WO2015087432A1 - X線装置 - Google Patents

X線装置 Download PDF

Info

Publication number
WO2015087432A1
WO2015087432A1 PCT/JP2013/083371 JP2013083371W WO2015087432A1 WO 2015087432 A1 WO2015087432 A1 WO 2015087432A1 JP 2013083371 W JP2013083371 W JP 2013083371W WO 2015087432 A1 WO2015087432 A1 WO 2015087432A1
Authority
WO
WIPO (PCT)
Prior art keywords
gantry
ray
ray apparatus
vibration isolation
moving mechanism
Prior art date
Application number
PCT/JP2013/083371
Other languages
English (en)
French (fr)
Inventor
田中 稔久
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to EP13898946.2A priority Critical patent/EP3081928B1/en
Priority to JP2015552260A priority patent/JP6402720B2/ja
Priority to PCT/JP2013/083371 priority patent/WO2015087432A1/ja
Priority to US15/103,031 priority patent/US10145806B2/en
Priority to TW103142337A priority patent/TWI655423B/zh
Publication of WO2015087432A1 publication Critical patent/WO2015087432A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/308Accessories, mechanical or electrical features support of radiation source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts

Definitions

  • the present invention relates to an X-ray apparatus.
  • an X-ray inspection apparatus having a frame (frame) to which at least an X-ray tube is attached is known (for example, Patent Document 1).
  • the X-ray inspection apparatus disclosed in Patent Document 1 requires a mechanism for pulling out the X-ray source from the casing for maintenance of the X-ray source.
  • the moving mechanism is provided between the frame and the vibration-proof mount, there is a problem that vibration cannot be sufficiently attenuated and an accurate X-ray measurement result cannot be obtained.
  • an X-ray apparatus includes an X-ray source that irradiates an object to be measured with X-rays, a frame on which the X-ray source is mounted, and a vibration isolation mechanism that attenuates vibration applied to the frame. And a moving mechanism for moving the gantry and the vibration isolation mechanism together.
  • the gantry detects the X-ray that has been irradiated from the X-ray source and transmitted through the measurement object. It is preferable to further mount an X-ray detector.
  • the X-ray apparatus further includes a base that supports the moving mechanism, and the moving mechanism is configured to support the gantry via the vibration isolation mechanism.
  • the moving mechanism includes a guide rail and a plurality of moving members that move relatively along the guide rail, and the vibration isolation mechanism. It is preferable that the moving member is located below the vertical direction.
  • the moving mechanism has a structure in which a leg portion for supporting the gantry can be mounted below the moving member.
  • the movement mechanism has a predetermined movement amount out of the total movable amount of the gantry when the legs are mounted, It is preferable to have a regulating member that temporarily regulates the movement of the gantry.
  • the X-ray apparatus includes a casing in which the gantry is accommodated, and the base forms a part of the casing and is at a position where the predetermined movement amount is obtained. It is preferable that at least a part of the gantry is exposed from the casing.
  • the vibration isolation mechanism is provided inside the lower surface of the gantry rather than the outer edge of the lower surface of the gantry.
  • the X-ray is detected from a plurality of different directions while changing the relative position between the X-ray detector and the object to be measured. It is preferable to include a reconstruction unit that calculates the internal structure of the object to be measured based on the projection image of the object to be measured when is transmitted through the object to be measured.
  • the moving mechanism can integrally move the gantry on which the X-ray source is mounted and the vibration isolation mechanism that attenuates the vibration applied to the gantry. It is possible to obtain an X-ray apparatus that attenuates the applied vibration well and is hardly affected by the vibration.
  • the internal front view of the X-ray apparatus by embodiment of this invention The internal side view of the X-ray apparatus by embodiment of this invention
  • the internal top view of the X-ray apparatus by embodiment of this invention Side view when a specified amount of movement is pulled out of the chassis from the chassis.
  • Perspective view of the gantry from below The perspective view explaining the external appearance of a movement control mechanism
  • An X-ray apparatus integrally moves a mounting table on which an object to be measured is mounted, an X-ray source and an X-ray detector, and a vibration isolation mechanism that attenuates vibration applied to the mounting frame.
  • a moving mechanism is provided in the housing. That is, the X-ray apparatus is configured so that the gantry can be pulled out of the casing during maintenance and inspection of each part mounted on the gantry.
  • the vibration generated from the outside of the housing and the vibration generated by the vibration from the outside of the housing acting on the moving mechanism mounted for pulling out the gantry is transmitted to the gantry.
  • the X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays that have passed through the object to be measured, thereby obtaining non-destructive X information (for example, internal structure) of the object to be measured.
  • This is a line CT inspection apparatus.
  • an object to be measured is an industrial part such as a machine part or an electronic part
  • the X-ray apparatus is called an industrial X-ray CT inspection apparatus.
  • the present embodiment is for concrete description for understanding the gist of the invention, and does not limit the present invention unless otherwise specified by X-ray.
  • FIG. 1 to 5 are views showing an example of the internal structure of the X-ray apparatus 100 according to this embodiment.
  • FIG. 1 is an internal front view of the X-ray apparatus 100
  • FIG. 2 is an internal side view of the X-ray apparatus 100.
  • 3 is an internal plan view of the X-ray apparatus 100
  • FIG. 4 is a side view when a predetermined amount of movement of the pedestal housed inside the housing is pulled out of the housing
  • FIG. 5 is housed inside the housing. It is a side view at the time of pulling out a mount frame outside a housing
  • a coordinate system including the X axis, the Y axis, and the Z axis along the vertical direction is set as illustrated.
  • the X-ray apparatus 100 includes a housing 1, a gantry 2, an X-ray source control device 3, and a stage control device 4.
  • the casing 1 is disposed on a floor surface of a factory or the like so as to be substantially parallel (horizontal) to the XY plane, and a frame 2, an X-ray source control device 3, and a stage control device 4 are accommodated therein.
  • the housing 1 includes outer wall surfaces 11 and 12 that are substantially parallel to the XZ plane, an outer wall surface 13 (see FIG. 2) that is substantially parallel to the YZ plane, an upper wall surface 14, and a first bottom surface 15.
  • the door 18 (see FIG. 2) has a hollow box-like structure.
  • the door 18 is attached to any of the X-axis-side end portions of the outer wall surfaces 11 to 12, the upper wall surface 14, and the first bottom surface 15, and is provided so as to be openable and closable.
  • second bottom surfaces 16 a and 16 b (generally denoted by reference numeral 16, respectively) substantially parallel to the XY plane, and the first bottom surface 15 has a second bottom surface.
  • Inner wall surfaces 17a and 17b that support 16a and 16b, respectively reference numeral 17 is given when collectively referred to
  • the gantry 2 is movably mounted on the outside of the housing 1 along the X-axis direction from the space SP1 shown in the drawing.
  • the gantry 2 is mounted so as to be movable on the second bottom surface 16.
  • the stage controller 4 is accommodated in the space SP2 below the second bottom surface 16a, and the X-ray source controller 3 is accommodated in the space SP3 below the second bottom surface 16b.
  • the X-ray source control device 3 and the stage control device 4 are electrically connected to an X-ray source 5 and a placement unit 6 described later by cables.
  • Each part constituting the housing 1 contains lead as a material so that X-rays do not leak outside the housing 1.
  • the gantry 2 is equipped with an X-ray source 5, a placement unit 6, an X-ray detector 7, and an X-ray detector drive unit 8.
  • the gantry 2 is provided at each of the rectangular base bottom plate 22, the four corners on the base bottom plate 22, four columns 23 extending along the Z-axis direction, auxiliary columns 231 extending from the top of the column 23, and auxiliary It is provided with the attachment member 24 for attaching the X-ray detector drive unit 8 provided in the upper part of the column 231.
  • 4 to 6 show a state in which strength is ensured by providing a reinforcing member 232 for connecting adjacent struts 23. Details of the structure of the gantry 2 will be described later.
  • the X-ray source 5 is attached to the foundation bottom plate 22 of the gantry 2 and hangs from the vicinity of the center of the foundation bottom plate 22.
  • the X-ray source 5 is controlled by the X-ray source control device 3 to irradiate wide-angle X-rays that expand in a conical shape in the range of the visual field VV with the point P shown in FIG. This emission point coincides with the focal spot of the X-ray source 5.
  • a portion of the X-ray source 5 that hangs down from the base bottom plate 22 is accommodated in a space between the inner wall surfaces 17a and 17b facing each other.
  • an axis parallel to the Z-axis direction passing through the point P is referred to as a reference axis L.
  • the X-ray source 5 is provided so that the reference axis L passes through the center of the gantry 2.
  • the X-ray source 5 generates at least one kind of X-ray, for example, an ultra-soft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV. Irradiate.
  • the X-ray source 5 may be constituted by a transmission type X-ray source or a reflection type X-ray source.
  • the placement unit 6 is provided on the Z axis + side from the emission point P of the X-ray source 5, and a placement table 61 for placing the measurement object S and an X-axis movement for moving the placement table 61.
  • a mechanism 62, a Y-axis moving mechanism 63, and a Z-axis moving mechanism 64 are provided (see FIG. 3).
  • the X-axis moving mechanism 62 and the Y-axis moving mechanism 63 are each configured by a motor, a rail, a slider, and the like, and move the mounting table 61 along the X-axis direction and the Y-axis direction according to control by the stage control device 4.
  • the Z-axis moving mechanism 64 includes a motor, rails, sliders, and the like, and moves the mounting table 61 in the Z-axis direction according to control by the stage control device 4.
  • the X-ray detector 7 includes a scintillator unit including a known scintillation substance, a photomultiplier tube, a light receiving unit, and the like.
  • the X-ray detector 7 emits an object to be measured S emitted from the X-ray source 5 and mounted on the mounting table 61. X-rays including the transmitted X-rays are received.
