WO2015072482A1 - Polarizer, polarizer substrate, and optical alignment device - Google Patents

Polarizer, polarizer substrate, and optical alignment device Download PDF

Info

Publication number
WO2015072482A1
WO2015072482A1 PCT/JP2014/079961 JP2014079961W WO2015072482A1 WO 2015072482 A1 WO2015072482 A1 WO 2015072482A1 JP 2014079961 W JP2014079961 W JP 2014079961W WO 2015072482 A1 WO2015072482 A1 WO 2015072482A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
polarizing material
range
photo
light
Prior art date
Application number
PCT/JP2014/079961
Other languages
French (fr)
Japanese (ja)
Inventor
登山 伸人
和雄 笹本
泰央 大川
友一 稲月
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014053913A external-priority patent/JP6409295B2/en
Priority claimed from JP2014226345A external-priority patent/JP6428171B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020167010603A priority Critical patent/KR101827658B1/en
Priority to CN201480055919.9A priority patent/CN105659119B/en
Publication of WO2015072482A1 publication Critical patent/WO2015072482A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3075Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state for use in the UV
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a polarizer that can easily impart alignment regulating force to a photo-alignment film.
  • a liquid crystal display device generally has a structure in which a counter substrate on which driving elements are formed and a color filter are arranged to face each other and the periphery is sealed, and a gap is filled with a liquid crystal material.
  • the liquid crystal material has refractive index anisotropy, and the pixel is switched on and off from the difference between the state where the liquid crystal material is aligned along the direction of the voltage applied to the liquid crystal material and the state where no voltage is applied. Can be displayed.
  • the substrate sandwiching the liquid crystal material is provided with an alignment film for aligning the liquid crystal material.
  • alignment films are also used as materials for retardation films used in liquid crystal display devices and retardation films for 3D display.
  • the alignment film For example, a film using a polymer material typified by polyimide is known as the alignment film, and the alignment film has an alignment regulating force by rubbing the polymer material with a cloth or the like. .
  • the alignment film to which the alignment regulating force is applied by such rubbing treatment has a problem that the cloth or the like remains as a foreign substance.
  • the alignment film that expresses the alignment regulating force by irradiating linearly polarized light that is, the photo-alignment film
  • the photo-alignment film can apply the alignment regulating force without performing the rubbing treatment with the cloth as described above.
  • As an irradiation method of linearly polarized light for imparting alignment regulating force to such a photo-alignment film a method of exposing through a polarizer is generally used.
  • the polarizer one having a plurality of fine wires arranged in parallel is used, and as a material constituting the fine wires, aluminum or titanium oxide is used (Patent Document 1, etc.).
  • the extinction ratio (P-wave transmittance / S-wave transmittance) in the case of short-wavelength light such as the ultraviolet region that is, with respect to the thin wire
  • the transmission of the thin line with respect to the transmittance of the parallel polarization component (S wave) (S wave component in the outgoing light / S wave component in the incident light, hereinafter sometimes referred to simply as S wave transmittance).
  • S wave transmittance The ratio of the transmittance of the polarization component (P wave) perpendicular to the thin line (P wave component in the outgoing light / P wave component in the incident light, hereinafter sometimes referred to simply as P wave transmittance) is low.
  • the present invention has been made in view of the above circumstances, and has as its main object to provide a polarizer that can easily impart alignment regulating force to the photo-alignment film.
  • the present inventors have found that the refractive index and extinction coefficient of the material constituting the thin line contribute to the extinction ratio, and further the refractive index and extinction coefficient are predetermined. As a result of using a material in this range, the inventors have found that even in the case of light with a short wavelength, the extinction ratio can be improved, and the present invention has been completed.
  • the present invention has a thin line in which a plurality of lines are arranged in parallel in a straight line, the thin line has a polarizing material layer containing a polarizing material, and the extinction ratio of light having a wavelength of 250 nm is 40 or more.
  • a polarizer is provided.
  • the extinction ratio of light having a short wavelength is excellent, for example, it is possible to easily apply an alignment regulating force to the photo-alignment film.
  • the polarizer is for imparting alignment regulating force to the photo-alignment film, and for generating linearly polarized light having a wavelength in the ultraviolet region. This is because the effect of excellent extinction ratio of short wavelength light of the present invention can be more effectively exhibited.
  • the refractive index of the polarizing material is preferably in the range of 2.0 to 3.2, and the extinction coefficient is preferably in the range of 2.7 to 3.5. This is because it is easy to obtain the above extinction ratio. In addition, since the refractive index and extinction coefficient are within the above ranges, both the extinction ratio and the P-wave transmittance can be excellent over a wide wavelength range.
  • the refractive index of the polarizing material is preferably in the range of 2.3 to 2.8, and the extinction coefficient of the polarizing material is preferably in the range of 1.4 to 2.4.
  • the amount of rotation of the polarization axis of the polarized light exiting the polarizer can be made smaller than the light incident on the polarizer at various angles.
  • the extinction ratio can be further improved.
  • the polarizing material is preferably a molybdenum silicide material. This is because it is easy to obtain the above extinction ratio.
  • the thickness of the polarizing material layer is 40 nm or more and the pitch between the polarizing material layers is 150 nm or less. This is because it is easy to obtain the above extinction ratio.
  • the present invention has a transparent substrate and a polarizing material film formed on the transparent substrate and containing a polarizing material, and the polarizing material film has a refractive index in the range of 2.0 to 3.2.
  • a polarizer substrate having an extinction coefficient in the range of 2.7 to 3.5.
  • the present invention also includes a transparent substrate and a polarizing material film formed on the transparent substrate and containing a polarizing material, and the polarizing material film has a refractive index in the range of 2.3 to 2.8.
  • the polarizer substrate is characterized in that the extinction coefficient is in the range of 1.4 to 2.4.
  • a polarizer having an excellent extinction ratio can be easily formed by having the polarizing material film.
  • the polarizing material is preferably a molybdenum silicide material. It is because it can be made more suitable for formation of the polarizer excellent in extinction ratio by using the said material.
  • the present invention is a photo-alignment apparatus that polarizes ultraviolet light and irradiates the photo-alignment film with the above-described polarizer, and irradiates the photo-alignment film with light polarized by the polarizer.
  • a photo-alignment device is provided.
  • the present invention it is possible to easily impart alignment regulating force to the photo-alignment film by using the polarizer.
  • a mechanism for moving the photo-alignment film is provided, and a plurality of the polarizers are provided in both the moving direction of the photo-alignment film and the direction orthogonal to the moving direction of the photo-alignment film.
  • the boundary between the plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film is not continuously connected to the moving direction of the photo-alignment film. Is preferably arranged. This is because the adverse effect of the boundary portion on the photo-alignment film can be suppressed.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1.
  • It is process drawing which shows an example of the manufacturing method of the polarizer of this invention.
  • 10 is a graph showing measurement results of polarization characteristics of the polarizer of Example 8.
  • FIG. 20 is an explanatory diagram illustrating a simulation model of Example 9.
  • 10 is a graph showing a simulation result of Example 9.
  • FIG. 10 is an explanatory diagram for explaining a simulation model of Example 10; It is a graph which shows the simulation result of Example 10.
  • FIG. 14 is a graph showing simulation results of Examples 11 to 13. It is a graph which shows the measurement result of the polarization characteristic of the polarizer of Example 14.
  • the present invention relates to a polarizer.
  • the polarizer of the present invention will be described.
  • the polarizer of the present invention has a thin line in which a plurality of lines are arranged in parallel in a straight line, the thin line has a polarizing material layer containing a polarizing material, and the extinction ratio of light having a wavelength of 250 nm is 40 or more. It is characterized by being.
  • FIG. 1 is a schematic plan view showing an example of the polarizer of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • a polarizer 10 of the present invention has a thin line 2 in which a plurality of lines are arranged in parallel in a straight line, and the thin line 2 is made of a molybdenum silicide material as a polarizing material layer 3. It has a molybdenum silicide-based material layer to be contained, and has an extinction ratio of light with a wavelength of 250 nm of 40 or more.
  • the thin wire 2 is formed on the molybdenum silicide material layer that is the polarizing material layer 3 and has the silicon oxide layer 4 containing silicon oxide, and is a transparent substrate made of synthetic quartz glass. 1 is formed.
  • the extinction ratio of short-wavelength light is excellent, it is possible to easily impart alignment regulating force to the photo-alignment film.
  • the extinction ratio of light having a short wavelength such as a wavelength in the ultraviolet region is excellent, a sufficient alignment regulating force can be imparted in a short time, and the production efficiency can be improved.
  • the polarizer of the present invention has fine wires.
  • each structure of the polarizer of this invention is demonstrated in detail.
  • the thin wire in the present invention is formed in a straight line and arranged in parallel, and has a polarizing material layer.
  • Polarizing material layer contains a polarizing material.
  • Such a polarizing material is not particularly limited as long as a desired extinction ratio can be obtained, and may vary depending on the shape of the polarizing material layer, such as a predetermined thickness. Can be selected from those satisfying the refractive index and extinction coefficient.
  • the refractive index and extinction coefficient are values at a wavelength of 250 nm unless otherwise specified.
  • the refractive index and extinction coefficient of the polarizing material are such that the refractive index is in the range of 2.0 to 3.2 and the extinction coefficient is in the range of 2.7 to 3.5. preferable. This is because the extinction ratio can be improved.
  • the refractive index is preferably in the range of 2.0 to 2.8, and the extinction coefficient is preferably in the range of 2.9 to 3.5, and in particular, the refractive index is 2.0 to 2. .6, and the extinction coefficient is preferably within the range of 3.1 to 3.5. This is because both the extinction ratio and the P-wave transmittance can be excellent over a wide wavelength range of 200 nm to 400 nm, which is the ultraviolet light region.
  • the extinction ratio and the transmittance can be made particularly excellent in the wavelength range of 250 nm to 370 nm.
  • the refractive index and extinction coefficient are within the range of 2.3 to 2.8 and the extinction coefficient from the viewpoint that the polarization axis rotation amount of the polarized light can be small.
  • the attenuation coefficient is preferably in the range of 1.4 to 2.4.
  • the refractive index is preferably in the range of 2.3 to 2.8
  • the extinction coefficient is preferably in the range of 1.7 to 2.2.
  • the refractive index is 2.4 to 2.
  • the extinction coefficient is in the range of 8 and the extinction coefficient is in the range of 1.8 to 2.1.
  • the method for measuring the refractive index and extinction coefficient is not particularly limited, and examples include a method of calculating from a spectral reflection spectrum, a method of measuring using an ellipsometer, and an Abbe method.
  • An example of the ellipsometer is UVSEL manufactured by Joban-Evon.
  • the refractive index in this case is a value measured with VUV-VASE manufactured by Woollam.
  • a molybdenum silicide-based material containing molybdenum (Mo) and silicon (Si) (hereinafter sometimes referred to as a MoSi-based material)
  • MoSi-based material molybdenum silicide-based material containing molybdenum (Mo) and silicon (Si)
  • a nitride-based molybdenum silicide material can be used, and among them, a molybdenum silicide-based material is preferable. It is easy to adjust the refractive index and extinction coefficient depending on the contents of elements such as Mo and Si, nitrogen and oxygen contained in the molybdenum silicide material. This is because it is easy to satisfy the coefficient.
  • the use of molybdenum silicide-based materials enables the extinction ratio to be kept high with a design in which the thickness of the thin wire is reduced, the processing accuracy is excellent, and further thinning and pitching are possible. is there.
  • an aluminum material known to be used as a conventional polarizing material it has excellent resistance to acids and alkalis, can be washed and used repeatedly, and is a photo-alignment film for liquid crystal display devices, etc. It is because it is suitable for use in orientation.
  • the molybdenum silicide-based material is not particularly limited as long as it contains molybdenum (Mo) and silicon (Si) and can satisfy a refractive index and an extinction coefficient capable of obtaining a desired extinction ratio.
  • MoSi molybdenum silicide
  • MoSiO molybdenum silicide oxide
  • MoSiN molybdenum silicide nitride
  • MoSiON molybdenum silicide oxynitride
  • the polarizing material is contained as a main raw material of the polarizing material layer.
  • containing as the main raw material specifically means that the content of the polarizing material in the polarizing material layer is 70% by mass or more, and in the present invention, It is preferably 90% by mass or more, particularly 100% by mass, that is, the polarizing material layer is preferably made of the polarizing material. It is because it is easy to set it as the said extinction ratio by being the said content.
  • the content measuring method is not particularly limited as long as the content can be measured with high accuracy. For example, a method of performing XPS surface analysis on the cross section of the thin wire can be mentioned. .
  • the polarizing material layer may consist of only one kind or a combination of two or more kinds.
  • the polarizing material layer may be a single layer or may include a plurality of layers obtained by combining layers containing each polarizing material.
  • the polarizing material layer is a single layer containing one kind of polarizing material. Since it is a single layer, it is easy to manufacture and process, and a highly accurate polarizer can be manufactured stably.
  • the content of the polarizing material layer in the fine wire is not particularly limited as long as a desired extinction ratio can be obtained.
  • the content of the polarizing material layer in the fine line is preferably 80% by mass or more, and particularly preferably 90% by mass or more, and particularly 100% by mass, that is, the fine line is It is preferable that only the polarizing material layer is included. This is because it is easy to obtain the above extinction ratio by being the above content.
  • the above content means the mass ratio of the polarizing material layer in the cross section in the width direction of the fine wire, and this measuring method.
  • the method is not particularly limited as long as it is a method capable of measuring the content with high accuracy. For example, a method similar to the method for measuring the content of the polarizing material can be used.
  • the cross-sectional shape of the polarizing material layer is not particularly limited as long as a desired extinction ratio can be obtained.
  • the polarizing material layer may have a square shape such as a square or a rectangle.
  • the thin wire in the present invention has at least the polarizing material layer and may have only the polarizing material layer, but other materials other than the polarizing material are mainly used as necessary. It may have a non-polarizing material layer included as a raw material.
  • the other material contained in the non-polarizing material layer is not particularly limited as long as a desired extinction ratio can be obtained.
  • a molybdenum silicide material when used as the polarizing material, examples thereof include silicon oxide.
  • a silicon oxide layer containing silicon oxide as a non-polarizing material is formed on a molybdenum silicide material layer containing a molybdenum silicide material as the polarizing material, the above method is performed by dry etching the molybdenum silicide material film. This is because a thin wire having a structure can be obtained, and a thin wire including the molybdenum silicide-based material layer can be easily formed and also functions as a protective film.
  • the polarizing material layer is a molybdenum silicide-based material layer containing a molybdenum silicide-based material as a polarizing material
  • the non-polarizing material layer is a silicon oxide layer containing silicon oxide as the non-polarizing material
  • the formation location of the silicon oxide layer Can be formed on the molybdenum silicide-based material layer, and when the molybdenum silicide-based material layer is formed on the transparent substrate, the surface of the molybdenum silicide-based material layer on the transparent substrate side It is preferable that it is formed so as to cover the entire surface other than. This is because it is easy to form a thin line including the molybdenum silicide material layer.
  • the film thickness of the silicon oxide layer is not particularly limited as long as a desired extinction ratio can be obtained, but it is preferably as thin as possible from the viewpoint of a high extinction ratio, for example, 10 nm or less.
  • the thickness is preferably 6 nm or less, and particularly preferably 4 nm or less. This is because the film thickness can be excellent in the extinction ratio.
  • the lower limit of the film thickness is not particularly limited because it is preferably as thin as possible, but is preferably 2 nm or more because of easy production.
  • the film thickness of the silicon oxide layer refers to the maximum thickness from the surface of the polarizing material layer, and specifically refers to the thickness indicated by d in FIG.
  • a general measurement method in the field of polarizers can be used. For example, by measuring the shape of the film surface layer with AFM and measuring the polarization characteristics with a transmission ellipsometer, The composition constituting the film and the respective film thicknesses can be obtained.
  • the film thickness of the thin wire is not particularly limited as long as it can have a desired extinction ratio.
  • the film thickness is preferably in the range of 60 nm to 180 nm. In particular, it is preferably in the range of 80 nm to 160 nm, and particularly preferably in the range of 100 nm to 150 nm.
  • the film thickness of the fine wire is the maximum thickness among the thicknesses in the direction perpendicular to the longitudinal direction and the width direction of the fine wire.
  • the non-polarizing material layer is Also means a film thickness including Specifically, it refers to the thickness indicated by a in FIG.
  • the thin wires may have different thicknesses in one polarizer, but are usually formed with the same thickness.
  • the width of the thin line is not particularly limited as long as it can have a desired extinction ratio, but the wider the width, the higher the extinction ratio, and the wider the P-wave transmittance. Therefore, considering the balance between the transmittance of the P wave and the extinction ratio, for example, it can be in the range of 30 nm to 80 nm.
  • the width of the fine line refers to the length in the direction perpendicular to the longitudinal direction of the fine line.
  • the width includes the non-polarizing material layer. Specifically, it refers to the length indicated by b in FIG.
  • the width of the thin line may include one having different widths in one polarizer, but is usually formed with the same width.
  • the duty ratio of the fine line that is, the ratio of the width of the fine line to the pitch (width / pitch) is not particularly limited as long as it can have a desired extinction ratio. It can be in the range of 0.25 to 0.70, and is preferably in the range of 0.30 to 0.50, particularly preferably in the range of 0.30 to 0.40. . This is because when the duty ratio is within the above range, both the extinction ratio and the P-wave transmittance can be made good values.
  • the pitch of the thin line is not particularly limited as long as it can have a desired extinction ratio, and varies depending on the wavelength of light used for generating linearly polarized light, It can be set to half or less of the wavelength of the light. More specifically, when the light is ultraviolet light, the pitch can be, for example, in the range of 80 nm to 150 nm, and preferably in the range of 100 nm to 120 nm. It is preferably in the range of 100 nm to 110 nm. This is because the pitch is excellent in the extinction ratio even for light having a wavelength of 300 nm or less.
  • line means the maximum width of the pitch between the thin wires adjacent to the width direction, and when a thin wire
  • the number and length of the fine wires are not particularly limited as long as they can have a desired extinction ratio, and are appropriately set according to the use of the polarizer of the present invention. It is.
  • the polarizer of this invention has the said fine wire, it has a transparent substrate with which the said fine wire is formed normally.
  • the transparent substrate is not particularly limited as long as it can stably support the fine wires, has excellent light transmittance, and can be less deteriorated by exposure light.
  • optically polished synthetic quartz glass, fluorite, calcium fluoride, and the like can be used.
  • synthetic quartz glass there are usually used synthetic quartz glass that is frequently used and stable in quality.
  • synthetic quartz glass can be preferably used. This is because the quality is stable and there is little deterioration even when short wavelength light, that is, high energy exposure light is used.
  • the thickness of the transparent substrate can be appropriately selected according to the use and size of the polarizer of the present invention.
  • Polarizer The polarizer of the present invention has the above-mentioned thin wire and has an extinction ratio of light having a wavelength of 250 nm of 40 or more.
  • the extinction ratio (P-wave transmittance / S-wave transmittance) of light having a wavelength of 250 nm is not particularly limited as long as it is 40 or more, but is preferably 50 or more, and more preferably 60 or more. It is preferable. It is because the alignment control force to a photo-alignment layer can be stably provided because it is the said range. Moreover, since it is preferable that the extinction ratio is larger, the upper limit is not particularly limited.
  • a general measurement method in the field of polarizers can be used. For example, a transmission ellipsometer capable of measuring the polarization characteristics of ultraviolet light, such as VUV- It can be measured by using a transmission ellipsometer such as VASE.
  • the P wave transmittance of the polarizer (P wave component in outgoing light / P wave component in incident light) is not particularly limited as long as a desired extinction ratio can be obtained.
  • the light with a wavelength of 250 nm is preferably 0.3 or more, more preferably 0.4 or more, and particularly preferably 0.6 or more. This is because the P-wave transmittance can efficiently impart an alignment regulating force to the photo-alignment layer.
  • a measuring method of P wave transmittance a general measuring method in the field of a polarizer can be used.
  • a transmission ellipsometer capable of measuring the polarization characteristics of ultraviolet light, for example, manufactured by Woollam Co., Ltd. It can be measured by using a transmission ellipsometer such as VUV-VASE.
  • the polarizer is preferably used for generating linearly polarized light of short-wavelength light such as in the ultraviolet region, and in particular, for generating linearly polarized light of light in the wavelength range of 200 nm to 400 nm. preferable.
  • a material of the photo-alignment film a material that is aligned by light having a wavelength of about 260 nm, a material that is aligned by light of about 300 nm, and a material that is aligned by light of about 365 nm are known.
  • a lamp is used. This is because a polarizer including the molybdenum silicide material layer can be used for the alignment of these photo-alignment films.
  • the refractive index of the polarizing material is in the range of 2.0 to 3.2 and the extinction coefficient of the polarizing material is in the range of 2.7 to 3.5
  • the child is preferably used for generating linearly polarized light in the range of 200 nm to 400 nm, and more preferably used for generating linearly polarized light in the range of 240 nm to 400 nm. It is preferably used for generating linearly polarized light within the range. This is because when the polarizing material is used, the light wavelength can exhibit excellent characteristics in both the extinction ratio and the P-wave transmittance within the above range.
  • the extinction ratio and the P-wave transmittance are excellent over a wide range in the ultraviolet region, so that the same polarizer can be used for a plurality of types of photo-alignment films having different sensitivity wavelengths.
  • the refractive index of the polarizing material is in the range of 2.3 to 2.8 and the extinction coefficient of the polarizing material is in the range of 1.4 to 2.4
  • the child is preferably used for generating linearly polarized light in the range of 200 nm to 350 nm, and more preferably used for generating linearly polarized light in the range of 240 nm to 300 nm. It is preferably used for generating linearly polarized light within the range.
  • the light wavelength can exhibit excellent characteristics in both extinction ratio and P-wave transmittance within the above range, and the polarization axis rotation amount of the polarized light is small. Because it can be done.
  • it can be suitably used as a material for a photo-alignment film that is aligned at a wavelength of about 260 nm.
  • the light irradiated to the polarizer of the present invention includes light in the predetermined wavelength range, and in particular, in the predetermined wavelength range.
