WO2015071972A1 - 監視システム、監視装置、監視方法、及びプログラム - Google Patents

監視システム、監視装置、監視方法、及びプログラム Download PDF

Info

Publication number
WO2015071972A1
WO2015071972A1 PCT/JP2013/080665 JP2013080665W WO2015071972A1 WO 2015071972 A1 WO2015071972 A1 WO 2015071972A1 JP 2013080665 W JP2013080665 W JP 2013080665W WO 2015071972 A1 WO2015071972 A1 WO 2015071972A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
state
electrical device
acquisition request
monitoring
Prior art date
Application number
PCT/JP2013/080665
Other languages
English (en)
French (fr)
Inventor
山彦 伊藤
聡司 峯澤
裕信 矢野
矢部 正明
一郎 丸山
中村 慎二
浩子 泉原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/027,531 priority Critical patent/US9800710B2/en
Priority to PCT/JP2013/080665 priority patent/WO2015071972A1/ja
Priority to CN201380080198.2A priority patent/CN105637890B/zh
Priority to JP2015547319A priority patent/JP6147355B2/ja
Publication of WO2015071972A1 publication Critical patent/WO2015071972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2827Reporting to a device within the home network; wherein the reception of the information reported automatically triggers the execution of a home appliance functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72415User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories for remote control of appliances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/284Home automation networks characterised by the type of medium used
    • H04L2012/2843Mains power line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm

Definitions

  • the present invention relates to a monitoring system, a monitoring device, a monitoring method, and a program for monitoring an operating state of an electrical device.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a monitoring system, a monitoring device, a monitoring method, and a program capable of monitoring the operating state of an electrical device with higher accuracy.
  • a monitoring system includes an electrical device and a monitoring device that is communicably connected to the electrical device and monitors the state of the electrical device.
  • the acquisition unit of the monitoring device acquires an operation mode indicating whether or not the power supply of the electric device is always on.
  • the status acquisition request transmission unit of the monitoring device transmits a status acquisition request for requesting acquisition of the status of the electrical device to the electrical device.
  • the determination unit of the monitoring device determines the state of the electrical device based on the response to the state acquisition request transmitted by the state acquisition request transmission unit and the operation mode acquired by the acquisition unit.
  • the operation state of the electric device is more accurately monitored. Can do.
  • FIG. 2 is a schematic block diagram illustrating an example of a hardware configuration of a monitoring apparatus according to Embodiment 1.
  • FIG. 2 is a schematic block diagram illustrating an example of a functional configuration of a monitoring device according to Embodiment 1.
  • FIG. It is a figure which shows an example of the setting table displayed on the screen of the output part of a monitoring apparatus. It is a figure which shows an example of the data contained in an operation form table. It is a figure which shows an example of the determination result table displayed on the screen of the output part of a monitoring apparatus. It is an example of the sequence diagram of the monitoring system which concerns on Embodiment 1.
  • FIG. 1 is a schematic block diagram illustrating an example of a hardware configuration of a monitoring apparatus according to Embodiment 1.
  • FIG. 2 is a schematic block diagram illustrating an example of a functional configuration of a monitoring device according to Embodiment 1.
  • FIG. It is a figure which shows an example of the setting table displayed on the screen of the output part of a monitoring apparatus
  • FIG. 4 is an example of a flowchart of an operation mode acquisition process according to the first embodiment.
  • 3 is an example of a flowchart of a state determination process according to the first embodiment.
  • It is a schematic block diagram which shows the structural example of the communication adapter which concerns on Embodiment 2.
  • FIG. It is a schematic block diagram which shows an example of a function structure of the monitoring apparatus which concerns on Embodiment 2.
  • FIG. It is a schematic block diagram which shows an example of a function structure of the monitoring apparatus which concerns on Embodiment 3.
  • FIG. 10 is an example of a flowchart of state determination processing according to the third embodiment.
  • It is a schematic block diagram which shows the structural example of the monitoring system which concerns on Embodiment 4.
  • FIG. 1 It is a schematic block diagram which shows the structural example of the 2nd communication adapter which concerns on Embodiment 4. It is a schematic block diagram which shows an example of a function structure of the monitoring apparatus which concerns on Embodiment 4. It is an example of the flowchart of the state determination process which concerns on Embodiment 4. It is a schematic block diagram which shows the structural example of the monitoring system which concerns on Embodiment 5. FIG. It is a schematic block diagram which shows the structural example of the power supply detection apparatus which concerns on Embodiment 5. FIG.
  • FIG. 1 is a schematic block diagram showing a configuration example of a monitoring system 1 according to Embodiment 1 of the present invention.
  • the monitoring system 1 is a system that monitors the operating status of a plurality of electrical devices 100a to 100d.
  • the monitoring system 1 includes a plurality of electrical devices 100a to 100d, a plurality of communication adapters 200a to 200d for connecting each of the plurality of electrical devices 100a to 100d to the network N, and the electrical devices 100a to 100a.
  • a monitoring device 300 that monitors the operation status of 100d.
  • four electric devices 100a to 100d and communication adapters 200a to 200d are illustrated as an example, but the number of electric devices 100a to 100d and communication adapters 200a to 200d is not limited thereto.
  • Electrical devices 100a to 100d are devices that are operated by electric power supplied from a commercial power source (not shown) via a power line.
  • the electric devices 100a to 100d are connected to the communication adapters 200a to 200d so that they can communicate with each other by wire.
  • the electric devices 100a to 100d are collectively referred to as the electric device 100.
  • the electrical device 100 is either “always operating” in which the power source of the electrical device 100 is always on, or “operation by operation” in which the power source of the electrical device 100 is not always on. It is classified as an operation mode.
  • the electric device 100 in which the power supply is always on means that the original function of the electric device 100 is realized by continuously operating once the power supply is turned on, and is more frequently operated by the user. This is a device that cannot be turned on / off.
  • the electric device 100 classified as “always operating” is, for example, a refrigerator or a security device.
  • the electric device 100 classified as “operation by operation” is an electric device 100 other than the electric device 100 classified as “always operating”, and is, for example, an air conditioner or a television.
  • the communication adapters 200a to 200d are communicably connected to the network N by wire or wireless.
  • the communication adapters 200a to 200d are collectively referred to as the communication adapter 200.
  • the communication adapter 200 is supplied with power for operating itself from the corresponding electrical device 100. Accordingly, the on / off of the communication adapter 200 is switched in accordance with the on / off switching of the electric device 100.
  • the monitoring device 300 is communicably connected to the network N by wire or wireless.
  • the monitoring device 300 receives data representing the operating state of the electrical device 100 from the electrical device 100 via the communication adapter 200 and the network N, and determines whether the electrical device 100 has an abnormality.
  • FIG. 2 shows an example of the hardware configuration of the monitoring apparatus 300 according to the present embodiment.
  • the monitoring apparatus 300 includes a control unit 310, a storage unit 320, a communication unit 330, an input unit 340, and an output unit 350, and each unit is connected by a bus 360.
  • the control unit 310 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores a program executed by the CPU, a RAM (Random Access Memory) that temporarily stores data generated by the CPU, and the current time. It consists of a timer that counts time and controls the entire monitoring device 300.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 320 includes a writable storage device such as a hard disk drive, flash memory, or SSD (Solid State Drive).
  • a writable storage device such as a hard disk drive, flash memory, or SSD (Solid State Drive).
  • the communication unit 330 includes an interface for transmitting and receiving data to and from the network N.
  • the input unit 340 includes input devices such as buttons, a touch panel, and a keyboard.
  • the input unit 340 receives an operation input from the user and outputs an operation input signal corresponding to the received operation input to the control unit 310.
  • the output unit 350 includes a display device such as a CRT (Cathode Ray Tube) or a liquid crystal display, and displays data such as characters and images supplied from the control unit 310.
  • a display device such as a CRT (Cathode Ray Tube) or a liquid crystal display, and displays data such as characters and images supplied from the control unit 310.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the control unit 310.
  • the control unit 310 functions as an acquisition unit 311, a state acquisition request transmission unit 312, a determination unit 313, and a presentation unit 314.
  • the acquisition unit 311 acquires the operation mode of the electric device 100. Specifically, the acquisition unit 311 receives an input representing the operation mode of the electric device 100 from the user via the input unit 340.
  • FIG. 4 shows an example of the screen 351 of the output unit 350 when the operation mode of the electric device 100 is set by the user.
  • a setting table 352 capable of selecting the operation mode for each electrical device 100 is displayed.
  • the electric device 100, the installation location, and the operation mode are associated with each other.
  • the user wants to set the operation mode of the air conditioner installed in the living room on the first floor to “operation by operation”
  • the user sets the electric device “air conditioner”, installed in the setting table 352 via the input unit 340. It can be set by selecting “operation by operation” as the operation mode corresponding to the place “living room (1F)”.
  • the acquisition unit 311 stores the operation mode of the electric device 100 received from the user via the input unit 340 in the operation mode table 321 of the storage unit 320.
  • FIG. 5 shows an example of data stored in the operation mode table 321.
  • the operation mode table 321 illustrated in FIG. 5 stores a device ID for identifying the electric device 100 and an operation mode of the electric device 100 identified by the device ID.
  • the status acquisition request transmission unit 312 transmits a status acquisition request for requesting acquisition of the status of the electrical device 100 to the electrical device 100. Specifically, the state acquisition request transmission unit 312 transmits a state acquisition request to the electric device 100 periodically or in response to a request from the user.
  • the determination unit 313 determines the state of the electrical device 100 based on the response to the state acquisition request transmitted by the state acquisition request transmission unit 312 and the operation mode acquired by the acquisition unit 311.
  • the determination unit 313 determines that there is a possibility that the power source of the electric device 100 is in an off state.
  • the determination unit 313 determines that there is an abnormality in the communication between the electrical device 100 and the monitoring device 300.
  • the determination unit 313 may consider the two causes (i) and (ii) above. It is determined that there is a possibility that the power of 100 is in an off state.
  • the determination unit 313 receives a response to the status acquisition request transmitted from the status acquisition request transmission unit 312 from the electrical device 100, the failure indicating that the electrical device 100 is in failure in the response It is determined whether information is included. If the response includes failure information, the determination unit 313 determines that the electrical device 100 is in failure. When the response does not include failure information, the determination unit 313 determines that the electrical device 100 is operating normally.
  • the presenting unit 314 presents the state of the electric device 100 determined by the determining unit 313 to the output unit 350.
  • FIG. 6 illustrates an example of a screen 351 of the output unit 350 that displays the state of the electrical device 100.
  • a determination result table 353 representing the state of the electrical device 100 determined by the determination unit 313 is displayed for each electrical device 100.
  • the electric device 100, the installation location, and the state of the electric device 100 determined by the determination unit 313 are associated with each other.
  • the presentation unit 314 displays the electric device “air conditioner” in the determination result table 353. “The message“ There is a possibility that the power may be turned off ”is presented as a state corresponding to the installation location“ Living Room (2F) ”.
  • FIG. 7 shows an example of a sequence diagram of the monitoring system 1 according to the present embodiment.
  • the monitoring apparatus 300 executes an operation mode acquisition process for acquiring the operation mode of the electric device 100 based on an input from the user (P1). Then, the monitoring apparatus 300 transmits a status acquisition request Ra to the communication adapter 200.
  • the communication adapter 200 that has received the status acquisition request Ra from the monitoring device 300 transmits the status acquisition request Rb to the electrical device 100.
  • the electrical device 100 that has received the status acquisition request Rb from the communication adapter 200 transmits a status acquisition response Ab including information indicating its own status to the communication adapter 200.
  • the communication adapter 200 that has received the status acquisition response Ab from the electrical device 100 transmits the status acquisition response Aa to the monitoring device 300.
  • FIG. 8 is an example of a flowchart of the operation mode acquisition process executed by the control unit 310 of the monitoring apparatus 300.
  • the operation mode acquisition process is executed, for example, when the CPU of the control unit 310 reads a program stored in the ROM.
  • the operation mode acquisition process is started when an operation input indicating the start of the operation mode acquisition process is received from the user via the input unit 340, for example.
  • the acquisition unit 311 displays a setting table 352 as shown in FIG. 4 on the screen 351 of the output unit 350 (step S101).
  • the acquisition unit 311 determines whether one of the operation modes of “always operating” or “operation by operation” has been selected for each electrical device 100 by the user (step S102). The acquisition unit 311 waits until the user selects the operation mode of each electrical device 100 (step S102; No).
  • the acquisition unit 311 determines that the operation mode has been selected for each electrical device 100 by the user (step S102; Yes)
  • the operation mode selected for each electrical device 100 corresponds to the device ID of the electrical device 100.
  • it is stored in the operation mode table 321 (step S103). Then, this process ends.
  • FIG. 9 is an example of a flowchart of state determination processing executed by the control unit 310 of the monitoring apparatus 300.
  • the state determination process is executed, for example, when the CPU of the control unit 310 reads a program stored in the ROM.
  • the state determination process is started when an operation input indicating the start of the state determination process is received from the user via the input unit 340, for example.
  • the state acquisition request transmission unit 312 transmits a state acquisition request to each electrical device 100 (step S201). In this process, it is assumed that the state acquisition request transmission unit 312 transmits a state acquisition request to the electrical devices 100 having the device IDs “DEV_1” to “DEV_N” (N is the total number of electrical devices 100).
  • the determination unit 313 sets the counter n to an initial value “1” (step S202).