  • the X-ray detector 7 converts the received X-rays into light energy, converts the light energy into electric energy, and outputs it as an electric signal. Note that the X-ray detector 7 may convert an incident X-ray into an electric signal without converting it into light energy and output the electric signal.
  • the X-ray detector 7 has a plurality of pixels, and these pixels are two-dimensionally arranged. Thereby, the intensity distribution of the X-rays radiated from the X-ray source 5 and passed through the device under test S in the entire device under test S can be acquired at once. Therefore, it is possible to acquire the entire projected image of the object S to be measured with one shooting.
  • the X-ray detector drive unit 8 moves the X-ray detector 7 on the rotation trajectory M around the reference axis L.
  • the X-ray detector drive unit 8 includes a rotation mechanism 81 attached to the attachment member 24 of the gantry 2 and an arcuate stage 82 rotated by the rotation mechanism 81.
  • the rotation mechanism 81 includes an attachment plate 811, a motor 812 attached to the attachment plate 811, a first gear 813 that is rotated by the motor 812, a second gear 814 that meshes with the first gear 813, and a hollow rotation shaft 815. have.
  • the rotation shaft 815 rotates around the reference axis L by the second gear 814, the arc-shaped stage 82 fixed to the lower portion of the rotation shaft 815 rotates, and the X is provided so as to be movable on the arc-shaped stage 82.
  • the line detector 7 rotates along the rotation trajectory MM around the reference axis L. Since the rotation shaft 815 has a hollow structure, cables (not shown) of the X-ray detector 7 can pass through the inside of the rotation shaft 815.
  • Alignment mechanism 816 is configured by a screw or the like, and during adjustment work, a linear rod-shaped member, which is an adjustment jig, is passed through rotation shaft 815 and the lower end of the jig is made to coincide with point P. Thereby, the tilt, shift, and height of the attachment member 24 are finely adjusted so that the rotation axis of the rotation shaft 815 and the reference axis L coincide with each other.
  • this alignment mechanism 816 the measurement accuracy of the measurement object S can be managed with a simple configuration in which the distance between the emission point P of the X-ray source 5 and the X-ray detector 7 can be maintained at a predetermined design value. .
  • the arc-shaped stage 82 is a plate formed with a predetermined length in an arc shape centered on a point P that is an X-ray emission point.
  • the arcuate stage 82 is provided with a guide rail, a slider, and the like, and the X-ray detector 7 described above is attached to be movable along the arcuate shape of the arcuate stage 82 by a motor or the like.
  • the X-ray detector 7 can move along an arc-shaped trajectory M centered on the X-ray emission point P.
  • the desired height (Z axis + side) is set so that the trajectory of the X-ray detector 7 is along the outline of the bottom surface of the cone having the point P as the apex. Can be adjusted so as to make a circular motion on the same plane.
  • the X-ray detector 7 is configured to be movable between a plate formed in an arc shape concentric with the arc-shaped stage parallel to the arc-shaped stage 82 and the arc-shaped stage 82. Included in embodiments.
  • the X-ray emission point P of the X-ray detector 7 is centered by the rotational trajectory MM centered on the reference axis L and the arc-shaped trajectory M centered on the X-ray emission point P. Therefore, the user can photograph the object S to be measured at a desired photographing position and photographing angle. In addition, by moving the mounting table 61 in the Z-axis direction, the measurement object S can be photographed at a desired magnification.
  • FIG. 6 is a perspective view of the gantry 2 as seen from the bottom side
  • FIG. 7 is a perspective view for explaining a mechanism for temporarily restricting movement when the gantry 2 is moved. 6 and 7, the coordinate system including the X axis, the Y axis, and the Z axis is set as shown in the same manner as in FIGS. In FIG. 6, for convenience of illustration, the X-ray detector 7 and the X-ray detector driving unit 8 are omitted.
  • the X-ray detector 7 and the X-ray detector supported on the upper portion (Z axis + side) of the gantry 2 via the mounting portion 6, the column 23, and the mounting member 24.
  • a drive unit 8 (not shown in FIG. 6 as described above) is provided.
  • the X-ray source 5 is attached so as to hang down from an opening in the vicinity of the center of the foundation bottom board 22.
  • An anti-vibration mount 25 is attached to the lower part (Z-axis-side) of the base bottom panel 22 in order to attenuate vibration applied to the gantry 2 from the outside of the housing 1 through the second bottom surface 16.
  • the anti-vibration mount 25 is configured by, for example, a known air spring or coil spring alone or in combination.
  • vibration isolation mounts 25a, 25b, 25c, and 25d are attached.
  • Each vibration isolation mount 25 is disposed on the inner side of the outer peripheral end of the foundation bottom plate 22 of the gantry 2.
  • the X-ray source 5 is positioned within a rectangular range surrounded by a straight line connecting the attachment centers of the four vibration isolation mounts 25a, 25b, 25c, and 25d to the foundation bottom plate 22.
  • an example in which four vibration isolation mounts 25 are attached is shown, but the number of vibration isolation mounts 25 is not limited to four, and the size, weight, etc. of the gantry 2 are not limited. Accordingly, it is preferable that an optimum number is provided.
  • the vibration isolation mount 25 includes a movable mechanism that can be displaced in all directions and a damper that attenuates the motion generated in the movable mechanism so that vibrations that are displaced in all directions can be attenuated.
  • the vibration isolation mount 25 is directly or indirectly fixed to the upper mounting plate 261 constituting the moving mechanism 26 arranged on the lower side (Z axis-side), that is, the moving side.
  • the lower guide rail 263 constituting the moving mechanism 26 is attached to the second bottom surface 16 of the housing 1, that is, the fixed side, and the moving mechanism 26 has the base 2 and the vibration isolation mount 25 as a base with respect to the second bottom surface 16. Move together.
  • two moving mechanisms 26 are provided, one moving mechanism 26 is attached to the lower part of the vibration isolation units 25a and 25c, and the other moving mechanism 26 is attached to the lower part of the vibration isolation units 25b and 25d. It is done.
  • One moving mechanism 26 is disposed on the second bottom surface 16a, and the other moving mechanism 26 is disposed on the second bottom surface 16b.
  • the moving mechanism 26 includes an upper mounting plate 261, a roller unit 262 (see FIGS. 4 and 5), a lower guide rail 263, and a movement restricting mechanism 264.
  • the upper mounting plate 261 of one moving mechanism 26 is attached to the lower surface of the vibration isolation mounts 25a and 25c, and the upper mounting plate 261 of the other moving mechanism 26 is attached to the lower surface of the vibration isolation mounts 25b and 25d.
  • Each of the plates 261 extends along the X-axis direction.
  • the plurality of roller units 262 are attached to the lower surface of the upper mounting plate 261. In this embodiment, an example in which three roller units 262a, 262b, and 262c are attached is shown.
  • the roller units 262a and 262c are provided such that the central axes in the vertical direction (Z-axis direction) of the vibration isolation mounts 25a and 25c pass through the centers of the roller units 262a and 262c, respectively. That is, it is preferable that the vibration isolation units 25a and 25c are respectively disposed directly above the roller units 262a and 262c. In addition, it is not limited to what is provided so that the center axis
  • the number of roller units 262 included in the moving mechanism 26 is not limited to three, and it is preferable that an optimum number is provided according to the size and weight of the gantry 2.
  • the lower guide rail 263 is attached to the second bottom surface 16 of the housing 1 along the X-axis direction, and a cross section in a plane parallel to the YZ plane has a U shape with a recessed central portion. That is, the two lower guide rails 263 constituting the two moving mechanisms 26 are attached in parallel to the X axis.
  • the roller unit 262 can move along the X-axis direction with respect to the gantry 2 to which the vibration isolation mount 25 is fixed by moving on the recess formed in the lower guide rail 263.
  • the lower guide rail 263 is attached to a position close to the inner wall surface 17 in the second bottom surface 16 in order to suppress the bending of the second bottom surface 16 to be small. That is, the distance between the two lower guide rails 263 in the direction (Y-axis direction) perpendicular to the moving direction (X-axis direction) of the gantry 2 is shorter than the length in the width direction of the gantry 2 along the Y-axis direction. As described above, the center of the roller unit 262 that moves on the lower guide rail 263 and the center of the vibration isolation unit 25 are provided to coincide with each other.
  • the distance between the mounting centers in the Y-axis direction of the vibration isolation unit 25 that supports the gantry 2 is shorter than the length of the gantry 2 in the Y-axis direction. Can be kept small.
  • three movement restricting mechanisms 264a, 264b, and 264c are attached to the upper attachment plate 261 in order from the X-axis side.
  • the movement restricting mechanism 264a is detachably attached to the upper mounting plate 261.
  • the movement restriction mechanism 264a is provided at a position corresponding to a predetermined movement amount out of the total movement amount when the gantry 2 is pulled out of the housing 1.
  • the predetermined movement amount corresponds to, for example, about 25% of the length of the gantry 2 in the X-axis direction. That is, when the gantry 2 starts moving to the X-axis side, moves a distance corresponding to 25% of the length of the gantry 2 in the X-axis direction, and a part of the gantry 2 is exposed outside the housing 1.
  • the movement restriction mechanism 264a restricts the movement of the gantry 2 (see FIG. 4). At this position, a leg 9 described later is attached to the lower part of the roller unit 262a, and the weight of the gantry 2 is held by the leg 9 when the leg 9 is further moved in the X-axis direction.
  • the movement restriction mechanism 264b stops the movement of the gantry 2 along the X-axis direction when the gantry 2 moves to the outside of the housing 1 along the X-axis direction, that is, the movement limit. Function as a stopper for.
  • the total amount of movement of the gantry 2 corresponding to the position where the above-described movement restriction mechanism 264b is provided corresponds to, for example, 75% of the length of the gantry 2 in the X-axis direction (see FIG. 5).
  • the predetermined movement amount in which the movement of the gantry 2 is regulated by the movement regulating mechanism 264a is not limited to 25% of the length of the gantry 2 in the X-axis direction.