  • the energy of light in a predetermined wavelength range is preferably 50% or more of the total energy of light irradiated on the polarizer, and particularly preferably 70% or more of the total energy, In particular, 90% or more of the total energy is preferable.
  • the orientation control force provision to the optical alignment film for liquid crystal display devices which clamps liquid crystal material in a liquid crystal display device. This is because the alignment regulating force can be effectively applied to the photo-alignment film.
  • FIG. 3 is a process diagram showing an example of a method for producing a polarizer according to the present invention.
  • the refractive index and extinction coefficient of the polarizing material capable of setting the extinction ratio of the light having a wavelength of 250 nm of the polarizer to 40 or more are determined by simulation, and the refractive index and extinction coefficient are determined.
  • a polarizing material satisfying the extinction coefficient is selected (not shown).
  • a transparent substrate 1 is prepared (FIG. 3A), and a polarizing material film 3 ′ made of a selected polarizing material is formed on the transparent substrate by sputtering, thereby forming the transparent substrate and the transparent substrate.
  • a polarizer substrate having a polarizing material film containing a polarizing material is formed (FIG. 3B).
  • a polarizing material processing hard mask may be provided on the polarizing material film 3 '(not shown).
  • a patterned resist 11 is formed by photolithography, and etching is performed using the patterned resist 11 as a mask (FIG. 3C), thereby forming a thin line 2 including the polarizing material layer 3 (FIG. 3). 3 (d)).
  • the silicon oxide film 4 may be formed by forming an oxide film on the surface of the molybdenum silicide material layer 3 as the polarizing material layer.
  • the hard mask is etched using the resist 11 as an etching mask, and the polarizing material film is formed using the patterned hard mask as an etching mask. It can be etched.
  • the hard mask as an etching mask in this way, there is an advantage that a fine pattern processing of the polarizing material film can be performed with higher accuracy.
  • a desired polarizer is obtained by peeling off the hard mask. If desired performance can be obtained even with the hard mask left, the hard mask may be left.
  • the material for the hard mask when the polarizing material film is a molybdenum silicide material, a chromium material can be used.
  • the chromium-based material functions as an etching mask when etching the molybdenum silicide-based material.
  • Examples of the chromium-based material include chromium, chromium oxide, chromium nitride, and chromium oxynitride.
  • the thickness of the hard mask is preferably enough to withstand the etching of the polarizing material film. When the polarizing material film is about 100 nm, the thickness is preferably about 5 nm to 15 nm.
  • the hard mask can be formed on the polarizing material film by sputtering or the like.
  • FIG. 4 is a diagram illustrating a configuration example of a photo-alignment apparatus according to the present invention.
  • a photo-alignment apparatus 20 shown in FIG. 4 includes a polarizer unit 21 in which the polarizer 10 of the present invention is housed and an ultraviolet light lamp 22, and the ultraviolet light irradiated from the ultraviolet light lamp 22 is applied to the polarizer unit 21. Polarization is performed by the accommodated polarizer 10, and this polarized light (polarized light 24) is applied to the photo-alignment film 25 formed on the work 26, thereby imparting alignment regulating force to the photo-alignment film 25. Is. Further, the photo-alignment apparatus 20 is provided with a mechanism for moving the work 26 on which the photo-alignment film 25 is formed.
  • the entire surface of the photo-alignment film 25 is irradiated with the polarized light 24. Can do.
  • the work 26 moves in the right direction in the figure (the arrow direction in FIG. 4).
  • the work 26 is shown as a rectangular flat plate.
  • the form of the work 26 is not particularly limited as long as it can irradiate the polarized light 24.
  • the work 26 may be in the form of a film, or may be in the form of a strip (web) so that it can be wound.
  • the ultraviolet lamp 22 is capable of irradiating ultraviolet light having a wavelength of 240 nm or more and 400 nm or less, and the photo-alignment film 25 applies ultraviolet light having a wavelength of 240 nm or more and 400 nm or less. It is preferable that it has sensitivity to it. Since the photo-alignment device 20 includes the polarizer 10 according to the present invention, which has an excellent extinction ratio with respect to ultraviolet light in the above wavelength range and has a high P-wave transmittance, ultraviolet light in the above wavelength range. This is because it is possible to efficiently apply the alignment regulating force to the photo-alignment film having a high sensitivity, and the productivity can be improved.
  • the photo-alignment device 20 applies ultraviolet light to the back side (the side opposite to the polarizer unit 21) or the side of the ultraviolet lamp 22. It is preferable to have a reflecting mirror 23 that reflects.
  • a rod-shaped lamp is used as the ultraviolet lamp 22 to move the work 26 (see FIG. 4). It is preferable to configure the photo-alignment device 20 so that the polarized light 24 that is a long irradiation region is irradiated in a direction orthogonal to the arrow direction in FIG.
  • the polarizer unit 21 is also in a form suitable for irradiating the large-area photo-alignment film 25 with the polarized light 24, but it is difficult to produce a large-area polarizer. It is technically and economically preferable to arrange a plurality of polarizers in the polarizer unit 21.
  • FIG. 5 is a diagram showing another configuration example of the optical alignment apparatus according to the present invention.
  • the photo-alignment device 30 includes two ultraviolet light lamps 32, and the polarizer 10 of the present invention is accommodated between each ultraviolet light lamp 32 and the work 36.
  • a polarizer unit 31 is provided.
  • Each ultraviolet lamp 32 is provided with a reflecting mirror 33.
  • the irradiation amount of the polarized light 34 applied to the photo-alignment film 35 formed on the workpiece 36 is increased as compared with the case where one ultraviolet light lamp 32 is provided. Can be made. Therefore, the moving speed of the workpiece 36 can be increased as compared with the case where one ultraviolet light lamp 32 is provided, and as a result, productivity can be improved.
  • FIG. 5 a configuration in which two ultraviolet lamps 32 are arranged in parallel in the moving direction of the workpiece 36 (the arrow direction in FIG. 5) is shown, but the present invention is not limited to this.
  • the plurality of ultraviolet light lamps may be arranged in a direction orthogonal to the moving direction of the work 36, and a plurality of ultraviolet light lamps may be provided in both the moving direction of the work 36 and the direction orthogonal thereto.
  • FIG. 5 shows a configuration in which one polarizer unit 31 is provided for one ultraviolet lamp 32, the present invention is not limited to this, and for example, a plurality of polarizer units 31 may be used.
  • the configuration may be such that one polarizer unit is provided for each ultraviolet lamp. In this case, it is sufficient that one polarizer unit has a size that can include irradiation regions of a plurality of ultraviolet lamps.
  • FIG. 6 is a diagram showing an example of the arrangement of polarizers in the optical alignment apparatus according to the present invention. 6 (a) to 6 (d), the arrangement forms of the polarizers are all shown in the form in which the plate-like polarizers 10 are arranged in a plane facing the film surface of the photo-alignment film. Yes.
  • the polarizer unit 21 when the band-shaped polarized light 24 is irradiated in a direction orthogonal to the moving direction of the workpiece 26, the polarizer unit 21 has the configuration shown in FIG.
  • the area of the polarizer 10 is small, or when the photo-alignment apparatus includes a plurality of ultraviolet lamps, as shown in FIG. 6B, it is orthogonal to the moving direction (arrow direction) of the workpiece.
  • a plurality of polarizers are arranged so that they are not aligned in a line along the workpiece movement direction (arrow direction). It is preferable that the positions of the adjacent polarizers are shifted and arranged in a direction (vertical direction in the drawing) orthogonal to the moving direction of the workpiece.
  • a plurality of boundary portions between a plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film are not continuously connected to the moving direction of the photo-alignment film.
  • a polarizer is disposed. This is because polarized light usually does not occur at the boundary between the polarizers, and this prevents the boundary from adversely affecting the photo-alignment film.
  • the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are polarized.
  • the child is shifted in the vertical direction in steps of 1/2 the size of the child in the vertical direction.
  • the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are in the vertical direction.
  • the vertical shift is performed in steps smaller than 1 ⁇ 2 of the vertical size.
  • the boundary portion 41 between the polarizer 10a and the polarizer 10b adjacently arranged in the vertical direction extends in the horizontal direction by the polarizer 10c and the polarizer 10d arranged in the horizontal direction. It is blocked from going. That is, in the arrangement form shown in FIG. 6C, it is prevented that the boundary portion between the polarizers adjacently arranged in the vertical direction is continuously connected in the horizontal direction. Therefore, when the arrangement shown in FIG. 6C is adopted and the photo-alignment film is irradiated with polarized light, the adverse effect caused by the boundary between the polarizers continuously affects the photo-alignment film. Can be suppressed.
  • the individual polarizers are arranged so that the side surfaces thereof are in contact with each other.
  • the present invention is not limited to this form, and is adjacent to each other.
  • a form in which a boundary portion between the matching polarizers has a gap may be employed.
  • end portions of adjacent polarizers may be overlapped with each other so that no gap is generated at the boundary between the polarizers.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 RCWA described in “Numerical analysis of diffractive optical elements and its application” (Maruzen Publishing Co., Ltd., Kodate Kashiko custom) for a thin line model including only a polarizing material layer made of a polarizing material with a film thickness of 80 nm and a pitch of 72 nm and 120 nm Based on (Rigorous Coupled Wave Analysis), the extinction ratio of light having a wavelength of 250 nm with respect to the refractive index and the extinction coefficient was simulated. The results are shown in Table 1 below.
  • the extinction ratio is 40 or more when the refractive index possible with the MoSi-based material is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. The value was within the range of 200.4 to 1203.8.
  • Example 2 The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 80 nm and widths and pitches of 60 nm and 120 nm. The results are shown in Table 2 below. From Table 2, the extinction ratio is 40 or more when the refractive index possible with the MoSi-based material is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. (In the range of 72.9 to 263.9).
  • Example 3 The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 80 nm and widths and pitches of 48 nm and 120 nm.
  • the results are shown in Table 3 below. From Table 3, when the extinction coefficient possible with the MoSi-based material is in the range of 2.7 to 3.1 and the refractive index is in the range of 2.2 to 3.0 (Condition 3-1), When the extinction coefficient is in the range of 3.2 to 3.3 and the refractive index is in the range of 2.1 to 3.0 (Condition 3-2), or the extinction coefficient is 3.4 to 3 When the refractive index is in the range of 0.5 and the refractive index is in the range of 2.0 to 3.0 (Condition 3-3), the extinction ratio is 40 or more.
  • Example 4 The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 60 nm and widths and pitches of 72 nm and 120 nm. The results are shown in Table 4 below. From Table 4, the extinction ratio is 40 or more when the refractive index possible with the MoSi-based material is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. (Within the range of 52.8 to 309.6).
  • Example 5 The same simulation as in Example 1 was performed except that the thin line model was a thin line model having a film thickness of 60 nm and widths and pitches of 60 nm and 120 nm.
  • the results are shown in Table 5 below. From Table 5, when the extinction coefficient possible with the MoSi-based material is in the range of 2.7 to 2.9 and the refractive index is in the range of 2.4 to 3.0 (Condition 5-1), When the extinction coefficient is in the range of 3.0 to 3.3 and the refractive index is in the range of 2.3 to 3.0 (Condition 5-2), or the extinction coefficient is 3.4 to 3 When the refractive index is in the range of 0.5 and the refractive index is in the range of 2.2 to 3.0 (condition 5-3), the extinction ratio is 40 or more. Specific extinction ratios are within the range of 43.4 to 85.1 under condition 5-1, within the range of 40.2 to 78.1 under condition 5-2, and 41.2 under condition 5-3. The extinction ratio was 40.2 to 85.1 for the
  • Example 6 The same simulation as in Example 1 was performed except that the thin line model was a thin line model having a film thickness of 60 nm and widths and pitches of 48 nm and 120 nm. The results are shown in Table 6 below. From Table 6, it is possible to obtain a region having an extinction ratio of 40 or more when the refractive index is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. However, the extinction ratio was 40 or more (41.7) under some conditions where the extinction coefficient was in the range of 1.5 to 2.4 and the refractive index was in the range of 2.6 to 3.0. In the range of ⁇ 493.0).
  • Example 7 The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 40 nm and widths and pitches of 72 nm and 120 nm. The results are shown in Table 7 below. From Table 7, when the extinction coefficient possible with the MoSi-based material is in the range of 3.0 to 3.5 and the refractive index is 3.0, the extinction ratio is 40 or more (40.0 to 42.42). 4).
  • Example 1 The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 40 nm and widths and pitches of 60 nm and 120 nm. The results are shown in Table 8 below. From Table 8, conditions showing an extinction ratio of 40 or more were not obtained.
  • Example 2 The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 40 nm and widths and pitches of 48 nm and 120 nm. The results are shown in Table 9 below. From Table 9, the conditions showing an extinction ratio of 40 or higher were not obtained.
  • the extinction ratio can be set to 40 or more by selecting the range of the refractive index and extinction coefficient from the shaded portion from the table showing the correlation between the refractive index and extinction coefficient and the extinction ratio in Tables 1 to 9.
  • the extinction ratio is within the range of a refractive index of 2 or more and an extinction coefficient of 1.5 to 3.5. It was confirmed that it could be 40 or more.
  • a nitrided molybdenum silicide film having a thickness of 120 nm was formed as the system material film. The amount of nitrogen was about half of the Mo content.
  • a chromium oxynitride film as a hard mask was formed on the molybdenum silicide film at 7 nm by a sputtering method.
  • a patterned resist having a line and space pattern with a pitch of 100 nm was formed on the hard mask.
  • a hard mask made of a chromium-based material is dry-etched using a mixed gas of chlorine and oxygen as an etching gas, followed by dry-etching the molybdenum silicide-based material film using SF 6 , and then the hard mask is peeled off.
  • a polarizer was obtained.
  • the widths, thicknesses, and pitches of the thin lines of the obtained polarizer were measured with a STEM measuring device LWM9000 manufactured by Vistec and an AFM device DIMENSION-X3D manufactured by VEECO, respectively, and they were 34 nm, 120 nm, and 100 nm, respectively.
  • the structure of the fine wire of the polarizer of Example 8 was evaluated by a transmission ellipsometer (VUV-VASE manufactured by Woollam).
  • the thin wire has a molybdenum silicide-based material layer made of a molybdenum silicide-based material having a width and a thickness of 29.8 nm and 115.8 nm, respectively, and a film thickness on the upper surface and side surfaces of the molybdenum silicide-based material layer. It was confirmed to have an oxide film made of silicon oxide having a thickness of 4.2 nm and 4.2 nm, respectively.
  • Example 8 The polarizer of Example 8 was measured using a transmission ellipsometer (VUV-VASE manufactured by Woollam Co., Ltd.) for P-wave transmittance of ultraviolet light in the wavelength range of 200 nm to 700 nm (P-wave component in outgoing light / P-wave in incident light). Component) and S wave transmittance (S wave component in outgoing light / S wave component in incident light) were measured, and extinction ratio (P wave transmittance / S wave transmittance) was calculated. The results are shown in Table 10 and FIG. As shown in Table 10 and FIG.
  • the P wave transmittance of the polarizer was 70.5% or more, and the extinction ratio was 79.5% or more.
  • the P wave transmittance of the polarizer was 70.5% or more, and the extinction ratio was 79.5 or more.
  • the P-wave transmittance of the polarizer was 73.7% or more, and the extinction ratio was 208.5 or more.
  • the P wave transmittance of the polarizer was 79.6% or more, and the extinction ratio was 346.5 or more.
  • the photo-alignment film As materials for the photo-alignment film, those that are aligned by light having a wavelength of about 260 nm, those that are aligned by light of about 300 nm, and those that are aligned by light of about 365 nm are known. It was confirmed that it can be suitably used as a material for a photo-alignment film that is particularly aligned with light of about 365 nm. Moreover, in the wavelength range of 200 nm to 600 nm, the S wave transmittance of the polarizer of Example 8 was 8.44% or less, and the extinction ratio was 10.9 or more.
  • the S wave transmittance of the polarizer of Example 8 was 2.69% or less, and the extinction ratio was 33.5 or more. It was confirmed that the polarizer of Example 8 maintained an extinction ratio of 10 or more from a wavelength of about 200 nm to about 600 nm.
  • the absorption spectrum of a photo-alignment film has a peak in a specific wavelength range, but is known to absorb light in a wide wavelength range. For this reason, in a conventional polarizer, light in a wavelength range in which the extinction ratio is low is cut by a bandpass filter.
  • a polarizer with a thin wire made of aluminum cuts light in a wavelength range of 300 nm or less
  • a polarizer with a thin wire made of titanium oxide emits light in a wavelength range of 300 nm or more. It was cut.
  • the above-described method has a disadvantage that the efficiency of applying the alignment regulating force to the photo-alignment film is also reduced due to the light cut.
  • the polarizer of the present invention can secure an extinction ratio of a certain level or more in a wide wavelength range as described above, so there is no need to use a band pass filter, and light in a wide wavelength range is regulated to be aligned in the photo-alignment film. It was confirmed that it can be used efficiently for imparting force.
  • Example 9 In the case where light having a wavelength of 250 nm is incident on the polarizer 10 shown in FIG. 8 at an azimuth angle of 45 degrees and an incident angle of 60 degrees from the side where the thin line is formed, “Numerical analysis of diffractive optical element and its application” ( A simulation model based on RCWA (Rigorous Coupled Wave Analysis) described in Maruzen Publishing, Kodate Kashiko) is created, and the refractive index n and extinction coefficient k of the polarizing material and the polarization axis of the polarized light emitted from the polarizer are The relationship of the rotation amount (°) was calculated. The results are shown in Table 11 below and FIG.
  • the thin line of the polarizer 10 shown in FIG. 8 is a thin line model of a polarizing material layer (single layer structure) made of a polarizing material.
  • the thin wires of the polarizer 10 had a thickness of 100 nm, a width of 33 nm, and a pitch of 100 nm.
  • the rotation amount of the polarization axis indicates the rotation amount (rotation angle) from this direction with reference to the direction of the polarization axis when the incident angle of incident light is 0 degree.
  • the ranges of the refractive index n and the extinction coefficient k indicated by m, n, o, p, q, and r are respectively the polarization axis at the azimuth angle of 45 degrees and the incident angle of 60 degrees.
  • the range of rotation is +6 to +9, +3 to +6, 0 to +3, -3 to 0, -6 to -3, and -9 to -6. . Therefore, in the graph shown in FIG. 9, the range of the refractive index n and the extinction coefficient k in which the rotation amount of the polarization axis is ⁇ 3.0 degrees to +3.0 degrees at the azimuth angle of 45 degrees and the incident angle of 60 degrees is shown. It is represented as a white area.
  • the black line passing through the approximate center of the white region indicates the refractive index n and the extinction coefficient k at which the rotation amount of the polarization axis is 0 degree.
  • the range of the refractive index n and the extinction coefficient k is expressed as a light gray region in the graph shown in FIG.
  • the incident angle of the light incident on the polarizer is increased by appropriately selecting the ranges of the refractive index n and the extinction coefficient k of the polarizing material constituting the thin wire 2. However, it was confirmed that the rotation of the polarization axis of the polarized light can be suppressed.
  • Example 10 Next, regarding the case where light having a wavelength of 250 nm is incident on the polarizer 10 shown in FIG. 10 at an azimuth angle of 0 ° and an incident angle of 0 ° from the side where the thin line is formed, “Numerical analysis of diffractive optical element and its A simulation model based on RCWA (Rigorous Coupled Wave Analysis) described in "Application” (Maruzen Publishing, Kodate Kashiko) is used, and the relationship between the refractive index n and extinction coefficient k of the polarizing material constituting the thin line and the extinction ratio. was calculated. The results are shown in Table 12 below and FIG.
  • the thin line of the polarizer 10 shown in FIG. 10 is a thin line model of a polarizing material layer (single layer structure) made of a polarizing material in order to facilitate calculation.
  • the thin wires of the polarizer 10 had a thickness of 100 nm, a width of 33 nm, and a pitch of 100 nm.
  • the ranges of the refractive index n and the extinction coefficient k indicated by s, t, u, and v are such that the extinction ratio is 10 4 to 10 5 , 10 3 at an azimuth angle of 0 ° and an incident angle of 0 °, respectively.
  • 10 4 10 2 to 10 3 , 10 to 10 2, and 1 to 10 are shown.
  • the range of the refractive index n and the extinction coefficient k at a wavelength of 250 nm is adjusted to 2.2 ⁇ n ⁇ 3.0 by adjusting the composition and the content of oxygen and nitrogen.
  • it can be in the range of about 0.7 ⁇ k ⁇ 3.5.
  • the refractive index and the extinction coefficient that can realize a high extinction ratio and simultaneously suppress the rotation amount of the polarization axis are in the range of 2.3 to 2.8, and the extinction coefficient is It was confirmed that it was within the range of 1.4 to 2.4.
  • the refractive index is preferably in the range of 2.3 to 2.8, and the extinction coefficient is preferably in the range of 1.7 to 2.2. In particular, the refractive index is 2.4. It was confirmed that the effect becomes more remarkable when the extinction coefficient is in the range of 1.8 to 2.1 and the extinction coefficient is in the range of ⁇ 2.8.
  • Example 11 RCWA (Rigorous Coupled Wave) in the same manner as in Example 9 except that the refractive index n and extinction coefficient k of the polarizing material at a wavelength of 250 nm were 2.66 and 1.94, respectively, and the thickness of the thin wire was 150 nm.
  • a simulation model based on (Analysis) was created, and the relationship between the rotation amount of the polarization axis of the polarized light emitted from the polarizer with respect to the incident angles (0 °, 10 °, 20 °, 30 °, 40 ° and 50 °) was calculated. . The results are shown in FIG.
  • Example 12 The refractive index n and extinction coefficient k of the polarizing material were set to Example 11 except that the refractive index n at a wavelength of 250 nm was 2.66, the extinction coefficient k was 1.94, and the thickness of the thin line was 170 nm. Similarly, the relationship of the rotation amount of the polarization axis of the polarized light emitted from the polarizer with respect to the incident angles (0 °, 10 °, 20 °, 30 °, 40 °, and 50 °) was calculated. The results are shown in FIG.
  • Example 13 Example 11 except that the refractive index n and extinction coefficient k of the polarizing material were set to 2.29 and extinction coefficient k of 3.24 at a wavelength of 250 nm, respectively, and the thickness of the thin line was set to 100 nm.
  • the relationship of the rotation amount of the polarization axis of the polarized light emitted from the polarizer with respect to the incident angles (0 °, 10 °, 20 °, 30 °, 40 °, and 50 °) was calculated. The results are shown in FIG.
  • the polarizing material is a molybdenum silicide-based material
  • the amount of rotation of the polarization axis that is, the degree of influence on the axis deviation differs depending on the refractive index and the extinction coefficient. It was confirmed that the material having the refractive index n of 2.66 and the extinction coefficient k of 1.94 has little polarization axis misalignment with respect to incident light having a wide incident angle.
  • a molybdenum silicide material film was formed by the method. Compared to the film formation of Example 8, nitrogen was increased in order to adjust the refractive index, and oxygen was slightly introduced to adjust the extinction coefficient. The film thickness was 100 nm. Further, a chromium oxynitride film as a hard mask was formed on the molybdenum silicide material film by sputtering at 7 nm. Thereafter, a polarizer was obtained by etching in the same manner as in Example 8. The width, thickness, and pitch of the thin wires of the obtained polarizer were 36 nm, 100 nm, and 100 nm, respectively.
  • the structure of the fine wire of the polarizer of Example 14 was evaluated using a transmission ellipsometer (VUV-VASE manufactured by Woollam).
  • the thin wire has a molybdenum silicide-based material layer made of a molybdenum silicide-based material having a width and a thickness of 31.8 nm and 95.8 nm, respectively, and the upper surface thickness and the side surface film thickness of the molybdenum silicide-based material layer. It was confirmed to have an oxide film made of silicon oxide having a thickness of 4.2 nm and 4.2 nm, respectively.
  • the P-wave transmittance of the polarizer was 61% or more, and the extinction ratio was 220 or more.
  • the polarizer of this example can be suitably used as a material for a photo-alignment film that is aligned at a wavelength of about 260 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

