WO2015080250A1 - 有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置 - Google Patents

有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置 Download PDF

Info

Publication number
WO2015080250A1
WO2015080250A1 PCT/JP2014/081580 JP2014081580W WO2015080250A1 WO 2015080250 A1 WO2015080250 A1 WO 2015080250A1 JP 2014081580 W JP2014081580 W JP 2014081580W WO 2015080250 A1 WO2015080250 A1 WO 2015080250A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
temperature
lifetime
voltage
time
Prior art date
Application number
PCT/JP2014/081580
Other languages
English (en)
French (fr)
Inventor
筒井 哲夫
杉本 和則
吉岡 俊博
宮口 敏
Original Assignee
次世代化学材料評価技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 次世代化学材料評価技術研究組合 filed Critical 次世代化学材料評価技術研究組合
Priority to US14/786,489 priority Critical patent/US20160103171A1/en
Priority to JP2015542497A priority patent/JP5870233B2/ja
Priority to KR1020157032149A priority patent/KR101605300B1/ko
Priority to DE112014002373.6T priority patent/DE112014002373T8/de
Publication of WO2015080250A1 publication Critical patent/WO2015080250A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests

Definitions

  • the present invention relates to a lifetime estimation method, lifetime estimation apparatus and manufacturing method of an organic EL element, and a light emitting device.
  • an organic EL element when used as a light source for illumination, it is required to have a life of about 40000 hours or more under standard conditions (for example, luminance of 3000 to 5000 cd / m 2 ).
  • luminance 3000 to 5000 cd / m 2
  • it is not practical to measure for a long time such as 40000 hours, which is not practical.
  • acceleration that accelerates deterioration of the organic EL element such as significantly increasing luminance. It is common to measure life under conditions.
  • Non-Patent Document 1 a method of fitting a deterioration curve of the organic EL element with a function that uses a power of an applied current density (see, for example, Non-Patent Documents 2 and 3), driving the organic EL element
  • a method of fitting with a function of the ambient temperature see, for example, Non-Patent Document 1 is used.
  • the organic EL element is required to suppress deterioration of the organic EL element due to use, particularly in light source applications such as illumination and display. Since it is considered that the deterioration of the organic EL element has a correlation with the temperature of the organic layer constituting the organic EL element, in order to suppress the deterioration of the organic EL element, the temperature of the organic layer can be measured accurately. It becomes important.
  • Patent Document 1 previously measures the current-voltage-temperature characteristics of an organic EL element by applying a voltage signal or current signal having a pulse waveform to the organic EL element at a plurality of different ambient temperatures. A method for calculating the internal temperature of the organic EL element based on the current-voltage-temperature characteristics is disclosed.
  • Non-Patent Document 1 the voltage-temperature characteristics of an organic EL element are measured in advance by applying a current signal to the organic EL element at a plurality of different ambient temperatures using a constant low current signal.
  • a method for calculating the internal temperature of an organic EL element based on voltage-temperature characteristics is disclosed.
  • An object of the present invention is to provide an organic EL element lifetime estimation method, a lifetime estimation apparatus and manufacturing method, and a light emitting apparatus that can accurately estimate the lifetime of the organic EL element.
  • the organic EL element measured in advance as in the method disclosed in Patent Document 1 is used.
  • the temperature of the deteriorated organic EL element was calculated based on the current-voltage-temperature characteristics, it was found that the accuracy of the calculated temperature was not necessarily high.
  • Another object of the present invention is to provide a method for obtaining the temperature of the organic layer in the organic EL element capable of measuring the temperature of the organic layer of the organic EL element with high accuracy.
  • the organic EL element lifetime estimation method is a method for estimating the lifetime of an organic EL element comprising a pair of electrodes and an organic layer disposed between the pair of electrodes.
  • the organic EL element lifetime estimation method of the present invention a time-varying parameter is extracted from a fitting function of data of a time-varying element characteristic of the organic EL element, and the temperature of the time-varying parameter is calculated using a temperature rise value at the time of light emission of the organic layer.
  • the lifetime estimation formula of the organic EL element is set. That is, in this method for estimating the lifetime of the organic EL element, the lifetime estimation formula is an expression that takes into account the temperature rise value during light emission of the organic layer.
  • the lifetime of the organic EL element is estimated in consideration of heat generation. Therefore, according to the organic EL element lifetime estimation method of the present invention, it is possible to estimate the lifetime of the organic EL element more accurately than the conventional lifetime estimation method. Furthermore, even when the current density applied to the organic EL element is large (that is, the self-heating of the organic layer is large), this is an excellent lifetime estimation method that can accurately estimate the lifetime of the organic EL element.
  • the time-varying parameters are the luminance of the organic EL element in the fitting function, the luminous intensity that is the luminous flux, the radiant flux or the number of photons, the luminous efficiency that indicates the luminous flux per unit input power, and the external that indicates the number of photons that are taken out per unit current It is preferably a coefficient of a function that characterizes the change in the quantum efficiency or the threshold voltage or the driving voltage that becomes a constant current with time. In this case, the lifetime of the organic EL element can be estimated based on characteristics that can be easily measured.
  • the time-dependent parameter is corrected based on the temperature dependency, and the dependency due to other factors is derived by deriving the dependency due to other factors over time. It is preferable to set a life estimation formula including a product with a term. In this case, since the lifetime estimation formula is a formula that takes into account other factors in addition to the temperature rise value of the organic layer, the lifetime of the organic EL element can be estimated more accurately.
  • the lifetime estimation formula is a formula that takes into account factors that have a large influence on the lifetime of the organic EL element, the lifetime of the organic EL element can be estimated more accurately.
  • the temperature rise value is preferably a temperature rise value obtained by measuring the current-voltage characteristics of the organic EL element, measuring the transient characteristics of the light emission intensity, or measuring the Raman spectroscopy of the organic layer. In this case, since the more accurate temperature rise value of the organic layer can be used, the lifetime of the organic EL element can be estimated more accurately.
  • the temperature rise value is determined by measuring the voltage between the electrodes when the organic EL element is held at each ambient temperature for a predetermined time at a plurality of ambient temperatures and a pulse current is applied to the organic EL element.
  • a first step for obtaining initial information on the correlation between the voltage and the voltage a second step for driving and stopping the organic EL element, and after the second step, the organic EL element is moved under a predetermined ambient temperature T 1.
  • a temperature T 1 obtained in the third step and a third step of measuring the voltage V 1 when the same pulse current as that in the first step is applied to the organic EL element.
  • the fourth step of correcting the initial information based on the voltage V 1 and acquiring the correction information related to the correlation between the temperature and the voltage of the organic layer, and the same as the pulse current in the first step Measuring the voltage V 2 between the electrodes upon application of one pulse current, and a fifth step of obtaining a temperature T 2 corresponding to the voltage V 2 based on the correction information, obtained by the method comprising a temperature An increase value is preferred.
  • the voltage between the electrodes when a pulse current is applied to the driven organic EL element is measured, and in the fourth step, the temperature and voltage of the organic layer measured in advance are measured. Correction information is obtained by correcting the initial information related to the correlation with the temperature and voltage of the organic layer measured in the third step. Therefore, in this method, the temperature of the organic EL element is measured based on the correlation between the temperature of the organic layer in the organic EL element after deterioration and the voltage between the electrodes. Therefore, the temperature of the organic layer can be measured with high accuracy even for an organic EL element that has deteriorated with driving.
  • the above method further includes a step of driving the organic EL element with the same applied current value as the applied current value in the second step before the first step.
  • the temperature of the organic layer can be measured with high accuracy even for an organic EL element in which the correlation between the temperature and voltage of the organic layer changes due to current application during driving.
  • the applied current value is the same as the applied current value in the second step before applying the pulse current to the organic EL element at some or all of the plurality of ambient temperatures. It is preferable to include a step of driving the organic EL element. In this case, the temperature of the organic layer can be measured with high accuracy even for an organic EL element in which the correlation between the temperature and voltage of the organic layer changes depending on the current application during driving and the temperature of the organic layer. It becomes possible.
  • the temperature rise value of the organic layer is obtained together with the time change parameter to measure the time change of the temperature rise value, and in the estimation formula setting step, the life estimation formula is calculated using the time change of the temperature rise value. It is preferable to set. In this case, since the lifetime estimation formula is a formula that takes into account the temporal change in the temperature of the organic layer, the lifetime of the organic EL element can be estimated more accurately.
  • L (t) represents the emission intensity after t hours from the start of the life test of the organic EL element
  • L 0 represents the light emission at the start of the life test of the organic EL element.
  • a i , b, c, d, ⁇ i and ⁇ represent time-varying parameters.
  • the organic EL element lifetime estimation apparatus is an organic EL element lifetime estimation apparatus that estimates the lifetime of an organic EL element, and uses the organic EL element lifetime estimation method described above to determine the lifetime of an organic EL element.
  • a life estimation unit for estimation and a temperature acquisition unit for acquiring a temperature rise value are provided. According to this lifetime estimation apparatus, it becomes possible to estimate the lifetime of an organic EL element more correctly compared with the conventional lifetime estimation apparatus.
  • the organic EL device manufacturing method includes a step of obtaining an organic EL device by disposing an organic layer between a pair of electrodes, and a method for estimating the lifetime of the organic EL device as described above. Using the estimation step, and comparing the estimated lifetime with a reference value of the lifetime, and determining whether the organic EL element is good or bad. According to this manufacturing method, it is possible to manufacture a non-defective organic EL element whose lifetime has been estimated more accurately than in the conventional manufacturing method.
  • a light-emitting device includes an organic EL element, a lifetime estimation unit that estimates the lifetime of the organic EL element using the lifetime estimation method of the organic EL element, and a temperature acquisition unit that acquires a temperature rise value. I have. According to the present light emitting device, the lifetime of the organic EL element can be estimated and discriminated more accurately than in the conventional light emitting device.
  • the temperature acquisition unit in the lifetime estimation device and the light emitting device includes a temperature control unit that controls the ambient temperature of the organic EL element, a pulse current source that applies a pulse current to the organic EL element, and a pulse current that is applied to the organic EL element.
  • the temperature acquisition system may include a voltage measurement unit that measures the voltage between the pair of electrodes and an information processing unit that processes information related to the correlation between the temperature and the voltage of the organic layer.
  • the light emitting device may further include a life discriminating unit that discriminates the life of the organic EL element by comparing the estimated life and the reference value of the life.
  • an organic EL element lifetime estimation method it is possible to provide an organic EL element lifetime estimation method, a lifetime estimation apparatus and a manufacturing method, and a light emitting apparatus that can accurately estimate the lifetime of an organic EL element as compared with a conventional lifetime estimation method. Furthermore, even when the current density applied to the organic EL element is large (that is, the self-heating of the organic layer is large), it is possible to accurately estimate the lifetime of the organic EL element.
  • a lifetime estimation device and a manufacturing method, and a light emitting device can be provided.
  • the organic EL element lifetime estimation method is a method for estimating the lifetime of an organic EL element including a pair of electrodes and an organic layer disposed between the pair of electrodes.
  • FIG. 1 is a diagram showing components of an organic EL element lifetime estimating apparatus according to the present embodiment.
  • the lifetime estimation apparatus 1 includes, for example, a lifetime estimation unit 2, a temperature acquisition unit 3, an installation unit 5 that installs the organic EL element 4, and a drive unit 6 that drives the organic EL element 4. It has.
  • the configuration of the organic EL element 4 includes a pair of electrodes and an organic layer disposed between the pair of electrodes (has two electrodes and an organic layer sandwiched between the two electrodes, and emits light when a current is applied. If it is a structure, there will be no restriction
  • Examples of the configuration of the organic EL element 4 include a configuration of substrate / anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode.
  • the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer can each be constituted by an organic layer.
  • the installation unit 5 is composed of, for example, a thermostatic chamber capable of maintaining the temperature of the atmosphere in which the organic EL element 4 is installed (hereinafter referred to as “atmosphere temperature” or “environment temperature”) at a predetermined temperature.
  • the drive unit 6 drives the organic EL element 4 by applying a predetermined direct current to the organic EL element 4.
  • the lifetime estimation unit 2 estimates the lifetime of the organic EL element 4 by an organic EL element lifetime estimation method including a data acquisition step, a parameter extraction step, an estimation formula setting step, and a lifetime estimation step.
  • FIG. 2 is a flowchart showing an example of the method for estimating the lifetime of the organic EL element according to this embodiment.
  • the applied current density to the organic EL element and / or the environmental temperature of the organic EL element is changed, and the change over time of the element characteristics of the organic EL element at each applied current density and / or each environmental temperature is measured. Perform a life test.
  • element characteristics mean emission intensity such as luminance, luminous flux, radiant flux, or number of photons.
  • a current density J 0 at which the initial luminance of the organic EL element becomes a predetermined value (for example, 1000 to 5000 cd / m 2 ) is applied to the organic EL element, and the emission intensity (for example, luminance) of the organic EL element is set.
  • a life test can be performed by measuring.
  • data with time change of element characteristics such as light emission intensity of the organic EL element is acquired (S1 in FIG. 2).
  • the life estimation unit 2 performs a parameter extraction step. From the result of the life test in the data acquisition step, it can be seen that the emission intensity of the organic EL element attenuates with the passage of time as shown by a deterioration curve C, for example, as shown in FIG.
  • the vertical axis (left vertical axis) of the deterioration curve C represents the ratio L (t) / L 0 of the emission intensity L (t) after t hours to the emission intensity L 0 at the start of the life test.
  • This deterioration curve C can be fitted by a fitting function represented by the following formula (1), (2) or (3), for example (S2 in FIG. 2).
  • L (t) represents the emission intensity after t hours from the start of the life test of the organic EL element
  • L 0 represents the light emission at the start of the life test of the organic EL element.
  • a i , b, c, d, ⁇ i and ⁇ represent time-varying parameters.
  • the aging parameter can be one or more than one.
  • Expression (1) can be simplified by adding an initial attenuation term as shown in Expression (4) below.
  • L (t) represents the emission intensity after t hours from the start of the life test of the organic EL element
  • L 0 represents the emission intensity at the start of the life test of the organic EL element
  • is 0 or more and 1
  • ⁇ 2 represents a time-varying parameter
  • f (t) represents a function indicating an initial decay of emission intensity.
  • the parameter governing the life can be ⁇ 2 .
  • the deterioration curve C is fitted by, for example, a fitting function represented by the following formula (5) that embodies the formula (4).
  • ⁇ , ⁇ 1 and ⁇ 2 represent time-varying parameters.