  • the predetermined movement amount may be an exposure amount that allows the leg 9 to be safely attached in a state in which the gantry 2 is partially exposed from the housing 1, and is 1 ⁇ 2 of the length of the gantry 2 in the X-axis direction. Tolerable to the extent.
  • the total amount of movement is not limited to, for example, 75% of the length of the gantry 2 in the X-axis direction, and is such that there is no inconvenience when performing maintenance, inspection, maintenance, etc. of each part mounted on the gantry 2.
  • the movement amount of the gantry 2 exposed from the housing 1 may be used.
  • FIG. 7 is a perspective view of the moving mechanism 26 in an enlarged view of the region R surrounded by the one-dot chain line in FIG.
  • the movement restricting mechanism 264a is detachably provided on the upper mounting plate 261 with screws 93 and 94.
  • a limiting member 80 is attached by screws 81 and 82 to the X-axis-side end portion of the lower guide rail 263 of the moving mechanism 26.
  • the movement restricting mechanism 264a also moves in the X-axis direction together with the upper mounting plate 261 of the moving mechanism 26 provided integrally with the gantry 2.
  • the movement amount of the gantry 2 becomes the above-described predetermined movement amount
  • the X-axis-side surface 264as of the movement restricting mechanism 264a contacts the X-axis + side surface 80s of the limiting member 80.
  • the movement of the gantry 2 to the X axis-side is restricted.
  • the movement restricting mechanism 264a is removed from the upper mounting plate 261 by removing the screws 93 and 94, and the upper restricting plate 261 is moved by the movement restricting mechanism 264b. It can move until it comes into contact with the limiting member 80.
  • the movement restricting mechanism 264a also has a restriction in the Z-axis direction, and has a mechanism for preventing an unexpected inclination of the gantry 2 and separation from the second bottom surface 16.
  • a braking member such as rubber may be attached to the movement restricting mechanism 264a for the purpose of promptly inclining and separating.
  • the leg portion 9 for holding the gantry 2 when the gantry 2 is pulled out of the housing 1 will be described with reference to FIG.
  • the leg portion 9 is configured in the vicinity of the roller unit 262a and attachable to the lower surface (Z-axis-side) of the upper mounting plate 261.
  • a mounting base 92 provided with a screw hole for screwing to the upper mounting plate 261 is provided at the end of the leg 9 on the Z axis + side.
  • wheels 91 are attached to the Z-axis-side end of the leg 9 so that the arrangement surface on which the housing 1 is arranged can be moved.
  • the leg portion 9 is formed such that the length in the Z-axis direction is substantially equal to the height from the arrangement surface of the housing 1 to the lower surface of the upper mounting plate 261 so that the gantry 2 can be held. Yes. As a result, the leg portion 9 can move along the X-axis direction on the arrangement surface on which the housing 1 is arranged together with the gantry 2 while holding the gantry 2.
  • the moving mechanism 26 integrally moves the gantry 2 on which the X-ray source 5 is mounted and the vibration isolation unit 25 that attenuates vibration applied to the gantry 2.
  • the second bottom surface 16 is configured to support the moving mechanism 26, and the moving mechanism 26 is configured to support the gantry 2 via the vibration isolation unit 25. Accordingly, vibration from the outside of the housing 1 and vibration generated by the vibration from the outside of the housing 1 acting on the moving mechanism 26 of the gantry 2 are suppressed from being transmitted to the gantry 2 to be measured by X-rays. Since the adverse effect on the measurement result of S can be reduced, the accuracy of X-ray measurement can be improved.
  • the vibration isolation unit 25 since a large moment of inertia is generated when vibration is generated in the gantry 2 on which the heavy X-ray source is mounted, it is difficult to attenuate the vibration once generated. Therefore, in the present embodiment, even when vibration that cannot be completely removed by the vibration isolation unit 25 is generated, the vibration is promoted by the moving mechanism 26 and transmitted to a heavy X-ray source. it can. Further, during maintenance such as filament replacement of the X-ray source 5, it is necessary to pull out the X-ray source 5 from the housing 1, but the moving mechanism 26 has a structure capable of pulling out the vibration isolation unit 25 together with the gantry 26. is doing.
  • the vibration isolation unit 25 Since the vibration isolation unit 25 is always loaded with the same weight when the gantry 2 is pulled out of the housing 1, the vibration isolation unit 25 is caused by a load change to the vibration isolation unit 25 due to a load change to the vibration isolation unit 25. It is possible to prevent the 25 from being lifted and facilitate maintenance.
  • the plurality of roller units 262 constituting the moving mechanism 26 are provided closer to the gantry 2 side than the lower guide rail 263, and the central axes in the vertical direction of the plurality of vibration isolation units 25 are the centers of the roller units 262. It was made to correspond substantially. Therefore, the vibration caused by the structure of the moving mechanism 26 and the like can be attenuated by the vibration isolation unit 25 provided immediately above the moving mechanism 26, so that the vibration isolation effect is improved and the measurement accuracy of the measurement object S is improved. Can be improved. Further, since the weight of the gantry 2 acts on the lower guide rail 263 and the second bottom surface 16 via the roller unit 262 provided directly below the vibration isolation unit 25, the roller unit 262 is provided directly below the vibration isolation unit 25. Compared with the case where it is not, the generation
  • the X-ray source 5 is mounted within a range of the gantry 2 formed by connecting positions where a plurality of vibration isolation units 25 are attached to the gantry 2. It was made to be provided inside the lower edge of the lower surface of 22. As a result, since the X-ray source 5 having a high resonance frequency and a large weight is supported, vibrations in a wide area can be isolated by the vibration isolation unit 25, and the measurement result of the measurement object S by X-rays is adversely affected. Can be suppressed.
  • Two lower guide rails 263 are arranged in parallel to the X-axis direction, which is the moving direction in which the gantry 2 moves, and the distance (interval) in the Y-axis direction between the two lower guide rails 263 is the moving direction. It was made to become shorter than the dimension of the mount frame 2 in the Y-axis direction which is a direction orthogonal to. As described above, the center of the roller unit 262 that moves on the lower guide rail 263 and the center of the vibration isolation unit 25 are provided to coincide with each other. For this reason, the distance between the mounting centers in the Y-axis direction of the vibration isolation unit 25 that supports the gantry 2 is shorter than the length of the gantry 2 in the Y-axis direction. Therefore, it is possible to reduce the bending and vibration generated in the base bottom plate 22 of the gantry 2.
  • the leg 9 for supporting the gantry 2 can be mounted.
  • the leg portion 9 can be mounted below the roller unit 262 installed below the vibration isolation unit 25. Accordingly, when the gantry 2 is pulled out from the housing 1, the weight of the gantry 2 can be supported by the legs 9 via the vibration isolation unit 25 and the roller unit 262. Even if it is the case where it exposes above, generation
  • the movement mechanism 26 is a movement restriction mechanism 264 that temporarily restricts the movement of the gantry 2 at a position corresponding to a predetermined movement amount of the total movable amount of the gantry 2 when the leg portion 9 is mounted. It was made to have. Therefore, it is possible to prevent the gantry 2 from moving freely along the X-axis direction due to external vibration or the like during the mounting operation of the leg portion 9, thereby contributing to improvement in work safety.
  • the X-ray source 5, the mounting portion 6, the X-ray detector 7, and the X-ray detector drive unit 8 are mounted on the gantry 2 along the Z-axis direction.
  • the X-ray source 5 depends from the foundation bottom 22 of the gantry 2.
  • spaces SP2 and SP3 are generated on the lower surface (Z-axis-side) of the gantry 2. Since the X-ray source control device 3 and the stage control device 4 that are conventionally arranged outside the casing can be arranged in the spaces SP2 and SP3, the installation surface of the casing 1 is compared with the conventional apparatus. The installation area can be reduced.
  • an image processing device 41 connected to the X-ray detector 7, an image processing device 41, and a reconstruction processing device 42 connected to the stage control device 4 are installed. (Refer to FIGS. 2, 4, and 5), and even if a CT apparatus is used, it is not necessary to greatly increase the installation area.
  • the guide rail may be attached to the vibration isolation unit 25 side
  • the attachment plate may be attached to the second bottom surface 16
  • the roller unit 262 may be attached to the attachment plate.
  • the roller unit 262 is attached to the mounting plate so that the central axis in the vertical direction (Z-axis direction) of the vibration isolation unit 25 passes through the roller unit 262 in a state where the entire gantry 2 is accommodated in the housing 1. It only has to be done.
  • the leg 9 instead of the leg 9 that can be mounted, the leg 9 may have a folding structure and can be accommodated on the lower surface of the foundation bottom board 22.
  • the X-ray moving mechanism 62, the Y-axis moving mechanism 63, the Z-axis moving mechanism 64, the rotating mechanism 81 and the X-ray detector 7 for transferring the X-ray detector 7 on the arcuate stage 82 are encoders.
  • the position information of the placement unit 6 and the X-ray detector 7 can be acquired.
  • the cross-sectional structure of the measurement object S can be reconstructed by acquiring projection image data that is an X-ray transmission image captured by the X-ray detector 7 while acquiring each position information.
  • the stage control device 4 controls the rotating shaft 815 and performs coordinated control of the X-ray detector 7 and the X-ray detector driving unit 8 by an image processing unit (not shown).
  • the reconstruction processing apparatus 42 projects the measurement object S from a plurality of different directions captured by the X-ray detector 7 via the image processing apparatus 41. Get image data.
  • the reconstruction processing device 42 also acquires outputs from the encoders via the stage control device 4. Then, the reconstruction processing device 42 may calculate the internal structure of the object S to be measured by a known Feldkamp backprojection method based on the projection image data and the output of each encoder.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 X線装置は、載置台に載置された被測定物にX線を照射するX線源と、X線源が搭載された架台と、架台に加わる振動を減衰させる除振機構と、架台と除振機構とを一体に移動させる移動機構と、を備える。