The objective of the present invention is to provide a polarizer that easily imparts an alignment regulating force on an optical alignment film. The present invention achieves the objective by means of providing a polarizer characterized by having fine lines of which a plurality are disposed in parallel in a linear shape, the fine lines having a polarizing material layer containing a polarizing material, and the extinction ratio of light having a wavelength of 250 nm being at least 40.

Description

偏光子、偏光子用基板および光配向装置Polarizer, polarizer substrate and optical alignment apparatus
 本発明は、光配向膜への配向規制力付与の容易な偏光子に関するものである。 The present invention relates to a polarizer that can easily impart alignment regulating force to a photo-alignment film.
 液晶表示装置は、一般に駆動素子が形成された対向基板とカラーフィルタとを対向配置して周囲を封止し、その間隙に液晶材料を充填した構造を有する。そして、液晶材料は屈折率異方性を有しており、液晶材料に印加された電圧の方向に沿うように整列される状態と、電圧が印加されない状態との違いから、オンオフを切り替え画素を表示することができる。ここで液晶材料を挟持する基板には、液晶材料を配向させるために配向膜が設けられている。
 また、液晶表示装置に用いられる位相差フィルムや、3D表示用位相差フィルムの材料としても配向膜が用いられている。
 配向膜としては、例えば、ポリイミドに代表される高分子材料が用いたものが知られており、この高分子材料を布等により摩擦するラビング処理がされることによって配向規制力を有するものとなる。
 しかしながら、このようなラビング処理により配向規制力が付与された配向膜では、布等が異物として残存するといった問題があった。
A liquid crystal display device generally has a structure in which a counter substrate on which driving elements are formed and a color filter are arranged to face each other and the periphery is sealed, and a gap is filled with a liquid crystal material. The liquid crystal material has refractive index anisotropy, and the pixel is switched on and off from the difference between the state where the liquid crystal material is aligned along the direction of the voltage applied to the liquid crystal material and the state where no voltage is applied. Can be displayed. Here, the substrate sandwiching the liquid crystal material is provided with an alignment film for aligning the liquid crystal material.
In addition, alignment films are also used as materials for retardation films used in liquid crystal display devices and retardation films for 3D display.
For example, a film using a polymer material typified by polyimide is known as the alignment film, and the alignment film has an alignment regulating force by rubbing the polymer material with a cloth or the like. .
However, the alignment film to which the alignment regulating force is applied by such rubbing treatment has a problem that the cloth or the like remains as a foreign substance.
 これに対して直線偏光を照射することにより配向規制力を発現する配向膜、すなわち光配向膜では、上述のような布等によるラビング処理をすることなく配向規制力を付与できるため布等が異物として残存する不具合がないことから近年注目されている。
 このような光配向膜への配向規制力付与のための直線偏光の照射方法としては、偏光子を介して露光する方法が一般的に用いられる。偏光子としては、平行に配置された複数の細線を有するものが用いられ、細線を構成する材料としては、アルミや酸化チタンが用いられている(特許文献1等)。
On the other hand, the alignment film that expresses the alignment regulating force by irradiating linearly polarized light, that is, the photo-alignment film, can apply the alignment regulating force without performing the rubbing treatment with the cloth as described above. In recent years, it has been attracting attention because it has no remaining defects.
As an irradiation method of linearly polarized light for imparting alignment regulating force to such a photo-alignment film, a method of exposing through a polarizer is generally used. As the polarizer, one having a plurality of fine wires arranged in parallel is used, and as a material constituting the fine wires, aluminum or titanium oxide is used (Patent Document 1, etc.).
特許第4968165号Patent No. 4968165
 しかしながら、上述のような材料の細線を備えた偏光子では、紫外線領域のような短波長の光の場合には消光比(P波透過率/S波透過率)、すなわち、上記細線に対して平行な偏光成分(S波)の透過率(出射光中のS波成分/入射光中のS波成分、以下、単にS波透過率とする場合がある。)に対する、上記細線を透過する上記細線に対して垂直な偏光成分(P波)の透過率(出射光中のP波成分/入射光中のP波成分、以下、単にP波透過率とする場合がある。)の割合が低く、光配向膜への配向規制力付与を効率的に行うことができないといった問題があった。 However, in the case of a polarizer having a thin wire made of the material as described above, the extinction ratio (P-wave transmittance / S-wave transmittance) in the case of short-wavelength light such as the ultraviolet region, that is, with respect to the thin wire The transmission of the thin line with respect to the transmittance of the parallel polarization component (S wave) (S wave component in the outgoing light / S wave component in the incident light, hereinafter sometimes referred to simply as S wave transmittance). The ratio of the transmittance of the polarization component (P wave) perpendicular to the thin line (P wave component in the outgoing light / P wave component in the incident light, hereinafter sometimes referred to simply as P wave transmittance) is low. There has been a problem that it is impossible to efficiently apply the alignment regulating force to the photo-alignment film.
 本発明は、上記実情に鑑みてなされたものであり、光配向膜への配向規制力付与の容易な偏光子を提供することを主目的とする。 The present invention has been made in view of the above circumstances, and has as its main object to provide a polarizer that can easily impart alignment regulating force to the photo-alignment film.
 本発明者等は、上記課題を解決すべく研究を重ねた結果、細線を構成する材料の屈折率および消衰係数が消光比に寄与していること、さらには屈折率および消衰係数が所定の範囲の材料を用いたところ、短波長の光の場合であっても消光比に優れたものとすることができることを見出し、本発明を完成させるに至ったのである。 As a result of repeated studies to solve the above problems, the present inventors have found that the refractive index and extinction coefficient of the material constituting the thin line contribute to the extinction ratio, and further the refractive index and extinction coefficient are predetermined. As a result of using a material in this range, the inventors have found that even in the case of light with a short wavelength, the extinction ratio can be improved, and the present invention has been completed.
 すなわち、本発明は、直線状に複数本が並列に配置された細線を有し、上記細線が、偏光材料を含有する偏光材料層を有し、波長250nmの光の消光比が40以上であることを特徴とする偏光子を提供する。 That is, the present invention has a thin line in which a plurality of lines are arranged in parallel in a straight line, the thin line has a polarizing material layer containing a polarizing material, and the extinction ratio of light having a wavelength of 250 nm is 40 or more. A polarizer is provided.
 本発明によれば、短波長の光の消光比に優れるため、例えば、光配向膜への配向規制力の付与の容易なものとすることができる。 According to the present invention, since the extinction ratio of light having a short wavelength is excellent, for example, it is possible to easily apply an alignment regulating force to the photo-alignment film.
 本発明においては、上記偏光子が光配向膜への配向規制力付与用であり、紫外線領域の波長の光の直線偏光生成用であることが好ましい。
 本発明の短波長の光の消光比にも優れるとの効果をより効果的に発揮できるからである。
In the present invention, it is preferable that the polarizer is for imparting alignment regulating force to the photo-alignment film, and for generating linearly polarized light having a wavelength in the ultraviolet region.
This is because the effect of excellent extinction ratio of short wavelength light of the present invention can be more effectively exhibited.
 本発明においては、上記偏光材料の屈折率が2.0~3.2の範囲内であり、上記消衰係数が2.7~3.5の範囲内であることが好ましい。上記消光比とすることが容易だからである。また、上記屈折率および消衰係数が上述の範囲内であることにより、幅広い波長範囲で消光比およびP波透過率の両者に優れたものとすることができるからである。 In the present invention, the refractive index of the polarizing material is preferably in the range of 2.0 to 3.2, and the extinction coefficient is preferably in the range of 2.7 to 3.5. This is because it is easy to obtain the above extinction ratio. In addition, since the refractive index and extinction coefficient are within the above ranges, both the extinction ratio and the P-wave transmittance can be excellent over a wide wavelength range.
 本発明においては、上記偏光材料の屈折率が2.3~2.8の範囲内であり、上記偏光材料の消衰係数が1.4~2.4の範囲内であることが好ましい。上記屈折率および消衰係数が上述の範囲内であることにより、様々な角度で偏光子に入射する光に対し、偏光子を出射する偏光光の偏光軸回転量の小さいものとすることができ、さらに、消光比に優れたものとすることができるからである。 In the present invention, the refractive index of the polarizing material is preferably in the range of 2.3 to 2.8, and the extinction coefficient of the polarizing material is preferably in the range of 1.4 to 2.4. When the refractive index and extinction coefficient are within the above ranges, the amount of rotation of the polarization axis of the polarized light exiting the polarizer can be made smaller than the light incident on the polarizer at various angles. In addition, the extinction ratio can be further improved.
 本発明においては、上記偏光材料がモリブデンシリサイド系材料であることが好ましい。上記消光比とすることが容易だからである。 In the present invention, the polarizing material is preferably a molybdenum silicide material. This is because it is easy to obtain the above extinction ratio.
 本発明においては、上記偏光材料層の膜厚が40nm以上であり、上記偏光材料層間のピッチが150nm以下であることが好ましい。上記消光比とすることが容易だからである。 In the present invention, it is preferable that the thickness of the polarizing material layer is 40 nm or more and the pitch between the polarizing material layers is 150 nm or less. This is because it is easy to obtain the above extinction ratio.
 本発明は、透明基板と、上記透明基板上に形成され、偏光材料を含有する偏光材料膜と、を有し、上記偏光材料膜は、屈折率が2.0~3.2の範囲内であり、消衰係数が2.7~3.5の範囲内であることを特徴とする偏光子用基板を提供する。 The present invention has a transparent substrate and a polarizing material film formed on the transparent substrate and containing a polarizing material, and the polarizing material film has a refractive index in the range of 2.0 to 3.2. There is provided a polarizer substrate having an extinction coefficient in the range of 2.7 to 3.5.
 また、本発明は、透明基板と、上記透明基板上に形成され、偏光材料を含有する偏光材料膜と、を有し、上記偏光材料膜は、屈折率が2.3~2.8の範囲内であり、消衰係数が1.4~2.4の範囲内であることを特徴とする偏光子用基板を提供する。 The present invention also includes a transparent substrate and a polarizing material film formed on the transparent substrate and containing a polarizing material, and the polarizing material film has a refractive index in the range of 2.3 to 2.8. The polarizer substrate is characterized in that the extinction coefficient is in the range of 1.4 to 2.4.
 本発明によれば、上記偏光材料膜を有することにより、消光比に優れた偏光子を容易に形成できる。 According to the present invention, a polarizer having an excellent extinction ratio can be easily formed by having the polarizing material film.
 本発明においては、上記偏光材料がモリブデンシリサイド系材料であることが好ましい。上記材料であることにより、消光比に優れた偏光子の形成により適したものとすることができるからである。 In the present invention, the polarizing material is preferably a molybdenum silicide material. It is because it can be made more suitable for formation of the polarizer excellent in extinction ratio by using the said material.
 本発明は、紫外光を偏光して光配向膜に照射する光配向装置であって、上述の偏光子を備え、上記偏光子により偏光した光を上記光配向膜に照射することを特徴とする光配向装置を提供する。 The present invention is a photo-alignment apparatus that polarizes ultraviolet light and irradiates the photo-alignment film with the above-described polarizer, and irradiates the photo-alignment film with light polarized by the polarizer. A photo-alignment device is provided.
 本発明によれば、上記偏光子を用いることにより、光配向膜への配向規制力付与の容易なものとすることができる。 According to the present invention, it is possible to easily impart alignment regulating force to the photo-alignment film by using the polarizer.
 本発明においては、上記光配向膜を移動させる機構が備えられており、上記偏光子が上記光配向膜の移動方向および上記光配向膜の移動方向に直交する方向の両方向に複数個備えられており、上記光配向膜の移動方向に直交する方向において隣り合う上記複数個の偏光子間の境界部が、上記光配向膜の移動方向に連続的に繋がらないように、上記複数個の偏光子が配置されていることが好ましい。境界部が光配向膜に与える弊害を抑制できるものとすることができるからである。 In the present invention, a mechanism for moving the photo-alignment film is provided, and a plurality of the polarizers are provided in both the moving direction of the photo-alignment film and the direction orthogonal to the moving direction of the photo-alignment film. The boundary between the plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film is not continuously connected to the moving direction of the photo-alignment film. Is preferably arranged. This is because the adverse effect of the boundary portion on the photo-alignment film can be suppressed.
 本発明においては、光配向膜への配向規制力付与の容易な偏光子を提供できるといった効果を奏する。 In the present invention, there is an effect that it is possible to provide a polarizer that can easily impart alignment regulating force to the photo-alignment film.
本発明の偏光子の一例を示す概略平面図である。It is a schematic plan view which shows an example of the polarizer of this invention. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明の偏光子の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the polarizer of this invention. 本発明の光配向装置の構成例を示す図である。It is a figure which shows the structural example of the photo-alignment apparatus of this invention. 本発明の光配向装置の他の構成例を示す図である。It is a figure which shows the other structural example of the optical orientation apparatus of this invention. 本発明の光配向装置における偏光子の配置形態の例を示す図である。It is a figure which shows the example of the arrangement | positioning form of the polarizer in the photo-alignment apparatus of this invention. 実施例8の偏光子の偏光特性の測定結果を示すグラフである。10 is a graph showing measurement results of polarization characteristics of the polarizer of Example 8. 実施例9のシミュレーションモデルを説明する説明図である。FIG. 20 is an explanatory diagram illustrating a simulation model of Example 9. 実施例9のシミュレーション結果を示すグラフである。10 is a graph showing a simulation result of Example 9. 実施例10のシミュレーションモデルを説明する説明図である。FIG. 10 is an explanatory diagram for explaining a simulation model of Example 10; 実施例10のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Example 10. FIG. 実施例11~実施例13のシミュレーション結果を示すグラフである。14 is a graph showing simulation results of Examples 11 to 13. 実施例14の偏光子の偏光特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the polarization characteristic of the polarizer of Example 14.
 本発明は、偏光子に関するものである。
 以下、本発明の偏光子について説明する。
The present invention relates to a polarizer.
Hereinafter, the polarizer of the present invention will be described.
 本発明の偏光子は、直線状に複数本が並列に配置された細線を有し、上記細線が、偏光材料を含有する偏光材料層を有し、波長250nmの光の消光比が40以上であることを特徴とするものである。 The polarizer of the present invention has a thin line in which a plurality of lines are arranged in parallel in a straight line, the thin line has a polarizing material layer containing a polarizing material, and the extinction ratio of light having a wavelength of 250 nm is 40 or more. It is characterized by being.
 このような本発明の偏光子について図を参照して説明する。図1は、本発明の偏光子の一例を示す概略平面図であり、図2は図1のA-A線断面図である。図1および2に例示するように、本発明の偏光子10は、直線状に複数本が並列に配置された細線2を有し、上記細線2が、偏光材料層3としてモリブデンシリサイド系材料を含有するモリブデンシリサイド系材料層を有するものであり、波長250nmの光の消光比が40以上のものである。
 なお、この例では、上記細線2が、上記偏光材料層3であるモリブデンシリサイド系材料層上に形成され、酸化ケイ素を含有する酸化ケイ素層4を有するものであり、合成石英ガラスからなる透明基板1上に形成されるものである。
Such a polarizer of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view showing an example of the polarizer of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG. As illustrated in FIGS. 1 and 2, a polarizer 10 of the present invention has a thin line 2 in which a plurality of lines are arranged in parallel in a straight line, and the thin line 2 is made of a molybdenum silicide material as a polarizing material layer 3. It has a molybdenum silicide-based material layer to be contained, and has an extinction ratio of light with a wavelength of 250 nm of 40 or more.
In this example, the thin wire 2 is formed on the molybdenum silicide material layer that is the polarizing material layer 3 and has the silicon oxide layer 4 containing silicon oxide, and is a transparent substrate made of synthetic quartz glass. 1 is formed.
 本発明によれば、短波長の光の消光比に優れるため、光配向膜への配向規制力の付与の容易なものとすることができる。特に紫外線領域の波長のような短波長の光の消光比に優れるため、短時間で十分な配向規制力の付与が可能となり、生産効率を優れたものとすることができる。 According to the present invention, since the extinction ratio of short-wavelength light is excellent, it is possible to easily impart alignment regulating force to the photo-alignment film. In particular, since the extinction ratio of light having a short wavelength such as a wavelength in the ultraviolet region is excellent, a sufficient alignment regulating force can be imparted in a short time, and the production efficiency can be improved.
 本発明の偏光子は、細線を有するものである。
 以下、本発明の偏光子の各構成について詳細に説明する。
The polarizer of the present invention has fine wires.
Hereinafter, each structure of the polarizer of this invention is demonstrated in detail.
1.細線
 本発明における細線は、直線状に形成され、かつ、平行に配置されるものであり、偏光材料層を有するものである。
1. Thin wire The thin wire in the present invention is formed in a straight line and arranged in parallel, and has a polarizing material layer.
(1)偏光材料層
 上記偏光材料層は、偏光材料を含有するものである。
(1) Polarizing material layer The polarizing material layer contains a polarizing material.
 このような偏光材料としては、所望の消光比を得ることができるものであれば特に限定されるものではなく、上記偏光材料層の膜厚等の形状によっても異なるものであるが、例えば、所定の屈折率および消衰係数を満たすものから選択することができる。
 なお、本発明での屈折率および消衰係数は特に波長の特定に言及が無い場合は250nmの波長における値とする。
Such a polarizing material is not particularly limited as long as a desired extinction ratio can be obtained, and may vary depending on the shape of the polarizing material layer, such as a predetermined thickness. Can be selected from those satisfying the refractive index and extinction coefficient.
In the present invention, the refractive index and extinction coefficient are values at a wavelength of 250 nm unless otherwise specified.
 上記偏光材料の屈折率と消衰係数の値としては、屈折率が2.0~3.2の範囲内であり、かつ消衰係数が2.7~3.5の範囲内であることが好ましい。消光比に優れたものとすることができるからである。なかでも、屈折率が2.0~2.8の範囲内であり、かつ消衰係数が2.9~3.5の範囲内であることが好ましく、特に、屈折率が2.0~2.6の範囲内であり、かつ消衰係数が3.1~3.5の範囲内であることが好ましい。紫外光領域である200nm~400nmの波長領域の幅広い波長範囲で消光比およびP波透過率の両者に優れたものとすることができるからである。特に250nm~370nmの波長領域の範囲で消光比と透過率を優れたものとすることができるからである。
 また、上記屈折率と消衰係数は、偏光光の偏光軸回転量の小さいものとすることができるとの観点からは、屈折率が2.3~2.8の範囲内であり、かつ消衰係数が1.4~2.4の範囲内であることが好ましい。なかでも屈折率が2.3~2.8の範囲内であり、かつ消衰係数が1.7~2.2の範囲内であることが好ましく、特に、屈折率が2.4~2.8の範囲内であり、かつ消衰係数が1.8~2.1の範囲内であることが好ましい。
消光比を良好な値とし、かつ、偏光軸回転量も小さいものとすることができるからである。
 特に240nm~280nmの波長領域の範囲で消光比と透過率を優れたものとすることができ、かつ偏光光の偏光軸回転量の小さいものとすることができるからである。
 なお、屈折率および消衰係数の測定方法としては、特に限定されないが、分光反射スペクトルから算出する方法、エリプソメーターを用いて測定する方法及びアッベ法を挙げることができる。エリプソメーターとしてはジョバンーイーボン社製UVSELが挙げられる。なお、本件の屈折率はウーラム社製VUV-VASEにて測定した値である。
The refractive index and extinction coefficient of the polarizing material are such that the refractive index is in the range of 2.0 to 3.2 and the extinction coefficient is in the range of 2.7 to 3.5. preferable. This is because the extinction ratio can be improved. In particular, the refractive index is preferably in the range of 2.0 to 2.8, and the extinction coefficient is preferably in the range of 2.9 to 3.5, and in particular, the refractive index is 2.0 to 2. .6, and the extinction coefficient is preferably within the range of 3.1 to 3.5. This is because both the extinction ratio and the P-wave transmittance can be excellent over a wide wavelength range of 200 nm to 400 nm, which is the ultraviolet light region. This is because the extinction ratio and the transmittance can be made particularly excellent in the wavelength range of 250 nm to 370 nm.
Further, the refractive index and extinction coefficient are within the range of 2.3 to 2.8 and the extinction coefficient from the viewpoint that the polarization axis rotation amount of the polarized light can be small. The attenuation coefficient is preferably in the range of 1.4 to 2.4. In particular, the refractive index is preferably in the range of 2.3 to 2.8, and the extinction coefficient is preferably in the range of 1.7 to 2.2. In particular, the refractive index is 2.4 to 2. Preferably, the extinction coefficient is in the range of 8 and the extinction coefficient is in the range of 1.8 to 2.1.
This is because the extinction ratio can be made a good value and the polarization axis rotation amount can be made small.
This is because, in particular, the extinction ratio and transmittance can be made excellent in the wavelength range of 240 nm to 280 nm, and the polarization axis rotation amount of the polarized light can be made small.
The method for measuring the refractive index and extinction coefficient is not particularly limited, and examples include a method of calculating from a spectral reflection spectrum, a method of measuring using an ellipsometer, and an Abbe method. An example of the ellipsometer is UVSEL manufactured by Joban-Evon. The refractive index in this case is a value measured with VUV-VASE manufactured by Woollam.
 このような屈折率および消衰係数を満たす偏光材料としては、具体的には、モリブデン(Mo)およびシリコン(Si)を含むモリブデンシリサイド系材料(以下、MoSi系材料と称する場合がある。)、あるいは窒化系モリブデンシリサイド材料等を挙げることができ、なかでも、モリブデンシリサイド系材料であることが好ましい。モリブデンシリサイド系材料に含まれるMoおよびSi、窒素、酸素などの元素の含有量によって、屈折率および消衰係数の値を調節することが容易であり、紫外線領域の波長で上記屈折率および消衰係数を満たすものとすることが容易だからである。また、紫外線領域の短波長に対する耐光性も有し、液晶表示装置用光配向膜の配向用として適しているからである。
 また、モリブデンシリサイド系材料を用いることで、細線の膜厚を薄くした設計で消光比を高く保つことができ、加工精度も優れたものとなり、より細線化、狭ピッチ化も可能となるからである。
 さらに、従来の偏光材料として用いられることが知られるアルミ材と比較して、酸やアルカリに対しての耐性に優れ、洗浄して繰り返し使用することができ、液晶表示装置用等の光配向膜の配向用として適しているからである。
As a polarizing material satisfying such a refractive index and extinction coefficient, specifically, a molybdenum silicide-based material containing molybdenum (Mo) and silicon (Si) (hereinafter sometimes referred to as a MoSi-based material), Alternatively, a nitride-based molybdenum silicide material can be used, and among them, a molybdenum silicide-based material is preferable. It is easy to adjust the refractive index and extinction coefficient depending on the contents of elements such as Mo and Si, nitrogen and oxygen contained in the molybdenum silicide material. This is because it is easy to satisfy the coefficient. Further, it has light resistance to short wavelengths in the ultraviolet region, and is suitable for alignment of a photo-alignment film for liquid crystal display devices.
In addition, the use of molybdenum silicide-based materials enables the extinction ratio to be kept high with a design in which the thickness of the thin wire is reduced, the processing accuracy is excellent, and further thinning and pitching are possible. is there.
Furthermore, compared with an aluminum material known to be used as a conventional polarizing material, it has excellent resistance to acids and alkalis, can be washed and used repeatedly, and is a photo-alignment film for liquid crystal display devices, etc. It is because it is suitable for use in orientation.
 上記モリブデンシリサイド系材料としては、モリブデン(Mo)およびシリコン(Si)を含み、所望の消光比を得ることができる屈折率および消衰係数を満たすことができるものであれば特に限定されるものではなく、例えば、モリブデンシリサイド(MoSi)、モリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド窒化物(MoSiN)、モリブデンシリサイド酸化窒化物(MoSiON)等を挙げることができる。上記材料であることにより、消光比に優れたものとすることができるからである。 The molybdenum silicide-based material is not particularly limited as long as it contains molybdenum (Mo) and silicon (Si) and can satisfy a refractive index and an extinction coefficient capable of obtaining a desired extinction ratio. For example, molybdenum silicide (MoSi), molybdenum silicide oxide (MoSiO), molybdenum silicide nitride (MoSiN), molybdenum silicide oxynitride (MoSiON), and the like can be given. It is because it can be made excellent in extinction ratio by being the said material.
 上記偏光材料は、偏光材料層の主原料として含有されるものである。
 ここで、主原料として含有されるとは、具体的には、上記偏光材料層中の偏光材料の含有量が、70質量%以上であることをいうものであり、なかでも本発明においては、90質量%以上であることが好ましく、特に100質量%、すなわち、上記偏光材料層が上記偏光材料からなるものであることが好ましい。上記含有量であることにより、上記消光比とすることが容易だからである。
 また、上記含有量の測定方法としては、含有量を精度良く測定できる方法であれば特に限定されるものではないが、例えば、上記細線の断面について、XPS表面分析を行う方法を挙げることができる。
The polarizing material is contained as a main raw material of the polarizing material layer.
Here, containing as the main raw material specifically means that the content of the polarizing material in the polarizing material layer is 70% by mass or more, and in the present invention, It is preferably 90% by mass or more, particularly 100% by mass, that is, the polarizing material layer is preferably made of the polarizing material. It is because it is easy to set it as the said extinction ratio by being the said content.
