表す関係式T(L)は、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000001

 なお、nはリファレンスポイントの数であり、TiおよびLiはi番目のリファレンスポイントに関する基準時刻および内部クロック時刻を表す。
 なお、関係式は一次式に限られず、図4(b)に示すように2次以上の多項式によって近似してもよい。2次以上の多項式によって近似する場合も、具体的な数式は省略するが、上記と同様に最小二乗法を用いてそれぞれの係数を算出できる。なお、多項式近似に限らず、多項式以外の関数によって近似しても構わない。
 また、図4(c)に示すように隣接するリファレンスポイントを通る直線を関係式としてもよい。この場合、任意の内部クロック時刻Lに対応する基準時刻Tを表す関係式T(L)は、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000002
 なお、図示はしていないが、スプライン補間などの補間を用いて全てのリファレンスポイントを通る多項式を関係式としてもよい。
 どのような関係式を採用するにせよ、関係式を用いてリファレンスポイント以外についてもセンサノード時刻に対応する基準時刻を算出可能となる。したがって、時刻補正処理部107は、この関係式に基づいて、計測データ記憶部104に格納されているセンサノード時刻に対応する基準時刻を算出して、計測部103によって計測が行われた基準時刻を求めることができる。
(本実施形態の好ましい効果)
 本実施形態における時刻補正処理により、時刻同期センダノード20からの同期時刻情報の取得を数回行うだけで、任意の時点におけるセンサノード時刻に対応する基準時刻を正確に求めることができるようになる。すなわち、時刻同期の正確性を向上させるために、同期時刻情報を取得するための無線通信の回数を増やす必要がない。したがって、電力消費量を増やすことなく正確な時刻同期が可能となる。
 また、ある時点において求めた関係式を用いて、それとは異なる時点で時刻補正を行うことから、時刻同期センダノード20と通信ができず(通信を行わず)内部クロック時刻と基準時刻との対応が得られなかった時点の内部クロック時刻について正確に補正することができる。
 また、正確な時刻同期が行えることによって、複数のセンサノードにおいて同時にセンサ情報を計測することができ、診断の結果の精度も向上する。
(時刻補正の変形例)
 上記の説明では、同期時刻情報の取得を、計測期間の前後および計測期間中のそれぞれにおいて行っていた。しかしながら、複数のリファレンスポイントが取得可能であれば、その取得のタイミングは任意であって構わない。
 例えば、図5(a)に示すように、計測期間開始前の複数のリファレンスポイントに基づいてセンサノード時刻と基準時刻の関係式を求めてもよい。図3のフローチャートでは、ステップS3においてのみ同期時刻情報を取得し、ステップS5~S6およびS7が省略される。本手法では、同期時刻情報の取得時点よりも後の時点の時刻を補正することになる。計測期間の前に関係式を求められるので、計測期間中には即座に時刻補正を行うこともできる。なお、同期時刻情報取得部105は比較的短期間の間に、複数の同期時刻情報を時刻同期センダノード20から取得することができる。
 また、図5(b)に示すように、計測期間終了後の複数のリファレンスポイントに基づいてセンサノード時刻と基準時刻の関係式を求めてもよい。この場合は、同期時刻情報の取得時点よりも前の時点の時刻を補正することになる。図3のフローチャートでは、ステップS7においてのみ同期時刻情報を取得し、ステップS3およびS5~S6が省略される。計測期間の後に時刻補正処理を行うので、計測中の処理負荷が軽減される。したがって、高周波サンプリングを行う場合など計測中の処理負荷が大きく、計測中に時刻同期処理を行うことができない(適切でない)場合に有効である。
 また、図5(c)に示すように、計測期間中の複数のリファレンスポイントに基づいてセンサノード時刻と基準時刻の関係式を求めてもよい。この場合、同期時刻情報の取得時点の前後の時刻を補正することになる。図3のフローチャートでは、ステップS6においてのみ同期時刻情報を取得し、ステップS3およびS7が省略される。計測期間中に時刻同期を行うことで、全体の処理時間が短くなり、次の計測待ち時間が短くなる。また、計測期間の前後で時刻同期処理を行う場合と比較して、より精度の良い時刻同期が可能となる。
 なお、同期時刻情報は比較的短期間の間に複数取得することができる。短期間における同期時刻情報を一つの同期時刻情報群(あるいは一つのリファレンスポイント群)と捉えると、本実施形態による時刻補正は、計測期間前・計測期間後・計測期間中のある一つの同期時刻情報群に基づいてセンサノード時刻と基準時刻との関係式を求めて、この関係式を用いて時刻を補正する処理と捉えることができる。
