WO2015076230A1 - Hybrid vehicle, and method of controlling same - Google Patents

Hybrid vehicle, and method of controlling same Download PDF

Info

Publication number
WO2015076230A1
WO2015076230A1 PCT/JP2014/080417 JP2014080417W WO2015076230A1 WO 2015076230 A1 WO2015076230 A1 WO 2015076230A1 JP 2014080417 W JP2014080417 W JP 2014080417W WO 2015076230 A1 WO2015076230 A1 WO 2015076230A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear stage
clutch
internal combustion
combustion engine
rotational speed
Prior art date
Application number
PCT/JP2014/080417
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 高橋
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2015076230A1 publication Critical patent/WO2015076230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • F16H3/0915Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft with coaxial input and output shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid vehicle including an internal combustion engine, a motor generator, and a stepped transmission mechanism, and a control method thereof.
  • a hybrid vehicle equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission mechanism, and transmitting the power of the internal combustion engine and the motor generator to the wheels via the stepped transmission mechanism greatly contributes to improved fuel efficiency.
  • a motor is mounted on the engine side of the transmission mechanism, and a dual clutch transmission is installed in the transmission mechanism.
  • the engine brake and the regenerative torque are controlled based on the driver's negative demand torque (resistance torque), thereby giving a deceleration resistance to the drive wheel side, and the motor functions as a generator.
  • a shift control device for shift control of a hybrid electric vehicle is proposed.
  • the motor generator when the motor generator is mounted on the wheel side of the stepped transmission mechanism, the motor generator can assist and regenerate in any state, but the engine speed by the motor generator during the shift operation is not limited. There is a problem that control, engine rotation fluctuation suppression control, engine start and stop control cannot be performed, and there are many restrictions in the start and stop control of the internal combustion engine.
  • the inventor of the present invention is a hybrid system 1 including an internal combustion engine 10, a motor generator 11, and a stepped transmission mechanism 20 as shown in FIG.
  • a motor generator 11 and a dual clutch 21 are disposed.
  • the dual clutch 21 includes a direct gear stage clutch 21a and a transmission gear stage clutch 21b, and one of the direct gear stage clutches 21a is an internal combustion engine.
  • the output shaft of the engine 10 and the motor generator 11 is connected, the other of the direct gear stage clutch 21a is connected to the input shaft of the main shaft 20a of the stepped transmission mechanism 20, and one of the transmission gear stage clutch 21b is connected. It is connected to the output shafts of the internal combustion engine 10 and the motor generator 11, and the other of the transmission gear stage clutch 21 b is connected to the input shaft of the countershaft 20 b of the stepped transmission mechanism 20.
  • the direct gear stage clutch 21a of the dual clutch 21 serves as the direct gear stage of the prior art
  • the transmission gear stage clutch 21b serves as the transmission clutch of the prior art transmission.
  • assist and regenerative control in the engine speed control, engine start and stop control, etc. by the motor generator 11 are performed. There is a problem that it cannot be performed optimally.
  • the present invention has been made in view of the above, and an object thereof is to include an internal combustion engine, a motor generator, and a stepped transmission mechanism, and in order from the internal combustion engine side between the internal combustion engine and the stepped transmission mechanism.
  • a hybrid vehicle equipped with a hybrid system comprising a dual clutch including a motor generator, a direct gear stage clutch and a transmission gear stage clutch, and a control method thereof, the hybrid system can be optimally controlled.
  • a hybrid vehicle includes an internal combustion engine, a motor generator, and a stepped transmission mechanism, and in order from the internal combustion engine side between the internal combustion engine and the stepped transmission mechanism.
  • a motor generator and a dual clutch are provided, and the dual clutch includes a direct gear stage clutch and a transmission gear stage clutch, and one of the direct gear stage clutches is an output shaft of the internal combustion engine and the motor generator.
  • the other of the directly connected gear stage clutches is connected to the input shaft of the main shaft of the stepped transmission mechanism, and one of the transmission gear stage clutches is connected to the output shaft of the internal combustion engine and the motor generator.
  • the other end of the transmission gear stage clutch is connected to the input shaft of the countershaft of the stepped transmission mechanism, and the main shaft of the stepped transmission mechanism is extended.
  • a rotation speed detection device for detecting the rotation speed of the shaft, and a control device for controlling connection / disconnection of the direct gear stage clutch and the transmission gear stage clutch and switching of the gear stage of the stepped transmission mechanism;
  • the hybrid vehicle is configured as follows.
  • control device disengages the direct gear stage clutch and disengages the transmission gear stage clutch, and the transmission gear with the direct gear stage clutch disengaged.
  • control is performed to respectively transmit power between the output shaft and the wheel side of the internal combustion engine and the motor generator.
  • the first drive system uses the first speed or the second speed until the rotational speed detected by the rotational speed detection device after starting the vehicle becomes equal to or higher than the normal rotational speed of the internal combustion engine.
  • the motor generator performs a regenerative control to change the engine speed to the speed of the next gear stage.
  • the first drive system is controlled according to the required torque calculated based on the accelerator opening.
  • the rotational speed detected by the rotational speed detection device decelerates from the state where the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed, the first drive system is always selected.
  • engine brake The deceleration control to decelerate the regenerative torque of torque and the motor generator, configured to perform respectively.
  • the traveling control using the first drive system allows the internal combustion engine to be used at a lower speed, so that the frequency of use of the low speed of the internal combustion engine can be improved. Fuel consumption can be improved.
  • the system with this configuration that does not impair drivability even if it is upgraded can improve fuel efficiency.
  • the shift-up control can regenerate the inertial energy of the internal combustion engine as regenerative energy during the shift operation. Furthermore, by using the direct gear stage during deceleration of the vehicle by the deceleration control, the deceleration energy can be continuously regenerated as regenerative energy by the motor generator even when the gear stage for re-acceleration is selected.
  • the control device detects a rotational speed detected by a second rotational speed detection device provided on an input shaft of the main shaft of the stepped transmission mechanism, which is lower than a normal rotational speed of the internal combustion engine.
  • a second rotational speed detection device provided on an input shaft of the main shaft of the stepped transmission mechanism, which is lower than a normal rotational speed of the internal combustion engine.
  • it is configured to perform low rotation control that travels with the transmission gear stage clutch as a half clutch.
  • the internal combustion engine cannot be driven below the idling speed, so that the stall or resonance of the internal combustion engine can be prevented by half-clutch or clutch disengagement.
  • a clutch may be further provided between the internal combustion engine and the motor generator, and the control device may include the vehicle start control, the travel control, and the deceleration control.
  • control is performed by substituting the clutch on and off.
  • the control device is configured to perform gear stage selection control that always selects a gear stage in preparation for a reacceleration request while using the first drive system.
  • gear stage selection control that always selects a gear stage in preparation for a reacceleration request while using the first drive system.
  • the control device when the control device cannot perform regenerative control with the motor generator when the vehicle decelerates, the control device performs the second deceleration control that selects the optimum gear and decelerates with the engine brake. Composed.
  • SOC charge amount of the battery that supplies power to the motor generator
  • the vehicle is decelerated only by the brake torque by the internal combustion engine, or by both the brake torque by the internal combustion engine and the regenerative torque by the motor generator. Therefore, overcharge to the battery can be prevented and battery failure can be prevented. Even when the amount of charge (SOC) of the battery that supplies power to the motor generator is sufficient and the motor generator cannot perform the regenerative control operation, an appropriate amount of braking force can be exhibited.
  • the hybrid vehicle control method of the present invention for achieving the above object comprises an internal combustion engine, a motor generator, and a stepped transmission mechanism, and the internal combustion engine is provided between the internal combustion engine and the stepped transmission mechanism.
  • the motor generator and the dual clutch are arranged, and the dual clutch includes a direct gear stage clutch and a transmission gear stage clutch, and one of the direct gear stage clutches is connected to the internal combustion engine and the motor generator.
  • the other of the directly connected gear stage clutch is connected to the input shaft of the main shaft of the stepped transmission mechanism, and one of the transmission gear stage clutches is connected to the internal combustion engine and the motor generator.
  • the other of the transmission gear stage clutch is connected to the input shaft of the countershaft of the stepped transmission mechanism, and further, the stepped transmission mechanism of the stepped transmission mechanism
  • a method for controlling a hybrid vehicle in a hybrid vehicle having the rotation speed detecting device for detecting the rotational speed of the output shaft of the in-shaft configured as the following method.
  • the first drive system that places the direct gear stage clutch in the engaged state and the transmission gear stage clutch in the disengaged state, and connects the transmission gear stage clutch in the disengaged state in the direct gear stage clutch.
  • the second drive system to be put into a state, power is transmitted between the output shaft and the wheel side of the internal combustion engine and the motor generator, respectively, and in the case of vehicle start, “first speed” or “second speed”
  • first speed or “second speed”
  • the regenerative control is performed according to the required torque calculated based on the accelerator opening.
  • Switch to the first drive system When the engine runs under control and the speed detected by the speed detection device decelerates from a state equal to or higher than the normal speed of the internal combustion engine, the first drive system is always selected and the torque generated by the engine brake And decelerating by the regenerative torque of the motor generator.
  • the internal combustion engine in the case of vehicle travel using the first drive system, can be used at a lower speed, so the frequency of use of the low speed of the internal combustion engine can be improved.
  • the fuel efficiency of the hybrid vehicle can be improved.
  • the control method of this configuration that does not impair drivability even if the speed is improved can improve fuel efficiency.
  • the inertial energy of the internal combustion engine can be regenerated as regenerative energy during the shifting operation, and furthermore, when decelerating, the deceleration energy can be regenerated as regenerative energy continuously by the motor generator, so that the fuel consumption is further improved Can be improved.
  • the internal combustion engine, the motor generator, and the stepped transmission mechanism are provided, and the motor generator and the direct connection gear are arranged between the internal combustion engine and the stepped transmission mechanism in order from the internal combustion engine side.
  • the hybrid system can be optimally controlled, and the low speed of the internal combustion engine.
  • FIG. 1 is a diagram showing a configuration of a hybrid system mounted on a hybrid vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a hybrid system mounted on the hybrid vehicle according to the second embodiment of the present invention. (With clutch)
  • the hybrid vehicle according to the first embodiment of the present invention is a hybrid vehicle equipped with a hybrid system 1 as shown in FIG. 1.
  • the hybrid system 1 includes an engine (internal combustion engine) 10 and a motor generator 11. And a stepped transmission mechanism 20. And between the engine 10 and the stepped transmission mechanism 20, the motor generator 11 and the dual clutch 21 are arrange
  • This motor generator 11 is connected to a wheel (not shown) side through a flywheel 12, a fluid coupling 14, a dual clutch 21, and a stepped transmission mechanism 20 in this order.
