WO2015072658A1 - 가공성이 우수한 올레핀계 중합체 - Google Patents

가공성이 우수한 올레핀계 중합체 Download PDF

Info

Publication number
WO2015072658A1
WO2015072658A1 PCT/KR2014/008481 KR2014008481W WO2015072658A1 WO 2015072658 A1 WO2015072658 A1 WO 2015072658A1 KR 2014008481 W KR2014008481 W KR 2014008481W WO 2015072658 A1 WO2015072658 A1 WO 2015072658A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
olefin
based polymer
molecular weight
Prior art date
Application number
PCT/KR2014/008481
Other languages
English (en)
French (fr)
Inventor
승유택
권헌용
이기수
홍대식
정동훈
신은영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140114385A external-priority patent/KR101549209B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/032,014 priority Critical patent/US9732171B2/en
Priority to JP2016531010A priority patent/JP6328239B2/ja
Priority to EP14861556.0A priority patent/EP3042918B1/en
Publication of WO2015072658A1 publication Critical patent/WO2015072658A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Definitions

  • the present invention relates to an olefin polymer having excellent processability.
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of a transition metal compound and a cocatalyst composed of an organometallic compound composed mainly of aluminum, and such a catalyst is a single site catalyst as a homogeneous complex catalyst.
  • the polymer has a narrow molecular weight distribution according to the characteristics of a single active site and a homogeneous composition of the comonomer, and the stereoregularity, copolymerization characteristics, molecular weight, It has the property to change the crystallinity.
  • U.S. Patent No. 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount of solvent used and the time required for preparing the supported catalyst are high. The hassle of having to support the metallocene catalyst to be used on the carrier, respectively.
  • Korean Patent Application No. 2003-12308 discloses a binuclear metallocene in a carrier A method of controlling molecular weight distribution by supporting a catalyst and a mononuclear metallocene catalyst together with an activator to change and polymerize a combination of catalysts in a reactor is disclosed.
  • linear low density polyethylene is prepared by copolymerizing ethylene and alpha olefins at low pressure using a polymerization catalyst, and has a narrow molecular weight distribution, a short chain branch of a constant length, and a long chain branch.
  • Linear low density polyethylene film has the characteristics of general polyethylene, and has high breaking strength and elongation, and excellent tear strength and falling layer stratification strength. Therefore, the use of stretch film and overlap film, which is difficult to apply to existing low density polyethylene or high density polyethylene, has increased. Doing.
  • linear low density polyethylene used as 1-butene or 1-nucenol comonomer is mostly produced in a single vapor phase reactor or a single loop slurry semi-unger, and the productivity is high compared to a process using 1-octene comonomer, but such a product
  • physical properties are inferior to those of using 1-octene comonomer, and there is a problem in that workability is poor due to a narrow molecular weight distribution. Many efforts are being made to improve these problems.
  • US Pat. No. 4,935,474 reports on the preparation of polyethylene having a wide molecular weight distribution using two or more metallocene compounds.
  • U. S. Patent No. 6,828, 394 reports a method for producing polyethylene that has a good comonomer binding property and a good combination thereof, which has good processability and is particularly suitable for films.
  • US Pat. No. 6,841,631 and US Pat. No. 6,894,128 produce polyethylene having bimodal or polycrystalline molecular weight distribution with a metallocene catalyst using at least two kinds of metal compounds, for use in films, blow molding, pipes, and the like. It is reported to be applicable.
  • these products have improved processability, but the molecular weight in the unit particles Since the dispersion state is not uniform, there is a problem that the extrusion tube is rough and the physical properties are not stable even under relatively good extrusion conditions.
  • the present invention is to provide an olefinic polymer having excellent workability and improved transparency and mechanical properties.
  • the present invention has a molecular weight distribution (Mw / Mn) of 3 to 20;
  • melt flow rate ratio (MFR10 / MFR2) value measured by ASTM1238 at 19 CTC is from 9 to 15;
  • a film comprising the olefinic polymer.
  • the olefin polymer according to the present invention is excellent in processability, mechanical properties and transparency, and can be usefully used for applications such as films.
  • FIG. 1 is a graph showing the relationship between the frequency (complex) viscosity of the olefinic polymer in accordance with the Examples and Comparative Examples of the present invention (complex visicosity).
  • Figure 2 is a graph showing the measurement of the molecular weight distribution of the olefin polymer according to an embodiment of the present invention by GPC-FI R.
  • Olefin-based polymer according to the present invention has a molecular weight distribution (Mw / Mn) of 3 to 20, melt flow rate ratio (MFR10 / MFR2) measured by ASTM1238 at 190 ° C. The value is 9 to I 5 , and the slope is -0.55 to -0.35 in the complex viscosity (i [Pa.s]) graph according to the frequency (frequency, co [rad / s]).
  • the olefinic polymer of the present invention exhibits a broad molecular weight distribution (Mw / Mn, PDI) of about 3 to about 20, preferably about 4 to about 15, and may exhibit excellent processability.
  • the weight average molecular weight (Mw) of the olefinic polymer may be about 50,000 to about 200,000 g / mol, preferably about 60,000 to about 150,000 g / mol, but is not limited thereto. no.
  • the leulevine-based polymer of the present invention has a high molecular weight and a wide molecular weight distribution and has excellent physical properties and processability.
  • the olefin copolymer of the present invention has a wider molecular weight distribution and a melt flow rate ratio (MFRR) than the conventionally known olefin copolymer, and thus the fluidity is remarkably improved, and thus, it is possible to exhibit more excellent workability.
  • MFRR melt flow rate ratio
  • the olefin copolymer of the present invention has a melt flow rate ratio (MFRR,
  • MFR10 / MFR2 is in the range of about 9 to about 15, preferably about 9.5 to about 13.
  • the melt flow index measured at 190 ° C., 2.16 kg load according to MFR 2 may be about 0.1 to about 10 g / 10 min, preferably about 0.2 And from about 5 g / 10 min.
  • MFR 10 (melt flow index measured at 19 CTC, 10 kg load according to ASTM D-1238) is from about 0.9 to about 150 g / lOmin, preferably in the range from about 1.9 to about 65 g / lOmin
  • MFR 2 and MFR 10 ranges can be appropriately adjusted in view of the use or application of the olefinic polymer. .
  • the olefin polymer of the present invention has a slope of about ⁇ 0.55 to about ⁇ 0.35, or about ⁇ in a complex viscosity (i [Pa.s]) graph according to frequency (co, [rad / s]). 0.45 to about -0.35.
  • Complex Viscosity Graphs with Frequency are related to fluidity and have high complex viscosity at low frequencies. At higher frequencies, the lower the complex viscosity, the higher the fluidity. That is, it may have a negative slope value, and as the absolute value of the slope value is larger, the fluidity may be higher.
  • the olefinic polymers of the present invention exhibit a significantly higher flowability compared to conventional olefinic polymers having similar densities and weight average molecular weights in the range of slopes from about -0.55 to about -0.35 in complex viscosity plots with frequency. This is related to the wide molecular weight distribution of the olefin polymer of the present invention, and thus, despite the high melt index, the shear thinning effect is much superior, and thus may exhibit excellent fluidity and processability.
  • the density of the olefinic polymer may be 0.910 to 0.940 g / cm 3 , but is not limited thereto.
  • the olefin-based polymer has a maximum SCB content value within the range of 0.2 to 0.8 molecular weight distribution when the weight average molecular weight (M) measured by GPC-FTIR is 0.5 Can be.
  • SCB Short Chain Branching
  • branch having 2 to 6 carbon atoms usually refers to defects that are made when using alpha olefin having 4 or more carbon atoms such as 1-butene, 1-nuxene, 1-octene as a comonomer.
  • GPC-FTIR equipment can be used to continuously measure molecular weight, molecular weight distribution and SCB content simultaneously.
  • the olefin polymer of the present invention is characterized by having a maximum SCB content value within the range of 0.2 to 0.8 molecular weight distribution when the weight average molecular weight (M) measured by GPC-FTIR is 0.5.
  • Figure 2 is a graph measuring the molecular weight distribution of the ellefin-based polymer according to an embodiment of the present invention by GPC-FTIR.
  • the maximum SCB content value appears in the middle region of the molecular weight distribution around the point of the weight average molecular weight (M). That is, when the point where the weight average molecular weight (M) is located is called 5, the point where the minimum molecular weight value appears is 0, and the point where the maximum molecular weight value appears is 1, within the interval of 0.2 to 0.8 on the log graph.
  • Maximum SCB content values can be seen.
  • the maximum SCB content value may appear in the form of an inflection point rather than a divergent value.
  • the characteristic of such molecular weight distribution is that the olefin polymer of the present invention has the highest inflow of comonomers in the middle molecular weight range, that is, the molecular weight distribution region of 30% of the left and right, based on the weight average molecular weight. In the lower 20% low molecular weight region and the upper 20% high molecular weight region, this means that the incorporation of comonomers is less than in the middle molecular weight region.
  • the olefin polymer of the present invention may have an SCB content of 5 to 30, preferably 7 to 20, per 1,000 carbons of the olefin polymer.
  • the olepin-based polymer has a disadvantage in that the workability is improved as the molecular weight distribution is widened, but the haze property is deteriorated and transparency is lowered.
  • the leulevine-based polymer of the present invention may exhibit high transparency despite the wide molecular weight distribution by improving the haze property due to the distribution of comonomers as described above.
