WO2015086033A1 - Générateurs d'électricité hybrides basant sur l'énergie du vent et des vagues de mer. - Google Patents

Générateurs d'électricité hybrides basant sur l'énergie du vent et des vagues de mer. Download PDF

Info

Publication number
WO2015086033A1
WO2015086033A1 PCT/DZ2014/000004 DZ2014000004W WO2015086033A1 WO 2015086033 A1 WO2015086033 A1 WO 2015086033A1 DZ 2014000004 W DZ2014000004 W DZ 2014000004W WO 2015086033 A1 WO2015086033 A1 WO 2015086033A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
wind
floating
systems
waves
Prior art date
Application number
PCT/DZ2014/000004
Other languages
English (en)
Inventor
Mohammed MESSAOUDENE
Original Assignee
Messaoudene Mohammed
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messaoudene Mohammed filed Critical Messaoudene Mohammed
Publication of WO2015086033A1 publication Critical patent/WO2015086033A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • F03B13/189Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem acting directly on the piston of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/18Air and water being simultaneously used as working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Hybrid electricity generators based on wind energy and sea waves.
  • the present invention relates to manufacturing hybrid electricity generators utilizing the driving force of the wind and the kinetic energy of sea waves to generate electricity in the context of renewable energies.
  • the work presents new hybridization methods (for floating and non-floating offshore systems) between the driving force of the wind and the kinetic energy of sea waves in order to increase the energy generated.
  • this system presents a new method of hybridization between wind and sea currents for floating "offshore” systems, this method making it possible to increase the yield of the generator and the reduction of manufacturing costs.
  • the model presented in this work is not based solely on the hybridization of the driving force of the wind and the ocean currents, but rather the general hybridization between the driving force of the wind and the energy of the waves in the different directions; that is to say it is based on the energy of the marine currents (horizontal movement) and the energy of the up and down movement of the waves (vertical movement).
  • the addition of the third force is done using a damping system (traction spring or spiral or hydraulic dampers), they dampen and absorb the energy of the waves to transmit it to the generator.
  • a damping system traction spring or spiral or hydraulic dampers
  • the SKWID system uses just 10% of the wave energy, the rest (90%) is generated by the wind.
  • the addition of the third force to the system using a damping system gives a better performance (because it allows to add another force to the generator; ie, maximizes the use of wave energy) and also allows better stabilization for floating "offshore” systems and improvement in the energy generated.
  • This system exploits the high and low wave motion using a mass float (m); when the wave arrives it carries the float up, when it passes, the mass of the float will lower the float down.
  • the system will not be sensitive to small waves since the float is of large mass ( m), in addition, in order to increase its capacity, it is necessary to increase the mass of the float (so that the mass of the float can lower the float down), so the system will always answer the mass of the float.
  • the model proposed in this work is constituted using a float-spring system, the float is installed around the mast.
  • the float Using a low mass float, in this case the, the float will be sensitive to slight movements on the water.
  • the architecture of the float around the mast gives the possibility to increase its volume, and allows a capture more of the energy of the waves (of the high and low movement of the waves).
  • the system presented reduces the cost of hybridization between wind and wave energy and increases the energy generated because wave energy will be transmitted directly to the generator.
  • the present invention aims to achieve power generation systems that hybridize between the driving force of wind and wave energy to increase the energy generated without the increase in manufacturing costs.
  • Fig. 1 Is a view of the system that hybridises between the driving force of wind and the energy of marine currents and the energy of high and low wave motion using hydraulic dampers for floating "offshore” systems.
  • Fig. East is a view of the hydraulic damper with block (3).
  • Fig. 2 Is a view of the system that hybridises between the force of the wind and the energy of the sea currents and the energy of the up and down movement of the waves using spiral springs for floating "offshore” systems.
  • Fig. 2a is a view of the spiral spring with the block (3).
  • Fig. 3 Is a view of the system that hybridises between the driving force of the wind and the energy of the ocean currents and the energy of the up and down motion of the waves using a tension spring for floating "offshore" systems.
  • Fig. 4 Is a view of the system that hybridizes between wind force and wave energy using a hydraulic damper for floating "offshore” systems.
  • Fig.5 Is a view of the system that hybridises between wind force and wave energy using a spiral spring for floating "offshore” systems.
  • Fig. 6 Is a view of the system that hybridizes between wind force and wave energy using a tension spring for floating "offshore” systems.
  • Fig. 7 Is a view of the system that hybridizes between the force of the wind and the energy of high and low wave motion for non-floating "offshore” systems.
  • Fig. 8 Is a view of the system that hybridises between the force of the wind and the energy of the ocean currents and the energy of the up and down motion of the waves for the systems
  • Fig. 9 Is a view of the networking of the non-floating "offshore" system that hybridises between the force of the wind and the energy of the waves.