  • the determination unit 313 determines whether or not a status acquisition response has been received from the electrical device 100 with the device ID “DEV_n” (step S203). Specifically, whether or not the determination unit 313 has received a status acquisition response from the electrical device 100 within a time set in advance by a user or the like after transmitting the status acquisition request to the electrical device 100 in step S201. Determine.
  • step S203 If the determination unit 313 determines that the status acquisition response has been received from the electrical device 100 with the device ID “DEV_n” (step S203; Yes), the electrical device 100 with the device ID “DEV_n” has failed in the received status acquisition response. It is determined whether or not failure information indicating that it is in the middle is included (step S204).
  • step S204 If the determination unit 313 determines that failure information is included in the received state acquisition response (step S204; Yes), the determination unit 313 determines that the electrical device 100 having the device ID “DEV_n” is in failure. Determination is made (step S205). Then, the determination unit 313 records the device ID “DEV_n” in the RAM in association with the determination result indicating that there is a failure. Then, the determination unit 313 proceeds to the process of step S210.
  • step S204 determines that failure information is not included in the received state acquisition response (step S204; No)
  • the determination unit 313 indicates that the electric device 100 having the device ID “DEV_n” is operating normally.
  • Step S206 the determination unit 313 records the device ID “DEV_n” in the RAM in association with the determination result indicating that the device is operating normally. Then, the determination unit 313 proceeds to the process of step S210.
  • the determination unit 313 When determining that the status acquisition response has not been received from the electrical device 100 having the device ID “DEV_n” (step S203; No), the determination unit 313 refers to the operation mode table 321 and corresponds to the device ID “DEV_n”. It is determined whether the operation mode is “always operating” (step S207).
  • step S207 When the determination unit 313 determines that the operation mode corresponding to the device ID “DEV_n” is “always operating” (step S207; Yes), the determination unit 313 determines that the electric device 100 and the monitoring device with the device ID “DEV_n” are present. It is determined that there is a communication abnormality with 300 (step S208). Then, the determination unit 313 records the device ID “DEV_n” in the RAM in association with the determination result that there is a communication abnormality. Then, the determination unit 313 proceeds to the process of step S210.
  • step S207 When the determination unit 313 determines that the operation mode corresponding to the device ID “DEV_n” is not “always operating” (step S207; No), the determination unit 313 turns off the electric device 100 with the device ID “DEV_n”. It is determined that there is a possibility of (step S209). Then, the determination unit 313 records the device ID “DEV_n” in the RAM in association with the determination result that there is a possibility of power-off. Then, the determination unit 313 proceeds to the process of step S210.
  • the determination unit 313 increments the counter n (step S210), and determines whether the counter n is smaller than the total number N of the electrical devices 100 (step S211).
  • step S211 When it is determined that the counter n is smaller than N (step S211; Yes), the determination unit 313 returns to step S203 and repeats the subsequent processing.
  • the presentation unit 314 When it is determined that the counter n is not smaller than N (step S211; No), the presentation unit 314 generates the determination result table 353 based on each device ID recorded in the RAM and the determination result. And displayed on the screen 351 of the output unit 350 (step S212).
  • the determination unit 313 determines whether or not the processing cycle has elapsed after transmitting the status acquisition request to the electric device 100 in step S201 (step S213).
  • This “processing cycle” is a time interval between the processes P2 when the process P2 shown in FIG. 8 is periodically repeated.
  • the determination unit 313 waits until the processing cycle elapses (step S213; No).
  • the determination part 313 returns to step S201, and repeats subsequent processes, when it determines with the process period having passed (step S213; Yes).
  • the monitoring apparatus 300 is based on the presence / absence of reception of the status acquisition response from the electric device 100 and the operation mode of the electric device 100 set by the user. Determine the state. Therefore, even if the electrical device 100 does not respond to the request for acquiring the state of the electrical device 100, communication is not possible because the cause is due to a communication abnormality or because the electrical device 100 is powered off. It can be determined whether it is due to the fact. Therefore, the monitoring apparatus 300 can determine the state of the electrical device 100 with higher accuracy.
  • Embodiment 2 Next, the monitoring system 1 according to Embodiment 2 of the present invention will be described.
  • the monitoring apparatus 300 acquires the operation
  • an example of acquiring the operation mode of the electric device 100 from the communication adapter 200 will be described as another example of the operation mode acquisition method.
  • symbol is used and the detailed description is abbreviate
  • FIG. 10 shows an example of the configuration of the communication adapter 200 according to the present embodiment.
  • the communication adapter 200 includes a control unit 210, a storage unit 220, a first communication unit 230, and a second communication unit 240.
  • the control unit 210 includes, for example, a CPU, a ROM that stores a program executed by the CPU, a RAM that temporarily stores data generated by the CPU, and a timer that measures the current time, and controls the entire communication adapter 200. Do.
  • the storage unit 220 includes a writable storage device such as a hard disk drive, flash memory, or SSD. Specifically, the storage unit 220 stores a correspondence table 221 that associates the electrical device 100 with the operation mode.
  • the first communication unit 230 includes an interface for transmitting and receiving data to and from the electrical device 100.
  • the second communication unit 240 includes an interface for transmitting and receiving data to and from the network N.
  • FIG. 10 is a block diagram illustrating an example of a functional configuration of the control unit 210. As illustrated in FIG. 10, the control unit 210 functions as a specification unit 211 and an operation mode transmission unit 212.
  • the identifying unit 211 receives the device ID of the electrical device 100 from the electrical device 100 to which the communication adapter 200 is connected, and refers to the correspondence table 221 to identify the operation mode corresponding to the received device ID.
  • the identifying unit 211 receives the electric device 100 from the electric device 100 when the power of the electric device 100 is turned on and power is supplied from the electric device 100 to the communication adapter 200.
  • the device ID is received.
  • the specifying unit 211 may periodically receive the device ID of the electric device 100 from the electric device 100.
  • the operation mode transmission unit 212 transmits the operation mode specified by the specifying unit 211 to the monitoring apparatus 300 in association with the received device ID.
  • ECHONET Lite can be adopted as a communication protocol between the communication adapter 200 and the monitoring device 300.
  • the operation mode transmission unit 212 sets INF (INF for notifying a property value) in ESV (ECHONET Lite service) in the communication message transmitted to the monitoring apparatus 300, and the EPC (ECHONET property) user-defined area
  • INF INF for notifying a property value
  • ESV ECHONET Lite service
  • EPC ECHONET property
  • “operation mode” can be assigned and a value indicating “always operation” or “operation by operation” can be set.
  • the operation mode transmission unit 212 can notify the monitoring device 300 of the operation mode of the electrical device 100 connected to the communication adapter 200 by transmitting the communication message set as described above to the monitoring device 300. .
  • control unit 310 functions as an acquisition unit 311 a instead of the acquisition unit 311 of the first embodiment illustrated in FIG. 3.
  • the acquisition unit 311a acquires the operation mode of the electrical device 100 from the communication adapter 200. Specifically, the acquisition unit 311 a stores the operation mode and the device ID included in the data transmitted from the operation mode transmission unit 212 of the communication adapter 200 in the operation mode table 321 of the storage unit 320.
  • the communication adapter 200 specifies the operation mode of the electrical device 100 from the information of the electrical device 100 connected to itself. Then, the communication adapter 200 notifies the monitoring device 300 of the identified operation mode. Therefore, the user himself / herself can save time and labor for setting the operation mode for each electrical device 100.
  • Embodiment 3 Next, the monitoring system 1 according to Embodiment 3 of the present invention will be described.
  • the third embodiment as an example of an operation mode acquisition method different from the first and second embodiments, an example in which the operation mode of the electric device 100 is acquired based on the frequency at which the presence or absence of a response to the state acquisition request has changed. explain.
  • symbol is used and the detailed description is abbreviate
  • FIG. 12 is a block diagram illustrating an example of a functional configuration of the control unit 310. As illustrated in FIG. 12, the control unit 310 functions as an acquisition unit 311b and a determination unit 313b, respectively, instead of the acquisition unit 311 and the determination unit 313 of the first embodiment illustrated in FIG.
  • the acquisition unit 311b calculates the frequency at which the presence / absence of a response to the status acquisition request transmitted by the status acquisition request transmission unit 312 has changed, and when the calculated frequency is smaller than a predetermined threshold, the operating state of the electrical device 100 As “always-on”. In addition, when the calculated frequency is equal to or higher than the threshold, the acquisition unit 311b acquires “operation by operation” as the operation state of the electric device 100.
  • the threshold is, for example, once a year and once a month.
  • the determination unit 313b When the determination unit 313b does not receive a response to the state acquisition request transmitted by the state acquisition request transmission unit 312 from the electric device 100, the operation mode of the electric device 100 acquired by the acquisition unit 311b is “always operating”. If not, the determination unit 313 determines that there is a possibility that the power of the electric device 100 is in an off state.
  • the determination unit 313b determines that there is an abnormality in communication between the electrical device 100 and the monitoring device 300.
  • FIG. 13 is an example of a flowchart of state determination processing executed by the control unit 310 of the monitoring apparatus 300.
  • the state determination process is executed, for example, when the CPU of the control unit 310 reads a program stored in the ROM.
  • the state determination process is started when an operation input indicating the start of the state determination process is received from the user via the input unit 340, for example.
  • steps S301 to S303 processing similar to that in steps S201 to 203 of the state determination processing of the first embodiment shown in FIG. 9 is executed.
  • step S303 determines that a status acquisition response has been received from the electrical device 100 with the device ID “DEV_n” (step S303; Yes)
  • the acquisition unit 311b previously transmitted to the electrical device 100 with the device ID “DEV_n”.
  • the acquisition unit 311b increments the counter m_n (step S305).
  • the counter m_n has changed from a state in which the determination unit 313b has not received the state acquisition response from the electric device 100 having the device ID “DEV_n” within the unit period (for example, one year).
  • This is a counter for counting the number of times. That is, the counter m_n represents the frequency with which the presence / absence of a response to the status acquisition request transmitted by the status acquisition request transmission unit 312 has changed for the electrical device 100 with the device ID “DEV_n”.
  • the counter m_n is cleared every unit period and returns to 0.
  • steps S306 to S308 processing similar to that in steps S204 to S206 of the state determination processing in the first embodiment shown in FIG. 9 is executed.
  • the acquisition unit 311b sets the counter m_n to a threshold value Th (for example, 1). Is also smaller (step S309).
  • step S309 determines that the acquisition unit 311b determines that the operation mode corresponding to the device ID “DEV_n” is “always operating”.
  • the determination unit 313b determines that there is a communication abnormality between the electrical device 100 having the device ID “DEV_n” and the monitoring device 300 (step S310).
  • the determination unit 313b records the device ID “DEV_n” in the RAM in association with the determination result indicating that there is a communication abnormality.
  • the determination unit 313b proceeds to the process of step S312.
  • step S309 determines that the counter m_n is greater than or equal to the threshold Th (step S309; No), that is, the acquisition unit 311b indicates that the operation mode corresponding to the device ID “DEV_n” is “operation by operation”. If it is determined, the determination unit 313b determines that there is a possibility that the power of the electric device 100 having the device ID “DEV_n” is off (step S311). Then, the determination unit 313b records the device ID “DEV_n” in the RAM in association with the determination result that there is a possibility of power-off. Then, the determination unit 313b proceeds to the process of step S312.
  • steps S312 to S315 processing similar to that in steps S210 to 213 of the state determination processing in the first embodiment shown in FIG. 9 is executed.
  • the monitoring device 300 can acquire the operation mode of the electric device 100 based on the frequency at which the presence or absence of a response to the status acquisition request has changed. Therefore, it is possible to save the trouble of presetting the operation mode of each electrical device 100 in the communication adapter 200 or the monitoring device 300.
  • the monitoring apparatus 300 determines the state of the electric device 100 based on the presence / absence of a response to the state acquisition request from the electric device 100 and the operation mode of the electric device 100.
  • the monitoring apparatus 300 further determines the state of the electrical device 100 based on a change in power ON / OFF of the electrical device 100.
  • symbol is used and the detailed description is abbreviate
  • FIG. 14 is a schematic block diagram illustrating a configuration example of the monitoring system 1 according to the fourth embodiment of the present invention.
  • the electric devices 100a and 100b are connected to the first communication adapters 400a and 400b, respectively, and the electric devices 100c and 100d are the second communication adapters 500a and 500b.