The content measuring method is not particularly limited as long as the content can be measured with high accuracy. For example, a method of performing XPS surface analysis on the cross section of the thin wire can be mentioned. .
 上記偏光材料層に含まれる偏光材料の種類としては、1種類のみからなるものであっても、2種類以上を組み合わせたものであっても良い。また、2種類以上の偏光材料を用いる場合、偏光材料層は単一の層であっても良く、各偏光材料を含む層を組み合わせた複数の層を含むものであっても良い。
 本発明においては、なかでも、偏光材料層が1種類の偏光材料を含む単一の層であることが好ましい。単一の層であることで製造、加工が行い易く、安定して高精度の偏光子を製造することができる。
As a kind of polarizing material contained in the above-mentioned polarizing material layer, it may consist of only one kind or a combination of two or more kinds. When two or more kinds of polarizing materials are used, the polarizing material layer may be a single layer or may include a plurality of layers obtained by combining layers containing each polarizing material.
In the present invention, it is particularly preferable that the polarizing material layer is a single layer containing one kind of polarizing material. Since it is a single layer, it is easy to manufacture and process, and a highly accurate polarizer can be manufactured stably.
 上記偏光材料層の上記細線中の含有量としては、所望の消光比を得られるものであれば特に限定されるものではない。
 具体的には、上記偏光材料層の上記細線中の含有量が80質量%以上であることが好ましく、なかでも90質量%以上であることが好ましく、特に、100質量%、すなわち、上記細線が上記偏光材料層のみ含むものであることが好ましい。上記含有量であることにより、上記消光比とすることが容易だからである
 また、上記含有量は、上記細線の幅方向の断面に占める偏光材料層の質量割合をいうものであり、この測定方法としては、上記含有量を精度良く測定できる方法であれば特に限定されるものではないが、例えば、上記偏光材料の含有量の測定方法と同様の方法を用いることができる。
The content of the polarizing material layer in the fine wire is not particularly limited as long as a desired extinction ratio can be obtained.
Specifically, the content of the polarizing material layer in the fine line is preferably 80% by mass or more, and particularly preferably 90% by mass or more, and particularly 100% by mass, that is, the fine line is It is preferable that only the polarizing material layer is included. This is because it is easy to obtain the above extinction ratio by being the above content. Further, the above content means the mass ratio of the polarizing material layer in the cross section in the width direction of the fine wire, and this measuring method. The method is not particularly limited as long as it is a method capable of measuring the content with high accuracy. For example, a method similar to the method for measuring the content of the polarizing material can be used.
 上記偏光材料層の断面視形状としては、所望の消光比を得られるものであれば特に限定されるものではないが、例えば、正方形や長方形等の四角形状等とすることができる。 The cross-sectional shape of the polarizing material layer is not particularly limited as long as a desired extinction ratio can be obtained. For example, the polarizing material layer may have a square shape such as a square or a rectangle.
(2)細線
 本発明における細線は、上記偏光材料層を少なくとも有するものであり、上記偏光材料層のみを有するものであっても良いが、必要に応じて上記偏光材料以外の他の材料を主原料として含む非偏光材料層を有するものであっても良い。
(2) Fine wire The thin wire in the present invention has at least the polarizing material layer and may have only the polarizing material layer, but other materials other than the polarizing material are mainly used as necessary. It may have a non-polarizing material layer included as a raw material.
 上記非偏光材料層に含まれる他の材料としては、所望の消光比を得られるものであれば特に限定されるものではないが、例えば、上記偏光材料としてモリブデンシリサイド系材料を用いる場合には、酸化ケイ素などが挙げられる。上記偏光材料としてモリブデンシリサイド系材料を含むモリブデンシリサイド系材料層上に非偏光材料として酸化ケイ素を含有する酸化ケイ素層が形成されたものである場合、モリブデンシリサイド系材料膜をドライエッチングする方法により上記構造の細線を得ることができ、上記モリブデンシリサイド系材料層を含む細線の形成が容易で保護膜としても機能するからである。 The other material contained in the non-polarizing material layer is not particularly limited as long as a desired extinction ratio can be obtained. For example, when a molybdenum silicide material is used as the polarizing material, Examples thereof include silicon oxide. In the case where a silicon oxide layer containing silicon oxide as a non-polarizing material is formed on a molybdenum silicide material layer containing a molybdenum silicide material as the polarizing material, the above method is performed by dry etching the molybdenum silicide material film. This is because a thin wire having a structure can be obtained, and a thin wire including the molybdenum silicide-based material layer can be easily formed and also functions as a protective film.
 上記偏光材料層が偏光材料としてモリブデンシリサイド系材料を含むモリブデンシリサイド系材料層であり、上記非偏光材料層が非偏光材料として酸化ケイ素を含有する酸化ケイ素層である場合、酸化ケイ素層の形成箇所としては、上記モリブデンシリサイド系材料層上に形成されることができ、上記モリブデンシリサイド系材料層が上記透明基板上に形成されている場合には、上記モリブデンシリサイド系材料層の上記透明基板側表面以外の全表面を覆うように形成されることが好ましい。上記モリブデンシリサイド系材料層を含む細線の形成が容易だからである。 Where the polarizing material layer is a molybdenum silicide-based material layer containing a molybdenum silicide-based material as a polarizing material, and the non-polarizing material layer is a silicon oxide layer containing silicon oxide as the non-polarizing material, the formation location of the silicon oxide layer Can be formed on the molybdenum silicide-based material layer, and when the molybdenum silicide-based material layer is formed on the transparent substrate, the surface of the molybdenum silicide-based material layer on the transparent substrate side It is preferable that it is formed so as to cover the entire surface other than. This is because it is easy to form a thin line including the molybdenum silicide material layer.
 上記酸化ケイ素層の膜厚としては、所望の消光比を得ることができるものであれば特に限定されるものではないが、高消光比とする観点からは薄い程好ましく、例えば、10nm以下であることが好ましく、なかでも6nm以下であることが好ましく、特に4nm以下であることが好ましい。上記膜厚であることにより、消光比に優れたものとすることができるからである。また、上記膜厚の下限については、薄い程好ましいため特に限定されるものではないが、製造容易なことから、2nm以上であることが好ましい。
 なお、上記酸化ケイ素層の膜厚は、上記偏光材料層表面からの厚みの最大の厚みをいうものであり、具体的には図2中のdで示される厚みをいうものである。
 また、膜厚の測定方法としては、偏光子の分野における一般的な測定方法を用いることができ、例えば、AFMにより膜表層の形状を測定し、透過型エリプソメータで偏光特性を測定することにより、膜を構成する組成とそれぞれの膜厚を得ることができる。
The film thickness of the silicon oxide layer is not particularly limited as long as a desired extinction ratio can be obtained, but it is preferably as thin as possible from the viewpoint of a high extinction ratio, for example, 10 nm or less. In particular, the thickness is preferably 6 nm or less, and particularly preferably 4 nm or less. This is because the film thickness can be excellent in the extinction ratio. Further, the lower limit of the film thickness is not particularly limited because it is preferably as thin as possible, but is preferably 2 nm or more because of easy production.
The film thickness of the silicon oxide layer refers to the maximum thickness from the surface of the polarizing material layer, and specifically refers to the thickness indicated by d in FIG.
As a method for measuring the film thickness, a general measurement method in the field of polarizers can be used. For example, by measuring the shape of the film surface layer with AFM and measuring the polarization characteristics with a transmission ellipsometer, The composition constituting the film and the respective film thicknesses can be obtained.
 上記細線の膜厚としては、所望の消光比を有するものとすることができるものであれば特に限定されるものではないが、膜厚が厚いほど消光比が高くなり、膜厚が薄いほどP波透過率が高くなる傾向があることから、消光比およびP波透過率のバランスを考慮して設定することができる。
 本発明においては、上記膜厚は、60nm~180nmの範囲内であることが好ましい。なかでも、80nm~160nmの範囲内であることが好ましく、100nm~150nmの範囲であることが特に好ましい。
 また、膜厚を低く抑えることで、フォトリソグラフィやインプリントリソグラフィなどによるレジストパタン形成や、エッチング加工時の精度が向上し、精度の高い偏光子を作製可能となる。また、メガソニックを用いた超音波洗浄などの物理的洗浄の耐性も向上する。
 なお、上記細線の膜厚は、細線の長手方向および幅方向に垂直な方向の厚みのうち最大の厚みをいうものであり、細線が非偏光材料層を有する場合には、非偏光材料層をも含む膜厚をいうものである。具体的には図2中のaで示される厚みをいうものである。
 また、上記細線の膜厚は一の偏光子内に異なる膜厚のものを含むものであっても良いが、通常、同一膜厚で形成される。
The film thickness of the thin wire is not particularly limited as long as it can have a desired extinction ratio. However, the thicker the film thickness, the higher the extinction ratio, and the thinner the film thickness, P Since the wave transmittance tends to increase, it can be set in consideration of the balance between the extinction ratio and the P-wave transmittance.
In the present invention, the film thickness is preferably in the range of 60 nm to 180 nm. In particular, it is preferably in the range of 80 nm to 160 nm, and particularly preferably in the range of 100 nm to 150 nm.
In addition, by suppressing the film thickness to a low level, accuracy during resist pattern formation by photolithography, imprint lithography, and etching processing is improved, and a highly accurate polarizer can be manufactured. In addition, resistance to physical cleaning such as ultrasonic cleaning using megasonic is improved.
The film thickness of the fine wire is the maximum thickness among the thicknesses in the direction perpendicular to the longitudinal direction and the width direction of the fine wire. When the fine wire has a non-polarizing material layer, the non-polarizing material layer is Also means a film thickness including Specifically, it refers to the thickness indicated by a in FIG.
The thin wires may have different thicknesses in one polarizer, but are usually formed with the same thickness.
 上記細線の幅としては、所望の消光比を有するものとすることができるものであれば特に限定されるものではないが、幅が広いほど消光比が高くなり、幅が広いほどP波透過率が低くなる傾向があることから、P波の透過率と消光比のバランスを考慮し、例えば、30nm~80nmの範囲内とすることができる。
 なお、上記細線の幅は、細線の長手方向に垂直方向の長さをいうものであり、細線が非偏光材料層を含む場合には、非偏光材料層をも含む幅をいうものである。具体的には図2中のbで示される長さをいうものである。
 また、上記細線の幅は一の偏光子内に異なる幅のものを含むものであっても良いが、通常、同一幅で形成される。
The width of the thin line is not particularly limited as long as it can have a desired extinction ratio, but the wider the width, the higher the extinction ratio, and the wider the P-wave transmittance. Therefore, considering the balance between the transmittance of the P wave and the extinction ratio, for example, it can be in the range of 30 nm to 80 nm.
The width of the fine line refers to the length in the direction perpendicular to the longitudinal direction of the fine line. When the thin line includes a non-polarizing material layer, the width includes the non-polarizing material layer. Specifically, it refers to the length indicated by b in FIG.
The width of the thin line may include one having different widths in one polarizer, but is usually formed with the same width.
 上記細線のデューティー比、すなわち、ピッチに対する細線の幅の比(幅/ピッチ)としては、所望の消光比を有するものとすることができるものであれば特に限定されるものではないが、例えば、0.25~0.70の範囲内とすることができ、なかでも0.30~0.50の範囲内であることが好ましく、特に0.30~0.40の範囲内であることが好ましい。デューティー比が上記範囲であることにより消光比とP波透過率の両方を良好な値とすることができるからである。 The duty ratio of the fine line, that is, the ratio of the width of the fine line to the pitch (width / pitch) is not particularly limited as long as it can have a desired extinction ratio. It can be in the range of 0.25 to 0.70, and is preferably in the range of 0.30 to 0.50, particularly preferably in the range of 0.30 to 0.40. . This is because when the duty ratio is within the above range, both the extinction ratio and the P-wave transmittance can be made good values.
 上記細線のピッチとしては、所望の消光比を有するものとすることができるものであれば特に限定されるものではなく、直線偏光の生成に用いる光の波長等に応じて異なるものであるが、上記光の波長の半分以下とすることができる。より具体的には、上記光が紫外光である場合には、上記ピッチは、例えば、80nm~150nmの範囲内とすることができ、なかでも100nm~120nmの範囲内であることが好ましく、特に100nm~110nmの範囲内であることが好ましい。上記ピッチであることにより、波長300nm以下の光に対しても消光比に優れたものとすることができるからである。
 なお、上記細線のピッチは、幅方向に隣接する細線間のピッチの最大幅をいうものであり、細線が非偏光材料層を含む場合には、非偏光材料層をも含むものである。具体的には図2中のcで示される幅をいうものである。
 また、上記細線のピッチは一の偏光子内に異なるピッチのものを含むものであっても良いが、通常、同一ピッチで形成される。
The pitch of the thin line is not particularly limited as long as it can have a desired extinction ratio, and varies depending on the wavelength of light used for generating linearly polarized light, It can be set to half or less of the wavelength of the light. More specifically, when the light is ultraviolet light, the pitch can be, for example, in the range of 80 nm to 150 nm, and preferably in the range of 100 nm to 120 nm. It is preferably in the range of 100 nm to 110 nm. This is because the pitch is excellent in the extinction ratio even for light having a wavelength of 300 nm or less.
In addition, the pitch of the said thin wire | line means the maximum width of the pitch between the thin wires adjacent to the width direction, and when a thin wire | line contains a non-polarizing material layer, it also includes a non-polarizing material layer. Specifically, the width indicated by c in FIG.
Moreover, although the pitch of the said thin wire | line may include the thing of a different pitch in one polarizer, it is normally formed with the same pitch.
 上記細線の本数および長さとしては、所望の消光比を有するものとすることができるものであれば特に限定されるものではなく、本発明の偏光子の用途等に応じて適宜設定されるものである。 The number and length of the fine wires are not particularly limited as long as they can have a desired extinction ratio, and are appropriately set according to the use of the polarizer of the present invention. It is.
2.透明基板
 本発明の偏光子は上記細線を有するものであるが、通常、上記細線が形成される透明基板を有するものである。
2. Transparent substrate Although the polarizer of this invention has the said fine wire, it has a transparent substrate with which the said fine wire is formed normally.
 上記透明基板としては、上記細線を安定的に支持することができ、光透過性に優れたものであり、露光光による劣化の少ないものとすることができるものであれば特に限定されるものではないが、例えば、光学研磨された合成石英ガラス、蛍石、フッ化カルシウムなどを用いることができるが、通常、多用されており品質が安定している合成石英ガラスを挙げることができる。本発明においては、なかでも合成石英ガラスを好ましく用いることができる。品質が安定しており、また、短波長の光、すなわち、高エネルギーの露光光を用いた場合であっても劣化が少ないからである。
 上記透明基板の厚みとしては、本発明の偏光子の用途やサイズ等に応じて適宜選択することができる。
The transparent substrate is not particularly limited as long as it can stably support the fine wires, has excellent light transmittance, and can be less deteriorated by exposure light. For example, optically polished synthetic quartz glass, fluorite, calcium fluoride, and the like can be used. However, there are usually used synthetic quartz glass that is frequently used and stable in quality. In the present invention, synthetic quartz glass can be preferably used. This is because the quality is stable and there is little deterioration even when short wavelength light, that is, high energy exposure light is used.
The thickness of the transparent substrate can be appropriately selected according to the use and size of the polarizer of the present invention.
3.偏光子
 本発明の偏光子は、上記細線を有し、波長250nmの光の消光比が40以上のものである。
3. Polarizer The polarizer of the present invention has the above-mentioned thin wire and has an extinction ratio of light having a wavelength of 250 nm of 40 or more.
 上記波長250nmの光の消光比(P波透過率/S波透過率)としては、40以上であれば特に限定されるものではないが、50以上であることが好ましく、なかでも60以上であることが好ましい。上記範囲であることにより、光配向層への配向規制力を安定的に付与できるからである。
 また、上記消光比については大きければ大きい程好ましいので、特に上限は限定されるものではない。
 なお、上記消光比の測定方法は、偏光子の分野における一般的な測定方法を用いることができ、例えば、紫外光の偏光特性を測定することが可能な透過型エリプソメータ、例えばウーラム社製VUV-VASEなどの透過型エリプソメータを用いることで測定することができる。
The extinction ratio (P-wave transmittance / S-wave transmittance) of light having a wavelength of 250 nm is not particularly limited as long as it is 40 or more, but is preferably 50 or more, and more preferably 60 or more. It is preferable. It is because the alignment control force to a photo-alignment layer can be stably provided because it is the said range.
Moreover, since it is preferable that the extinction ratio is larger, the upper limit is not particularly limited.
As the method for measuring the extinction ratio, a general measurement method in the field of polarizers can be used. For example, a transmission ellipsometer capable of measuring the polarization characteristics of ultraviolet light, such as VUV- It can be measured by using a transmission ellipsometer such as VASE.
 上記偏光子のP波透過率(出射光中のP波成分/入射光中のP波成分)としては、所望の消光比を得ることができるものであれば特に限定されるものではないが、波長250nmの光について0.3以上であることが好ましく、なかでも、0.4以上であることが好ましく、特に、0.6以上であることが好ましい。上記P波透過率であることにより、光配向層への配向規制力を効率的に付与できるからである。
 なお、P波透過率の測定方法としては、偏光子の分野における一般的な測定方法を用いることができ、例えば、紫外光の偏光特性を測定することが可能な透過型エリプソメータ、例えばウーラム社製VUV-VASEなどの透過型エリプソメータを用いることで測定することができる。
The P wave transmittance of the polarizer (P wave component in outgoing light / P wave component in incident light) is not particularly limited as long as a desired extinction ratio can be obtained. The light with a wavelength of 250 nm is preferably 0.3 or more, more preferably 0.4 or more, and particularly preferably 0.6 or more. This is because the P-wave transmittance can efficiently impart an alignment regulating force to the photo-alignment layer.
In addition, as a measuring method of P wave transmittance, a general measuring method in the field of a polarizer can be used. For example, a transmission ellipsometer capable of measuring the polarization characteristics of ultraviolet light, for example, manufactured by Woollam Co., Ltd. It can be measured by using a transmission ellipsometer such as VUV-VASE.
 上記偏光子の用途としては、紫外線領域のような短波長の光の直線偏光生成用に用いられることが好ましく、なかでも、波長200nm~400nmの範囲内の光の直線偏光生成用であることが好ましい。
 光配向膜の材料として、波長260nm程度の光で配向されるもの、300nm程度の光で配向されるもの、365nm程度の光で配向されるものが知られており、材料に応じた波長の光源ランプが使われている。これらの光配向膜の配向に上記モリブデンシリサイド系材料層を含む偏光子を用いることができるからである。
 また、上記偏光材料の屈折率が2.0~3.2の範囲内であり、かつ、上記偏光材料の消衰係数が2.7~3.5の範囲内である場合には、上記偏光子は、200nm~400nmの範囲内の光の直線偏光生成用であることが好ましく、なかでも、240nm~400nmの範囲内の光の直線偏光生成用であることが好ましく、特に、240nm~370nmの範囲内の光の直線偏光生成用であることが好ましい。上記偏光材料である場合には、上記光の波長が上述の範囲内で消光比およびP波透過率の両者に優れた特性を示すことができるからである。
 紫外線領域において、広範囲に消光比とP波透過率が良好となることで、感度波長の異なる複数種類の光配向膜の材料にも同じ材料の偏光子を用いることができるからである。
 また、上記偏光材料の屈折率が2.3~2.8の範囲内であり、かつ、上記偏光材料の消衰係数が1.4~2.4の範囲内である場合には、上記偏光子は、200nm~350nmの範囲内の光の直線偏光生成用であることが好ましく、なかでも、240nm~300nmの範囲内の光の直線偏光生成用であることが好ましく、特に、240nm~280nmの範囲内の光の直線偏光生成用であることが好ましい。上記偏光材料である場合には、上記光の波長が上述の範囲内で消光比およびP波透過率の両者に優れた特性を示すことができ、また偏光光の偏光軸回転量の小さいものとすることができるからである。特に、波長260nm程度で配向する光配向膜の材料に好適に用いることができるからである。
 なお、所定の波長範囲の光の直線偏光生成用とは、本発明の偏光子に照射される光が上記所定の波長範囲の光を含むものであれば良く、なかでも、所定の波長範囲の光を主として含む、すなわち、所定の波長範囲の光のエネルギーが偏光子に照射される光の全エネルギーの50%以上であることが好ましく、特に、全エネルギーの70%以上であることが好ましく、なかでも特に、全エネルギーの90%以上であることが好ましい。
 また、本発明においては、液晶表示装置において液晶材料を挟持する液晶表示装置用光配向膜への配向規制力付与に用いられることが好ましい。光配向膜への配向規制力付与を効果的に行うことができるからである。
The polarizer is preferably used for generating linearly polarized light of short-wavelength light such as in the ultraviolet region, and in particular, for generating linearly polarized light of light in the wavelength range of 200 nm to 400 nm. preferable.
As a material of the photo-alignment film, a material that is aligned by light having a wavelength of about 260 nm, a material that is aligned by light of about 300 nm, and a material that is aligned by light of about 365 nm are known. A lamp is used. This is because a polarizer including the molybdenum silicide material layer can be used for the alignment of these photo-alignment films.
When the refractive index of the polarizing material is in the range of 2.0 to 3.2 and the extinction coefficient of the polarizing material is in the range of 2.7 to 3.5, The child is preferably used for generating linearly polarized light in the range of 200 nm to 400 nm, and more preferably used for generating linearly polarized light in the range of 240 nm to 400 nm. It is preferably used for generating linearly polarized light within the range. This is because when the polarizing material is used, the light wavelength can exhibit excellent characteristics in both the extinction ratio and the P-wave transmittance within the above range.
This is because the extinction ratio and the P-wave transmittance are excellent over a wide range in the ultraviolet region, so that the same polarizer can be used for a plurality of types of photo-alignment films having different sensitivity wavelengths.
When the refractive index of the polarizing material is in the range of 2.3 to 2.8 and the extinction coefficient of the polarizing material is in the range of 1.4 to 2.4, The child is preferably used for generating linearly polarized light in the range of 200 nm to 350 nm, and more preferably used for generating linearly polarized light in the range of 240 nm to 300 nm. It is preferably used for generating linearly polarized light within the range. In the case of the polarizing material, the light wavelength can exhibit excellent characteristics in both extinction ratio and P-wave transmittance within the above range, and the polarization axis rotation amount of the polarized light is small. Because it can be done. In particular, it can be suitably used as a material for a photo-alignment film that is aligned at a wavelength of about 260 nm.
In addition, for the generation of linearly polarized light of light in a predetermined wavelength range, it is sufficient that the light irradiated to the polarizer of the present invention includes light in the predetermined wavelength range, and in particular, in the predetermined wavelength range. It mainly contains light, that is, the energy of light in a predetermined wavelength range is preferably 50% or more of the total energy of light irradiated on the polarizer, and particularly preferably 70% or more of the total energy, In particular, 90% or more of the total energy is preferable.
Moreover, in this invention, it is preferable to use for the orientation control force provision to the optical alignment film for liquid crystal display devices which clamps liquid crystal material in a liquid crystal display device. This is because the alignment regulating force can be effectively applied to the photo-alignment film.
 本発明の偏光子の製造方法について説明する。
 図3は本発明の偏光子の製造方法の一例を示す工程図である。図3に例示するように、まず、上記偏光子の波長250nmの光の消光比を40以上とすることができる上記偏光材料の屈折率および消衰係数をシミュレーションにより決定し、その屈折率および消衰係数を満たす偏光材料を選択する(図示せず。)。次いで、透明基板1を準備し(図3(a))、上記透明基板上にスパッタリング法により、選択された偏光材料からなる偏光材料膜3´を形成することにより透明基板および透明基板上に形成され、偏光材料を含有する偏光材料膜を有する偏光子用基板を形成する(図3(b))。
 なお、偏光子用基板としては、偏光材料膜3´上に、偏光材料加工用のハードマスクを設けても良い(図示せず)。
 次に、フォトリソグラフィ法によりパターン状レジスト11を形成し、パターン状レジスト11をマスクとしてエッチングすることにより(図3(c))、偏光材料層3を含む細線2を形成するものである(図3(d))。
 また、偏光材料層としてのモリブデンシリサイド系材料層3の表面に酸化膜を形成することで酸化ケイ素膜4が形成されるものであっても良い。
 また、偏光子用基板が偏光材料膜上に形成されたハードマスクを有する場合は、レジスト11をエッチングマスクとしてハードマスクをエッチングし、パターン状にエッチングされたハードマスクをエッチングマスクにし偏光材料膜をエッチングすることができる。
 このようにハードマスクをエッチングマスクとして用いることにより、偏光材料膜の微細なパターン加工がより高精度で可能となるといった利点がある。
 その後ハードマスクを剥離することで所望の偏光子が得られる。ハードマスクを残したままでも所望の性能が得られる場合はハードマスクを残しても良い。
A method for producing the polarizer of the present invention will be described.
FIG. 3 is a process diagram showing an example of a method for producing a polarizer according to the present invention. As illustrated in FIG. 3, first, the refractive index and extinction coefficient of the polarizing material capable of setting the extinction ratio of the light having a wavelength of 250 nm of the polarizer to 40 or more are determined by simulation, and the refractive index and extinction coefficient are determined. A polarizing material satisfying the extinction coefficient is selected (not shown). Next, a transparent substrate 1 is prepared (FIG. 3A), and a polarizing material film 3 ′ made of a selected polarizing material is formed on the transparent substrate by sputtering, thereby forming the transparent substrate and the transparent substrate. Then, a polarizer substrate having a polarizing material film containing a polarizing material is formed (FIG. 3B).
As the polarizer substrate, a polarizing material processing hard mask may be provided on the polarizing material film 3 '(not shown).
Next, a patterned resist 11 is formed by photolithography, and etching is performed using the patterned resist 11 as a mask (FIG. 3C), thereby forming a thin line 2 including the polarizing material layer 3 (FIG. 3). 3 (d)).
Alternatively, the silicon oxide film 4 may be formed by forming an oxide film on the surface of the molybdenum silicide material layer 3 as the polarizing material layer.
When the polarizer substrate has a hard mask formed on the polarizing material film, the hard mask is etched using the resist 11 as an etching mask, and the polarizing material film is formed using the patterned hard mask as an etching mask. It can be etched.