  • the olefin polymer according to the present invention has excellent fluidity, processability, transparency, and the like, and can be variously applied according to a use, and in particular, it is possible to provide a film having improved physical properties.
  • the olefinic polymer according to the present invention may be a homopolymer of ethylene, which is an olefinic monomer, or preferably a copolymer of ethylene and an alpha olefinic comonomer.
  • Alpha olefins having 4 or more carbon atoms may be used as the alpha olefin-based comonomer.
  • Alpha-olefins having 4 or more carbon atoms include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-octadecene, 1-eicosene, and the like, but is not limited thereto.
  • alpha olefins having 4 to 10 carbon atoms are preferable, and one or several kinds of alpha olefins may be used together as comonomers.
  • the content of the alpha olepin-based comonomer may be about 5 to about 20% by weight, preferably about 7 to about 15% by weight, but is not limited thereto. .
  • the olefin polymer as described above may be prepared by using a common metallocene catalyst. It can manufacture.
  • the common metallocene catalyst may include a first metallocene compound represented by Formula 1 below; A second metallocene compound comprising at least one compound selected from the following compounds represented by Formula 2 or Formula 3; Cocatalyst compounds; And a common supported metallocene catalyst comprising a carrier.
  • R1 to R4, R9 and R1 'to R4' are the same as or different from each other, and each independently hydrogen, halogen: C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 Alkylaryl group or C7-C20 arylalkyl group;
  • R5 to R8 are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group
  • Adjacent two of R5 to R8 may be linked to each other to form one or more aliphatic rings, aromatic rings, or hetero rings;
  • L 1 is a C1 to C10 straight or branched alkylene group
  • D1 is -O-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to C20 alkyl group, An alkenyl group of C2 to C20 or an aryl group of C6 to C20;
  • A1 is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, ci to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, C2 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group;
  • is a Group 4 transition metal
  • XI and X2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group ,.
  • R10 to R13 and R10 'to R13' are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 An arylalkyl group of C20 to C20 or an amine group of C1 to C20, and two adjacent R10 to R13 and R10 'to R13' may be connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings; ;
  • Z1 and Z2 are the same as or different from each other, and each independently hydrogen, an alkyl group of C1 to C20, a cycloalkyl group of C3 to C20, an alkoxy group of C1 to C20, an aryl group of C6 to C20, an aryloxy group of C6 to C10, C2 to C20 alkenyl group, C7 to C40 alkylaryl group, or C7 to C40 arylalkyl group;
  • Q is an alkylene group of CI to C20, a cycloalkylene group of C3 to C20, an arylene group of C6 to C, an alkylarylene group of C7 to C40, or an arylalkylene group of C7 to C40;
  • M 2 is a Group 4 transition metal
  • X3 and X4 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group, A C1 to C20 alkoxy group or a C1 to C20 sulfonate group;
  • M 3 is a Group 4 transition metal
  • X5 and X6 are the same as or different from each other, and each independently halogen, C1 to C20 and an alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group, C1 To C20 alkoxy group, or C1 to C20 sulfonate group;
  • R14 to R19 are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkylsilyl, C6 to C20 arylsilyl group, or C1 to C20 amine group, two or more adjacent R14 to R17 are connected to each other at least one aliphatic ring , Aromatic rings, or hetero rings;
  • L 2 is a straight or branched chain alkylene group of CI to CIO
  • D2 is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to C20 alkyl group An alkenyl group of C2 to C20 or an aryl group of C6 to C20;
  • A2 is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, a C2 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
  • B is carbon, silicon, or germanium and is a bridge which binds a cyclopentadienyl series ligand and JR19z-y by a covalent bond;
  • J is a periodic table group 15 element or group 16 element
  • z is the oxidation number of the element J
  • y is the number of bonds of the J elements.
  • the C1 to C20 alkyl group includes a linear or branched alkyl group, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear chamber group, heptyl group, An octyl group etc. are mentioned, but it is not limited to this.
  • the alkenyl group of C2 to C20 includes a linear or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto.
  • the C6 to C20 aryl groups include monocyclic or condensed aryl groups, and specifically include phenyl groups, biphenyl groups, naphthyl groups, phenanthrenyl groups, and fluorenyl groups, but are not limited thereto.
  • the C5 to C20 heteroaryl group includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl group , Triazine group, tetrahydropyranyl group, tetrahydrofuranyl group and the like, but are not limited thereto.
  • alkoxy group for C 1 to C 20 examples include a hydroxy group, an hydroxy group, a phenyloxy group, a cyclonuxyloxy group, and the like, but are not limited thereto.
  • Examples of the Group 4 transition metal include titanium, zirconium, and hafnium. However, the present invention is not limited thereto.
  • R1 to R9 and R1 'to R8' of Formula 1 are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, ⁇ -butyl group, tert- A butyl group, a pentyl group, a nuclear group, a heptyl group, an octyl group : or a phenyl group is more preferable, but it is not limited to this.
  • L1 of Chemical Formula 1 is more preferably a C4 to C8 linear or branched alkylene group, but is not limited thereto.
  • the alkylene group may be unsubstituted or substituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
  • A1 of Formula 1 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, mesoxymethyl group, tert-subspecial
  • the methyl group, 1-hydroxyethyl group, 1-methyl-1-methoxyethyl group, tetrahydropyranyl group, or tetrahydrofuranyl group is more preferable, but is not limited thereto.
  • specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by the following structural formulas, but is not limited thereto.
  • Q is an alkylene group of CI to C20
  • Z1 and Z2 are each independently hydrogen, an alkyl group of C1 to C20 or an alkoxy group of C1 to C20
  • X3 and X4 may be a halogen, but is not limited thereto.
  • specific examples of the second metallocene compound represented by Chemical Formula 2 may include a compound represented by the following structural formulas.
  • L 2 of Chemical Formula 3 is more preferably a C4 to C8 linear or branched alkylene group, but is not limited thereto.
  • the alkylene group may be unsubstituted or substituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
  • A2 of Formula 3 is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, methoxymethyl group, tert-buroxy Methyl group, 1-ethoxyethyl group, 1-methyl-1-methoxyethyl group, tetrahydropyranyl group, or tetrahydrofuranyl group is more preferable, but not limited thereto.
  • B in the general formula (3) is silicon
  • J is preferably nitrogen, but is not limited thereto.
  • R14 to R19 of Formula 3 are each independently hydrogen, an alkyl group of C1 to C20, C2 . It may be an alkenyl group of C to C20, or an alkoxy group of C1 to C20, but is not limited thereto.
  • Specific examples of the second metallocene compound represented by Chemical Formula 3 may include a compound represented by the following structural formula, but is not limited thereto. It is not.
  • the first metallocene compound of Chemical Formula 1 forms a structure in which a fluorene derivative is crosslinked by a bridge and has a Lewis acid characteristic of the carrier by having a non-covalent electron pair capable of acting as a Lewis base in the ligand structure. It is supported on and shows high polymerization activity even when it is supported.
  • the fluorene group which is electronically rich, has high activity, the high molecular weight olepin-based polymer can be added.
  • Common supported metallocene catalyst is a second metal selected from one or more of the first metallocene compound represented by Formula 1 and the compound represented by Formula 2 or Formula 3
  • One or more of the sen compounds may be commonly supported on the carrier together with the cocatalyst compound.
  • the first metallocene compound represented by Formula 1 of the common supported metallocene catalyst mainly contributes to making a high molecular weight copolymer
  • the second metallocene compound represented by Formula 2 is a relatively low molecular weight copolymer. It can contribute to making
  • the second metallocene compound represented by Formula 3 may contribute to making a copolymer of moderate molecular weight.
  • the miscibility of high molecular weight and low molecular weight copolymers is compensated for, resulting in a wide molecular weight distribution resulting in high processability and high transparency.
  • the olefinic polymer of this invention can be manufactured.
  • the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 2. According to another embodiment of the present invention, the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1 and at least one second metallocene compound of Formula 2, One or more second metallocene compounds may be included.
  • the first metallocene compound represented by Formula 1 and the second metallocene compound selected from the compound represented by Formula 2 or Formula 3 are different from each other. At least two or more metallocene compounds, preferably three different metallocene compounds. Accordingly, the high molecular weight and low molecular weight copolymers are complemented to improve the high molecular weight olefin copolymer, and at the same time, the molecular weight distribution is wide, thereby producing an excellent olefin polymer with excellent physical properties and processability.
  • a co-catalyst supported on a carrier for activating the metallocene compound is an organometallic compound containing a Group 13 metal, and when the olefin is polymerized under a general metallocene catalyst There is no particular limitation as long as it can be used.
  • the cocatalyst compound may include one or more of the cocatalyst compounds represented by the following Chemical Formulas 4 to 6.
  • R20 may be the same or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or a hydrocarbon having 1 to 20 carbon atoms substituted with halogen;
  • n is an integer of 2 or more
  • R20 is as defined in Formula 4 above;
