WO2015070483A1 - Uv胶固化方法及oled封装方法 - Google Patents

Uv胶固化方法及oled封装方法 Download PDF

Info

Publication number
WO2015070483A1
WO2015070483A1 PCT/CN2013/087880 CN2013087880W WO2015070483A1 WO 2015070483 A1 WO2015070483 A1 WO 2015070483A1 CN 2013087880 W CN2013087880 W CN 2013087880W WO 2015070483 A1 WO2015070483 A1 WO 2015070483A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
glue
light
glass substrate
seconds
Prior art date
Application number
PCT/CN2013/087880
Other languages
English (en)
French (fr)
Inventor
余威
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/236,854 priority Critical patent/US9240566B2/en
Publication of WO2015070483A1 publication Critical patent/WO2015070483A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to a UV glue curing method, in particular to a UV glue curing method and an OLED armoring method. Background technique
  • OLED Organic Light Emitting Diode Display
  • organic electroluminescent diode is a new display technology developed since the mid-20th century. Compared with liquid crystal displays, organic electroluminescent diodes have all-solid-state, active illumination, high brightness, 3 ⁇ 4, j" ⁇ metamorphosis, ultra-thin, low cost, low power consumption, fast response, wide viewing angle, wide operating temperature range, Easy to flex display and many other advantages.
  • the structure of the organic electroluminescent diode generally includes: a substrate 100 , a light emitting element 300 formed on the substrate 100 , and a package cover 500 disposed on the substrate 100 , wherein the light emitting element 300 is formed on the substrate
  • the anode 302 on the substrate 00 is formed on the anode
  • the organic functional layer 304 on the 302 and the cathode 306 formed on the organic functional layer 304 are bonded together by the UV adhesive 700 between the substrate 100 and the package cover 500, and are cured to seal the light emitting device 300 to the substrate 100. Between the package cover 500 and the package cover 500, the organic functional layer 304 of the light-emitting element 300 is deteriorated due to the erosion of moisture.
  • the organic functional layer of the existing organic electroluminescent diode is generally composed of three functional layers, namely a hole transport layer (HTL), an emissive layer (EML), and an electronic 'transmission function.
  • HTL hole transport layer
  • EML emissive layer
  • ETL electronic 'transmission function.
  • Each functional layer may be one layer, or more than one layer, such as a hole transport functional layer, sometimes subdivided into a hole injection layer and a hole transport layer; an electron transport functional layer, which may be subdivided into an electron transport layer and an electron
  • a hole transport functional layer sometimes subdivided into a hole injection layer and a hole transport layer
  • an electron transport functional layer which may be subdivided into an electron transport layer and an electron
  • the injection layer but its functions are similar, so it is collectively referred to as a hole transport functional layer and an electron transport functional layer.
  • organic electroluminescent diodes are often used in the form of glass packages, UV glue seals or glass glue packages.
  • UV glue curing processes in both ways.
  • the temperature of the glass substrate will also rise. Excessive temperature (above the Tg point of the organic material) will cause the organic electroluminescent diode organic material to denature, thus affecting the organic electricity.
  • the performance of the light-emitting diode product so it is desirable that the temperature on the glass substrate is lower when ⁇ is cured.
  • the glass substrate is superimposed, ⁇ filter, and even
  • UV irradiation may be required for a long time, and the temperature of the glass substrate may be Significant rise, is likely to affect OLED organic materials.
  • FIG. 2 is a temperature graph of a glass substrate when the OLED is packaged by the existing direct irradiation method.
  • the illuminance of the UV light source is: lOOmw/cm 2
  • the UV light source directly irradiates the glass after 180 seconds.
  • the maximum temperature of the substrate is 901, which may cause degradation of the organic material of the OLED, thereby affecting the quality of the OLED. Summary of the invention
  • An object of the present invention is to provide a UV adhesive curing method which is simple in process and can effectively dissipate heat generated in a process.
  • Another object of the present invention is to provide an OLED packaging method which effectively protects an organic functional layer and improves the quality of the organic electroluminescent diode.
  • the present invention provides a UV glue curing method, comprising the following steps: Step 1. Providing a ⁇ light source, and turning on the ⁇ light source to perform the first irradiation of the ⁇ glue; Step 2, turning off the UV light source, the interval 10-300 After a second, turn on the UV light source to irradiate the UV glue a second time;
  • Step 3 Repeat step 2 until the UV glue is completely cured.