  • Electricity generation machines based on the hybridization between the driving force of the wind and the kinetic energy of the waves.
  • the power generation system in the case of floating "offshore” systems operates according to the hybridization between the driving force of the wind and the kinetic energy of the waves.
  • Hybrid system the driving force of the wind, the sea currents and the up and down motion of the waves
  • the systems as shown on (Fig. 1) and (Fig. 2) using the driving force of the wind and the energy of the sea currents and the up and down motion of the waves to operate the generator (5).
  • the movement of the waves acts directly on the base of the system (4), the latter (movement of the waves) makes the system move.
  • the movement of the base results in a contraction of the spiral springs (8) on one side and the expansion of the other.
  • the reciprocating movement of the springs will be transmitted to the block (3), (equipped with a pinion system) which makes it convert the reciprocating movement of the spring into a unidirectional rotational movement, the movement la to out of the block (3) will be transmitted to the generator (5).
  • the pulley (10) is provided with a pinion, the reciprocating pulley movement is transmitted to the block (3) to uniformly move them in order to transmit it to the generator.
  • the movement of the waves causes the system to move, the movement of the system causes the piston (16) to move inside the hydraulic damper, and the piston movement causes the oil (17) to expand or inside the hydraulic damper, the compression or expansion of the oil inside the hydraulic damper alternately rotates a system of the pinions, the movement of the latter (pinions) is transmitted to the block (3) for uniform their move in one direction and transmit it to the generator.
  • the system cage is isolated from the generator with a rubber (2).
  • Hybridization can be made between the motive power of the wind and the kinetic energy of the waves for all floating offshore wind turbines, fig. 4 (if hydraulic damping system is used) and fig. 5 (case of use of the spiral springs) and fig. 6 (case of use of traction springs).
  • the movement of the waves acts directly on the base of the system, the latter (movement of the waves) makes the system move.
  • the movement of the base results in an expansion of the springs (8) (case of springs) or a displacement of the pistons (case of hydraulic dampers) (9).
  • the reciprocating movement of the springs will be transmitted to the block (3), (equipped with a sprocket system) which makes it convert the reciprocating movements of the springs (spring case) or the pistons (case of the hydraulic dampers) into a unidirectional rotational movement, the movement at the output of the block (3) will be transmitted to the block (21), the latter (block 21), adds the rotational movements generated by the block (3) in order to transmit it to the generatrix generatrix (17).
  • the systems present in this work hybridize between the driving force of the wind and the kinetic energy of the waves.
  • the system shown in fig. 7 hybridises between the driving force of the wind and the kinetic energy of the waves (up and down motion).
  • the wave energy will be captured by a simple floating-spring system, the passage of the waves pushes the float (30) upwards.
  • the spring (28) pushes the float down and returns it to its original position.
  • the position of the spring is fixed by a stop (26), the latter (stop) prevents the spring from moving during movement of the float.
  • the float is carried using the supports (29), these supports connect the float directly with the internal toothed rod (25) through cracks (27) on the mat.
  • the up and down movement of the float will be transmitted to the block (24), which converts this movement into a unidirectional rotational movement and adds it to the movement of the generator shaft.
  • the system shown in fig. 8 hybridises between the driving force of the wind and the up and down motion of the waves and the sea currents.
  • the exploitation of the marine currents according to fig. 8 is done using a turbine (33) that captures the energy passing marine costs.
  • the movement of the turbine transmits it to the block (34), the latter makes the horizontal rotational movement turn into a vertical rotational movement by means of a pinion system to the vertical shaft which also transmits its movement to the block ( 31).
  • the wave energy will be captured with a simple floating-spring system, the passage of the waves pushes the float (35) upwards. When the waves stop, the spring (36) pushes the float down and returns it to its original position. The up and down movement of the float will be transmitted to the block (B).
  • Block B has the rotational movement provided by the propeller and turbine and the up and down movement assembled and rotated to transmit it to block A.
  • Block A has all the rotational movement provided by the different systems assembled to transmit them to the generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Le travail présente de nouvelles méthodes d'hybridation entre l'énergie du vent et des vagues de mer afin de réduire le prix de fabrication et d'augmenter l'énergie générée. Dans ce travail, on a fait l'hybridation pour les deux systèmes pour les systèmes "offshores" flottants et non flottants. Dans chaque système on a fait hybridation entre deux forces (énergie du vent et l'énergie du courant marin) et trois forces (énergie du vent, l'énergie du courant marin et l'énergie du mouvement haut et bas des vagues). Pour chaque système, on a introduit de nouvelles méthodes, système amortisseur (ressort ou amortisseur hydraulique) pour les systèmes "offshores" flottants et systèmes flotteur-ressort pour les systèmes "offshores" non flottants afin d'améliorer le système. Grâce a l'architecture des systèmes "offshores" non flottant on peut mettre le système en réseau afin d'augmenter son rendement.