  • L is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a group element
  • A may be the same as or different from each other, and each independently is a C6 to C20 aryl group or a C1 to C20 alkyl group, wherein at least one hydrogen atom is unsubstituted or substituted with halogen, C1 to C20 hydrocarbon, alkoxy or phenoxy.
  • Examples of the compound represented by the formula (4) include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane and the like, and more preferred compound is methyl aluminoxane.
  • Examples of the compound represented by Formula 5 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri-S-butyl aluminum, tricyclopentyl aluminum , Tripentylaluminum, triisopentylaluminum, trinuclear silaluminum, trioctylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri-P-rylylaluminum, dimethylaluminum mesoxide, dimethylaluminum, trimethyl Boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron and the like, and more preferred compounds are selected from trimethylaluminum, triethylaluminum and triisobutylaluminum.
  • Examples of the compound represented by Formula 6 include triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, and trimethylammonium tetra (P-lryl) Boron, trimethylammonium tetra ( ⁇ , ⁇ - dimethylphenyl) boron, tributyl ammonium tetra ( ⁇ -trifluoromethylphenyl) boron, trimethyl ammonium tetra ( ⁇ -trifluoromethylphenyl) boron,
  • Triphenylcarbonium tetrapentafluorophenylboron Triphenylcarbonium tetrapentafluorophenylboron, and the like.
  • the mass ratio of the transition metal to the carrier of the first and second metallocene compounds is preferably 1: 1 to 1: 1,000.
  • the carrier and the metallocene compound in the mass ratio it may be advantageous in terms of maintaining the activity and economical efficiency of the catalyst by showing the appropriate supported catalytic activity.
  • the mass ratio of the cocatalyst compound of formula 4 or 5 to the carrier is preferably 1:20 to 20: 1
  • the mass ratio of the cocatalyst compound of the formula 6 to the carrier is preferably 1:10 to 100: 1.
  • the mass ratio of the said 1st metallocene compound to the said 2nd metallocene compound is 1: 100-100: 1.
  • an appropriate catalytic activity may be exhibited, which may be advantageous in terms of maintaining the activity and economical efficiency of the catalyst.
  • a carrier containing a hydroxyl group on the surface can be used, and preferably, The carrier which has the semi-permanent hydroxyl group and siloxane group from which the water was removed to the surface can be used.
  • silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, which are typically oxides, carbonates, such as Na 2 O, K 2 C0 3 , BaS0 4 , and Mg (0 3 ) 2 , Sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably 100 to 800. If the drying temperature of the carrier is less than 100 ° C, the moisture is too much and the surface of the carrier reacts with the promoter, and if it exceeds 800 ° C, the surface area decreases as the pores on the surface of the carrier are combined, and the surface is hydroxy. It is not preferable because there is a lot of groups and only siloxane groups are left to decrease the reaction space with the promoter.
  • the amount of hydroxyl groups on the surface of the carrier is preferably 0.1 to 10 mmol / g, more preferably 0.2 to 5 mmol / g.
  • the amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxy group is less than 0.1 mmol / g, there is little reaction space with the cocatalyst. If the amount of the hydroxy group is more than 10 mmol / g, it may be due to moisture other than the hydroxy group present on the surface of the carrier particle. not.
  • the common supported metallocene catalyst is prepared by supporting a cocatalyst compound on a carrier, supporting the first metallocene compound on the carrier, and supporting the second metallocene compound on the carrier. can do.
  • the order of the steps of supporting the first and second metallocene compounds may be changed as necessary. That is, the first metallocene compound is first supported on the carrier, and then the second metallocene compound is further supported to prepare a common supported metallocene catalyst, or the second metallocene compound is first supported on the carrier. After that, the first metallocene compound may be supported. Alternatively, the first and second metallocene compounds may be added and supported at the same time.
  • Pentane, nucleic acid, as a reaction solvent in the preparation of the common supported metallocene catalyst Hydrocarbon solvents such as heptanes, or aromatic solvents such as benzene, toluene and the like can be used.
  • the metallocene compound and the cocatalyst compound can also be used in the form of silica or alumina.
  • the olefin polymer according to the present invention can be produced by polymerizing an olefin monomer in the presence of the above-described common supported metallocene catalyst.
  • specific examples of the olefin polymer may include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-ikocene, and the like, and two or more thereof may be mixed and copolymerized.
  • the olefin polymer is more preferably an ethylene / alpha olefin copolymer, but is not limited thereto.
  • the content of alpha olepin, which is the comonomer is not particularly limited, and may be appropriately selected according to the use, purpose, and the like of the olepin-based polymer. More specifically, it may be up to more than 0 to 99 mole 0/0.
  • the polymerization reaction can be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers using one continuous slurry polymerization reaction, loop slurry reaction, gas phase reaction or solution reaction.
  • the common supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, hexane, heptane, nonane, decan, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chlorobenzene. It may be dissolved or liquefied and injected into a hydrocarbon solvent substituted with a chlorine atom such as.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • the common supported metallocene catalyst By using the common supported metallocene catalyst, it is possible to produce an urepin-based copolymer having a molecular weight distribution curve of two or more.
  • a relatively high molecular weight olepin-based polymer can be prepared by the first metallocene compound, and the second metallocene Relatively low molecular weight olepin-based polymers can be prepared by the compounds.
  • the common supported metallocene catalyst may include at least one first metallocene compound of Formula 1, at least one second metallocene compound of Formula 2, and
  • high molecular weight, low molecular weight, and medium molecular weight olepin-based polymers are produced to have broad molecular weight distribution and improve the compatibility between high molecular weight and low molecular weight polymers.
  • Olefin-based polymers showing transparency can be produced.
  • the polymerization temperature may be about 25 to about 500 ° C., preferably about 25 to about 200 ° C., more preferably about 50 to about 150 ° C.
  • the polymerization pressure is about 1 to about 100 Kgf / cm 2 , preferably about 1 to about 70 Kgf / cm 2 , more preferably about 5 to about 50
  • Kgf / cm 2 can be.
  • the leulevine-based polymer according to the present invention is a polymer having a high molecular weight and a wide molecular weight distribution as described above by homopolymerization of ethylene or copolymerization of ethylene and alpha olepin using the above common supported metallocene compound as a catalyst. Can be prepared.
  • the olefin polymer of the present invention is excellent in mechanical properties such as tensile strength and tear strength, processability, haze, and the like, and can be variously applied according to a use, and particularly, a film having improved physical properties Can provide.
  • the yellow solution obtained was identified to be methyl (6-t-butoxynucleosil) (tetramethyl CpH) t-butylaminosilane (Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane) compound through 1H-NMRol. .
  • nucleic acid was added to filter the product. After removing the nucleic acid from the filter solution obtained, the desired ([methyl (6-t-buthoxyhexyl) silyl (n5-tetramethylCp) (t-Butylamido)] TiC3 ⁇ 4 (tBu-O- (CH 2 ) 6 ) (CH 3 ) Si (C 5 (CH 3 ) 4 ) (tBu-N) TiCl 2 .
  • the common supported metallocene catalyst obtained in Preparation Example 1 was introduced into an isobutane slurry loop process continuous polymerization reactor (reactor volume 140 L, reaction volume flow rate 7 m / s) to prepare an olefin polymer.
  • 1-hexene was used as comonomer, the reaction pressure was maintained at 40 bar, the polymerization temperature was 88 ° C.
  • Example 2
  • Example 3 An olefin polymer was prepared in the same manner as in Example 1 except that the amount of 1-nuxene used in Example 1 was changed.
  • Example 3 An olefin polymer was prepared in the same manner as in Example 1 except that the amount of 1-nuxene used in Example 1 was changed.
  • Example 4 An olefin polymer was prepared in the same manner as in Example 1, except that the amount of 1-hexene used in Example 1 was changed.
  • Example 4 An olefin polymer was prepared in the same manner as in Example 1, except that the amount of 1-hexene used in Example 1 was changed.
  • the common supported metallocene catalyst obtained in Preparation Example 2 was introduced into an isobutane slurry loop process continuous polymerization reactor (reactor volume 140 L, reaction volume flow rate 7 m / s) to prepare an olefin polymer.
  • a comonomer 1-nucleenol was used, the reactor pressure was maintained at 40 bar, and the polymerization temperature was maintained at 88 ° C.
  • Example 5
  • LG Chem's LUCENE TM SP310 a commercial mLLDPE prepared using slurry loop process, was prepared.
  • the olefin polymers of Examples 1 to 5 and Comparative Example 1 were analyzed after granulation with a biaxial extruder after prescribed an antioxidant (Iganox 1010 + Igafos 168, CIBA).
  • Polymer and film and physical property evaluation
  • MFRio / MFR 2 MFR 10 melt index (MI, 10kg load) divided by MFR 2 (MI, 2.16kg load).
  • Haze The film was molded to a thickness of 0.05 mm and measured based on ASTM D 1003. At this time, 10 measurements were taken per specimen and the average was taken.
  • the ellefin-based polymer according to the present invention exhibits a wider molecular weight distribution than a conventional olefin-based polymer having a similar density and weight average molecular weight, and thus has a high melt index. It can be seen that the shear thinning effect is much better and shows excellent flowability and processability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 가공성이 우수한 올레핀계 중합체에 관한 것이다. 본 발명에 따른 올레핀계 중합체는 고분자량 및 넓은 분자량 분포를 가져 가공성이 우수하고, 향상된 투명도를 나타내어, 필요로 하는 용도에 유용하게 사용될 수 있다.