 また、図6に示すように、計測期間前・計測期間後・計測期間中のそれぞれにおいてリファレンスポイント群を取得し、これらから得られる関係式を用いて時刻補正を行ってもよい。図6では、計測期間前・計測期間中・計測期間後のリファレンスポイント群61、2、63が示されている。この場合、例えば、リファレンスポイント群61に含まれる複数のリファレンスポイント(拡大図内の黒丸)から、内部クロック時刻と基準時刻との対応61aを求める。同様に、リファレンスポイント群62,63から、内部クロック時刻と基準時刻との対応62a,63aをそれぞれ求める。そして、対応61a,62a,63aを用いて回帰分析や補間によって関係式を求めればよい。なお、対応61a,62a,63aの求め方は任意であってよく、例えば、各リファレンスポイント群61、62、63内のリファレンスポイントから関係式を算出して、その関係式上の任意の一点を上記の対応61a,62a,63aとすることができる。
 なお、図6に示す例以外にも、計測期間前と計測期間後の組合せ、計測期間前と計測期間中の組合せ、計測期間中と計測期間後の組合せなど任意の複数の時点におけるリファレンスポイント群を取得して関係式を算出してもよい。
<実施形態2>
 第1の実施形態では、計測期間の終了後に計測時点のセンサノード時刻に対応する基準時刻を求めていたが、本実施形態では計測の度にその時点の基準時刻を求める。本実施形態の機能構成は第1の実施形態と同様であるため、説明を省略する。以下では、計測時の処理および時刻補正処理について、第1の実施形態と異なる点を主に説明する。
 図7は、本実施形態におけるセンサノード10の計測処理および計測データ送信処理の流れを示すフローチャートである。第1の実施形態(図3)と同様の処理については同一の番号を付してある。
 ステップS1~S3は第1の実施形態と同様である。ただし、ステップS3においては複数のリファレンスポイントを取得し、その次のステップS11において、これら複数のリファレンスポイントに基づいてセンサノード時刻と基準時刻の関係式を求めている点が異なる。このように、計測期間に先立って関係式を決定しているので、計測期間中に計測時点の基準時刻を算出することができる(S12)。図8(a)を参照して説明すると、計測期間開始前に2つのリファレンスポイント81,82を取得し、これらのリファレンスポイントから関係式83が算出される。したがって、計測開始直後からこの関係式83を用いてセンサノード時刻に対応する基準時刻を算出することができる。
 計測期間中に同期時刻情報の取得タイミングが訪れたら同期時刻情報を取得する点(ステップS5~S6)は第1の実施形態と同様である。本実施形態では、計測期間中に同期時刻情報を取得したら、センサノード時刻と基準時刻の関係式を再計算(更新)する(S12)。図8(b)を参照して説明する。図8(b)では、新たな同期時刻情報の取得タイミングが訪れて、新しいリファレンスポイント84が取得されている。この時点で、直近の2つのリファレンスポイント82、84から関係式85を算出し、この後は関係式85を用いてセンサノード時刻に対応する基準時刻を算出する。
 計測期間が終了した時点で、全ての計測データについてのセンサノード時刻の補正が終了しているので、即座に計測データをシンクノードへ送信できる(S10)。
 本実施形態の手法によれば、既に取得されたリファレンスポイントの情報のみを用いて関係式を算出して時刻補正しているので、現在時刻に対応する基準時刻をいつでも即座に求めることができるという利点がある。
 なお、上記の説明では、直近の2つのリファレンスポイントから関係式を算出しているが、直近の何個のリファレンスポイントに基づいて関係式を算出するかは任意であって構わない。また、上記では関係式として直線(一次式)を採用しているが、第1の実施形態で説明したような任意の関数による関係式を採用することができる。また図6を参照して説明したように、2つ以上のリファレンスポイント群から得られる対応点から関係式を算出するようにしてもよい。
 また、上記の説明では、計測データの取得(S4)、同期時刻情報の取得と関係式の算出(S5~S6)、および内部クロック時刻に対応する基準時刻の算出(S13)をこの順番で行っているが、これらの処理は並列に行ってもよい。あるいは、ステップS5~S6の関係式の算出を先に行って、計測データの取得と同時のその時点の基準クロックを算出するようにしてもよい。
<実施形態3>
 本実施形態は、センサネットワークにおいて時刻同期センダノードを省略した構成である。図9に本実施形態にかかるセンサノード10とシンクノード30の機能ブロックを示す。本実施形態にかかるセンサノード10は、同期時刻情報取得部105の代わりに、基準時刻情報取得部110を備える。基準時刻情報取得部110は、例えばGPS衛星信号からGPS時刻を取得するGPS受信機である。