  • the electric devices 100a and 100b are connected to the first communication adapters 400a and 400b, respectively, and the electric devices 100c and 100d are the second communication adapters 500a and 500b.
  • the first communication adapters 400a and 400b are configured similarly to any one of the communication adapters 200a to 200b in the first to third embodiments.
  • the communication adapters 400a and 400b are collectively referred to as a first communication adapter 400.
  • the second communication adapters 500a and 500b are communicably connected to the network N by wire or wireless.
  • the communication adapters 500a and 500b are collectively referred to as a second communication adapter 500.
  • FIG. 15 shows an example of the configuration of the second communication adapter 500 according to the present embodiment.
  • the second communication adapter 500 includes a control unit 510, a storage unit 520, a first communication unit 530, a second communication unit 540, and a power storage unit 550.
  • the control unit 510 includes, for example, a CPU, a ROM that stores a program executed by the CPU, a RAM that temporarily stores data generated by the CPU, and a timer that measures the current time. Take control.
  • the storage unit 520 includes a writable storage device such as a hard disk drive, flash memory, or SSD.
  • the 1st communication part 530 is comprised from the interface for transmitting / receiving data between the electric equipments 100c and 100d.
  • the second communication unit 540 includes an interface for transmitting and receiving data to and from the network N.
  • the power storage unit 550 functions as a power source for each unit constituting the second communication adapter 500 when the supply of power from the electric devices 100c and 100d connected to the second communication adapter 500 is stopped.
  • the power storage unit 550 is composed of, for example, a small capacity battery.
  • control unit 510 functions as a detection unit 511 and a notification unit 512.
  • the detection unit 511 detects the power supplied from the electric devices 100c and 100d to which the second communication adapter 500 is connected.
  • the notification unit 512 When the presence or absence of power detected by the detection unit 511 changes, the notification unit 512 notifies the monitoring device 300 that the power state of the electric devices 100c and 100d to which the second communication adapter 500 is connected has changed. Specifically, when the power supply from the electrical devices 100c and 100d to the second communication adapter is stopped due to the power supply of the electrical devices 100c and 100d being turned off, the power detected by the detection unit 511 is lost. The notification unit 512 notifies that the power of the electric devices 100c and 100d has changed from on to off. In addition, when the supply of power from the electrical devices 100c and 100d to the second communication adapter 500 is started by turning on the power of the electrical devices 100c and 100d, the power detected by the detection unit 511 increases. The notification unit 512 notifies that the power of the electric devices 100c and 100d has changed from off to on.
  • FIG. 16 is a schematic block diagram illustrating an example of a functional configuration of the control unit 310. As illustrated in FIG. 16, the control unit 310 functions as a first determination unit 315 and a second determination unit 316 instead of the determination unit 311 of the first embodiment illustrated in FIG. 3.
  • the first determination unit 315 functions in the same manner as the determination unit 311 of the first embodiment in determining the state of the electric devices 100a and 100b connected to the first communication adapter 400.
  • the second determination unit 316 updates the flag indicating the power state of the electric devices 100c and 100d, and transmits the state acquisition request transmission unit 312 from the electric devices 100c and 100d.
  • the state of the electric devices 100c and 100d is determined based on the response to the received state acquisition request and the flag.
  • the second determination unit 316 determines that the power supply of the electric device 100c is off.
  • the second determination unit 316 determines that there is an abnormality in communication between the electrical device 100 and the monitoring device 300.
  • the second determination unit 316 when the second determination unit 316 receives a response to the state acquisition request transmitted from the state acquisition request transmission unit 312 from the electric devices 100c and 100d, the second determination unit 316 is similar to the first determination unit 315 in the same manner as the electric devices 100c and 100d. The state of is determined.
  • FIG. 17 is an example of a flowchart of state determination processing executed by the control unit 310 of the monitoring apparatus 300.
  • the monitoring apparatus 300 determines the state of the electric devices 100c and 100d connected to the second communication adapter 500.
  • the monitoring apparatus 300 determines the states of the electric devices 100a and 100b connected to the first communication adapter 400 by the same process as the state determination process of the first embodiment illustrated in FIG.
  • the state determination process shown in FIG. 17 is executed, for example, when the CPU of the control unit 310 reads a program stored in the ROM.
  • the state determination process is started when an operation input indicating the start of the state determination process is received from the user via the input unit 340, for example.
  • the device IDs of the electric devices 100c and 100d are “DEV_1” and “DEV_2”, respectively.
  • the second determination unit 316 determines whether a notification that the power state of the electrical devices 100c and 100d has changed has been received from the second communication adapter 500 (step S401). When it determines with not receiving notification from the 2nd communication adapter 500 (step S401; No), the 2nd determination part 316 progresses to the process of step S405.
  • the second determination unit 316 determines whether or not the received notification indicates power-on (step S402).
  • the second determination unit 316 sets a flag corresponding to the electrical devices 100c and 100d connected to the second communication adapter 500 that has transmitted the notification. , It is updated to a value representing “power on” (step S403). Then, the second determination unit 316 proceeds to the process of step S405.
  • the second determination unit 316 corresponds to the electrical devices 100c and 100d connected to the second communication adapter 500 that transmitted the notification.
  • the flag is updated to a value representing “power off” (step S404). Then, the second determination unit 316 proceeds to the process of step S405.
  • steps S405 to S410 processing similar to that in steps S201 to 206 of the state determination processing of the first embodiment shown in FIG. 9 is executed.
  • step S407 determines that the status acquisition response has not been received from the electrical devices 100c and 100d with the device ID “DEV_n” (step S407; No)
  • the flag corresponding to the device ID “DEV_n” indicates “power supply”. It is determined whether or not “ON” is indicated (step S411).
  • step S411 determines that the flag corresponding to the device ID “DEV_n” represents “power on” (step S411; Yes)
  • the second determination unit 316 determines that the electric device 100 having the device ID “DEV_n” is present. And the monitoring apparatus 300 are determined to have a communication abnormality (step S412). Then, the second determination unit 316 records the device ID “DEV_n” in the RAM in association with the determination result indicating that there is a communication abnormality. Then, the second determination unit 316 proceeds to the process of step S414.
  • step S411 determines that the flag corresponding to the device ID “DEV_n” is not “power on” (step S411; No)
  • the second determination unit 316 determines that the electric device 100 having the device ID “DEV_n” It is determined that the power is off (step S413).
  • the second determination unit 316 records the device ID “DEV_n” in the RAM in association with the determination result indicating that the power supply may be turned off. Then, the second determination unit 316 proceeds to the process of step S414.
  • steps S414 to S417 processing similar to that in steps S210 to 213 of the state determination processing of the first embodiment shown in FIG. 9 is executed.
  • the monitoring device 300 receives the notification that the power state of the electrical devices 100c and 100d has changed from the second communication adapter 500, and thereby the power state of the electrical devices 100c and 100d. Can be accurately determined. Therefore, when the electric devices 100c and 100d do not respond to the acquisition request for the state of the electric devices 100c and 100d, it is accurately determined whether or not the communication is impossible because the electric device 100 is powered off. Can be determined.
  • Embodiment 5 Next, a monitoring system 1 according to Embodiment 5 of the present invention will be described.
  • the monitoring apparatus 300 receives a notification that the power supply state of the electric devices 100c and 100d has changed from the second communication adapter 500.
  • the monitoring apparatus 300 acquires a change in the power supply state of the electric devices 100c and 100d will be described.
  • symbol is used and the detailed description is abbreviate
  • FIG. 18 is a schematic block diagram illustrating a configuration example of the monitoring system 1 according to the fifth embodiment of the present invention.
  • the monitoring system 1 shown in FIG. 18 is different from the monitoring system 1 according to the first embodiment shown in FIG. 1 in that it further includes power detection devices 600a and 600b.
  • the power supply detection devices 600a and 600b detect currents supplied from the power lines to the electric devices 100c and 100d, respectively.
  • the power detection devices 600a and 600b are communicably connected to the network N by wire or wireless. In the following description, the power detection devices 600a and 600b are collectively referred to as the power detection device 600.
  • FIG. 19 shows an example of the configuration of the power detection device 600 according to the present embodiment.
  • the power detection device 600 includes a control unit 610, a storage unit 620, a communication unit 630, and a sensor unit 640.
  • the control unit 610 includes, for example, a CPU, a ROM that stores a program executed by the CPU, a RAM that temporarily stores data generated by the CPU, and a timer that measures the current time, and controls the power supply detection device 600 as a whole. I do.
  • the storage unit 620 includes a writable storage device such as a hard disk drive, flash memory, or SSD.
  • the communication unit 630 includes an interface for transmitting / receiving data to / from the network N.
  • the sensor unit 640 includes a current sensor that detects a current supplied from the lamp line to the electric devices 100c and 100d.
  • control unit 610 functions as a detection unit 611 and a notification unit 612.
  • the detection unit 611 detects the current supplied from the power line to the electric devices 100c and 100d by the sensor unit 640.
  • the notification unit 612 causes the monitoring device 300 to supply power to the electric devices 600c and 600d associated with the power supply detection device 600. Notify that the status has changed.
  • the waveform pattern the current waveforms detected by the detection unit 611 when the power of the electric devices 100c and 100d associated with the power supply detection device 600 is turned off or on are respectively waveforms in the storage unit 620 in advance. It is stored in the pattern table 621.
  • the notification unit 612 is associated with the power supply detection device 600 in the monitoring device 300. Notifies that the power supply of the electric devices 100c and 100d has changed from on to off.
  • the notification unit 612 corresponds to the monitoring device 300 and the power detection device 600. Notifies that the power supply of the attached electric devices 100c and 100d has changed from off to on.
  • the second determination unit 316 of the monitoring device 300 is based on the notification received from the power detection device 600 instead of the notification received from the second communication adapter 500 of the fourth embodiment.
  • the flag indicating the power supply state of the electric devices 100c and 100d is updated.
  • the state of 100d is determined. Therefore, the monitoring apparatus 300 according to the present embodiment can accurately determine the power supply states of the electric devices 100c and 100d, as in the fourth embodiment. Therefore, when the electric devices 100c and 100d do not respond to the acquisition request for the state of the electric devices 100c and 100d, it is accurately determined whether or not the communication is impossible because the electric device 100 is powered off. Can be determined.
  • the example in which the electric device 100 is connected to the network N via the communication adapter 200 has been described.
  • the electric device 100 can be obtained by using the power supply detection device 600. Can be notified to the monitoring device 300.
  • the program executed by the monitoring apparatus 300 is a computer read such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and an MO (Magneto-Optical Disk). It may be stored in a possible recording medium and distributed. And the apparatus which performs the above-mentioned process may be comprised by installing the program in information processing apparatus, such as a personal computer.
  • the program may be stored in a disk device or the like included in a server device on a communication network such as the Internet.
  • the program may be downloaded, for example, superimposed on a carrier wave.
  • the present invention is suitable for a monitoring system that monitors the operating state of electrical equipment.
  • 1 monitoring system 100 (100a to 100d) electrical equipment, 200 (200a to 200d) communication adapter, 210 control unit, 120 storage unit, 121 group configuration information, 122 group operation information, 123 group operation information, 130 communication unit, 140 Bus, 200 information management device, 210 control unit, 211 identification unit, 212 operation mode transmission unit, 220 storage unit, 221 correspondence table, 230 first communication unit, 240 second communication unit, 300 monitoring device, 310 control unit, 311 , 311a, 311b acquisition unit, 312 status acquisition request transmission unit, 313, 313b determination unit, 314 presentation unit, 315 first determination unit, 316 second determination unit, 320 storage unit, 321 operation mode table, 330 communication unit, 340 Input part, 350 output part 351 screen, 352 setting table, 353 determination result table, 360 bus, 400 (400a, 400b) first communication adapter, 500 (500a, 500b) second communication adapter, 510 control unit, 511 detection unit, 512 notification unit, 520 Storage unit, 530, first communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Selective Calling Equipment (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 監視システム(1)は、電気機器(100a~100d)と、該電気機器(100a~100d)とネットワーク(N)とを通信可能に接続する通信アダプタ(200)と、該電気機器(100a~100d)の状態を監視する監視装置(300)と、を有する。監視装置(300)は、ユーザからの入力により、電気機器(100a~100d)の電源が常時オンの状態であるか否かを表す稼働形態を取得する。また、監視装置(300)は、各電気機器(100a~100d)に、該電気機器の状態の取得を要求する状態取得要求を送信する。そして、監視装置(300)は、送信された状態取得要求に対する応答と、取得された稼働形態と、に基づいて、電気機器(100a~100d)の状態を判定する。