Description

【명세서】
【발명의 명칭】
가공성이 우수한 을레핀계 증합체
【발명의 상세한 설명】
【기술분야】
본 발명은 가공성이 우수한 올레핀계 중합체에 관한 것이다.
본 출원은 2013년 1 1월 18일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0139997 호, 및 2014년 8월 29일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-01 14385호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
【배경기술】
을레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (multi site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매 (single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
미국 특허 제 5,914,289호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 대한민국 특허 출원 제 2003-12308호에는 담체에 이중핵 메탈로센 촉매와 단일핵 메탈로센 촉매를 활성화제와 함께 담지하여 반응기 내 촉매의 조합을 변화시키며 중합함으로써 분자량 분포를 제어하는 방안을 개시하고 있다. 그러나, 이러한 방법은 각각의 촉매의 특성을 동시에 구현하기에 한계가 있으며 , 또한 완성된 촉매의 담체 성분에서 메탈로센 촉매 부분이 유리되어 반웅기에 파울링 (fouling)을 유발하는 단점이 있다. 따라서, 상기한 단점들을 해결하기 위해서 간편하게 활성이 우수한 흔성 담지 메탈로센 촉매를 제조하여 원하는 물성와 을레핀계 중합체를 제조하는 방법에 대한 요구가 계속되고 있다.
한편, 선형 저밀도 폴리에틸렌은 중합촉매를 사용하여 저압에서 에틸렌과 알파 을레핀을 공중합하여 제조되어, 분자량 분포가 좁고 일정한 길이의 단쇄분지를 가지며, 장쇄분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙추층격강도 등이 우수하여 기존의 저밀도 폴리에틸렌이나 고밀도 폴리에틸렌의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
그런데, 1-부텐 또는 1-핵센올 공단량체로 사용하는 선형 저밀도 폴리에틸렌은 대부분 단일 기상반웅기 또는 단일 루프 슬러리 반웅기에서 제조되며, 1-옥텐 공단량체를 사용하는 공정 대비 생산성은 높으나, 이러한 제품 역시 사용 촉매기술 및 공정기술의 한계로 물성이 1-옥텐 공단량체 사용시보다 크게 열세하고, 분자량 분포가 좁아 가공성이 불량한 문제가 있다. 이러한 문제의 개선을 위해 많은 노력이 진행되고 있으며,
미국 특허 제 4,935,474호에는 2종 또는 그 이상의 메탈로센 화합물이 사용되어 넓은 분자량 분포를 갖는 폴리에틸렌 제조법에 대해 보고되어 있다. 미국 특허 제 6,828,394호에는 공단량체 결합성이 좋은 것과 그렇지 않은 것을 흔합사용해 가공성이 우수하고 특히 필름용에 적합한 폴리에틸렌 제조방법에 대해 보고되어 있다. 또한, 미국 특허 제 6,841,631호, 미국 특허 제 6,894,128호에는 적어도 2종의 메탈 컴파운드가 사용된 메탈로센계 촉매로 이정 또는 다정 분자량분포를 갖는 폴리에틸렌을 제조하여, 필름, 블로우몰딩, 파이프 등의 용도에 적용이 가능하다고 보고되어 있다. 하지만 이러한 제품들은 가공성은 개선되었으나 단위 입자 내의 분자량별 분산상태가 균일하지 못해 비교적 양호한 압출조건에서도 압출와관이 거칠고 물성이 안정적이지 못한 문제가 있다.
이러한 배경에서 물성과 가공성 간의 균형이 이루어진 보다 우수한 제품의 제조가 끊임없이 요구되고 있으며 이에 대한 개선이 더욱 필요한 상태이다.
【발명의 내용】
【해결하려는 과제】
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 가공성이 우수하고 향상된 투명도 및 기계적 물성을 갖는 을레핀계 중합체를 제공하고자 한다.
【과제 해결 수단】
본 발명은 분자량 분포 (Mw/Mn)가 3 내지 20이고;
19CTC에서 ASTM1238에 의하여 측정한 용융 유동율비 (MFR10/MFR2) 값이 9 내지 15이며;
주파수 (frequency, co[rad/s])에 따론 복소점도 (complex visicosity, r)*[Pa.s]) 그래프에서 기울기가 -0.55 내지 -0.35인 올레핀계 중합체를 제공한다.
본 발명의 다른 일 측면에 따르면, 상기 을레핀계 중합체를 포함하는 필름 (film)을 제공한다.
【발명의 효과】
본 발명에 따른 올레핀계 중합체는 가공성, 기계적 물성 및 투명도가 우수하여, 필름 등의 용도로 유용하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 실시예 및 비교예에 따른 을레핀계 중합체의 주파 (frequency)-복소점도 (complex visicosity)의 관계를 나타내는 그래프이다. 도 2는 본 발명의 일 실시예에 따른 을레핀계 중합체의 분자량 분포를 GPC-FI R로 측정하여 나타내는 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명에 따른 올레핀계 증합체는 분자량 분포 (Mw/Mn)가 3 내지 20이고, 190°C에서 ASTM1238에 의하여 측정한 용융 유동율비 (MFR10/MFR2) 값이 9 내지 I5이며, 주파수 (frequency, co[rad/s])에 따른 복소점도 (complex visicosity, i [Pa.s]) 그래프에서 기울기가 -0.55 내지 -0.35인 것올 특징으로 한다.
본 발명의 올레핀계 중합체는 약 3 내지 약 20, 바람직하게는 약 4 내지 약 15의 넓은 분자량 분포 (Mw/Mn, PDI)를 보여 우수한 가공성을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 상기 을레핀계 중합체의 중량 평균 분자량 (Mw)은 약 50,000 내지 약 200,000 g/mol, 바람직하게는 약 60,000 내지 약 150,000 g/mol 일 수 있으나, 이에만 한정되는 것은 아니다. 상기 본 발명의 을레핀계 중합체는 고분자량 및 넓은 분자량 분포를 가지며 물성 및 가공성이 우수한 효과가 있다.
즉, 본 발명의 올레핀계 공중합체는, 종래 알려진 올레핀계 공중합체에 비해 넓은 분자량 분포와 용융 유동률비 (MFRR)를 가져 유동성이 현저히 향상되어 보다 우수한 가공성을 나타낼 수 있다.
본 발명의 올레핀계 공중합체는, 용융 유동율비 (MFRR,
MFR10/MFR2)가 약 9 내지 약 15, 바람직하게는 약 9.5 내지 약 13인 범위를 갖는다. 상기와 같은 범위의 용융 유동율비를 가짐으로써 각 하중에서의 흐름성이 적절히 조절되어, 가공성 및 기계적 물성이 동시에 향상될 수 있다. 본 발명의 일 실시예에 따르면, MFR2(ASTM D-1238에 의거하여 190°C, 2.16kg 하중에서 측정된 용융 유동 지수는 약 0.1 내지 약 10 g/10min일 수 있고, 바람직하게는 약 0.2 내지 약 5 g/10min의 범위일 수 있다. 또한, 본 발명의 일 실시예에 따르면, MFR10(ASTM D-1238에 의거하여 19CTC , 10kg 하중에서 측정된 용융 유동 지수)은 약 0.9 내지 약 150 g/lOmin일 수 있고, 바람직하게는 약 1.9 내지 약 65 g/lOmin의 범위일 수 있다. 이러한 MFR2 및 MFR10의 범위는 상기 올레핀계 중합체의 용도 또는 적용 분야를 고려하여 적절히 조절될 수 있다.
또한, 본 발명의 올레핀계 중합체는 주파수 (frequency, co[rad/s])에 따른 복소점도 (complex visicosity, i [Pa.s]) 그래프에서 기울기가 약 -0.55 내지 약 - 0.35, 또는 약 -0.45 내지 약 -0.35인 범위를 갖는다. 주파수에 따른 복소점도 그래프는 유동성과 관련된 것으로, 낮은 주파수에서 높은 복소점도를 갖고 높은 주파수에서는 낮은 복소점도를 가질수록 유동성이 높은 것을 의미한다. 즉, 음의 기울기값을 가지며, 상기 기울기값의 절대값이 클수록 높은 유동성을 나타내는 것이라 할 수 있다. 본 발명의 올레핀계 중합체는 주파수에 따른 복소점도 그래프에서 기울기가 약 -0.55 내지 약 -0.35인 범위로, 유사한 밀도 및 중량 평균 분자량을 갖는 종래의 올레핀계 중합체에 대비하여 현저히 높은 유동성을 보인다. 이는 본 발명의 올레핀계 중합체의 넓은 분자량 분포와 관련된 것으로, 이에 따라 높은 용융지수에도 불구하고 shear thinning 효과가 훨씬 뛰어나 우수한 유동성 및 가공성을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 상기 을레핀계 중합체의 밀도는 0.910 내지 0.940 g/cm3 일 수 있으나, 이에만 한정되는 것은 아니다.
또한 본 발명의 일 실시예에 따르면, 상기 올레핀계 중합체는 GPC- FTIR 로 측정한 중량 평균 분자량 (M)을 0.5라 할때 분자량의 분포가 0.2 내지 0.8인 범위 내에서 최대의 SCB 함량값을 가질 수 있다.
SCB(Short Chain Branching)란, 을레핀계 중합체의 주 사슬에 붙어 있는
2 내지 6개의 탄소수를 가지는 가지들을 의미하며, 보통 공단량체 (comonomer)로서 1-부텐, 1-핵센, 1-옥텐 등과 같이 탄소수 4 이상인 알파 올레핀을 사용할 경우 만들어지는 결가지들을 의미한다.
일반적으로 GPC-FTIR 장비를 이용하여 분자량, 분자량 분포 및 SCB 함량을 동시에 연속적으로 측정할 수 있다.
본 발명의 올레핀계 중합체는 GPC-FTIR로 측정한 중량 평균 분자량 (M)을 0.5라 할때 분자량의 분포가 0.2 내지 0.8인 범위 내에서 최대의 SCB 함량값을 갖는 것으로 특징으로 한다.
도 2는 본 발명의 일 실시예에 따른 을레핀계 중합체의 분자량 분포를 GPC-FTIR로 측정한 그래프이다.
도 2를 참조하면, 분자량 분포 그래프에서, 중량 평균 분자량 (M)의 지점을 중심으로 분자량 분포가 중간 영역 대에서 최대의 SCB 함량값 (화살표 지점)이 나타난다. 즉, 중량 평균 분자량 (M)이 위치하는 지점을 으5라 하고 최소 분자량값이 나타나는 지점을 0, 최대 분자량값이 나타나는 지점을 1이라 할 때, 로그 그래프상의 0.2 내지 0.8의 구간 내에서 최대의 SCB 함량값이 나타날 수 있다. 특히, 상기 최대의 SCB 함량값은 발산하는 값이 아닌 변곡점 형태로 나타날 수 있다. 이러한 분자량 분포의 특성은, 본 발명의 올레핀계 중합체가 중간 정도의 분자량 영역, 즉, 중량 평균 분자량을 중심으로 볼 때 좌우 30%의 분자량 분포 영역에서 공단량체의 유입이 가장 높고, 분자량 분포에 있어 하위 20%의 저분자량 영역 및 상위 20%의 고분자량 영역에서는 상대적으로 중간 분자량 영역보다 공단량체의 유입이 더 적음을 의미한다.
본 발명의 을레핀계 중합체는 올레핀계 중합체의 1,000개 탄소당 SCB 함량이 5 내지 30개, 바람직하게는 7 내지 20개일 수 있다.
일반적으로 을레핀계 중합체는 분자량 분포가 넓어짐에 따라 가공성은 향상되지만 헤이즈 특성이 열화되어 투명도가 떨어지는 단점이 있다. 그러나, 본 발명의 을레핀계 증합체는 상기와 같은 공단량체의 분포의 특성으로 인하여 해이즈 특성을 좋게 하여 넓은 분자량 분포에도 불구하고 높은 투명도를 나타낼 수 있다.
따라서, 본 발명에 따른 올레핀계 중합체는 유동성, 가공성, 투명도 등이 우수하여, 용도에 따라 다양하게 적용될 수 있으며, 특히 향상된 물성을 갖는 필름 (film)을 제공할 수 있다.
본 발명에 따른 올레핀계 중합체는 을레핀계 단량체인 에틸렌의 호모 중합체이거나, 바람직하게는 에틸렌과 알파 올레핀계 공단량체의 공중합체일 수 있다.
상기 알파 올레핀계 공단량체로는 탄소수 4 이상인 알파 을레핀이 사용될 수 있다. 탄소수 4 이상의 알파 올레핀으로는 1-부텐, 1-펜텐, 1-헥센, 4-메틸 -1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-옥타데센, 또는 1-에이코센 등이 있으나, 이에만 한정되는 것은 아니다. 이 중 탄소수 4 ~ 10의 알파 올레핀이 바람직하며, 1종 또는 여러 종류의 알파 을레핀이 함께 공단량체로 사용될 수도 있다.
상기 에틸렌 및 알파 올레핀계 공단량체의 공중합체에 있어서, 상기 알파 을레핀계 공단량체의 함량은 약 5 내지 약 20 중량 %, 바람직하게는 약 7 내지 약 15 중량 %일 수 있으나, 이에 한정되는 것은 아니다.