  • FIG. 3 shows an example of changes over time of the first term (lower broken line whose intercept value is ⁇ ) and the second term (upper broken line whose intercept value is 1 ⁇ ) in Equation (5).
  • the value of the first term is shown on the right vertical axis, and the value of the second term is shown on the left vertical axis.
  • the value of the first term becomes almost zero.
  • the contribution of the second term in the equation (5) becomes dominant, and ⁇ 2 is a change with time in the element characteristics of the organic EL element. It is clear that it is characterized.
  • FIG. 4 shows an example of a deterioration curve of the organic EL element at each current density when the current density applied to the organic EL element is changed at a certain environmental temperature.
  • Each fouling curve J 1, J 2 shown in FIG. 4, ... J 7 is a deterioration curve when applied to n times the current density J 0 ⁇ n with respect to the current density J 0 of a predetermined initial brightness is there.
  • the fitting function of the temporal change data acquired in the data acquisition step is obtained, and the temporal change parameter characterizing the temporal change in the element characteristics of the organic EL element is extracted from the fitting function.
  • the light emission intensity (for example, luminance) of the organic EL element is measured, and the coefficient of the light emission intensity (for example, luminance) in the fitting function is used as the temporal change parameter.
  • the luminous efficiency that shows the luminous flux per unit input power the external quantum efficiency that shows the number of photons taken out per unit current, or the driving voltage that becomes the threshold or constant current
  • a coefficient of the luminous flux that is the light flux, the radiant flux, or the number of photons in the fitting function, or a driving voltage that becomes a threshold value or a constant current may be used.
  • the threshold value is a threshold value set as a value that is a constant multiple of the initial drive voltage, for example.
  • the life estimation unit 2 performs an estimation formula setting step.
  • the temperature rise value of the organic layer of the organic EL element is measured.
  • the “temperature rise value of the organic layer” may be a temperature rise value of the whole organic layer of the organic EL element, for example, a temperature rise value of the light emitting layer.
  • the organic layer temperature TEL is estimated from the obtained temperature rise value of the organic layer.
  • the measurement of the temperature rise value of the organic layer may be performed only at the start of light emission of the organic EL element (at the start of the life test), or may be performed at a predetermined interval (for example, every 10 hours) during the life test.
  • the temperature rise value of the organic layer is measured only at the start of light emission of the organic EL element (at the start of the life test)
  • the value of the temperature rise value obtained by the measurement is taken for all periods during the life test. What is necessary is just to use as a temperature rise value of an organic layer.
  • the temperature rise value of the organic layer is measured at a predetermined interval during the life test, the value of the temperature rise value obtained by a certain measurement is measured after the measurement.
  • the temperature rise value of the organic layer can be obtained from, for example, measurement of current-voltage characteristics (IV characteristics) of the organic EL element. Specifically, the voltage between the electrodes of the organic EL element at the time of applying the current pulse is measured using a current pulse in which the temperature of the organic EL element is maintained at a constant temperature in a thermostat and the temperature rise due to driving is suppressed. By repeating this measurement while changing the temperature of the organic EL element (temperature of the thermostatic chamber), the current-voltage characteristics depending on the temperature can be acquired as a standard curve. Next, the voltage is measured by quickly applying the same current pulse as described above from the state where the organic EL element is actually driven to emit light. By comparing the voltage at the time of driving with the standard curve, the temperature rise value of the organic layer at the time of driving can be estimated.
  • IV characteristics current-voltage characteristics
  • the temperature rise value of the organic layer can be obtained by Raman spectroscopy measurement of the organic layer. Specifically, Raman scattered light from a specific organic layer constituting the organic EL element can be detected, and the temperature of the organic layer can be estimated using the intensity ratio of Stokes light / anti-Stokes light. In addition, the temperature of the organic EL element is kept constant in the thermostat, the wavelength shift or peak width of the Raman scattered light is measured, and this measurement is repeated while changing the temperature of the organic EL element (temperature of the thermostat). Thus, the wavelength shift or peak width depending on the temperature is acquired as a standard curve, and then the Raman scattered light is detected in a state where the organic EL element is actually driven to emit light, and the wavelength shift or peak at this time is detected. By comparing the width with the standard curve, the temperature rise value of the organic layer during driving can be estimated.
  • the temperature rise value of the organic layer can be obtained from transient characteristics measurement of the emission intensity of the organic EL element. Specifically, the temperature of the organic EL element is maintained at a constant temperature in a thermostatic bath, photoluminescence from a specific organic layer constituting the organic EL element is observed using pulsed excitation light, and the time constant of the intensity attenuation is observed. To get. By repeating this measurement while changing the temperature of the organic EL element (temperature of the thermostat), a time constant depending on the temperature can be acquired as a standard curve.
  • the time constant of photoluminescence is measured in the state where the organic EL element is actually driven to emit light, and the temperature rise value of the organic layer at the time of driving is compared by comparing the time constant at this time with a standard curve. Can be estimated.
  • FIG. 5 also shows a curve (broken line) approximated based on these data.
  • FIG. 8 shows the result of plotting the time-varying parameter ⁇ 2 obtained from the life test at each environmental temperature against the current density. Further, in FIG. 8, the relationship between the current density obtained by using Equation (6) and the time-dependent change parameter ⁇ 2 at each environmental temperature is indicated by a solid line, a broken line, or the like. As apparent from FIG. 8, the organic layer temperature T EL relationship between applied current density and aging parameter tau 2 obtained using equation (6) including the aging parameter tau 2 of the current obtained from the life test It can be seen that the density dependence is well reproduced.
  • the fitting function of the temporal change data of the organic EL element in the present embodiment can be expressed by the following formula (5) that embodies the following formula (4) (S6 in FIG. 2).
  • ⁇ 2 in the equations (4) and (5) can be expressed by the following equation (6).
  • the lifetime estimation formula of the organic EL element is set by obtaining the temperature dependence of the time-varying parameter using the temperature rise value during light emission of the organic layer.
  • the aging parameter tau 2 is set the life estimation equation based depend on the current density applied to the organic EL element to another organic layer temperature, aging parameter tau 2
  • the life estimation formula may be set based on depending on the voltage applied to the organic EL element or the electric power input to the organic EL element.
  • the life under the standard driving condition is estimated from the life under the acceleration condition based on the formula (4) or (5) (S7 in FIG. 2).
  • the lifetime estimation unit 2 estimates the lifetime of the organic EL element 4.
  • the lifetime estimation part 2 may estimate the lifetime of the organic EL element 4 by performing the flow shown in FIG. 2 once, and repeats the flow shown in FIG. A lifetime of 4 may be estimated.
  • the environmental temperature is 55 ° C. or less.
  • the lifetime can be evaluated within 1000 hours under the acceleration condition included in the region indicated by R. . That is, according to the method for estimating the lifetime of the organic EL element, it is possible to accurately estimate necessary acceleration conditions.
  • the lifetime estimation formula is an equation that takes into consideration the temperature at which the organic layer emits light (organic layer temperature T EL ). Therefore, the lifetime of the organic EL element can be estimated in consideration of self-heating of the organic layer due to current application that affects the lifetime of the organic EL element. Therefore, in this organic EL element lifetime estimation method, it is possible to estimate the lifetime of the organic EL element more accurately than the conventional lifetime estimation method. Furthermore, even when the current density applied to the organic EL element is large (that is, the self-heating of the organic layer is large), it is possible to accurately estimate the lifetime of the organic EL element.
  • the life estimation unit 2 fits the deterioration curve by the fitting function represented by the formula (1), (2), or (3) in the parameter extraction step.
  • a deterioration curve of the organic EL element as shown in FIG. 10 may be fitted by a fitting function represented by the following formula (7), (8) or (9).
  • Expression (7) is obtained by expanding Expression (4) along Expression (1).
  • L (t), L 0 , a i , b, c, d, ⁇ i and ⁇ are represented by the formulas (1), (2) and (3).
  • L (t), L 0 , a i , b, c, d, ⁇ i and ⁇ are synonymous with each other.
  • is a time-varying parameter that satisfies 0 ⁇ ⁇ 1.
  • FIG. 14 shows the result of plotting the time-varying parameter ⁇ obtained from the life test at each environmental temperature against the current density. Further, in FIG. 14, the relationship between the current density obtained by using Equation (10) and the temporal change parameter ⁇ at each environmental temperature is indicated by a solid line, a broken line, or the like. As apparent from FIG. 14, the relationship between ⁇ applied current density and aging parameter obtained using Equation (10) including an organic layer temperature T EL, the current density dependence of aging parameter ⁇ obtained from life test It can be seen that the sex is well reproduced.
  • the life estimation unit 2 in the life estimation apparatus 1 may have a table for deriving a temperature increase value from the applied current density and / or the environmental temperature.
  • the table for deriving the temperature increase value from the applied current density and / or the environmental temperature is, for example, a conversion table for converting the applied current density and the environmental temperature into the organic layer temperature (temperature increase value) as shown in FIG. .
  • the temperature acquisition part 3 in the lifetime estimation apparatus 1 may be comprised, for example from the temperature acquisition system.
  • the temperature increase value obtained by the temperature acquisition system can be used as the temperature increase value.
  • a temperature acquisition system is demonstrated.
  • FIG. 17 is a diagram showing components of the temperature acquisition system according to the present embodiment.
  • the temperature acquisition system 7 includes a temperature control unit 8, a pulse current source 9, a voltage measurement unit 10, an information processing unit 11, an installation unit 5 for installing the organic EL element 4, and an organic And a drive unit 6 for driving the EL element 4.
  • the installation unit 5 and the drive unit 6 may be provided as part of the temperature acquisition system as described above, but may be provided outside the temperature acquisition system.
  • the temperature control unit 8 controls the atmospheric temperature of the organic EL element 4 (for example, the temperature of the thermostatic chamber (installation unit 5)).
  • the pulse current source 9 applies a pulse current to the organic EL element 4.
  • the voltage measuring unit 10 is a voltage between a pair of electrodes constituting the organic EL element 4 when the pulse current source 9 applies a pulse current to the organic EL element 4 (hereinafter, also simply referred to as “interelectrode voltage”). taking measurement.
  • the information processing unit 11 acquires information related to the correlation between the temperature of the organic layer measured by the voltage measurement unit 10 and the interelectrode voltage.
  • the first to fifth steps are performed as follows.
  • the temperature controller 8 changes the ambient temperature of the organic EL element 4 at intervals of 5 to 20 ° C., for example, between ⁇ 40 ° C. and 80 ° C.
  • the temperature control unit 8 receives, for example, information from the installation unit 5 regarding whether or not the temperature of the organic EL element 4 is stable at each ambient temperature of the organic EL element 4.
  • the installation unit 5 measures the temperature of the substrate surface of the organic EL element 4 using, for example, a thermocouple, and indicates that the temperature of the organic EL element 4 is stable when the temperature is held constant for 10 minutes.
  • a signal is transmitted to the temperature control unit 8.
  • the correlation between the interelectrode voltage and the ambient temperature can be regarded as the correlation between the interelectrode voltage and the temperature of the organic layer.
  • the temperature control unit 8 transmits a signal indicating that the temperature of the organic EL element 4 has been stabilized from the installation unit 5 to the pulse current source 9, and sets the temperature of the organic layer of the organic EL element 4 to the information processing unit. 11 to send.
  • the pulse current source 9 applies a pulse current to the organic EL element 4 and transmits a signal to that effect to the voltage measuring unit 10.
  • the pulse current source 9 From the viewpoint of charging the capacitance of the organic EL element 4 and measuring the voltage between the electrodes with high accuracy, the pulse current source 9 generates a pulse current having a pulse width at which the current value sufficiently rises to a desired value. Apply to.
  • the pulse current source 9 is preferably a pulse of 20 milliseconds or less, more preferably 10 milliseconds or less, and even more preferably 5 milliseconds or less from the viewpoint of suppressing the temperature rise of the organic layer of the organic EL element 4 due to the application of the pulse current.
  • a pulse current having a width is applied to the organic EL element 4.
  • the pulse current source 9 applies a pulse current having a current value set to the organic EL element 4 from the viewpoint of suppressing the temperature rise of the organic layer of the organic EL element 4 due to the application of the pulse current. If the temperature increase of the organic layer of the organic EL element 4 due to the application of the pulse current can be suppressed, the temperature dependency of the voltage between the electrodes can be obtained with high accuracy, and as a result, the temperature of the organic layer of the organic EL element 4 can be increased with higher accuracy. It can be measured.
  • the pulse current source 9 supplies the pulse current to the organic EL so that the temperature rise of the organic layer of the organic EL element due to the pulse current application is sufficiently smaller than the temperature rise of the organic layer due to the current applied in the life test or the like.
  • the temperature rise value of the organic layer due to the current value of the pulse current is preferably 1 ° C. or less, more preferably 0.1 ° C. or less.
  • the temperature rise value of the organic layer of the organic EL element 4 includes, for example, the area where the pulse current is applied in the organic EL element 4, the thickness of the organic layer, the specific heat of the organic layer, the density of the organic layer, the amount of heat generated by the current pulse, the organic EL It can be obtained based on parameters such as the heat capacity of the element 4 (assuming the value of each parameter as necessary).
  • the voltage measurement unit 10 measures the interelectrode voltage of the organic EL element 4 in synchronization with the timing when the pulse current source 9 applies the pulse current to the organic EL element 4, and transmits the measured interelectrode voltage to the information processing unit 11. To do.
  • the information processing unit 11 stores the temperature of the organic layer of the organic EL element 4 received from the temperature control unit 8 and the interelectrode voltage at the temperature of the organic layer received from the information processing unit 11 in association with each other.
  • the temperature control unit 8, the pulse current source 9, the voltage measurement unit 10, and the information processing unit 11 repeat the above operation to measure the interelectrode voltage at each temperature of the organic layer of the organic EL element 4. I will do it. Thereby, the information processing part 11 acquires the initial information regarding the correlation with the voltage between electrodes, and the temperature of an organic layer.
  • the history of the organic EL element 4 subjected to the first step is not limited, but it is preferable that the history is aged and stabilized. Alternatively, it may have been driven for a certain period of time.
  • the second step corresponds to a step of performing a life test, for example.
  • the driving unit 6 drives the organic EL element 4 by applying a predetermined direct current to the organic EL element 4 and then stops driving.
  • the driving conditions of the organic EL element 4 are not particularly limited, and even under normal conditions (for example, a condition where an ambient temperature is 25 ° C. and a direct current is applied such that the initial luminance of the organic EL element 4 is 3000 cd / m 2 ).
  • the condition for accelerating the deterioration for example, the condition of applying a direct current so that the initial luminance of the organic EL element 4 is 30000 cd / m 2 at an atmospheric temperature of 55 ° C. may be used.
  • a third step is performed.
  • the temperature of the organic layer is maintained at the predetermined temperature T 1 by maintaining the atmospheric temperature of the organic EL element 4 at the predetermined temperature T 1 .