  • the dual clutch 21 includes a direct gear stage clutch 21a and a transmission gear stage clutch 21b. Then, one of the direct gear clutch 21a is connected to the output shaft of the engine 10 and the motor generator 11, and the other of the direct gear clutch 21a is connected to the input shaft of the main shaft 20a of the stepped transmission mechanism 20, The output shaft of the main shaft 20a is connected to the wheel side. At the same time, one of the transmission gear stage clutch 21b is connected to the output shaft of the engine 10 and the motor generator 11, and the other of the transmission gear stage clutch 21b is connected to the input shaft of the counter shaft 20b of the stepped transmission mechanism 20. The output shaft of the countershaft 20b is connected to the wheel side.
  • the power of the engine 10 and the power of the motor generator 11 are input to the input shaft of the main shaft 20a of the stepped transmission mechanism 20 via the direct-coupled gear stage clutch 21a, and then stepped.
  • the power is output to the output shaft of the main shaft 20a of the transmission mechanism 20 and transmitted to the wheel side.
  • the power of the engine 10 and the power of the motor generator 11 are transmitted via the transmission gear stage clutch 21b.
  • the power of the engine 10 and the power of the motor generator 11 are transmitted via the transmission gear stage clutch 21b.
  • the power of the engine 10 and the power of the motor generator 11 After being input to the input shaft of the countershaft 20b of the stepped transmission mechanism 20, it is output to the output shaft of the main shaft 20a of the stepped transmission mechanism 20 via the transmission mechanism 20c of the stepped transmission mechanism 20, and the wheel side To communicate.
  • the power of the engine 10, the power (or regenerative power) of the motor generator 11, or both powers can be transmitted to the wheel side of the hybrid vehicle on which the hybrid system 1 is mounted.
  • the first drive system of the direct gear stage clutch 21a is disconnected and the speed is changed.
  • the second speed of the speed gear stage clutch 21b is changed.
  • the dual clutch is employed and the direct gear stage in the conventional stepped transmission mechanism is replaced with one side of the dual clutch, it is possible to prevent the entire length of the stepped transmission mechanism including the clutch from being increased.
  • connection / disconnection of the direct connection gear stage clutch 21a and the connection / disconnection of the transmission gear stage clutch 21b are used properly, and it is in that state. It is possible to travel by selecting an optimal gear stage according to the vehicle, and to improve fuel efficiency.
  • the transmission mechanism 20c corresponding to the direct gear stage 20Xc in the stepped transmission mechanism 20X of the conventional hybrid system 1X is replaced with one side of the dual clutch 21, the dual clutch 21 and the stepped transmission mechanism 20 are included. It can suppress that the full length of a transmission mechanism becomes long.
  • the direct gear stage clutch 21a of the stepped transmission mechanism 20 is a friction clutch.
  • the speed change mechanism 20c can be selected in a very short time without completely matching the rotational speeds on both sides of the dual clutch 21.
  • the directly connected gear can be instantly selected and the engine speed can be reduced, thereby improving fuel efficiency.
  • the gear of the speed change mechanism 20c or higher is selected and used separately from the speed change mechanism 20c in accordance with the driver's acceleration / deceleration operation, whereby the fuel efficiency of the hybrid vehicle can be improved.
  • the torque limiter 23a is provided on the input shaft of the main shaft 20a of the stepped transmission mechanism 20 or the torque limiter 23b is provided on the input shaft of the countershaft 20b, the dual clutch 21 is lost and both clutches 21a, Even when 21b has been fastened, it is possible to avoid the torque limiters 23a and 23b from transmitting torque over a certain torque, so that the main shaft 20a and the counter shaft 20b can be prevented from being damaged.
  • the actuator controls the dual clutch 21 and operates the dual clutch 21. Even if the failure occurs, it is possible to prevent the direct gear stage clutch 21a and the transmission gear stage clutch 21b from being connected.
  • a first rotation speed (rotation speed detection device) sensor 30a is provided on the output shaft of the main shaft 20a of the stepped transmission mechanism 20, and a second rotation speed sensor (second rotation) is provided on the input shaft of the main shaft 20a of the stepped transmission mechanism 20.
  • the rotation speed detection device 30b is configured by providing the dual clutch 21 with a third rotation speed sensor 30c.
  • a control device 41 for controlling connection / disconnection of the direct-coupled gear stage clutch 21a and the transmission gear stage clutch 21b is provided.
  • the control device 41 is normally configured to be incorporated in an overall system control device 40 that performs overall control of the engine 10 and overall control of a hybrid vehicle equipped with the engine 10.
  • the hybrid vehicle configured by mounting the hybrid system 1 having the above-described configuration includes a traveling state detection device (not shown) that detects the traveling state of the hybrid vehicle.
  • This travel state detection device inputs the vehicle speed, the required torque, the position of the shift lever of the stepped transmission mechanism 20, the accelerator opening and the brake depression amount, the operating state of the engine 10, the operating state of the motor generator 11, etc. , Configured to determine a running state.
  • the control device 41 controls the direct gear stage clutch 21a to be disengaged and the transmission gear stage clutch 21b to be in a connected state when the traveling state detection device detects acceleration or deceleration of the hybrid vehicle. And when the running state detection device detects a constant running or start or stop of the hybrid vehicle, it is configured to perform control to turn off both the direct gear stage clutch 21a and the transmission gear stage clutch 21b. .
  • the hybrid vehicle when the hybrid vehicle is accelerated or decelerated, only the transmission gear stage clutch 21b is connected, and the assist or regeneration by the motor generator 11 is maintained only by the second drive system, so that the hybrid vehicle is in the traveling state.
  • the optimum gear stage can be selected according to the fuel efficiency.
  • the first drive system of the direct-coupled gear stage clutch 21a is disconnected after switching to the optimal gear stage selected in advance according to the traveling state of the hybrid vehicle. In this state, when the second drive system of the transmission gear stage clutch 21b is in the connected state, the assist and regeneration by the motor generator 11 become smoother.
  • both the direct gear stage clutch 21a and the transmission gear stage clutch 21b are disconnected to connect the engine 10, the motor generator 11 side, and the wheel side.
  • control device 41 is configured to perform the following control.
  • a first drive system that connects the direct gear stage clutch 21a to the disconnected state and disconnects the transmission gear stage clutch 21b, and connects the transmission gear stage clutch 21b to the direct gear stage clutch 21a that is disconnected.
  • the second drive system to be put into a state is configured to perform control for transmitting power between the output shaft of the engine 10 and the motor generator 11 and the wheel side.
  • “1st speed” or “2nd speed” is used until the rotational speed Nema detected by the first rotational speed sensor (rotational speed detection device) 30a after starting the vehicle becomes equal to or higher than the normal rotational speed Nes of the engine 10.
  • vehicle start control is performed in which power is transmitted by the second drive system, and when the second drive system is being used, the motor generator Ne is used to change the engine speed Ne by the motor generator 11.
  • the shift-up control is performed to perform the regenerative control to make the rotation speed Nen of the gear stage.
  • the first drive system is switched according to the required torque calculated based on the accelerator opening.
  • the traveling speed is controlled and the traveling speed is decelerated from the state where the rotational speed Nema detected by the first rotational speed sensor 30a is equal to or higher than the normal rotational speed Nes of the engine 10, the first drive system is always selected.
  • the engine is configured to perform deceleration control that decelerates the torque by the engine brake (not shown) and the regenerative torque of the motor generator 11.
  • the use frequency of the low speed of the engine 10 can be improved. Fuel consumption can be improved.
  • the shift-up control can regenerate the inertia energy of the engine 10 as regenerative energy during the shift operation. Further, by using the direct gear stage during deceleration of the vehicle by the deceleration control, the deceleration energy can be continuously regenerated as the regenerative energy by the motor generator 11 even when the gear stage for re-acceleration is selected.
  • the control device 41 sets the transmission gear stage clutch 21b to a half clutch. It is comprised so that the low-rotation control which drive
  • control device 41 is configured to perform gear stage selection control that always selects a gear stage in preparation for the reacceleration request while using the first drive system. With this configuration, it is possible to select a gear stage in preparation for a re-acceleration request even in a state where the vehicle is decelerating using the first drive system. Therefore, driver viability is not impaired.
  • control device 41 is configured to perform second deceleration control in which when the motor generator 11 cannot perform regenerative control during vehicle deceleration, the optimum gear is selected and the engine brake decelerates.
  • SOC amount of charge
  • the engine 10 is decelerated only by the brake torque by the engine 10 or by both the brake torque by the engine 10 and the regenerative torque by the motor generator 11. Since control is performed by selecting whether to decelerate, overcharge to the battery can be prevented, and failure of the battery can be prevented. Even when the amount of charge (SOC) of the battery that supplies power to the motor generator 11 is sufficient and the motor generator 11 cannot perform the regenerative control operation, an appropriate amount of braking force can be exhibited.
  • This control method is configured as follows.
  • a first drive system that places the direct gear stage clutch 21a in the connected state and the transmission gear stage clutch 21b in the disconnected state, and a transmission gear stage clutch that operates in the disconnected state of the direct gear stage clutch 21a. Power transmission between the output shaft of the engine 10 and the motor generator 11 and the wheel side is performed in the second drive system that puts the connection state 21b.
  • the frequency of use of the low speed of the engine 10 can be improved, and the fuel consumption of the hybrid vehicle can be improved. Can be improved.
  • the inertial energy of the engine 10 can be regenerated as regenerative energy during the fluctuating operation, so that it is possible to improve the fuel efficiency during traveling, and further, the motor generator 11 decelerates continuously during deceleration. Since energy can be regenerated as regenerative energy, fuel consumption can be improved.
  • the hybrid vehicle according to the second embodiment is configured by mounting a hybrid system 1A as shown in FIG.
  • a hybrid system 1A shown in FIG. 2 is configured by further providing a clutch (crankshaft connecting / disconnecting device) 13 between the engine 10 and the motor generator 11 in addition to the configuration of the hybrid system 1 shown in FIG.
  • the control device 41 does not determine whether the rotational speed Nema detected by the first rotational speed sensor 30a is equal to or higher than the normal rotational speed Nes of the engine 10, and the clutch 13 is configured to perform control that substitutes on and off.
  • the motor generator 11 can continuously regenerate deceleration energy even below the minimum drive speed of the engine 10, the fuel efficiency of the hybrid vehicle can be improved.
  • the engine 10, the motor generator 11, and the stepped transmission mechanism 20 are provided, and the motor power generation is sequentially performed between the engine 10 and the stepped transmission mechanism 20 from the engine 10 side.
  • Machine 11, a hybrid vehicle equipped with a hybrid system 1, 1 A configured by arranging a dual clutch 21 having a direct gear stage clutch 21 a and a transmission gear stage clutch 21 b, and a control method thereof, 1A can be optimally controlled, the frequency of use of the engine 10 at a low rotational speed can be improved, and the deceleration energy can be used for regenerative control by the motor generator 11 continuously during deceleration of the vehicle, thereby improving fuel efficiency.
  • the optimal gear can be selected for re-acceleration while the vehicle is decelerating, providing comfortable drivability. It is possible to provide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Until an internal combustion engine (10) reaches a normal rotational speed (Nes) or above after the start of a vehicle, a second drive line is used for power transmission using "first speed" or "second speed". When upshifting while the second drive line is being used, regeneration control is implemented to have an engine rotational speed (Ne) changed to a rotational speed (Nen) for the next gear stage by an electric generator (11). When the internal combustion engine (10) has the normal rotational speed (Nes) or above, the drive line is switched to a first drive line in accordance with a demanded torque. When the internal combustion engine (10) decelerates from a state of the normal rotational speed (Nes) or above, the first drive line is selected at all times, and engine brake torque and regeneration torque of the electric generator (11) are used for deceleration. Thus, a hybrid vehicle and a method of controlling the same are provided whereby a hybrid system mounted on the hybrid vehicle can be optimally controlled to improve fuel economy without sacrificing drivability (ride).