Description

X線装置
 本発明は、X線装置に関する。
 従来から、点検等を目的として、少なくともX線管が取り付けられたフレーム(架台)を有するX線検査装置が知られている(たとえば特許文献1)。
米国公開公報第5493594号
 しかしながら、上記特許文献1のX線検査装置では、X線源のメンテナンスのために、X線源を筐体から引き出す機構が必要となる。しかしながら、フレームと防振マウントとの間に移動機構が設けられているので、振動を十分に減衰させることができず、正確なX線計測結果が得られないという問題がある。
 本発明の第1の態様によると、X線装置は、被測定物にX線を照射するX線源と、X線源が搭載された架台と、架台に加わる振動を減衰させる除振機構と、架台と除振機構とを一体に移動させる移動機構と、を備える。
 本発明の第2の態様によると、第1の態様によるX線装置において、架台は、被測定物を搭載する載置台と、X線源から照射され被測定物を透過したX線を検出するX線検出器と、をさらに搭載することが好ましい。
 本発明の第3の態様によると、第2の態様によるX線装置において、移動機構を支持する基盤をさらに有し、移動機構は除振機構を介して架台を支持するように構成されることが好ましい。
 本発明の第4の態様によると、第3の態様によるX線装置において、移動機構は、案内レールと、案内レールに沿って相対的に移動する複数の移動部材とを有し、除振機構の鉛直方向の下方に移動部材が位置していることが好ましい。
 本発明の第5の態様によると、第4の態様によるX線装置において、移動機構は、移動部材の下方に、架台を支持するための脚部を装着可能な構造を有することが好ましい。
 本発明の第6の態様によると、第5の態様によるX線装置において、移動機構は、脚部を装着する際に、架台の全移動可能量のうちの所定の移動量となる位置で、架台の移動を一時的に規制する規制部材を有することが好ましい。
 本発明の第7の態様によると、第4の態様によるX線装置において、架台が収納される筐体を備え、基盤は前記筐体の一部を構成し、所定の移動量となる位置において、架台の少なくとも一部が筐体から露出することが好ましい。
 本発明の第8の態様によると、第1乃至第7の何れか一つの態様によるX線装置において、除振機構は、架台の下面外縁部よりも架台の下面内側に設けられることが好ましい。
 本発明の第9の態様によると、第2乃至第8の何れか一つの態様によるX線装置において、X線検出器と被測定物との相対位置を変えながら、複数の異なる方向からX線が被測定物を透過したときの被測定物の投影画像に基づいて、被測定物の内部構造を算出する再構成部を備えることが好ましい。
 本発明によれば、移動機構は、X線源が搭載された架台と、架台に加わる振動を減衰させる除振機構とを一体に移動させることができるので、外部から移動機構を介して架台に加わる振動を良好に減衰させて、振動の影響を受けにくいX線装置を得ることができる。
本発明の実施の形態によるX線装置の内部正面図 本発明の実施の形態によるX線装置の内部側面図 本発明の実施の形態によるX線装置の内部平面図 筐体から内部に収容された架台を筐体外に所定の移動量だけ引き出した場合の側面図 筐体から内部に収容された架台を筐体外に移動限界まで引き出した場合の側面図 架台を下方から見た斜視図 移動規制機構の外観を説明する斜視図
 本発明の態様のX線装置は、被測定物を載置する載置台とX線源とX線検出器とが搭載された架台および架台に加わる振動を減衰させる除振機構を、一体に移動させる移動機構を筐体内に備える。すなわち、X線装置は、架台に搭載された各部の保守、点検時には、架台を筐体の外部へ引き出しが可能となるように構成されている。本発明の態様では、筐体外部からの振動や、筐体外部からの振動が架台の引き出しを行うために搭載された移動機構に作用して生じる振動が架台に伝達されることでX線による被測定物の測定結果に及ぼす悪影響を低減可能となるようなX線装置の構造とすることにより、保守整備の容易とX線測定の精度向上とを両立したものである。以下、詳細に説明する。
-実施の形態-
 図面を参照しながら、本発明の一実施の形態によるX線装置について説明する。X線装置は、被測定物にX線を照射して、被測定物を透過した透過X線を検出することにより、被測定物の内部情報(たとえば内部構造)等を非破壊で取得するX線CT検査装置である。被測定物が、たとえば機械部品や電子部品等の産業用部品が対象である場合、X線装置は産業用X線CT検査装置と呼ばれる。
 また、本実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特にX線指定の無い限り、本発明を限定するものではない。
 図1~図5は本実施の形態によるX線装置100の内部構造の一例を示す図であり、図1はX線装置100の内部正面図、図2は、X線装置100の内部側面図、図3はX線装置100の内部平面図、図4は筐体内部に収容された架台を筐体外に所定の移動量だけ引き出した場合の側面図、図5は筐体内部に収容された架台を筐体外に移動限界まで引き出した場合の側面図である。なお、説明の都合上、X軸、Y軸および鉛直方向に沿ったZ軸からなる座標系を図示の通りに設定する。
 X線装置100は、筐体1と、架台2と、X線源制御装置3と、ステージ制御装置4とを備えている。筐体1は工場等の床面上にXY平面と実質的に平行(水平)となるように配置され、内部に架台2と、X線源制御装置3と、ステージ制御装置4とが収容される。筐体1は、XZ平面に実質的に平行となる外壁面11、12と、YZ平面に実質的に平行となる外壁面13(図2参照)と、上部壁面14と、第1底面15と、扉18(図2参照)とによって中空の箱状の構造を有する。扉18は、外壁面11~12、上部壁面14および第1底面15のそれぞれのX軸-側端部の何れかに取り付けられ、開閉可能に設けられている。筐体1の内部には、XY平面に実質的に平行となる第2底面16a、16b(総称する場合には符号16を付与する)がそれぞれ設けられ、第1底面15には、第2底面16a、16bをそれぞれ支持する内壁面17a、17b(総称する場合には符号17を付与する)が取り付けられている。
 架台2は、図に示す空間SP1からX軸方向に沿って筐体1の外部に移動可能に搭載される。架台2は第2底面16上を移動可能に搭載される。第2底面16aの下部の空間SP2内にはステージ制御装置4が収容され、第2底面16bの下部の空間SP3内にはX線源制御装置3が収容される。X線源制御装置3およびステージ制御装置4は、後述するX線源5および載置部6とそれぞれケーブルによって電気的に接続されている。筐体1を構成する各部はX線が筐体1の外部に漏えいしないようにするために、材料として鉛を含む。なお、筐体1を構成する各部のうち少なくとも空間SP1を囲む部分の材料として鉛を含むものであってもよい。
 架台2には、X線源5と、載置部6と、X線検出器7と、X線検出器駆動ユニット8とが搭載されている。架台2は、矩形形状の基礎底盤22と、基礎底盤22上の四隅にそれぞれに設けられ、Z軸方向に沿って延伸する4つの支柱23と、支柱23の上部から伸びる補助支柱231と、補助支柱231の上部に設けられ、X線検出器駆動ユニット8を取り付けるための取付部材24とによって構成される。なお、補助支柱231を有することなく、支柱23の上部に取付部材24が固定されるものについても本発明の一態様に含まれる。また、図4~6では、隣接する支柱23を連結する補強部材232を設けることにより強度を確保している状態を示している。架台2の構造の詳細については、説明を後述する。
 X線源5は、架台2の基礎底盤22に取り付けられ、基礎底盤22の中央部近傍から垂下する。X線源5は、X線源制御装置3により制御されて、図1に示す点Pを出射点として視野V-Vの範囲の円錐状に拡がる広角のX線を照射する。この出射点は本X線源5のフォーカルスポットと一致する。X線源5のうち基礎底盤22から垂下する部分は、互いに対向する内壁面17aおよび17bの間の空間に収容される。なお、以後の説明では、点Pを通るZ軸方向に平行な軸を基準軸Lと呼ぶ。本実施の形態においては、基準軸Lが架台2の中心を通るようにX線源5が設けられている。
 X線源5は、たとえば約50eVの超軟X線、約0.1~2keVの軟X線、約2~20keVのX線および約20~100keVの硬X線の少なくとも1種のX線を照射する。なお、X線源5は、透過型X線源により構成されてもよいし、反射型X線源により構成されてもよい。
 載置部6は、X線源5の出射点PよりもZ軸+側に設けられ、被測定物Sを載置するための載置台61と、載置台61を移動させるためのX軸移動機構62、Y軸移動機構63およびZ軸移動機構64を備えている(図3参照)。X軸移動機構62およびY軸移動機構63は、それぞれモータ、レール、スライダー等によって構成され、ステージ制御装置4による制御に従って、載置台61をX軸方向およびY軸方向に沿って移動させる。Z軸移動機構64は、モータ、レール、スライダー等によって構成され、ステージ制御装置4による制御に従って載置台61をZ軸方向に移動させる。
 X線検出器7は、公知のシンチレーション物質を含むシンチレータ部、光電子増倍管、受光部等によって構成され、X線源5から出射され、載置台61上に載置された被測定物Sを透過した透過X線を含むX線を受光する。X線検出器7は、受光したX線を光エネルギーに変換し、当該光エネルギーを電気エネルギーに変換し、電気信号として出力する。なお、X線検出器7は、入射するX線を光エネルギーに変換することなく電気信号に変換して出力してもよい。また、X線検出器7は、複数の画素を有しており、それらの画素は2次元的に配列されている。これにより、X線源5から放射され、被測定物S全体において被測定物Sを通過したX線の強度分布を一括で取得できる。したがって、1回の撮影で被測定物Sの全体の投影像を取得することができる。