Description

監視システム、監視装置、監視方法、及びプログラム
 本発明は、電気機器の稼働状態を監視する監視システム、監視装置、監視方法、及びプログラムに関する。
 従来より、電気機器の稼働状況を監視し、故障の検知や省エネルギー対策に利用される、機器データ収集システムが提案されている(例えば、特許文献1参照)。
特開2003-289589号公報
 特許文献1に開示されているようなシステムでは、電気機器の状態の取得要求に対して電気機器が応答しない場合、その原因が通信異常によるものか、または、単に電気機器の電源がオンになっておらず、通信ができなかったためなのか、判定できない。
 本発明は、上記実情に鑑みてなされたものであり、電気機器の稼働状態をより精度良く監視可能な監視システム、監視装置、監視方法、及びプログラムを提供することを目的とする。
 上記目的を達成するために、本発明に係る監視システムは、電気機器と、該電気機器と通信可能に接続され、該電気機器の状態を監視する監視装置と、を有する。前記監視装置の取得部は、前記電気機器の電源が常時オンの状態であるか否かを表す稼働形態を取得する。前記監視装置の状態取得要求送信部は、前記電気機器に、該電気機器の状態の取得を要求する状態取得要求を送信する。前記監視装置の判定部は、前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記取得部により取得された稼働形態と、に基づいて、前記電気機器の状態を判定する。
 本発明によれば、状態取得要求に対する電気機器からの応答と、その電気機器の稼働形態とに基づいて、その電気機器の状態を判定するため、電気機器の稼働状態をより精度良く監視することができる。
実施形態1に係る監視システムの構成例を示す概略ブロック図である。 実施形態1に係る監視装置のハードウェア構成の一例を示す概略ブロック図である。 実施形態1に係る監視装置の機能構成の一例を示す概略ブロック図である。 監視装置の出力部の画面に表示される設定テーブルの一例を示す図である。 稼働形態テーブルに含まれるデータの一例を示す図である。 監視装置の出力部の画面に表示される判定結果テーブルの一例を示す図である。 実施形態1に係る監視システムのシーケンス図の一例である。 実施形態1に係る稼働形態取得処理のフローチャートの一例である。 実施形態1に係る状態判定処理のフローチャートの一例である。 実施形態2に係る通信アダプタの構成例を示す概略ブロック図である。 実施形態2に係る監視装置の機能構成の一例を示す概略ブロック図である。 実施形態3に係る監視装置の機能構成の一例を示す概略ブロック図である。 実施形態3に係る状態判定処理のフローチャートの一例である。 実施形態4に係る監視システムの構成例を示す概略ブロック図である。 実施形態4に係る第2通信アダプタの構成例を示す概略ブロック図である。 実施形態4に係る監視装置の機能構成の一例を示す概略ブロック図である。 実施形態4に係る状態判定処理のフローチャートの一例である。 実施形態5に係る監視システムの構成例を示す概略ブロック図である。 実施形態5に係る電源検知装置の構成例を示す概略ブロック図である。
 本発明の実施の形態について、図面を参照して詳細に説明する。
(実施形態1)
 図1は、本発明の実施形態1に係る監視システム1の構成例を示す概略ブロック図である。監視システム1は、複数の電気機器100a~100dの稼働状況を監視するシステムである。図1に示すように、監視システム1は、複数の電気機器100a~100dと、複数の電気機器100a~100dそれぞれをネットワークNに接続するための複数の通信アダプタ200a~200dと、電気機器100a~100dの稼働状況を監視する監視装置300と、を有する。なお、図1において、一例としてそれぞれ4つの電気機器100a~100d及び通信アダプタ200a~200dを図示しているが、電気機器100a~100d及び通信アダプタ200a~200dの数は、これに限られない。
 電気機器100a~100dは、図示しない商用電源から電灯線を介して供給される電力により稼働する機器である。電気機器100a~100dは、それぞれ、通信アダプタ200a~200dに有線により通信可能に接続されている。なお、以下の説明において、電気機器100a~100dを、総称して、電気機器100と呼ぶ。
 本実施形態において、電気機器100は、電気機器100の電源が常時オンの状態である「常時稼働」、及び、電気機器100の電源が常時オンの状態でない「操作による稼働」のうちいずれかの稼働形態に分類される。ここで、電源が常時オンの状態である電気機器100とは、一旦電源がオンされると、常時稼働し続けることで、その電気機器100の本来の機能を実現し、ユーザの操作により頻繁に電源のオン/オフが切り替わらない機器である。具体的には、「常時稼働」に分類される電気機器100は、例えば、冷蔵庫、防犯装置である。「操作による稼働」に分類される電気機器100は、「常時稼働」に分類される電気機器100以外の電気機器100であって、例えば、空調機器、テレビである。
 通信アダプタ200a~200dは、有線または無線により、ネットワークNに通信可能に接続されている。なお、以下の説明において、通信アダプタ200a~200dを、総称して、通信アダプタ200と呼ぶ。
 本実施形態において、通信アダプタ200は、対応する電気機器100から、自身が稼働するための電力が供給される。従って、電気機器100のオン/オフの切り替えに合わせて、通信アダプタ200のオン/オフも切り替わる。
 監視装置300は、有線または無線により、ネットワークNに通信可能に接続されている。監視装置300は、通信アダプタ200及びネットワークNを介して、電気機器100から、その電気機器100の稼働状態を表すデータを受信し、その電気機器100に異常があるか否かを判定する。
 次に、本実施形態における監視装置300の構成について詳細に説明する。
 図2に本実施形態に係る監視装置300のハードウェア構成の一例を示す。図2に示すように、監視装置300は、制御部310と、記憶部320と、通信部330と、入力部340、出力部350と、を備え、各部はバス360により接続されている。
 制御部310は、例えば、CPU(Central Processing Unit)、CPUが実行するプログラムを格納するROM(Read Only Memory)、CPUが生成したデータを一時的に格納するRAM(Random Access Memory)、現在時刻を計時するタイマから構成され、監視装置300の全体の制御を行う。
 記憶部320は、ハードディスクドライブや、フラッシュメモリ、SSD(Solid State Drive)のような、書き込み可能な記憶装置から構成される。
 通信部330は、ネットワークNとの間でデータの送受信を行うためのインターフェースから構成される。
 入力部340は、ボタン、タッチパネル、キーボード等の入力装置から構成される。入力部340は、ユーザからの操作入力を受け付け、受け付けた操作入力に対応する操作入力信号を制御部310に出力する。
 出力部350は、CRT(Cathode Ray Tube)や液晶ディスプレイ等の表示装置から構成され、制御部310から供給される文字や画像等のデータを表示する。
 次に、監視装置300の制御部310の機能について説明する。図3は、制御部310の機能構成の一例を示すブロック図である。図3に示すように、制御部310は取得部311、状態取得要求送信部312、判定部313、提示部314、として機能する。
 取得部311は、電気機器100の稼働形態を取得する。具体的には、取得部311は、入力部340を介して、ユーザから電気機器100の稼働形態を表す入力を受け付ける。
 図4に、ユーザによる電気機器100の稼働形態の設定時における出力部350の画面351の一例を表す。図4に示す画面351には、電気機器100毎にその稼働形態を選択可能な設定テーブル352が表示される。詳細には、設定テーブル352は、電気機器100と、設置場所と、稼働形態と、が対応付けられている。例えば、ユーザが1階のリビングに設置されたエアコンの稼働形態を、「操作による稼働」に設定したい場合、ユーザは、入力部340を介して、設定テーブル352において、電気機器“エアコン”、設置場所“リビング(1F)”に対応する稼働形態として、“操作による稼働”を選択することにより、設定することができる。
 取得部311は、入力部340を介してユーザから受け付けた電気機器100の稼働形態を記憶部320の稼働形態テーブル321に格納する。図5に、稼働形態テーブル321に格納されるデータの一例を示す。図5に示す稼働形態テーブル321は、電気機器100を識別するための機器IDと、その機器IDにより識別される電気機器100の稼働形態とを格納する。
 状態取得要求送信部312は、電気機器100に、電気機器100の状態の取得を要求する状態取得要求を送信する。具体的には、状態取得要求送信部312は、定期的に、または、ユーザからの要求に応じて、電気機器100に状態取得要求を送信する。
 判定部313は、状態取得要求送信部312により送信された状態取得要求に対する応答と、取得部311により取得された稼働形態とに基づいて、電気機器100の状態を判定する。
 具体的には、判定部313は、電気機器100から、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合において、稼働形態テーブル321に格納された、電気機器100の稼働形態が「常時稼働」でない場合、判定部313は、電気機器100の電源がオフの状態である可能性があると判定する。
 また、判定部313は、電気機器100から、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合において、稼働形態テーブル321に格納された、電気機器100の稼働形態が「常時稼働」である場合、判定部313は、電気機器100と監視装置300との間の通信に異常があると判定する。
 すなわち、判定部313が、電気機器100から、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合、その原因として、(i)電気機器100の電源がオフの状態である、(ii)電気機器100と監視装置300との間の通信に異常がある、の2つが考えられる。従って、判定部313は、電気機器100の稼働状態が「常時稼働」である場合、上記(i)が原因である可能性は低いため、電気機器100と監視装置300との間の通信に異常があると判定する。また、判定部313は、電気機器100の稼働状態が「常時稼働」でない場合、すなわち「操作による稼働」である場合、上記(i)及び(ii)の2つの原因が考えられるため、電気機器100の電源がオフの状態である可能性があると判定する。
 また、判定部313は、電気機器100から、状態取得要求送信部312により送信された状態取得要求に対する応答を受信した場合において、その応答の中に電気機器100が故障中である旨を表す故障情報を含むか否か判定する。そして、その応答が故障情報を含む場合、判定部313は、電気機器100は故障中であると判定する。また、その応答が故障情報を含まない場合、判定部313は、電気機器100は正常に稼働していると判定する。
 提示部314は、判定部313により判定された電気機器100の状態を出力部350に提示する。
 図6に、電気機器100の状態を表示する出力部350の画面351の一例を表す。図6に示す画面351には、電気機器100毎に、判定部313により判定された電気機器100の状態を表す判定結果テーブル353が表示される。詳細には、判定結果テーブル353は、電気機器100と、設置場所と、判定部313により判定された電気機器100の状態と、が対応付けられている。例えば、判定部313が2階のリビングに設置されたエアコンの状況が、電源がオフの状態である可能性があると判定した場合、提示部314は、判定結果テーブル353において、電気機器“エアコン”、設置場所“リビング(2F)”に対応する状態として、“電源がオフの可能性があります”というメッセージを提示する。
 次に、本実施形態に係る監視システム1の動作について説明する。図7に、本実施形態に係る監視システム1のシーケンス図の一例を示す。
 まず、監視装置300は、ユーザからの入力により、電気機器100の稼働形態を取得する稼働形態取得処理を実行する(P1)。そして、監視装置300は、状態取得要求Raを通信アダプタ200に送信する。監視装置300から状態取得要求Raを受信した通信アダプタ200は、電気機器100に状態取得要求Rbを送信する。
 通信アダプタ200から状態取得要求Rbを受信した電気機器100は、自身の状態を表す情報を含む状態取得応答Abを、通信アダプタ200に送信する。電気機器100から状態取得応答Abを受信した通信アダプタ200は、監視装置300に、状態取得応答Aaを送信する。
 以上の監視装置300が状態取得要求Raを送信してから、状態取得応答Aaを受信するまでの処理、すなわち図7において鎖線で囲われる処理P2は、定期的に繰り返し実行される。
 次に、本実施形態に係る監視装置300の動作について説明する。
 まず、監視装置300が実行する稼働形態取得処理について説明する。図8は、監視装置300の制御部310が実行する稼働形態取得処理のフローチャートの一例である。稼働形態取得処理は、例えば制御部310のCPUがROMに記憶されたプログラムを読み込むことにより実行される。また、稼働形態取得処理は、例えば、ユーザから入力部340を介して、稼働形態取得処理の開始を示す操作入力を受け付けたことを契機として、開始される。
 まず、取得部311は、出力部350の画面351に、図4に示すような設定テーブル352を表示する(ステップS101)。
 次に、取得部311は、ユーザにより、各電気機器100について、「常時稼働」または「操作による稼働」のうちのいずれかの稼働形態が選択されたか否かを判定する(ステップS102)。取得部311は、ユーザにより、各電気機器100の稼働形態が選択されるまで、待機する(ステップS102;No)。
 取得部311は、ユーザにより、各電気機器100について稼働形態が選択されたと判定した場合(ステップS102;Yes)、電気機器100毎に選択された稼働形態を、その電気機器100の機器IDと対応付けて、稼働形態テーブル321に格納する(ステップS103)。そして本処理を終了する。
 次に、監視装置300が実行する状態判定処理について説明する。図9は、監視装置300の制御部310が実行する状態判定処理のフローチャートの一例である。状態判定処理は、例えば制御部310のCPUがROMに記憶されたプログラムを読み込むことにより実行される。また、状態判定処理は、例えば、ユーザから入力部340を介して、状態判定処理の開始を示す操作入力を受け付けたことを契機として、開始される。
 まず、状態取得要求送信部312は、各電気機器100に、状態取得要求を送信する(ステップS201)。なお、本処理において、状態取得要求送信部312は、機器ID“DEV_1”~“DEV_N”(Nは、電気機器100の総数)の電気機器100に状態取得要求を送信するものとする。
 次に、判定部313は、カウンタnを初期値「1」に設定する(ステップS202)。