Description

ハイブリッド車両及びその制御方法Hybrid vehicle and control method thereof
 本発明は、内燃機関と電動発電機と有段変速機構を備えたハイブリッド車両及びその制御方法に関する。 The present invention relates to a hybrid vehicle including an internal combustion engine, a motor generator, and a stepped transmission mechanism, and a control method thereof.
 内燃機関と電動発電機と有段変速機構を備えたハイブリッドシステムを搭載して、内燃機関と電動発電機の動力を有段変速機構を介して車輪に伝達するハイブリッド車両では、車両減速時のエネルギーを回生して、車両加速時に使用することが、燃費向上に大きく貢献している。 In a hybrid vehicle equipped with a hybrid system including an internal combustion engine, a motor generator, and a stepped transmission mechanism, and transmitting the power of the internal combustion engine and the motor generator to the wheels via the stepped transmission mechanism, the energy at the time of vehicle deceleration And using it during vehicle acceleration greatly contributes to improved fuel efficiency.
 このハイブリッド車両に関係しては、例えば、日本出願の特開2011-73574号公報に記載されているように、モータを変速機構よりエンジン側に搭載すると共に、変速機構にデュアルクラッチ式変速機を使用して、運転者の負側の要求トルク(抵抗トルク)に基づいて、エンジンブレーキ及び回生トルクを制御し、これにより駆動輪側に減速抵抗を付与すると共に、電動機が発電機として機能するようにしたハイブリッド電気自動車の変速制御の変速制御装置が提案されている。 With regard to this hybrid vehicle, for example, as described in Japanese Patent Application Laid-Open No. 2011-73574, a motor is mounted on the engine side of the transmission mechanism, and a dual clutch transmission is installed in the transmission mechanism. In use, the engine brake and the regenerative torque are controlled based on the driver's negative demand torque (resistance torque), thereby giving a deceleration resistance to the drive wheel side, and the motor functions as a generator. A shift control device for shift control of a hybrid electric vehicle is proposed.
 しかしながら、電動発電機を有段変速機構よりも内燃機関側に搭載したハイブリッドシステムでは、このハイブリッドシステムを搭載した車両の走行中に車両速度が変化した場合には、最適な変速比を選択する必要が生じ、変速動作をしている間は、電動発電機と内燃機関は接続したままなので、変速動作中であっても、電動発電機による、エンジン回転数制御、エンジン回転変動抑制制御、エンジンの始動及び停止制御を行うことができる。 However, in a hybrid system in which the motor generator is mounted on the internal combustion engine side of the stepped transmission mechanism, it is necessary to select an optimal gear ratio when the vehicle speed changes while the vehicle equipped with this hybrid system is running. Since the motor generator and the internal combustion engine remain connected while the speed change operation is performed, the engine speed control, the engine speed fluctuation suppression control, the engine Start and stop control can be performed.
 しかしながら、変速動作中は、電動発電機が車輪側と切り離された状態になるため、電動発電機によるアシストや回生を行うことができないという問題がある。また、車両減速時の有段変速機構でシフトダウンしている間やドライバー(運転者)がクラッチを切ってしまった場合には減速時のエネルギーを回生に使用することができず、燃費向上の効果が薄れてしまう。 However, since the motor generator is disconnected from the wheel side during the shifting operation, there is a problem that the motor generator cannot assist or regenerate. In addition, when the vehicle is decelerating with a stepped transmission mechanism during vehicle deceleration or when the driver (driver) disengages the clutch, the energy during deceleration cannot be used for regeneration, improving fuel efficiency. The effect will fade.
 一方、電動発電機を有段変速機構よりも車輪側に搭載した場合は、いかなる状態でも電動発電機によるアシストや回生を行うことができる反面、変速動作中における、電動発電機による、エンジン回転数制御、エンジン回転変動抑制制御、エンジンの始動及び停止制御を行うことができず、また、内燃機関の始動及び停止制御においても制約が多くなるという問題がある。 On the other hand, when the motor generator is mounted on the wheel side of the stepped transmission mechanism, the motor generator can assist and regenerate in any state, but the engine speed by the motor generator during the shift operation is not limited. There is a problem that control, engine rotation fluctuation suppression control, engine start and stop control cannot be performed, and there are many restrictions in the start and stop control of the internal combustion engine.
 これらの相反する特徴を補うために、従来技術の乗用車用のハイブリッドシステムでは、無段変速機を使用するハイブリッドシステムや、2つの電動発電機を使用するハイブリッドシステムが多く採用されている。しかし、トルクが大きいトラック等のディーゼル商用車では無段変速機の採用は困難であり、また、2つの電動発電機を使用すると、重量の増加により積荷の積載量に影響してしまうという問題がある。 In order to compensate for these contradictory characteristics, a hybrid system using a continuously variable transmission and a hybrid system using two motor generators are often employed in conventional hybrid systems for passenger cars. However, it is difficult to adopt a continuously variable transmission in a diesel commercial vehicle such as a truck with a large torque, and when two motor generators are used, the load increases due to the increase in weight. is there.
 そこで、本発明者は、図1に示すような、内燃機関10と電動発電機11と有段変速機構20を備えたハイブリッドシステム1で、内燃機関10と有段変速機構20の間に、内燃機関10側より順に、電動発電機11、デュアルクラッチ21を配設し、このデュアルクラッチ21は直結ギア段用クラッチ21aと変速ギア段用クラッチ21bを備え、直結ギア段用クラッチ21aの一方を内燃機関10と電動発電機11との出力軸に接続し、直結ギア段用クラッチ21aの他方を有段変速機構20のメインシャフト20aの入力軸に接続すると共に、変速ギア段用クラッチ21bの一方を内燃機関10と電動発電機11との出力軸に接続し、変速ギア段用クラッチ21bの他方を有段変速機構20のカウンターシャフト20bの入力軸に接続して構成したハイブリッドシステムを考えた。 Therefore, the inventor of the present invention is a hybrid system 1 including an internal combustion engine 10, a motor generator 11, and a stepped transmission mechanism 20 as shown in FIG. In order from the engine 10 side, a motor generator 11 and a dual clutch 21 are disposed. The dual clutch 21 includes a direct gear stage clutch 21a and a transmission gear stage clutch 21b, and one of the direct gear stage clutches 21a is an internal combustion engine. The output shaft of the engine 10 and the motor generator 11 is connected, the other of the direct gear stage clutch 21a is connected to the input shaft of the main shaft 20a of the stepped transmission mechanism 20, and one of the transmission gear stage clutch 21b is connected. It is connected to the output shafts of the internal combustion engine 10 and the motor generator 11, and the other of the transmission gear stage clutch 21 b is connected to the input shaft of the countershaft 20 b of the stepped transmission mechanism 20. Considering the hybrid system to configuration.
 しかしながら、この構成のハイブリッドシステムでは、デュアルクラッチ21の直結ギア段用クラッチ21aは、従来技術の直結ギア段の役割を果たし、変速ギア段用クラッチ21bは従来技術の変速機の変速用クラッチの役割を果たすことになっており、このハイブリッドシステムで、従来技術の変速同様の制御を行った場合には、電動発電機11によるエンジン回転数制御、エンジンの始動及び停止制御等におけるアシストや回生制御を最適に行うことができないという問題がある。 However, in the hybrid system configured as described above, the direct gear stage clutch 21a of the dual clutch 21 serves as the direct gear stage of the prior art, and the transmission gear stage clutch 21b serves as the transmission clutch of the prior art transmission. In this hybrid system, when the same control as the conventional speed change is performed, assist and regenerative control in the engine speed control, engine start and stop control, etc. by the motor generator 11 are performed. There is a problem that it cannot be performed optimally.
 つまり、従来技術通りの制御では、ハイブリッド車両の発進時には「1速」又は「2速」を使用し、変速ギア段用クラッチ21bを使用して発進する。そして、加速中は、車両速度とアクセル開度に応じて最適なギアを選択するために、変速ギア段用クラッチ21bを切断して変速動作を行う。また、一定車両速度で走行している場合は、車両速度とアクセル開度に最適なギアを選択して走行する。さらに、減速中は、車両速度の低下に伴って、エンジン回転数が低下するため、変速ギア段用クラッチ21bを切断してギア段を下げている。このような制御では、従来技術の変速機構を使用したハイブリッドシステムと同じ操作になり、燃費向上の効果が少ないという問題がある。 That is, in the control according to the prior art, when the hybrid vehicle starts, “first speed” or “second speed” is used, and the transmission starts using the transmission gear stage clutch 21b. During acceleration, in order to select an optimal gear according to the vehicle speed and the accelerator opening, the shift gear stage clutch 21b is disconnected to perform a shift operation. If the vehicle is traveling at a constant vehicle speed, the vehicle selects the optimum gear for the vehicle speed and the accelerator opening. Further, during deceleration, the engine speed decreases as the vehicle speed decreases, so the gear stage clutch 21b is disconnected to lower the gear stage. In such control, there is a problem that the operation is the same as that of the hybrid system using the transmission mechanism of the prior art, and the effect of improving fuel consumption is small.
日本出願の特開2011-73574号公報Japanese Patent Application No. 2011-73574 filed in Japan
 本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関と電動発電機と有段変速機構を備え、内燃機関と有段変速機構の間に、内燃機関側より順に、電動発電機、直結ギア段用クラッチと変速ギア段用クラッチを備えたデュアルクラッチを配設して構成したハイブリッドシステムを搭載したハイブリッド車両及びその制御方法において、このハイブリッドシステムを最適に制御できて、エンジンの低回転数での使用頻度を向上し、車両減速中に連続して電動発電機により減速エネルギーを回生制御に使用して、燃費を改善できると共に、車両減速中の間も再加速に備えて最適なギアを選択できて、ドライバビリティー(乗り心地性)を損なうことがない、ハイブリッドシステム及びその制御方法を提供することにある。 The present invention has been made in view of the above, and an object thereof is to include an internal combustion engine, a motor generator, and a stepped transmission mechanism, and in order from the internal combustion engine side between the internal combustion engine and the stepped transmission mechanism. In a hybrid vehicle equipped with a hybrid system comprising a dual clutch including a motor generator, a direct gear stage clutch and a transmission gear stage clutch, and a control method thereof, the hybrid system can be optimally controlled. , Improve the frequency of use at low engine speeds, use the deceleration energy for regenerative control by the motor generator continuously during vehicle deceleration, improve fuel efficiency, and prepare for re-acceleration during vehicle deceleration It is an object of the present invention to provide a hybrid system and a control method therefor that can select an optimal gear and do not impair drivability.
 上記の目的を達成するための本発明のハイブリッド車両は、内燃機関と電動発電機と有段変速機構を備え、前記内燃機関と前記有段変速機構の間に、前記内燃機関側より順に、前記電動発電機、デュアルクラッチを配設し、該デュアルクラッチは直結ギア段用クラッチと変速ギア段用クラッチを備え、前記直結ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記直結ギア段用クラッチの他方を前記有段変速機構のメインシャフトの入力軸に接続すると共に、前記変速ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記変速ギア段用クラッチの他方を前記有段変速機構のカウンターシャフトの入力軸に接続して構成され、さらに、前記有段変速機構の前記メインシャフトの出力軸の回転数を検出する回転数検出装置を備えると共に、前記直結ギア段用クラッチと前記変速ギア段用クラッチの断接と前記有段変速機構のギア段の切り換えを制御する制御装置を備えたハイブリッド車両において、次のように構成される。 In order to achieve the above object, a hybrid vehicle according to the present invention includes an internal combustion engine, a motor generator, and a stepped transmission mechanism, and in order from the internal combustion engine side between the internal combustion engine and the stepped transmission mechanism. A motor generator and a dual clutch are provided, and the dual clutch includes a direct gear stage clutch and a transmission gear stage clutch, and one of the direct gear stage clutches is an output shaft of the internal combustion engine and the motor generator. And the other of the directly connected gear stage clutches is connected to the input shaft of the main shaft of the stepped transmission mechanism, and one of the transmission gear stage clutches is connected to the output shaft of the internal combustion engine and the motor generator. The other end of the transmission gear stage clutch is connected to the input shaft of the countershaft of the stepped transmission mechanism, and the main shaft of the stepped transmission mechanism is extended. A rotation speed detection device for detecting the rotation speed of the shaft, and a control device for controlling connection / disconnection of the direct gear stage clutch and the transmission gear stage clutch and switching of the gear stage of the stepped transmission mechanism; The hybrid vehicle is configured as follows.
 つまり、該制御装置が、前記直結ギア段用クラッチを接続状態にして前記変速ギア段用クラッチを断絶状態にする第1の駆動系統と、前記直結ギア段用クラッチを断絶状態にして前記変速ギア段用クラッチを接続状態にする第2の駆動系統で、前記内燃機関と前記電動発電機との出力軸と車輪側との間の動力伝達をそれぞれ行う制御を行い、
車両発進して前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になるまでは、「1速」又は「2速」を使用して、前記第2の駆動系統で動力伝達を行って発進する車両発進制御を、前記第2の駆動系統の使用中にシフトアップする場合は、前記電動発電機によりエンジン回転数を次のギア段の回転数にする回生制御を行うシフトアップ制御を、前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になった場合は、アクセル開度に基づいて算定された要求トルクに応じて前記第1の駆動系統に切り替える制御を行って走行する走行制御を、前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上の状態から減速する場合は、常に前記第1の駆動系統を選択して、エンジンブレーキによるトルクと前記電動発電機の回生トルクにより減速する減速制御を、それぞれ行うように構成される。
That is, the control device disengages the direct gear stage clutch and disengages the transmission gear stage clutch, and the transmission gear with the direct gear stage clutch disengaged. In the second drive system that puts the stage clutch in a connected state, control is performed to respectively transmit power between the output shaft and the wheel side of the internal combustion engine and the motor generator,
The first drive system uses the first speed or the second speed until the rotational speed detected by the rotational speed detection device after starting the vehicle becomes equal to or higher than the normal rotational speed of the internal combustion engine. When the vehicle start control that starts by transmitting is shifted up during use of the second drive system, the motor generator performs a regenerative control to change the engine speed to the speed of the next gear stage. When the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed of the internal combustion engine, the first drive system is controlled according to the required torque calculated based on the accelerator opening. When the rotational speed detected by the rotational speed detection device decelerates from the state where the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed, the first drive system is always selected. By engine brake The deceleration control to decelerate the regenerative torque of torque and the motor generator, configured to perform respectively.