 X線検出器駆動ユニット8は、X線検出器7を基準軸Lを中心とする回転軌道M上を移動させる。X線検出器駆動ユニット8は、架台2の取付部材24に取り付けられた回転機構81と、回転機構81により回転する円弧状ステージ82とを備える。回転機構81は、取付プレート811と、取付プレート811に取り付けられたモータ812と、モータ812により回転する第1ギア813と、第1ギア813と噛み合う第2ギア814と、中空の回転軸815とを有している。回転軸815が第2ギア814によって基準軸Lを中心として回転することにより、回転軸815の下部に固定された円弧状ステージ82は回転し、円弧状ステージ82上に移動可能に設けられたX線検出器7は基準軸Lを中心とした回転軌道MMに沿って回転する。回転軸815は中空構造を有しているので、X線検出器7のケーブル類(不図示)を回転軸815の内側を通過させることができる。
 アライメント機構816はねじ等によって構成され、調整作業時には、回転軸815の内側に調整用治具である直線棒状の部材を貫通させ、治具の下端を点Pと一致させた状態とする。これにより、回転軸815の回転軸と基準軸Lとを一致させるように、取付部材24のチルト、シフトおよび高さを微調整する。このアライメント機構816により、X線源5の出射点PとX線検出器7との距離を所定の設計値に保持できる、簡単な構成により被測定物Sの計測精度の管理を行うことができる。
 円弧状ステージ82は、X線の出射点である点Pを中心とする円弧状に所定の長さを有して形成されたプレートである。円弧状ステージ82には、ガイドレールやスライダー等が設けられ、上述したX線検出器7が円弧状ステージ82の弧状形状に沿ってモータ等によって移動可能に取り付けられる。X線検出器7は、X線の出射点Pを中心とする円弧状の軌道Mに沿って移動可能となる。これにより、円弧状ステージ82を回転機構81により回転させることで、X線検出器7の軌道が点Pを頂点とする円錐の底面の外郭に沿うように、所望の同一高度(Z軸+側の同一面上)を円運動するように調整可能となる。なお、円弧状ステージ82と平行に円弧状ステージと同心の弧状に形成されたプレートと、円弧状ステージ82との間をX線検出器7が移動可能に構成されるものについても本発明の一態様に含まれる。
 上述した構成を備えることにより、基準軸Lを中心とした回転軌道MMとX線の出射点Pを中心とする円弧状軌道Mにより、X線検出器7のX線の出射点Pを中心とする球面上の任意の場所に移動させることができるので、ユーザは所望する撮影位置、撮影角度にて被測定物Sを撮影することができる。また、載置台61をZ軸方向に移動させることにより、所望の拡大率にて被測定物Sを撮影することができる。
 図6、図7をさらに参照しながら、架台2について詳細に説明する。図6は架台2を底面側から見た斜視図、図7は架台2を移動させる際に移動を一時的に規制させるための機構を説明する斜視図である。なお、図6、図7についても、図1~図5の場合と同様に、X軸、Y軸、Z軸からなる座標系を図示の通りに設定する。また、図6においては、図示の都合上、X線検出器7およびX線検出器駆動ユニット8を省略して示す。
 架台2の基礎底盤22の上部(Z軸+側)には、上述したように、載置部6と、支柱23および取付部材24を介して支持されたX線検出器7およびX線検出器駆動ユニット8(上述の通り図6においては図示を省略)とが設けられている。X線源5は、基礎底盤22の中央部近傍の開口から垂下して取り付けられている。基礎底盤22の下部(Z軸-側)には、筐体1の外部から第2底面16を介して架台2に加わる振動を減衰させるため除振マウント25が取り付けられている。除振マウント25は、たとえば公知の空気ばねやコイルスプリング等が単独または組み合わせて構成される。
 本実施の形態では、4個の除振マウント25a、25b、25c、25d(総称する場合には符号25を用いる)が取り付けられた例を示す。各除振マウント25は、架台2の基礎底盤22の外周端部よりも内側に配置されている。4個の除振マウント25a、25b、25c、25dの基礎底盤22への取付中心を結ぶ直線によって囲まれる矩形範囲内にX線源5が位置する。なお、本実施の形態では、除振マウント25が4個取り付けられた例を示しているが、除振マウント25の個数は4つに限定されるものではなく、架台2の大きさや重量等に応じて最適な個数が設けられることが好ましい。また、除振マウント25は全方向に変位する振動を減衰することができるように、全方向に変位可能な可動機構と可動機構に生ずる運動を減衰するダンパー部とからなる。
 除振マウント25は、その下側(Z軸-側)に配置された移動機構26を構成する上部取付板261、すなわち移動側に直接的または間接的に固定される。移動機構26を構成する下部ガイドレール263は筐体1の第2底面16、すなわち固定側に取り付けられ、移動機構26は架台2と除振マウント25とを基盤である第2底面16に対して一体で移動させる。
 本実施の形態においては2個の移動機構26が設けられ、一方の移動機構26は除振ユニット25a、25cの下部に取り付けられ、他方の移動機構26は除振ユニット25b、25dの下部に取り付けられる。一方の移動機構26は第2底面16a上に配置され、他方の移動機構26は第2底面16b上に配置される。
 移動機構26は、上部取付板261と、ローラユニット262(図4、図5参照)と、下部ガイドレール263と、移動規制機構264とを備えている。一方の移動機構26の上部取付板261は除振マウント25a、25cの下面に取り付けられ、他方の移動機構26の上部取付板261は除振マウント25b、25dの下面に取り付けられ、2つの上部取付板261はそれぞれX軸方向に沿って延在する。複数のローラユニット262は上部取付板261の下面に取り付けられる。本実施の形態においては、3個のローラユニット262a、262b、262cが取り付けられた例を示す。ローラユニット262a、262cは、除振マウント25a、25cの鉛直方向(Z軸方向)の中心軸がローラユニット262a、262cの中心をそれぞれ通過するように設けられる。すなわち、ローラユニット262a、262cの真上に除振ユニット25a、25cがそれぞれ配置されることが好ましい。なお、除振マウント25a、25cの中心軸がローラユニット262a、262cの中心をそれぞれ通過するように設けられるものに限定されない。移動機構26が有するローラユニット262の個数は3個に限定されるものではなく、架台2の大きさや重量等に応じて最適な個数が設けられることが好ましい。
 下部ガイドレール263は筐体1の第2底面16にX軸方向に沿って取り付けられ、YZ平面に平行な面での断面は中央部が凹んだU字形状を有している。すなわち、2個の移動機構26をそれぞれ構成する2個の下部ガイドレール263は、X軸に平行に取り付けられる。ローラユニット262は、下部ガイドレール263に形成された凹部上を移動することにより、除振マウント25が固定された架台2に対してX軸方向に沿って移動することが可能となる。
 下部ガイドレール263は、第2底面16の撓みを小さく抑えるために、第2底面16のうち、内壁面17に近い位置に取り付けられる。すなわち、2個の下部ガイドレール263の架台2の移動方向(X軸方向)と直交する方向(Y軸方向)の間隔は、Y軸方向に沿った架台2の幅方向の長さより短くなる。上述したように、下部ガイドレール263上を移動するローラユニット262の中心と除振ユニット25の中心とが一致するように設けられている。このため、架台2を支持する除振ユニット25のY軸方向の取付中心間の距離は、架台2のY軸方向の長さと比べて短くなるので、架台2の基礎底盤22に生じる撓みや振動を小さく抑えることができる。内壁面17と下部ガイドレール263とZ軸方向の中心軸との距離が短いほど、第2底面16に強度を持たせるために必要以上に厚みを持たせる必要がなくなるので、より好ましい。
 図6に示すように、本実施の形態においては、X軸-側から順に3個の移動規制機構264a、264b、264cが上部取付板261に取り付けられている。移動規制機構264aは、上部取付板261に着脱可能に取り付けられ、後述するように架台2が筐体1の外部にX軸方向に沿って所定の移動量だけ引き出された際に、架台2のX軸方向に沿った移動を一時的に規制するストッパーとして機能する。移動規制機構264aは、架台2を筐体1の外部に引き出す際の全移動量のうちの所定の移動量に対応する位置に設けられる。本実施の形態においては、上記の所定の移動量は、架台2のX軸方向の長さのたとえば約25パーセントに相当する。すなわち、架台2がX軸-側に移動を開始して、架台2のX軸方向の長さの25パーセントに相当する距離を移動して筐体1の外部に架台2の一部が露出すると、移動規制機構264aによって架台2の移動が規制される(図4参照)。この位置において、ローラユニット262aの下部に後述する脚部9を取り付け、さらにX軸-方向に移動させる際に脚部9により架台2の重量を保持する。
 移動規制機構264bは、架台2が筐体1の外部にX軸方向に沿って移動可能な全移動量、すなわち移動限界まで移動した際に、架台2のX軸方向に沿った移動を停止させるためのストッパーとして機能する。本実施の形態においては、上述した移動規制機構264bが設けられる位置に相当する架台2の全移動量は、架台2のX軸方向の長さのたとえば75パーセントに相当する(図5参照)。
 なお、移動規制機構264aにより架台2の移動が規制される所定の移動量は、架台2のX軸方向の長さの25パーセントに限定されるものではない。所定の移動量は、架台2を筐体1から一部露出された状態で安全に脚部9を取り付け可能となる露出量であればよく、架台2のX軸方向の長さの1/2程度まで許容され得る。また、全移動量は、架台2のX軸方向の長さのたとえば75パーセントに限定されるものではなく、架台2に搭載された各部の保守、点検、整備等を行う際に不都合がない程度に、架台2が筐体1から露出する移動量であればよい。