 第1および第2の実施形態と異なる点は、時刻同期センダノードから基準時刻を取得するのではなく、センサノード10がGPS衛星電波などから直接基準時刻を取得する点である。ただし、無線センサネットワークシステム内のセンサノード間での時刻同期のみが必要な場合は、基準時刻として必ずしも正確な時刻を使用しなくてもよく、システム内の任意のマスタ時計を基準時刻としてもよい。基準時刻の取得方法が異なる点を除けば、処理の内容は第1および第2の実施形態と同様である。
 本実施形態ではセンサノード10がGPS時刻を取得できるので、常に正確な時刻を取得できるともいえる。しかしながら、そのためにはGPS受信機(基準時刻情報取得部)を常に稼働させなくてはならず、消費電力が多くなってしまう。そこで、本実施形態では、いくつかの時点においてGPS受信機から取得した基準時刻に基づいて、任意の時点の基準時刻を推定するようにしている。このようにすることで、GPS受信機の稼働回数を減らし消費電力を抑制することができる。
 なお、センサノード10は、本実施形態の構成に加えて時刻同期センダノードから同期時刻情報を取得する同期時刻情報取得部を備えてもよい。このようにすれば、基本的には同期時刻情報取得部を介して時刻同期センダノードから同期時刻情報を受信するようにして、受信できない場合にGPS受信機(基準時刻情報取得部)から基準時刻を取得するようにする。これにより、センサノードにおける消費電力の増加を抑えつつ、より確実に時刻同期が行える。
<実施形態4>
 本実施形態は、時刻補正処理部がシンクノード30に設けられた構成である。図10に本実施形態における各ノードの機能ブロックを示す。なお、ここで説明する構成は、第1の実施形態を基にした構成であるが、第2および第3の実施形態に対しても同様の変形を加えられる。
 本実施形態におけるセンサノード10からは時刻補正処理部107が省略されており、また計測データ通信部108の代わりに計測データ/同期時刻情報通信部111が設けられる。計測データ/同期時刻情報通信部111は、計測データ記憶部104に格納された計測データと計測時点の内部クロック時刻、および、同期時刻情報記憶部106に格納された内部クロック時刻と基準時刻の対応(リファレンスポイント)を、シンクノード30へ送信する。
 シンクノード30は、計測データ/同期時刻情報取得部303および時刻補正処理部304を有する点で第1の実施形態と異なる。計測データ/同期時刻情報取得部303は、センサノード10から送信される、計測データと計測時点の内部クロック時刻、および、内部クロック時刻と基準時刻の対応(リファレンスポイント)を取得する。また、時刻補正処理部304は、取得されたリファレンスポイントを用いて、センサノード10の計測データ取得時点の内部クロック時刻に対応する基準時刻を算出し、その基準時刻を計測データと関連付けて計測データ記憶部302に格納する。なお、時刻補正処理部304における時刻補正処理の内容は、第1および第2の実施形態で説明した処理によって行えるので、ここでは説明を省略する。
 なお、本実施形態においては、センサノード10からリファレンスポイントを取得する機能(シンクノード30の計測データ/同期時刻情報取得部303の一部)が本発明における同期時刻情報取得手段に相当する。
 本実施形態によれば、センサノード10での時刻補正処理を省略できるので、センサノード10の処理負荷の軽減や消費電力量の軽減という有利な効果が得られる。
<その他>
 上記の実施形態の説明は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明は、その技術的思想の範囲内で種々の変形が可能である。
 例えば、上記の実施形態の説明では、橋梁やトンネルなどの屋外構造物のヘルスモニタリングシステムに無線センサネットワークシステムを用いる例を説明したが、無線センサネットワークシステムの適用先は上記に限られない。例えば、半導体設備やモータのような屋外構造物以外を対象としたヘルスモニタリングシステムや、その他任意の計測システムに上記の無線センサネットワークシステムを適用できる。
 また、上記の実施形態の説明では、センサノードを含む無線センサネットワークシステムを例に説明しているが、本発明は、任意の無線端末を含む無線センサネットワークシステムに適用可能である。すなわち、補正対象の内部クロックを有する無線端末は、必ずしも、センサ(計測手段)を有していなくても構わない。
 10:センサノード  20:時刻同期センダノード  30:シンクノード
 102:内部クロック    103:計測部    104:計測データ記憶部
 105:同期時刻情報取得部 106:同期時刻情報記憶部
 107:時刻補正処理部   108:計測データ通信部  109:制御部