  • the temperature T 1 of the organic layer of the organic EL element 4 is preferably set to 50 ° C. or more from the viewpoint of stabilizing the correlation between the interelectrode voltage and the temperature of the organic layer.
  • one or more steps such as irradiating the device with ultraviolet light or applying a reverse bias voltage may be used for this step.
  • the pulse current source 9 applies a pulse current to the organic EL element 4 and transmits a signal to that effect to the voltage measuring unit 10.
  • the pulse current applied to the organic EL element 4 by the pulse current source 9 is a pulse current having the same pulse width and current value as the pulse current applied in the first step.
  • the pulse current source 9 in synchronism with the timing of applying a pulse current to the organic EL device 4 measures the inter-electrode voltage V 1 of the organic EL element 4, the information processing inter-electrode voltages V 1 measured To the unit 11.
  • the third step only one inter-electrode voltage at one temperature may be measured, or a plurality of inter-electrode voltages at a plurality of different temperatures may be measured.
  • a fourth step is performed.
  • the information processing section 11 uses the temperature T 1 of the organic layer of the organic EL element 4 received from the temperature control section 8 and the interelectrode voltage V 1 received from the voltage measurement section 10 as the first step. compared acquired the initial calibration curve L1 in step, the temperature T 1 and the inter-electrode voltage V 1 of the initial calibration curve L1 shift amount corresponding corrected calibration curve shifting the initial calibration curve L1 and from L2 (correction information) To get. More specifically, as shown in FIG. 18, an amount corresponding initial calibration of the shift amount S with respect to the initial calibration curve L1 of the inter-electrode voltage V 1 of the plots in the temperature T 1 of the organic layer (squares in Fig. 18) L1 A corrected calibration curve L2 is obtained by shifting the whole.
  • the information processing unit 11 is based on the measured interelectrode voltages V 1 at the temperatures T 1 of the plurality of organic layers.
  • the correction calibration curve L2 can be acquired. In this case, the information processing unit 11 can acquire the corrected calibration curve L2 with higher accuracy.
  • the pulse current source 9 applies a pulse current to the organic EL element 4, and the voltage V 2 between the electrodes is measured by the voltage measuring unit 10. Measure.
  • the pulse current applied to the organic EL element 4 by the pulse current source 9 is a pulse current having the same pulse width and current value as the pulse current applied in the first step.
  • the voltage measuring unit 10 transmits the measured interelectrode voltage V 2 to the information processing unit 11.
  • the information processing unit 11 acquires the temperature T 2 of the organic layer of the organic EL element 4 corresponding to the inter-electrode voltage V 2 based on the correction calibration curve L2. Specifically, for example, as shown in FIG. 18, the organic layer of the organic EL element 4 corresponding to the interelectrode voltage V 2 (triangle mark in FIG. 18) on the correction calibration curve L2 obtained in the fourth step. temperature T 2 can be obtained. In addition, a 5th step is suitably performed after the 2nd step according to the timing which wants to acquire the temperature of an organic layer.
  • the temperature acquisition system 7 measures the voltages V 1 between the electrodes when a voltage measuring unit 10 and applying a pulse current to the organic EL element after driving, the information processing unit 11 is measured in advance
  • the correction information is obtained by correcting the initial information regarding the correlation between the temperature and the voltage of the organic layer based on the temperature T 1 and the voltage V 1 of the organic layer. Therefore, the temperature measurement of the organic EL element 4 is performed based on the correlation between the temperature of the organic layer in the organic EL element 4 after deterioration and the voltage between the electrodes. Therefore, the temperature of the organic layer can be measured with high accuracy even for the organic EL element 4 that has deteriorated as a result of driving.
  • a step (preliminary drive step) of driving the organic EL element 4 with the same applied current value as the applied current value in the second step may be performed before the first step.
  • the drive unit 6 drives the organic EL element 4 with an applied current value that is the same as the applied current value in the second step, for example, for 1 to 60 minutes.
  • the correlation between the voltage between the electrodes and the temperature of the organic layer even when the current is applied for a short time regardless of whether or not the current is applied for a long time in a life test or the like. May be shifted to the high voltage side or the low voltage side.
  • the shift amount may change depending on the applied current value for a relatively short time. Therefore, for such an organic EL element, it is preferable to obtain an initial calibration curve considering the influence of current application itself. Note that the preliminary drive step can be omitted for an organic EL element in which the shift of the calibration curve due to a short-time current application is small.
  • the first step may include a preliminary driving step. That is, the first step is after the organic EL element is held for a predetermined time at a part or all of the plurality of ambient temperatures and before the pulse current is applied to the organic EL element. There may be included a step of driving the organic EL element with the same applied current value as the applied current value in this step.
  • the initial calibration considering the applied current value and the organic layer temperature for the organic EL element in which the shift amount of the calibration curve due to the short-time current application described above depends on the organic layer temperature in addition to the applied current value. A line can be acquired.
  • the organic EL element is held at each atmospheric temperature for a predetermined time, and the voltage between the electrodes when a pulse current is applied to the organic EL element is measured.
  • a step (step 1a) of obtaining initial information regarding the correlation between temperature and the voltage may be performed, (Ii) After holding the organic EL element at each ambient temperature for a predetermined time at all of the plurality of ambient temperatures, driving the organic EL element with the same applied current value as the applied current value in the second step, and then The step (step 1b) of obtaining initial information regarding the correlation between the temperature of the organic layer and the voltage may be performed by measuring the voltage between the electrodes when a pulse current is applied to the organic EL element. (Iii) Step 1a may be performed at a part of the plurality of ambient temperatures, and Step 1b may be performed at the other part of the plurality of ambient temperatures.
  • the preliminary driving step may be performed after the second step or the third step, for example, and then the initial information may be acquired again.
  • the temperature of the organic layer can be measured with high accuracy even for the organic EL element 4 in which the correlation between the voltage between the electrodes and the temperature of the organic layer changes due to the current application itself.
  • the organic EL element manufacturing method includes the steps of obtaining an organic EL element by arranging an organic layer between a pair of electrodes, and the lifetime of the organic EL element described above. A step of estimating using an estimation method, and a step of comparing the estimated lifetime with a reference value of the lifetime and determining the quality of the obtained organic EL element.
  • the light emitting device has the same configuration as that of the organic EL element lifetime estimation device shown in FIG. That is, the light-emitting device includes an organic EL element, a lifetime estimation unit that estimates the lifetime of the organic EL element using the above-described organic EL element lifetime estimation method, and a temperature acquisition unit that acquires a temperature rise value. Yes.
  • Examples of such a light emitting device include a display device and a lighting device.
  • the life estimation unit may have a table for deriving a temperature rise value from the applied current density and / or the environmental temperature.
  • the temperature acquisition unit may be configured from the temperature acquisition system shown in FIG.
  • the light emitting device may further include a life determining unit that determines the life of the organic EL element by comparing the estimated life with a reference value of the life.
  • the light emitting device may further include a control unit that controls the driving condition of the organic EL element based on the temperature of the organic EL element obtained by the temperature acquisition unit or the lifetime of the organic EL element obtained by the lifetime estimation unit. Good. In this case, the driving condition of the organic EL element can be controlled to a suitable condition according to the measured temperature or lifetime of the organic EL element.
  • Example 1 First, an organic EL element was produced. Specifically, a hole injection layer and a hole transport layer were formed on a glass substrate on which an ITO pattern was formed by a vacuum evaporation method, and a light emitting layer was further formed by a vacuum evaporation method by co-evaporation. Subsequently, a hole blocking layer, an electron transport layer, and an electron injection layer were similarly formed by a vacuum deposition method, and finally a cathode made of aluminum was formed. The organic EL layer produced in this way was sealed in a glove box held in an inert gas so as not to be exposed to the atmosphere to obtain an organic EL element. Table 1 shows the materials used for each layer and the film thickness of each layer.
  • the produced organic EL device was placed in a thermostatic chamber, a constant current was applied to the organic EL device, and a change in luminance of the organic EL device with time was measured to perform a life test.
  • Applied current density the initial luminance of the organic EL element is 1,800 cd / m 2 and comprising current density n times the current density with respect to J 0 J 0 ⁇ n (J 1, J 2, ... J 7) was.
  • the correspondence between current densities J 1 , J 2 ,... J 7 and n is as follows.
  • the change over time in the luminance of the organic EL element when the life test is performed under the conditions of a temperature in a thermostatic chamber: 25 ° C. and an applied current density: J 2 is a deterioration curve C shown in FIG. It was.
  • the vertical axis of the deterioration curve C represents the ratio L (t) / L 0 of the luminance L (t) after t hours to the luminance L 0 at the start of the life test.
  • This deterioration curve C could be fitted by a fitting function represented by the following formula (5).
  • ⁇ 1 and ⁇ 2 represent time-varying parameters.
  • FIG. 2 also shows temporal changes of the first term (lower broken line with intercept value ⁇ ) and the second term (upper broken line with intercept value 1 ⁇ ) in equation (5). ing. As is clear from FIG. 2, it was found that the value of the first term becomes almost zero after about 100 hours.
  • FIG. 3 shows a deterioration curve of the organic EL element at each applied current density J 1 , J 2 ,... J 7 at an environmental temperature of 25 ° C. In the semi-log plot of FIG. 3, after about 100 hours, it has been found that the deterioration curves J 1 , J 2 ,... J 7 are all straight lines.
  • the temperature rise value of the organic layer was measured before lifetime test implementation. Specifically, the temperature rise value of the organic layer was determined by measuring the current-voltage characteristics (IV characteristics) of the following organic EL elements.
  • the organic layer temperature T EL was estimated by using the temperature rise value of the organic layer obtained from the IV characteristic is plotted against current density to be applied to the organic EL device was the plot shown in FIG. FIG. 4 also shows a curve (broken line) approximated based on these data.
  • (tau) 2 is represented by following formula (6).
  • A represents a positive number.
  • was 1.16 and Ea was 0.42.
  • FIG. 7 shows the result of plotting the time-varying parameter ⁇ 2 obtained from the life test at each temperature in the thermostat against the current density. Further, in FIG. 7, the relationship between the current density obtained using the equation (2) and the temporal change parameter ⁇ 2 at each environmental temperature is indicated by a solid line, a broken line, or the like. As apparent from FIG. 7, the relationship between the applied current density and aging parameter tau 2 obtained using equation (6) containing organic layer temperature T EL is the aging parameter tau 2 obtained from the life test It was found that the current density dependency was well reproduced.
  • the fitting function of the temporal change data of the organic EL element in this example can be expressed by the following formula (5), and ⁇ 2 in the formula (5) can be expressed by the following formula (6). I understood.
  • FIG. 16 shows the relationship of the time-varying parameter ⁇ 2 with respect to the current density obtained by using the conventional method for estimating the lifetime of the organic EL element.
  • Example 2 A life test was performed on the organic EL device produced in the same manner as in Example 1 by measuring the change in luminance over time in the same manner as in Example 1.
  • Equation (12) b, ⁇ , ⁇ , and ⁇ ′ represent time-varying parameters.
  • b was 0.7 ⁇ 0.05.
  • (tau) is represented by following formula (10).
  • A represents a positive number.
  • was 1.30 ⁇ 0.10 and Ea was 0.36 ⁇ 0.02.
  • FIG. 14 shows the result of plotting the time-varying parameter ⁇ obtained from the life test at each temperature in the thermostat against the current density. Further, in FIG. 14, the relationship between the current density obtained using Equation (12) and the time-varying parameter ⁇ at each environmental temperature is indicated by a solid line, a broken line, or the like. As apparent from FIG. 14, the current density of the relationship between Equation (10) applied current density and aging parameters determined using the ⁇ containing organic layer temperature T EL is aging parameters obtained from the life test ⁇ It turns out that the dependency is well reproduced.
  • the lifetime of the organic EL element (time until 70% of the initial luminance is reached) is predicted from the above fitting function, it is 4401 hours, which is in good agreement with the actual measured value of 4750 hours of the organic EL element. It was.
  • Example 3 Next, an example of a temperature acquisition method for an organic EL element using the temperature acquisition system shown in FIG. 17 will be described.
  • an organic EL element was produced. Specifically, a hole injection layer and a hole transport layer were formed on a glass substrate on which an ITO pattern was formed by a vacuum evaporation method, and a light emitting layer was further formed by a vacuum evaporation method by co-evaporation. Subsequently, a hole blocking layer, an electron transport layer, and an electron injection layer were similarly formed by a vacuum deposition method, and finally a cathode made of aluminum was formed.
  • the organic EL layer produced in this way was sealed in a glove box held in an inert gas so as not to be exposed to the atmosphere to obtain an organic EL element.
  • the light emitting area of the obtained organic EL element was 2 mm square. Table 3 shows the materials used for each layer and the film thickness of each layer.
  • the ambient temperature Ta (the temperature T EL of the organic layer) is changed between ⁇ 35 ° C. and 80 ° C. with respect to the obtained organic EL element, and a pulse current is applied to the organic EL element at each ambient temperature Ta the inter-electrode voltage V F was measured.
  • the pulse width of the pulse current was 20 ms, and the current value was 2 ⁇ A.
  • the temperature rise of the organic layer of the organic EL element due to the application of the pulse current is estimated to be about 0.7 ° C.
  • the organic EL element was driven for 12 hours under the conditions of an atmospheric temperature of 25 ° C. and an applied current of 2 mA.
  • a pulse current having a pulse width of 20 ms and a current value of 2 ⁇ A was applied to the organic EL element after driving, and the interelectrode voltage VA was measured to be 5.11 V.
  • V F interelectrode voltage
  • V F interelectrode voltage
  • a corrected calibration curve L4 shown in FIG. 19 was obtained.
  • the corrected calibration curve L4 was shifted to the high voltage side by about 0.14 V with respect to the initial calibration curve L3.
  • the organic layer temperature at an applied current of 2 mA was estimated using this calibration curve, and found to be 41 ° C.
  • FIG. 21 is a diagram showing the relationship between the interelectrode voltage, the applied current value, and the ambient temperature.
  • (A), (b), and (c) of FIG. 21 show the interelectrode voltage measured after applying current to the organic EL element at each applied current value at atmospheric temperatures of ⁇ 35 ° C., ⁇ 5 ° C., and 25 ° C., respectively.
  • V F is shown.
  • the shift amount of the inter-electrode voltage V F according to current application itself has been found to depend on the applied current value and the ambient temperature.
  • FIG. 22 is a diagram showing the relationship between the applied current value and the change in the calibration curve.
  • FIG. 22B is an enlarged view of FIG.
  • L7 when current is not applied
  • L8 when current is applied at 0.1 mA
  • L9 when current is applied at 1 mA
  • L10 A calibration curve for (L10) is shown.
  • the temperature measurement error of the organic EL element is about 7 ° C. at the maximum when the element temperature is around 0 ° C. (L7 and L10 Difference).
  • the organic layer temperature at an applied current of 1 mA at an ambient temperature of 25 ° C. was estimated to be 36 ° C.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、一対の電極と、該一対の電極間に配置された有機層と、を備える有機EL素子の寿命推定方法であって、有機EL素子への印加電流密度及び/又は有機EL素子の雰囲気温度を変化させた際の、有機EL素子の素子特性の経時変化データを取得するデータ取得ステップと、経時変化データのフィッティング関数を求め、該フィッティング関数から印加電流密度及び/又は雰囲気温度における素子特性の経時変化を特徴づける経時変化パラメータを抽出するパラメータ抽出ステップと、印加電流密度及び/又は雰囲気温度における有機層の発光時の温度上昇値を用いて経時変化パラメータの温度依存性を算出し、有機EL素子の寿命推定式を設定する推定式設定ステップと、寿命推定式を用いて有機EL素子の寿命を推定する寿命推定ステップと、を備える、有機EL素子の寿命推定方法を提供する。