  • the illuminance of the UV light source is 100 mW/cm 2 ; the time of the first irradiation and the second irradiation is 60 seconds; the UV light source is turned off, and the interval is 60 seconds; and the repeating step 2 is repeated once.
  • the turning on and off the UV light source is controlled by the control system according to a preset time.
  • the invention also provides an OLED packaging method, comprising the following steps:
  • Step 101 providing a glass substrate, wherein the glass substrate is formed with a light-emitting element
  • Step 102 applying a UV glue on the glass substrate, the UV glue being disposed on the periphery of the light emitting element;
  • Step 103 providing a package cover plate, and laminating the package cover plate and the glass substrate;
  • Step 104 providing a UV light source, and turning on the UV light source to perform the first illumination on the UV glue;
  • Step 105 Turn off the UV light source, and after 10-300 seconds interval, turn on the UV light source to perform a second irradiation on the UV glue;
  • Step 106 repeating step 05, until the UV glue is completely cured.
  • the illuminance of the UV light source is OOmw/em 2 ; the time of the first irradiation and the second irradiation is 60 seconds; the UV light source is turned off, and the interval is 60 seconds; the repeating step 105 is repeated 1
  • the light-emitting element includes: an anode formed on a glass substrate, an organic functional layer formed on the anode, and a cathode formed on the organic functional layer.
  • the organic functional layer includes: a hole transport layer formed on the anode, an organic light-emitting layer formed on the hole transport layer, and an electron transport layer formed on the organic light-emitting layer.
  • the hole transport layer, the organic light-emitting layer, and the electron transport layer are formed by vapor deposition.
  • the package cover is a glass plate.
  • the turning on and off the UV light source is controlled by the control system according to a preset time.
  • the invention also provides an OLED packaging method, comprising the following steps:
  • Step 101 providing a glass substrate, wherein the glass substrate is formed with a light-emitting element
  • Step 102 Apply a UV glue on the glass substrate, and the UV glue is disposed on the periphery of the light emitting element;
  • Step 103 providing a package cover plate, and laminating the package cover plate and the glass substrate;
  • Step 104 providing a UV light source, and turning on the UV light source to perform the first illumination on the UV glue;
  • Step 105 Turn off the UV light source, and after the interval is 0 300 seconds, turn on the UV light source to perform the second irradiation on the UV glue;
  • Step 106 repeating step 105, until the UV glue is completely cured
  • the illuminance of the IJV light source is 100 ⁇ /cm 2 ; the time of the first illumination and the second illumination is 60 seconds; the UV light source is turned off, and the interval is 60 seconds; the repeating step 105 is repeated once. ;
  • the light-emitting element includes: an anode formed on a glass substrate, an organic functional layer formed on the anode, and a cathode formed on the organic functional layer.
  • the organic functional layer includes: a hole transport layer formed on the anode, and an organic light-emitting layer formed on the hole transport layer. And an electron transport layer formed on the organic light emitting layer.
  • the hole transport layer, the organic light-emitting layer, and the electron transport layer are formed by vapor deposition.
  • the package cover is a glass plate.
  • the opening and closing of the UV light source is controlled by the control system according to a preset time.
  • the UV adhesive curing method and the OLED packaging method of the present invention effectively reduce the temperature of the glass substrate by means of intermittent irradiation, thereby effectively preventing the occurrence of deterioration of the organic functional layer due to excessive temperature, and improving
  • the following is a detailed description of the present invention and the accompanying drawings in order to provide a better understanding of the present invention and the technical contents of the present invention.
  • the drawings are only for reference and description, and are not intended to be used for the present invention. Limit the restrictions.
  • a schematic structural view of an OLED packaged by the OLED packaging method of the present invention a temperature profile of a glass substrate when the OLED is packaged by the OLED packaging method of the present invention
  • the present invention provides a UV glue curing method, which comprises the following steps:
  • Step 1 providing a UV light source 60, and turning on the UV light source 60 to perform the first specific UV glue 24, providing a UV light source 60, the UV light source 60 having an illuminance of 100 mw/cm 2 , turning on the UV light source 60, and performing the UV glue 24
  • the first exposure is 60 seconds.
  • Step 2 turn off the UV light source 60, after 10-300 seconds interval, turn on the UV light source 60 pairs