상기와 같은 올레핀계 중합체는 흔성 메탈로센 촉매를 이용하여 제조할 수 있다.
본 발명의 일 실시예예 따르면, 상기 흔성 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물; 하기 화학식 2 또는 화학식 3으로 표시되는 화합물 증 선택되는 1종 이상을 포함하는 제 2 메탈로센 화합물; 조촉매 화합물; 및 담체를 포함하는 흔성 담지 메탈로센 촉매일 수 있다.
[
Figure imgf000009_0001
상기 화학식 1에서,
R1 내지 R4, R9 및 R1' 내지 R4'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐:, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
R5 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고, 상기 R5 내지 R8 중 인접하는 2개가 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
L1은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이며;
D1는 -ᄋ-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이며;
A1은 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, ci 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C2 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
ΜΪ은 4족 전이금속이며;
XI 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기,. C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
[화학식 2]
Figure imgf000010_0001
상기 화학식 2에서,
R10 내지 R13 및 R10' 내지 R13'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, 또는 C1 내지 C20의 아민기이고, 상기 R10 내지 R13 및 R10' 내지 R13' 중 인접하는 2개가 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
Z1 및 Z2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C3 내지 C20의 시클로알킬기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C6 내지 C10의 아릴옥시기, C2 내지 C20의 알케닐기, C7 내지 C40의 알킬아릴기, 또는 C7 내지 C40의 아릴알킬기이고; Q는 CI 내지 C20의 알킬렌기, C3 내지 C20의 시클로알킬렌기, C6 내지 C 의 아릴렌기, C7 내지 C40의 알킬아릴렌기, 또는 C7 내지 C40의 아릴알킬렌기이고;
M2는 4족 전이금속이며;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지- C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
화학식 3]
Figure imgf000011_0001
상기 화학식 3에서,
M3은 4족 전이금속이고;
X5 및 X6은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20와 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네.이트기이고;
R14 내지 R19는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알킬실릴, C6 내지 C20의 아릴실릴기, 또는 C1 내지 C20의 아민기이고, 상기 R14 내지 R17 중 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
L2는 CI 내지 CIO의 직쇄 또는 분지쇄 알킬렌기이며;
D2는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기 C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이며;
A2는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C2 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 해테로아릴기이고;
B는 탄소, 실리콘, 또는 게르마늄이고, 시클로펜타디에닐 계열 리간드와 JR19z-y를 공유 결합에 의해 묶어주는 다리이고;
J는 주기율표 15족 원소 또는 16족 원소이며;
z는 J 원소의 산화수이고;
y는 J 원소의 결합수이다.
본 발명에 따른 메탈로센 화합물에 있어서, 상기 화학식 1 내지 3의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert- 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알콕시기로는 메록시기, 에록시기, 페닐옥시기, 시클로핵실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 둥을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 1의 R1 내지 R9 및 R1' 내지 R8'은 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기 , η-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 : 또는 페닐기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 1의 L1은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 1의 A1은 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메특시메틸기, tert-부특시메틸기, 1-에록시에틸기, 1-메틸 -1-메록시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000013_0001
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 2의 Q는 CI 내지 C20의 알킬렌기고, Z1 및 Z2는 각각 독립적으로 수소, C1 내지 C20의 알킬기 또는 C1 내지 C20의 알콕시기이며, X3 및 X4는 할로겐일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 제 2 메탈로센 화합물의 구체적인 예로는 하기 구조식들로 표시되는 화합물을 들 수 있으 이에만 한정되는 것은 .
Figure imgf000014_0001
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 3의 L2는 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다.
본 발명에 따른 흔성 담지 메탈로센 촉매에 있어서, 상기 화학식 3의 A2는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메록시메틸기, tert-부록시메틸기, 1-에록시에틸기, 1-메틸 -1-메톡시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다ᅳ
또한, 상기 화학식 3의 B는 실리콘이고, J는 질소인 것이 바람직하나, 이에만 한정되는 것은 아니다.
또한, 상기 화학식 3의 R14 내지 R19는 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 .내지 C20의 알케닐기, 또는 C1 내지 C20의 알콕시기일 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 3으로 표시되는 제 2 메탈로센 화합물의 구체적인 예로는 하기 구조식으로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000015_0001
상기 화학식 1 내지 3으로 표시되는 메탈로센 화합물의 제조 방법은 ― 후술하는 실시예에 구체화하여 기재하였다.
상기 화학식 1의 제 1 메탈로센 화합물은 플루오렌 (fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하여, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 플루오렌기를 포함함에 따라 활성이 높아 고분자량의 을레핀계 중합체를 증합할 수 있다.
본 발명의 일 실시예에 따른 흔성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상과, 상기 화학식 2 또는 화학식 3으로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 흔성 담지한 것일 수 있다.
상기 흔성 담지 메탈로센 촉매의 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 고분자량의 공중합체를 만드는데 기여하고, 화학식 2로 표시되는 제 2 메탈로센 화합물은 상대적으로 저분자량의 공중합체를 만드는데 기여할 수 있다. 또한, 화학식 3으로 표시되는 제 2 메탈로센 화합물은 중간 정도의 분자량의 공중합체를 만드는데 기여할 수 있다.
따라서, 상기 화학식 1 내지 3의 메탈로센 화합물을 각각 포함하여
3종의 메탈로센 화함물이 포함된 흔성 담지 메탈로센 촉매를 사용할 때, 고분자량 및 저분자량 공중합체의 흔화성 (miscibility)이 보완되어 넓은 분자량 분포를 가져 가공성이 향상되면서도 높은 투명도를 나타내는 본 발명의 올레핀계 중합체를 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 흔성 담지 메탈로센 촉매는 화학식 1의 제 1 메탈로센 화합물 1종 이상과, 화학식 2의 제 2 메탈로센 화합물 1종 이상을 포함할 수 있다. 본 발명의 다른 일 실시예에 따르면, 상기 흔성 담지 메탈로센 촉매는 화학식 1의 제 1 메탈로센 화합물 1종 이상과, 화학식 2의 제 2 메탈로센 화합물 1종 이상에 더하여, 화학식 3의 제 2 메탈로센 화합물을 1종 이상 포함할 수 있다.
따라서, 발명의 흔성 담지 메탈로센 촉매에서는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 및 상기 화학식 2 또는 화학식 3으로 표시되는 화합물 증 선택되는 제 2 메탈로센 화합물을 포함하여, 서로 다른 종류의 메탈로센 화합물을 적어도 2종 이상, 바람직하게는 서로 다른 종류의 메탈로센 화합물을 3종으로 포함하는 것이다. 이에 따라 고분자량 및 저분자량 공중합체의 흔화성이 보완되어 고분자량의 올레핀계 공중합체이면서, 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 을레핀 중합체를 제조할 수 있다.
상기 흔성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 4 내지 6으로 표시되는 조촉매 화합물 중 1종 이상을 포함할 수 있다.
[화학식 4]
-[A1(R20)-O]n- 상기 화학식 4에서,
R20은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 5]
D(R20)3
상기 화학식 5에서,
R20은 상기 화학식 4에서 정의된 바와 같고;
D는 알루미늄 또는 보론이며; [화학식 6]
[L-H] + [ZA4]-또는 [L] + [ZA4]- 상기 화학식 6에서,
L은 중성 또는 양이온성 루이스 산이고; H는 수소 원자이며; Z는 족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C1 내지 C20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 C6 내지 C20의 아릴기 또는 C1 내지 C20의 알킬기이다.
상기 화학식 4로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 5로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -S- 부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P- 를릴알루미늄, 디메틸알루미늄메특시드, 디메틸알루미늄에특시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부될보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 6으로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리메틸암모니움테트라 (ο,ρ- 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론, 트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리부틸암모니움테트라펜타플로로페닐보론, Ν,Ν- 디에틸아닐리니움테트라페닐보론, Ν,Ν- 디에틸아닐리니움테트라펜타폴로로페닐보론,