Description

1. Intitulé de l'invention
Générateurs d'électricité hybrides basant sur l'énergie du vent et des vagues de mer.
2. Domain technique auquel se rapporte l'invention
La présent invention concerne à fabriquer des générateurs d'électricité hybrides utilisant la force motrice du vent et l'énergie cinétique des vagues de mer pour générer de l'électricité dans le cadre des énergies renouvelables.
3. Etat de la technique antérieure
On sait que la force motrice du vent et l'énergie cinétique des vagues de mer dans les différentes directions contiennent une énergie cinétique de laquelle on peut générer de l'électricité utilisant ces forces grâce à un dispositif (générateur d'électricité).
Le travail présente de nouvelles méthodes d'hybridation (pour les systèmes "offshore" flottants et non flottants) entre la force motrice du vent et l'énergie cinétique des vagues de mer afin d'augmenter l'énergie générée.
3.1. Systèmes "offshores" flottants
D'après le nouveau système japonais (SKWID) présenté par la société MODEC, ce système présente une nouvelle méthode d'hybridation entre le vent et les courants marins pour les systèmes "offshore" flottants, cette méthode permettant d'augmenter le rendement de la génératrice et la réduction des frais de fabrication.
Le modèle présenté dans ce travail n'est pas basé seulement entre l'hybridation de la force motrice du vent et les courants marins, mais plutôt l'hybridation générale entre la force motrice du vent et l'énergie des vagues dans les différentes directions; c'est a dire il est basé sur l'énergie des courants marins (mouvement horizontal) et l'énergie du mouvement haut et bas des vagues (mouvement vertical).
L'ajout de la troisième force se fait à l'aide d'un système amortisseur (ressort de traction ou spiral ou des amortisseurs hydrauliques), ces derniers amortissent et absorbent l'énergie des vagues afin de la transmettre à la génératrice.
Le système SKWID utilise juste 10% de l'énergie des vagues, le reste (90%) est généré par le vent. L'ajout de la troisième force au système a l'aide d'un système amortisseur donne un meilleur rendement (parce qu'il permet d'ajouter une autre force à la génératrice ; c'est à dire profite au maximum de l'énergie des vagues) et permettant aussi une meilleure stabilisation pour les systèmes "offshore" flottants et l'amélioration dans l'énergie générée.
Le système proposé dans ce travail peut ajouter a toutes les éoliennes "offshores" flottant traditionnelles, l'ajout de ce système aux éoliennes "offshores" permettant un meilleur rendement et une stabilisation pour ces systèmes.
3.2. Systèmes "offshores" non flottants
Dans ce travail on présente deux méthodes d'hybridation pour les systèmes "offshore" non flottants ;
- l'hybridation entre la force motrice du vent et le mouvement haut et bas des vagues,
- l'hybridation entre la force motrice du vent et le mouvement haut et bas des vagues et les courants marins.
• L 'hybridation entre la force motrice du vent et le mouvement haut et bas des vagues
Le système indien nommé (AN APPARATUS FOR POWER GENERATION FROM OCEAN TIDES/WAVE MOTION). Présenté par le Dr. AVADUTHA PRUTHIVI RAJ breveté sous le numéro 044 002325 et publié le 08\10\2007, présente une nouvelle méthode d'hybridation entre la force motrice du vent et l'énergie cinétique des vagues (mouvement haut et bas), il permet d'augmenter l'énergie générée puisqu'il combine deux forces sur une seule génératrice.
Ce système exploite le mouvement haut et bas des vagues a l'aide d'un flotteur de mass (m) ; lorsque la vague arrive elle port le flotteur vers le haut, lorsqu'elle passe, la masse du flotteur va baisser le flotteur vers le bas.
D'âpres la règle de Poussée d'ARCHIMEDE ( un objet peut flotter si son volume est supérieur à la masse d'eau déplacée) dans ce cas là, le système ne sera pas sensible aux petites vagues puisque le flotteur est de masse importante (m), en plus, pour qu'on puisse augmenter sa capacité, il est nécessaire d'augmenté la masse du flotteur (pour que la masse du flotteur puisse baisser le flotteur vers le bas), donc le système dépondra toujours de la masse du flotteur.
Le modèle proposé dans ce travail est constitué à l'aide d'un système flotteur-ressort, le flotteur est installé au tour du mat.