  • the UV glue 24 is subjected to a second irradiation.
  • the UV light source 60 is turned off, and after 60 seconds, the UV light source 60 is turned on again, and the UV glue 24 is irradiated for a second time, and the second irradiation time is 60 seconds.
  • Step 3 Repeat step 2 until the UV glue 24 is completely cured.
  • step 2 is repeated once, that is, the UV light source 60 is turned off, and after 60 seconds, the UV light source 60 is turned on again, and the UV glue 24 is irradiated for a third time.
  • the time of the third irradiation is 60.
  • the opening and closing of the UV light source 60 through the control system root The time is controlled, the time control is precise, and there is no excessive illumination or incomplete curing.
  • the present invention further provides an OLED packaging method, including the following steps:
  • Step 10 A glass substrate 20 is provided, on which the light-emitting element 22 is formed.
  • the light-emitting element 22 includes: an anode 202 formed on the glass substrate 20, an organic functional layer 204 formed on the anode 202, and a cathode 206 formed on the organic functional layer 204.
  • the organic functional layer 204 includes: a hole transport layer 242 formed on the anode 202, an organic light emitting layer 244 formed on the hole transport layer 242, and an electron transport layer 246 formed on the organic light emitting layer 244. .
  • the hole transport layer 242, the organic light-emitting layer 244, and the electron transport layer 246 are formed by vapor deposition.
  • Step 102 Apply a UV glue 24 on the glass substrate 20, and the UV glue 24 is disposed on the periphery of the light-emitting element 22
  • Step 103 Provide a package cover 40, and attach the package cover 40 to the glass substrate 20.
  • the package cover 40 is a glass plate.
  • Step 104 Provide a UV light source 60, and turn on the UV light source 60 to perform the first irradiation of the UV glue 24.
  • Step 105 turning off the UV light source 60, after 10-300 seconds interval, turning on the UV light source 60 pairs
  • the UV glue 24 is subjected to a second irradiation.
  • Step 106 Step 105 is repeated until the UV glue 24 is fully cured.
  • the UV light source 60 When the illuminance of the provided UV light source 60 is 100 mw/cm 2 ; first, the UV light source 60 is turned on to perform the first irradiation of the UV glue 24, and the time of the first irradiation is set. 60 seconds; Next, the UV light source 60 is turned off, after 60 seconds, the UV light source 60 is turned on to perform a second irradiation on the UV glue 24, and the time of the second irradiation is also set to 60 seconds; then, the UV light source 60 is turned off.
  • the UV light source 60 is turned on to perform a third irradiation on the UV glue 24, and the time of the third irradiation is also set to 60 seconds, at which time the UV glue 24 is completely cured, measured by a thermocouple.
  • the temperature on the glass substrate 20 is 60 ⁇ (as shown in FIG. 7 ).
  • the maximum temperature of the glass substrate 20 directly irradiated with the UV light source 60 having an illuminance of iOOmw/em 2 for 180 seconds is 9 CTC (as shown in FIG. 2 ).
  • the temperature of the glass substrate 20 is lowered by 30 'C, which effectively lowers the temperature of the glass substrate 20, thereby effectively preventing the occurrence of degradation of the organic functional layer due to excessive temperature.
  • the opening and closing of the UV light source 60 is controlled by the control system according to the preset. Time to control.
  • the specific method may be: calculating the integrated light quantity value required for curing the UV glue according to the amount of UV glue; calculating the required irradiation time according to the integrated light quantity value and the illumination value of the UV light source; according to the irradiation time, and referring to the glass
  • the temperature of the substrate is required to divide the number of times of irradiation and the time of each irradiation.
  • the irradiation interval is set according to the cooling rate of the glass substrate. After the calculation is completed, the number of times of irradiation, the time of irradiation, and the interval time are input into the control system, and the control system controls the data according to the data.
  • the UV light source is turned on and off to achieve the interval curing of the UV glue.
  • the UV glue curing method and the OLED packaging method of the present invention effectively reduce the temperature of the glass substrate by means of intermittent irradiation, thereby effectively preventing the occurrence of degradation of the organic functional layer due to excessive temperature, thereby improving the occurrence of the phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种UV胶固化方法及OLED封装方法,所述UV胶固化方法包括:步骤1、提供UV光源(60),并打开UV光源(60)对UV胶(24)进行第一次照射;步骤2、关闭UV光源(60),间隔10-300秒后,打开UV光源(60)对UV胶(24)进行第二次照射;步骤3、重复步骤2,至所述UV胶(24)完全固化。本发明的UV胶固化方法及OLED封装方法,通过间隔照射的方式,有效降低玻璃基板的温度,进而有效避免由于温度过高而导致的有机功能层劣化现象的发生,提升了OLED设备的使用寿命及品质。