 次に、判定部313は、機器ID“DEV_n”の電気機器100から状態取得応答を受信したか否かを判定する(ステップS203)。具体的には、判定部313は、ステップS201において電気機器100に状態取得要求を送信してから、ユーザ等により予め設定された時間内にその電気機器100から状態取得応答を受信したか否かを判定する。
 判定部313は、機器ID“DEV_n”の電気機器100から状態取得応答を受信したと判定した場合(ステップS203;Yes)、受信した状態取得応答に、機器ID“DEV_n”の電気機器100が故障中である旨の故障情報が含まれているか否かを判定する(ステップS204)。
 判定部313は、受信した状態取得応答に、故障情報が含まれていると判定した場合(ステップS204;Yes)、判定部313は、機器ID“DEV_n”の電気機器100が故障中であると判定する(ステップS205)。そして、判定部313は、機器ID“DEV_n”を、故障中である旨の判定結果と対応付けてRAMに記録する。そして、判定部313は、ステップS210の処理に進む。
 判定部313は、受信した状態取得応答に、故障情報が含まれていないと判定した場合(ステップS204;No)、判定部313は、機器ID“DEV_n”の電気機器100が正常に稼働していると判定する(ステップS206)。そして、判定部313は、機器ID“DEV_n”を、正常に稼働している旨の判定結果と対応付けてRAMに記録する。そして、判定部313は、ステップS210の処理に進む。
 判定部313は、機器ID“DEV_n”の電気機器100から状態取得応答を受信していないと判定した場合(ステップS203;No)、稼働形態テーブル321を参照し、機器ID“DEV_n”に対応する稼働形態が“常時稼働”か否かを判定する(ステップS207)。
 判定部313は、機器ID“DEV_n”に対応する稼働形態が“常時稼働”であると判定した場合(ステップS207;Yes)、判定部313は、機器ID“DEV_n”の電気機器100と監視装置300との間に通信異常があると判定する(ステップS208)。そして、判定部313は、機器ID“DEV_n”を、通信異常がある旨の判定結果と対応付けてRAMに記録する。そして、判定部313は、ステップS210の処理に進む。
 判定部313は、機器ID“DEV_n”に対応する稼働形態が“常時稼働”でないと判定した場合(ステップS207;No)、判定部313は、機器ID“DEV_n”の電気機器100の電源がオフの可能性があると判定する(ステップS209)。そして、判定部313は、機器ID“DEV_n”を、電源オフの可能性がある旨の判定結果と対応付けてRAMに記録する。そして、判定部313は、ステップS210の処理に進む。
 次に、判定部313は、カウンタnをインクリメントし(ステップS210)、カウンタnが電気機器100の総数Nよりも小さいか否かを判定する(ステップS211)。
 カウンタnがNよりも小さいと判定した場合(ステップS211;Yes)、判定部313は、ステップS203に戻ってその後の処理を繰り返す。
 また、カウンタnがNよりも小さくないと判定した場合(ステップS211;No)、提示部314は、RAMに記録された各機器IDと、その判定結果とに基づいて、判定結果テーブル353を生成し、出力部350の画面351に表示する(ステップS212)。
 次に、判定部313は、ステップS201において電気機器100に状態取得要求を送信してから、処理周期が経過したか否かを判定する(ステップS213)。なお、この「処理周期」は、図8に示す処理P2が定期的に繰り返される際の、各処理P2の間の時間間隔である。判定部313は、処理周期が経過するまで待機する(ステップS213;No)。また、判定部313は、処理周期が経過したと判定した場合(ステップS213;Yes)、ステップS201に戻ってその後の処理を繰り返す。
 以上説明したように、本実施形態の監視装置300は、電気機器100からの状態取得応答の受信の有無と、ユーザにより設定された電気機器100の稼働形態と、に基づいて、電気機器100の状態を判定する。そのため、電気機器100の状態の取得要求に対して電気機器100が応答しない場合であっても、その原因が通信異常によるものか、または、電気機器100の電源がオフのため、通信ができなかったことによるものか、判定することができる。従って、監視装置300は、より精度良く、電気機器100の状態を判定することができる。
(実施形態2)
 次に、本発明の実施形態2に係る監視システム1について説明する。上記の実施形態1において、監視装置300は、ユーザからの入力により、各電気機器100の稼働形態を取得する。本実施形態2では、稼働形態の取得方法の別の例として、通信アダプタ200から、電気機器100の稼働形態を取得する例について説明する。なお、実施形態1と同様の構成については、同様の符号を用い、その詳細な説明を省略する。
 図10に本実施形態に係る通信アダプタ200の構成の一例を示す。図10に示すように、通信アダプタ200は、制御部210と、記憶部220と、第1通信部230と、第2通信部240とを備える。
 制御部210は、例えば、CPU、CPUが実行するプログラムを格納するROM、CPUが生成したデータを一時的に格納するRAM、現在時刻を計時するタイマから構成され、通信アダプタ200の全体の制御を行う。
 記憶部220は、ハードディスクドライブや、フラッシュメモリ、SSDのような、書き込み可能な記憶装置から構成される。具体的には、記憶部220は、電気機器100と稼働形態とを対応付ける対応テーブル221を記憶する。
 第1通信部230は、電気機器100との間でデータの送受信を行うためのインターフェースから構成される。
 第2通信部240は、ネットワークNとの間でデータの送受信を行うためのインターフェースから構成される。
 次に、通信アダプタ200の制御部210の機能について説明する。図10は、制御部210の機能構成の一例を示すブロック図である。図10に示すように、制御部210は特定部211、稼働形態送信部212、として機能する。
 特定部211は、通信アダプタ200が接続された電気機器100から、その電気機器100の機器IDを受信し、対応テーブル221を参照して、受信した機器IDに対応する稼働形態を特定する。
 具体的には、特定部211は、電気機器100の電源がオンの状態になり、通信アダプタ200に電気機器100から電力が供給されたことを契機として、電気機器100から、その電気機器100の機器IDを受信する。または、特定部211は、定期的に、電気機器100から、その電気機器100の機器IDを受信してもよい。
 稼働形態送信部212は、特定部211により特定された稼働形態を、受信した機器IDと対応付けて監視装置300に送信する。
 なお、通信アダプタ200と監視装置300との間の通信プロトコルとして、ECHONET Liteを採用することができる。この場合、稼働形態送信部212は、監視装置300に送信する通信電文において、ESV(ECHONET Liteサービス)に、INF(プロパティ値を通知するINF)を設定し、EPC(ECHONETプロパティ)のユーザ定義領域に、「稼働形態」を割り当て、「常時稼働」または「操作による稼働」を示す値を設定することができる。稼働形態送信部212は、以上のように設定された通信電文を監視装置300に送信することにより、監視装置300に、通信アダプタ200に接続された電気機器100の稼働形態を通知することができる。
 次に、監視装置300の制御部310の機能について説明する。図11に示すように、制御部310は、図3に示す実施形態1の取得部311に代えて、取得部311aとして機能する。
 取得部311aは、通信アダプタ200から電気機器100の稼働形態を取得する。具体的には、取得部311aは、通信アダプタ200の稼働形態送信部212より送信されたデータに含まれる、稼働形態と、機器IDと、を記憶部320の稼働形態テーブル321に格納する。
 以上説明したように、本実施形態の監視システム1において、通信アダプタ200が、自身に接続された電気機器100の情報から、その電気機器100の稼働形態を特定する。そして、通信アダプタ200は、特定した稼働形態を、監視装置300に通知する。従って、ユーザ自身が、電気機器100毎に、その稼働形態を設定する手間を省くことができる。
(実施形態3)
 次に、本発明の実施形態3に係る監視システム1について説明する。本実施形態3では、上記実施形態1及び2とは異なる稼働形態の取得方法の例として、状態取得要求に対する応答の有無が変化した頻度に基づいて、電気機器100の稼働形態を取得する例について説明する。なお、実施形態1及び2と同様の構成については、同様の符号を用い、その詳細な説明を省略する。
 本実施形態における監視装置300の制御部310の機能について説明する。図12は、制御部310の機能構成の一例を示すブロック図である。図12に示すように、制御部310は、図3に示す実施形態1の取得部311及び判定部313に代えて、それぞれ取得部311b及び判定部313bとして機能する。
 取得部311bは、状態取得要求送信部312により送信された状態取得要求に対する応答の有無が変化した頻度を算出し、算出した頻度が予め定められた閾値よりも小さい場合、電気機器100の稼働状態として「常時稼働」を取得する。また、取得部311bは、算出した頻度が閾値以上である場合、電気機器100の稼働状態として「操作による稼働」を取得する。ここで、閾値は、例えば、1年に1度、1ヵ月に1度である。
 判定部313bは、電気機器100から、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合において、取得部311bにより取得された電気機器100の稼働形態が「常時稼働」でない場合、判定部313は、電気機器100の電源がオフの状態である可能性があると判定する。
 また、判定部313bは、電気機器100から、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合において、取得部311bにより取得された電気機器100の稼働形態が「常時稼働」である場合、判定部313は、電気機器100と監視装置300との間の通信に異常があると判定する。
 次に、監視装置300が実行する状態判定処理について説明する。図13は、監視装置300の制御部310が実行する状態判定処理のフローチャートの一例である。状態判定処理は、例えば制御部310のCPUがROMに記憶されたプログラムを読み込むことにより実行される。また、状態判定処理は、例えば、ユーザから入力部340を介して、状態判定処理の開始を示す操作入力を受け付けたことを契機として、開始される。
 まず、ステップS301~S303において、図9に示す実施形態1の状態判定処理のステップS201~203と同様の処理が実行される。
 判定部313bは、機器ID“DEV_n”の電気機器100から状態取得応答を受信したと判定した場合(ステップS303;Yes)、取得部311bは、機器ID“DEV_n”の電気機器100へ前回送信した状態取得要求に対して、その電気機器100から状態取得応答を受信したか否かを判定する(ステップS304)。取得部311bは、状態取得応答を受信したと判定した場合(ステップS304;Yes)、判定部313bは、ステップS306の処理に進む。
 取得部311bは、状態取得応答を受信しなかったと判定した場合(ステップS304;No)、カウンタm_nをインクリメントする(ステップS305)。ここで、カウンタm_nは、単位期間(例えば、1年間)のうちで、判定部313bが機器ID“DEV_n”の電気機器100から状態取得応答を受信しなかった状態から、受信した状態に変化した回数をカウントするためのカウンタである。すなわち、カウンタm_nは、機器ID“DEV_n”の電気機器100について、状態取得要求送信部312により送信された状態取得要求に対する応答の有無が変化した頻度を表す。なお、カウンタm_nは、単位期間毎にクリアされ、0に戻る。
 そして、ステップS306~S308において、図9に示す実施形態1の状態判定処理のステップS204~206と同様の処理が実行される。
 判定部313bは、機器ID“DEV_n”の電気機器100から状態取得応答を受信していないと判定した場合(ステップS303;No)、取得部311bは、カウンタm_nが閾値Th(例えば、1)よりも小さいか否かを判定する(ステップS309)。
 取得部311bは、カウンタm_nが閾値Thよりも小さいと判定した場合(ステップS309;Yes)、すなわち、取得部311bが、機器ID“DEV_n”に対応する稼働形態が「常時稼働」であると判定した場合、判定部313bは、機器ID“DEV_n”の電気機器100と監視装置300との間に通信異常があると判定する(ステップS310)。そして、判定部313bは、機器ID“DEV_n”を、通信異常がある旨の判定結果と対応付けてRAMに記録する。そして、判定部313bは、ステップS312の処理に進む。
 取得部311bは、カウンタm_nが閾値Th以上であると判定した場合(ステップS309;No)、すなわち、取得部311bが、機器ID“DEV_n”に対応する稼働形態が「操作による稼働」であると判定した場合、判定部313bは、機器ID“DEV_n”の電気機器100の電源がオフの可能性があると判定する(ステップS311)。そして、判定部313bは、機器ID“DEV_n”を、電源オフの可能性がある旨の判定結果と対応付けてRAMに記録する。そして、判定部313bは、ステップS312の処理に進む。
 そして、ステップS312~S315において、図9に示す実施形態1の状態判定処理のステップS210~213と同様の処理が実行される。
 以上説明したように、本実施形態の監視システム1において、監視装置300は、状態取得要求に対する応答の有無が変化した頻度に基づいて、電気機器100の稼働形態を取得することができる。従って、電気機器100毎に、その稼働形態を、通信アダプタ200または監視装置300に予め設定する手間を省くことができる。
(実施形態4)
 次に、本発明の実施形態4に係る監視システム1について説明する。上記の実施形態1乃至3において、監視装置300は、電気機器100からの、状態取得要求に対する応答の有無と、電気機器100の稼働形態と、に基づいて、電気機器100の状態を判定する。本実施形態4では、監視装置300は、さらに、電気機器100の電源のオン/オフの変化に基づいて、電気機器100の状態を判定する例について説明する。なお、実施形態1乃至3と同様の構成については、同様の符号を用い、その詳細な説明を省略する。
 図14は、本発明の実施形態4に係る監視システム1の構成例を示す概略ブロック図である。図14に示す監視システム1は、電気機器100a~100dのうち、電気機器100a,100bは、第1通信アダプタ400a,400bにそれぞれ接続され、電気機器100c,100dは、第2通信アダプタ500a,500bにそれぞれ接続される点において、図1に示す実施形態1乃至3に係る監視システム1と異なる。
 第1通信アダプタ400a,400bは、実施形態1乃至3のうちのいずれかの通信アダプタ200a~200bと同様に構成されている。なお、以下の説明において、通信アダプタ400a,400bを、総称して、第1通信アダプタ400と呼ぶ。
 第2通信アダプタ500a,500bは、有線または無線により、ネットワークNに通信可能に接続されている。なお、以下の説明において、通信アダプタ500a,500bを、総称して、第2通信アダプタ500と呼ぶ。