Description

有機EL素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置
 本発明は、有機EL素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置に関する。
 有機EL素子は、例えば照明用光源として用いられる場合、標準条件(例えば3000~5000cd/mの輝度)において、40000時間程度以上の寿命を有することが必要とされている。一方で、有機EL素子の寿命試験においては、40000時間のような長時間測定することは長時間を要し現実的でなく、例えば輝度を著しく高くするといった有機EL素子の劣化が加速される加速条件で寿命を測定することが一般的である。
 このような加速条件で寿命試験を行う場合、加速条件での寿命から標準条件での寿命を正確に推定することが重要となる。従来、有機EL素子の寿命を推定する方法として、有機EL素子の劣化曲線を印加電流密度のベキ乗とする関数でフィッティングする方法(例えば非特許文献2及び3参照)、有機EL素子を駆動する際の環境温度の関数でフィッティングする方法(例えば非特許文献1参照)などが用いられている。
 また、有機EL素子は、特に照明、ディスプレイ等の光源用途においては、使用に伴う有機EL素子の劣化を抑制することが求められる。有機EL素子の劣化は有機EL素子を構成する有機層の温度と相関があると考えられているため、有機EL素子の劣化の抑制を図る上では、有機層の温度を正確に測定することが重要となる。
 従来、ラマン分光法等の光学的な手法を用いて有機層の温度を測定する技術が知られているが、測定精度や簡便性の点で問題がある。これに対して、特許文献1には、異なる複数の雰囲気温度において、有機EL素子にパルス波形の電圧信号又は電流信号を与えることによって有機EL素子の電流-電圧-温度特性を予め測定しておき、その電流-電圧-温度特性に基づいて有機EL素子の内部温度を算出する方法が開示されている。
 また、非特許文献1には、一定の低電流信号を用い、異なる複数の雰囲気温度において、有機EL素子に電流信号を与えることによって有機EL素子の電圧-温度特性を予め測定しておき、その電圧-温度特性に基づいて有機EL素子の内部温度を算出する方法が開示されている。
 しかしながら、上述した従来の寿命推定方法では、特に高電流密度条件による寿命試験データを用いた場合、有機EL素子の寿命を正確に推定できないおそれがあった。
 本発明の目的は、有機EL素子の寿命を正確に推定できる有機EL素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置を提供することである。
 また、本発明者らの検討によれば、有機EL素子の劣化に伴って電流-電圧-温度特性が変化するため、特許文献1に開示されている方法のように予め測定された有機EL素子の電流-電圧-温度特性に基づいて劣化後の有機EL素子の温度を算出した場合、算出される温度の精度が必ずしも高くないことが分かった。
 本発明の他の目的は、有機EL素子の有機層の温度を高い精度で測定することが可能な有機EL素子における有機層の温度を取得する方法を提供することである。
 本発明に係る有機EL素子の寿命推定方法は、一対の電極と、該一対の電極間に配置された有機層と、を備える有機EL素子の寿命推定方法であって、有機EL素子への印加電流密度及び/又は有機EL素子の雰囲気温度(環境温度)を変化させた際の、有機EL素子の素子特性の経時変化データを取得するデータ取得ステップと、経時変化データのフィッティング関数を求め、該フィッティング関数から印加電流密度及び/又は雰囲気温度(環境温度)における素子特性の経時変化を特徴づける経時変化パラメータを抽出するパラメータ抽出ステップと、印加電流密度及び/又は雰囲気温度(環境温度)における有機層の発光時の温度上昇値を用いて経時変化パラメータの温度依存性を算出し、有機EL素子の寿命推定式を設定する推定式設定ステップと、寿命推定式を用いて有機EL素子の寿命を推定する寿命推定ステップと、を備える。
 本発明の有機EL素子の寿命推定方法では、有機EL素子の素子特性の経時変化データのフィッティング関数から経時変化パラメータを抽出し、有機層の発光時の温度上昇値を用いて経時変化パラメータの温度依存性を求めた上で、有機EL素子の寿命推定式を設定する。つまり、この有機EL素子の寿命推定方法では、寿命推定式が有機層の発光時の温度上昇値を考慮した式となっているため、有機EL素子の寿命に影響する電流印加による有機層の自己発熱も考慮して有機EL素子の寿命を推定することとなる。したがって、本発明の有機EL素子の寿命推定方法によれば、従来の寿命推定方法に比べて有機EL素子の寿命をより正確に推定することが可能となる。さらに、有機EL素子に印加する電流密度が大きい(すなわち、有機層の自己発熱が大きい)場合であっても、正確に有機EL素子の寿命を推定することができる優れた寿命推定方法となる。
 経時変化パラメータが、フィッティング関数における、有機EL素子の輝度、光束、放射束若しくはフォトン数である発光強度、単位投入電力あたりの光束を示す発光効率、単位電流あたり外部に取り出されるフォトン数を示す外部量子効率、又は、閾値若しくは一定電流となる駆動電圧、の経時変化を特徴づける関数の係数であることが好ましい。この場合、簡易に測定できる特性に基づいて、有機EL素子の寿命の推定が可能となる。
 推定式設定ステップにおいて、温度依存性に基づいて経時変化パラメータを補正し、経時変化パラメータの他の因子による依存性を導出することによって、温度依存性を表す項と他の因子による依存性を表す項との積を含む寿命推定式を設定することが好ましい。この場合、寿命推定式が有機層の温度上昇値に加えて他の因子を考慮した式となるため、有機EL素子の寿命をより正確に推定できる。
 他の因子が、有機EL素子に対する印加電流密度、印加電圧又は投入電力であることが好ましい。この場合、寿命推定式が有機EL素子の寿命への影響が大きい因子を考慮した式となるため、有機EL素子の寿命をより正確に推定できる。
 温度上昇値が、有機EL素子の電流-電圧特性測定若しくは発光強度の過渡特性測定、又は、有機層のラマン分光測定によって得られた温度上昇値であることが好ましい。この場合、より正確な有機層の温度上昇値を用いることができるため、有機EL素子の寿命をより正確に推定できる。
 温度上昇値は、複数の雰囲気温度において、有機EL素子を各雰囲気温度下で所定時間保持し、有機EL素子にパルス電流を印加したときの電極間の電圧を測定することにより、有機層の温度と電圧との相関に関する初期情報を取得する第1のステップと、有機EL素子の駆動及び停止を行う第2のステップと、第2のステップの後に、有機EL素子を所定の雰囲気温度T下で所定時間保持し、有機EL素子に第1のステップにおけるパルス電流と同一のパルス電流を印加したときの電圧Vを測定する第3のステップと、第3のステップで得られた温度T及び電圧Vに基づいて初期情報を補正し、有機層の温度と電圧との相関に関する補正情報を取得する第4のステップと、有機EL素子に第1のステップにおけるパルス電流と同一のパルス電流を印加したときの電極間の電圧Vを測定し、補正情報に基づいて電圧Vに対応する温度Tを取得する第5のステップと、を備える方法によって得られた温度上昇値であることが好ましい。
 この方法では、第3のステップにおいて、駆動後の有機EL素子に対してパルス電流を印加したときの電極間の電圧を測定し、第4のステップにおいて、予め測定された有機層の温度と電圧との相関に関する初期情報を第3ステップで測定された有機層の温度及び電圧に基づき補正して補正情報を得ている。そのため、この方法では、劣化後の有機EL素子における有機層の温度と電極間の電圧との相関に基づいて有機EL素子の温度測定が行われる。したがって、駆動に伴って劣化した有機EL素子に対しても、有機層の温度を高い精度で測定することが可能となる。
 上記の方法は、第1のステップの前に、第2のステップにおける印加電流値と同一の印加電流値で有機EL素子を駆動するステップを更に備えることが好ましい。この場合、駆動の際の電流印加自体によって有機層の温度と電圧との相関が変化する有機EL素子に対しても、有機層の温度を高い精度で測定することが可能となる。
 上記の第1のステップは、複数の雰囲気温度のうち一部又は全部の雰囲気温度において、有機EL素子にパルス電流を印加する前に、第2のステップにおける印加電流値と同一の印加電流値で有機EL素子を駆動するステップを含むことが好ましい。この場合、駆動の際の電流印加及び有機層の温度に依存して有機層の温度と電圧との相関が変化する有機EL素子に対しても、有機層の温度を高い精度で測定することが可能となる。
 データ取得ステップにおいて、経時変化パラメータと共に有機層の温度上昇値を取得することで、温度上昇値の経時変化を測定し、推定式設定ステップにおいて、温度上昇値の経時変化を用いて寿命推定式を設定することが好ましい。この場合、寿命推定式が有機層の温度の経時変化を考慮した式となるため、有機EL素子の寿命をより正確に推定できる。
 経時変化データのフィッティング関数としては、下記式(1)、(2)又は(3)を用いることができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
[式(1)、(2)及び(3)中、L(t)は有機EL素子の寿命試験開始からt時間後の発光強度を表し、Lは有機EL素子の寿命試験開始時の発光強度を表し、a、b、c、d、τ及びτは経時変化パラメータを表す。]
 本発明に係る有機EL素子の寿命推定装置は、有機EL素子の寿命を推定する有機EL素子の寿命推定装置であって、上記の有機EL素子の寿命推定方法を用いて有機EL素子の寿命を推定する寿命推定部と、温度上昇値を取得する温度取得部と、を備えている。本寿命推定装置によれば、従来の寿命推定装置に比べて、有機EL素子の寿命をより正確に推定することが可能となる。
 本発明に係る有機EL素子の製造方法は、一対の電極間に有機層を配置して有機EL素子を得るステップと、得られた有機EL素子の寿命を上記の有機EL素子の寿命推定方法を用いて推定するステップと、推定された寿命と寿命の基準値とを比較し、有機EL素子の良否を判定するステップと、を備える。本製造方法によれば、従来の製造方法に比べて、寿命がより正確に推定された良品の有機EL素子を製造することが可能となる。
 本発明に係る発光装置は、有機EL素子と、上記の有機EL素子の寿命推定方法を用いて有機EL素子の寿命を推定する寿命推定部と、温度上昇値を取得する温度取得部と、を備えている。本発光装置によれば、従来の発光装置に比べて、有機EL素子の寿命をより正確に推定及び判別することが可能となる。
 上記の寿命推定装置及び発光装置における温度取得部は、有機EL素子の雰囲気温度を制御する温度制御部と、有機EL素子にパルス電流を印加するパルス電流源と、パルス電流を有機EL素子に印加したときの一対の電極間の電圧を測定する電圧測定部と、有機層の温度と電圧との相関に関する情報を処理する情報処理部と、を備える温度取得システムで構成されていてもよい。
 発光装置は、推定された寿命と寿命の基準値とを比較して有機EL素子の寿命を判別する寿命判別部を更に備えていてもよい。
 本発明によれば、従来の寿命推定方法に比べて有機EL素子の寿命を正確に推定できる有機EL素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置を提供することができる。さらに、有機EL素子に印加する電流密度が大きい(すなわち、有機層の自己発熱が大きい)場合であっても、正確に有機EL素子の寿命を推定するができる優れた有機EL素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置を提供することができる。
本発明の一実施形態に係る有機EL素子の寿命推定装置の構成要素を示す図である。 本発明の一実施形態に係る有機EL素子の寿命推定方法を示すフローチャートである。 有機EL素子の劣化曲線の一例を示す図である。 有機EL素子の劣化曲線の印加電流密度依存性の一例を示す図である。 印加電流密度と有機層の温度との関係の一例を示す図である。 経時変化パラメータの温度依存性の一例を示す図である。 経時変化パラメータから温度依存性を除外した場合の、経時変化パラメータの印加電流密度依存性の一例を示す図である。 各環境温度における経時変化パラメータの印加電流密度依存性の一例を示す図である。 初期輝度と寿命試験時間との関係の一例を示す図である。 有機EL素子の劣化曲線の印加電流密度依存性の他の例を示す図である。 種々の加速条件における規格化された経過時間に対する有機EL素子の劣化曲線の一例を示す図である。 経時変化パラメータの温度依存性の他の例を示す図である。 経時変化パラメータから温度依存性を除外した場合の、経時変化パラメータの印加電流密度依存性の他の例を示す図である。 各環境温度における経時変化パラメータの印加電流密度依存性の他の例を示す図である。 有機EL素子の寿命推定装置又は発光装置が有するテーブルの一例を示す図である。 従来の寿命推定方法を用いた場合の経時変化パラメータの印加電流密度依存性の一例を示す図である。 本発明の一実施形態に係る温度取得システムの構成要素を示す図である。 初期検量線と補正検量線との関係の一例を示す図である。 実施例における初期検量線と補正検量線との関係を示す図である。 実施例における電流印加による検量線の変化を示す図である。 実施例における有機層の温度と電極間の電圧との相関を示す図である。 実施例における印加電流値と検量線の変化との関係を示す図である。
 以下、図面を参照しながら、本発明に係る有機EL素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置の好適な実施形態について詳細に説明する。
 本実施形態の有機EL素子の寿命推定方法は、一対の電極と、該一対の電極間に配置された有機層と、を備える有機EL素子の寿命推定方法であって、有機EL素子への印加電流密度及び/又は有機EL素子の雰囲気温度(環境温度)を変化させた際の、有機EL素子の素子特性の経時変化データを取得するデータ取得ステップと、経時変化データのフィッティング関数を求め、該フィッティング関数から印加電流密度及び/又は雰囲気温度(環境温度)における素子特性の経時変化を特徴づける経時変化パラメータを抽出するパラメータ抽出ステップと、印加電流密度及び/又は雰囲気温度(環境温度)における有機層の発光時の温度上昇値を用いて経時変化パラメータの温度依存性を算出し、有機EL素子の寿命推定式を設定する推定式設定ステップと、寿命推定式を用いて有機EL素子の寿命を推定する寿命推定ステップと、を備える。
 図1は、本実施形態に係る有機EL素子の寿命推定装置の構成要素を示す図である。同図に示すように、寿命推定装置1は、例えば、寿命推定部2と、温度取得部3と、有機EL素子4を設置する設置部5と、有機EL素子4を駆動する駆動部6とを備えている。