Description

U V胶固化方法及 OLED封装方法
本发明涉及一种 UV胶固化方法, 尤其涉及一种 UV胶固化方法及 OLED †装方法。 背景技术
有机发光二极管或有机发光显示器 ( Organic Light Emitting Diode Display, OLED )又称为有机电致发光二极管, 是自 20世纪中期发展起来 的一种新型显示技术。 与液晶显示器相比, 有机电致发光二极管具有全固 态、 主动发光、 高亮度、 ¾ 、 j" ^匕变、 超薄、 低成本、 低功耗、 快速响应、 宽视角、 工作温度范围宽、 易于柔性显示等诸多优点„
请参阅图 1 , 有机电致发光二极管的结构一般包括: 基板 100、 形成 于基板 100上的发光元件 300及与基板 100贴合设置的封装盖板 500, 其 中, 所述发光元件 300 包括形成于基板 00 上的阳极 302、 形成于阳极
302上的有机功能层 304及形成于有机功能层 304上的阴极 306, 所述基 板 100与封装盖板 500之间通过 UV胶 700贴合, 并进行固化, 以将发光 元件 300密封于基板 100与封装盖板 500之间, 以避免由于水汽的侵蚀而 导致发光元件 300的有机功能层 304劣化。
现有的有机电致发光二极管的有机功能层, 一般由三个功能层构成, 分别为空穴传输功能层 ( Hole Transport Layer , HTL ) 、 发光功能层 ( Emissive Layer, EML ) 、 电子'传输功能层 ( Electron Transport Layer,
ETL ) 。 每个功能层可以是一层, 或者一层以上, 例如空穴传输功能层, 有时可以细分为空穴注入层和空穴传输层; 电子传输功能层, 可以细分为 电子传输层和电子注入层, 但其功能相近, 故统称为空穴传输功能层, 电 子传输功能层。
目前有机电致发光二极管较常使用的还是玻璃封装的方式, UV胶封 装或玻璃胶封装, 两种方式中都有 UV胶固化的过程。 但在 UV灯照射固 化 UV胶过.程中, 玻璃基板的温度也会随之上升, 过高的温度 (超过有机 材料 Tg点时)会导致有机电致发光二极管有机材料变性, 从而影响有机 电致发光二极管产品的性能, 所以希望 υν 固化时玻璃基板上温度偏低比 较好。
然而在实际的 υν 固化制程中, 叠加上玻璃基板, υν 滤波器、 甚至 做柔性显示时的柔性基底 ( PE 膜) 等在 UV 波段的穿透率时, 为达到 UV胶固化所需的积算光量值, 可能需要 UV 照射较长时间, 这时玻璃基 板的温度会明显上升, 很可能影响到 OLED有机材料。
比如, 请参阅图 2, 为用现有直接照射方法封装 OLED时玻璃基板的 温度曲线图, 在该图中, UV 光源的照度为: lOOmw/cm2, 的 UV 光源直 接照射 180秒后的玻璃基板的最高温度为 901, 可能会导致 OLED有机 材料劣化, 进而影响 OLED的品质。 发明内容
本发明的目的在于提供一种 UV胶固化方法, 其制程简单, 能有效散 发制程中所产生的热量。
本发明的另一目的在于提供一种 OLED封装方法, 其有效保护有机功 能层, 提高有机电致发光二极管的品质。
为实现上述目的, 本发明提供一种 UV胶固化方法, 包括以下步骤: 步骤 1、 提供 υν光源, 并打开 υν光源对 υν胶进行第一次照射; 步骤 2、 关闭 UV光源, 间隔 10-300秒后, 打开 UV光源对 UV胶进 行第二次照射;
步骤 3、 重复步骤 2 , 至所述 UV胶完全固化。
所述 UV光源的照度为 lOOmw/cm2; 所述第一次照射与第二次照射的 时间均为 60秒; 关闭 UV光源, 间隔 60秒; 所述重复步骤 2为重复 1 次。
所述打开与关闭 UV光源通过控制***根据预设时间进行控制。
本发明还提供一种 OLED封装方法, 包括以下步骤:
步骤 101 , 提供玻璃基板, 该玻璃基板上形成有发光元件;