Utilisant un flotteur de faible masse, dans ce cas la, le flotteur sera sensible à des faibles mouvements sur l'eau. L'architecture du flotteur autour du mat donne la possibilité d'augmenter son volume, et permet un captage plus de l'énergie des vagues (du mouvement haut et bas des vagues).
Le système présenté réduit le cout lors de l'hybridation entre le vent et l'énergie des vagues et augmente l'énergie générée parce que l'énergie des vagues sera transmise directement à la génératrice.
• L 'hybridation entre la force motrice du vent et le mouvement haut et bas des vagues et les courants marins
Dans ce travail, on présente une nouvelle méthode d'hybridation générale entre la force motrice du vent et l'énergie cinétique des vagues dans les différentes directions c'est a dire; l'énergie des courants marins (mouvement horizontal) et l'énergie des vagues (mouvement vertical), l'hybridation de ces trois forces sur une seule génératrice fait augmenter leur rendement sans l'augmentation des frais de fabrications.
4. But de l'invention
La présent invention a pour but de réaliser des systèmes de génération d'électricité qui font l'hybridation entre la force motrice du vent et l'énergie des vagues afin d'augmenter l'énergie générer sans l'augmentation des frais de fabrication.
5. Enoncé des figures
De toute façon le travail sera bien compris à l'aide de la description qui suit en se référant aux dessins schématiques annexés présentant les formes d'exécutions des machines;
Fig. 1 Est une vue du système qui fait l'hybridation entre la force motrice du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues utilisant des amortisseurs hydrauliques pour les systèmes "offshores" flottants.
Fig. la Est une vue de l'amortisseur hydraulique avec le bloc (3).
Fig. 2 Est une vue du système qui fait l'hybridation entre la force du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues utilisant des ressorts spiraux pour les systèmes "offshores" flottants.
Fig. 2a est une vue du ressort spiral avec le bloc (3). Fig. 3 Est une vue du système qui fait l'hybridation entre la force motrice du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues utilisant un ressort de traction pour les systèmes "offshores" flottants.
Fig. 4 Est une vue du système qui fait l'hybridation entre la force du vent et l'énergie des vagues utilisant un amortisseur hydraulique pour les systèmes "offshores" flottants.
Fig.5 Est une vue du système qui fait l'hybridation entre la force du vent et l'énergie des vagues utilisant un ressort spiral pour les systèmes "offshores" flottants.
Fig. 6 Est une vue du système qui fait l'hybridation entre la force du vent et l'énergie des vagues utilisant un ressort de traction pour les systèmes "offshores" flottants.
Fig. 7 Est une vue du système qui fait l'hybridation entre la force du vent et l'énergie du mouvement haut et bas des vagues pour les systèmes "offshores" non flottants.
Fig. 8 Est une vue du système qui fait l'hybridation entre la force du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues pour les systèmes
"offshores" non flottants.
Fig. 9 Est une vue de la mise en réseau du système "offshores" non flottant qui fait l'hybridation entre la force du vent et l'énergie des vagues .
6. Présentation de l'essentiel de l'invention
Machines de génération de l'électricité basées sur l'hybridation entre la force motrice du vent et l'énergie cinétique des vagues.
6.1. Cas d'un système "offshores" flottants
Le système de génération d'électricité dans le cas des systèmes "offshore" flottants fonctionnent selon l'hybridation entre la force motrice du vent et l'énergie cinétique des vagues.
dans ce travail on présente deux systèmes qui font l'hybridation entre la force motrice du vent (11) et l'énergie des vagues (14);
6.1.1. Système hybride la force motrice du vent, les courant marins et le mouvement haut et bas des vagues Les systèmes comme montre sur la (fig. 1) et (fig. 2) utilisant la force motrice du vent et l'énergie des courants marins et le mouvement haut et bas des vagues pour faire fonctionner la génératrice (5).
• L 'exploitation de la force motrice du vent
Le vent agit directement sur l'hélice (1), le mouvement de ce dernier (mouvement d'hélice) sera transmis directement à la génératrice (5).
• L 'exploitation de l'énergie des courants marins