By using the hard mask as an etching mask in this way, there is an advantage that a fine pattern processing of the polarizing material film can be performed with higher accuracy.
Then, a desired polarizer is obtained by peeling off the hard mask. If desired performance can be obtained even with the hard mask left, the hard mask may be left.
 上記ハードマスクの材料は、偏光材料膜がモリブデンシリサイド系材料である場合は、クロム系材料を用いることができる。クロム系材料はモリブデンシリサイド系材料のエッチング時にエッチングマスクとして機能する。
 クロム系材料としては、クロム、クロム酸化物、クロム窒化物、クロム酸化窒化物などを挙げることができる。
 ハードマスクの厚みは偏光材料膜のエッチングに耐える厚みが好ましく、偏光材料膜が100nm程度の場合、5nm~15nm程度の厚みが好ましい。
 ハードマスクは偏光材料膜上にスパッタリング法などで形成することができる。
As the material for the hard mask, when the polarizing material film is a molybdenum silicide material, a chromium material can be used. The chromium-based material functions as an etching mask when etching the molybdenum silicide-based material.
Examples of the chromium-based material include chromium, chromium oxide, chromium nitride, and chromium oxynitride.
The thickness of the hard mask is preferably enough to withstand the etching of the polarizing material film. When the polarizing material film is about 100 nm, the thickness is preferably about 5 nm to 15 nm.
The hard mask can be formed on the polarizing material film by sputtering or the like.
 図4は、本発明に係る光配向装置の構成例を示す図である。
 図4に示す光配向装置20は、本発明の偏光子10が収められた偏光子ユニット21と紫外光ランプ22を備えており、紫外光ランプ22から照射された紫外光を偏光子ユニット21に収められた偏光子10により偏光し、この偏光された光(偏光光24)をワーク26の上に形成された光配向膜25に照射することで、光配向膜25に配向規制力を付与するものである。
 また、光配向装置20には、光配向膜25を形成したワーク26を移動させる機構が備えられており、ワーク26を移動させることにより、光配向膜25の全面に偏光光24を照射することができる。例えば、図4に示す例において、ワーク26は図中右方向(図4における矢印方向)に移動する。
FIG. 4 is a diagram illustrating a configuration example of a photo-alignment apparatus according to the present invention.
A photo-alignment apparatus 20 shown in FIG. 4 includes a polarizer unit 21 in which the polarizer 10 of the present invention is housed and an ultraviolet light lamp 22, and the ultraviolet light irradiated from the ultraviolet light lamp 22 is applied to the polarizer unit 21. Polarization is performed by the accommodated polarizer 10, and this polarized light (polarized light 24) is applied to the photo-alignment film 25 formed on the work 26, thereby imparting alignment regulating force to the photo-alignment film 25. Is.
Further, the photo-alignment apparatus 20 is provided with a mechanism for moving the work 26 on which the photo-alignment film 25 is formed. By moving the work 26, the entire surface of the photo-alignment film 25 is irradiated with the polarized light 24. Can do. For example, in the example shown in FIG. 4, the work 26 moves in the right direction in the figure (the arrow direction in FIG. 4).
 なお、図4に示す例においては、ワーク26を矩形状の平板として示しているが、本発明において、ワーク26の形態は、偏光光24を照射することができるものであれば特に限定されず、例えば、ワーク26はフィルム状の形態であっても良く、また、巻取り可能なように帯状(ウェブ状)の形態であっても良い。 In the example shown in FIG. 4, the work 26 is shown as a rectangular flat plate. However, in the present invention, the form of the work 26 is not particularly limited as long as it can irradiate the polarized light 24. For example, the work 26 may be in the form of a film, or may be in the form of a strip (web) so that it can be wound.
 本発明において、紫外光ランプ22は、波長が240nm以上400nm以下の紫外光を照射することができるものであることが好ましく、また、光配向膜25は、波長が240nm以上400nm以下の紫外光に対して感度を有するものであることが好ましい。光配向装置20は、上記の波長の範囲の紫外光に対して消光比に優れ、高いP波透過率を有する本発明に係る偏光子10を備えているため、上記の波長の範囲の紫外光に感度を有する光配向膜に配向規制力を付与することを効率良く行うことができ、生産性を向上させることができるからである。 In the present invention, it is preferable that the ultraviolet lamp 22 is capable of irradiating ultraviolet light having a wavelength of 240 nm or more and 400 nm or less, and the photo-alignment film 25 applies ultraviolet light having a wavelength of 240 nm or more and 400 nm or less. It is preferable that it has sensitivity to it. Since the photo-alignment device 20 includes the polarizer 10 according to the present invention, which has an excellent extinction ratio with respect to ultraviolet light in the above wavelength range and has a high P-wave transmittance, ultraviolet light in the above wavelength range. This is because it is possible to efficiently apply the alignment regulating force to the photo-alignment film having a high sensitivity, and the productivity can be improved.
 また、紫外光ランプ22からの光を効率良く偏光子に照射するために、光配向装置20は、紫外光ランプ22の背面側(偏光子ユニット21とは反対側)や側面側に紫外光を反射する反射鏡23を有していることが好ましい。 Further, in order to efficiently irradiate the polarizer with light from the ultraviolet lamp 22, the photo-alignment device 20 applies ultraviolet light to the back side (the side opposite to the polarizer unit 21) or the side of the ultraviolet lamp 22. It is preferable to have a reflecting mirror 23 that reflects.
 また、大面積の光配向膜25に対して効率良く配向規制力を付与するためには、図4に示すように、紫外光ランプ22に棒状のランプを用いて、ワーク26の移動方向(図4における矢印方向)に対して直交する方向に長い照射領域となる偏光光24が照射されるように、光配向装置20を構成することが好ましい。 Further, in order to efficiently apply an alignment regulating force to the large-area photo-alignment film 25, as shown in FIG. 4, a rod-shaped lamp is used as the ultraviolet lamp 22 to move the work 26 (see FIG. It is preferable to configure the photo-alignment device 20 so that the polarized light 24 that is a long irradiation region is irradiated in a direction orthogonal to the arrow direction in FIG.
 この場合、偏光子ユニット21も大面積の光配向膜25に対して偏光光24を照射することに適した形態となるが、大面積の偏光子を製造することには困難性があるため、偏光子ユニット21内に、複数個の偏光子を配置することが、技術的にも経済的にも好ましい。 In this case, the polarizer unit 21 is also in a form suitable for irradiating the large-area photo-alignment film 25 with the polarized light 24, but it is difficult to produce a large-area polarizer. It is technically and economically preferable to arrange a plurality of polarizers in the polarizer unit 21.
 また、本発明に係る光配向装置は、複数個の紫外光ランプを備える構成であっても良い。
 図5は、本発明に係る光配向装置の他の構成例を示す図である。
 図5に示すように、光配向装置30は、2個の紫外光ランプ32を備えており、各紫外光ランプ32とワーク36の間には、それぞれ、本発明の偏光子10が収められた偏光子ユニット31が備えられている。また、各紫外光ランプ32には、それぞれ反射鏡33が備えられている。
Moreover, the structure provided with a some ultraviolet light lamp may be sufficient as the photo-alignment apparatus based on this invention.
FIG. 5 is a diagram showing another configuration example of the optical alignment apparatus according to the present invention.
As shown in FIG. 5, the photo-alignment device 30 includes two ultraviolet light lamps 32, and the polarizer 10 of the present invention is accommodated between each ultraviolet light lamp 32 and the work 36. A polarizer unit 31 is provided. Each ultraviolet lamp 32 is provided with a reflecting mirror 33.
 このように、紫外光ランプ32を複数個備えることにより、紫外光ランプ32を1個備える場合よりも、ワーク36の上に形成された光配向膜35に照射する偏光光34の照射量を増加させることができる。それゆえ、紫外光ランプ32を1個備える場合よりも、ワーク36の移動速度を大きくすることができ、その結果、生産性を向上させることができる。 Thus, by providing a plurality of ultraviolet light lamps 32, the irradiation amount of the polarized light 34 applied to the photo-alignment film 35 formed on the workpiece 36 is increased as compared with the case where one ultraviolet light lamp 32 is provided. Can be made. Therefore, the moving speed of the workpiece 36 can be increased as compared with the case where one ultraviolet light lamp 32 is provided, and as a result, productivity can be improved.
 なお、図5に示す例においては、ワーク36の移動方向(図5における矢印方向)に2個の紫外光ランプ32を並列配置した構成を示しているが、本発明はこれに限らず、例えば、ワーク36の移動方向に直交する方向に、複数個の紫外光ランプを配置した構成であっても良く、さらに、ワーク36の移動方向及びそれに直交する方向の両方向に、複数個の紫外光ランプを配置した構成であっても良い。 In the example shown in FIG. 5, a configuration in which two ultraviolet lamps 32 are arranged in parallel in the moving direction of the workpiece 36 (the arrow direction in FIG. 5) is shown, but the present invention is not limited to this. The plurality of ultraviolet light lamps may be arranged in a direction orthogonal to the moving direction of the work 36, and a plurality of ultraviolet light lamps may be provided in both the moving direction of the work 36 and the direction orthogonal thereto. A configuration in which the
 また、図5に示す例においては、1個の紫外光ランプ32に対して1個の偏光子ユニット31が配設された構成を示しているが、本発明はこれに限らず、例えば、複数個の紫外光ランプに対して、1個の偏光子ユニットが配設された構成であっても良い。この場合、1個の偏光子ユニットは、複数個の紫外光ランプの照射領域を包含できる大きさを有していれば良い。 5 shows a configuration in which one polarizer unit 31 is provided for one ultraviolet lamp 32, the present invention is not limited to this, and for example, a plurality of polarizer units 31 may be used. The configuration may be such that one polarizer unit is provided for each ultraviolet lamp. In this case, it is sufficient that one polarizer unit has a size that can include irradiation regions of a plurality of ultraviolet lamps.
 図6は、本発明に係る光配向装置における偏光子の配置形態の例を示す図である。なお、図6(a)~(d)に示す偏光子の配置形態は、いずれも、平板状の偏光子10が光配向膜の膜面に対向して平面的に配列された形態を示している。 FIG. 6 is a diagram showing an example of the arrangement of polarizers in the optical alignment apparatus according to the present invention. 6 (a) to 6 (d), the arrangement forms of the polarizers are all shown in the form in which the plate-like polarizers 10 are arranged in a plane facing the film surface of the photo-alignment film. Yes.
 例えば、図4に示す光配向装置20において、ワーク26の移動方向に対して直交する方向に帯状の偏光光24を照射する場合は、偏光子ユニット21内には、図6(a)に示すように、ワーク26の移動方向(矢印方向)に対して直交する方向に、偏光子10を複数個配置することが効率的である。偏光子10の数を少なく抑えることができるからである。 For example, in the optical alignment apparatus 20 shown in FIG. 4, when the band-shaped polarized light 24 is irradiated in a direction orthogonal to the moving direction of the workpiece 26, the polarizer unit 21 has the configuration shown in FIG. Thus, it is efficient to arrange a plurality of polarizers 10 in a direction orthogonal to the moving direction (arrow direction) of the workpiece 26. This is because the number of polarizers 10 can be reduced.
 一方、偏光子10の面積が小さい場合や、光配向装置が複数個の紫外光ランプを備える場合には、図6(b)に示すように、ワークの移動方向(矢印方向)に対して直交する方向に加えて、移動方向(矢印方向)に沿う方向にも、偏光子10を複数個配置することが好ましい。紫外光ランプからの光を無駄なく光配向膜に照射でき、生産性を向上させることができるからである。 On the other hand, when the area of the polarizer 10 is small, or when the photo-alignment apparatus includes a plurality of ultraviolet lamps, as shown in FIG. 6B, it is orthogonal to the moving direction (arrow direction) of the workpiece. In addition to the direction to perform, it is preferable to arrange a plurality of polarizers 10 in the direction along the moving direction (arrow direction). This is because the light from the ultraviolet lamp can be irradiated to the photo-alignment film without waste, and the productivity can be improved.
 ここで、本発明においては、図6(c)および図6(d)に示すように、複数個配置する偏光子が、ワークの移動方向(矢印方向)に沿って一列に揃わないように、隣り合う偏光子の位置を、ワークの移動方向に直交する方向(図中の上下方向)にシフトさせて配置することが好ましい。
 言い換えれば、本発明においては、光配向膜の移動方向に直交する方向において隣り合う複数個の偏光子間の境界部が、光配向膜の移動方向に連続的に繋がらないように、複数個の偏光子が配置されていることが、好ましい。
 偏光子間の境界部においては、通常、偏光光が生じないため、この境界部が光配向膜に与える弊害を抑制するためである。
Here, in the present invention, as shown in FIGS. 6 (c) and 6 (d), a plurality of polarizers are arranged so that they are not aligned in a line along the workpiece movement direction (arrow direction). It is preferable that the positions of the adjacent polarizers are shifted and arranged in a direction (vertical direction in the drawing) orthogonal to the moving direction of the workpiece.
In other words, in the present invention, a plurality of boundary portions between a plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film are not continuously connected to the moving direction of the photo-alignment film. It is preferable that a polarizer is disposed.
This is because polarized light usually does not occur at the boundary between the polarizers, and this prevents the boundary from adversely affecting the photo-alignment film.
 ここで、図6(c)に示す配置形態は、配置される複数個の偏光子が、いずれも同じ形状、同じサイズを有し、左右方向において隣り合う偏光子の上下方向の位置が、偏光子の上下方向の大きさの1/2の大きさのステップで上下方向にシフトしている配置形態である。
 また、図6(d)に示す配置形態は、配置される複数個の偏光子が、いずれも同じ形状、同じサイズを有し、左右方向において隣り合う偏光子の上下方向の位置が、偏光子の上下方向の大きさの1/2よりも小さいステップで上下方向にシフトしている配置形態である。
Here, in the arrangement form shown in FIG. 6C, the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are polarized. In this arrangement, the child is shifted in the vertical direction in steps of 1/2 the size of the child in the vertical direction.
Further, in the arrangement form shown in FIG. 6D, the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are in the vertical direction. In this arrangement, the vertical shift is performed in steps smaller than ½ of the vertical size.
 上記について、より詳しく説明する。
 図6(c)に示す配置形態において、上下方向に隣接配置された偏光子10aと偏光子10bの境界部41は、左右方向に配置された偏光子10cと偏光子10dによって、左右方向に伸びていくことを阻まれている。
 すなわち、図6(c)に示す配置形態においては、上下方向に隣接配置された偏光子間の境界部が左右方向に連続的に繋がっていくことを、阻止している。
 それゆえ、図6(c)に示す配置形態を採用して、光配向膜に偏光光を照射する場合、上記偏光子間の境界部に起因する弊害が光配向膜に連続的に及ぶことを抑制することができる。
The above will be described in more detail.
In the arrangement shown in FIG. 6C, the boundary portion 41 between the polarizer 10a and the polarizer 10b adjacently arranged in the vertical direction extends in the horizontal direction by the polarizer 10c and the polarizer 10d arranged in the horizontal direction. It is blocked from going.
That is, in the arrangement form shown in FIG. 6C, it is prevented that the boundary portion between the polarizers adjacently arranged in the vertical direction is continuously connected in the horizontal direction.
Therefore, when the arrangement shown in FIG. 6C is adopted and the photo-alignment film is irradiated with polarized light, the adverse effect caused by the boundary between the polarizers continuously affects the photo-alignment film. Can be suppressed.
 同様に、図6(d)に示す配置形態においても、上下方向に隣接配置された偏光子間の境界部が左右方向に連続的に繋がっていくことが、阻止されている。
 それゆえ、図6(d)に示す配置形態を採用して、光配向膜に偏光光を照射する場合、上記偏光子間の境界部に起因する弊害が光配向膜に連続的に及ぶことを抑制することができる。
Similarly, also in the arrangement form shown in FIG. 6D, it is prevented that the boundary portion between the polarizers adjacently arranged in the vertical direction is continuously connected in the horizontal direction.
Therefore, when the arrangement shown in FIG. 6 (d) is adopted to irradiate the photo-alignment film with polarized light, the adverse effect caused by the boundary between the polarizers continuously affects the photo-alignment film. Can be suppressed.
 なお、図6(c)に示す配置形態においては、偏光子の上下方向の大きさの1/2の大きさのステップで上下方向にシフトしているため、左右方向(ワークの移動方向)に対して、偏光子2個毎に境界部41の上下方向の位置が揃うことになる。
 一方、図6(d)に示す配置形態においては、偏光子の上下方向の大きさの1/2よりも小さいステップで上下方向にシフトしているため、境界部42の上下方向の位置は、より揃い難くなる。
 それゆえ、図6(d)に示す配置形態においては、上記偏光子間の境界部に起因する弊害が光配向膜に連続的に及ぶことを、より抑制することができる。
In the arrangement shown in FIG. 6 (c), since it is shifted in the vertical direction in steps of 1/2 the size of the polarizer in the vertical direction, it is in the horizontal direction (workpiece movement direction). On the other hand, the vertical position of the boundary portion 41 is aligned for every two polarizers.
On the other hand, in the arrangement form shown in FIG. 6D, the vertical position of the boundary portion 42 is shifted in the vertical direction in steps smaller than ½ of the vertical size of the polarizer. It becomes harder to align.
Therefore, in the arrangement form shown in FIG. 6 (d), it is possible to further suppress the adverse effects caused by the boundary portion between the polarizers from being continuously applied to the photo-alignment film.
 なお、図6(a)~図6(d)に示す例においては、個々の偏光子は、その側面が互いに接するように配置されているが、本発明は、この形態に限定されず、隣り合う偏光子間の境界部が隙間を有している形態であっても良い。 In the example shown in FIGS. 6 (a) to 6 (d), the individual polarizers are arranged so that the side surfaces thereof are in contact with each other. However, the present invention is not limited to this form, and is adjacent to each other. A form in which a boundary portion between the matching polarizers has a gap may be employed.
 また、隣り合う偏光子の端部を互いに重ねることにより、偏光子間の境界部に隙間が生じない形態としても良い。 Further, the end portions of adjacent polarizers may be overlapped with each other so that no gap is generated at the boundary between the polarizers.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
 以下に実施例を示して、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例1]
 膜厚が80nm幅およびピッチが72nmおよび120nm、偏光材料からなる偏光材料層のみを含む細線モデルについて、「回折光学素子の数値解析とその応用」(丸善出版、小館香椎子慣習)に記載のRCWA(Rigorous Coupled Wave Analysis)に基づいて、屈折率および消衰係数に対する波長250nmの光の消光比のシミュレーションを行った。結果を下記表1に示す。
 表1より、MoSi系材料により可能な屈折率が2.0~3.0の範囲内でありかつ消衰係数が2.7~3.5の範囲内である場合において、消光比が40以上(200.4~1203.8の範囲内)の値を示した。
[Example 1]
RCWA described in “Numerical analysis of diffractive optical elements and its application” (Maruzen Publishing Co., Ltd., Kodate Kashiko custom) for a thin line model including only a polarizing material layer made of a polarizing material with a film thickness of 80 nm and a pitch of 72 nm and 120 nm Based on (Rigorous Coupled Wave Analysis), the extinction ratio of light having a wavelength of 250 nm with respect to the refractive index and the extinction coefficient was simulated. The results are shown in Table 1 below.
From Table 1, the extinction ratio is 40 or more when the refractive index possible with the MoSi-based material is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. The value was within the range of 200.4 to 1203.8.
[実施例2]
 細線モデルを、膜厚が80nm、幅およびピッチが60nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表2に示す。
 表2より、MoSi系材料により可能な屈折率が2.0~3.0の範囲内でありかつ消衰係数が2.7~3.5の範囲内である場合において、消光比が40以上(72.9~263.9の範囲内)を示した。
[Example 2]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 80 nm and widths and pitches of 60 nm and 120 nm. The results are shown in Table 2 below.
From Table 2, the extinction ratio is 40 or more when the refractive index possible with the MoSi-based material is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. (In the range of 72.9 to 263.9).
[実施例3]
 細線モデルを、膜厚が80nm、幅およびピッチが48nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表3に示す。
 表3より、MoSi系材料により可能な消衰係数が2.7~3.1の範囲内でありかつ屈折率が2.2~3.0の範囲内である場合(条件3-1)、消衰係数が3.2~3.3の範囲内でありかつ屈折率が2.1~3.0の範囲内である場合(条件3-2)、または消衰係数が3.4~3.5の範囲内でありかつ屈折率が2.0~3.0の範囲内である場合(条件3-3)において、消光比が40以上を示した。なお、具体的な消光比としては、条件3-1では41.8~85.1の範囲内、条件3-2では40.9~79.7の範囲内、条件3-3では40.0~80.1の範囲内であり、本細線モデル全体の消光比の値としては40.0~85.1の範囲内を示した。
[Example 3]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 80 nm and widths and pitches of 48 nm and 120 nm. The results are shown in Table 3 below.
From Table 3, when the extinction coefficient possible with the MoSi-based material is in the range of 2.7 to 3.1 and the refractive index is in the range of 2.2 to 3.0 (Condition 3-1), When the extinction coefficient is in the range of 3.2 to 3.3 and the refractive index is in the range of 2.1 to 3.0 (Condition 3-2), or the extinction coefficient is 3.4 to 3 When the refractive index is in the range of 0.5 and the refractive index is in the range of 2.0 to 3.0 (Condition 3-3), the extinction ratio is 40 or more. Specific extinction ratios are within the range of 41.8 to 85.1 under condition 3-1, within the range of 40.9 to 79.7 under condition 3-2, and 40.0 under condition 3-3. The extinction ratio value of the entire thin wire model was in the range of 40.0 to 85.1.
[実施例4]
 細線モデルを、膜厚が60nm、幅およびピッチが72nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表4に示す。
 表4より、MoSi系材料により可能な屈折率が2.0~3.0の範囲内でありかつ消衰係数が2.7~3.5の範囲内である場合において、消光比が40以上(52.8~309.6の範囲内)を示した。
[Example 4]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 60 nm and widths and pitches of 72 nm and 120 nm. The results are shown in Table 4 below.
From Table 4, the extinction ratio is 40 or more when the refractive index possible with the MoSi-based material is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. (Within the range of 52.8 to 309.6).
[実施例5]
 細線モデルを、膜厚が60nm、幅およびピッチが60nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表5に示す。
 表5より、MoSi系材料により可能な消衰係数が2.7~2.9の範囲内でありかつ屈折率が2.4~3.0の範囲内である場合(条件5-1)、消衰係数が3.0~3.3の範囲内でありかつ屈折率が2.3~3.0の範囲内である場合(条件5-2)、または消衰係数が3.4~3.5の範囲内でありかつ屈折率が2.2~3.0の範囲内である場合(条件5-3)において、消光比が40以上を示した。なお、具体的な消光比としては、条件5-1では43.4~85.1の範囲内、条件5-2では40.2~78.1の範囲内、条件5-3では41.2~76.9の範囲内であり、本細線モデル全体としては、消光比の値は40.2~85.1の値を示した。
[Example 5]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model having a film thickness of 60 nm and widths and pitches of 60 nm and 120 nm. The results are shown in Table 5 below.
From Table 5, when the extinction coefficient possible with the MoSi-based material is in the range of 2.7 to 2.9 and the refractive index is in the range of 2.4 to 3.0 (Condition 5-1), When the extinction coefficient is in the range of 3.0 to 3.3 and the refractive index is in the range of 2.3 to 3.0 (Condition 5-2), or the extinction coefficient is 3.4 to 3 When the refractive index is in the range of 0.5 and the refractive index is in the range of 2.2 to 3.0 (condition 5-3), the extinction ratio is 40 or more. Specific extinction ratios are within the range of 43.4 to 85.1 under condition 5-1, within the range of 40.2 to 78.1 under condition 5-2, and 41.2 under condition 5-3. The extinction ratio was 40.2 to 85.1 for the entire thin line model.
[実施例6]
 細線モデルを、膜厚が60nm、幅およびピッチが48nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表6に示す。
 表6より、MoSi系材料により可能な、屈折率が2.0~3.0の範囲内でありかつ消衰係数が2.7~3.5の範囲内の場合では消光比40以上の領域はなかったが、消衰係数が1.5~2.4の範囲内でありかつ屈折率が2.6~3.0の範囲内の一部の条件で消光比が40以上(41.7~493.0の範囲内)を示した。
[Example 6]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model having a film thickness of 60 nm and widths and pitches of 48 nm and 120 nm. The results are shown in Table 6 below.
From Table 6, it is possible to obtain a region having an extinction ratio of 40 or more when the refractive index is in the range of 2.0 to 3.0 and the extinction coefficient is in the range of 2.7 to 3.5. However, the extinction ratio was 40 or more (41.7) under some conditions where the extinction coefficient was in the range of 1.5 to 2.4 and the refractive index was in the range of 2.6 to 3.0. In the range of ~ 493.0).
[実施例7]
 細線モデルを、膜厚が40nm、幅およびピッチが72nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表7に示す。
 表7より、MoSi系材料により可能な消衰係数が3.0~3.5の範囲内でありかつ屈折率が3.0である場合において、消光比が40以上(40.0~42.4の範囲内)を示した。
[Example 7]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 40 nm and widths and pitches of 72 nm and 120 nm. The results are shown in Table 7 below.
From Table 7, when the extinction coefficient possible with the MoSi-based material is in the range of 3.0 to 3.5 and the refractive index is 3.0, the extinction ratio is 40 or more (40.0 to 42.42). 4).
[参考例1]
 細線モデルを、膜厚が40nm、幅およびピッチが60nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表8に示す。
 表8より、消光比40以上を示す条件は得られなかった。
[Reference Example 1]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 40 nm and widths and pitches of 60 nm and 120 nm. The results are shown in Table 8 below.
From Table 8, conditions showing an extinction ratio of 40 or more were not obtained.
[参考例2]
 細線モデルを、膜厚が40nm、幅およびピッチが48nmおよび120nmの細線モデルとした以外は実施例1と同様のシミュレーションを行った。結果を下記表9に示す。
 表9より、消光比40以上を示す条件は得られなかった。
[Reference Example 2]
The same simulation as in Example 1 was performed except that the thin line model was a thin line model with a film thickness of 40 nm and widths and pitches of 48 nm and 120 nm. The results are shown in Table 9 below.
From Table 9, the conditions showing an extinction ratio of 40 or higher were not obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(シミュレーションまとめ)
 表1~9の屈折率および消衰係数と消光比との相関関係を示す表より、屈折率および消衰係数の範囲を網掛け部分から選択することにより消光比を40以上とすることができることが確認できた。
 例えば、実施例1(膜厚86μm、幅72μm、ピッチ120μm)の細線(偏光材料層)の場合では、屈折率を2以上、消衰係数1.5~3.5の範囲内で消光比を40以上とすることができることが確認できた。
(Simulation summary)
The extinction ratio can be set to 40 or more by selecting the range of the refractive index and extinction coefficient from the shaded portion from the table showing the correlation between the refractive index and extinction coefficient and the extinction ratio in Tables 1 to 9. Was confirmed.