Claims (15)

  1.  無線ネットワークにおける無線端末の内部クロックの時刻を補正する時刻補正装置であって、
     内部クロック時刻と基準時刻の対応を取得する同期時刻情報取得手段と、
     複数の時点における内部クロック時刻と基準時刻の対応に基づいて内部クロック時刻と基準時刻との関係式を求め、当該関係式に基づいて内部クロック時刻に対応する基準時刻を算出する時刻補正手段と、
     を備える時刻補正装置。
  2.  前記関係式は、2つの時点における内部クロック時刻と基準時刻の対応に基づく一次式である、
     請求項1に記載の時刻補正装置。
  3.  前記関係式は、3つ以上の時点における内部クロック時刻と基準時刻の対応を近似した多項式である、
     請求項1に記載の時刻補正装置。
  4.  前記時刻補正手段は、ある時点の時刻補正時に求めた前記関係式を他の時点の時刻補正に用いて、前記内部クロック時刻に対応する基準時刻を算出する、
     請求項1から3のいずれか1項に記載の時刻補正装置。
  5.  前記時刻補正手段は、前記同期時刻情報取得手段が内部クロック時刻に対応する基準時刻を取得する度に、前記関係式を更新する、
     請求項1から4のいずれか1項に記載の時刻補正装置。
  6.  前記時刻補正手段は、前記同期時刻情報取得手段が内部クロック時刻に対応する基準時刻を取得する度に、直近の所定数の前記対応に基づいて前記関係式を算出する、
     請求項5に記載の時刻補正装置。
  7.  前記同期時刻情報取得手段は、同期時刻情報センダノードから前記基準時刻を取得する、
     請求項1から6のいずれか1項に記載の時刻補正装置。
  8.  前記同期時刻情報取得手段は、GPS装置から前記基準時刻情報を取得する、
     請求項1から7のいずれか1項に記載の時刻補正装置。
  9.  無線センサネットワークにおける計測装置であって、
     計測手段と、
     自ノード内に内部クロック時刻を提供する内部クロックと、
     前記計測手段によって計測された計測データと、当該計測の際の内部クロック時刻とを関連づけて記憶する計測データ記憶手段と、
     請求項1から8のいずれか1項に記載の時刻補正装置と、
     を備え、
     前記時刻補正装置は、前記計測を行った際の内部クロック時刻に対応する基準時刻を算出する、
     計測装置。
  10.  前記計測手段によって計測された計測データと、当該計測を行った際の内部クロック時刻とを関連づけて記憶する計測データ記憶手段を更に備え、
     前記時刻補正手段は、前記計測データ記憶手段に記憶された前記計測の際の内部クロック時刻に対応する基準時刻を算出する、
     請求項9に記載の計測装置。
  11.  前記計測手段は、所定の計測期間内に繰り返し計測を行うものであり、
     前記時刻補正手段は、前記計測期間前、前記計測期間後、前記計測期間中の少なくともいずれかを含む複数の時点における内部クロック時刻と基準時刻の対応に基づいて、前記関係式を求める、
     請求項9または10に記載の計測装置。
  12.  前記計測手段は、所定の計測期間内に繰り返し計測を行うものであり、
     前記時刻補正手段は、前記計測期間前および前記計測期間後を含む複数の時点における内部クロック時刻と基準時刻の対応に基づいて、前記関係式を求める、
     請求項9または10に記載の計測装置。
  13.  請求項9から12のいずれか1項に記載の計測装置と、計測データ受信ノードとからなる無線センサネットワークシステムであって、
     前記計測装置は、前記計測データ記憶手段に記憶された計測データと当該計測の際の基準時刻とを前記計測データ受信ノードへ送信する計測データ送信手段を有する、
     無線センサネットワークシステム。
  14.  無線ネットワークにおける無線端末の内部クロックの時刻を補正する時刻補正方法であって、
     前記無線端末が、
     内部クロック時刻と基準時刻の対応を取得する同期時刻情報取得ステップと、
     複数の時点における内部クロック時刻と基準時刻の対応に基づいて内部クロック時刻と準時刻との関係式を求める関係式算出ステップと、
     前記関係式に基づいて内部クロック時刻に対応する基準時刻を算出する時刻補正ステップと、
     を含む、時刻補正方法。
  15.  請求項14に記載の方法の各ステップをコンピュータに実行させるためのコンピュータプログラム。
     