 図7を用いて移動規制機構264aによって架台2の移動が一時的に規制される機構について説明する。図7は図1の一点鎖線で囲って示す領域Rを拡大して示す移動機構26のX軸-側先端における斜視図である。移動規制機構264aは、ねじ93、94により上部取付板261に着脱可能に設けられている。移動機構26の下部ガイドレール263のX軸-側端部には、制限部材80がねじ81、82により取り付けられている。架台2がX軸-方向に移動すると、架台2と一体に設けられた移動機構26の上部取付板261とともに移動規制機構264aもX軸-方向に移動する。架台2の移動量が上述した所定の移動量になったとき、移動規制機構264aのX軸-側の面264asが、制限部材80のX軸+側の面80sに当接する。この結果、架台2のX軸-側への移動が規制される。この状態で脚部9を取り付け、さらに架台2を移動させる場合には、ねじ93、94を外すことにより移動規制機構264aが上部取付板261から取り外され、上部取付板261は移動規制機構264bが制限部材80と当接するまで移動することができる。
 また、移動規制機構264aはZ軸方向にも制限を持ち、架台2の予期せぬ傾きや第2底面16からの離間を防止する機構も有する。傾きや離間停止を速やかに行う目的で移動規制機構264aにゴム等の制動部材を取り付けてもよい。
 次に、図6を用いて、架台2を筐体1の外部へ引き出す際に架台2を保持するための脚部9について説明する。脚部9は、ローラユニット262aの近傍であって上部取付板261の下面(Z軸-側)に装着可能に構成されている。脚部9のZ軸+側端部には、上部取付板261にねじ止めするためのねじ穴が設けられた取付台座92が設けられている。脚部9のZ軸-側端部には、筐体1が配置されている配置面を移動可能となるように、たとえば車輪91が取り付けられている。脚部9は、架台2を保持可能となるように、Z軸方向の長さが、筐体1の配置面から上部取付板261の下面までの高さと実質的に等しくなるように形成されている。この結果、脚部9は、架台2を保持しながら、架台2とともに筐体1が配置された配置面上をX軸方向に沿って移動することができる。
 上述した実施の形態によるX線装置によれば、次の作用効果が得られる。
(1)移動機構26は、X線源5が搭載された架台2と、架台2に加わる振動を減衰させる除振ユニット25とを一体に移動させるようにした。具体的には、第2底面16は移動機構26を支持するように構成され、移動機構26は除振ユニット25を介して架台2を支持するように構成した。したがって、筐体1の外部からの振動や、筐体1の外部からの振動が架台2の移動機構26に作用して生じる振動が架台2に伝達されることを抑制しX線による被測定物Sの測定結果に及ぼす悪影響を低減できるので、X線測定の精度を向上させることができる。特に、重量の重いX線源を搭載する架台2に振動が発生すると大きな慣性モーメントが生じるので、一度生じた振動を減衰させることには困難が伴う。そのため、本実施の形態では、除振ユニット25で除振しきれなかった振動が生じた場合であっても、移動機構26などで振動が助長されて、重いX線源に伝達することを防止できる。また、X線源5のフィラメント交換などのメンテナンス時には、X線源5を筐体1から引き出す必要が出てくるが、移動機構26は架台26とともに除振ユニット25も引き出すことができる構造を有している。除振ユニット25は、架台2を筐体1から引き出す際にも常に同じ重量が荷重されているので、除振ユニット25への荷重変化による除振ユニット25への荷重変化に起因した除振ユニット25の浮き上がりを防止し、保守整備を容易にすることが可能となる。
(2)移動機構26を構成する複数のローラユニット262は、下部ガイドレール263よりも架台2側に設けられ、複数の除振ユニット25のそれぞれの鉛直方向の中心軸がローラユニット262の中心と実質的に一致するようにした。したがって、移動機構26の構造等に起因する振動を、移動機構26の真上に設けられた除振ユニット25により減衰させることができるので、除振効果を向上させて被測定物Sの計測精度を向上できる。さらに、架台2の重量は、除振ユニット25の真下に設けられたローラユニット262を介して下部ガイドレール263および第2底面16に働くので、除振ユニット25の真下にローラユニット262が設けられていない場合と比較して、上部取付板261への歪の発生を抑制して、架台2の移動を円滑に行うことができる。
(3)X線源5は、架台2のうち、複数の除振ユニット25が架台2に取り付けられた位置を結んで形成される範囲内に搭載され、除振ユニット25は架台2の基礎底盤22の下面外縁部よりも内側に設けられるようにした。この結果、高い共振周波数で大きな重量を有するX線源5が支持されるので、除振ユニット25により広域の振動を除振することができ、X線による被測定物Sの測定結果に悪影響を及ぼすことを抑制できる。
(4)下部ガイドレール263は、架台2が移動する移動方向であるX軸方向と平行に2本配置され、2本の下部ガイドレール263間のY軸方向の距離(間隔)は、移動方向と直交する方向であるY軸方向における架台2の寸法よりも短くなるようにした。上述したように、下部ガイドレール263上を移動するローラユニット262の中心と除振ユニット25の中心とが一致するように設けられている。このため、架台2を支持する除振ユニット25のY軸方向の取付中心間の距離は、架台2のY軸方向の長さと比べて短くなる。したがって、架台2の基礎底盤22に生じる撓みや振動を小さく抑えることができる。
(5)除振ユニット25の下方に、架台2を支持するための脚部9を装着可能な構造を有するようにした。特に、本実施の形態では、除振ユニット25の下方に設置されているローラユニット262の下方に脚部9を装着できるようにした。したがって、架台2を筐体1から引き出した際に、架台2の重量を、除振ユニット25およびローラユニット262を介して脚部9にて支持できるので、架台2が筐体1よりも所定量以上露出した場合であっても、上部取付板261や下部ガイドレール263への歪の発生を抑制して、架台2の移動を円滑に行うことができる。さらに、脚部9は取り外し可能に構成されているので、複数のX線装置100を同一工場内等にて使用する場合に、脚部9を複数のX線装置100間で共用することができる。
(6)移動機構26は、脚部9を装着する際に、架台2の全移動可能量のうちの所定の移動量となる位置で、架台2の移動を一時的に規制する移動規制機構264を有するようにした。したがって、脚部9の装着作業時に、外部からの振動等に起因して架台2がX軸方向に沿って勝手に移動することを防ぎ、作業の安全向上に寄与できる。
(7)X線源5、載置部6およびX線検出器7が搭載された架台2において、大きな重量を有するX線源5のボディの大部分が基礎底盤22の下面に垂下している。架台2の重心位置は、Z軸方向において基礎底盤22の近傍となる。この架台2を除振マウント25がZ軸-側から支持するので、Z軸方向において、架台2の重心位置と除振マウント25との位置が近くなり、筐体1外部からの振動の減衰効果を向上させて被測定物Sの計測精度を向上させることができる。さらに、架台2をX軸方向に沿って移動させる際に、架台2の姿勢を安定させることができる。
(8)X線源5、載置部6、X線検出器7およびX線検出器駆動ユニット8をZ軸方向に沿って架台2に搭載するようにした。特に、X線源5は架台2の基礎底盤22から垂下する。このため、架台2の下面(Z軸-側)には、空間SP2、SP3が生じる。この空間SP2、SP3に、従来は筐体の外部に配置していたX線源制御装置3、ステージ制御装置4を配置することができるので、従来の装置と比較して筐体1の設置面への設置面積を小さくすることができる。
 また、ステージ制御装置4を配置した空間SP2には、X線検出器7に接続された画像処理装置41や画像処理装置41およびステージ制御装置4に接続された再構成処理装置42を設置することも可能であり(図2、図4、図5参照)、さらにCT装置化しても設置面積を大幅に増やす必要がなくなる。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)ガイドレールを除振ユニット25側に取り付け、取付板を第2底面16に取り付け、ローラユニット262を取付板に取り付けてもよい。この場合、架台2の全体が筐体1に収容されている状態で除振ユニット25の鉛直方向(Z軸方向)の中心軸がローラユニット262を通過するようにローラユニット262が取付板に取り付けられていればよい。
(2)脚部9が装着可能なものに代えて、脚部9を折りたたみ構造とし、基礎底盤22の下面に収容可能な構成としてもよい。
(3)X軸移動機構62、Y軸移動機構63、Z軸移動機構64、回転機構81およびX線検出器7を円弧状ステージ82上にて移送させるX線検出器移送機構は、それぞれエンコーダを備え、載置部6やX線検出器7の位置情報を取得できる。また、それぞれの位置情報を取得しながら、X線検出器7で撮影されたX線透過像である投影画像データを取得することで、被測定物Sの断面構造を再構成することができる。この場合、ステージ制御装置4にて、回転軸815を制御しながら、不図示の画像処理部でX線検出器7とX線検出器駆動ユニット8との協調制御を行う。そして、上述したようにCT装置化されている場合には、再構成処理装置42は画像処理装置41を介してX線検出器7で撮像された複数の異なる方向からの被測定物Sの投影画像データを取得する。また、再構成処理装置42はステージ制御装置4を介して各エンコーダからの出力も取得する。そして、再構成処理装置42は投影画像データと各エンコーダの出力とに基づいて、公知のフェルドカンプ逆投影法により、被測定物Sの内部構造を算出してもよい。
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1…筐体、2…架台、5…X線源、6…載置部、7…X線検出器、
9…脚部、16、16a、16b…第2底面、22…基礎底盤、
25…除振ユニット、26…移動機構、41…画像処理装置、
42…再構成処理装置、61…載置台、62…X軸移動機構、
63…Y軸移動機構、64…Z軸移動機構、261…上部取付板、
262…ローラユニット、263…下部ガイドレール、264…移動規制機構