 この構成によれば、第1の駆動系統を使用する走行制御により、内燃機関をより低回転で使用できることになるので、内燃機関の低回転数の使用頻度を向上することができ、ハイブリッド車両の燃費を改善することができる。内燃機関は高回転数になるとフリクションが増加し、効率が低下する。そのため、低回転数、高トルクで走行する方が燃費が良く、燃費向上のためには「高ギア段」=「低減速比ギア段」で走行する事が望ましく、頻繁に直結ギア段にシフトアップしても、ドライバビリティーを損ねない、この構成のシステムでは燃費を向上する事ができる。また、シフトアップ制御により、変速動作中に内燃機関の慣性エネルギーを回生エネルギーとして回生できる。更に、減速制御により、車両減速中に直結ギア段を使用する事で、再加速に備えたギア段を選んだ状態でも、連続して電動発電機により減速エネルギーを回生エネルギーとして回生できる。 According to this configuration, the traveling control using the first drive system allows the internal combustion engine to be used at a lower speed, so that the frequency of use of the low speed of the internal combustion engine can be improved. Fuel consumption can be improved. When the internal combustion engine reaches a high speed, friction increases and efficiency decreases. Therefore, it is better to drive at low speed and high torque, and it is desirable to drive at "high gear stage" = "reduced speed ratio gear stage" to improve fuel efficiency, and frequently shift to the direct gear stage. The system with this configuration that does not impair drivability even if it is upgraded can improve fuel efficiency. Further, the shift-up control can regenerate the inertial energy of the internal combustion engine as regenerative energy during the shift operation. Furthermore, by using the direct gear stage during deceleration of the vehicle by the deceleration control, the deceleration energy can be continuously regenerated as regenerative energy by the motor generator even when the gear stage for re-acceleration is selected.
 また、上記のハイブリッド車両において、前記制御装置が、前記有段変速機構の前記メインシャフトの入力軸に設けた第2の回転数検出装置で検出した回転数が前記内燃機関の常用回転数より低い場合は、前記変速ギア段用クラッチを半クラッチにして走行する低回転制御を行うように構成される。これにより、内燃機関はアイドリング回転数以下では駆動できないので、半クラッチまたはクラッチ断により、内燃機関のストールや共振を防ぐことができる。 In the hybrid vehicle, the control device detects a rotational speed detected by a second rotational speed detection device provided on an input shaft of the main shaft of the stepped transmission mechanism, which is lower than a normal rotational speed of the internal combustion engine. In this case, it is configured to perform low rotation control that travels with the transmission gear stage clutch as a half clutch. As a result, the internal combustion engine cannot be driven below the idling speed, so that the stall or resonance of the internal combustion engine can be prevented by half-clutch or clutch disengagement.
 あるいは、上記のハイブリッド車両において、更に、前記内燃機関と前記電動発電機との間にクラッチを設けて構成すると共に、前記制御装置が、前記車両発進制御、前記走行制御、前記減速制御において、前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になったかどうかの判定を行わずに、前記クラッチのオンオフで代用する制御を行うように構成される。これにより、内燃機関の最低駆動回転数以下でも継続して電動発電機が減速エネルギーを回生できるため、ハイブリッド車両の燃費を改善することができる。 Alternatively, in the hybrid vehicle described above, a clutch may be further provided between the internal combustion engine and the motor generator, and the control device may include the vehicle start control, the travel control, and the deceleration control. Instead of determining whether or not the rotational speed detected by the rotational speed detection device has become equal to or higher than the normal rotational speed of the internal combustion engine, control is performed by substituting the clutch on and off. Thereby, since the motor generator can continuously regenerate deceleration energy even below the minimum drive speed of the internal combustion engine, the fuel efficiency of the hybrid vehicle can be improved.
 また、上記のハイブリッド車両において、前記制御装置が、前記第1の駆動系統を使用中は、常に再加速要求に備えたギア段を選択しておくギア段選択制御を行うように構成される。この構成により、第1の駆動系統を使用して減速している状態でも、再加速要求に備えたギア段を選択しておくことができる。そのため、ドライバビィリティーを損ねることはない。 In the above hybrid vehicle, the control device is configured to perform gear stage selection control that always selects a gear stage in preparation for a reacceleration request while using the first drive system. With this configuration, it is possible to select a gear stage in preparation for a re-acceleration request even in a state where the vehicle is decelerating using the first drive system. Therefore, driver viability is not impaired.
 また、上記のハイブリッド車両において、前記制御装置が、車両減速時に電動発電機で回生制御が行えない場合には、最適なギア段を選択してエンジンブレーキで減速する第2減速制御を行うように構成される。これにより、電動発電機に電力を供給するバッテリの充電量(SOC)に応じて、内燃機関によるブレーキトルクのみで減速させるか、内燃機関によるブレーキトルクと電動発電機による回生トルクの両方で減速させるかを選択して制御するため、バッテリへの過充電を防止することができ、バッテリの故障を防止することができる。また、電動発電機に電力を供給するバッテリの充電量(SOC)が十分で電動発電機で回生制御運転ができない場合でも、適量の制動力を発揮できる。 In the above hybrid vehicle, when the control device cannot perform regenerative control with the motor generator when the vehicle decelerates, the control device performs the second deceleration control that selects the optimum gear and decelerates with the engine brake. Composed. Thus, depending on the charge amount (SOC) of the battery that supplies power to the motor generator, the vehicle is decelerated only by the brake torque by the internal combustion engine, or by both the brake torque by the internal combustion engine and the regenerative torque by the motor generator. Therefore, overcharge to the battery can be prevented and battery failure can be prevented. Even when the amount of charge (SOC) of the battery that supplies power to the motor generator is sufficient and the motor generator cannot perform the regenerative control operation, an appropriate amount of braking force can be exhibited.
 そして、上記の目的を達成するための本発明のハイブリッド車両の制御方法は、内燃機関と電動発電機と有段変速機構を備え、前記内燃機関と前記有段変速機構の間に、前記内燃機関側より順に、前記電動発電機、デュアルクラッチを配設し、該デュアルクラッチは直結ギア段用クラッチと変速ギア段用クラッチを備え、前記直結ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記直結ギア段用クラッチの他方を前記有段変速機構のメインシャフトの入力軸に接続すると共に、前記変速ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記変速ギア段用クラッチの他方を前記有段変速機構のカウンターシャフトの入力軸に接続して構成され、さらに、前記有段変速機構の前記メインシャフトの出力軸の回転数を検出する回転数検出装置を備えたハイブリッド車両におけるハイブリッド車両の制御方法において、次のような方法として構成される。 The hybrid vehicle control method of the present invention for achieving the above object comprises an internal combustion engine, a motor generator, and a stepped transmission mechanism, and the internal combustion engine is provided between the internal combustion engine and the stepped transmission mechanism. In order from the side, the motor generator and the dual clutch are arranged, and the dual clutch includes a direct gear stage clutch and a transmission gear stage clutch, and one of the direct gear stage clutches is connected to the internal combustion engine and the motor generator. And the other of the directly connected gear stage clutch is connected to the input shaft of the main shaft of the stepped transmission mechanism, and one of the transmission gear stage clutches is connected to the internal combustion engine and the motor generator. Connected to the output shaft of the machine, the other of the transmission gear stage clutch is connected to the input shaft of the countershaft of the stepped transmission mechanism, and further, the stepped transmission mechanism of the stepped transmission mechanism A method for controlling a hybrid vehicle in a hybrid vehicle having the rotation speed detecting device for detecting the rotational speed of the output shaft of the in-shaft configured as the following method.
 つまり、前記直結ギア段用クラッチを接続状態にして前記変速ギア段用クラッチを断絶状態にする第1の駆動系統と、前記直結ギア段用クラッチを断絶状態にして前記変速ギア段用クラッチを接続状態にする第2の駆動系統で、前記内燃機関と前記電動発電機との出力軸と車輪側との間の動力伝達をそれぞれ行い、車両発進の場合には、「1速」又は「2速」を使用して、前記第2の駆動系統で動力伝達を行って発進し、前記第2の駆動系統の使用中にシフトアップする場合は、前記電動発電機によりエンジン回転数を次のギア段の回転数にする回生制御を行い、前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になった場合は、アクセル開度に基づいて算定された要求トルクに応じて前記第1の駆動系統に切り替える制御を行って走行し、前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上の状態から減速する場合は、常に前記第1の駆動系統を選択して、エンジンブレーキによるトルクと前記電動発電機の回生トルクにより減速することを特徴とする方法として構成される。 That is, the first drive system that places the direct gear stage clutch in the engaged state and the transmission gear stage clutch in the disengaged state, and connects the transmission gear stage clutch in the disengaged state in the direct gear stage clutch. In the second drive system to be put into a state, power is transmitted between the output shaft and the wheel side of the internal combustion engine and the motor generator, respectively, and in the case of vehicle start, “first speed” or “second speed” When the vehicle is started by performing power transmission in the second drive system and shifting up while using the second drive system, the motor speed is changed to the next gear stage by the motor generator. When the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed of the internal combustion engine, the regenerative control is performed according to the required torque calculated based on the accelerator opening. Switch to the first drive system When the engine runs under control and the speed detected by the speed detection device decelerates from a state equal to or higher than the normal speed of the internal combustion engine, the first drive system is always selected and the torque generated by the engine brake And decelerating by the regenerative torque of the motor generator.
 このハイブリッド車両の制御方法によれば、第1の駆動系統を使用する車両走行の場合には、内燃機関をより低回転で使用できるので、内燃機関の低回転数の使用頻度を向上することができ、ハイブリッド車両の燃費を改善することができる。内燃機関は高回転数になるとフリクションが増加し、効率が低下する。そのため、低回転数、高トルクで走行する方が燃費が良く、燃費向上のためには「高ギア段」=「低減速比ギア段」で走行する事が望ましく、頻繁に直結ギア段にシフトアップしても、ドライバビリティーを損ねない、この構成の制御方法では、燃費を向上する事ができる。また、シフトアップの場合は、変速動作中に内燃機関の慣性エネルギーを回生エネルギーとして回生でき、更に、減速する場合は連続して電動発電機により減速エネルギーを回生エネルギーとして回生できるので、燃費をより向上することができる。 According to this hybrid vehicle control method, in the case of vehicle travel using the first drive system, the internal combustion engine can be used at a lower speed, so the frequency of use of the low speed of the internal combustion engine can be improved. The fuel efficiency of the hybrid vehicle can be improved. When the internal combustion engine reaches a high speed, friction increases and efficiency decreases. Therefore, it is better to drive at low speed and high torque, and it is desirable to drive at "high gear stage" = "reduced speed ratio gear stage" to improve fuel efficiency, and frequently shift to the direct gear stage. The control method of this configuration that does not impair drivability even if the speed is improved can improve fuel efficiency. In addition, in the case of upshifting, the inertial energy of the internal combustion engine can be regenerated as regenerative energy during the shifting operation, and furthermore, when decelerating, the deceleration energy can be regenerated as regenerative energy continuously by the motor generator, so that the fuel consumption is further improved Can be improved.
 本発明のハイブリッド車両及びその制御方法によれば、内燃機関と電動発電機と有段変速機構を備え、内燃機関と有段変速機構の間に、内燃機関側より順に、電動発電機、直結ギア段用クラッチと変速ギア段用クラッチを備えたデュアルクラッチを配設して構成したハイブリッドシステムを搭載したハイブリッド車両及びその制御方法において、このハイブリッドシステムを最適に制御できて、内燃機関の低回転数での使用頻度を向上でき、また、車両減速中に連続して電動発電機により減速エネルギーを回生制御に使用できて、燃費を改善できると共に、車両減速中の間も再加速に備えて最適なギアを選択できて、快適なドライバビリティー(乗り心地性)を提供することができる。 According to the hybrid vehicle and the control method thereof of the present invention, the internal combustion engine, the motor generator, and the stepped transmission mechanism are provided, and the motor generator and the direct connection gear are arranged between the internal combustion engine and the stepped transmission mechanism in order from the internal combustion engine side. In a hybrid vehicle equipped with a hybrid system including a dual clutch having a stage clutch and a transmission gear stage clutch and a control method thereof, the hybrid system can be optimally controlled, and the low speed of the internal combustion engine In addition, it is possible to improve the fuel efficiency by using the deceleration energy for regenerative control by the motor generator continuously during deceleration of the vehicle, and improve the fuel efficiency. You can select and provide comfortable drivability.
図1は、本発明に係る第1の実施の形態のハイブリッド車両が搭載するハイブリッドシステムの構成を示す図である。(クラッチなし)FIG. 1 is a diagram showing a configuration of a hybrid system mounted on a hybrid vehicle according to a first embodiment of the present invention. (Without clutch) 図2は、本発明に係る第2の実施の形態のハイブリッド車両が搭載するハイブリッドシステムの構成を示す図である。(クラッチあり)FIG. 2 is a diagram showing a configuration of a hybrid system mounted on the hybrid vehicle according to the second embodiment of the present invention. (With clutch)
 以下、本発明に係る実施の形態のハイブリッドシステム、ハイブリッド車両、及びハイブリッド車両の制御方法について、図面を参照しながら説明する。なお、有段変速機構21として、図1及び図2では、代表的な手動変速機の模式図を使用しているが、本発明は、これに限定されない。 Hereinafter, a hybrid system, a hybrid vehicle, and a hybrid vehicle control method according to embodiments of the present invention will be described with reference to the drawings. 1 and 2, the schematic diagram of a typical manual transmission is used as the stepped transmission mechanism 21, but the present invention is not limited to this.
 本発明に係る第1の実施の形態のハイブリッド車両は、図1に示すような、ハイブリッドシステム1を搭載したハイブリッド車両であり、このハイブリッドシステム1は、エンジン(内燃機関)10と電動発電機11と有段変速機構20を備えている。そして、エンジン10と有段変速機構20の間に、エンジン10側より順に、電動発電機11、デュアルクラッチ21を配設している。この電動発電機11は、順に、フライホイール12、流体継手14、デュアルクラッチ21、有段変速機構20を介して車輪(図示しない)側と接続されている。 The hybrid vehicle according to the first embodiment of the present invention is a hybrid vehicle equipped with a hybrid system 1 as shown in FIG. 1. The hybrid system 1 includes an engine (internal combustion engine) 10 and a motor generator 11. And a stepped transmission mechanism 20. And between the engine 10 and the stepped transmission mechanism 20, the motor generator 11 and the dual clutch 21 are arrange | positioned in order from the engine 10 side. This motor generator 11 is connected to a wheel (not shown) side through a flywheel 12, a fluid coupling 14, a dual clutch 21, and a stepped transmission mechanism 20 in this order.
 また、デュアルクラッチ21は、直結ギア段用クラッチ21aと変速ギア段用クラッチ21bを備えている。そして、直結ギア段用クラッチ21aの一方をエンジン10及び電動発電機11の出力軸に接続し、直結ギア段用クラッチ21aの他方を有段変速機構20のメインシャフト20aの入力軸に接続し、このメインシャフト20aの出力軸を車輪側に接続して構成される。それと共に、変速ギア段用クラッチ21bの一方をエンジン10及び電動発電機11の出力軸に接続し、変速ギア段用クラッチ21bの他方を有段変速機構20のカウンターシャフト20bの入力軸に接続し、このカウンターシャフト20bの出力軸を車輪側に接続して構成される。 The dual clutch 21 includes a direct gear stage clutch 21a and a transmission gear stage clutch 21b. Then, one of the direct gear clutch 21a is connected to the output shaft of the engine 10 and the motor generator 11, and the other of the direct gear clutch 21a is connected to the input shaft of the main shaft 20a of the stepped transmission mechanism 20, The output shaft of the main shaft 20a is connected to the wheel side. At the same time, one of the transmission gear stage clutch 21b is connected to the output shaft of the engine 10 and the motor generator 11, and the other of the transmission gear stage clutch 21b is connected to the input shaft of the counter shaft 20b of the stepped transmission mechanism 20. The output shaft of the countershaft 20b is connected to the wheel side.
 すなわち、第1の駆動系統では、エンジン10の動力と電動発電機11の動力を、直結ギア段用クラッチ21aを介して、有段変速機構20のメインシャフト20aの入力軸に入力後、有段変速機構20のメインシャフト20aの出力軸に出力して、車輪側に伝達すると共に、第2の駆動系では、エンジン10の動力と電動発電機11の動力を、変速ギア段用クラッチ21bを介して、有段変速機構20のカウンターシャフト20bの入力軸に入力後、有段変速機構20の変速機構20cを介して、有段変速機構20のメインシャフト20aの出力軸に出力して、車輪側に伝達する。これにより、エンジン10の動力、又は、電動発電機11の動力(又は回生力)、又は、両方の動力を、このハイブリッドシステム1を搭載したハイブリッド車両の車輪側に伝達することができ、ハイブリッド車両を走行させることができる。 That is, in the first drive system, the power of the engine 10 and the power of the motor generator 11 are input to the input shaft of the main shaft 20a of the stepped transmission mechanism 20 via the direct-coupled gear stage clutch 21a, and then stepped. The power is output to the output shaft of the main shaft 20a of the transmission mechanism 20 and transmitted to the wheel side. In the second drive system, the power of the engine 10 and the power of the motor generator 11 are transmitted via the transmission gear stage clutch 21b. After being input to the input shaft of the countershaft 20b of the stepped transmission mechanism 20, it is output to the output shaft of the main shaft 20a of the stepped transmission mechanism 20 via the transmission mechanism 20c of the stepped transmission mechanism 20, and the wheel side To communicate. Thereby, the power of the engine 10, the power (or regenerative power) of the motor generator 11, or both powers can be transmitted to the wheel side of the hybrid vehicle on which the hybrid system 1 is mounted. Can be run.
 そして、このハイブリッドシステム1では、有段変速機構20の変速動作中に直結ギア段用クラッチ21aの第1の駆動系統を切り、変速を行うが、このとき、変速ギア段用クラッチ21bの第2の駆動系統を接続することで継続して、電動発電機11によるアシスト又は回生が可能な状態となる。 In the hybrid system 1, during the speed change operation of the stepped speed change mechanism 20, the first drive system of the direct gear stage clutch 21a is disconnected and the speed is changed. At this time, the second speed of the speed gear stage clutch 21b is changed. By continuing to connect the drive system, the motor generator 11 can be assisted or regenerated.
 また、デュアルクラッチを採用し、従来技術の有段変速機構における直結ギア段をデュアルクラッチの片側に置き換えているため、クラッチを含む有段変速機構の全長が長くなることを抑えることができる。 Also, since the dual clutch is employed and the direct gear stage in the conventional stepped transmission mechanism is replaced with one side of the dual clutch, it is possible to prevent the entire length of the stepped transmission mechanism including the clutch from being increased.
 この構成によれば、ハイブリッドシステム1の運転状態やハイブリッド車両の走行状態に応じて、直結ギア段用クラッチ21aの断接と変速ギア段用クラッチ21bの断接を適宜使い分けることで、その状態に応じた最適なギア段を選択して走行することができ、燃費を向上させることができる。 According to this structure, according to the driving | running state of the hybrid system 1, and the driving | running | working state of a hybrid vehicle, the connection / disconnection of the direct connection gear stage clutch 21a and the connection / disconnection of the transmission gear stage clutch 21b are used properly, and it is in that state. It is possible to travel by selecting an optimal gear stage according to the vehicle, and to improve fuel efficiency.
 また、従来技術のハイブリッドシステム1Xの有段変速機構20Xにおける直結ギア段20Xcに相当する変速機構20cを、デュアルクラッチ21の片側に置き換えているため、デュアルククラッチ21と有段変速機構20を含む変速機構の全長が長くなることを抑えることができる。 Further, since the transmission mechanism 20c corresponding to the direct gear stage 20Xc in the stepped transmission mechanism 20X of the conventional hybrid system 1X is replaced with one side of the dual clutch 21, the dual clutch 21 and the stepped transmission mechanism 20 are included. It can suppress that the full length of a transmission mechanism becomes long.
 この有段変速機構20の直接ギア段用クラッチ21aを摩擦クラッチで構成する。これにより、デュアルクラッチ21の両側の回転数を完全に一致させることなく、極めて短い時間で変速機構20cを選択することができる。これにより、ハイブリッドシステム1を搭載したハイブリッド車両が、変速機構20c以下のギアでクルージング走行している状態でも、瞬時に直結ギアを選択し、エンジン回転数を下げることができるため、燃費を向上できる。また、変速機構20cの直結ギアの選択中においては、ドライバー(運転者)の加速要求に備えて常に最適なギア段を選択しておくことが可能である。さらに、ハイブリッド車両の高速走行中には変速機構20c以上のギアを選択しておき、運転者の加減速操作に合わせて変速機構20cと使い分けることで、ハイブリッド車両の燃費を向上させることができる。 The direct gear stage clutch 21a of the stepped transmission mechanism 20 is a friction clutch. As a result, the speed change mechanism 20c can be selected in a very short time without completely matching the rotational speeds on both sides of the dual clutch 21. As a result, even when a hybrid vehicle equipped with the hybrid system 1 is cruising with a gear of the speed change mechanism 20c or less, the directly connected gear can be instantly selected and the engine speed can be reduced, thereby improving fuel efficiency. . Further, during the selection of the directly connected gear of the speed change mechanism 20c, it is possible to always select the optimum gear stage in preparation for the acceleration request of the driver (driver). Further, when the hybrid vehicle is traveling at a high speed, the gear of the speed change mechanism 20c or higher is selected and used separately from the speed change mechanism 20c in accordance with the driver's acceleration / deceleration operation, whereby the fuel efficiency of the hybrid vehicle can be improved.
 また、有段変速機構20のメインシャフト20aの入力軸にトルクリミッタ23aを、又は、カウンターシャフト20bの入力軸にトルクリミッタ23bを設けて構成すると、デュアルクラッチ21が失陥し両方のクラッチ21a、21bが締結してしまった場合でも、トルクリミッタ23a、23bにより一定トルク以上のトルクが伝達されるのを回避できるので、メインシャフト20a、カウンターシャフト20bの破損を防止することができる。 Further, when the torque limiter 23a is provided on the input shaft of the main shaft 20a of the stepped transmission mechanism 20 or the torque limiter 23b is provided on the input shaft of the countershaft 20b, the dual clutch 21 is lost and both clutches 21a, Even when 21b has been fastened, it is possible to avoid the torque limiters 23a and 23b from transmitting torque over a certain torque, so that the main shaft 20a and the counter shaft 20b can be prevented from being damaged.
 また、デュアルクラッチ21の制御失陥時に直結ギア段用クラッチ21aと変速ギア段用クラッチ21bの両方を断絶状態とするように構成すると、デュアルクラッチ21の制御やデュアルクラッチ21を作動させるアクチュエータ(図示しない)が失陥した場合でも、直結ギア段用クラッチ21aと変速ギア段用クラッチ21bが接続状態となることを防ぐことができる。 Further, when both the direct gear stage clutch 21a and the transmission gear stage clutch 21b are disconnected when the control of the dual clutch 21 is lost, the actuator (not shown) controls the dual clutch 21 and operates the dual clutch 21. Even if the failure occurs, it is possible to prevent the direct gear stage clutch 21a and the transmission gear stage clutch 21b from being connected.
 また、有段変速機構20のメインシャフト20aの出力軸に第1回転数(回転数検出装置)センサ30aを、有段変速機構20のメインシャフト20aの入力軸に第2回転数センサ(第2の回転数検出装置)30bを、デュアルクラッチ21に第3回転数センサ30cを設けて構成する。これにより、ハイブリッドシステム1の運転状態をより正確に把握することができ、デュアルクラッチ21の断接を最適に制御することができるようになるため、燃費をより向上させることができる。 In addition, a first rotation speed (rotation speed detection device) sensor 30a is provided on the output shaft of the main shaft 20a of the stepped transmission mechanism 20, and a second rotation speed sensor (second rotation) is provided on the input shaft of the main shaft 20a of the stepped transmission mechanism 20. The rotation speed detection device 30b is configured by providing the dual clutch 21 with a third rotation speed sensor 30c. Thereby, since the driving | running state of the hybrid system 1 can be grasped | ascertained more correctly and connection / disconnection of the dual clutch 21 can be controlled optimally, a fuel consumption can be improved more.
 そして、図1に示すように、直結ギア段用クラッチ21aと変速ギア段用クラッチ21bの断接を制御する制御装置41が設けられる。この制御装置41は、通常は、エンジン10の全般の制御やエンジン10を搭載したハイブリッド車両の全般の制御を行う全体システム制御装置40に組み込まれて構成される。 As shown in FIG. 1, a control device 41 for controlling connection / disconnection of the direct-coupled gear stage clutch 21a and the transmission gear stage clutch 21b is provided. The control device 41 is normally configured to be incorporated in an overall system control device 40 that performs overall control of the engine 10 and overall control of a hybrid vehicle equipped with the engine 10.
 そして、上記の構成のハイブリッドシステム1を搭載して構成されるハイブリッド車両において、このハイブリッド車両の走行状態を検出する走行状態検出装置(図示しない)を備えて構成する。この走行状態検出装置は、車速、要求トルク、有段変速機構20のシフトレバーの位置、アクセル開度やブレーキの踏み込み量、エンジン10の運転状態、電動発電機11の運転状態等を入力して、走行状態を判断するよう構成される。 Then, the hybrid vehicle configured by mounting the hybrid system 1 having the above-described configuration includes a traveling state detection device (not shown) that detects the traveling state of the hybrid vehicle. This travel state detection device inputs the vehicle speed, the required torque, the position of the shift lever of the stepped transmission mechanism 20, the accelerator opening and the brake depression amount, the operating state of the engine 10, the operating state of the motor generator 11, etc. , Configured to determine a running state.
 また、制御装置41は、この走行状態検出装置がハイブリッド車両の加速又は減速を検出したときに、直結ギア段用クラッチ21aを断絶状態にすると共に変速ギア段用クラッチ21bを接続状態にする制御を行い、走行状態検出装置がハイブリッド車両の一定走行又は始動又は停止を検出したときに、直結ギア段用クラッチ21aと変速ギア段用クラッチ21bの両方を断絶状態にする制御を行うように構成される。 The control device 41 controls the direct gear stage clutch 21a to be disengaged and the transmission gear stage clutch 21b to be in a connected state when the traveling state detection device detects acceleration or deceleration of the hybrid vehicle. And when the running state detection device detects a constant running or start or stop of the hybrid vehicle, it is configured to perform control to turn off both the direct gear stage clutch 21a and the transmission gear stage clutch 21b. .
 これにより、ハイブリッド車両の加速時又は減速時には、変速ギア段用クラッチ21bのみを接続し、第2の駆動系統のみで電動発電機11によるアシストや回生を維持した状態で、ハイブリッド車両の走行状態に応じた最適なギア段を選択することができ、燃費を向上させることができる。なお、ハイブリッド車両の加速時又は減速時においては、ハイブリッド車両の走行状態に応じて予め選択しておいた最適なギア段に切換えた後に、直結ギア段用クラッチ21aの第1の駆動系統を断絶状態にして、変速ギア段用クラッチ21bの第2の駆動系統を接続状態にすると、電動発電機11によるアシストや回生がより滑らかになる。 As a result, when the hybrid vehicle is accelerated or decelerated, only the transmission gear stage clutch 21b is connected, and the assist or regeneration by the motor generator 11 is maintained only by the second drive system, so that the hybrid vehicle is in the traveling state. The optimum gear stage can be selected according to the fuel efficiency. When the hybrid vehicle is accelerating or decelerating, the first drive system of the direct-coupled gear stage clutch 21a is disconnected after switching to the optimal gear stage selected in advance according to the traveling state of the hybrid vehicle. In this state, when the second drive system of the transmission gear stage clutch 21b is in the connected state, the assist and regeneration by the motor generator 11 become smoother.
 また、ハイブリッド車両の一定走行時又は始動時又は停止時には、直結ギア段用クラッチ21aと変速ギア段用クラッチ21bの両方を断絶状態にして、エンジン10と電動発電機11の側と車輪側の接続を全て解除することで、電動発電機11によるエンジン回転数制御、エンジン回転変動抑制制御、エンジンの始動及び停止制御を効率よく行うことができる。 Further, when the hybrid vehicle is traveling at a constant time, starting, or stopping, both the direct gear stage clutch 21a and the transmission gear stage clutch 21b are disconnected to connect the engine 10, the motor generator 11 side, and the wheel side. By canceling all of the above, the engine speed control, the engine rotation fluctuation suppression control, and the engine start and stop control by the motor generator 11 can be efficiently performed.
 さらに、本発明では、制御装置41が次のような制御を行うように構成される。先ず、直結ギア段用クラッチ21aを接続状態にして変速ギア段用クラッチ21bを断絶状態にする第1の駆動系統と、直結ギア段用クラッチ21aを断絶状態にして変速ギア段用クラッチ21bを接続状態にする第2の駆動系統で、エンジン10と電動発電機11との出力軸と車輪側との間の動力伝達をそれぞれ行う制御を行うように構成される。 Furthermore, in the present invention, the control device 41 is configured to perform the following control. First, a first drive system that connects the direct gear stage clutch 21a to the disconnected state and disconnects the transmission gear stage clutch 21b, and connects the transmission gear stage clutch 21b to the direct gear stage clutch 21a that is disconnected. The second drive system to be put into a state is configured to perform control for transmitting power between the output shaft of the engine 10 and the motor generator 11 and the wheel side.
 そして、車両発進して第1回転数センサ(回転数検出装置)30aで検出した回転数Nemaがエンジン10の常用回転数Nes以上になるまでは、「1速」又は「2速」を使用して、第2の駆動系統で動力伝達を行って発進する車両発進制御を行い、また、この第2の駆動系統の使用中にシフトアップする場合は、電動発電機11によりエンジン回転数Neを次のギア段の回転数Nenにする回生制御を行うシフトアップ制御を行うように構成される。 Then, “1st speed” or “2nd speed” is used until the rotational speed Nema detected by the first rotational speed sensor (rotational speed detection device) 30a after starting the vehicle becomes equal to or higher than the normal rotational speed Nes of the engine 10. Thus, vehicle start control is performed in which power is transmitted by the second drive system, and when the second drive system is being used, the motor generator Ne is used to change the engine speed Ne by the motor generator 11. The shift-up control is performed to perform the regenerative control to make the rotation speed Nen of the gear stage.
 また、第1回転数センサ30aで検出した回転数Nemaがエンジン10の常用回転数Nes以上になった場合は、アクセル開度に基づいて算定された要求トルクに応じて第1の駆動系統に切り替える制御を行って走行する走行制御を行い、第1回転数センサ30aで検出した回転数Nemaがエンジン10の常用回転数Nes以上の状態から減速する場合は、常に第1の駆動系統を選択して、エンジンブレーキ(図示しない)によるトルクと電動発電機11の回生トルクにより減速する減速制御を行うように構成される。 Further, when the rotation speed Nema detected by the first rotation speed sensor 30a becomes equal to or higher than the normal rotation speed Nes of the engine 10, the first drive system is switched according to the required torque calculated based on the accelerator opening. When the traveling speed is controlled and the traveling speed is decelerated from the state where the rotational speed Nema detected by the first rotational speed sensor 30a is equal to or higher than the normal rotational speed Nes of the engine 10, the first drive system is always selected. The engine is configured to perform deceleration control that decelerates the torque by the engine brake (not shown) and the regenerative torque of the motor generator 11.
 この構成によれば、第1の駆動系統を使用する走行制御により、エンジン10をより低回転で使用できることになるので、エンジン10の低回転数の使用頻度を向上することができ、ハイブリッド車両の燃費を改善することができる。エンジン10は高回転数になるとフリクションが増加し、効率が低下する。そのため、低回転数、高トルクで走行する方が燃費が良く、燃費向上のためには「高ギア段」=「低減速比ギア段」で走行することが望ましく、頻繁に直結ギア段にシフトアップしても、ドライバビリティーを損ねない、本システムは燃費を向上することができる。また、シフトアップ制御により、変速動作中にエンジン10の慣性エネルギーを回生エネルギーとして回生できる。更に、減速制御により、車両減速中に直結ギア段を使用する事で、再加速に備えたギア段を選んだ状態でも、連続して電動発電機11により減速エネルギーを回生エネルギーとして回生できる。 According to this configuration, since the engine 10 can be used at a lower speed by the traveling control using the first drive system, the use frequency of the low speed of the engine 10 can be improved. Fuel consumption can be improved. When the engine 10 reaches a high rotational speed, friction increases and efficiency decreases. Therefore, it is better to drive at low speed and high torque, and it is desirable to drive at "high gear stage" = "reduced speed ratio gear stage" to improve fuel efficiency, and frequently shift to direct gear stage Even if it is upgraded, the drivability is not impaired, and this system can improve fuel efficiency. Further, the shift-up control can regenerate the inertia energy of the engine 10 as regenerative energy during the shift operation. Further, by using the direct gear stage during deceleration of the vehicle by the deceleration control, the deceleration energy can be continuously regenerated as the regenerative energy by the motor generator 11 even when the gear stage for re-acceleration is selected.
 また、制御装置41は、第2回転数センサ(第2の回転数検出装置)30bで検出した回転数Nembがエンジン10の常用回転数Nesより低い場合は、変速ギア段用クラッチ21bを半クラッチにして走行する低回転制御を行うように構成される。これにより、エンジン10はアイドリング回転数以下では駆動できないので、半クラッチまたはクラッチ断により、エンジン10のストールや共振を防ぐことができる。 Further, when the rotation speed Nemb detected by the second rotation speed sensor (second rotation speed detection device) 30b is lower than the normal rotation speed Nes of the engine 10, the control device 41 sets the transmission gear stage clutch 21b to a half clutch. It is comprised so that the low-rotation control which drive | works may be performed. As a result, the engine 10 cannot be driven at an idling rotational speed or less, so that stall or resonance of the engine 10 can be prevented by half-clutch or clutch disengagement.
 また、制御装置41は、第1の駆動系統を使用中は、常に再加速要求に備えたギア段を選択しておくギア段選択制御を行うように構成される。この構成により、第1の駆動系統を使用して減速している状態でも、再加速要求に備えたギア段を選択しておくことができる。そのため、ドライバビィリティーを損ねることはない。 Further, the control device 41 is configured to perform gear stage selection control that always selects a gear stage in preparation for the reacceleration request while using the first drive system. With this configuration, it is possible to select a gear stage in preparation for a re-acceleration request even in a state where the vehicle is decelerating using the first drive system. Therefore, driver viability is not impaired.
 さらに、制御装置41は、車両減速時に電動発電機11で回生制御が行えない場合には、最適なギア段を選択してエンジンブレーキで減速する第2減速制御を行うように構成される。これにより、電動発電機11に電力を供給するバッテリの充電量(SOC)に応じて、エンジン10によるブレーキトルクのみで減速させるか、エンジン10によるブレーキトルクと電動発電機11による回生トルクの両方で減速させるかを選択して制御するため、バッテリへの過充電を防止することができ、バッテリの故障を防止することができる。また、電動発電機11に電力を供給するバッテリの充電量(SOC)が十分で電動発電機11で回生制御運転ができない場合でも、適量の制動力を発揮できる。 Furthermore, the control device 41 is configured to perform second deceleration control in which when the motor generator 11 cannot perform regenerative control during vehicle deceleration, the optimum gear is selected and the engine brake decelerates. Thus, depending on the amount of charge (SOC) of the battery that supplies power to the motor generator 11, the engine 10 is decelerated only by the brake torque by the engine 10 or by both the brake torque by the engine 10 and the regenerative torque by the motor generator 11. Since control is performed by selecting whether to decelerate, overcharge to the battery can be prevented, and failure of the battery can be prevented. Even when the amount of charge (SOC) of the battery that supplies power to the motor generator 11 is sufficient and the motor generator 11 cannot perform the regenerative control operation, an appropriate amount of braking force can be exhibited.
 次に、上記の第1の実施の形態のハイブリッド車両において行われるハイブリッド車両の制御方法について説明する。この制御方法は、次のように構成される。 Next, a hybrid vehicle control method performed in the hybrid vehicle of the first embodiment will be described. This control method is configured as follows.
 この制御方法では、直結ギア段用クラッチ21aを接続状態にして変速ギア段用クラッチ21bを断絶状態にする第1の駆動系統と、直結ギア段用クラッチ21aを断絶状態にして変速ギア段用クラッチ21bを接続状態にする第2の駆動系統で、エンジン10と電動発電機11との出力軸と車輪側との間の動力伝達をそれぞれ行う。 In this control method, a first drive system that places the direct gear stage clutch 21a in the connected state and the transmission gear stage clutch 21b in the disconnected state, and a transmission gear stage clutch that operates in the disconnected state of the direct gear stage clutch 21a. Power transmission between the output shaft of the engine 10 and the motor generator 11 and the wheel side is performed in the second drive system that puts the connection state 21b.
 また、車両発進の場合には、「1速」又は「2速」を使用して、第2の駆動系統で動力伝達を行って発進し、第2の駆動系統の使用中にシフトアップする場合は、電動発電機11によりエンジン回転数Neを次のギア段の回転数Nenにする回生制御を行い、第1回転数センサ30aで検出した回転数Nemaがエンジン10の常用回転数Nes以上になった場合は、アクセル開度に基づいて算定された要求トルクに応じて第1の駆動系統に切り替える制御を行って走行し、第1回転数センサ30aで検出した回転数Nemaがエンジン10の常用回転数Nes以上の状態から減速する場合は、常に第1の駆動系統を選択して、エンジンブレーキによるトルクと電動発電機11の回生トルクにより減速する。 Also, in the case of vehicle start, using “1st speed” or “2nd speed” to start by performing power transmission in the second drive system and shifting up while using the second drive system Performs regenerative control with the motor generator 11 to change the engine speed Ne to the next gear stage speed Nen, and the rotational speed Nema detected by the first rotational speed sensor 30a becomes equal to or higher than the normal rotational speed Nes of the engine 10. In the case where the engine speed is switched to the first drive system according to the required torque calculated based on the accelerator opening, the rotation speed Nema detected by the first rotation speed sensor 30a is the normal rotation of the engine 10. When decelerating from a state of several Nes or more, the first drive system is always selected, and the engine is decelerated by the torque generated by the engine brake and the regenerative torque of the motor generator 11.
 このハイブリッド車両の制御方法によれば、発進から走行状態に至るまでは、エンジン10をより低回転で使用できるので、エンジン10の低回転数の使用頻度を向上することができ、ハイブリッド車両の燃費を改善することができる。また、シフトアップのときは、変動動作中にエンジン10の慣性エネルギーを回生エネルギーとして回生できるので、走行中の燃費を向上することができ、更に、減速中に連続して電動発電機11により減速エネルギーを回生エネルギーとして回生できるので、燃費を向上することができる。 According to this hybrid vehicle control method, since the engine 10 can be used at a lower speed from the start to the running state, the frequency of use of the low speed of the engine 10 can be improved, and the fuel consumption of the hybrid vehicle can be improved. Can be improved. In addition, when shifting up, the inertial energy of the engine 10 can be regenerated as regenerative energy during the fluctuating operation, so that it is possible to improve the fuel efficiency during traveling, and further, the motor generator 11 decelerates continuously during deceleration. Since energy can be regenerated as regenerative energy, fuel consumption can be improved.
 次に、第2の実施の形態のハイブリッド車両について説明する。この第2の実施の形態のハイブリッド車両は、図2に示すようなハイブリッドシステム1Aを搭載して構成される。この図2に示すハイブリッドシステム1Aは、図1に示すハイブリッドシステム1の構成に、更に、エンジン10と電動発電機11との間にクラッチ(クランク軸用断接装置)13を設けて構成すると共に、制御装置41が、車両発進制御、走行制御、減速制御において、第1回転数センサ30aで検出した回転数Nemaがエンジン10の常用回転数Nes以上になったかどうかの判定を行わずに、クラッチ13のオンオフで代用する制御を行うように構成される。これにより、エンジン10の最低駆動回転数以下でも継続して電動発電機11が減速エネルギーを回生できるため、ハイブリッド車両の燃費を改善することができる。 Next, the hybrid vehicle according to the second embodiment will be described. The hybrid vehicle according to the second embodiment is configured by mounting a hybrid system 1A as shown in FIG. A hybrid system 1A shown in FIG. 2 is configured by further providing a clutch (crankshaft connecting / disconnecting device) 13 between the engine 10 and the motor generator 11 in addition to the configuration of the hybrid system 1 shown in FIG. In the vehicle start control, travel control, and deceleration control, the control device 41 does not determine whether the rotational speed Nema detected by the first rotational speed sensor 30a is equal to or higher than the normal rotational speed Nes of the engine 10, and the clutch 13 is configured to perform control that substitutes on and off. Thereby, since the motor generator 11 can continuously regenerate deceleration energy even below the minimum drive speed of the engine 10, the fuel efficiency of the hybrid vehicle can be improved.
 上記の構成のハイブリッド車両及びその制御方法によれば、エンジン10と電動発電機11と有段変速機構20を備え、エンジン10と有段変速機構20の間に、エンジン10側より順に、電動発電機11、直結ギア段用クラッチ21aと変速ギア段用クラッチ21bを備えたデュアルクラッチ21を配設して構成したハイブリッドシステム1、1Aを搭載したハイブリッド車両及びその制御方法において、このハイブリッドシステム1、1Aを最適に制御できて、エンジン10の低回転数での使用頻度を向上でき、また、車両減速中に連続して電動発電機11により減速エネルギーを回生制御に使用できて、燃費を改善できると共に、車両減速中の間も再加速に備えて最適なギアを選択できて、快適なドライバビリティー(乗り心地性)を提供することができる。 According to the hybrid vehicle having the above configuration and the control method therefor, the engine 10, the motor generator 11, and the stepped transmission mechanism 20 are provided, and the motor power generation is sequentially performed between the engine 10 and the stepped transmission mechanism 20 from the engine 10 side. Machine 11, a hybrid vehicle equipped with a hybrid system 1, 1 A configured by arranging a dual clutch 21 having a direct gear stage clutch 21 a and a transmission gear stage clutch 21 b, and a control method thereof, 1A can be optimally controlled, the frequency of use of the engine 10 at a low rotational speed can be improved, and the deceleration energy can be used for regenerative control by the motor generator 11 continuously during deceleration of the vehicle, thereby improving fuel efficiency. At the same time, the optimal gear can be selected for re-acceleration while the vehicle is decelerating, providing comfortable drivability. It is possible to provide.
1、1A ハイブリッドシステム
10 エンジン(内燃機関)
11 電動発電機
12 フライホイール
13 クラッチ(クランク軸用断接装置)
14 流体継手
20 有段変速機構
20a メインシャフト
20b カウンターシャフト
20c 変速機構
21 デュアルクラッチ
21a 直結ギア段用クラッチ
21b 変速ギア段用クラッチ
22 車輪
30a 第1回転数センサ(回転数検出装置)
30b 第2回転数センサ(第2の回転数検出装置)
30c 第3回転数センサ
40 全体システム制御装置
41 制御装置
Ne エンジン回転数
Nen 次のギア段での回転数
Nema 第1回転数センサで検出した回転数
Nemb 第2回転数センサで検出した回転数
Nes エンジンの常用回転数
1, 1A Hybrid system 10 Engine (internal combustion engine)
11 Motor generator 12 Flywheel 13 Clutch (Crankshaft connecting / disconnecting device)
14 Fluid coupling 20 Stepped transmission mechanism 20a Main shaft 20b Counter shaft 20c Transmission mechanism 21 Dual clutch 21a Direct coupling gear stage clutch 21b Transmission gear stage clutch 22 Wheel 30a First rotation speed sensor (rotation speed detection device)
30b Second rotational speed sensor (second rotational speed detection device)
30c Third speed sensor 40 Overall system control device 41 Control device Ne Engine speed Nen Speed at the next gear stage Nema Speed detected by the first speed sensor Nemb Speed detected by the second speed sensor Nes Regular engine speed

Claims (6)

  1.  内燃機関と電動発電機と有段変速機構を備え、前記内燃機関と前記有段変速機構の間に、前記内燃機関側より順に、前記電動発電機、デュアルクラッチを配設し、該デュアルクラッチは直結ギア段用クラッチと変速ギア段用クラッチを備え、前記直結ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記直結ギア段用クラッチの他方を前記有段変速機構のメインシャフトの入力軸に接続すると共に、前記変速ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記変速ギア段用クラッチの他方を前記有段変速機構のカウンターシャフトの入力軸に接続して構成され、さらに、前記有段変速機構の前記メインシャフトの出力軸の回転数を検出する回転数検出装置を備えると共に、前記直結ギア段用クラッチと前記変速ギア段用クラッチの断接と前記変速機構のギア段の切り換えを制御する制御装置を備えたハイブリッド車両において、
     該制御装置が、
     前記直結ギア段用クラッチを接続状態にして前記変速ギア段用クラッチを断絶状態にする第1の駆動系統と、前記直結ギア段用クラッチを断絶状態にして前記変速ギア段用クラッチを接続状態にする第2の駆動系統で、前記内燃機関と前記電動発電機との出力軸と車輪側との間の動力伝達をそれぞれ行う制御を行い、
     車両発進して前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になるまでは、「1速」又は「2速」を使用して、前記第2の駆動系統で動力伝達を行って発進する車両発進制御を、
     前記第2の駆動系統の使用中にシフトアップする場合は、前記電動発電機によりエンジン回転数を次のギア段の回転数にする回生制御を行うシフトアップ制御を、
     前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になった場合は、アクセル開度に基づいて算定された要求トルクに応じて前記第1の駆動系統に切り替える制御を行って走行する走行制御を、
     前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上の状態から減速する場合は、常に前記第1の駆動系統を選択して、エンジンブレーキによるトルクと前記電動発電機の回生トルクにより減速する減速制御を、それぞれ行うように構成されたことを特徴とするハイブリッド車両。
    An internal combustion engine, a motor generator, and a stepped transmission mechanism, and the motor generator and the dual clutch are arranged in order from the internal combustion engine side between the internal combustion engine and the stepped transmission mechanism, A direct gear stage clutch and a transmission gear stage clutch, one of the direct gear stage clutches is connected to an output shaft of the internal combustion engine and the motor generator, and the other of the direct gear stage clutch is connected to the The transmission gear stage clutch is connected to the input shaft of the main shaft of the step transmission mechanism, one of the transmission gear stage clutches is connected to the output shaft of the internal combustion engine and the motor generator, and the other of the transmission gear stage clutch is connected to the owner shaft. A rotation speed detecting device configured to connect to the input shaft of the countershaft of the step transmission mechanism and further detecting the rotation speed of the output shaft of the main shaft of the stepped transmission mechanism; In the hybrid vehicle equipped with a control device for controlling the focusing gear clutch and disengaging of the transmission gear clutch switching gear position of said transmission mechanism,
    The control device
    A first drive system for disengaging the transmission gear stage clutch by disengaging the direct gear clutch, and disengaging the direct gear clutch and disengaging the transmission gear stage clutch; A second drive system that performs control for transmitting power between the output shaft and the wheel side of the internal combustion engine and the motor generator,
    The first drive system uses the first speed or the second speed until the rotational speed detected by the rotational speed detection device after starting the vehicle becomes equal to or higher than the normal rotational speed of the internal combustion engine. Vehicle start control to start by transmitting,
    When shifting up during use of the second drive system, shift-up control for performing regenerative control to change the engine speed to the speed of the next gear stage by the motor generator,
    When the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed of the internal combustion engine, control is performed to switch to the first drive system according to the required torque calculated based on the accelerator opening. Running control
    When the rotational speed detected by the rotational speed detection device decelerates from a state where it is equal to or higher than the normal rotational speed of the internal combustion engine, the first drive system is always selected, and the torque generated by the engine brake and the regeneration of the motor generator are A hybrid vehicle configured to perform deceleration control that decelerates by torque, respectively.
  2.  前記制御装置が、前記有段変速機構の前記メインシャフトの入力軸に設けた第2の回転数検出装置で検出した回転数が前記内燃機関の常用回転数より低い場合は、前記変速ギア段用クラッチを半クラッチにして走行する低回転制御を行うように構成されたことを特徴とする請求項1に記載のハイブリッド車両。 When the rotational speed detected by the control device with a second rotational speed detection device provided on the input shaft of the main shaft of the stepped transmission mechanism is lower than the normal rotational speed of the internal combustion engine, the transmission gear stage The hybrid vehicle according to claim 1, wherein the hybrid vehicle is configured to perform low-rotation control in which the clutch travels with a half-clutch.
  3.  更に、前記内燃機関と前記電動発電機との間にクラッチを設けて構成すると共に、
     前記制御装置が、
     前記車両発進制御、前記走行制御、前記減速制御において、前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になったかどうかの判定を行わずに、前記クラッチのオンオフで代用する制御を行うように構成されたことを特徴とする請求項3に記載のハイブリッド車両。
    Further, a clutch is provided between the internal combustion engine and the motor generator,
    The control device is
    In the vehicle start control, the travel control, and the deceleration control, instead of determining whether the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed of the internal combustion engine, the on / off of the clutch is substituted. The hybrid vehicle according to claim 3, wherein the hybrid vehicle is configured to perform control.
  4.  前記制御装置が、
     前記第1の駆動系統を使用中は、常に再加速要求に備えたギア段を選択しておくギア段選択制御を行うように構成されたことを特徴とする請求項1に記載のハイブリッド車両。
    The control device is
    2. The hybrid vehicle according to claim 1, wherein gear stage selection control is performed to always select a gear stage in preparation for a re-acceleration request while using the first drive system.
  5.  前記制御装置が、
     車両減速時に電動発電機で回生制御が行えない場合には、最適なギア段を選択してエンジンブレーキで減速する第2減速制御を行うように構成されたことを特徴とする請求項1または2に記載のハイブリッドシステム。
    The control device is
    3. The second deceleration control for selecting an optimum gear stage and decelerating with an engine brake when the motor generator cannot perform regenerative control when the vehicle decelerates. The hybrid system described in 1.
  6.  内燃機関と電動発電機と有段変速機構を備え、前記内燃機関と前記有段変速機構の間に、前記内燃機関側より順に、前記電動発電機、デュアルクラッチを配設し、該デュアルクラッチは直結ギア段用クラッチと変速ギア段用クラッチを備え、前記直結ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記直結ギア段用クラッチの他方を前記有段変速機構のメインシャフトの入力軸に接続すると共に、前記変速ギア段用クラッチの一方を前記内燃機関と前記電動発電機との出力軸に接続し、前記変速ギア段用クラッチの他方を前記有段変速機構のカウンターシャフトの入力軸に接続して構成され、さらに、前記有段変速機構の前記メインシャフトの出力軸の回転数を検出する回転数検出装置を備えたハイブリッド車両におけるハイブリッド車両の制御方法において、
     前記直結ギア段用クラッチを接続状態にして前記変速ギア段用クラッチを断絶状態にする第1の駆動系統と、前記直結ギア段用クラッチを断絶状態にして前記変速ギア段用クラッチを接続状態にする第2の駆動系統で、前記内燃機関と前記電動発電機との出力軸と車輪側との間の動力伝達をそれぞれ行い、
     車両発進の場合には、「1速」又は「2速」を使用して、前記第2の駆動系統で動力伝達を行って発進し、
     前記第2の駆動系統の使用中にシフトアップする場合は、前記電動発電機によりエンジン回転数を次のギア段の回転数にする回生制御を行い、
     前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上になった場合は、アクセル開度に基づいて算定された要求トルクに応じて前記第1の駆動系統に切り替える制御を行って走行し、
     前記回転数検出装置で検出した回転数が前記内燃機関の常用回転数以上の状態から減速する場合は、常に前記第1の駆動系統を選択して、エンジンブレーキによるトルクと前記電動発電機の回生トルクにより減速することを特徴とするハイブリッド車両の制御方法。
    An internal combustion engine, a motor generator, and a stepped transmission mechanism, and the motor generator and the dual clutch are arranged in order from the internal combustion engine side between the internal combustion engine and the stepped transmission mechanism, A direct gear stage clutch and a transmission gear stage clutch, one of the direct gear stage clutches is connected to an output shaft of the internal combustion engine and the motor generator, and the other of the direct gear stage clutch is connected to the The transmission gear stage clutch is connected to the input shaft of the main shaft of the step transmission mechanism, one of the transmission gear stage clutches is connected to the output shaft of the internal combustion engine and the motor generator, and the other of the transmission gear stage clutch is connected to the owner shaft. A hybrid comprising a rotation speed detecting device configured to be connected to an input shaft of a counter shaft of a step transmission mechanism and further detecting a rotation speed of an output shaft of the main shaft of the stepped transmission mechanism A method for controlling a hybrid vehicle in both,
    A first drive system for disengaging the transmission gear stage clutch by disengaging the direct gear clutch, and disengaging the direct gear clutch and disengaging the transmission gear stage clutch; The second drive system that performs power transmission between the output shaft and the wheel side of the internal combustion engine and the motor generator,
    In the case of vehicle start, use “1st speed” or “2nd speed” to transmit power in the second drive system and start,
    When shifting up while using the second drive system, the motor generator performs regenerative control to set the engine speed to the speed of the next gear stage,
    When the rotational speed detected by the rotational speed detection device is equal to or higher than the normal rotational speed of the internal combustion engine, control is performed to switch to the first drive system according to the required torque calculated based on the accelerator opening. Run and
    When the rotational speed detected by the rotational speed detection device decelerates from a state where it is equal to or higher than the normal rotational speed of the internal combustion engine, the first drive system is always selected, and the torque generated by the engine brake and the regeneration of the motor generator are A method for controlling a hybrid vehicle, wherein the vehicle is decelerated by torque.
PCT/JP2014/080417 2013-11-25 2014-11-18 Hybrid vehicle, and method of controlling same WO2015076230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-242752 2013-11-25
JP2013242752A JP2015101192A (en) 2013-11-25 2013-11-25 Hybrid electric vehicle and hybrid electric vehicle control method