PCT/JP2014/081952 2013-12-13 2014-12-03 時刻補正装置、計測装置、時刻補正方法 WO2015087751A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013258663A JP2015114290A (ja) 2013-12-13 2013-12-13 時刻補正装置、計測装置、時刻補正方法
JP2013-258663 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087751A1 true WO2015087751A1 (ja) 2015-06-18

Family

ID=53371059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081952 WO2015087751A1 (ja) 2013-12-13 2014-12-03 時刻補正装置、計測装置、時刻補正方法

Country Status (2)

Country Link
JP (1) JP2015114290A (ja)
WO (1) WO2015087751A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284229B2 (en) 2017-02-17 2022-03-22 Nippon Telegraph And Telephone Corporation Sensing system and time stamp correction method
CN114237020A (zh) * 2021-12-10 2022-03-25 合肥兆芯电子有限公司 计时器校准方法与电子装置
JP7370419B1 (ja) 2022-04-28 2023-10-27 フジテコム株式会社 データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6953735B2 (ja) * 2016-04-01 2021-10-27 富士通株式会社 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
WO2017200043A1 (ja) * 2016-05-18 2017-11-23 日本電信電話株式会社 無線通信システム、無線端末及び時刻同期方法
JP6487386B2 (ja) * 2016-07-22 2019-03-20 ファナック株式会社 時刻精度を維持するためのサーバ、方法、プログラム、記録媒体、及びシステム
JP7077694B2 (ja) * 2018-03-19 2022-05-31 セイコーエプソン株式会社 センサーモジュール、計測システム、電子機器、及び移動体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317293A (ja) * 2005-05-13 2006-11-24 Dainippon Printing Co Ltd センサ装置およびセンサ装置内計測時刻の補正方法
JP2008209995A (ja) * 2007-02-23 2008-09-11 Mitsubishi Electric Corp 分散計測システムおよびその方法
JP2009111654A (ja) * 2007-10-30 2009-05-21 National Institute Of Information & Communication Technology 時刻同期処理システム、時刻情報配信装置、時刻同期処理装置、時刻情報配信プログラム、および時刻同期処理プログラム
JP2010252150A (ja) * 2009-04-17 2010-11-04 Denso Corp ノード装置および車両ネットワークシステム
JP2013024796A (ja) * 2011-07-25 2013-02-04 Toda Constr Co Ltd データ記録における時間軸の時刻補正方法とそのシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515615B2 (ja) * 2000-09-14 2010-08-04 株式会社日立メディコ 画像表示装置
JP4705869B2 (ja) * 2006-03-29 2011-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線システム、およびパターン計測方法
US20130038358A1 (en) * 2011-08-10 2013-02-14 David M. Cook Wireless sensor node and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317293A (ja) * 2005-05-13 2006-11-24 Dainippon Printing Co Ltd センサ装置およびセンサ装置内計測時刻の補正方法
JP2008209995A (ja) * 2007-02-23 2008-09-11 Mitsubishi Electric Corp 分散計測システムおよびその方法
JP2009111654A (ja) * 2007-10-30 2009-05-21 National Institute Of Information & Communication Technology 時刻同期処理システム、時刻情報配信装置、時刻同期処理装置、時刻情報配信プログラム、および時刻同期処理プログラム
JP2010252150A (ja) * 2009-04-17 2010-11-04 Denso Corp ノード装置および車両ネットワークシステム
JP2013024796A (ja) * 2011-07-25 2013-02-04 Toda Constr Co Ltd データ記録における時間軸の時刻補正方法とそのシステム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284229B2 (en) 2017-02-17 2022-03-22 Nippon Telegraph And Telephone Corporation Sensing system and time stamp correction method
CN114237020A (zh) * 2021-12-10 2022-03-25 合肥兆芯电子有限公司 计时器校准方法与电子装置
CN114237020B (zh) * 2021-12-10 2023-09-26 合肥兆芯电子有限公司 计时器校准方法与电子装置
US11803208B2 (en) 2021-12-10 2023-10-31 Hefei Core Storage Electronic Limited Timer calibration method and electronic device
JP7370419B1 (ja) 2022-04-28 2023-10-27 フジテコム株式会社 データ収集装置、信号発生位置特定システム、データ収集方法、信号発生位置特定方法、及びプログラム