步骤 102、 在玻璃基板上涂布 UV 胶, 该 UV 胶设于发光元件的外 围;
步骤 103、 提供封装盖板, 并将该封装盖板与玻璃基板相对贴合; 步骤 104、 提供 UV 光源, 并打开 UV 光源对 UV胶进行第一次照 射;
步骤 105、 关闭 UV光源, 间隔 10- 300秒后, 打开 UV光源对 UV胶 进行第二次照射;
步骤 106、 重复步骤 05, 至所述 UV胶完全固化。
所述 UV光源的照度为 OOmw/em2; 所述第一次照射与第二次照射的 时间均为 60秒; 关闭 UV光源, 间隔 60秒; 所述重复步骤 105为重复 1 所述发光元件包括: 形成于玻璃基板上的阳极、 形成于阳极上的有机 功能层及形成于有机功能层上的阴极。
所述有机功能层包括: 形成于阳极上的空穴传输层、 形成于空穴传输 层上的有机发光层、 及形成于有机发光层上的电子传输层。
所述空穴传输层、 有机发光层及电子传输层通过蒸镀的方式形成。 所述封装盖板为玻璃板。
所述打开与关闭 UV光源通过控制***根据预设时间进行控制。
本发明还提供一种 OLED封装方法 , 包括以下步骤:
步骤 101、 提供玻璃基板, 该玻璃基板上形成有发光元件;
步骤 102、 在玻璃基板上涂布 UV 胶, 该 UV胶设于发光元件的外 围;
步骤 103、 提供封装盖板, 并将该封装盖板与玻璃基板相对贴合; 步骤 104、 提供 UV 光源, 并打开 UV 光源对 UV胶进行第一次照 射;
步骤 105、 关闭 UV光源, 间隔〗0 300秒后, 打开 UV光源对 UV胶 进行第二次照射;
步骤 106、 重复步骤 105, 至所述 UV胶完全固化;
其中, 所述 IJV光源的照度为 100丽 /cm2; 所述第一次照射与第二次 照射的时间均为 60秒; 关闭 UV光源, 间隔 60秒; 所述重复步骤 105为 重复 1次;
其中, 所述发光元件包括: 形成于玻璃基板上的阳极、 形成于阳极上 的有机功能层及形成于有机功能层上的阴极。
所述有机功能层包括: 形成于阳极上的空穴传输层、 形成于空穴传输 层上的有机发光层。 及形成于有机发光层上的电子传输层。
所述空穴传输层、 有机发光层及电子传输层通过蒸镀的方式形成。 所述封装盖板为玻璃板。
所述打开与关闭 UV光源通过控制***根据预设时间进行'控制。
本发明的有益效果: 本发明的 UV胶固化方法及 OLED封装方法, 通 过间隔照射的方式, 有效降低玻璃基板的温度, 进而有效避免由于温度过 高而导致的有机功能层劣化现象的发生, 提升了 OLED设备的使用寿命及 为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。
附图图图图图图图
方图 24635 i 7
附图说明
下面结合附图, 通过对本 明的具体实施方式详细描述, 将使本发明 ό' 案及其它有益效果显 易见。
中,
为现有的有机电致发光二极管的结构示意图;
为用现有直接照射方法封装 OLED时玻璃基板的温度曲线图; 为本发明 UV胶固化方法的流程图;
为本发明 UV胶固化方法的制程图
为本发明 OLED封装方法的流程图;
为用本发明 OLED封装方法封装的 OLED的结构示意图; 为用本发明 OLED封装方法封装 OLED 时玻璃基板的温度曲线
具体实旅方式
为更进一步阐述本发明所采取的技术" , 以下结合本发明 的优选实施例及其附图进行详 ·细描述.0
请参阅图 3 及图 4, 本发明提供一种 UV 胶固化方法, 包括以下步 骤:
步骤 1、 提供 UV光源 60, 并打开 UV光源 60对 UV胶 24进行第一 具体地, 提供 UV光源 60, 该 UV光源 60的照度为 100mw/cm2, 打 开 UV光源 60, 对 UV胶 24进行第一次照射, 该第一次照射的时间为 60 秒。
步骤 2、 关闭 UV光源 60, 间隔 10-300秒后, 打开 UV光源 60对
UV胶 24进行第二次照射。