 有機EL素子4の構成は、一対の電極と一対の電極間に配置された有機層とを含む(二つの電極と、該二つの電極によって挟持された有機層とを有し、電流印加によって発光する)構成であれば特に制限されない。有機EL素子4の構成としては、基板/陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極という構成が例示できる。この例の場合、例えば正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層及び電子注入層をそれぞれ有機層によって構成することができる。
 設置部5は、例えば有機EL素子4が設置されている雰囲気の温度(以下「雰囲気温度」又は「環境温度」という。)を所定の温度に保つことが可能な恒温槽で構成されている。駆動部6は、有機EL素子4に所定の直流電流を印加することによって、有機EL素子4を駆動する。
 寿命推定部2は、データ取得ステップと、パラメータ抽出ステップと、推定式設定ステップと、寿命推定ステップと、を備える有機EL素子の寿命推定方法によって、有機EL素子4の寿命を推定する。図2は、本実施形態に係る有機EL素子の寿命推定方法の一例を示すフローチャートである。
 データ取得ステップにおいては、有機EL素子への印加電流密度及び/又は有機EL素子の環境温度を変化させ、各印加電流密度及び/又は各環境温度における有機EL素子の素子特性の経時変化を測定する寿命試験を行う。本実施形態において「素子特性」とは、輝度、光束、放射束又はフォトン数といった発光強度を意味する。
 本実施形態では、有機EL素子の初期輝度が所定の値(例えば1000~5000cd/m)となる電流密度Jを有機EL素子に印加すると共に、有機EL素子の発光強度(例えば輝度)を測定することで寿命試験を行うことができる。以上のようにして、データ取得ステップでは、有機EL素子の発光強度等の素子特性の経時変化データを取得する(図2のS1)。
 続いて、寿命推定部2は、パラメータ抽出ステップを行う。データ取得ステップにおける寿命試験の結果から、有機EL素子の発光強度は、例えば図3に示すように、劣化曲線Cで示されるとおり時間の経過とともに減衰していくことが分かる。なお、劣化曲線Cの縦軸(左側の縦軸)は、寿命試験開始時の発光強度Lに対するt時間後の発光強度L(t)の比L(t)/Lを表している。
 この劣化曲線Cは、例えば下記式(1)、(2)又は(3)で表されるフィッティング関数によってフィッティング可能である(図2のS2)。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
[式(1)、(2)及び(3)中、L(t)は有機EL素子の寿命試験開始からt時間後の発光強度を表し、Lは有機EL素子の寿命試験開始時の発光強度を表し、a、b、c、d、τ及びτは経時変化パラメータを表す。]
 式(1)を用いる場合、a及びτの中から主要なもの(寄与の大きいもの)を抽出して、経時変化パラメータとすることができる。経時変化パラメータは、1つあるいは2つ以上とすることができる。
 式(1)を用いる場合、式(1)を下記式(4)のように初期減衰項を付加して簡略化させて用いることもできる。
Figure JPOXMLDOC01-appb-M000013
式(4)中、L(t)は有機EL素子の寿命試験開始からt時間後の発光強度を表し、Lは有機EL素子の寿命試験開始時の発光強度を表し、λは0以上1以下の数を表し、τは経時変化パラメータを表し、f(t)は発光強度の初期減衰を示す関数を表す。この場合、式(4)で表されるフィッティング関数において、寿命を支配するパラメータはτとすることができる。
 本実施形態では、劣化曲線Cは、例えば式(4)を具体化した下記式(5)で表されるフィッティング関数によってフィッティングされる。なお、式(5)中のλ、τ及びτが経時変化パラメータを表す。
Figure JPOXMLDOC01-appb-M000014
 図3では、式(5)における第1項(切片の値がλである下側の破線)及び第2項(切片の値が1-λである上側の破線)の経時変化の一例を示している。なお、第1項の値は右側の縦軸に示されており、第2項の値は左側の縦軸に示されている。図3から明らかなように、約100時間を経過した後は、第1項の値がほぼゼロとなる。換言すれば、所定の時間を経過した後は、有機EL素子の劣化曲線Cにおいては、式(5)における第2項の寄与が支配的となり、τが有機EL素子の素子特性の経時変化を特徴づけていることが明らかである。
 図4には、ある環境温度において有機EL素子に印加する電流密度を変化させたときの各電流密度での有機EL素子の劣化曲線の一例を示している。図4に示された各劣化曲線J,J,…Jは、所定の初期輝度となる電流密度Jに対してn倍の電流密度J×nを印加したときの劣化曲線である。各劣化曲線J,J,…Jとnとの対応は例えば以下のようにすることができる。
:n=0.5、J:n=1、J:n=2、J:n=3、
:n=5、J:n=7、J:n=10
 図4の片対数プロットにおいて、所定の時間(約100時間)を経過した後は、劣化曲線J,J,…Jはいずれも直線となっている。このことからも、上述したように、所定の時間を経過した後は、有機EL素子の劣化曲線においては、式(5)における第2項の寄与が支配的となり、τが有機EL素子の素子特性の経時変化を特徴づけていることが分かる。
 以上のようにして、パラメータ抽出ステップでは、データ取得ステップにおいて取得された経時変化データのフィッティング関数を求め、該フィッティング関数から有機EL素子の素子特性の経時変化を特徴づける経時変化パラメータを抽出する。なお、本実施形態では、有機EL素子の発光強度(例えば輝度)を測定し、経時変化パラメータとしてフィッティング関数中の発光強度(例えば輝度)の係数を用いたが、有機EL素子の光束、放射束若しくはフォトン数である発光強度、単位投入電力あたりの光束を示す発光効率、単位電流あたり外部に取り出されるフォトン数を示す外部量子効率、又は、閾値若しくは一定電流となる駆動電圧を測定し、経時変化パラメータとしてフィッティング関数中の当該光束、放射束若しくはフォトン数である発光強度、又は、閾値若しくは一定電流となる駆動電圧、の係数を用いてもよい。なお、閾値は、例えば初期の駆動電圧の定数倍となる値等として設定される閾値である。
 続いて、寿命推定部2は、推定式設定ステップを行う。寿命推定式を求めるにあたり、まず、有機EL素子の有機層の温度上昇値を測定する。ここで、「有機層の温度上昇値」とは、有機EL素子が有する有機層全体の温度上昇値でもよく、例えば発光層の温度上昇値であってもよい。そして、求めた有機層の温度上昇値から有機層温度TELを見積もる。
 有機層の温度上昇値の測定については、有機EL素子の発光開始時(寿命試験開始時)にのみ行ってもよく、寿命試験中に所定の間隔(例えば10時間ごと)で行ってもよい。有機EL素子の発光開始時(寿命試験開始時)にのみ有機層の温度上昇値の測定を行う場合には、その測定で得られた温度上昇値の値を、寿命試験中のすべての期間における有機層の温度上昇値として用いればよい。一方、寿命試験中に所定の間隔で有機層の温度上昇値の測定を行う場合には、ある測定で得られた温度上昇値の値を、その測定を行ったときからその次の測定が行われるまでの間の有機層の温度上昇値として用いればよい。有機層の温度上昇値をより正確に寿命の推定に反映させるためには、寿命試験中に所定の間隔で有機層の温度上昇値の測定を行うことが好ましい。
 有機層の温度上昇値は、例えば有機EL素子の電流-電圧特性(IV特性)測定から求めることができる。具体的には、有機EL素子の温度を恒温槽中で一定温度に保ち、駆動による温度上昇を抑制した電流パルスを用いて、電流パルス印加時の有機EL素子の電極間電圧を測定する。有機EL素子の温度(恒温槽の温度)を変化させながらこの測定を繰り返すことにより、温度に依存する電流-電圧特性を標準曲線として取得できる。次に、実際に有機EL素子を駆動し発光させている状態から速やかに上記と同様の電流パルスを印加して電圧を測定する。この駆動時の電圧と標準曲線とを比較することにより、駆動時の有機層の温度上昇値を見積もることができる。
 あるいは、有機層の温度上昇値は、有機層のラマン分光測定により求めることができる。具体的には、有機EL素子を構成する特定の有機層からのラマン散乱光を検出し、ストークス光/反ストークス光の強度比を用いて当該有機層の温度を見積もることができる。また、有機EL素子の温度を恒温槽中で一定温度に保ち、ラマン散乱光の波長シフト又はピーク幅を測定し、有機EL素子の温度(恒温槽の温度)を変化させながらこの測定を繰り返すことにより、温度に依存する波長シフト又はピーク幅を標準曲線として取得し、続いて、実際に有機EL素子を駆動し発光させている状態においてラマン散乱光を検出して、このときの波長シフト又はピーク幅と標準曲線とを比較することにより、駆動時の有機層の温度上昇値を見積もることができる。
 あるいは、有機層の温度上昇値は、有機EL素子の発光強度の過渡特性測定から求めることができる。具体的には、有機EL素子の温度を恒温槽中で一定温度に保ち、有機EL素子を構成する特定の有機層からのフォトルミネッセンスをパルス励起光を用いて観測し、その強度減衰の時定数を取得する。有機EL素子の温度(恒温槽の温度)を変化させながらこの測定を繰り返すことにより、温度に依存する時定数を標準曲線として取得できる。次に、実際に有機EL素子を駆動し発光させている状態においてフォトルミネッセンスの時定数を測定し、このときの時定数と標準曲線とを比較することにより、駆動時の有機層の温度上昇値を見積もることができる。
 IV特性測定から求められる有機層の温度上昇値を用いて見積もられる有機層温度TELを有機EL素子に印加する電流密度に対してプロットすると、例えば図5に示したようなプロットとなる。図5には、これらのデータに基づいて近似した曲線(破線)を併せて示している。
 このようにして求めた各電流密度での有機層温度TELを用いて、経時変化パラメータτの有機層温度TEL依存性を知るために、図6に示すように、アレニウスプロット(1/kTELに対する1/τの対数プロット)を行う(図2のS4)。なお、kはボルツマン定数を表す。図6から分かるように、有機EL素子に印加する電流密度の大きさに関わらず、1/τは片対数プロットにおいて1/kTELに対してほぼ一定の傾きを示している。
 一方、経時変化パラメータτの有機層温度TEL依存性を除外し、経時変化パラメータτの有機EL素子に印加する電流密度Jに対する依存性を知るために、図7に示すように、電流密度Jに対する1/τ・exp(Ea/kTEL)の対数プロットを行う(図2のS5)。図7から分かるように、1/τ・exp(Ea/kTEL)は対数プロットにおいて電流密度Jに対してほぼ一定の傾きを示している。
 そして、図6及び図7から、τは下記式(6)で表されることが分かる。なお、Aは正の数を表す。
Figure JPOXMLDOC01-appb-M000015
 図8には、各環境温度における寿命試験から得られる経時変化パラメータτを、電流密度に対してプロットした結果を示している。また、図8には、各環境温度において、式(6)を用いてから求められる電流密度と経時変化パラメータτとの関係を実線、破線等で示している。図8から明らかなように、有機層温度TELを含む式(6)を用いて求められる印加電流密度と経時変化パラメータτとの関係は、寿命試験から得られる経時変化パラメータτの電流密度依存性をよく再現していることが分かる。
 以上より、本実施形態における有機EL素子の経時変化データのフィッティング関数は、下記式(4)を具体化した下記式(5)とすることができる(図2のS6)。ここで、式(4)及び(5)におけるτは下記式(6)で表わすことができる。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 以上のようにして、推定式設定ステップでは、有機層の発光時の温度上昇値を用いて経時変化パラメータの有機層温度依存性を求めることで、有機EL素子の寿命推定式を設定する。なお、上記の例では、経時変化パラメータτが有機層温度の他に有機EL素子に印加する電流密度に依存することに基づいて寿命推定式を設定しているが、経時変化パラメータτが有機EL素子に印加する電圧又は有機EL素子に投入する電力に依存することに基づいて寿命推定式を設定してもよい。
 そして、寿命推定ステップにおいては、式(4)又は(5)に基づいて、加速条件での寿命から標準駆動条件での寿命を推定する(図2のS7)。
 以上のようにして、寿命推定部2は、有機EL素子4の寿命を推定する。なお、寿命推定部2は、図2に示されるフローを1回行うことにより有機EL素子4の寿命を推定してもよく、図2に示されるフローを2回以上繰り返し行うことにより有機EL素子4の寿命を推定してもよい。
 また、この有機EL素子の寿命推定方法によれば、例えば図9に示すように、環境温度25℃、初期輝度3000cd/mで40000時間の寿命を有する有機EL素子について、環境温度55℃以下、初期輝度30000cd/m以下の加速条件で1000時間以内に寿命を評価したい場合に、Rで示される領域に含まれる加速条件であれば1000時間以内に寿命を評価できることが容易に見てとれる。すなわち、この有機EL素子の寿命推定方法によれば、必要な加速条件を正確に見積もることも可能となる。
 以上説明したように、この有機EL素子の寿命推定方法では、寿命推定式が有機層の発光時の温度(有機層温度TEL)を考慮した式となっている。そのため、有機EL素子の寿命に影響する電流印加による有機層の自己発熱も考慮して有機EL素子の寿命を推定することができる。したがって、この有機EL素子の寿命推定方法では、従来の寿命推定方法に比べて有機EL素子の寿命をより正確に推定することが可能となる。さらに、有機EL素子に印加する電流密度が大きい(すなわち、有機層の自己発熱が大きい)場合であっても、有機EL素子の寿命を正確に推定することが可能となる。
 上記実施形態では、寿命推定部2は、パラメータ抽出ステップにおいて、式(1)、(2)又は(3)で表されるフィッティング関数によって劣化曲線をフィッティングしたが、寿命推定部2は、パラメータ抽出ステップにおいて、下記式(7)、(8)又は(9)で表されるフィッティング関数によって、例えば図10に示されるような有機EL素子の劣化曲線をフィッティングしてもよい。式(7)は、式(4)を式(1)に沿って拡張したものとなっている。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 式(7)、(8)及び(9)中、L(t)、L、a、b、c、d、τ及びτは、式(1)、(2)及び(3)におけるL(t)、L、a、b、c、d、τ及びτとそれぞれ同義である。γは0<γ<1を満たす経時変化パラメータである。g(t)は、有機EL素子の初期劣化に対応する関数を表し、例えばg(t)=exp(-t/τ’)で表される関数である。式(7)、(8)又は(9)を用いた場合、有機EL素子の初期の劣化を考慮した関数によって劣化曲線がフィッティングされるため、より精度の高いフィッティングが可能となる。
 以下では、式(8)を用いた場合を例に挙げてより詳細に説明する。例えば、有機EL素子が図10に示すような劣化曲線を示すとする。なお、n=1,2,3,5,7,10は、それぞれ基準となる印加電流密度Jに対してJ×nの電流密度を有機EL素子に印加した場合の劣化曲線を示している。