Claims (9)

  1.  被測定物にX線を照射するX線源と、
     前記X線源が搭載された架台と、
     前記架台に加わる振動を減衰させる除振機構と、
     前記架台と前記除振機構とを一体に移動させる移動機構と、を備えるX線装置。
  2.  請求項1に記載のX線装置において、
     前記架台は、
     前記被測定物を搭載する載置台と、
     前記X線源から照射され前記被測定物を透過した前記X線を検出するX線検出器と、をさらに搭載するX線装置。
  3.  請求項2に記載のX線装置において、
     前記移動機構を支持する基盤をさらに有し、
     前記移動機構は前記除振機構を介して前記架台を支持するように構成されるX線装置。
  4.  請求項3に記載のX線装置において、
     前記移動機構は、
     案内レールと、
     前記案内レールに沿って相対的に移動する複数の移動部材とを有し、
     前記除振機構の鉛直方向の下方に前記移動部材が位置しているX線装置。
  5.  請求項4に記載のX線装置において、
     前記移動機構は、前記移動部材の下方に、前記架台を支持するための脚部を装着可能な構造を有するX線装置。
  6.  請求項5に記載のX線装置において、
     前記移動機構は、前記脚部を装着する際に、前記架台の全移動可能量のうちの所定の移動量となる位置で、前記架台の移動を一時的に規制する規制部材を有するX線装置。
  7.  請求項4に記載のX線装置において、
     前記架台が収納される筐体を備え、
     前記基盤は前記筐体の一部を構成し、
     所定の移動量となる位置において、前記架台の少なくとも一部が前記筐体から露出するX線装置。
  8.  請求項1乃至7の何れか一項に記載のX線装置において、
     前記除振機構は、前記架台の下面外縁部よりも前記架台の下面内側に設けられるX線装置。
  9.  請求項2乃至8の何れか一項に記載のX線装置において、
     前記X線検出器と前記被測定物との相対位置を変えながら、複数の異なる方向から前記X線が前記被測定物を透過したときの前記被測定物の投影画像に基づいて、前記被測定物の内部構造を算出する再構成部を備えるX線装置。
     