具体地, 关闭 UV光源 60, 间隔 60秒后, 再打开 UV光源 60, 对 UV胶 24进行第二次照射, 该第二次照射的时间为 60秒。
步骤 3、 重复步骤 2 , 至所述 UV胶 24完全固化。
具体地, 重复步骤 2一次, 即关闭 UV光源 60, 间隔 60秒后, 再打 开 UV光源 60 , 对 UV胶 24进行第三次照射, 该第三次照射的时间为 60
Figure imgf000006_0001
值得一提的是, 所述打开与关闭 UV 光源 60通过控制***根.拐 时间进行控制, 时间控制精准, 不会造成过度照射也不会发生固化不完全 的现象。
请参阅图 5 至图 7, 并参考图 4, 本发明还提供一种 OLED 封装方 法, 包括以下步骤:
步骤 10 、 提供玻璃基板 20, 该玻璃基板 20上形成有发光元件 22。 具体地, 所述发光元件 22包括: 形成于玻璃基板 20上的阳极 202、 形成于阳极 202 上的有机功能层 204及形成于有机功能层 204 上的阴极 206。
进一步地, 所述有机功能层 204包括: 形成于阳极 202上的空穴传输 层 242、 形成于空穴传输层 242 上的有机发光层 244、 及形成于有机发光 层 244上的电子传输层 246。 所述空穴传输层 242、 有机发光层 244及电 子传输层 246通过蒸镀的方式形成。
步骤 102、 在玻璃基板 20上涂布 UV胶 24, 该 UV胶 24设于发光元 件 22的***„
步骤 103、 提供封装盖板 40, 并将该封装盖板 40与玻璃基板 20相对 贴合。
所述封装盖板 40为玻璃板。
步骤 104、 提供 UV光源 60, 并打开 UV光源 60对 UV胶 24进行第 一次照射。
步骤 105、 关闭 UV光源 60 , 间隔 10-300秒后, 打开 UV光源 60对
UV胶 24进行第二次照射。
步骤 106 重复步骤 105, 至所述 UV胶 24完全固化。
现以一具体实施例进行进一步说明, 当所提供的 UV 光源 60 的照度 为 100mw/cm2时; 首先, 并打开 UV光源 60对 UV胶 24进行第一次照 射, 该第一次照射的时间设为 60秒; 接着, 关闭 UV光源 60, 间隔 60秒 后, 打开 UV光源 60对 UV胶 24进行第二次照射, 该第二次照射的时间 也设为 60秒; 然后, 再关闭 UV光源 60, 间隔 60秒; 最后, 打开 UV光 源 60对 UV胶 24进行第三次照射, 该第三次照射的时间也设为 60秒, 这时所述 UV胶 24完全固化, 通过热电耦测得的玻璃基板 20上温度, 最 高温度为 60Γ (如图 7 所示) , 相比, 用照度为 iOOmw/em2的 UV光源 60直接照射 180秒的玻璃基板 20的最高温度为 9CTC (如图 2所示) , 玻 璃基板 20的温度降低了 30 'C, 有效降低了玻璃基板 20的温度, 进而能有 效避免由于温度过高而导致的有机功能层劣化现象的发生。
值得一提的是, 所述打开与关闭 UV 光源 60通过控制***根据预设 时间进行控制。
其具体方法可为: 根据 UV胶量计算固化该 UV胶所需要的积算光量 值; 根据该积算光量值与 UV 光源的照度值计算所需照射时间; 根据照射 时间, 并参考玻璃基板的温度要求划分照射次数及每次照射时间; 根据玻 璃基板冷却速度设定照射间隔时间, 计算完成后, 将照射次数、 照射时 间、 间隔时间输入控制***, 控制***才艮据该些数据控制 UV 光源的打开 与关闭, 进而实现 UV胶的间隔固化„
综上所述, 本发明的 UV胶固化方法及 OLED封装方法, 通过间隔照 射的方式, 有效降低玻璃基板的温度, 进而有效避免由于温度过高而导致 的有机功能层劣化现象的发生, 提升了 OLED设备的使用寿命及品质。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围„