디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페날보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라 (P- 를릴)알루미늄, 트리프로필암모니움테트라 (P-를릴)알루미늄, 트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄, 트리부틸암모니움테트라 (ρ_ 트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라 (Ρ- 트리플로로메틸페닐)알루미늄,
트리부틸암모니움테트라펜타플로로페닐알루미늄, Ν,Ν- 디에틸아닐리니움테트라페닐알루미늄, Ν,Ν- 디에틸아닐리니움테트라펜타플로로페닐알루미늄,
디에틸암모니움테트라펜타테트라페닐알루미늄,
트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라 (Ρ-를릴)보론, 트리에틸암모니움테트라 (ο,ρ— 디메틸페닐)보론, 트리부틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론, 트리페닐카보니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리페닐카보니움테트라펜타플로로페닐보론 등이 있다.
상기 흔성 담지 메탈로센 촉매에 있어서, 상기 제 1 및 제 2 메탈로센 화합물의 전이금속 대 담체의 질량비는 1 : 1 내지 1: 1,000 인 것이 바람직하다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
또한, 화학식 4 또는 5의 조촉매 화합물 대 담체의 질량비는 1 : 20 내지 20 : 1 인 것이 바람직하고, 화학식 6의 조촉매 화합물 대 담체의 질량비는 1 : 10 내지 100 : 1인 것이 바람직하다.
또한, 상기 제 1 메탈로센 화합물 대 상기 제 2 메탈로센 화합물의 질량비는 1 : 100 내지 100: 1 인 것이 바람직하다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 적절한 촉매 활성올 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
상기 흔성 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카- 마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2C03, BaS04, 및 Mg( 03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. 상기 담체의 건조 온도는 100 내지 800 가 바람직하다. 상기 담체의 건조 온도가 100°C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800°C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.2 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반웅자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
상기 흔성 담지 메탈로센 촉매는 담체에 조촉매 화합물을 담지시키는 단계, 상기 담체에 상기 제 1 메탈로센 화합물을 담지시키는 단계, 및 상기 담체에 상기 제 2 메탈로센 화합물을 담지시키는 단계로 제조할 수 있다. 상기 흔성 담지 메탈로센 촉매의 제조방법에 있어서, 상기 제 1 및 제 2 메탈로센 화합물을 담지시키는 단계의 순서는 필요에 따라 바뀔 수 있다. 즉, 제 1 메탈로센 화합물을 담체에 먼저 담지시킨 후, 제 2 메탈로센 화합물을 추가로 담지하여 흔성 담지 메탈로센 촉매를 제조하거나, 또는 제 2 메탈로센 화합물을 담체에 먼저 담지시킨 후, 제 1 메탈로센 화합물을 담지시킬 수 있다. 또는, 제 1 및 제 2 메탈로센 화합물을 동시에 투입하여 담지시킬 수도 있다.
상기 흔성 담지 메탈로센 촉매의 제조시에 반웅 용매로서 펜탄, 핵산, 헵탄 둥과 같은 탄화수소계 용매 , 또는 벤젠, 를루엔 등과 같은 방향족계 용매가 사용될 수 있다. 또한, 메탈로센 화합물과 조촉매 화합물은 실리카나 알루미나에 담지된 형태로도 이용할 수 있다.
본 발명에 따른 올레핀계 중합체는, 상술한 흔성 담지 메탈로센 촉매의 존재 하에서, 올레핀계 단량체를 중합시킴으로써 제조할 수 있다. 상기 을레핀계 중합체의 제조방법에 있어서, 상기 을레핀계 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1- 헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이코센 등이 있으며, 이들을 2종 이상 흔합하여 공중합할 수도 있다.
상기 올레핀계 중합체는 에틸렌 /알파 올레핀 공중합체인 것이 보다 바람직하나, 이에만 한정되는 것은 아니다.
상기 을레핀계 중합체가 에틸렌 /알파 올레핀 공중합체인 경우에 있어서, 상기 공단량체인 알파 을레핀의 함량은 특별히 제한되는 것은 아니며, 을레핀계 중합체의 용도, 목적 등에 따라 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰0 /0 이하일 수 있다.
상기 중합 반웅은 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반웅기, 기상 반웅기 또는 용액 반웅기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다.
상기 흔성 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 회석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 상기 흔성 담지 메탈로센 촉매를 이용하여 이정 이상의 분자량 분포 곡선을 갖는 을레핀계 공중합체를 제조할 수 있다. 상기 흔성 담지 메탈로센 촉매를 이용시, 상기 제 1 메탈로센 화합물에 의해서는 상대적으로 고분자량의 을레핀계 중합체가 제조될 수 있고, 상기 제 2 메탈로센 화합물에 의해서는 상대적으로 저분자량의 을레핀계 중합체가 제조될 수 있다. 특히 상기 흔성 담지 메탈로센 촉매가 화학식 1의 제 1 메탈로센 화합물 1종 이상과, 화학식 2의 제 2 메탈로센 화합물 1종 이상, 및 화학식
3의 제 2 쩨탈로센 화합물을 1종 이상 포함할 때, 고분자량, 저분자량, 중분자량의 을레핀계 중합체가 생성되어 넓은 분자량 분포를 가지면서도 고분자량 및 저분자량 중합체 간의 흔화성이 개선되어 향상된 투명도를 나타내는 올레핀계 증합체를 제조할 수 있다.
본 발명의 흔성 담지 메탈로센 촉매를 이용하여, 중합 온도는 약 25 내지 약 500°C , 바람직하게는 약 25 내지 약 200 °C , 보다 바람직하게는 약 50 내지 약 150 °C일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/cm2, 바람직하게는 약 1 내지 약 70 Kgf/cm2, 보다 바람직하게는 약 5 내지 약 50
Kgf/cm2일 수 있다.
본 발명에 따른 을레핀계 중합체는 상기와 같은 흔성 담지 메탈로센 화합물을 촉매로 사용하여, 에틸렌의 호모중합 또는 에틸렌과 알파 을레핀과의 공중합으로 상술한 바와 같은 고분자량 및 넓은 분자량 분포를 갖는 중합체를 제조할 수 있다.
이에, 본 발명의 올레핀계 중합체는 인장강도, 인열강도 등의 기계적 물성, 가공성, 헤이즈 (Haze) 등이 우수하여, 용도에 따라 다양하게 적용될 수 있으며, 특히 향상된 물성을 갖는 필름 (film)을 제공할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. <실시예 >
합성예 1: 제 1 메탈로센 화합물의 제조
"ert-Bu-0-(CH?V>MeSi(9-CnHQ)7ZrCl7의 제조
1) 리간드 화합물의 제조
THF 용매 하에서 tert-Bu-0-(CH2)6Cl 화합물과 Mg(0) 간의 반웅으로부터 그리냐드 (Grignard) 시약인 tert-Bu-0-(CH2)6MgCl 용액 1.0 mole을 얻었다. 상기 제조된 그리냐드 화합물을 -30 °C의 상태의 MeSiCl3 OZ
^ ^튿 z IK -z I P-g. οε
(P 'HZ 'H-nd L '(P 'HS 쒜
'(PP 'H1 09'L '(∞ 'Ht 'H_nId) iVL '0 'B.Z 'HD 06'9 '0 ¾3 'H^Id) 98'9
'(ϊ 'HZ: ¾H3-0^ -m)2£-£ '(^ ' '3H3)l61 '(^ 'Ht ¾HO) 99· I '(∞ 'ΗΣ: 'SH S) 8S'T '(s CeS ) 9Z1 '(s 'H6 ΌηΗ-^)$Γΐ: (9Q9D 'ZH^00S)¾]A[N HI
(%S 6룡^ 륭튿¾^ slD¾(6H£I -6)iS9W(9(¾3) 륭륜 ^
Figure imgf000022_0001
[^?^ ^ fe>융
Figure imgf000022_0002
Hffll) 3¾통 ^융 (SHBS
Figure imgf000022_0003
u! ς ) nng-u toira 8 tb )융 ( 11
03) HQIW/Cio ira 9 '§ 8 Γ £) zLH£IO-6)iS9W(9(¾D)-O-n9- s b3o0Z-
'(P 'Hl 'H-^U)S8-A 'Hl 'H-WdOo/
'Ηΐ7 'Η-ηΗ)ςε·Δ '(ui 'Hl 'H-W )띠 ' 'Η6-¾)θΐ Ό 't '¾3"0^9 SI -뼤 Γ£ 'ΟΪ 'HZ '¾3)6Ζ"ΐ '(s 'H6 '0^-^)/.1'1 '(^ 'U >) 56Ό ' ¾3 '¾ ) 85Ό 'Cm 'HZ '¾3-iS) 9Γ0 '(s S£O_: (HDQD ^¥[H009)WR HI
¾¼Γο¾ ^을
Figure imgf000022_0004
륭륜 Ηει3
-6)!S3W(9(¾0)-0-na-W) 륭튿 οτ
'i i¾ietH i°v[o i 8
Figure imgf000022_0005
통r。융
ts L^^^릎 ki°v Lb^융 (Iourat 01 ¾ L'i) JI39WiS9(¾3)-0-na
-: μ
Figure imgf000022_0006
[ (im ooi) t-rl aoe- 'ir ^aoe-를 긍 ui ς·ζ) nng-ΐΐ ^μι 'ir#i 를 (lourai QI 'qui ζ·ι 'jsq iXjnq^sj iXqjaui) gaiW 5
Figure imgf000022_0007
(% 6룡^)ᅳ 통륜 t^D iS9(¾3)
Figure imgf000022_0008
Ι ΥΪ Γ vlo
Figure imgf000022_0009
'qui Γ9 ΐ) 릎
T8t7800/M0ZaM/X3d J. AM. CHEM. SOC. VOL. 126, No. 46, 2004 pp. 15231 15244에 개시된 바에 따라 l, 2-ethylene bis(indenyl)ZrCl2 화합물을 합성하였다. 합성예 3·. 제 2 메탈로센 화합물의 제조
tBu-Q-(CH ½)(CH1)Si(Cs(CH^4 tBu-N')TiCl 의 제조
상온에서 50 g의 Mg(s)를 10 L 반웅기에 가한 후, THF 300 mL을 가하였다 . I2 0.5 g 정도를 가한 후, 반웅기 은도를 50 °C로 유지하였다. 반응기 온도가 안정화된 후 250 g의 6-t-부록시핵실 클로라이드 (6-t-buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 6-t-부록시핵실 클로라이드를 가함에 따라 반응기 온도가 4 내지 5 °C정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부특시핵실 클로라이드를 가하면서 12 시간 교반하였다. 반응 12시간 후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부특시핵산 (6-t-buthoxyhexane)을 확인하였다. 상기 6-t- 부록시핵산으로부터 그리냐드 (Gringanrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부특시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)-!- 합성하였다.