 図15に本実施形態に係る第2通信アダプタ500の構成の一例を示す。図15に示すように、第2通信アダプタ500は、制御部510と、記憶部520と、第1通信部530と、第2通信部540と、電力蓄積部550と、を備える。
 制御部510は、例えば、CPU、CPUが実行するプログラムを格納するROM、CPUが生成したデータを一時的に格納するRAM、現在時刻を計時するタイマから構成され、第2通信アダプタ500の全体の制御を行う。
 記憶部520は、ハードディスクドライブや、フラッシュメモリ、SSDのような、書き込み可能な記憶装置から構成される。
 第1通信部530は、電気機器100c,100dとの間でデータの送受信を行うためのインターフェースから構成される。
 第2通信部540は、ネットワークNとの間でデータの送受信を行うためのインターフェースから構成される。
 電力蓄積部550は、第2通信アダプタ500に接続された電気機器100c,100dからの電源の供給が止まった場合に、第2通信アダプタ500を構成する各部の電源として機能する。電力蓄積部550は、例えば小容量の電池から構成される。
 次に、第2通信アダプタ500の制御部510の機能について説明する。図15に示すように、制御部510は検知部511、通知部512、として機能する。
 検知部511は、第2通信アダプタ500が接続された電気機器100c,100dから供給される電力を検知する。
 通知部512は、検知部511により検知された電力の有無が変化した場合、監視装置300に、第2通信アダプタ500が接続された電気機器100c,100dの電源状態が変化した旨を通知する。具体的には、電気機器100c,100dの電源がオフされたことにより、電気機器100c,100dから第2通信アダプタへの電源の供給が止まった場合、検知部511により検知される電力が無くなるため、通知部512は、電気機器100c,100dの電源がオンからオフに変化した旨を通知する。また、電気機器100c,100dの電源がオンされたことにより、電気機器100c,100dから第2通信アダプタ500への電源の供給が開始された場合、検知部511により検知される電力が増えるため、通知部512は、電気機器100c,100dの電源がオフからオンに変化した旨を通知する。
 次に、監視装置300の制御部310の機能について説明する。図16は、制御部310の機能構成の一例を示す概略ブロック図である。図16に示すように、制御部310は、図3に示す実施形態1の判定部311に代えて、第1判定部315、第2判定部316として機能する。
 第1判定部315は、第1通信アダプタ400と接続された電気機器100a,100bの状態の判定において、実施形態1の判定部311と同様に機能する。
 第2判定部316は、第2通信アダプタ500から受信した通知に基づいて、電気機器100c,100dの電源状態を表すフラグを更新し、電気機器100c,100dから、状態取得要求送信部312により送信された状態取得要求に対する応答と、フラグと、に基づいて、電気機器100c,100dの状態を判定する。
 例えば、第2判定部316は、電気機器100cから、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合において、電気機器100cの電源状態を表すフラグが「電源オフ」を表す場合、第2判定部316は、電気機器100cの電源がオフの状態であると判定する。
 また、第2判定部316は、電気機器100cから、状態取得要求送信部312により送信された状態取得要求に対する応答を受信しなかった場合において、電気機器100cの電源状態を表すフラグが「電源オン」を表す場合、第2判定部316は、電気機器100と監視装置300との間の通信に異常があると判定する。
 また、第2判定部316は、電気機器100c,100dから、状態取得要求送信部312により送信された状態取得要求に対する応答を受信した場合において、第1判定部315と同様に電気機器100c,100dの状態を判定する。
 次に、監視装置300が実行する状態判定処理について説明する。図17は、監視装置300の制御部310が実行する状態判定処理のフローチャートの一例である。なお、以下で説明する図17に示す状態判定処理において、監視装置300は、第2通信アダプタ500に接続された電気機器100c,100dの状態を判定する。また、本実施形態において、監視装置300は、図9に示す実施形態1の状態判定処理と同様の処理により、第1通信アダプタ400に接続された電気機器100a,100bの状態を判定する。
 図17に示す状態判定処理は、例えば制御部310のCPUがROMに記憶されたプログラムを読み込むことにより実行される。また、状態判定処理は、例えば、ユーザから入力部340を介して、状態判定処理の開始を示す操作入力を受け付けたことを契機として、開始される。なお、以下の説明において、電気機器100c,100dの機器IDは、それぞれ“DEV_1”及び“DEV_2”であるとする。
 まず、第2判定部316は、第2通信アダプタ500から、電気機器100c,100dの電源状態が変化した旨の通知を受信したか否か判定する(ステップS401)。第2通信アダプタ500から通知を受信していないと判定した場合(ステップS401;No)、第2判定部316は、ステップS405の処理に進む。
 第2通信アダプタ500から通知を受信したと判定した場合(ステップS401;Yes)、第2判定部316は、受信した通知が、電源オンを表すか否かを判定する(ステップS402)。
 受信した通知が電源オンを表すと判定した場合(ステップS402;Yes)、第2判定部316は、その通知を送信した第2通信アダプタ500に接続された電気機器100c,100dに対応するフラグを、“電源オン”を表す値に更新する(ステップS403)。そして、第2判定部316は、ステップS405の処理に進む。
 受信した通知が電源オンを表さないと判定した場合(ステップS402;No)、第2判定部316は、その通知を送信した第2通信アダプタ500に接続された電気機器100c,100dに対応するフラグを、“電源オフ”を表す値に更新する(ステップS404)。そして、第2判定部316は、ステップS405の処理に進む。
 次に、ステップS405~S410において、図9に示す実施形態1の状態判定処理のステップS201~206と同様の処理が実行される。
 第2判定部316は、機器ID“DEV_n”の電気機器100c,100dから状態取得応答を受信していないと判定した場合(ステップS407;No)、機器ID“DEV_n”に対応するフラグが“電源オン”を表すか否かを判定する(ステップS411)。
 第2判定部316は、機器ID“DEV_n”に対応するフラグが“電源オン”を表すと判定した場合(ステップS411;Yes)、第2判定部316は、機器ID“DEV_n”の電気機器100と監視装置300との間に通信異常があると判定する(ステップS412)。そして、第2判定部316は、機器ID“DEV_n”を、通信異常がある旨の判定結果と対応付けてRAMに記録する。そして、第2判定部316は、ステップS414の処理に進む。
 第2判定部316は、機器ID“DEV_n”に対応するフラグが“電源オン”でないと判定した場合(ステップS411;No)、第2判定部316は、機器ID“DEV_n”の電気機器100の電源がオフであると判定する(ステップS413)。そして、第2判定部316は、機器ID“DEV_n”を、電源オフの可能性がある旨の判定結果と対応付けてRAMに記録する。そして、第2判定部316は、ステップS414の処理に進む。
 次に、ステップS414~S417において、図9に示す実施形態1の状態判定処理のステップS210~213と同様の処理が実行される。
 以上説明したように、本実施形態の監視装置300は、第2通信アダプタ500から、電気機器100c,100dの電源状態が変化した旨の通知を受信することにより、電気機器100c,100dの電源状態を正確に判定することができる。そのため、電気機器100c,100dの状態の取得要求に対して電気機器100c,100dが応答しない場合に、電気機器100の電源がオフのため、通信ができなかったことが原因なのか否かを正確に判定することができる。
(実施形態5)
 次に、本発明の実施形態5に係る監視システム1について説明する。上記の実施形態4において、監視装置300は、第2通信アダプタ500から、電気機器100c,100dの電源状態が変化した旨の通知を受信する。本実施形態5では、監視装置300が、電気機器100c,100dの電源状態の変化を取得する別の例について説明する。なお、実施形態1乃至4と同様の構成については、同様の符号を用い、その詳細な説明を省略する。
 図18は、本発明の実施形態5に係る監視システム1の構成例を示す概略ブロック図である。図18に示す監視システム1は、さらに電源検知装置600a,600bを有する点において、図1に示す実施形態1に係る監視システム1と異なる。
 電源検知装置600a,600bは、それぞれ、電灯線から電気機器100c,100dに供給される電流を検知する。電源検知装置600a,600bは、有線または無線により、ネットワークNに通信可能に接続されている。なお、以下の説明において、電源検知装置600a,600bを、総称して、電源検知装置600と呼ぶ。
 図19に本実施形態に係る電源検知装置600の構成の一例を示す。図19に示すように、電源検知装置600は、制御部610と、記憶部620と、通信部630と、センサ部640と、を備える。
 制御部610は、例えば、CPU、CPUが実行するプログラムを格納するROM、CPUが生成したデータを一時的に格納するRAM、現在時刻を計時するタイマから構成され、電源検知装置600の全体の制御を行う。
 記憶部620は、ハードディスクドライブや、フラッシュメモリ、SSDのような、書き込み可能な記憶装置から構成される。
 通信部630は、ネットワークNとの間でデータの送受信を行うためのインターフェースから構成される。
 センサ部640は、電灯線から電気機器100c,100dに供給される電流を検出する電流センサから構成される。
 次に、電源検知装置600の制御部610の機能について説明する。図19に示すように、制御部610は検知部611、通知部612、として機能する。
 検知部611は、センサ部640により、電灯線から電気機器100c,100dに供給される電流を検知する。
 通知部612は、検知部611により検知された電流の波形が、電源状態の変化を表す波形パターンとマッチする場合、監視装置300に、電源検知装置600に対応付けられる電気機器600c,600dの電源状態が変化した旨を通知する。具体的には、波形パターンとして、電源検知装置600に対応付けられる電気機器100c,100dの電源をオフまたはオンにした時に、検知部611が検知した電流の波形がそれぞれ、予め記憶部620の波形パターンテーブル621に格納されている。通知部612は、検知部611により検知された電流の波形が、波形パターンテーブル621に格納された、電源オフ時の波形パターンとマッチする場合、監視装置300に、電源検知装置600に対応付けられる電気機器100c,100dの電源がオンからオフに変化した旨を通知する。また、検知部611により検知された電流の波形が、波形パターンテーブル621に格納された、電源オン時の波形パターンとマッチする場合、通知部612は、監視装置300に、電源検知装置600に対応付けられる電気機器100c,100dの電源がオフからオンに変化した旨を通知する。
 上記の構成において、本実施形態に係る監視装置300の第2判定部316は、実施形態4の第2通信アダプタ500から受信した通知の代わりに、電源検知装置600から受信した通知に基づいて、電気機器100c,100dの電源状態を表すフラグを更新し、電気機器100c,100dから、状態取得要求送信部312により送信された状態取得要求に対する応答と、フラグと、に基づいて、電気機器100c,100dの状態を判定する。従って、本実施形態に係る監視装置300は、実施形態4と同様に、電気機器100c,100dの電源状態を正確に判定することができる。そのため、電気機器100c,100dの状態の取得要求に対して電気機器100c,100dが応答しない場合に、電気機器100の電源がオフのため、通信ができなかったことが原因なのか否かを正確に判定することができる。
 また、本実施形態では、電気機器100が通信アダプタ200を介してネットワークNに通信可能に接続されている例について説明した。しかし、例えば、電気機器100が通信アダプタ200と接続するためのインターフェースを持たず、通信アダプタ200を介さずにネットワークNに接続されている場合、電源検知装置600を用いることにより、その電気機器100の電源状態の変化を、監視装置300に通知することができる。
 なお、上記実施の形態において、監視装置300が実行するプログラムは、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical Disk)等のコンピュータ読み取り可能な記録媒体に格納されて配布されてもよい。そして、そのプログラムがパーソナルコンピュータ等の情報処理装置にインストールされることにより、上述の処理を実行する装置が構成されてもよい。
 また、プログラムは、インターネット等の通信ネットワーク上のサーバ装置が有するディスク装置等に格納されてもよい。そして、プログラムは、例えば、搬送波に重畳されて、ダウンロードされてもよい。
 また、上述の機能を、OS(Operating System)が分担して実現する場合またはOSとアプリケーションとの協働により実現する場合、OSの機能を実現する部分以外のプログラムのみが、記録媒体に格納されて配布されてもよく、また、ダウンロードされてもよい。
 本発明は、本発明の広義の精神と範囲に逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、電気機器の稼働状態を監視する監視システムに適する。
1 監視システム、100(100a~100d) 電気機器、200(200a~200d) 通信アダプタ、210 制御部、120 記憶部、121 グループ構成情報、122 グループ運転情報、123 グループ運用情報、130 通信部、140 バス、200 情報管理装置、210 制御部、211 特定部、212 稼働形態送信部、220 記憶部、221 対応テーブル、230 第1通信部、240 第2通信部、300 監視装置、310 制御部、311,311a,311b 取得部、312 状態取得要求送信部、313,313b 判定部、314 提示部、315 第1判定部、316 第2判定部、320 記憶部、321 稼働形態テーブル、330 通信部、340 入力部、350 出力部、351 画面、352 設定テーブル、353 判定結果テーブル、360 バス、400(400a,400b) 第1通信アダプタ、500(500a,500b) 第2通信アダプタ、510 制御部、511 検知部、512 通知部、520 記憶部、530 第1通信部、540 第2通信部、550 電力蓄積部、600(600a,600b) 電源検知装置、610 制御部、611 検知部、612 通知部、620 記憶部、621 波形パターンテーブル、630 通信部、640 センサ部