For example, in the case of the thin wire (polarizing material layer) of Example 1 (film thickness 86 μm, width 72 μm, pitch 120 μm), the extinction ratio is within the range of a refractive index of 2 or more and an extinction coefficient of 1.5 to 3.5. It was confirmed that it could be 40 or more.
[実施例8]
 透明基板として膜厚6.35mmの合成石英ガラスを準備し、モリブデンとシリコンとの混合ターゲット(Mo:Si=1:2mol%)を用いアルゴン窒素の混合ガス雰囲気で反応性スパッタリング法により、モリブデンシリサイド系材料膜として、膜厚120nmの窒化したモリブデンシリサイド膜を形成した。また、窒素の量はMoの含有量の半分程度であった。
 さらにモリブデンシリサイド膜上に、ハードマスクとして酸化窒化クロム膜を7nmでスパッタリング法で形成した。
[Example 8]
A synthetic quartz glass with a film thickness of 6.35 mm is prepared as a transparent substrate, and molybdenum silicide is formed by a reactive sputtering method in a mixed gas atmosphere of argon nitrogen using a mixed target of molybdenum and silicon (Mo: Si = 1: 2 mol%). A nitrided molybdenum silicide film having a thickness of 120 nm was formed as the system material film. The amount of nitrogen was about half of the Mo content.
Further, a chromium oxynitride film as a hard mask was formed on the molybdenum silicide film at 7 nm by a sputtering method.
 次いで、ハードマスク上に、ピッチが100nmのラインアンドスペースパターンを有するパターン状レジストを形成した。その後、エッチングガスとして塩素と酸素の混合ガスを用いてクロム系材料のハードマスクをドライエッチングし、続いてSFを用いて、モリブデンシリサイド系材料膜をドライエッチングし、その後ハードマスクを剥離することにより、偏光子を得た。
 得られた偏光子の細線の幅、厚み、およびピッチをVistec社製SEM測定装置LWM9000とVEECO社製AFM装置DIMENSION-X3Dにより測定したところ、それぞれ、34nm、120nm、および100nmであった。
Next, a patterned resist having a line and space pattern with a pitch of 100 nm was formed on the hard mask. Thereafter, a hard mask made of a chromium-based material is dry-etched using a mixed gas of chlorine and oxygen as an etching gas, followed by dry-etching the molybdenum silicide-based material film using SF 6 , and then the hard mask is peeled off. Thus, a polarizer was obtained.
The widths, thicknesses, and pitches of the thin lines of the obtained polarizer were measured with a STEM measuring device LWM9000 manufactured by Vistec and an AFM device DIMENSION-X3D manufactured by VEECO, respectively, and they were 34 nm, 120 nm, and 100 nm, respectively.
(細線の構造評価)
 実施例8の偏光子の細線について透過型エリプソメータ(ウーラム社製VUV-VASE)により構造を評価した。
 その結果、上記細線が、幅および厚みがそれぞれ29.8nmおよび115.8nmのモリブデンシリサイド系材料からなるモリブデンシリサイド系材料層と、上記モリブデンシリサイド系材料層の上面の膜厚および側面の膜厚がそれぞれ4.2nmおよび4.2nmnmの酸化ケイ素からなる酸化膜と、を有することが確認できた。
 また、モリブデンシリサイド系材料層の屈折率および消衰係数、すなわち、モリブデンシリサイド系材料(Mo:Si=1:2mol%)の屈折率および消衰係数を、透過型エリプソメータ(ウーラム社製VUV-VASE)を用いて測定したところ、波長250nmにおける屈折率nは、2.30であり、波長250nmにおける消衰係数kは、3.24であった。なお、波長365nmでの屈折率nは3.94であり、消衰係数kは2.85であった。
(Structural evaluation of thin wires)
The structure of the fine wire of the polarizer of Example 8 was evaluated by a transmission ellipsometer (VUV-VASE manufactured by Woollam).
As a result, the thin wire has a molybdenum silicide-based material layer made of a molybdenum silicide-based material having a width and a thickness of 29.8 nm and 115.8 nm, respectively, and a film thickness on the upper surface and side surfaces of the molybdenum silicide-based material layer. It was confirmed to have an oxide film made of silicon oxide having a thickness of 4.2 nm and 4.2 nm, respectively.
In addition, the refractive index and extinction coefficient of the molybdenum silicide-based material layer, that is, the refractive index and extinction coefficient of the molybdenum silicide-based material (Mo: Si = 1: 2 mol%) are measured using a transmission ellipsometer (VUV-VASE manufactured by Woollam). ), The refractive index n at a wavelength of 250 nm was 2.30, and the extinction coefficient k at a wavelength of 250 nm was 3.24. The refractive index n at a wavelength of 365 nm was 3.94, and the extinction coefficient k was 2.85.
(P波透過率およびS波透過率の測定)
 実施例8の偏光子について透過型エリプソメータ(ウーラム社製VUV-VASE)により、波長200nm~700nmの範囲内の紫外光のP波透過率(出射光中のP波成分/入射光中のP波成分)およびS波透過率(出射光中のS波成分/入射光中のS波成分)を測定し、消光比(P波透過率/S波透過率)を算出した。結果を表10および図7に示す。
 表10および図7に示すように、波長240nm~400nmの範囲において、偏光子のP波透過率は70.5%以上であり、消光比は79.5%以上であった。
 なお、波長240nm~260nmの範囲において、偏光子のP波透過率は70.5%以上であり、消光比は79.5以上であった。
 また、波長280~320nmの範囲において偏光子のP波透過率は73.7%以上であり、消光比は208.5以上であった。
 また、波長355nm~375nmの範囲において、偏光子のP波透過率は79.6%以上であり、消光比は346.5以上であった。
 光配向膜の材料として、波長260nm程度の光で配向されるもの、300nm程度の光で配向されるもの、365nm程度の光で配向されるものが知られており、以上の性能により、各種類の光配向膜に用いることができ、特に365nm程度の光で配向される光配向膜の材料に好適に用いることができることが確認できた。
 また、波長200nm以上600nm以下の範囲において、実施例8の偏光子のS波透過率は8.44%以下であり、消光比は10.9以上であった。
 また、波長220nm以上500nm以下の範囲において、実施例8の偏光子のS波透過率は2.69%以下であり、消光比は33.5以上であった。
 実施例8の偏光子は波長200nmから600nm程度まで10以上の消光比を保っていることを確認できた。
 一般に、光配向膜の吸収スペクトルは、特定の波長範囲においてピークを持つものの、広い波長範囲で光を吸収することが知られている。
 そのため、従来の偏光子においては、消光比が低くなる波長範囲の光をバンドパスフィルターによりカットしていた。例えば、アルミから構成される細線を備えた偏光子では、300nm以下の波長範囲の光をカットしており、酸化チタンから構成される細線を備えた偏光子では、300nm以上の波長範囲の光をカットしていた。
 しかしながら、上記の方法では、光のカットにより、光配向膜に配向規制力を付与する効率も低下してしまうという不具合があった。
 一方、本発明の偏光子は、上記のように広い波長範囲において一定以上の消光比を確保できるため、バンドパスフィルターを用いる必要はなくなり、広い波長範囲の光を、光配向膜への配向規制力の付与に効率的に用いることができることが確認できた。
(Measurement of P wave transmittance and S wave transmittance)
The polarizer of Example 8 was measured using a transmission ellipsometer (VUV-VASE manufactured by Woollam Co., Ltd.) for P-wave transmittance of ultraviolet light in the wavelength range of 200 nm to 700 nm (P-wave component in outgoing light / P-wave in incident light). Component) and S wave transmittance (S wave component in outgoing light / S wave component in incident light) were measured, and extinction ratio (P wave transmittance / S wave transmittance) was calculated. The results are shown in Table 10 and FIG.
As shown in Table 10 and FIG. 7, in the wavelength range of 240 nm to 400 nm, the P wave transmittance of the polarizer was 70.5% or more, and the extinction ratio was 79.5% or more.
In the wavelength range of 240 nm to 260 nm, the P wave transmittance of the polarizer was 70.5% or more, and the extinction ratio was 79.5 or more.
Further, in the wavelength range of 280 to 320 nm, the P-wave transmittance of the polarizer was 73.7% or more, and the extinction ratio was 208.5 or more.
In the wavelength range of 355 nm to 375 nm, the P wave transmittance of the polarizer was 79.6% or more, and the extinction ratio was 346.5 or more.
As materials for the photo-alignment film, those that are aligned by light having a wavelength of about 260 nm, those that are aligned by light of about 300 nm, and those that are aligned by light of about 365 nm are known. It was confirmed that it can be suitably used as a material for a photo-alignment film that is particularly aligned with light of about 365 nm.
Moreover, in the wavelength range of 200 nm to 600 nm, the S wave transmittance of the polarizer of Example 8 was 8.44% or less, and the extinction ratio was 10.9 or more.
In the wavelength range of 220 nm to 500 nm, the S wave transmittance of the polarizer of Example 8 was 2.69% or less, and the extinction ratio was 33.5 or more.
It was confirmed that the polarizer of Example 8 maintained an extinction ratio of 10 or more from a wavelength of about 200 nm to about 600 nm.
In general, the absorption spectrum of a photo-alignment film has a peak in a specific wavelength range, but is known to absorb light in a wide wavelength range.
For this reason, in a conventional polarizer, light in a wavelength range in which the extinction ratio is low is cut by a bandpass filter. For example, a polarizer with a thin wire made of aluminum cuts light in a wavelength range of 300 nm or less, and a polarizer with a thin wire made of titanium oxide emits light in a wavelength range of 300 nm or more. It was cut.
However, the above-described method has a disadvantage that the efficiency of applying the alignment regulating force to the photo-alignment film is also reduced due to the light cut.
On the other hand, the polarizer of the present invention can secure an extinction ratio of a certain level or more in a wide wavelength range as described above, so there is no need to use a band pass filter, and light in a wide wavelength range is regulated to be aligned in the photo-alignment film. It was confirmed that it can be used efficiently for imparting force.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[実施例9]
 図8に示す偏光子10に対し、波長250nmの光が、細線が形成された側から方位角45度、入射角60度で入射する場合について、「回折光学素子の数値解析とその応用」(丸善出版、小館香椎子慣習)に記載のRCWA(Rigorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、偏光材料の屈折率n及び消衰係数kと、偏光子から出射する偏光光の偏光軸の回転量(°)の関係を算出した。結果を下記表11および図9に示す。
[Example 9]
In the case where light having a wavelength of 250 nm is incident on the polarizer 10 shown in FIG. 8 at an azimuth angle of 45 degrees and an incident angle of 60 degrees from the side where the thin line is formed, “Numerical analysis of diffractive optical element and its application” ( A simulation model based on RCWA (Rigorous Coupled Wave Analysis) described in Maruzen Publishing, Kodate Kashiko) is created, and the refractive index n and extinction coefficient k of the polarizing material and the polarization axis of the polarized light emitted from the polarizer are The relationship of the rotation amount (°) was calculated. The results are shown in Table 11 below and FIG.
 なお、この実施例9のシミュレーションモデルにおいては、計算を容易とするために、図8に示す偏光子10の細線は、偏光材料からなる偏光材料層(単層構造)の細線モデルとした。偏光子10の細線の厚みは100nm、幅は33nm、ピッチは100nmとした。
 また、偏光軸の回転量は、入射光の入射角が0度の場合の偏光軸の方向を基準とし、この方向からの回転量(回転角度)を示している。
In the simulation model of Example 9, in order to facilitate calculation, the thin line of the polarizer 10 shown in FIG. 8 is a thin line model of a polarizing material layer (single layer structure) made of a polarizing material. The thin wires of the polarizer 10 had a thickness of 100 nm, a width of 33 nm, and a pitch of 100 nm.
The rotation amount of the polarization axis indicates the rotation amount (rotation angle) from this direction with reference to the direction of the polarization axis when the incident angle of incident light is 0 degree.
 図9に示すグラフにおいては、m、n、o、p、qおよびrで示される屈折率nと消衰係数kの範囲は、それぞれ、方位角45度で入射角60度における、偏光軸の回転量が+6度から+9度、+3から+6度、0度から+3度、-3度から0度、-6度から-3度および-9度から-6度となる範囲を示すものである。したがって、図9に示すグラフにおいては、方位角45度で入射角60度における、偏光軸の回転量が-3.0度から+3.0度となる屈折率nと消衰係数kの範囲を白色の領域として表している。なお、上記の白色の領域の略中央を通る黒線は、偏光軸の回転量が0度となる屈折率nと消衰係数kを示している。
 一方、偏光軸の回転量が-6.0度から-3.0度となる屈折率nと消衰係数kの範囲、および、偏光軸の回転量が+3.0度から+6.0度となる屈折率nと消衰係数kの範囲は、図9に示すグラフにおいて、薄い灰色の領域として表されている。
In the graph shown in FIG. 9, the ranges of the refractive index n and the extinction coefficient k indicated by m, n, o, p, q, and r are respectively the polarization axis at the azimuth angle of 45 degrees and the incident angle of 60 degrees. The range of rotation is +6 to +9, +3 to +6, 0 to +3, -3 to 0, -6 to -3, and -9 to -6. . Therefore, in the graph shown in FIG. 9, the range of the refractive index n and the extinction coefficient k in which the rotation amount of the polarization axis is −3.0 degrees to +3.0 degrees at the azimuth angle of 45 degrees and the incident angle of 60 degrees is shown. It is represented as a white area. Note that the black line passing through the approximate center of the white region indicates the refractive index n and the extinction coefficient k at which the rotation amount of the polarization axis is 0 degree.
On the other hand, the range of refractive index n and extinction coefficient k where the rotation amount of the polarization axis is −6.0 degrees to −3.0 degrees, and the rotation amount of the polarization axis is +3.0 degrees to +6.0 degrees. The range of the refractive index n and the extinction coefficient k is expressed as a light gray region in the graph shown in FIG.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11および図9に示すように、細線2を構成する偏光材料の屈折率nと消衰係数kの範囲を適切に選ぶことで、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸の回転を抑制することができることが確認できた。 As shown in Table 11 and FIG. 9, the incident angle of the light incident on the polarizer is increased by appropriately selecting the ranges of the refractive index n and the extinction coefficient k of the polarizing material constituting the thin wire 2. However, it was confirmed that the rotation of the polarization axis of the polarized light can be suppressed.
[実施例10]
 次に、図10に示す偏光子10に対し、波長250nmの光が、細線が形成された側から方位角0度、入射角0度で入射する場合について、「回折光学素子の数値解析とその応用」(丸善出版、小館香椎子慣習)に記載のRCWA(Rigorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、細線を構成する偏光材料の屈折率n及び消衰係数kと、消光比の関係を算出した。結果を下記表12および図11に示す。
[Example 10]
Next, regarding the case where light having a wavelength of 250 nm is incident on the polarizer 10 shown in FIG. 10 at an azimuth angle of 0 ° and an incident angle of 0 ° from the side where the thin line is formed, “Numerical analysis of diffractive optical element and its A simulation model based on RCWA (Rigorous Coupled Wave Analysis) described in "Application" (Maruzen Publishing, Kodate Kashiko) is used, and the relationship between the refractive index n and extinction coefficient k of the polarizing material constituting the thin line and the extinction ratio. Was calculated. The results are shown in Table 12 below and FIG.
 なお、この実施例10のシミュレーションモデルにおいては、計算を容易とするために、図10に示す偏光子10の細線は、偏光材料からなる偏光材料層(単層構造)の細線モデルとした。偏光子10の細線の厚みは100nm、幅は33nm、ピッチは100nmとした。 In the simulation model of Example 10, the thin line of the polarizer 10 shown in FIG. 10 is a thin line model of a polarizing material layer (single layer structure) made of a polarizing material in order to facilitate calculation. The thin wires of the polarizer 10 had a thickness of 100 nm, a width of 33 nm, and a pitch of 100 nm.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図11において、s、t、uおよびvで示される屈折率nと消衰係数kの範囲は、それぞれ、方位角0度で入射角0度における、消光比が10から10、10から10、10から10、10から10および1から10となる範囲を示すものである。 In FIG. 11, the ranges of the refractive index n and the extinction coefficient k indicated by s, t, u, and v are such that the extinction ratio is 10 4 to 10 5 , 10 3 at an azimuth angle of 0 ° and an incident angle of 0 °, respectively. To 10 4 , 10 2 to 10 3 , 10 to 10 2, and 1 to 10 are shown.
 また、表11および表12ならびに図9および図11に基づいて、各屈折率及び各消衰係数と偏光軸の回転量の関係と、各屈折率及び各消衰係数と消光比の関係と、を比較すると、屈折率が同じまたは近い値では、偏光軸回転量が最小となる消衰係数より、消衰係数が高い材料を偏光材料として用いることで、消光比を高くできることが確認できた。
 モリブデンシリサイド(MoSi)系材料を用いる場合、組成の調節や、酸素や窒素の含有量の調節により、波長250nmにおける屈折率nと消衰係数kの範囲を、2.2≦n≦3.0であって0.7≦k≦3.5程度の範囲とすることができる。そのなかで高い消光比を実現し、偏光軸の回転量も同時に抑えることができる屈折率と消衰係数は、屈折率が2.3~2.8の範囲内であり、かつ消衰係数が1.4~2.4の範囲内であることが確認できた。
 そのなかでも特に、屈折率が2.3~2.8の範囲内であり、かつ消衰係数が1.7~2.2の範囲内であることが好ましく、特に、屈折率が2.4~2.8の範囲内であり、かつ消衰係数が1.8~2.1の範囲内であると効果がより顕著になることが確認できた。
Further, based on Tables 11 and 12 and FIGS. 9 and 11, the relationship between each refractive index and each extinction coefficient and the amount of rotation of the polarization axis, and the relationship between each refractive index and each extinction coefficient and the extinction ratio, When the refractive indexes are the same or close to each other, it was confirmed that the extinction ratio can be increased by using a material having a higher extinction coefficient than the extinction coefficient that minimizes the amount of polarization axis rotation as the polarizing material.
When a molybdenum silicide (MoSi) -based material is used, the range of the refractive index n and the extinction coefficient k at a wavelength of 250 nm is adjusted to 2.2 ≦ n ≦ 3.0 by adjusting the composition and the content of oxygen and nitrogen. Thus, it can be in the range of about 0.7 ≦ k ≦ 3.5. Among them, the refractive index and the extinction coefficient that can realize a high extinction ratio and simultaneously suppress the rotation amount of the polarization axis are in the range of 2.3 to 2.8, and the extinction coefficient is It was confirmed that it was within the range of 1.4 to 2.4.
Of these, the refractive index is preferably in the range of 2.3 to 2.8, and the extinction coefficient is preferably in the range of 1.7 to 2.2. In particular, the refractive index is 2.4. It was confirmed that the effect becomes more remarkable when the extinction coefficient is in the range of 1.8 to 2.1 and the extinction coefficient is in the range of ∼2.8.
[実施例11]
 波長250nmにおける偏光材料の屈折率nおよび消衰係数kを、それぞれ、2.66および1.94とし、細線の厚みを150nmとした以外は、実施例9と同様にして、RCWA(Rigorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、入射角(0°、10°、20°、30°、40°および50°)に対する偏光子から出射する偏光光の偏光軸の回転量の関係を算出した。結果を図12に示す。
[Example 11]
RCWA (Rigorous Coupled Wave) in the same manner as in Example 9 except that the refractive index n and extinction coefficient k of the polarizing material at a wavelength of 250 nm were 2.66 and 1.94, respectively, and the thickness of the thin wire was 150 nm. A simulation model based on (Analysis) was created, and the relationship between the rotation amount of the polarization axis of the polarized light emitted from the polarizer with respect to the incident angles (0 °, 10 °, 20 °, 30 °, 40 ° and 50 °) was calculated. . The results are shown in FIG.
[実施例12]
 偏光材料の屈折率nおよび消衰係数kを、それぞれ、250nm波長における屈折率nを2.66および消衰係数kを1.94とし、細線の厚みを170nmとした以外は、実施例11と同様にして、入射角(0°、10°、20°、30°、40°および50°)に対する偏光子から出射する偏光光の偏光軸の回転量の関係を算出した。結果を図12に示す。
[Example 12]
The refractive index n and extinction coefficient k of the polarizing material were set to Example 11 except that the refractive index n at a wavelength of 250 nm was 2.66, the extinction coefficient k was 1.94, and the thickness of the thin line was 170 nm. Similarly, the relationship of the rotation amount of the polarization axis of the polarized light emitted from the polarizer with respect to the incident angles (0 °, 10 °, 20 °, 30 °, 40 °, and 50 °) was calculated. The results are shown in FIG.
[実施例13]
 偏光材料の屈折率nおよび消衰係数kを、それぞれ、250nm波長のおける屈折率nを2.29および消衰係数kを3.24とし、細線の厚みを100nmとした以外は、実施例11と同様にして、入射角(0°、10°、20°、30°、40°および50°)に対する偏光子から出射する偏光光の偏光軸の回転量の関係を算出した。結果を図12に示す。
[Example 13]
Example 11 except that the refractive index n and extinction coefficient k of the polarizing material were set to 2.29 and extinction coefficient k of 3.24 at a wavelength of 250 nm, respectively, and the thickness of the thin line was set to 100 nm. In the same manner as above, the relationship of the rotation amount of the polarization axis of the polarized light emitted from the polarizer with respect to the incident angles (0 °, 10 °, 20 °, 30 °, 40 °, and 50 °) was calculated. The results are shown in FIG.
 図12より、偏光材料がモリブデンシリサイド系材料であっても、屈折率および消衰係数により、偏光軸の回転量、すなわち、軸ずれに対する影響度が異なることが確認できた。
 屈折率nを2.66および消衰係数kを1.94とした材料では、幅広い入射角度の入射光に対して偏光軸の軸ずれが少ないことが確認できた。
From FIG. 12, it was confirmed that even when the polarizing material is a molybdenum silicide-based material, the amount of rotation of the polarization axis, that is, the degree of influence on the axis deviation differs depending on the refractive index and the extinction coefficient.
It was confirmed that the material having the refractive index n of 2.66 and the extinction coefficient k of 1.94 has little polarization axis misalignment with respect to incident light having a wide incident angle.
[実施例14]
 透明基板として膜厚6.35mmの合成石英ガラスを準備し、モリブデンとシリコンとの混合ターゲット(Mo:Si=1mol%:2mol%)を用い、アルゴン、窒素、酸素の混合ガス雰囲気で反応性スパッタリング法により、モリブデンシリサイド系材料膜を形成した。実施例8の膜の成膜に比べ、屈折率を調整するため窒素を増やし、消衰係数の調節のため酸素を若干導入した。膜厚は100nmとした。
 さらにモリブデンシリサイド系材料膜上に、ハードマスクとして酸化窒化クロム膜を7nmでスパッタリング法で形成した。
 以後は、実施例8と同様にして、エッチングすることによって、偏光子を得た。
 得られた偏光子の細線の幅、厚み、およびピッチは、それぞれ、36nm、100nm、および100nmであった。
[Example 14]
Synthetic quartz glass with a film thickness of 6.35 mm is prepared as a transparent substrate, and reactive sputtering is performed in a mixed gas atmosphere of argon, nitrogen, and oxygen using a mixed target of molybdenum and silicon (Mo: Si = 1 mol%: 2 mol%). A molybdenum silicide material film was formed by the method. Compared to the film formation of Example 8, nitrogen was increased in order to adjust the refractive index, and oxygen was slightly introduced to adjust the extinction coefficient. The film thickness was 100 nm.
Further, a chromium oxynitride film as a hard mask was formed on the molybdenum silicide material film by sputtering at 7 nm.
Thereafter, a polarizer was obtained by etching in the same manner as in Example 8.
The width, thickness, and pitch of the thin wires of the obtained polarizer were 36 nm, 100 nm, and 100 nm, respectively.
(細線の構造評価)
 実施例14の偏光子の細線について透過型エリプソメータ(ウーラム社製VUV-VASE)により構造を評価した。
 その結果、上記細線が、幅および厚みがそれぞれ31.8nmおよび95.8nmのモリブデンシリサイド系材料からなるモリブデンシリサイド系材料層と、上記モリブデンシリサイド系材料層の上面の膜厚および側面の膜厚がそれぞれ4.2nmおよび4.2nmnmの酸化ケイ素からなる酸化膜と、を有することが確認できた。
 また、モリブデンシリサイド系材料層の屈折率および消衰係数、すなわち、モリブデンシリサイド系材料(Mo:Si=1mol%:2mol%)の250nm波長における屈折率nは、2.66であり、消衰係数kは、1.94であった。
(Structural evaluation of thin wires)
The structure of the fine wire of the polarizer of Example 14 was evaluated using a transmission ellipsometer (VUV-VASE manufactured by Woollam).
As a result, the thin wire has a molybdenum silicide-based material layer made of a molybdenum silicide-based material having a width and a thickness of 31.8 nm and 95.8 nm, respectively, and the upper surface thickness and the side surface film thickness of the molybdenum silicide-based material layer. It was confirmed to have an oxide film made of silicon oxide having a thickness of 4.2 nm and 4.2 nm, respectively.
The refractive index and extinction coefficient of the molybdenum silicide-based material layer, that is, the refractive index n of the molybdenum silicide-based material (Mo: Si = 1 mol%: 2 mol%) at a wavelength of 250 nm is 2.66, and the extinction coefficient. k was 1.94.
(P波透過率およびS波透過率の測定)
 実施例8と同様にしてP波透過率およびS波透過率を測定し、消光比を算出した。結果を表13および図13に示す。
 表13および図13に示すように、波長200nm~350nmの範囲において偏光子のP波透過率は48%以上であり、消光比は40以上であった。なかでも、240nm~300nmの範囲内において偏光子のP波透過率は61%以上であり、消光比は142以上であった。特に、240nm~280nmの範囲内の範囲内において偏光子のP波透過率は61%以上であり、消光比は220以上であった。
 本実施例の偏光子は特に、波長260nm程度で配向する光配向膜の材料に好適に用いることができることが確認できた。
(Measurement of P wave transmittance and S wave transmittance)
In the same manner as in Example 8, P wave transmittance and S wave transmittance were measured, and an extinction ratio was calculated. The results are shown in Table 13 and FIG.
As shown in Table 13 and FIG. 13, the P-wave transmittance of the polarizer was 48% or more and the extinction ratio was 40 or more in the wavelength range of 200 nm to 350 nm. In particular, the P wave transmittance of the polarizer was 61% or more and the extinction ratio was 142 or more within the range of 240 nm to 300 nm. In particular, within the range of 240 nm to 280 nm, the P-wave transmittance of the polarizer was 61% or more, and the extinction ratio was 220 or more.
In particular, it was confirmed that the polarizer of this example can be suitably used as a material for a photo-alignment film that is aligned at a wavelength of about 260 nm.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 1 … 透明基板
 2 … 細線
 3 … 偏光材料層
 4 … 非偏光材料層
 10、10a、10b、10c、10d … 偏光子
 20、30 … 光配向装置
21、31・・・偏光子ユニット
22、32・・・紫外光ランプ
23、33・・・反射鏡
24、34・・・偏光光
25、35・・・光配向膜
26、36・・・ワーク
41、42・・・境界部
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Fine wire 3 ... Polarizing material layer 4 ... Non-polarizing material layer 10, 10a, 10b, 10c, 10d ... Polarizer 20, 30 ... Optical orientation apparatus 21, 31 ... Polarizer unit 22, 32. .. Ultraviolet light lamps 23, 33 ... reflecting mirrors 24, 34 ... polarized light 25, 35 ... photo- alignment films 26, 36 ... work pieces 41, 42 ... boundary portions