Also Published As

Publication number Publication date
JP2015114290A (ja) 2015-06-22

Similar Documents

Publication Publication Date Title
WO2015087751A1 (ja) 時刻補正装置、計測装置、時刻補正方法
EP3584780B1 (en) Sensing system and time stamp correction method
US11038609B2 (en) Sensing system and time synchronization method
JP5166203B2 (ja) センサネットワークシステム、センサノード、及び基地局
US9455885B2 (en) Systems, methods, and apparatus for modifying sensor time stamp data
CN104737490A (zh) 通信装置、通信***和时刻同步方法
JP2013513786A (ja) 非同期ネットワーク局のクロックのずれを補正するための補正因子の計算を用いたtdoaに基づく位置測定方法
US20130254443A1 (en) Method For Determining The Topology Of A Serial Asynchronous Databus
CN105281969A (zh) 一种统计信息获取方法及装置
JP2007060400A (ja) 通信タイミング制御方法および通信タイミング制御システム
CN105519021B (zh) 测定通信网络中的频率偏差的位置的方法和设备
US20220070801A1 (en) Monitoring system and synchronization method
CN110553649B (zh) 一种轨迹优化算法及储存介质、监管***
WO2012013233A1 (en) Method and device for processing data on a connection between two nodes of a communication network
KR20100062786A (ko) 유무선 통합 네트워크에서의 시각 동기화 시스템 및 시각 동기 방법
JP5813489B2 (ja) 異常発生推定方法及び異常発生推定装置
TWI551084B (zh) 距離計測裝置及距離計測方法
EP2982096A1 (en) Method, apparatus and system for matching devices
JP5372315B2 (ja) テレメーターシステムの子局装置
JP5643240B2 (ja) 時刻設定方法、通信装置、および時刻設定プログラム
CN108093474A (zh) 利用虚拟时间同步实现室内定位的方法及***
KR101645260B1 (ko) 복수의 제어기간의 정밀한 시간 기록을 포함하는 데이터 동기화 시스템 및 방법
US20150282054A1 (en) Wireless communication system, management device, wireless device, and wireless communication method
US20170117980A1 (en) Time synchronization for network device
CN113141225A (zh) 时间同步方法、装置、存储介质及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869921

Country of ref document: EP

Kind code of ref document: A1