L'exploitation de l'énergie des courants marins selon la figure (1) se fait à l'aide d'une turbine (6) qui fait capter l'énergie au passage du courant marin afin de la transmettre à la génératrice (5).
• L 'exploitation des mouvements haut et bas des vagues
L'idée présentée dans ce travail est l'exploitation des forces des vagues à l'aide d'un système amortissement qui lui fait absorber l'énergie des vagues et l'amortir afin de la transmettre à la génératrice pour faire générer de l'électricité, dans ce travail, on présente trois systèmes d'exploitation du mouvement haut et bas des vagues; o L 'exploitation à l'aide d'un ressort spiral
Le mouvement des vagues agit directement sur la base du système (4), ce dernier (mouvement des vagues) fait déplacer le système. Le mouvement de la base se traduit par une contraction des ressorts spiraux (8) d'un cote et la dilatation de l'autre.
Lorsque la vagues cesse, les ressorts sont revenu à leur état initial, les ressorts dans ces cas la font amortir l'effet des vagues est mettent notre système plus stable.
Le mouvement alternatif des ressorts sera transmis au bloc (3), (doté d'un système pignons) qui lui faire convertir les mouvement alternatif du ressort en un mouvement rotationnel unidirectionnel, le mouvement la à sorti du bloc (3) sera transmis à la génératrice(5) .
o L 'exploitation à l'aide d'un ressort de traction L'exploitation à l'aide d'un ressort de traction(13) ce fait exactement comme l'exploitation à l'aide d'un ressort spiral, dans ce cas la, on a besoin d'un système ressort (13) poulie(lO).
la poulie (10) est dotée d'un pignon, le mouvement alternatif de poulie est transmis au bloc (3) pour uniforme leur mouvement afin de le transmis à la génératrice.
o L 'exploitation a l'aide des amortisseurs hydrauliques
L'exploitation du mouvement des vagues à l'aide d'un amortisseur hydraulique (9) se fait exactement comme l'exploitation des systèmes à l'aide des ressorts spiraux ou ressorts de traction.
L'exploitation se fait ;
à la place des ressorts spiraux (8), on met des amortisseurs hydrauliques (9), dotés des pignons (fig. la), les pignons font le même rôle comme les pignons dans une pompe hydraulique.
Le mouvement des vagues fait déplacer le système, le déplacement du système fait traduire par un déplacement du piston (16) à l'intérieur du l'amortisseur hydraulique, le mouvement du piston fait dilater ou compresser l'huile (17) a l'intérieur de l'amortisseur hydraulique, la compression ou la dilatation d'huile a l'intérieur de l'amortisseur hydraulique fait tourner alternativement un système des pignons, le mouvement de ce dernier (pignons) fait transmettre au bloc (3) pour uniforme leur mouvement dans une seule direction et de la transmettre a la génératrice.
Lorsque la vague cesse, le gaz (15) comprimé d'un cote ou d'un autre fait pousser l'huile et rendre le piston a son état initial.
La cage du système est isolée à la génératrice à l'aide d'un caoutchouc (2).
6.1.2. Système hybride la force motrice du vent et l'énergie des vagues
On peut faire l'hybridation entre la force motrice du vent et l'énergie cinétique des vagues pour toutes les éoliennes "offshores" flottants, fig. 4 (en cas d'utilisation d'système amortisseur hydraulique) et fig. 5 (cas d'utilisation des ressorts spiraux) et fig. 6 (cas d'utilisation des ressorts de tractions).
• L 'exploitation de la force motrice du vent Le vent agit directement sur l'hélice (18), le mouvement de ce dernier (mouvement d'hélice) sera transmis directement a la génératrice (17).
• L 'exploitation de l'énergie des vagues
L'exploitation de la force des vagues se fait de la même chose comme il été décrit sur (6.1.1).
Le mouvement des vagues agit directement sur la base du système, ce dernier (mouvement des vagues) fait déplacer le système. Le mouvement de la base se traduit par une dilatation des ressorts (8) (cas des ressorts) ou un déplacements des pistons (cas des amortisseurs hydrauliques) (9) .
Lorsque la vague cesse, les ressorts (cas de ressort) ou piston (cas d'un amortisseur hydraulique) seront revenu a leur état initial. Les ressorts ou les amortisseurs hydrauliques dans ces cas la font amortir l'effet des vague est mettent notre système plus stable.