Claims (11)

  1.  直線状に複数本が並列に配置された細線を有し、
     前記細線が、偏光材料を含有する偏光材料層を有し、
     波長250nmの光の消光比が40以上であることを特徴とする偏光子。
    It has fine lines arranged in parallel in a straight line,
    The fine wire has a polarizing material layer containing a polarizing material,
    A polarizer characterized by having an extinction ratio of light having a wavelength of 250 nm of 40 or more.
  2.  前記偏光子が光配向膜への配向規制力付与用であり、
     紫外線領域の波長の光の直線偏光生成用であることを特徴とする請求の範囲第1項に記載の偏光子。
    The polarizer is for imparting alignment regulating force to the photo-alignment film,
    The polarizer according to claim 1, which is used for generating linearly polarized light having a wavelength in the ultraviolet region.
  3.  前記偏光材料の屈折率が2.0~3.2の範囲内であり、
     前記偏光材料の消衰係数が2.7~3.5の範囲内であることを特徴とする請求の範囲第1項または第2項に記載の偏光子。
    The polarizing material has a refractive index in the range of 2.0 to 3.2;
    3. The polarizer according to claim 1, wherein the polarizing material has an extinction coefficient in the range of 2.7 to 3.5.
  4.  前記偏光材料の屈折率が2.3~2.8の範囲内であり、
     前記偏光材料の消衰係数が1.4~2.4の範囲内であることを特徴とする請求の範囲第1項または第2項に記載の偏光子。
    The polarizing material has a refractive index in the range of 2.3 to 2.8;
    3. The polarizer according to claim 1, wherein an extinction coefficient of the polarizing material is in a range of 1.4 to 2.4.
  5.  前記偏光材料がモリブデンシリサイド系材料であることを特徴とする請求の範囲第1項から第4項までのいずれかの請求の範囲に記載の偏光子。 The polarizer according to any one of claims 1 to 4, wherein the polarizing material is a molybdenum silicide-based material.
  6.  前記偏光材料層の膜厚が40nm以上であり、
     前記偏光材料層間のピッチが150nm以下であることを特徴とする請求の範囲第1項から第5項までのいずれかの請求の範囲に記載の偏光子。
    The polarizing material layer has a thickness of 40 nm or more,
    The polarizer according to any one of claims 1 to 5, wherein a pitch between the polarizing material layers is 150 nm or less.
  7.  透明基板と、
     前記透明基板上に形成され、偏光材料を含有する偏光材料膜と、
     を有し、
     前記偏光材料膜は、屈折率が2.0~3.2の範囲内であり、消衰係数が2.7~3.5の範囲内であることを特徴とする偏光子用基板。
    A transparent substrate;
    A polarizing material film formed on the transparent substrate and containing a polarizing material;
    Have
    The polarizer substrate, wherein the polarizing material film has a refractive index in the range of 2.0 to 3.2 and an extinction coefficient in the range of 2.7 to 3.5.
  8.  透明基板と、
     前記透明基板上に形成され、偏光材料を含有する偏光材料膜と、
     を有し、
     前記偏光材料膜は、屈折率が2.3~2.8の範囲内であり、消衰係数が1.4~2.4の範囲内であることを特徴とする偏光子用基板。
    A transparent substrate;
    A polarizing material film formed on the transparent substrate and containing a polarizing material;
    Have
    The polarizer substrate, wherein the polarizing material film has a refractive index in the range of 2.3 to 2.8 and an extinction coefficient in the range of 1.4 to 2.4.
  9.  前記偏光材料がモリブデンシリサイド系材料であることを特徴とする請求の範囲第7項または第8項に記載の偏光子用基板。 The polarizer substrate according to claim 7 or 8, wherein the polarizing material is a molybdenum silicide-based material.
  10.  紫外光を偏光して光配向膜に照射する光配向装置であって、
     請求の範囲第1項から第6項までのいずれかの請求の範囲に記載の偏光子を備え、
     前記偏光子により偏光した光を前記光配向膜に照射することを特徴とする光配向装置。
    A photo-alignment device that polarizes ultraviolet light and irradiates the photo-alignment film,
    A polarizer according to any one of claims 1 to 6 is provided,
    A photo-alignment apparatus that irradiates the photo-alignment film with light polarized by the polarizer.
  11.  前記光配向膜を移動させる機構が備えられており、
     前記偏光子が前記光配向膜の移動方向および前記光配向膜の移動方向に直交する方向の両方向に複数個備えられており、
     前記光配向膜の移動方向に直交する方向において隣り合う前記複数個の偏光子間の境界部が、前記光配向膜の移動方向に連続的に繋がらないように、前記複数個の偏光子が配置されていることを特徴とする請求の範囲第10項に記載の光配向装置。
    A mechanism for moving the photo-alignment film is provided;
    A plurality of the polarizers are provided in both the direction of movement of the photo-alignment film and the direction orthogonal to the direction of movement of the photo-alignment film;
    The plurality of polarizers are arranged so that boundaries between the plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film are not continuously connected to the moving direction of the photo-alignment film. The photo-alignment device according to claim 10, wherein the photo-alignment device is formed.
PCT/JP2014/079961 2013-11-13 2014-11-12 Polarizer, polarizer substrate, and optical alignment device WO2015072482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167010603A KR101827658B1 (en) 2013-11-13 2014-11-12 Polarizer, polarizer substrate, and optical alignment device
CN201480055919.9A CN105659119B (en) 2013-11-13 2014-11-12 Polarizing film, polarizing film substrate and light orientation device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013234673 2013-11-13
JP2013-234673 2013-11-13
JP2013-263571 2013-12-20
JP2013263571 2013-12-20
JP2014053913A JP6409295B2 (en) 2013-12-20 2014-03-17 Polarizer and optical alignment device
JP2014-053913 2014-03-17
JP2014226345A JP6428171B2 (en) 2013-11-13 2014-11-06 Polarizer, polarizer substrate and optical alignment apparatus
JP2014-226345 2014-11-06