Claims (11)

  1.  電気機器と、該電気機器と通信可能に接続され、該電気機器の状態を監視する監視装置と、を有する監視システムであって、
     前記監視装置は、
     前記電気機器の電源が常時オンの状態であるか否かを表す稼働形態を取得する取得部と、
     前記電気機器に、該電気機器の状態の取得を要求する状態取得要求を送信する状態取得要求送信部と、
     前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記取得部により取得された稼働形態と、に基づいて、前記電気機器の状態を判定する第1判定部と、を備える、
     監視システム。
  2.  前記第1判定部が、前記電気機器から、前記状態取得要求送信部により送信された状態取得要求に対する応答を受信しなかった場合において、前記取得部により取得された稼働形態が、前記電気機器の電源が常時オンの状態でない旨を表す場合、前記第1判定部は、前記電気機器の電源がオフの状態である可能性があると判定する、
     請求項1に記載の監視システム。
  3.  前記第1判定部が、前記電気機器から、前記状態取得要求送信部により送信された状態取得要求に対する応答を受信しなかった場合において、前記取得部により取得された稼働形態が、前記電気機器が常時電源がオンの状態である旨を表す場合、前記第1判定部は、前記電気機器と前記監視装置との間の通信に異常があると判定する、
     請求項1または2に記載の監視システム。
  4.  前記取得部は、ユーザから、前記電気機器の稼働形態を表す入力を受け付ける、
     請求項1乃至3のいずれか1項に記載の監視システム。
  5.  前記電気機器と、前記監視装置と、に通信可能に接続される第1通信アダプタをさらに備え、
     前記第1通信アダプタは、
     電気機器毎に、該電気機器の稼働形態を対応付けて記憶する記憶部と、
     前記記憶部から、前記電気機器に対応する稼働形態を特定する特定部と、
     前記特定部により特定された稼働形態を前記電気機器に送信する稼働形態送信部と、を備え、
     前記取得部は、前記稼働形態送信部から、前記電気機器の稼働形態を取得する、
     請求項1乃至3のいずれか1項に記載の監視システム。
  6.  前記状態取得要求送信部は、前記電気機器に、前記状態取得要求を定期的に送信し、
     前記取得部は、前記状態取得要求送信部により送信された状態取得要求に対する応答の有無が変化した頻度が閾値よりも小さい場合、前記電気機器の電源が常時オンの状態である旨を表す稼働形態を取得する、
     請求項1乃至5のいずれか1項に記載の監視システム。
  7.  前記電気機器と、前記監視装置と、に通信可能に接続される第2通信アダプタをさらに備え、
     前記第2通信アダプタは、
     前記電気機器から前記第2通信アダプタに供給される電力を検知する検知部と、
     前記検知部により検知された前記電力の有無が変化した場合、前記監視装置に、前記電気機器の電源状態が変化した旨を通知する通知部と、を備え、
     前記監視装置は、
     前記通知部から受信した前記通知に基づいて、前記電気機器の電源状態を表すフラグを更新し、前記電気機器から、前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記フラグと、に基づいて、前記電気機器の状態を判定する第2判定部をさらに備える、
     請求項1乃至6のいずれか1項に記載の監視システム。
  8.  前記監視装置と通信可能に接続される、電源検知装置をさらに備え、
     前記電源検知装置は、
     電源から前記電気機器に供給される電流を検知する検知部と、
     前記検知部により検知された前記電流の波形が、前記電気機器の電源状態の変化を表す波形パターンとマッチする場合、前記監視装置に、前記電気機器の電源状態が変化した旨を通知する通知部と、を備え、
     前記監視装置は、
     前記通知部から受信した前記通知に基づいて、前記電気機器の電源状態を表すフラグを更新し、前記電気機器から、前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記フラグと、に基づいて、前記電気機器の状態を判定する第2判定部をさらに備える、
     請求項1乃至6のいずれか1項に記載の監視システム。
  9.  電気機器と通信可能に接続され、該電気機器の状態を監視する監視装置であって、
     前記電気機器の電源が常時オンの状態であるか否かを表す稼働形態を取得する取得部と、
     前記電気機器に、該電気機器の状態の取得を要求する状態取得要求を送信する状態取得要求送信部と、
     前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記取得部により取得された稼働形態と、に基づいて、前記電気機器の状態を判定する判定部と、
     を備える監視装置。
  10.  電気機器と通信可能に接続され、該電気機器の状態を監視する監視方法であって、
     前記電気機器の電源が常時オンの状態であるか否かを表す稼働形態を取得する取得ステップと、
     前記電気機器に、該電気機器の状態の取得を要求する状態取得要求を送信する状態取得要求送信ステップと、
     前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記取得部により取得された稼働形態と、に基づいて、前記電気機器の状態を判定する判定ステップと、
     を有する監視方法。
  11.  電気機器と通信可能に接続され、該電気機器の状態を監視するコンピュータを、
     前記電気機器の電源が常時オンの状態であるか否かを表す稼働形態を取得する取得部、
     前記電気機器に、該電気機器の状態の取得を要求する状態取得要求を送信する状態取得要求送信部、
     前記状態取得要求送信部により送信された状態取得要求に対する応答と、前記取得部により取得された稼働形態と、に基づいて、前記電気機器の状態を判定する判定部、
     として機能させるためのプログラム。
PCT/JP2013/080665 2013-11-13 2013-11-13 監視システム、監視装置、監視方法、及びプログラム WO2015071972A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/027,531 US9800710B2 (en) 2013-11-13 2013-11-13 Monitoring system, monitoring device, monitoring method, and program
PCT/JP2013/080665 WO2015071972A1 (ja) 2013-11-13 2013-11-13 監視システム、監視装置、監視方法、及びプログラム
CN201380080198.2A CN105637890B (zh) 2013-11-13 2013-11-13 监视***、通信适配器以及监视方法
JP2015547319A JP6147355B2 (ja) 2013-11-13 2013-11-13 監視システム、通信アダプタ、監視方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080665 WO2015071972A1 (ja) 2013-11-13 2013-11-13 監視システム、監視装置、監視方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2015071972A1 true WO2015071972A1 (ja) 2015-05-21

Family

ID=53056942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080665 WO2015071972A1 (ja) 2013-11-13 2013-11-13 監視システム、監視装置、監視方法、及びプログラム

Country Status (4)

Country Link
US (1) US9800710B2 (ja)
JP (1) JP6147355B2 (ja)
CN (1) CN105637890B (ja)
WO (1) WO2015071972A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122048A (ja) * 2017-12-28 2019-07-22 富士通フロンテック株式会社 突入電流制御システム、突入電流制御方法及び端末装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063378A (ja) * 1996-08-27 1998-03-06 Nec Corp 電源制御装置、電源制御システム、電源制御方法および 電源制御用プログラムを記憶した記憶媒体
WO2004032425A1 (ja) * 2002-10-02 2004-04-15 Mitsubishi Denki Kabushiki Kaisha 通信アダプタ装置および通信アダプタおよび不揮発性メモリへの書込み方法とこれに用いる電気機器及びromライタ
JP2005184481A (ja) * 2003-12-19 2005-07-07 Sharp Corp 通信アダプタおよびホームネットワークシステム
JP2009169551A (ja) * 2008-01-11 2009-07-30 Fujitsu Component Ltd 電源制御装置及びプログラム
JP2011135467A (ja) * 2009-12-25 2011-07-07 Daimler Ag 制御システムの異常処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002073966A (ja) 2000-06-16 2002-03-12 Zojirushi Corp 生活モニターシステム
JP2003289589A (ja) 2002-01-09 2003-10-10 Matsushita Electric Ind Co Ltd 機器データ収集システム
JP4215519B2 (ja) 2003-01-10 2009-01-28 パナソニック電工株式会社 電気機器管理支援システム、電気機器管理支援用センターサーバ
JP4281836B2 (ja) * 2007-11-21 2009-06-17 ダイキン工業株式会社 設備機器用装置、管理装置、設備機器管理システム、設備機器及び管理装置間の通信制御方法及び通信制御プログラム
JP2011250027A (ja) 2010-05-25 2011-12-08 Panasonic Electric Works Co Ltd リモートコントロール機器及び情報通信システム
US8234018B2 (en) * 2010-12-16 2012-07-31 General Electric Company Energy management of appliance cycle longer than low rate period
JP2013197696A (ja) 2012-03-16 2013-09-30 Ntt Docomo Inc 携帯端末、情報表示システムおよび情報表示方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1063378A (ja) * 1996-08-27 1998-03-06 Nec Corp 電源制御装置、電源制御システム、電源制御方法および 電源制御用プログラムを記憶した記憶媒体
WO2004032425A1 (ja) * 2002-10-02 2004-04-15 Mitsubishi Denki Kabushiki Kaisha 通信アダプタ装置および通信アダプタおよび不揮発性メモリへの書込み方法とこれに用いる電気機器及びromライタ
JP2005184481A (ja) * 2003-12-19 2005-07-07 Sharp Corp 通信アダプタおよびホームネットワークシステム
JP2009169551A (ja) * 2008-01-11 2009-07-30 Fujitsu Component Ltd 電源制御装置及びプログラム
JP2011135467A (ja) * 2009-12-25 2011-07-07 Daimler Ag 制御システムの異常処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122048A (ja) * 2017-12-28 2019-07-22 富士通フロンテック株式会社 突入電流制御システム、突入電流制御方法及び端末装置

Also Published As

Publication number Publication date
JP6147355B2 (ja) 2017-06-14
US9800710B2 (en) 2017-10-24
CN105637890A (zh) 2016-06-01
JPWO2015071972A1 (ja) 2017-03-09
CN105637890B (zh) 2019-03-08
US20160248898A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
KR102374677B1 (ko) 무선 통신을 이용한 전자장치의 관리 방법과 장치
JP5520807B2 (ja) 住宅用電気機器メンテナンス管理装置及び住宅用電気機器メンテナンスシステム
US20090249002A1 (en) Information collection apparatus, method, and program
EP2775665B1 (en) Node device group, network system and method for transmitting and receiving sensor data
US10989426B2 (en) Information processing device, electronic apparatus, method, and program
US20150277407A1 (en) Location detection of control equipment in a building
WO2016170574A1 (ja) 運用管理システム及び運用管理方法
KR102626524B1 (ko) 시스템의 상태를 수집하고 분석하는 시스템 및 방법
JP6147355B2 (ja) 監視システム、通信アダプタ、監視方法、及びプログラム
JP6184267B2 (ja) 無線通信システム及び無線コントローラ
US11102616B2 (en) Method of tracking objects using thermostat
JP6213659B2 (ja) 監視装置、監視システム、監視方法、及び、プログラム
JP2009193317A (ja) 電子機器
US10102095B2 (en) Peripheral management system, management device, and management method
JP6366416B2 (ja) 通信システムおよび制御方法
KR100750955B1 (ko) 프로젝터 원격관리 시스템 및 방법
JP7040207B2 (ja) 情報処理装置、通信システム、通信制御方法及びプログラム
JP6150693B2 (ja) 無線通信システム及び無線コントローラ
JP6161471B2 (ja) 無線通信システム及び無線コントローラ
JP5968135B2 (ja) 情報処理装置、情報処理システム及び情報処理方法
JP6219153B2 (ja) 警報通知装置、警報通知システムおよび警報通知プログラム
CN116933338A (zh) 设备管理方法、控制设备、***及存储介质
JP2020021263A (ja) 親機、自動火災報知システム、制御方法、及びプログラム
KR200414554Y1 (ko) 프로젝터 원격관리 시스템
JP2016045876A (ja) 電子装置、制御システム、及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547319

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027531

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897369

Country of ref document: EP

Kind code of ref document: A1