Le mouvement alternatif des ressorts sera transmis au bloc (3), (dote d'un système pignons) qui lui fait convertir les mouvements alternatif des ressorts (cas de ressort ) ou les pistons (cas des amortisseurs hydrauliques) en un mouvement rotationnel unidirectionnel, le mouvement a la sortie du bloc (3) sera transmis au bloc (21), ce dernier (bloc 21), fait additionner les mouvements rotationnels générés par les bloc (3) afin de le la transmettre à la génératrice génératrice(17).
Le mouvement rotationnel transmis par l'arbre(20) sera ajouté au mouvement rotationnel de l'arbre d'hélice (18) comme montrent les fig. 4. et fig. 5 et fig. 6.
6.2. Pour les systèmes «offshores" non flottants
Les systèmes présentent dans ce travail font l'hybridation entre la force motrice du vent et l'énergie cinétique des vagues.
6.2.1. Système "offshores" non flottant hybride l'énergie du vent et l'énergie du mouvement haut et bas des vagues
Le système présenté sur la fig. 7 fait l'hybridation entre la force motrice du vent et l'énergie cinétique des vagues (mouvement haut et bas).
• L 'exploitation de la force motrice du vent Le vent agit directement sur l'hélice (23), le mouvement de cette dernière (hélice) sera transmis directement à la génératrice (22).
• l'exploitation du mouvement haut et bas des vagues
L'énergie des vagues sera capté à l'aide d'un simple système flottant-ressort, le passage de la vagues fait pousser le flotteur (30) vers le haut. Lorsque la vagues cesse, le ressort (28) fait pousser le flotteur en bas et le rend à sa position initiale. La position du ressort est fixée grâce à un arrêtoir (26), ce dernier (arrêtoir) empêche le ressort de se déplacer lors du mouvement du flotteur.
Le flotteur est porté à l'aide des supports (29), ces supportes relient le flotteur directement avec la tige interne dentée (25) à travers des fissures (27) sur le mat.
Le mouvement haut et bas du flotteur sera transmis au bloc (24), qui lui fait converti ce mouvement en un mouvement rotationnel unidirectionnel et l'ajouter au mouvement de l'arbre de la génératrice.
6.2.2. Système "offshores" non flottant hybride l'énergie du vent et l'énergie haute et bas des vagues et les courants marins
Le système présenté sur la fig. 8 fait l'hybridation entre la force motrice du vent et le mouvement haut et bas des vagues et les courants marins.
Le système fonctionne de la même façon comme décrit sur (6.2) avec l'ajout de la troisième force celle du courant marin.
L'exploitation des courants marins selon la fig. 8 se fait à l'aide d'une turbine(33) qui fait capturer l'énergie au passage des coûtants marins. Le mouvement de la turbine le fait transmettent au bloc (34), ce dernier fait transformer le mouvement rotationnel horizontal en un mouvement rotationnel vertical a l'aide d'un système pignons à l'arbre vertical qui lui aussi transmet son mouvement au bloc (31).
6.3 La mise en réseau du système "offshores" non flottant
L'architecture du système "offshores" hybride dans ce travail, donne la possibilité de le mettre en réseau comme montre la fig. 9.
• La possibilité de mise en réseau les systèmes "offshore" non flottants L'architecture du système "offshore" non flottants donne la possibilité de le mettre en réseau au Fig. 9.
Le vent agit directement sur l'hélice (34), le mouvement de ce dernier (mouvement d'hélice) sera transmis directement au bloc C, le bloc C doté d'un système peignions lui transformer le mouvement rotationnel horizontal en un mouvement rotationnel vertical afin de le transmettre au bloc B.
L'énergie des vagues sera capté à l'aide d'un simple système flottant-ressort, le passage de la vagues fait pousser le flotteur (35) vers le haut. Lorsque la vagues cesse, le ressort (36) fait pousser le flotteur en bas et le rend à sa position initiale. Le mouvement haut et bas du flotteur sera transmis au bloc (B).
L'exploitation des courants marins se fait à l'aide d'une turbine(36) qui fait capturer l'énergie au passage des coûtants marins. Le mouvement de la turbine le fait transmettent au bloc B. le bloc B fait assembler le mouvement rotationnel fourni par l'hélice et la turbine et le mouvement haut et bas du et transformer en un mouvement rotationnel afin de le transmettre au bloc A.
le bloc A fait assembler tous les mouvement rotationnel fourni par les différents systèmes afin de les transmettre a la génératrice