Publications (1)

Publication Number Publication Date
WO2015072482A1 true WO2015072482A1 (en) 2015-05-21

Family

ID=53057416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079961 WO2015072482A1 (en) 2013-11-13 2014-11-12 Polarizer, polarizer substrate, and optical alignment device

Country Status (1)

Country Link
WO (1) WO2015072482A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013521A1 (en) * 2014-07-23 2016-01-28 大日本印刷株式会社 Polarizer and optical alignment device
CN108700701A (en) * 2016-03-10 2018-10-23 大日本印刷株式会社 Polarizing film
CN112189157A (en) * 2018-06-12 2021-01-05 优志旺电机株式会社 Vacuum ultraviolet light polarizing element, vacuum ultraviolet light polarizing device, vacuum ultraviolet light polarizing method and orientation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114647A (en) * 2005-10-24 2007-05-10 Ushio Inc Polarized light irradiation device for photo-alignment
JP2008216957A (en) * 2007-02-06 2008-09-18 Sony Corp Polarizing element and liquid crystal projector
JP2010048999A (en) * 2008-08-21 2010-03-04 Asahi Kasei E-Materials Corp Wire grid polarizer and display using the same
JP2010117577A (en) * 2008-11-13 2010-05-27 Canon Inc Polarizer
WO2013085283A1 (en) * 2011-12-05 2013-06-13 주식회사 엘지화학 Polarization separation element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114647A (en) * 2005-10-24 2007-05-10 Ushio Inc Polarized light irradiation device for photo-alignment
JP2008216957A (en) * 2007-02-06 2008-09-18 Sony Corp Polarizing element and liquid crystal projector
JP2010048999A (en) * 2008-08-21 2010-03-04 Asahi Kasei E-Materials Corp Wire grid polarizer and display using the same
JP2010117577A (en) * 2008-11-13 2010-05-27 Canon Inc Polarizer
WO2013085283A1 (en) * 2011-12-05 2013-06-13 주식회사 엘지화학 Polarization separation element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013521A1 (en) * 2014-07-23 2016-01-28 大日本印刷株式会社 Polarizer and optical alignment device
JPWO2016013521A1 (en) * 2014-07-23 2017-04-27 大日本印刷株式会社 Polarizer and optical alignment device
CN108700701A (en) * 2016-03-10 2018-10-23 大日本印刷株式会社 Polarizing film
TWI821155B (en) * 2016-03-10 2023-11-11 日商大日本印刷股份有限公司 polarized photon
CN112189157A (en) * 2018-06-12 2021-01-05 优志旺电机株式会社 Vacuum ultraviolet light polarizing element, vacuum ultraviolet light polarizing device, vacuum ultraviolet light polarizing method and orientation method
CN112189157B (en) * 2018-06-12 2022-07-19 优志旺电机株式会社 Vacuum ultraviolet light polarizing element, vacuum ultraviolet light polarizing device, vacuum ultraviolet light polarizing method and orientation method

Similar Documents

Publication Publication Date Title
KR101827658B1 (en) Polarizer, polarizer substrate, and optical alignment device
JP6539879B2 (en) Wire grid type light absorbing polarizing element, transmission type projector, and liquid crystal display device
US9988724B2 (en) Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
JP6428171B2 (en) Polarizer, polarizer substrate and optical alignment apparatus
JP6620854B2 (en) Polarizer, polarizer manufacturing method, photo-alignment apparatus, and polarizer mounting method
CN105093380B (en) Inorganic polarizing plate and production method thereof
WO2015072482A1 (en) Polarizer, polarizer substrate, and optical alignment device
JP6554768B2 (en) Polarizer, laminated substrate, and photo-alignment apparatus
JP6372205B2 (en) Polarizer, method for manufacturing polarizer, and optical alignment apparatus
JP6409295B2 (en) Polarizer and optical alignment device
JP6614147B2 (en) Polarizer and optical alignment device
JP2021099442A (en) Polarizing element
JP6884501B2 (en) Polarizer
WO2017195810A1 (en) Phase difference element, phase difference element manufacturing method, and optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010603

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862023

Country of ref document: EP

Kind code of ref document: A1