PCT/JP2013/083371 2013-12-12 2013-12-12 X線装置 WO2015087432A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13898946.2A EP3081928B1 (en) 2013-12-12 2013-12-12 X-ray device
JP2015552260A JP6402720B2 (ja) 2013-12-12 2013-12-12 X線装置
PCT/JP2013/083371 WO2015087432A1 (ja) 2013-12-12 2013-12-12 X線装置
US15/103,031 US10145806B2 (en) 2013-12-12 2013-12-12 X-ray apparatus
TW103142337A TWI655423B (zh) 2013-12-12 2014-12-05 X-ray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083371 WO2015087432A1 (ja) 2013-12-12 2013-12-12 X線装置

Publications (1)

Publication Number Publication Date
WO2015087432A1 true WO2015087432A1 (ja) 2015-06-18

Family

ID=53370773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083371 WO2015087432A1 (ja) 2013-12-12 2013-12-12 X線装置

Country Status (5)

Country Link
US (1) US10145806B2 (ja)
EP (1) EP3081928B1 (ja)
JP (1) JP6402720B2 (ja)
TW (1) TWI655423B (ja)
WO (1) WO2015087432A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210006036A (ko) * 2019-07-08 2021-01-18 주식회사 쎄크 피검사체 지지 플레이트의 진동저감부재를 구비한 x선 검사장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134277A1 (en) 2014-03-05 2015-09-11 Faxitron Bioptics, Llc System and method for multi-axis imaging of specimens
WO2017040977A1 (en) 2015-09-04 2017-03-09 Faxitron Bioptics, Llc Multi-axis specimen imaging device with embedded orientation markers
WO2018085719A1 (en) * 2016-11-04 2018-05-11 Hologic, Inc. Specimen radiography system
EP3658033A4 (en) * 2017-07-26 2021-02-24 Shenzhen Xpectvision Technology Co., Ltd. SYSTEM WITH A SPATIAL EXTENSION X-RAY SOURCE FOR X-RAY IMAGING
EP3682228A4 (en) 2017-09-11 2021-06-16 Faxitron Bioptics, LLC ADAPTIVE OBJECT MAGNIFICATION IMAGING SYSTEM
CN108375591A (zh) * 2018-05-07 2018-08-07 丹东市中讯科技有限公司 一种探伤射线发射装置、探伤射线接收装置和探伤装置
EP4183347B1 (en) 2018-12-26 2024-05-15 Hologic, Inc. Tissue imaging in presence of fluid during biopsy procedure
CN110220926B (zh) * 2019-07-03 2020-03-27 中国电子科技集团公司第三十八研究所 一种基于五轴运动平台的x射线检测装置
CN110530903B (zh) * 2019-09-03 2022-05-03 中国电子科技集团公司第三十八研究所 一种用于x射线检测装置的拱桥式运动平台
CN111830069A (zh) * 2020-07-24 2020-10-27 中国电子科技集团公司第三十八研究所 一种基于球域运动探测的用于x射线检测的运动平台和方法
US11555793B1 (en) 2021-08-04 2023-01-17 International Business Machines Corporation Anti-vibration fixturing system for nondestructive testing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493594A (en) 1988-08-26 1996-02-20 Hitachi, Ltd. Method and apparatus for inspection of solder joints by x-ray fluoroscopic imaging
JPH0956708A (ja) * 1995-08-23 1997-03-04 Toshiba Corp X線診断装置
JPH09508550A (ja) * 1994-02-08 1997-09-02 アナロジック コーポレーション X線断層撮影走査装置
JPH1057368A (ja) * 1996-07-24 1998-03-03 Siemens Ag X線コンピュータ断層撮影装置
JP2001128962A (ja) * 1999-11-08 2001-05-15 Ge Yokogawa Medical Systems Ltd 医用画像撮像装置
JP2010243169A (ja) * 2009-04-01 2010-10-28 Ihi Inspection & Instrumentation Co Ltd X線検査車両
JP2011024866A (ja) * 2009-07-28 2011-02-10 Toshiba Corp X線ct装置及びx線ct装置の設置方法
JP2012239902A (ja) * 2011-05-17 2012-12-10 Siemens Ag X線放射器の内部でx線放射器の振動を能動的に減衰させる装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0415053D0 (en) * 2004-07-05 2004-08-04 Dage Prec Ind Ltd X-ray manipulator
JP4601571B2 (ja) 2006-03-20 2010-12-22 ラトックシステムエンジニアリング株式会社 X線検査装置
JP2014520591A (ja) 2011-06-30 2014-08-25 アナロジック コーポレイション 回転支持台を備えた装置の振動減衰装置および方法{vibrationdampingforapparatuscomprisingrotatinggantry}
JP2013164337A (ja) * 2012-02-10 2013-08-22 Shimadzu Corp 蛍光x線分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493594A (en) 1988-08-26 1996-02-20 Hitachi, Ltd. Method and apparatus for inspection of solder joints by x-ray fluoroscopic imaging
JPH09508550A (ja) * 1994-02-08 1997-09-02 アナロジック コーポレーション X線断層撮影走査装置
JPH0956708A (ja) * 1995-08-23 1997-03-04 Toshiba Corp X線診断装置
JPH1057368A (ja) * 1996-07-24 1998-03-03 Siemens Ag X線コンピュータ断層撮影装置
JP2001128962A (ja) * 1999-11-08 2001-05-15 Ge Yokogawa Medical Systems Ltd 医用画像撮像装置
JP2010243169A (ja) * 2009-04-01 2010-10-28 Ihi Inspection & Instrumentation Co Ltd X線検査車両
JP2011024866A (ja) * 2009-07-28 2011-02-10 Toshiba Corp X線ct装置及びx線ct装置の設置方法
JP2012239902A (ja) * 2011-05-17 2012-12-10 Siemens Ag X線放射器の内部でx線放射器の振動を能動的に減衰させる装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081928A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210006036A (ko) * 2019-07-08 2021-01-18 주식회사 쎄크 피검사체 지지 플레이트의 진동저감부재를 구비한 x선 검사장치
KR102243487B1 (ko) * 2019-07-08 2021-04-28 주식회사 쎄크 피검사체 지지 플레이트의 진동저감부재를 구비한 x선 검사장치

Also Published As

Publication number Publication date
TWI655423B (zh) 2019-04-01
EP3081928B1 (en) 2021-06-09
US10145806B2 (en) 2018-12-04
US20160377558A1 (en) 2016-12-29
TW201522953A (zh) 2015-06-16
JP6402720B2 (ja) 2018-10-10
EP3081928A4 (en) 2017-10-11
EP3081928A1 (en) 2016-10-19
JPWO2015087432A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6402720B2 (ja) X線装置
JP5757937B2 (ja) 複合型パノラマ/コンピュータ断層撮影装置
JP5749148B2 (ja) 放射線断層撮影装置および放射線検出装置並びに放射線断層撮影における空間分解能切換方法
JP4886684B2 (ja) X線操作装置
US20190137418A1 (en) X-ray apparatus
KR20150100824A (ko) X선 진단 장치 및 x선 가동 조리개 장치
JP2016050891A (ja) X線撮像装置
JP6249715B2 (ja) X線診断装置
JP2023113122A (ja) アライメント機構を内蔵した前置コリメータ。
EP3462166A2 (en) Radiation phase contrast imaging apparatus
JP6532008B2 (ja) 中性子線測定用ファントム装置
JP2011064662A (ja) 透視用テーブル付ct装置
JP2014079518A (ja) X線撮影装置及びモアレ画像生成方法
JP7147346B2 (ja) X線位相イメージング装置
WO2016021031A1 (ja) X線装置および構造物の製造方法
JP2016043018A (ja) 放射線画像撮影システム
US20240206827A1 (en) Table panel assembly, examination table, and x-ray imaging system
KR102503248B1 (ko) 조사범위 자동 조절 장치
KR102521549B1 (ko) 스마트 의료 영상 진단 장치
JP3214928U (ja) X線撮影装置
KR20220075040A (ko) 엑스선 발생기 높이 및 각도 조정장치
JP2023548808A (ja) 調節可能なコリメーター及び調節可能なコリメーターを含むx線撮像システム
JP2020031872A (ja) X線撮影装置
JP2019174276A (ja) X線装置および構造物の製造方法
JP2019097649A (ja) X線撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15103031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013898946

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898946

Country of ref document: EP