Claims

Revendications
1. - Systèmes de génération d'électricité qui font l'hybridation entre la force motrice du vent et l'énergie des vagues pour les systèmes "offshores" flottants et non flottants (pour chaque système, l'hybridation se fait a l'aide d'un deux forces et trois forces) afin d'augmenter l'énergie générée sans l'augmentation des frais de fabrication.
2. -Machine selon la revendication 1, caractérisée par l'hybridation entre la force motrice du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues utilisant des amortisseurs hydrauliques (fig. 1), pour les systèmes "offshores" flottants.
3. -Machine selon la revendication 1 , caractérisée par l'hybridation entre la force du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues utilisant des ressorts spiraux (fig. 2), pour les systèmes "offshores" flottants.
4. -Machine selon la revendication 1, caractérisée par l'hybridation entre la force motrice du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues utilisant des ressorts de traction (fig. 3), pour les systèmes "offshores" flottants.
5. -Machine selon la revendication 1, caractérisée par l'hybridation entre la force motrice du vent et l'énergie des vagues utilisant des amortisseurs hydrauliques (fig. 4), pour les systèmes "offshores" flottants.
6. -Machine selon la revendication 1 , caractérisée par l'hybridation entre la force motrice du vent et l'énergie des vagues utilisant des ressorts spiraux (fig. 5), pour les systèmes "offshores" flottants.
7. -Machine selon la revendication 1 , caractérisée par l'hybridation entre la force motrice du vent et l'énergie des vagues utilisant des ressorts de tractions (fig. 6), pour les systèmes "offshores" flottants.
8. -Machine selon la revendication 1, caractérisée par l'hybridation entre la force du vent et l'énergie du mouvement haut et bas des vagues, utilisant un système flotteur-ressort (fig. 7), pour les systèmes "offshores" non flottants.
9. -Machine selon la revendication 1 , caractérisée par l'hybridation entre la force du vent et l'énergie des courants marins et l'énergie du mouvement haut et bas des vagues (fig. 8), pour les systèmes "offshores" non flottants.
9. - Machine selon la revendication 1, caractérisée par la mise en réseau du système "offshores" non flottant qui fait l'hybridation entre la force du vent et l'énergie des vagues (fig- 9).
PCT/DZ2014/000004 2013-12-11 2014-10-06 Générateurs d'électricité hybrides basant sur l'énergie du vent et des vagues de mer. WO2015086033A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DZ130786 2013-12-11
DZ130786 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015086033A1 true WO2015086033A1 (fr) 2015-06-18

Family

ID=53370644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2014/000004 WO2015086033A1 (fr) 2013-12-11 2014-10-06 Générateurs d'électricité hybrides basant sur l'énergie du vent et des vagues de mer.

Country Status (1)