Claims

权 利 要 求
】、 一种 UV胶固化方法, 包括以下步錄:
步骤 1、 提供 UV光源, 并打开 UV光源对 UV胶进行第一次照射; 步骤 2、 关闭 UV光源, 间隔 10- 300秒后, 打开 UV光源对 UV胶进 行第二次照射;
步骤 3、 重复步骤 2 , 至所述 UV胶完全固化。
2、 权利要求 1所述的 UV胶固化方法, 其中, 所述 UV光源的照度为 l OOmw/cm2; 所述第一次照 与第二次照射的时间均为 60秒; 关闭 UV光 源, 间隔 60秒; 所述重复步骤 2为重复 1次。
3、 如权利要求 I所述的 UV胶固化方法, 其中, 所述打开与关闭 UV 光源通过控制***根据预设时间进行控制。
4、 一种 OLED封装方法, 包括以下步骤:
步骤 101、 提供玻璃基.板, 该玻璃基板上形成有发光元件;
步骤 102、 在玻璃基板上涂布 UV 胶, 该 UV胶设于发光元件的外 围;
步骤 103、 提供封装盖板, 并将该封装盖板与玻璃基板相对贴合; 步骤 104。 提供 UV 光源, 并打开 UV 光源对 UV 胶进行第一次照 射;
步骤 105、 关闭 UV光源, 间隔 0 300秒后, 打开 UV光源对 UV胶 进行第二次照射;
步骤 106、 重复步骤 105, 至所述 UV胶完全固化。
5、 如权利要求 4所述的 OLED封装方法, 其中, 所述 UV光源的照 度为 100丽 /cm2; 所述第一次照射与第二次照射的时间均为 60 秒; 关闭 UV光源, 间隔 60秒; 所述重复步骤!05为重复 1次。
6、 如权利要求 4 所述的 OLED 封装方法, 其中, 所述发光元件包 括: 形成于玻璃基板上的阳极、 形成于阳极上的有机功能层及形成于有机 功能层上的阴极。
7、 如权利要求 6所述的 OLED封装方法, 其中, 所述有机功能层包 括: 形成于阳极上的空穴传输层、 形成于空穴传输层上的有机发光层、 及 形成于有机发光层上的电子传输层。
8、 如权利要求 7所述的 OLED封装方法, 其中, 所述空穴传输层、 有机发光层及电子传输层通过蒸镀的方式形成。
9 , 如权利要求 4所述的 OLED封装方法, 其中, 所述封装盖板为玻 璃板。
10, 如权利要求 4 所述的 OLED 封装方法, 其中, 所述打开与关闭 UV光源通过控制***根据预设时间进行控制。
11、 一种 OLED封装方法, 包括以下步骤:
步骤 101、 提供玻璃基板, 该玻璃基板上形成有发光元件;
步骤 102、 在玻璃基板上涂布 UV胶, 该 UV胶设于发光元件的外 围;
步骤 103、 提供封装盖板, 并将该封装盖板与玻璃基板相对贴合; 步骤 104、 提供 UV光源, 并打开 UV 光源对 UV胶进行第一次照 射;
步骤 105、 关闭 UV光源, 间隔 10- 300秒后, 打开 UV光源对 UV胶 进行第二次照射;
步骤 106 , 重复步骤 105, 至所述 UV胶完全固化;
其中, 所述 UV光源的照度为 100mw/cm2; 所述第一次照射与第二次 照射的时间均为 60秒; 关闭 UV光源, 间隔 60秒; 所述重复步骤 105为 重复 1次;
其中, 所述发光元件包括: 形成于玻璃基板上的阳极, 形成于阳极上 的有机功能层及形成于有机功能层上的阴极。
12、 如权利要求 11 所述的 OLED封装方法, 其中, 所述有机功能层 包括: 形成于阳极上的空穴传输层、 形成于空穴传输层上的有机发光层、 及形成于有机发光层上的电子传输层。
13、 如权利要求 12 所述的 OLED封装方法, 其中, 所述空穴传输 层、 有机发光层及电子传输层通过蒸镀的方式形成。
14、 如权利要求 11 所述的 OLED封装方法, 其中, 所述封装盖板为 玻璃板。
15、 如权利要求 1〗 所述的 OLED封装方法, 其中, 所述打开与关闭 UV光源通过控制***根据预设时间进行控制。
PCT/CN2013/087880 2013-11-15 2013-11-26 Uv胶固化方法及oled封装方法 WO2015070483A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/236,854 US9240566B2 (en) 2013-11-15 2013-11-26 Method for curing UV-curable resin and method for packaging OLED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310574199.4A CN103586183B (zh) 2013-11-15 2013-11-15 Uv胶固化方法及oled封装方法
CN201310574199.4 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015070483A1 true WO2015070483A1 (zh) 2015-05-21

Family

ID=50076619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087880 WO2015070483A1 (zh) 2013-11-15 2013-11-26 Uv胶固化方法及oled封装方法

Country Status (3)