 この場合、経過時間(図10の横軸)を規格化すると、図11に示すような劣化曲線を示す。なお、経過時間の規格化は、一定の減衰率(例えばL(t)/L(0)=0.7など)となる時間で経過時間を除すことにより行う。図11から明らかなように、すべての加速水準(図10のnの値)について、規格化された経過時間に対する劣化曲線がほぼ重なっている。これは、劣化曲線を式(8)でフィッティングしたときに、式(8)中のbの値が加速水準によって変化しないことを示している。
 次に、上記実施形態と同様に、経時変化パラメータτの有機層温度TEL依存性を知るために、図12に示すように、アレニウスプロット(1/kTELに対する1/τの対数プロット)を行う。図12から分かるように、有機EL素子に印加する電流密度の大きさに関わらず、1/τは片対数プロットにおいて1/kTELに対してほぼ一定の傾きを示している。
 一方、経時変化パラメータτの有機層温度TEL依存性を除外し、経時変化パラメータτの有機EL素子に印加する電流密度に対する依存性を知るために、図13に示すように、電流密度に対する1/τ・exp(Ea/kTEL)の対数プロットを行う。図13から分かるように、1/τ・exp(Ea/TEL)は対数プロットにおいて電流密度に対してほぼ一定の傾きを示している。
 そして、図12及び図13から、τは下記式(10)で表されることが分かる。なお、Aは正の数を表す。
Figure JPOXMLDOC01-appb-M000022
 図14には、各環境温度における寿命試験から得られる経時変化パラメータτを、電流密度に対してプロットした結果を示している。また、図14には、各環境温度において、式(10)を用いてから求められる電流密度と経時変化パラメータτとの関係を実線、破線等で示している。図14から明らかなように、有機層温度TELを含む式(10)を用いて求められる印加電流密度と経時変化パラメータτとの関係は、寿命試験から得られる経時変化パラメータτの電流密度依存性をよく再現していることが分かる。
 寿命推定装置1における寿命推定部2は、印加電流密度及び/又は環境温度から温度上昇値を導出するテーブルを有していてもよい。なお、印加電流密度及び/又は環境温度から温度上昇値を導出するテーブルは、例えば、図15に示すような印加電流密度及び環境温度を有機層温度(温度上昇値)に換算する換算表である。
 寿命推定装置1における温度取得部3は、例えば温度取得システムから構成されていてもよい。この場合、上述の温度上昇値としては、当該温度取得システムによって得られた温度上昇値を用いることができる。以下では、温度取得システムの一例について説明する。
 図17は、本実施形態に係る温度取得システムの構成要素を示す図である。同図に示すように、温度取得システム7は、温度制御部8と、パルス電流源9と、電圧測定部10と、情報処理部11と、有機EL素子4を設置する設置部5と、有機EL素子4を駆動する駆動部6と、を備えている。なお、設置部5及び駆動部6は、上記のとおり温度取得システムの一部として設けられていてもよいが、温度取得システムとは別に外部に設けられていてもよい。
 温度制御部8は、有機EL素子4の雰囲気温度(例えば恒温槽(設置部5)の温度)を制御する。パルス電流源9は、有機EL素子4にパルス電流を印加する。電圧測定部10は、パルス電流源9によってパルス電流を有機EL素子4に印加したときの有機EL素子4を構成する一対の電極間の電圧(以下、単に「電極間電圧」ともいう。)を測定する。情報処理部11は、電圧測定部10によって測定された有機層の温度と電極間電圧との相関に関する情報を取得する。
 温度取得システム7では、以下のとおり第1~第5のステップが行われる。第1のステップでは、まず、温度制御部8が、有機EL素子4の雰囲気温度を例えば-40℃から80℃の間で5~20℃間隔で変化させていく。このとき、温度制御部8は、有機EL素子4の各雰囲気温度において、有機EL素子4の温度が安定しているか否かに関する情報を例えば設置部5から受信する。具体的には、設置部5は、例えば熱電対によって有機EL素子4の基板表面の温度を測定し、当該温度が10分間一定に保持された場合に有機EL素子4の温度が安定した旨の信号を温度制御部8へ送信する。このように、有機EL素子4の温度が安定した後に後述の電極間電圧測定を行うため、電極間電圧と雰囲気温度との相関を電極間電圧と有機層の温度との相関とみなすことができる。
 次いで、温度制御部8は、有機EL素子4の温度が安定した旨の信号を設置部5から受信した旨をパルス電流源9へ送信し、有機EL素子4の有機層の温度を情報処理部11へ送信する。これにより、パルス電流源9は、有機EL素子4にパルス電流を印加し、その旨の信号を電圧測定部10へ送信する。
 パルス電流源9は、有機EL素子4の静電容量を充電し、電極間電圧を精度よく測定する観点から、電流値が十分所望の値に立上るパルス幅を有するパルス電流を有機EL素子4に印加する。パルス電流源9は、パルス電流印加による有機EL素子4の有機層の温度上昇を抑制する観点から、好ましくは20ミリ秒以下、より好ましくは10ミリ秒以下、更に好ましくは5ミリ秒以下のパルス幅を有するパルス電流を有機EL素子4に印加する。
 パルス電流源9は、パルス電流印加による有機EL素子4の有機層の温度上昇を抑制する観点から設定される電流値を有するパルス電流を有機EL素子4に印加する。パルス電流印加による有機EL素子4の有機層の温度上昇を抑制できれば、電極間電圧の温度依存性を精度よく得ることができ、結果的に有機EL素子4の有機層の温度をより高い精度で測定できる。
 具体的には、パルス電流源9は、パルス電流印加による有機EL素子の有機層の温度上昇が、寿命試験等において印加する電流による有機層の温度上昇より十分小さくなるようにパルス電流を有機EL素子4に印加する。具体的には、パルス電流の電流値による有機層の温度上昇値は、好ましくは1℃以下、より好ましくは0.1℃以下である。有機EL素子4の有機層の温度上昇値は、例えば有機EL素子4においてパルス電流が印加される面積、有機層の厚み、有機層の比熱、有機層の密度、電流パルスによる発熱量、有機EL素子4の熱容量等のパラメータに基づいて(必要に応じて各パラメータの値を仮定して)求めることができる。
 電圧測定部10は、パルス電流源9が有機EL素子4にパルス電流を印加したタイミングと同期して有機EL素子4の電極間電圧を測定し、測定した電極間電圧を情報処理部11へ送信する。情報処理部11は、温度制御部8から受信した有機EL素子4の有機層の温度と、情報処理部11から受信した当該有機層の温度における電極間電圧とを対応させて記憶する。
 第1のステップでは、温度制御部8、パルス電流源9、電圧測定部10及び情報処理部11が上記の動作を繰り返すことによって、有機EL素子4の有機層の各温度における電極間電圧を測定していく。これにより、情報処理部11は、電極間電圧と有機層の温度との相関に関する初期情報を取得する。
 上述のようにして測定された有機層の各温度における電極間電圧をプロットすると、例えば図18に丸印で示すようなプロットが得られ、このプロットに基づいて電極間電圧と有機層の温度との相関を示す初期検量線L1(初期情報)が取得される。
 なお、第1のステップに供される有機EL素子4の履歴は限定されないが、エージングして安定化されたものが望ましい。また、既に一定時間駆動されたものでもよい。
 第1のステップに続いて、第2のステップが行われる。第2のステップは、例えば寿命試験を行うステップに相当する。第2のステップでは、駆動部6が、有機EL素子4に所定の直流電流を印加することによって、有機EL素子4を駆動し、その後駆動を停止させる。有機EL素子4の駆動条件は、特に制限されず、通常の条件(例えば雰囲気温度:25℃で、有機EL素子4の初期輝度が3000cd/mとなるような直流電流を印加する条件)でもよく、劣化を加速させる条件(例えば雰囲気温度:55℃で、有機EL素子4の初期輝度が30000cd/mとなるような直流電流を印加する条件)でもよい。
 第2のステップに続いて、第3のステップが行われる。第3のステップでは、まず、有機EL素子4の雰囲気温度を所定の温度Tに保つことによって有機層の温度を所定の温度Tに保つ。このときの有機EL素子4の有機層の温度Tは、電極間電圧と有機層の温度との相関を安定させる観点から、50℃以上とすることが好ましい。この他、このステップには素子に紫外光を照射する、逆バイアス電圧を印加するなどのステップを一つ以上用いてもよい。また、有機EL素子の有機層の温度を所定の温度Tに保つ時間は、例えば30分間とすることができる。
 次いで、パルス電流源9は、有機EL素子4にパルス電流を印加し、その旨の信号を電圧測定部10へ送信する。ここでパルス電流源9が有機EL素子4に印加するパルス電流は、第1のステップにおいて印加したパルス電流と同一のパルス幅及び電流値を有するパルス電流である。
 電圧測定部10は、パルス電流源9が有機EL素子4にパルス電流を印加したタイミングと同期して有機EL素子4の電極間電圧Vを測定し、測定した電極間電圧Vを情報処理部11へ送信する。第3のステップにおいては、一つの温度における一つの電極間電圧だけを測定してもよく、複数の異なる温度における複数の電極間電圧を測定してもよい。
 第3のステップに続いて、第4のステップが行われる。第4のステップでは、まず、情報処理部11は、温度制御部8から受信した有機EL素子4の有機層の温度Tと、電圧測定部10から受信した電極間電圧Vを第1のステップにおいて取得した初期検量線L1と比較し、温度T及び電極間電圧Vの初期検量線L1からのシフト量に対応して初期検量線L1をシフトさせた補正検量線L2(補正情報)を取得する。具体的には、例えば図18に示すように、有機層の温度Tにおける電極間電圧Vのプロット(図18の四角印)の初期検量線L1に対するシフト量Sの分だけ初期検量線L1全体をシフトさせることにより補正検量線L2が得られる。
 なお、第3のステップにおいて複数の電極間電圧Vを測定した場合、第4のステップでは、情報処理部11は、測定された複数の有機層の温度Tにおける電極間電圧Vに基づいて補正検量線L2を取得できる。この場合、情報処理部11は、補正検量線L2をより高い精度で取得できる。
 第5のステップでは、有機EL素子4の有機層の温度を測定するために、パルス電流源9が有機EL素子4にパルス電流を印加し、そのときの電極間電圧Vを電圧測定部10が測定する。ここでパルス電流源9が有機EL素子4に印加するパルス電流は、第1のステップにおいて印加したパルス電流と同一のパルス幅及び電流値を有するパルス電流である。電圧測定部10は、測定された電極間電圧Vを情報処理部11へ送信する。
 情報処理部11は、補正検量線L2に基づいて電極間電圧Vに対応する有機EL素子4の有機層の温度Tを取得する。具体的には、例えば図18に示すように、第4のステップで得られた補正検量線L2上の電極間電圧V(図18の三角印)に対応する有機EL素子4の有機層の温度Tが得られる。なお、第5のステップは、第2のステップ以降、有機層の温度を取得したいタイミングに応じて適宜行われる。
 上述したように、温度取得システム7では、電圧測定部10が駆動後の有機EL素子に対してパルス電流を印加したときの電極間の電圧Vを測定し、情報処理部11が予め測定された有機層の温度と電圧との相関に関する初期情報を有機層の温度T及び電圧Vに基づき補正して補正情報を得ている。そのため劣化後の有機EL素子4における有機層の温度と電極間の電圧との相関に基づいて有機EL素子4の温度測定が行われる。したがって、駆動に伴って劣化した有機EL素子4に対しても、有機層の温度を高い精度で測定することが可能となる。
 上記実施形態においては、第1のステップの前に、第2のステップにおける印加電流値と同一の印加電流値で有機EL素子4を駆動するステップ(予備駆動ステップ)を行ってもよい。予備駆動ステップにおいては、駆動部6が、第2のステップにおける印加電流値と同一の印加電流値で、例えば1~60分間にわたって有機EL素子4を駆動する。これにより、電流印加自体によって電極間電圧と有機層の温度との相関が変化する有機EL素子4に対しても、有機層の温度を高い精度で測定することが可能となる。
 より具体的に説明すると、有機EL素子の構成によっては、寿命試験などにおける長時間にわたる電流印加の有無に関わらず、短時間の電流印加であっても電極間電圧と有機層の温度との相関を示す検量線が高電圧側又は低電圧側にシフトする場合がある。そして、このシフト量は、比較的短時間の印加電流値に依存して変化する場合がある。したがって、そのような有機EL素子に対しては、電流印加自体の影響も考慮した初期検量線を取得することが好ましい。なお、短時間の電流印加による検量線のシフトが小さい有機EL素子に対しては、予備駆動ステップを省略することができる。
 また、第1のステップが予備駆動ステップを含んでいてもよい。すなわち、第1のステップが、複数の雰囲気温度のうち一部又は全部の雰囲気温度において、有機EL素子を所定時間保持した後であって、有機EL素子にパルス電流を印加する前に、第2のステップにおける印加電流値と同一の印加電流値で有機EL素子を駆動するステップを含んでいてもよい。この場合、上述した短時間の電流印加による検量線のシフト量が印加電流値に加えて有機層温度にも依存する有機EL素子に対して、その印加電流値及び有機層温度を考慮した初期検量線を取得することができる。
 具体的には、例えば、第1のステップにおいて、
(i)複数の雰囲気温度の全部において、有機EL素子を各雰囲気温度下で所定時間保持し、有機EL素子にパルス電流を印加したときの前記電極間の電圧を測定することにより、有機層の温度と前記電圧との相関に関する初期情報を取得するステップ(ステップ1a)を行ってもよく、
(ii)複数の雰囲気温度の全部において、有機EL素子を各雰囲気温度下で所定時間保持した後に、第2のステップにおける印加電流値と同一の印加電流値で有機EL素子を駆動し、さらにその後に有機EL素子にパルス電流を印加したときの前記電極間の電圧を測定することにより、有機層の温度と前記電圧との相関に関する初期情報を取得するステップ(ステップ1b)を行ってもよく、
(iii)複数の雰囲気温度のうち一部においてステップ1aを行い、複数の雰囲気温度のうちその他の一部においてステップ1bを行ってもよい。
 また、予備駆動ステップを例えば第2のステップ又は第3のステップの後に行い、その後に初期情報を改めて取得してもよい。この場合でも同様に、電流印加自体によって電極間電圧と有機層の温度との相関が変化する有機EL素子4に対しても、有機層の温度を高い精度で測定することが可能となる。
 また、本実施形態では、上述した有機EL素子の寿命推定方法を有機EL素子の製造において用いることによって、製造された有機EL素子の良否を正確に判断することが可能となる。すなわち、本実施形態に係る有機EL素子の製造方法は、一対の電極間に有機層を配置して有機EL素子を得るステップと、得られた有機EL素子の寿命を上述した有機EL素子の寿命推定方法を用いて推定するステップと、推定された寿命と寿命の基準値とを比較し、得られた有機EL素子の良否を判定するステップと、を備えている。