MeSiCl3 500 g과 1 L의 THF를 반웅기에 가한 후 반웅기 은도를 - 20°C까지 넁각하였다. 합성한 6-t-부톡시핵실 마그네슴 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 그라냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후 흰색의 MgCl2염이 생성되는 것올 확인하였다. 핵산 4 L을 가하여 랩도리 (labdori)를 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액올 반응기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR올 통해 원하는 메틸 (64-부록시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다.
1H-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H)
테트라메틸시클로펜타디엔 (tetramethylcyclopentadiene) 1.2 mol (150 g)와 2.4 L의 THF를 반웅기에 가한 후 반응기 은도를 -20°C로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n- BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 메틸 (6-t-부록시 핵실)디클로로실란 (Methyl(6-t-buthoxy hexyl)dichlorosilane) (326 g, 350 mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상은으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 넁각시킨 후 2당량의 t-BuN¾을 가하였다. 반웅기 은도를 천천히 상은으로 을리면서 12시간 교반하였다. 반웅 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염올 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을 70 °C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H- NMR올 통해 메틸 (6-t-부톡시핵실) (테트라메틸 CpH)t-부틸아미노실란 (Methyl(6- t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다.
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란 (Dimethyl(tetramethylCpH)t-Butylaminosilane)로부터 THF용액에서 합성한 - 78 °C의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반응용액을 천천히 78 °C에서 상은으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반웅용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터 용액에서 핵산올 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t- buthoxyhexyl)silyl(n5-tetramethylCp)(t-Butylamido)]TiC¾ (tBu-O- (CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2 임올 확인하였다.
1H-NMR (CDCls): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H)
<흔성 담지 촉매의 제조실시예 >
제조예 1
20L sus 고압 반웅기에 를루엔 용액 3.0 kg을 넣고 실리카 (Grace Davison사 제조 SP952X, 200도 소성) l,000g을 투입한 후, 반웅기 온도를 40°C로 을리면서 교반하였다. 실리카를 60분 동안 층분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액 6.0 kg을 투입하고, 60°C로 온도를 을린 후 200 rpm으로 12시간 동안 교반하였다. 반응기 온도를 다시 40°C로 낮춘 후 교반을 중지하고 30분 동안 settling시킨 후 반응 용액을 decantation하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decantation하였다.
반응기에 를루엔 2.0 kg을 투입하고, 합성예 1의 메탈로센 화합물과 를루엔 1,000 mL를 플라스크게 담아서 용액을 준비하고 30 분간 sonication을 실시하였다. 이와 같이 준비된 합성예 1의 메탈로센 화합물 /를루엔 용액을 반응기에 투입하고 200 rpm으로 90분간 교반하였다. 교반을 증지하고 30분 동안 settling시킨 후 반응 용액을 decantation하였다.
반응기에 를루엔 2.0 kg을 투입하고, 합성예 2의 메탈로센 화합물과 를루엔 1,500 mL를 폴라스크게 담아서 용액을 준비하고 30 분간 sonication을 실시하였다. 이와 같이 준비된 합성예 2의 메탈로센 화합물 /를루엔 용액을 반웅기에 투입하고 200 rpm으로 90분간 교반하였다. 반응기 온도를 상온으로 낮춘 후 교반을 중지하고 30분 동안 settling시킨 후 반응 용액을 decantation하였다 . .
를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 틀루엔 용액을 decantation하였다.
반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dryer로 이송하고 핵산 용액을 필터하였다. 50°C에서 4시간 동안 감압 하에 건조하여 700g-SiO2 혼성 담지 촉매를 제조하였다. 제조예 2
20L sus 고압 반웅기에 를루엔 용액 3.0 kg을 넣고 실리카 (Grace
Davison사 제조 SP2410) l,000g을 투입한 후, 반웅기 온도를 40°C로 을리면서 교반하였다. 실리카를 60분 동안 층분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액 5.4 kg을 투입하고, 60°C로 온도를 올린 후 200 rpm으로 12시간 동안 교반하였다. 반웅기 은도를 다시 40°C로 낮춘 후 교반을 중지하고 30분 동안 settling시킨 후 반응 용액을 decantation하였다. 를루엔 3.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decantation하였다.
반웅기에 를루엔 2.0 kg을 투입하고, 합성예 1의 메탈로센 화합물과 를루엔 1,000 mL를 플라스크게 담아서 용액을 준비하고 30 분간 sonication을 실시하였다. 이와 같이 준비된 합성예 1의 메탈로센 화합물 /를루엔 용액을 반웅기에 투입하고 200 rpm으로 90분간 교반하였다. 교반올 중지하고 30분 동안 settling시킨 후 반웅 용액을 decantation하였다.
반웅기에 를루엔 2.0 kg을 투입하고, 합성예 3의 메탈로센 화합물과 를투엔 1,000 mL를 플라스크게 담아서 용액을 준비하고 30 분간 sonication올 실시하였다. 이와 같이 준비된 합성예 3의 메탈로센 화합물 /를루엔 용액을 반응기에 투입하고 200 rpm으로 90분간 교반하였다. 교반을 중지하고 30분 동안 settling시킨 후 반웅 용액을 decantation하였다.
반웅기쎄 틀루엔 2.0 kg을 투입하고, 합성예 2의 메탈로센 화합물과 롤루엔 300 mL를 플라스크게 담아서 용액을 준비하고 30 분간 sonication을 실시하였다. 이와 같이 준비된 합성예 2의 메탈로센 화합물 /를루엔 용액을 반웅기에 투입하고 200 rpm으로 90분간 교반하였다. 반웅기 온도를 상온으로 낮춘 후 교반을 중지하고 30분 동안 settling시킨 후 반웅 용액을 decantation하였다.
를루엔 2.0 kg을 투입하고 10분간 교반한 후, 교반을 중지하고 30분 동안 settling 시키고 를루엔 용액을 decantation하였다.
반웅기에 핵산 3.0 kg을 투입하고 핵산 슬러리를 filter dryer로 이송하고 핵산 용액을 필터하였다. 50°C에서 4시간 동안 감압 하에 건조하여 830g-SiO2 흔성 담자 촉매를 제조하였다. <을레핀 중합실시예 >
실시예 1
상기 제조예 1에서 얻어진 흔성 담지 메탈로센 촉매를 isobutane slurry loop process 연속 중합기 (반웅기 부피 140 L, 반웅 유속 7m/s)에 투입하여 을레핀 중합체를 제조하였다. 공단량체로는 1-헥센을 사용하였고, 반웅기 압력은 40 bar로, 중합 온도는 88 °C로 유지하였다. 실시예 2
상기 실시예 1에서 1-핵센의 사용량을 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 올레핀 중합체를 제조하였다. 실시예 3
상기 실시예 1에서 1-헥센의 사용량을 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 올레핀 중합체를 제조하였다. 실시예 4
상기 제조예 2에서 얻어진 흔성 담지 메탈로센 촉매를 isobutane slurry loop process 연속 중합기 (반웅기 부피 140 L, 반웅 유속 7m/s)에 투입하여 을레핀 중합체를 제조하였다. 공단량체로는 1-핵센올 사용하였고, 반응기 압력은 40 bar로, 증합 온도는 88°C로 유지하였다. 실시예 5
상기 실시예 4에서 1-핵센의 사용량을 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 올레핀 중합체를 제조하였다. 비교예 1
slurry loop process 증합 공정을 이용하여 제조된 상업용 mLLDPE인 LG 화학의 LUCENETM SP310 제품을 준비하였다.
<실험예 >
필름의 제조
상기 실시예 1 내지 5 및 비교예 1의 올레핀 중합체를 산화방지제 (Iganox 1010 + Igafos 168, CIBA사) 처방 후 이축압출기로 제립 후 분석하였다. 필름 성형은 단축압출기 (신화공업 Single Screw Extruder, Blown Film M/C, 50 파이, L/D=20)를 이용하고 압출은도 165 ~ 200 °C에서 0.05 mm의 두께가 되도록 인플레이션 성형하였다. 이때 다이갭 (Die Gap)은 2.0 mm, 팽창비 (Blown-Up Ratio)는 23으로 하였다. 중합체 및 필름와물성 평가
상기 실시예 1 내지 5 및 비교예 1의 올레핀 중합체의 물성 및 이를 이용하여 제조한 필름을 하기 평가 방법에 따라 측정하여 그 결과를 표 1에 나타내었다.
또한, 본 발명의 실시예 , 2 및 비교예 1에 따른 올레핀계 중합체의 주파 (frequency)-복소점도 (complex visicosity)의 관계를 나타내는 그래프를 도 1에 나타내었다.
1) 밀도: ASTM 1505
2) 용융지수 (Ml, 2.16 kg/10 kg): 측정 온도 190 °C, ASTM 1238
3) MFRR(MFRio/MFR2): MFR10 용융지수 (MI, 10kg 하중)를 MFR2(MI, 2.16kg 하중)으로 나눈 비율이다.
4) 분자량, 분자량 분포: 측정 온도 160 °C, 겔투과 크로마토그라피- 에프티아이알 (GPC-FTIR)을 이용하여 수 평균분자량, 중량 평균분자량, Z 평균분자량을 측정하였다ᅳ 분자량 분포는 중량 평균 분자량과 수 평균 분자량의 비로 나타내었다ᅳ
5) 헤이즈 (Haze): 두께 0.05 mm의 규격으로 필름을 성형하여 ASTM D 1003을 기준으로 측정하였다. 이때 한 시편당 10회 측정하여 그 평균치를 취하였다.
6) 주파수 (frequency, o[md/s])어 1 따른 복소점도 (complex visicosity, i [Pa.s]) 그래프의 기울기: 복소점도는 Advanced R eometric Expansion System(ARES)를 이용하여 190°C , 선형 점탄성 영역에서 측정하였다.
【표 1】
Figure imgf000028_0001
중량평균분 15.0 11.4 12.2 14.8 12.8 1 1.2 자량
(*104
g/mol)
분자량분포 5.5 12.2 5.3 4.8 5.9 2.8 헤이즈 38 44 46 17 20 15 주파수에 -0.36 -0.39 -0.36 -0.35 -0.37 -0.24 따론
보 、ᄌ c 그래프의 '
기울기 상기 표 1 및 도 1의 그래프를 참조하면 본 발명에 따른 을레핀계 중합체는, 유사한 밀도 및 중량 평균 분자량을 갖는 종래의 올레핀계 중합체에 비하여 넓은 분자량 분포를 보이며, 이에 따라 높은 용융지수에도 블구하고 shear thinning 효과가 훨씬 뛰어나 우수한 유동성 및 가공성을 나타냄을 알 수 있다.