Country Link
US (1) US9240566B2 (zh)
CN (1) CN103586183B (zh)
WO (1) WO2015070483A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084368B (zh) * 2014-07-23 2015-10-07 深圳市华星光电技术有限公司 紫外led光源及oled器件的固化封装装置与方法
CN106269433B (zh) * 2016-08-31 2019-09-17 深圳市华星光电技术有限公司 Uv胶的固化装置及其固化方法
CN107369761B (zh) * 2017-08-10 2020-04-14 武汉华星光电技术有限公司 一种柔性显示面板及其基板pi层结构、制备方法
CN108570646A (zh) * 2018-03-29 2018-09-25 瑞宏精密电子(太仓)有限公司 一种笔记本电脑外壳的表面抗指纹处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246315A (en) * 1978-01-13 1981-01-20 Sud-West Chemie Gmbh Carrier materials impregnated with thermosetting resins, process for their manufacture and their use
CN101867024A (zh) * 2010-06-01 2010-10-20 友达光电股份有限公司 封装方法
CN102185078A (zh) * 2011-03-30 2011-09-14 深圳雷曼光电科技股份有限公司 贴片式户外led的封装结构及封装方法
CN103325918A (zh) * 2013-04-03 2013-09-25 杭州杭科光电股份有限公司 一种发光二极管的封装工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7792489B2 (en) * 2003-12-26 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic appliance, and method for manufacturing light emitting device
JP5040380B2 (ja) * 2007-03-13 2012-10-03 オムロン株式会社 紫外線照射システム、それに用いられる硬化反応検知装置およびそれを用いた紫外線硬化樹脂の硬化方法
TWI470325B (zh) * 2007-04-26 2015-01-21 Semiconductor Energy Lab 液晶顯示裝置及其製造方法
CN101359722A (zh) * 2008-09-23 2009-02-04 吉林大学 一种顶发射有机电致发光器件的封装方法
CN103383992B (zh) * 2013-08-13 2015-12-02 深圳市华星光电技术有限公司 Oled器件的封装方法及用该方法封装的oled器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246315A (en) * 1978-01-13 1981-01-20 Sud-West Chemie Gmbh Carrier materials impregnated with thermosetting resins, process for their manufacture and their use
CN101867024A (zh) * 2010-06-01 2010-10-20 友达光电股份有限公司 封装方法
CN102185078A (zh) * 2011-03-30 2011-09-14 深圳雷曼光电科技股份有限公司 贴片式户外led的封装结构及封装方法
CN103325918A (zh) * 2013-04-03 2013-09-25 杭州杭科光电股份有限公司 一种发光二极管的封装工艺

Also Published As

Publication number Publication date
CN103586183A (zh) 2014-02-19
US9240566B2 (en) 2016-01-19
CN103586183B (zh) 2015-12-02
US20150303401A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US20160343976A1 (en) Oled package structure and package method thereof
WO2015196600A1 (zh) Oled器件的封装方法、oled显示面板及oled显示装置
US9373812B2 (en) White OLED display device and packaging method thereof
US9530982B2 (en) Packaging method and packaging structure of substrate
US9559331B2 (en) OLED package method and OLED package structure
KR102239840B1 (ko) 표시장치 및 그 제조방법
WO2019205385A1 (zh) 一种柔性oled显示面板
WO2016041212A1 (zh) Oled的封装方法及oled结构
US20150171376A1 (en) Method for manufacturing flexible oled (organic light emitting diode) panel
WO2016026182A1 (zh) Oled的封装方法及结构
WO2015070483A1 (zh) Uv胶固化方法及oled封装方法
WO2015039495A1 (zh) 有机电致发光器件封装结构
WO2019075854A1 (zh) Oled面板的封装方法及封装结构
CN102903735B (zh) 有机电致光二极管显示器及其偏光片贴覆方法
US9818917B2 (en) Quantum dots (QD) glass cells, and the manufacturing methods and applications thereof
WO2015192401A1 (zh) 基板的封装方法
CN104576970A (zh) 一种柔性显示装置的制备方法及其制备的柔性显示装置
US20190386241A1 (en) Organic light-emitting diode display and method for fabricating the same
KR20200069372A (ko) Oled 패키지 방법 및 oled 패키지 구조
WO2016086532A1 (zh) 柔性oled衬底及柔性oled封装方法
WO2014153892A1 (zh) 基板封装方法
CN104409663A (zh) 封装方法、封装结构及显示装置
WO2015180232A1 (zh) Oled基板的封装方法及oled结构
CN107230686A (zh) 一种显示装置及其封装方法
WO2016177267A1 (zh) 封装胶、封装方法、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14236854

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897282

Country of ref document: EP

Kind code of ref document: A1