Country Link
WO (1) WO2015086033A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812652A (zh) * 2017-03-06 2017-06-09 中国海洋大学 双叶轮磁耦合水流发电装置
CN108317035A (zh) * 2018-01-30 2018-07-24 威海海洋职业学院 一种风力和波浪能双动力发电装置
CN108374764A (zh) * 2018-01-30 2018-08-07 曹丽美 一种近海岸双动力发电装置
CN108590967A (zh) * 2018-05-11 2018-09-28 山东科技大学 一种利用海洋能的综合发电平台
WO2019190387A1 (fr) * 2018-03-28 2019-10-03 Magnus Rahm Energy Consulting Ab Éolienne flottante à axe vertical dotée d'ensembles périphériques de turbine hydraulique et son procédé de fonctionnement
CN110374810A (zh) * 2019-07-24 2019-10-25 大连海事大学 一种自供能海上充电桩
CN111022242A (zh) * 2019-12-23 2020-04-17 武汉理工大学 一种综合利用波浪能与海流能的发电装置
WO2021077854A1 (fr) * 2019-10-24 2021-04-29 苏州大学 Dispositif de collecte d'énergie houlomotrice du type à élévation de fréquence de pendule composé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086037A1 (fr) * 2006-01-24 2007-08-02 William Kingston Système d'énergie marémotrice
WO2009068712A1 (fr) * 2007-11-29 2009-06-04 Acciona Energia, S.A. Système marin de production d'énergie électrique et procédé d'installation
WO2011096816A1 (fr) * 2009-12-23 2011-08-11 Nader Hassavari Dispositif de centrale
US20130118176A1 (en) * 2011-11-11 2013-05-16 Robert Bosch Gmbh Regenerative offshore energy plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086037A1 (fr) * 2006-01-24 2007-08-02 William Kingston Système d'énergie marémotrice
WO2009068712A1 (fr) * 2007-11-29 2009-06-04 Acciona Energia, S.A. Système marin de production d'énergie électrique et procédé d'installation
WO2011096816A1 (fr) * 2009-12-23 2011-08-11 Nader Hassavari Dispositif de centrale
US20130118176A1 (en) * 2011-11-11 2013-05-16 Robert Bosch Gmbh Regenerative offshore energy plant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106812652A (zh) * 2017-03-06 2017-06-09 中国海洋大学 双叶轮磁耦合水流发电装置
CN106812652B (zh) * 2017-03-06 2019-01-08 中国海洋大学 双叶轮磁耦合水流发电装置
CN108317035A (zh) * 2018-01-30 2018-07-24 威海海洋职业学院 一种风力和波浪能双动力发电装置
CN108374764A (zh) * 2018-01-30 2018-08-07 曹丽美 一种近海岸双动力发电装置
CN108317035B (zh) * 2018-01-30 2020-07-21 威海海洋职业学院 一种风力和波浪能双动力发电装置
WO2019190387A1 (fr) * 2018-03-28 2019-10-03 Magnus Rahm Energy Consulting Ab Éolienne flottante à axe vertical dotée d'ensembles périphériques de turbine hydraulique et son procédé de fonctionnement
CN108590967A (zh) * 2018-05-11 2018-09-28 山东科技大学 一种利用海洋能的综合发电平台
CN110374810A (zh) * 2019-07-24 2019-10-25 大连海事大学 一种自供能海上充电桩
WO2021077854A1 (fr) * 2019-10-24 2021-04-29 苏州大学 Dispositif de collecte d'énergie houlomotrice du type à élévation de fréquence de pendule composé
US11542910B2 (en) 2019-10-24 2023-01-03 Soochow University Multiple weight pendulum-based wave energy harvesting apparatus incorporating magnetic repulsion-based piezoelectric power generation mechanism
CN111022242A (zh) * 2019-12-23 2020-04-17 武汉理工大学 一种综合利用波浪能与海流能的发电装置

Similar Documents

Publication Publication Date Title
WO2015086033A1 (fr) Générateurs d'électricité hybrides basant sur l'énergie du vent et des vagues de mer.
Polinder et al. Wave energy converters and their impact on power systems
US20150204304A1 (en) Wave energy converter
US8011182B2 (en) Vertical gravity/buoyancy power generator
US8601808B1 (en) Hydrokinetic and wind energy harvester
US20100244451A1 (en) Ocean wave energy to electricity generator
JP2010511115A (ja) 完全水没型波エネルギー変換装置
RU2703585C2 (ru) Способ и устройство для генерации энергии волн, содержащее ударный поршень
KR101754862B1 (ko) 파력발전기
CN103291529A (zh) 新型全封闭波浪能发电装置
WO2003098033A1 (fr) Dispositif utilisant les marees oceaniques/ le mouvement des vagues pour produire de l'energie electrique (sagar lehar vidyut shakti).
JP2011501008A (ja) 波力発電ステーション
Qiu et al. Experimental study on a pendulum wave energy converter
WO2024093363A1 (fr) Appareil de production d'énergie houlomotrice
Erselcan et al. A review of power take-off systems employed in wave energy converters
CN204061036U (zh) 海浪潮汐发电装置
Aubry et al. Wave energy converters
CN112901418B (zh) 集成风、浪、流能发电装置的海洋能综合利用***
Chenari et al. Wave energy systems: An overview of different wave energy converters and recommendation for future improvements
KR101086299B1 (ko) 파도를 이용한 고효율 대용량 발전시스템
Liu et al. A survey of power take-off systems of ocean wave energy converters
Li et al. Design and analysis of a two-body wave energy converter with mechanical motion rectifier
CN106368889A (zh) 重锤摇摆发电装置
Raimondi et al. An innovative mechanical motion converter for sea wave applications
CN103498753B (zh) 一种导轨式组合波浪发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870029

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14870029

Country of ref document: EP

Kind code of ref document: A1