Publications (1)

Publication Number Publication Date
WO2015076230A1 true WO2015076230A1 (en) 2015-05-28

Family

ID=53179492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080417 WO2015076230A1 (en) 2013-11-25 2014-11-18 Hybrid vehicle, and method of controlling same

Country Status (2)

Country Link
JP (1) JP2015101192A (en)
WO (1) WO2015076230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109017270A (en) * 2018-07-18 2018-12-18 冯德洲 A kind of hybrid power CVT stepless speed variator system of efficient energy-saving safe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107420535B (en) * 2017-08-29 2019-03-26 安徽江淮汽车集团股份有限公司 A kind of torque Pre-control System and method based on double clutch
CN115388167B (en) * 2022-10-26 2023-01-17 长城汽车股份有限公司 Vehicle starting control method, device, equipment, storage medium and vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504611A (en) * 1990-09-05 1993-07-15 バラス,バレンティン Automotive double clutch transmission
JPH08317506A (en) * 1995-05-18 1996-11-29 Aqueous Res:Kk Hybrid vehicle
JP2002213266A (en) * 2001-01-16 2002-07-31 Nissan Motor Co Ltd Vehicular driving force control device
JP2003220842A (en) * 2001-11-20 2003-08-05 Exedy Corp Torque transmission
JP2004306826A (en) * 2003-04-08 2004-11-04 Fuji Heavy Ind Ltd Drive of hybrid vehicle
JP2006280049A (en) * 2005-03-28 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Transmission controller for hybrid vehicle
JP2010143384A (en) * 2008-12-18 2010-07-01 Nissan Motor Co Ltd Control device for hybrid car
JP2011069392A (en) * 2009-09-24 2011-04-07 Aisin Seiki Co Ltd Transmission for vehicle
JP2012116272A (en) * 2010-11-30 2012-06-21 Daimler Ag Regenerative control device for hybrid electric vehicle
JP2012224132A (en) * 2011-04-15 2012-11-15 Toyota Motor Corp Shift control system of hybrid vehicle
WO2013150966A1 (en) * 2012-04-06 2013-10-10 日産自動車株式会社 Hybrid vehicle control device and hybrid vehicle control method
JP2013213537A (en) * 2012-04-02 2013-10-17 Daimler Ag Vehicle shift control device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504611A (en) * 1990-09-05 1993-07-15 バラス,バレンティン Automotive double clutch transmission
JPH08317506A (en) * 1995-05-18 1996-11-29 Aqueous Res:Kk Hybrid vehicle
JP2002213266A (en) * 2001-01-16 2002-07-31 Nissan Motor Co Ltd Vehicular driving force control device
JP2003220842A (en) * 2001-11-20 2003-08-05 Exedy Corp Torque transmission
JP2004306826A (en) * 2003-04-08 2004-11-04 Fuji Heavy Ind Ltd Drive of hybrid vehicle
JP2006280049A (en) * 2005-03-28 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Transmission controller for hybrid vehicle
JP2010143384A (en) * 2008-12-18 2010-07-01 Nissan Motor Co Ltd Control device for hybrid car
JP2011069392A (en) * 2009-09-24 2011-04-07 Aisin Seiki Co Ltd Transmission for vehicle
JP2012116272A (en) * 2010-11-30 2012-06-21 Daimler Ag Regenerative control device for hybrid electric vehicle
JP2012224132A (en) * 2011-04-15 2012-11-15 Toyota Motor Corp Shift control system of hybrid vehicle
JP2013213537A (en) * 2012-04-02 2013-10-17 Daimler Ag Vehicle shift control device
WO2013150966A1 (en) * 2012-04-06 2013-10-10 日産自動車株式会社 Hybrid vehicle control device and hybrid vehicle control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109017270A (en) * 2018-07-18 2018-12-18 冯德洲 A kind of hybrid power CVT stepless speed variator system of efficient energy-saving safe

Also Published As

Publication number Publication date
JP2015101192A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5382223B2 (en) Control device for hybrid vehicle
US9283956B2 (en) Hybrid vehicle rapid deceleration control device
JP4265568B2 (en) Mode transition control device for hybrid vehicle
EP3109111B1 (en) Vehicle hybrid system
US9216734B2 (en) Control device
JP5867514B2 (en) Vehicle control device
US9381910B2 (en) Hybrid electric vehicle control device
JP2008001258A (en) Control device for hybrid vehicle
JP2010076625A (en) Hybrid car
US20130297107A1 (en) Traction control system for a hybrid vehicle
JP5929163B2 (en) Hybrid vehicle drive device
JP5556580B2 (en) Control device for hybrid vehicle
JP2010188776A (en) Controller for hybrid vehicle
JP4956789B2 (en) Inertial travel control device for hybrid vehicle
WO2014103571A1 (en) Hybrid vehicle control device
WO2015076230A1 (en) Hybrid vehicle, and method of controlling same
US20140038772A1 (en) Traction Control System For A Hybrid Vehicle
JP5381120B2 (en) Shift control device and shift control method for hybrid vehicle
JP6801220B2 (en) Hybrid vehicle
JP6414070B2 (en) Hybrid vehicle drive device
JP6736963B2 (en) Hybrid vehicle
JP6720685B2 (en) Hybrid vehicle
JP2015077861A (en) Hybrid system, hybrid vehicle, and control method for hybrid vehicle
JP5338465B2 (en) Vehicle control device
JP2019025986A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864816

Country of ref document: EP

Kind code of ref document: A1