 本実施形態に係る発光装置は、例えば図1に示した有機EL素子の寿命推定装置と同様の構成を有している。すなわち、発光装置は、有機EL素子と、上述の有機EL素子の寿命推定方法を用いて有機EL素子の寿命を推定する寿命推定部と、温度上昇値を取得する温度取得部と、を備えている。このような発光装置としては、表示装置、照明装置が例示される。
 寿命推定部は、印加電流密度及び/又は環境温度から温度上昇値を導出するテーブルを有していてもよい。温度取得部は、図17に示した温度取得システムから構成されていてもよい。発光装置は、推定された寿命と寿命の基準値とを比較して有機EL素子の寿命を判別する寿命判別部を更に備えていてもよい。発光装置は、温度取得部によって得られた有機EL素子の温度又は寿命推定部によって得られた有機EL素子の寿命に基づいて、有機EL素子の駆動条件を制御する制御部を更に備えていてもよい。この場合、測定された有機EL素子の温度又は寿命に応じて有機EL素子の駆動条件を好適な条件に制御できる。
(実施例1)
 まず、有機EL素子を作製した。具体的には、ITOパターンが形成されたガラス基板上に、正孔注入層、正孔輸送層を真空蒸着法によって成膜し、さらに発光層を共蒸着による真空蒸着法によって成膜した。引き続き、正孔阻止層、電子輸送層及び電子注入層を同様に真空蒸着法によって成膜し、最後にアルミニウムからなる陰極を成膜した。このように作製した有機EL層を、大気に晒さないように不活性気体中で保持されたグローブボックス中で封止し、有機EL素子とした。なお、各層に用いた材料及び各層の膜厚を表1に示している。
Figure JPOXMLDOC01-appb-T000023
 作製した有機EL素子を恒温槽内に配置し、有機EL素子に一定電流を印加すると共に有機EL素子の輝度の経時変化を測定することで寿命試験を行った。印加電流密度は、有機EL素子の初期輝度が1800cd/mとなる電流密度Jに対してn倍の電流密度J×n(J,J,…J)とした。なお、電流密度J,J,…Jとnとの対応は以下のとおりである。
:n=0.5、J:n=1、J:n=2、J:n=3、
:n=5、J:n=7、J:n=10
また、恒温槽内の温度(有機EL素子の環境温度)は、10℃、25℃、40℃、55℃とした。表2では、恒温槽内の温度の各条件に対して実施した印加電流密度の条件を示している。
Figure JPOXMLDOC01-appb-T000024
 寿命試験の結果、例えば恒温槽内の温度:25℃、印加電流密度:Jの条件で寿命試験を行った場合の有機EL素子の輝度の経時変化は、図3に示す劣化曲線Cとなった。なお、劣化曲線Cの縦軸は、寿命試験開始時の輝度Lに対するt時間後の輝度L(t)の比L(t)/Lを表している。この劣化曲線Cは、下記式(5)で表されるフィッティング関数によってフィッティング可能であった。なお、式(5)中のτ及びτが経時変化パラメータを表す。
Figure JPOXMLDOC01-appb-M000025
 図2では、式(5)における第1項(切片の値がλである下側の破線)及び第2項(切片の値が1-λである上側の破線)の経時変化も併せて示している。図2から明らかなように、約100時間を経過した後は、第1項の値がほぼゼロとなることが分かった。また、図3には、環境温度25℃における各印加電流密度J,J,…Jでの有機EL素子の劣化曲線を示している。図3の片対数プロットにおいて、約100時間を経過した後は、劣化曲線J,J,…Jはいずれも直線となることが分かった。
 なお、上記の寿命試験に用いた有機EL素子については、寿命試験実施前に有機層の温度上昇値を測定した。具体的には、有機層の温度上昇値は、以下の有機EL素子の電流-電圧特性(IV特性)測定により求めた。
<電流-電圧特性(IV特性)測定>
 有機EL素子の温度を恒温槽中で一定温度に保ち、駆動による温度上昇を抑制した電流パルスを用いて、電流パルス印加時の電圧を測定した。有機EL素子の温度(恒温槽の温度)を変化させながらこの測定を繰り返すことにより、温度に依存する電流-電圧特性を標準曲線として取得した。次に、実際に有機EL素子を駆動し発光させている状態から速やかに上記と同様の電流パルスを印加して電圧を測定した。この駆動時の電圧と標準曲線とを比較することにより、駆動時の有機層の温度上昇値を見積もった。
 IV特性から求められた有機層の温度上昇値を用いて見積もった有機層温度TELを有機EL素子に印加する電流密度に対してプロットすると、図4に示したようなプロットとなった。図4には、これらのデータに基づいて近似した曲線(破線)を併せて示している。
 このようにして求めた各条件での有機層温度TELを用いて、経時変化パラメータτの有機層温度TEL依存性を知るために、図5に示すように、アレニウスプロット(1/kTELに対する1/τの対数プロット)を行った。なお、kはボルツマン定数を表す。図5から分かるように、有機EL素子に印加する電流密度の大きさに関わらず、1/τは対数プロットにおいて1/kTELに対してほぼ一定の傾き0.42±0.04eVを示した。
 一方、経時変化パラメータτの有機層温度TEL依存性を除外し、経時変化パラメータτの有機EL素子に印加する電流密度Jに対する依存性を知るために、図6に示すように、電流密度Jに対する1/τ・exp(Ea/kTEL)の対数プロットを行った。図6から分かるように、1/τ・exp(Ea/kTEL)は対数プロットにおいて電流密度Jに対してほぼ一定の傾き1.16±0.10を示した。
 そして、図5及び図6から、τは下記式(6)で表されることが分かった。なお、Aは正の数を表す。また、本実施例では、βは1.16であり、Eaは0.42であった。
Figure JPOXMLDOC01-appb-M000026
 図7には、恒温槽内の各温度における寿命試験から得られた経時変化パラメータτを、電流密度に対してプロットした結果を示している。また、図7には、各環境温度において、式(2)を用いて求められる電流密度と経時変化パラメータτとの関係を実線、破線等で示している。図7から明らかなように、有機層温度TELを含む式(6)を用いて求められる印加電流密度と経時変化パラメータτとの関係は、寿命試験から得られた経時変化パラメータτの電流密度依存性をよく再現することが分かった。
 以上より、本実施例における有機EL素子の経時変化データのフィッティング関数は下記式(5)とすることができ、また、式(5)中のτは下記式(6)とすることができることが分かった。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
(比較例)
 実施例で実施した有機EL素子の寿命試験の結果に対して、従来の有機EL素子の寿命推定方法を用いて電流密度に対する経時変化パラメータτの関係を求めた。具体的には、従来の有機EL素子の寿命推定方法では、加速条件(例えばJ=J(n=10))における寿命試験の結果に基づいて経時変化パラメータτ(n=10)を算出した上で、経時変化パラメータτが電流密度のベキ乗に比例すると仮定した寿命推定式を用いて、標準条件(J=J(n=1))における経時変化パラメータτ(n=1)を求めた。すなわち、従来の有機EL素子の寿命推定方法では、下記式(11)で表される寿命推定式を用いた。
Figure JPOXMLDOC01-appb-M000029
 図16には、従来の有機EL素子の寿命推定方法を用いて求めた電流密度に対する経時変化パラメータτの関係を示している。なお、式(11)中、Sは、図16におけるJ=J(n=10)近傍での電流密度に対する経時変化パラメータτの傾きを示す。図16から分かるように、従来の寿命推定方法を用いた場合には、加速条件(例えばn=10となる条件)近傍での電流密度に対する経時変化パラメータτの傾きSと、標準条件(例えばn=1となる条件)近傍での電流密度に対する経時変化パラメータτの傾きSとが大きく異なっている。そのため、式(11)のように加速条件において求めた経時変化パラメータτから標準条件における経時変化パラメータτを求めると、標準条件における経時変化パラメータτに大きな誤差が生じてしまうことが分かった。すなわち、従来の有機EL素子の寿命推定方法では、正確な寿命の推定ができない場合があり、特に有機EL素子に印加する電流密度が大きい場合に寿命を正確に推定することが困難となる場合があることが分かった。
(実施例2)
 実施例1と同様にして作製した有機EL素子に対して、実施例1と同様に輝度の経時変化を測定することで寿命試験を行った。印加電流密度は、電流密度5mA/cmに対してn倍の電流密度(n=1,2,3,5,7,10)とした。
 寿命試験の結果、各電流密度での有機EL素子の輝度の経時変化は、図10に示す劣化曲線となった。この劣化曲線は、下記式(12)で表されるフィッティング関数によってフィッティング可能であった。なお、式(12)中のb、γ、τ及びτ’が経時変化パラメータを表す。本実施例では、bは0.7±0.05であった。
Figure JPOXMLDOC01-appb-M000030
 そして、経過時間(図10の横軸)を規格化すると、図11に示すような劣化曲線が得られた。なお、経過時間の規格化は、一定の減衰率(例えばL(t)/L(0)=0.7など)となる時間で経過時間を除すことにより行った。図11から明らかなように、すべての加速水準(図10のnの値)について、規格化された経過時間に対する劣化曲線がほぼ重なっていることが分かった。これは、劣化曲線を式(12)でフィッティングしたときに、式(12)中のbの値が加速水準によって変化しないことを示している。
 次に、実施例1と同様に、経時変化パラメータτの有機層温度TEL依存性を知るために、図12に示すように、アレニウスプロット(1/kTELに対する1/τの対数プロット)を行った。図12から分かるように、有機EL素子に印加する電流密度の大きさに関わらず、1/τは対数プロットにおいて1/kTELに対してほぼ一定の傾きを示した。
 一方、経時変化パラメータτの有機層温度TEL依存性を除外し、経時変化パラメータτの有機EL素子に印加する電流密度に対する依存性を知るために、図13に示すように、電流密度に対する1/τ・exp(Ea/kTEL)の対数プロットを行った。図13から分かるように、1/τ・exp(Ea/kTEL)は対数プロットにおいて電流密度に対してほぼ一定の傾きを示した。
 そして、図12及び図13から、τは下記式(10)で表されることが分かった。なお、Aは正の数を表す。本実施例では、βは1.30±0.10であり、Eaは0.36±0.02であった。
Figure JPOXMLDOC01-appb-M000031
 図14には、恒温槽内の各温度における寿命試験から得られた経時変化パラメータτを、電流密度に対してプロットした結果を示している。また、図14には、各環境温度において、式(12)を用いて求められる電流密度と経時変化パラメータτとの関係を実線、破線等で示している。図14から明らかなように、有機層温度TELを含む式(10)を用いて求められる印加電流密度と経時変化パラメータτとの関係は、寿命試験から得られた経時変化パラメータτの電流密度依存性をよく再現することが分かった。
 さらに、上記のフィッティング関数から有機EL素子の寿命(初期輝度の70%の輝度となるまでの時間)を予測したところ4401時間であり、有機EL素子の寿命の実測値4750時間と良い一致を示した。
(実施例3)
 続いて、図17に示した温度取得システムを用いた有機EL素子の温度取得方法の実施例を示す。
 まず、有機EL素子を作製した。具体的には、ITOパターンが形成されたガラス基板上に、正孔注入層、正孔輸送層を真空蒸着法によって成膜し、さらに発光層を共蒸着による真空蒸着法によって成膜した。引き続き、正孔阻止層、電子輸送層及び電子注入層を同様に真空蒸着法によって成膜し、最後にアルミニウムからなる陰極を成膜した。このように作製した有機EL層を、大気に晒さないように不活性気体中で保持されたグローブボックス中で封止し、有機EL素子とした。得られた有機EL素子の発光面積は、2mm角であった。なお、各層に用いた材料及び各層の膜厚を表3に示している。
Figure JPOXMLDOC01-appb-T000032
 得られた有機EL素子に対して、雰囲気温度Ta(有機層の温度TEL)を-35℃から80℃の間で変化させ、各雰囲気温度Taにおいて、パルス電流を有機EL素子に印加したときの電極間電圧Vを測定した。パルス電流のパルス幅は20ms、電流値は2μAであった。ここでのパルス電流印加による有機EL素子の有機層の温度上昇は、最大で0.7℃程度であると見積もられる(有機層100nm、比熱1000J/kg・K、密度1g/cm、断熱条件と仮定し、発熱量2.8×10-7J/pulse、素子の熱容量4.0×10-7J/Kと試算した)。なお、電極間電圧の測定は、各雰囲気温度Taにおいて、熱電対によって有機EL素子の基板表面の温度を測定し、当該温度が10分間一定に保持される状態まで待って行った。以上の測定により、図19に示す初期検量線L3が得られた。
 次いで、雰囲気温度25℃、印加電流2mAの条件で12時間にわたって有機EL素子を駆動した。駆動後の有機EL素子に対して、パルス幅20ms、電流値2μAのパルス電流を印加し、電極間電圧Vを測定したところ5.11Vであった。その後、上記と同様に、各雰囲気温度Taにおけるパルス電流印加時の電極間電圧Vを測定した。これにより、図19に示す補正検量線L4が得られた。なお、補正検量線L4は、初期検量線L3に対して約0.14Vだけ高電圧側にシフトしていた。この検量線を用いて印加電流2mAにおける有機層温度を見積もったところ、41℃であった。
 また、電流印加自体による影響を確認するため、上記と同様に初期検量線L5を取得した後に、各雰囲気温度Taにおいて、有機EL素子に対して2mAの直流電流を30分間印加してから10分経過後に、電極間電圧Vを測定した。図20に示すように、電流印加後に測定された電極間電圧に基づく検量線L6は、初期検量線L5に対して、低電圧側にシフトした。
 図21は、電極間電圧と印加電流値及び雰囲気温度との関係を示す図である。図21の(a),(b),(c)は、それぞれ雰囲気温度-35℃,-5℃,25℃において、各印加電流値で有機EL素子に電流を印加した後に測定した電極間電圧Vを示す。図21から明らかなように、本実施例で用いた有機EL素子の場合には、電流印加自体による電極間電圧Vのシフト量は、印加電流値及び雰囲気温度に依存することが分かった。
 図22は、印加電流値と検量線の変化との関係を示す図である。図22の(b)は、図22の(a)の拡大図である。図22には、検量線取得前に、電流印加をしていない場合(L7)、電流を0.1mA印加した場合(L8)、電流を1mA印加した場合(L9)、電流を2mA印加した場合(L10)の検量線をそれぞれ示した。この例では、電流印加による影響を考慮せずに検量線を取得した場合に、有機EL素子の温度測定の誤差は、素子温度が0℃付近において最大で約7℃程度(L7とL10との差)生じることが分かった。この補正された検量線を用いて雰囲気温度25℃において印加電流1mAでの有機層温度を見積もったところ、36℃であった。
 1…寿命推定装置、2…寿命推定部、3…温度取得部、4…有機EL素子、5…設置部、6…駆動部、7…温度取得システム、8…温度制御部、9…パルス電流源、10…電圧測定部、11…情報処理部。

Claims (17)

  1.  一対の電極と、該一対の電極間に配置された有機層と、を備える有機EL素子の寿命推定方法であって、
     前記有機EL素子への印加電流密度及び/又は前記有機EL素子の雰囲気温度を変化させた際の、前記有機EL素子の素子特性の経時変化データを取得するデータ取得ステップと、
     前記経時変化データのフィッティング関数を求め、該フィッティング関数から前記印加電流密度及び/又は前記雰囲気温度における前記素子特性の経時変化を特徴づける経時変化パラメータを抽出するパラメータ抽出ステップと、
     前記印加電流密度及び/又は前記雰囲気温度における前記有機層の発光時の温度上昇値を用いて前記経時変化パラメータの温度依存性を算出し、前記有機EL素子の寿命推定式を設定する推定式設定ステップと、
     前記寿命推定式を用いて前記有機EL素子の寿命を推定する寿命推定ステップと、
    を備える、有機EL素子の寿命推定方法。
  2.  前記経時変化パラメータが、前記フィッティング関数における、前記有機EL素子の輝度、光束、放射束若しくはフォトン数である発光強度、単位投入電力あたりの光束を示す発光効率、単位電流あたり外部に取り出されるフォトン数を示す外部量子効率、又は、閾値若しくは一定電流となる駆動電圧、の経時変化を特徴づける関数の係数である、請求項1に記載の有機EL素子の寿命推定方法。
  3.  前記推定式設定ステップにおいて、前記温度依存性に基づいて前記経時変化パラメータを補正し、前記経時変化パラメータの他の因子による依存性を導出することによって、前記温度依存性を表す項と前記他の因子による依存性を表す項との積を含む前記寿命推定式を設定する、請求項1又は2に記載の有機EL素子の寿命推定方法。
  4.  前記他の因子が、前記有機EL素子に対する前記印加電流密度、印加電圧又は投入電力である、請求項3に記載の有機EL素子の寿命推定方法。
  5.  前記温度上昇値が、前記有機EL素子の電流-電圧特性測定若しくは発光強度の過渡特性測定、又は、前記有機層のラマン分光測定によって得られた温度上昇値である、請求項1~4のいずれか一項に記載の有機EL素子の寿命推定方法。
  6.  前記温度上昇値が、
     複数の雰囲気温度において、前記有機EL素子を各雰囲気温度下で所定時間保持し、前記有機EL素子にパルス電流を印加したときの前記電極間の電圧を測定することにより、前記有機層の温度と前記電圧との相関に関する初期情報を取得する第1のステップと、
     前記有機EL素子の駆動及び停止を行う第2のステップと、
     前記第2のステップの後に、前記有機EL素子を所定の雰囲気温度T下で所定時間保持し、有機EL素子に前記第1のステップにおけるパルス電流と同一のパルス電流を印加したときの電圧Vを測定する第3のステップと、
     前記第3のステップで得られた温度T及び電圧Vに基づいて前記初期情報を補正し、前記有機層の温度と前記電圧との相関に関する補正情報を取得する第4のステップと、
     前記有機EL素子に前記第1のステップにおけるパルス電流と同一のパルス電流を印加したときの前記電極間の電圧Vを測定し、前記補正情報に基づいて電圧Vに対応する温度Tを取得する第5のステップと、
    を備える方法によって得られた温度上昇値である、請求項1~4のいずれか一項に記載の有機EL素子の寿命推定方法。
  7.  前記第1のステップの前に、前記第2のステップにおける印加電流値と同一の印加電流値で前記有機EL素子を駆動するステップを更に備える、請求項6に記載の有機EL素子の寿命推定方法。
  8.  前記第1のステップが、前記複数の雰囲気温度のうち一部又は全部の雰囲気温度において、前記有機EL素子にパルス電流を印加する前に、前記第2のステップにおける印加電流値と同一の印加電流値で前記有機EL素子を駆動するステップを含む、請求項6に記載の有機EL素子の寿命推定方法。
  9.  前記データ取得ステップにおいて、前記経時変化パラメータと共に前記有機層の温度上昇値を取得することで、前記温度の経時変化を測定し、
     前記推定式設定ステップにおいて、前記温度上昇値の経時変化を用いて前記寿命推定式を設定する、請求項1~8のいずれか一項に記載の有機EL素子の寿命推定方法。
  10.  前記経時変化データのフィッティング関数が下記式(1)、(2)又は(3)である、請求項1~9のいずれか一項に記載の有機EL素子の寿命推定方法。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    [式(1)、(2)及び(3)中、L(t)は有機EL素子の寿命試験開始からt時間後の発光強度を表し、Lは有機EL素子の寿命試験開始時の発光強度を表し、a、b、c、d、τ及びτは経時変化パラメータを表す。]
  11.  前記経時変化データのフィッティング関数が下記式(7)、(8)又は(9)である、請求項1~9のいずれか一項に記載の有機EL素子の寿命推定方法。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    [式(7)、(8)及び(9)中、L(t)は有機EL素子の寿命試験開始からt時間後の発光強度を表し、Lは有機EL素子の寿命試験開始時の発光強度を表し、a、b、c、d、τ、τ及びγは経時変化パラメータを表し、g(t)は有機EL素子の初期劣化に対応するtの関数を表す。]
  12.  有機EL素子の寿命を推定する有機EL素子の寿命推定装置であって、
     請求項1~11のいずれか一項に記載の有機EL素子の寿命推定方法を用いて前記有機EL素子の寿命を推定する寿命推定部と、
     前記温度上昇値を取得する温度取得部と、
    を備える、有機EL素子の寿命推定装置。
  13.  前記温度取得部が、
     前記有機EL素子の雰囲気温度を制御する温度制御部と、
     前記有機EL素子にパルス電流を印加するパルス電流源と、
     前記パルス電流を前記有機EL素子に印加したときの前記一対の電極間の電圧を測定する電圧測定部と、
     前記有機層の温度と前記電圧との相関に関する情報を処理する情報処理部と、を備える温度取得システムで構成されている、請求項12に記載の寿命推定装置。
  14.  一対の電極間に有機層を配置して有機EL素子を得るステップと、
     前記有機EL素子の寿命を請求項1~11のいずれか一項に記載の有機EL素子の寿命推定方法を用いて推定するステップと、
     推定された前記寿命と寿命の基準値とを比較し、前記有機EL素子の良否を判定するステップと、
    を備える、有機EL素子の製造方法。
  15.  有機EL素子と、
     請求項1~11のいずれか一項に記載の有機EL素子の寿命推定方法を用いて前記有機EL素子の寿命を推定する寿命推定部と、
     前記温度上昇値を取得する温度取得部と、
    を備える、発光装置。
  16.  前記温度取得部が、
     前記有機EL素子の雰囲気温度を制御する温度制御部と、
     前記有機EL素子にパルス電流を印加するパルス電流源と、
     前記パルス電流を前記有機EL素子に印加したときの前記一対の電極間の電圧を測定する電圧測定部と、
     前記有機層の温度と前記電圧との相関に関する情報を処理する情報処理部と、を備える温度取得システムで構成されている、請求項15に記載の発光装置。
  17.  推定された前記寿命と寿命の基準値とを比較して前記有機EL素子の寿命を判別する寿命判別部を更に備える、請求項15又は16に記載の発光装置。
PCT/JP2014/081580 2013-11-29 2014-11-28 有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置 WO2015080250A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/786,489 US20160103171A1 (en) 2013-11-29 2014-11-28 Method for Estimating Life of Organic EL Element, Method for Producing Life Estimation Device, and Light-Emitting Device
JP2015542497A JP5870233B2 (ja) 2013-11-29 2014-11-28 有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置
KR1020157032149A KR101605300B1 (ko) 2013-11-29 2014-11-28 유기 el 소자의 수명 추정 방법, 수명 추정 장치 및 제조 방법, 그리고 발광 장치
DE112014002373.6T DE112014002373T8 (de) 2013-11-29 2014-11-28 Verfahren zum schätzen der lebensdauer eines organischen el-elements, verfahren zum produzieren einer lebensdauerschätzeinrichtung und eine lichtemittierende einrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013247990 2013-11-29
JP2013-247990 2013-11-29
JP2014112137 2014-05-30
JP2014-112137 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015080250A1 true WO2015080250A1 (ja) 2015-06-04

Family

ID=53199185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081580 WO2015080250A1 (ja) 2013-11-29 2014-11-28 有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置

Country Status (5)

Country Link
US (1) US20160103171A1 (ja)
JP (1) JP5870233B2 (ja)
KR (1) KR101605300B1 (ja)
DE (1) DE112014002373T8 (ja)
WO (1) WO2015080250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107449A (ja) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308777B2 (ja) * 2013-12-25 2018-04-11 Eizo株式会社 寿命予測方法、寿命予測プログラム及び寿命予測装置
US10748497B2 (en) * 2016-12-27 2020-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN107204170A (zh) * 2017-07-21 2017-09-26 京东方科技集团股份有限公司 一种色偏补偿方法、色偏补偿***和显示面板
KR102593264B1 (ko) * 2018-08-14 2023-10-26 삼성전자주식회사 디스플레이 드라이버 및 이를 포함하는 유기발광 표시장치
KR102338209B1 (ko) * 2019-05-15 2021-12-10 주식회사 엘지화학 유기발광소자용 재료의 선별방법
JP7361624B2 (ja) * 2020-02-12 2023-10-16 東京エレクトロン株式会社 加熱源の寿命推定システム、寿命推定方法、および検査装置
US11587503B2 (en) * 2020-11-11 2023-02-21 Novatek Microelectronics Corp. Method of and display control device for emulating OLED degradation for OLED display panel
KR20230049187A (ko) * 2021-10-05 2023-04-13 삼성디스플레이 주식회사 표시 장치 및 그의 열화 보상 방법
KR20230060620A (ko) 2021-10-27 2023-05-08 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
CN115902465B (zh) * 2022-11-10 2024-02-20 中国原子能科学研究院 辐伏转换器件的参数确定方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055909A (ja) * 2003-08-07 2005-03-03 Barco Nv Oledディスプレイ素子、それを制御するための制御装置、およびその耐用年数を最適化するための方法
JP2005283608A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd 有機el発光素子の経時劣化予測方法、駆動方法およびプリエージング方法
JP2007012581A (ja) * 2005-05-31 2007-01-18 Kyocera Corp 有機発光装置の製造方法
JP2007258275A (ja) * 2006-03-20 2007-10-04 Institute Of Physical & Chemical Research 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子のエイジング方法、有機エレクトロルミネッセンス素子の評価方法およびその装置
JP2007287971A (ja) * 2006-04-18 2007-11-01 Sony Corp 焼き付き補正速度調整装置、自発光表示装置及びコンピュータプログラム
JP2010517092A (ja) * 2007-01-24 2010-05-20 イーストマン コダック カンパニー 経年劣化および効率補償を備えたoledディスプレイ
JP2011065048A (ja) * 2009-09-18 2011-03-31 Sony Corp 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055909A (ja) * 2003-08-07 2005-03-03 Barco Nv Oledディスプレイ素子、それを制御するための制御装置、およびその耐用年数を最適化するための方法
JP2005283608A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd 有機el発光素子の経時劣化予測方法、駆動方法およびプリエージング方法
JP2007012581A (ja) * 2005-05-31 2007-01-18 Kyocera Corp 有機発光装置の製造方法
JP2007258275A (ja) * 2006-03-20 2007-10-04 Institute Of Physical & Chemical Research 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子のエイジング方法、有機エレクトロルミネッセンス素子の評価方法およびその装置
JP2007287971A (ja) * 2006-04-18 2007-11-01 Sony Corp 焼き付き補正速度調整装置、自発光表示装置及びコンピュータプログラム
JP2010517092A (ja) * 2007-01-24 2010-05-20 イーストマン コダック カンパニー 経年劣化および効率補償を備えたoledディスプレイ
JP2011065048A (ja) * 2009-09-18 2011-03-31 Sony Corp 表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107449A (ja) * 2016-12-27 2018-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置

Also Published As

Publication number Publication date
JPWO2015080250A1 (ja) 2017-03-16
KR101605300B1 (ko) 2016-03-21
JP5870233B2 (ja) 2016-02-24
US20160103171A1 (en) 2016-04-14
KR20150136138A (ko) 2015-12-04
DE112014002373T5 (de) 2016-01-21
DE112014002373T8 (de) 2016-03-10

Similar Documents

Publication Publication Date Title
JP5870233B2 (ja) 有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置
TWI553306B (zh) Evaluation method of oxide semiconductor thin film, and quality management method of oxide semiconductor thin film
EP2779220B1 (en) Saturation voltage estimation method and silicon epitaxial wafer manufaturing method
JP2015222801A (ja) 検量線の作成方法、不純物濃度の測定方法、及び半導体ウェハの製造方法
US20120293793A1 (en) Method of evaluating silicon wafer and method of manufacturing silicon wafer
JP6805015B2 (ja) 検量線の作成方法、炭素濃度測定方法及びシリコンウェハの製造方法
JP5506226B2 (ja) 画像表示装置
Yoshioka et al. 45.1: An Improved Method for Lifetime Prediction Based on Decoupling of the Joule Self‐Heating Effect from Coulombic Degradation in Accelerated Aging Tests of OLEDs
CN110739239B (zh) SiC器件的制造方法及评价方法
JP2008227463A (ja) 発光素子の検査方法および検査装置、ならびにバーンイン方法およびバーンイン装置
US10935492B2 (en) Metrology for OLED manufacturing using photoluminescence spectroscopy
JP2007012581A (ja) 有機発光装置の製造方法
US20210100084A1 (en) Method for controlling a current of a light-emitting diode
Ding et al. White light emission and electrical properties of silicon oxycarbide-based metal–oxide–semiconductor diode
Cusumano Study of voltage decrease in organic light emitting diodes during the initial stage of lifetime
WO2010049882A2 (en) Lighting unit with temperature protection
Becirovic et al. Effects on LEDs during the accelerated ageing test
KR101635911B1 (ko) Oled 디스플레이 디바이스의 수명 예측 시스템 및 방법
US9131586B2 (en) Method and apparatus for measuring injection energy of organic light emitting diode display
Jiang et al. A unified OLED aging model combining three modeling approaches for extending AMOLED lifetime
Ke et al. Low frequency optical noise from organic light emitting diode
JP2005283608A (ja) 有機el発光素子の経時劣化予測方法、駆動方法およびプリエージング方法
JP2007066707A (ja) 有機el素子の製造方法
CN109932343B (zh) 一种基于激发态载流子拟合温度的弛豫时间计算方法
Bonev et al. Thermal Monitoring of Flexible ZnS-based Screen-Printed Electroluminescence Structures Subjected to Accelerated Ageing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542497

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14786489

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157032149

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014002373

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865470

Country of ref document: EP

Kind code of ref document: A1