Claims

【특허청구범위】
【청구항 1】
분자량 분포 (Mw/Mn)가 3 내지 20이고;
190°C에서 ASTM1238에 의하여 측정한 용융 유동율비 (MFR10/MFR2) 값이 9 내지 15이며;
주파수 (frequency, oo[rad/s])에 따른 복소점도 (complex visicosity, r)*[Pa.s]) 그래프에서 기울기가 -0.55 내지 -0.35인 올레핀계 중합체.
【청구항 2]
게 1항에 있어서, 밀도가 0.910 내지 0.940 g/cm3인 올레핀계 중합체.
【청구항 3】
제 1항에 있어서, GPC-FTIR 로 측정한 중량 평균 분자량 (M)을 0.5라 할 때 분자량의 분포가 0.2 내지 0.8인 범위 내에서 최대의 SCB(Short Chain Branching) 함량을 갖는 올레핀계 중합체.
【청구항 4】
제 1항에 있어서, 중량 평균 분자량이 50,000 내지 200,000 g/m이인 올레핀계 중합체.
【청구항 5]
거 11항에 있어서, 에틸렌과 알파 올레핀계 공단량체의 공중합체인 을레핀계 중합체.
【청구항 6】
게 1항에 있어서,
하기 화학식 1로 표시되는 제 1 메탈로센 화합물; 및 하기 화학식 2 또는 화학식 3으로 표시되는 화합물 중 선택되는 1종 이상을 포함하는 제 2 메탈로센 화합물을 포함하는 흔성 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합시킴으로써 제조되는, 을레핀계 중합체: [화학식 1]
Figure imgf000031_0001
상기 화학식 1에서,
R1 내지 R4, R9 및 R1' 내지 R4'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;
R5 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고, 상기 R5 내지 R8 중 인접하는 2개가 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
L1은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이며;
D1는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이며;
A1은 수소, 할로겐, C1 내자 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C2 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
Ml은 4족 전이금속이며; XI 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
[화학식 2]
Figure imgf000032_0001
상기 화학식 2에서,
R10 내지 R13 및 R10' 내지 R13'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, 또는 C1 내지 C20의 아민기아고, 상기 R10 내지 R13 및 R10' 내지 R13' 중 인접하는 2개는 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
Z1 및 Z2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C3 내지 C20의 시클로알킬기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C6 내지 C10의 아릴옥시기, C2 내지 C20의 알케닐기, C7 내지 C40의 알킬아릴기, 또는 C7 내지 C40의 아릴알킬기이고;
Q는 C1 내지 C20의 알킬렌기, C3 내지 C20의 시클로알킬렌기, C6 내지 C20의 아릴렌기, C7 내지 C40의 알킬아릴렌기, 또는 C7 내지 C40의 아릴알킬렌기이고;
M2는 4족 전이금속이며;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기 또는 C1 내지 C20의 술폰네이트기이고;
화학식 3]
Figure imgf000033_0001
상기 화학식 3에서
M3은 4족 전이금속이고;
X5 및 X6은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
R14 내지 R19는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알킬실릴, C6 내지 C20의 아릴실릴기, 또는 C1 내지 C20의 아민기이고, 상기 R14 내지 R17 증 인접하는 2개 이상이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
L2는 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이며;
D2는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이며;
A2는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C2 내지 C20의 헤테로시클로알킬기 , 또는 C5 내지 C20의 헤테로아릴기이고;
탄소, 실리콘, 또는 게르마늄이고, 시클로펜타디에닐 리간드와 JR19z-y를 공유 결합에 꾀해 묶어주는 다리이고;
J는 주기율표 15족 원소 또는 16족 원소이며;
z는 J 원소의 산화수이고;
y는 J 원소의 결합수이다.
【청구항 7】
거 16항에 있어서, 상기 화학식 1의 L1은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기이고, A1은 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n- 부틸기, tert-부틸기, 메톡시메틸기, tertᅳ부톡시메틸기, i-에록시에틸기, μ메틸- μ 메특시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 올레핀계 중합체.
【청구항 8】
제 6항에 있어서, 상기 화학식 2의 Q는 C1 내지 C20의 알킬렌기고 , Z1 및 Ζ2는 각각 독립적으로 수소, C1 내지 C20의 알킬기 또는 C1 내지 C20의 알콕시기이며 , Χ3 및 Χ4는 할로겐인 올레핀계 중합체.
[창구항 9】
제 6항에 있어서, 상기 화학식 3 의 Β는 실리콘이고, J는 질소이며, R14 내지 R19는 각각 독립적으로 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C1 내지 C20의 알콕시기인 올레핀계 중합체.
【청구항 10】
제 6항에 있어서, 상기 조촉매 화합물은 하기 화학식 4, 화학식 5 또는 화학식 6으로 표시되는 화합물 중 1종 이상을 포함하는 올레핀계 중합체:
[화학식 4]
-[A1(R20)-O]n- 상기 화학삭 4에서,
R20은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 5]
D(R20)3
상기 화학식 5에서,
R20은 상기 화학식 4에서 정의된 바와 같고;
D는 알루미늄 또는 보론이며;
[화학식 6]
[L-H]+[ZA4]- 또는 [L] + [ZA4]- 상기 화학식 6에서,
L은 중성 또는 양이온성 루이스 산이고; H는 수소 원자이며; Z는 13족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, C1 내지 C20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 C6 내지 C20의 아릴기 또는 C1 내지 C20의 알킬기이다.
【청구항 11】
제 1항 내지 제 10항 중 어느 한 항의 을레핀계 증합체를 포함하는 필름.
PCT/KR2014/008481 2013-11-18 2014-09-11 가공성이 우수한 올레핀계 중합체 WO2015072658A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/032,014 US9732171B2 (en) 2013-11-18 2014-09-11 Olefin-based polymer with excellent processability
JP2016531010A JP6328239B2 (ja) 2013-11-18 2014-09-11 加工性に優れたオレフィン系重合体
EP14861556.0A EP3042918B1 (en) 2013-11-18 2014-09-11 Olefin-based polymer with excellent processability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130139997 2013-11-18
KR10-2013-0139997 2013-11-18
KR10-2014-0114385 2014-08-29
KR1020140114385A KR101549209B1 (ko) 2013-11-18 2014-08-29 가공성이 우수한 올레핀계 중합체

Publications (1)

Publication Number Publication Date
WO2015072658A1 true WO2015072658A1 (ko) 2015-05-21

Family

ID=53057569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008481 WO2015072658A1 (ko) 2013-11-18 2014-09-11 가공성이 우수한 올레핀계 중합체

Country Status (1)

Country Link
WO (1) WO2015072658A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR20010022910A (ko) * 1997-08-15 2001-03-26 그래햄 이. 테일러 실질적으로 선형인 균질한 올레핀 중합체 조성물로부터 제조된 필름
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
JP2010513627A (ja) * 2006-12-21 2010-04-30 イネオス ユーロープ リミテッド コポリマー及びそのフィルム
KR20130019793A (ko) * 2011-08-18 2013-02-27 주식회사 엘지화학 폴리올레핀 수지의 제조방법
KR20130113322A (ko) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 수소 첨가없이 넓은 분자량 분포의 폴리올레핀 제조를 위한 촉매

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935474A (en) 1983-06-06 1990-06-19 Exxon Research & Engineering Company Process and catalyst for producing polyethylene having a broad molecular weight distribution
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
KR20010022910A (ko) * 1997-08-15 2001-03-26 그래햄 이. 테일러 실질적으로 선형인 균질한 올레핀 중합체 조성물로부터 제조된 필름
US6841631B2 (en) 1999-10-22 2005-01-11 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6894128B2 (en) 1999-10-22 2005-05-17 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6828394B2 (en) 2001-07-19 2004-12-07 Univation Technologies, Llc Mixed metallocene catalyst systems containing a poor comonomer incorporator and a good comonomer incorporator
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
JP2010513627A (ja) * 2006-12-21 2010-04-30 イネオス ユーロープ リミテッド コポリマー及びそのフィルム
KR20130113322A (ko) * 2010-07-06 2013-10-15 셰브론 필립스 케미컬 컴퍼니 엘피 수소 첨가없이 넓은 분자량 분포의 폴리올레핀 제조를 위한 촉매
KR20130019793A (ko) * 2011-08-18 2013-02-27 주식회사 엘지화학 폴리올레핀 수지의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 126, no. 46, 2004, pages 15231 - 15244

Similar Documents

Publication Publication Date Title
CN106687487B (zh) 具有优异的加工性的基于烯烃的聚合物
KR101726820B1 (ko) 가공성 및 환경 응력 균열 저항성이 우수한 에틸렌/1-헥센 또는 에틸렌/1-부텐 공중합체
JP6328239B2 (ja) 加工性に優れたオレフィン系重合体
KR101658172B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR102073252B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
KR20150144281A (ko) 내환경 응력 균열성이 우수한 폴리올레핀
KR102234944B1 (ko) 올레핀 공중합체
WO2016036204A1 (ko) 가공성이 우수한 올레핀계 중합체
CN113166322B (zh) 具有优异的长期物理性能和加工性的乙烯/1-己烯共聚物
JP2017536422A (ja) 加工性に優れたエチレン/アルファ−オレフィン共重合体
JP2022515730A (ja) オレフィン重合用触媒およびこれを用いて調製されたオレフィン系重合体
KR101900139B1 (ko) 촉매
JP7118500B2 (ja) 混成担持触媒およびそれを用いたポリオレフィンの製造方法
JP2021507965A (ja) 加工性に優れたエチレン/1−ブテン共重合体
JP6862548B2 (ja) オレフィン重合体、その製造方法、そしてこれを利用したフィルム
WO2015194813A1 (ko) 내환경 응력 균열성이 우수한 폴리올레핀
CN114599692A (zh) 具有改善的柔韧性和可加工性的乙烯/1-己烯共聚物
KR20210032820A (ko) 혼성 담지 촉매
WO2015072658A1 (ko) 가공성이 우수한 올레핀계 중합체
KR20200064245A (ko) 혼성 담지 촉매
KR20220066744A (ko) 혼성 담지 촉매
WO2019124805A1 (ko) 올레핀 중합체, 이의 제조 방법, 그리고 이를 이용한 필름
WO2016099118A1 (ko) 가공성이 우수한 올레핀계 중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861556

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014861556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15032014

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016531010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE