WO2015066997A1 - 一种磁集成器件及一种功率转换电路 - Google Patents

一种磁集成器件及一种功率转换电路 Download PDF

Info

Publication number
WO2015066997A1
WO2015066997A1 PCT/CN2014/074792 CN2014074792W WO2015066997A1 WO 2015066997 A1 WO2015066997 A1 WO 2015066997A1 CN 2014074792 W CN2014074792 W CN 2014074792W WO 2015066997 A1 WO2015066997 A1 WO 2015066997A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
magnetic core
phase
magnetic
circuit
Prior art date
Application number
PCT/CN2014/074792
Other languages
English (en)
French (fr)
Inventor
杨和钱
裴昌盛
梁永涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14860192.5A priority Critical patent/EP3054593B1/en
Publication of WO2015066997A1 publication Critical patent/WO2015066997A1/zh
Priority to US15/147,589 priority patent/US10186974B2/en
Priority to US16/212,822 priority patent/US10855190B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • Embodiments of the present invention generally relate to the field of circuits, and more particularly to a magnetic integrated device and a power conversion circuit. Background technique
  • the main components of a typical LLC resonant circuit include the resonant inductor Lr and the transformer Tr, as well as the switching devices Ql, Q2, the magnetizing inductance Lm of the transformer, the resonant capacitors Crl, Cr2, and filtering.
  • the resonant circuit is connected to the DC power source DC, and the power energy is transmitted to the secondary side through the primary side of the transformer in the circuit, and then filtered by the filter capacitor C to be converted into an AC supply load R.
  • the three-phase parallel LLC power conversion circuit is composed of three identical LLC resonant circuits with 120-degree difference of current phases.
  • the core includes six magnetic components, namely three resonant inductors LR1, LR2, LR3 and The three turns are N1:N2:N2 transformers.
  • the three LLC resonant circuits are output in parallel.
  • the phase difference of each phase circuit is 120 degrees
  • the output load current is 120 degrees out of phase
  • the secondary side output current is rectified and the phase difference is 360 degrees. Therefore, the ripple current of the output can theoretically cancel each other.
  • the equivalent current is 0.
  • the inventors have found that, for the three-phase parallel circuit such as the above-mentioned three-phase parallel LLC power conversion circuit, in the implementation, especially in high-power applications, since the parameters of the various components may actually be Not exactly the same, there will be drifting of the working parameters, so that In the three-phase parallel circuit, the uneven current flow occurs in each phase branch (for example, there is a difference in the peak value of each phase current shown in Figure 3), which causes the circuit output current to not be completely offset, and even in severe cases The device burned out.
  • an object of embodiments of the present invention is to provide a magnetic integrated device and a power conversion circuit to solve the problem of uneven current that may exist in each phase branch of a three-phase parallel circuit.
  • Embodiments of the present invention provide a magnetic integrated device including a parallel first magnetic core base, a second magnetic core base, and a first magnetic core base and a second magnetic core base a magnetic core column, a second magnetic core column, and a third magnetic core column;
  • the first winding, the second winding, and the third winding are respectively wound on the first magnetic core column, the second magnetic core column, and the third magnetic core column in the same manner to form a closed magnetic flux circuit;
  • the first winding, the second winding, and the third winding are respectively used to access a phase branch of the three-phase parallel circuit, and the currents in each phase branch of the three-phase parallel circuit are the same, and the current phases are mutually The difference is 120 degrees.
  • two side pillars are further included, and the first magnetic core pillar, the second magnetic core pillar and the third magnetic core pillar are located between the two side pillars.
  • an air gap is formed on the first magnetic core column, the second magnetic core column and the third magnetic core column.
  • the air gap is located at the middle or one end of the magnetic core column.
  • the three-phase parallel circuit is a three-phase parallel LLC power conversion circuit
  • the first winding, the second winding, and the third winding each serve as a resonant inductor in one phase of the three-phase parallel LLC power conversion circuit.
  • the fourth winding, the fifth winding, and the sixth winding are further included;
  • the fourth winding, the fifth winding, and the sixth winding are respectively superposed on the first winding, the second winding, and the third winding in the same manner;
  • a pair of windings on each of the first magnetic core column, the second magnetic core column, and the third magnetic core column constitutes a primary side of a transformer in a phase branch of the three-phase parallel circuit and Secondary side.
  • the three-phase parallel circuit is a three-phase parallel LLC power conversion circuit
  • the fourth winding, the fifth winding, and the sixth winding each serve as a phase in the three-phase parallel LLC power conversion circuit.
  • the primary side of the transformer, the first winding, the second winding, and the third winding each act as a secondary side of the transformer corresponding to the core leg.
  • the method further includes a third core base, and a fourth magnetic core column, a fifth magnetic core column, a sixth magnetic core column, and a seventh winding, an eighth winding, a ninth winding, a tenth winding, and an eleventh Winding, twelfth winding;
  • the third core base is parallel to the first core base
  • the fourth magnetic core column, the fifth magnetic core column, and the sixth magnetic core column are located between the first magnetic core base and the third magnetic core base;
  • the seventh winding, the eighth winding, and the ninth winding are respectively wound on the fourth magnetic core column, the fifth magnetic core column, and the sixth magnetic core column in the same manner;
  • the tenth winding, the eleventh winding, and the twelfth winding are respectively superposed on the seventh winding, the eighth winding, and the ninth winding in the same manner;
  • a pair of windings on each of the fourth magnetic core column, the fifth magnetic core column, and the sixth magnetic core column constitute a primary side and a secondary side of a transformer in a phase branch of the three-phase parallel circuit .
  • the three-phase parallel circuit is a three-phase parallel LLC power conversion circuit
  • the first winding, the second winding, and the third winding each serve as a resonant inductor in one phase of the three-phase parallel LLC power conversion circuit, and the tenth winding, the eleventh winding, and the twelfth winding each serve as the
  • the three-phase parallel LLC power conversion circuit has a primary side of the transformer in one phase, and the seventh winding, the eighth winding, and the ninth winding each serve as a secondary side of the transformer corresponding to the magnetic core column.
  • the first magnetic core column, the second magnetic core column and the third magnetic core column are all provided with an air gap, and/or the fourth magnetic core column, the fifth magnetic core column and the sixth magnetic core There is an air gap on the stem.
  • the embodiment of the invention further provides a power conversion circuit, comprising a switch conversion circuit, a three-phase resonance circuit, a three-phase transformer, a rectifier circuit and a filter circuit, wherein the three-phase resonance circuit can only contain the first and second The magnetic integrated device of the third winding acts as.
  • the embodiment of the invention further provides a power conversion circuit, comprising a switch conversion circuit, a three-phase resonance circuit, a three-phase transformer, a rectifier circuit and a filter circuit, wherein the three-phase transformer can only contain the first, second, and 3.
  • the magnetic integrated devices of the fourth, fifth, and sixth windings act as.
  • the embodiment of the invention further provides a power conversion circuit, including a switch conversion circuit and three phases A resonant circuit, a three-phase transformer, a rectifying circuit, and a filtering circuit, the three-phase resonant circuit and the three-phase transformer may be operated by a magnetic integrated device including the third magnetic core base.
  • the embodiment of the invention utilizes the coupling relationship of the magnetic flux to make the phase branches of the three-phase parallel circuit interact in the magnetic integrated device, and the change of the magnetic flux of one phase causes the simultaneous adjustment of the other two phases, thereby realizing the automatic
  • the flow achieves the effect of automatically balancing the currents of the phases.
  • FIG. 1 is a schematic diagram of a typical LLC half-bridge resonant converter circuit
  • FIG. 2 is a schematic diagram of a three-phase parallel LLC power conversion circuit
  • FIG. 3 is a schematic diagram of current waveforms of various phase transformers in the prior art
  • FIG. 4 is a cross-sectional view showing a magnetic integrated device according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a magnetic integrated device of an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a magnetic integrated device of a second embodiment of the present invention.
  • FIG. 7 is a top plan view of a magnetic integrated device of an embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing a three-magnetic integrated device of an embodiment of the present invention.
  • 9a-9c are schematic diagrams of magnetic flux generated when the phase windings of the three magnetic integrated devices of the embodiment of the present invention operate;
  • Figure 10 is a cross-sectional view showing the fourth magnetic integrated device of the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of magnetic components that can be integrated together in a circuit of an embodiment of the present invention
  • FIG. 12 is a schematic diagram of circuit driving waveforms in an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a primary side voltage waveform in an embodiment of the present invention.
  • Figure 14 is a perspective view of a magnetic integrated device in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a magnetic integrated device in accordance with an embodiment of the present invention.
  • the present embodiment provides a magnetic integrated device:
  • the magnetic integrated device includes a parallel first magnetic core base, a second magnetic core base, and a first magnetic core column, a second magnetic core column, and a first magnetic core base and a second magnetic core base a three-core column; the first winding, the second winding, and the third winding are respectively wound on the first magnetic core column, the second magnetic core column, and the third magnetic core column in the same manner to form a closed magnetic flux circuit ;
  • the first winding, the second winding, and the third winding are respectively used to access a phase branch of the three-phase parallel circuit.
  • the currents in each phase branch of the three-phase parallel circuit are the same, and the current phases are different from each other. degree.
  • 401 is one of the core bases
  • 402 is one of the core legs
  • 403, 404, 405 are the first, second, and third windings, respectively.
  • the small circle in the figure is the cross section of the coil wire, and the two rows of small circles distributed on both sides of the magnetic core column represent the winding coil wound on the magnetic core column.
  • This embodiment utilizes the principle of magnetic coupling. Magnetic devices (referred to as magnetic components), such as transformers and inductors, are an important part of the circuit and are the main components for energy storage and conversion, filtering and electrical isolation.
  • the originally separated three-part magnetic components are integrated, and the magnetic flux generated by each magnetic component changes from no connection to interaction, three-phase coupling, and the magnetic flux change of one phase causes simultaneous adjustment of the other two phases. Thereby achieving automatic current sharing.
  • the winding manner of the three coils should be the same, that is, the direction of the magnetic flux generated on the magnetic core column surrounded by the winding must be the same under the excitation of the same magnitude and direction. Otherwise, the magnetic flux generated by each phase winding cannot cancel each other, and the effect of current sharing is not affected, which affects the function of the circuit. Even in severe cases, the core is saturated, and the circuit cannot work normally.
  • the first winding, the second winding, and the third winding each serve as a resonant inductor in one phase of the three-phase parallel LLC power conversion circuit.
  • first, second, and third magnetic core columns may each have an air gap. See 406 in Figure 4.
  • the coupling coefficient between the three coils can be adjusted by different air gap sizes, thereby adjusting the balance between the currents of the respective phases to achieve a better current sharing effect.
  • the air gap may be located in the middle or one end of the magnetic core column. In Figure 4, the air gap is in the middle of the core, while in Figure 5 the air gap is at one end of the core.
  • the two E-shaped magnetic cores can be used to form the magnetic integrated device, or an E-shaped magnetic core and an I-shaped magnetic core can be used to form the buckle.
  • the coupling relationship of the magnetic flux is utilized, so that the phase branches of the three-phase parallel circuit interact in the magnetic integrated device, and the change of the magnetic flux of one phase causes the simultaneous adjustment of the other two phases, thereby realizing the automatic
  • the flow achieves the effect of automatically balancing the currents of the phases.
  • 6 is a cross-sectional view showing a magnetic integrated device of a second embodiment of the present invention.
  • This embodiment is based on the first embodiment, and another structural schematic diagram of the magnetic integrated device is given. Compared with the first embodiment, in this embodiment:
  • the embodiment adds a side column, which can reduce external EMI radiation interference, and further increases the magnetic flux coupling effect in the magnetic core after adding the side column, which can further reduce the volume of the magnetic integrated device. The loss is further reduced and the efficiency is further improved.
  • FIG. 14 is a perspective view of the magnetic integrated device shown in FIG. 6.
  • FIG. 7 is a plan view of the magnetic integrated device shown in FIG. 6. It can be seen from FIG. 7 that the first or second magnetic core base is in the shape of an I piece. Of course, in some other embodiments of the invention, the first or second core base may be designed in other shapes, such as rectangular or the like, as the case may be. These modes of use may be made without departing from the spirit and scope of the invention.
  • FIG. 8 is a schematic structural view of a three-magnetic integrated device according to an embodiment of the present invention.
  • This embodiment adds three windings on the basis of the first or second embodiment, namely:
  • a fourth winding, a fifth winding, and a sixth winding wherein the fourth winding, the fifth winding, and the sixth winding are respectively superposed on the first winding, the second winding, and the third winding in the same manner;
  • a pair of windings on each of the first magnetic core column, the second magnetic core column, and the third magnetic core column constitutes a primary side of a transformer in a phase branch of the three-phase parallel circuit and Secondary side.
  • the magnetic integrated device in this embodiment can be used, for example:
  • the three-phase parallel circuit is a three-phase parallel LLC power conversion circuit
  • the fourth winding, the fifth winding, and the sixth winding each serve as a primary side of a transformer in one phase of the three-phase parallel LLC power conversion circuit
  • the first winding, the second winding, and the third winding each serve as a secondary side of the transformer corresponding to the core leg.
  • FIG. 9a is a schematic view showing the operation of the magnetic flux in the magnetic core of the first phase winding (composed of the first winding and the fourth winding) of the magnetic integrated device of the present embodiment
  • FIG. 9b is the second phase of the magnetic integrated device of the embodiment.
  • FIG. 9c is the third phase winding (composed of the third winding and the sixth winding) of the magnetic integrated device of the present embodiment.
  • Schematic diagram of the operation of the magnetic flux in the magnetic core In actual work, the three-phase circuits work at the same time. At the same time, the two-phase currents are in the same direction, and the other phase currents are opposite in direction.
  • the magnetic flux generated by the three-phase winding in the segment cancels each other, and in practice the equivalent magnetic flux of the segment becomes small.
  • FIG. 10 is a schematic structural view of a fourth magnetic integrated device according to an embodiment of the present invention.
  • the magnetic integrated device in Figure 10 can be thought of as a two-part magnetic integrated device stacked.
  • the second part of the magnetic integrated device is made up of two magnetic cores.
  • the first part of the magnetic integrated device is buckled on the first part.
  • a part of the magnetic core base shared with the second part. which is:
  • the method further includes a third core base, and a fourth magnetic core column, a fifth magnetic core column, a sixth magnetic core column, and a seventh winding, an eighth winding, a ninth winding, a tenth winding, an eleventh winding, and a third Twelve windings;
  • the third core base is parallel to the first core base
  • the fourth magnetic core column, the fifth magnetic core column and the sixth magnetic core column are located between the first magnetic core base and the third magnetic core base;
  • the seventh winding, the eighth winding, and the ninth winding are respectively wound on the fourth magnetic core pillar, the fifth magnetic core pillar, and the sixth magnetic core pillar in the same manner;
  • the tenth winding, the eleventh winding, and the twelfth winding are respectively superposed on the seventh winding, the eighth winding, and the ninth winding in the same manner;
  • a pair of windings on each of the fourth magnetic core column, the fifth magnetic core column and the sixth magnetic core column constitute a primary side and a secondary side of a transformer in a phase branch of the three-phase parallel circuit .
  • the first part can be used as a transformer in the practical application, and the second part is used as a resonant inductor, for example:
  • the three-phase parallel circuit is a three-phase parallel LLC power conversion circuit
  • the first winding, the second winding, and the third winding each serve as the three-phase parallel LLC power supply Replacing the resonant inductance in one phase of the circuit, the tenth winding, the eleventh winding, and the twelfth winding each serving as a primary side of a transformer in one phase of the three-phase parallel LLC power conversion circuit, the seventh winding, The eighth winding and the ninth winding each serve as a secondary side of the transformer corresponding to the core leg.
  • an air gap is formed on the first, second, and third magnetic core columns, and/or an air gap is formed on the fourth, fifth, and sixth magnetic core columns to further serve Prevent core saturation and adjust the inductive coupling coefficient of each phase.
  • the coupling relationship of the magnetic flux is utilized, so that the phase branches of the three-phase parallel circuit interact in the magnetic integrated device, and the change of the magnetic flux of one phase causes the simultaneous adjustment of the other two phases, thereby realizing the automatic
  • the flow achieves the effect of automatically balancing the currents of the phases.
  • the embodiment of the invention further provides a power conversion circuit, comprising a switch conversion circuit, a three-phase resonance circuit, a three-phase transformer, a rectifier circuit and a filter circuit, wherein the three-phase resonance circuit is magnetically integrated according to the first or second embodiment.
  • the device acts as.
  • the power conversion circuit may specifically be a three-phase parallel LLC power conversion circuit.
  • the embodiment of the present invention further provides a power conversion circuit, including a switch conversion circuit, a three-phase resonance circuit, a three-phase transformer, a rectifier circuit, and a filter circuit, wherein the three-phase transformer is magnetically integrated according to the third embodiment.
  • the device acts as.
  • the power conversion circuit may specifically be a three-phase parallel LLC power conversion circuit.
  • the embodiment of the invention further provides a power conversion circuit, comprising a switch conversion circuit, a three-phase resonance circuit, a three-phase transformer, a rectifier circuit and a filter circuit, wherein the three-phase resonance circuit and the three-phase transformer are described in the fourth embodiment.
  • the magnetic integrated device acts as.
  • the power conversion circuit may specifically be a three-phase parallel LLC power conversion circuit.
  • FIG 11 is a schematic illustration of magnetic components that can be integrated together in a circuit of an embodiment of the present invention.
  • the circuit shown in the figure is specifically a three-phase parallel LLC power conversion circuit.
  • the three resonant inductors can be integrated into Lr-IM, which is realized by the magnetic integrated device shown in FIG. 4; Trl, Tr2, and Tr3 are transformers of respective phases, which can be used in the present invention.
  • the three transformers are integrated into Tr-IM, which is realized by the magnetic integrated device shown in Fig.
  • the switch conversion circuit includes a single bridge arm connected in parallel for converting a DC voltage into a square wave or a step wave voltage.
  • the first bridge arm is composed of two switch tubes Q1, Q4 connected in series
  • the second bridge arm is composed of two switch tubes Q2, Q5 connected in series
  • the third bridge arm is composed of two switch tubes Q3, Q6 connected in series.
  • the drive signals of the switch tubes Ql, Q4 and Q2, Q5 and Q3, Q6 are complementary signals with a fixed 50% duty cycle, and the frequency of the switches Q1 ⁇ Q6 is changed by the frequency modulation method.
  • the resonant circuit is composed of three sets of resonant inductors Lrl, Lr2, Lr3 and resonant capacitors Cr1, Cr2, Cr3 connected in series and three exciting inductors Lml, Lm2, Lm3 of the integrated three-phase transformer Tr-IM form a resonant circuit.
  • the three primary windings of the integrated three-phase transformer Tr-IM are connected in series with three resonant inductors and resonant capacitors, and the secondary side is connected to the three-phase rectifier circuit.
  • the rectifier circuit is composed of a rectifier diode D1 D6, and the three-phase rectifier circuit composed of D1 D6 is connected with the secondary side of the three-phase integrated transformer integrated three-phase transformer Tr_IM.
  • the output filter capacitor C is connected to the output end of the rectifier circuit, and converts the pulse current in the same direction provided by the secondary side of the integrated three-phase transformer Tr-IM into a DC voltage that supplies energy to the output load circuit R.
  • the resonant capacitor is connected by a delta type. In addition to participating in the resonance function, it can also balance and compensate for the current of each phase.
  • the working principle of the circuit is as follows: Taking a one-phase LLC circuit as an example, the DC input voltage is formed by the switching circuit Ql, Q4 to form a square wave voltage, which is applied to the resonant network Lrl, Crl, Lml, and the resonant network Lrl, Crl, Lml are connected in series to the bridge. Between the midpoint of the circuit and the transformer, the output voltage is obtained after the transformer Tr1 and the output rectification and filtering circuit.
  • the principle of the entire single-phase operating circuit is the same as that of the classic LLC.
  • the three-phase circuit works in the same principle, except that the phases are 120 degrees out of phase, and the ends of the three resonant capacitors are connected together to form a triangular connection.
  • Drvl, Drv2, Drv3, Drv4, Drv5, Drv6 are the driving waveforms generated by the control IC, which are used to drive the MOS transistors Ql, Q2, Q3, Q4, Q5, and Q6, respectively.
  • Drvl and Drv4 form a pair of complementary drives
  • the working principle is the same as the half-bridge resonant circuit, and the two switching tubes are alternately turned on;
  • Drv2 and Drv5 form a pair of complementary drives, the working principle is the same as the half-bridge resonant circuit, and the two switching tubes are alternately turned on;
  • Drv3 and Drv6 form a pair of complementary Drive, the working principle is the same as the half-bridge resonant circuit, and the two switching tubes are alternately turned on.
  • the circuit drive waveform is shown in Figure 12.
  • the working principle of the circuit of the present invention is quite different from that of the half-bridge resonant circuit, and it cannot be simply considered that the three half-bridge LLC circuits are composed in parallel.
  • the three half-bridges are simply connected in parallel, and the working state of each LLC is the same.
  • the voltage waveform applied to the two ends of the transformer is a symmetrical square wave. This circuit works independently for each other, and does not affect each other. The current imbalance problem, in severe cases, will burn the circuit.
  • the current inflow point of the primary winding is the same name end, connected to one end of the resonant capacitor, and three resonant capacitors.
  • the positive and negative ends are connected to form a triangular connection with an automatic balancing current, and the outflow point is connected to the negative terminal of the DC power supply.
  • Fig. 13 shows the primary side voltage waveform when the magnetic integrated device is integrated as a three-phase transformer.
  • Vab, Vcd, and Vef are the voltages on the primary windings of the three transformers Tr1, Tr2, and Tr3 applied to the magnetic integrated device Tr-IM, respectively.
  • the waveforms, Ia, Ib, and Ic are respectively applied to the current waveforms on the primary windings of the three transformers Tr1, Tr2, and Tr3 on the magnetic integrated device Tr-IM. It can be seen that the waveform of the present embodiment is also apparent with the conventional half-bridge LLC. different. It should also be noted that, in this context, relational terms such as first and second, etc. are used merely to distinguish one entity or operation from another entity or operation, without necessarily requiring or implying such entities or operations. There is any such actual relationship or order between them. Moreover, the term "includes”,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明实施例公开了一种磁集成器件及一种功率转换电路,所述磁集成器件包括平行的第一磁芯底座、第二磁芯底座和位于所述第一磁芯底座、第二磁芯底座之间的第一磁芯柱、第二磁芯柱、第三磁芯柱;第一绕组、第二绕组、第三绕组以相同方式分别绕制在所述第一磁芯柱、第二磁芯柱、第三磁芯柱上,以组成闭合磁通回路;其中,所述第一绕组、第二绕组、第三绕组分别用于接入三相并联电路的一相支路中,所述三相并联电路每相支路中的电流大小相同、电流相位相互相差120度。本发明利用磁通的耦合关系,使三相并联电路的各相支路在磁集成器件中相互作用,一相的磁通的变化会引起两外相的同时调整,从而实现了自动均流,达到了自动平衡各相电流的效果。

Description

一种磁集成器件及一种功率转换电路
本申请要求于 2013 年 11 月 07 日提交中国专利局、 申请号为 201310552297.8、 发明名称为 "一种磁集成器件及一种功率转换电路" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例一般涉及电路领域, 尤其是涉及一种磁集成器件及一种 功率转换电路。 背景技术
LLC谐振电路是一种常见的谐振电路(L为电感符号, C为电容符号, LLC即代表 2个电感 +1个电容组成的谐振电路, LLC谐振电路又可称为串 并联谐振电路即 SPRC, Series-Parallel Resonance Circuit )„ 参见图 1所示, 典型的 LLC谐振电路的主要部件包括谐振电感 Lr和变压器 Tr, 还包括开 关器件 Ql、 Q2 , 变压器的励磁电感 Lm, 谐振电容 Crl、 Cr2 , 滤波电容 C 及整流器件 Dl、 D2。 该谐振电路连接直流电源 DC, 电源能量经过电路中 变压器的原边传递到副边,再经滤波电容 C滤波后转化为交流供给负载 R。
在实际应用中, 通过滤波电容的紋波电流容易超标, 为此可使用三相 并联 LLC 电源转换电路解决紋波电流的问题。 三相并联 LLC 电源转换电 路由三路完全相同、 电流相位相差 120度的 LLC谐振电路并联构成, 参见 图 2所示, 其核心包括 6个磁性元件, 即三个谐振电感 LR1、 LR2、 LR3 以及三个匝比均为 N1 :N2:N2的变压器。 这三个 LLC谐振电路并联输出, 每相电路相位相差 120度, 输出负载电流相差 120度, 副边输出电流经整 流后相位相差 360度, 故理论上可以使得输出的紋波电流相互抵消, 即等 效的电流故波为 0。
然而, 发明人在实现本发明的过程中发现, 对于上述三相并联 LLC电 源转换电路等三相并联电路, 在实现时, 尤其是在大功率应用场合, 由于 各路元器件参数实际中可能并不完全一致, 会存在工作参数漂移现象, 使 得三相并联电路中各相支路出现不均流的情况 (例如图 3 中所示各相电流 的峰值等存在差异), 这就会导致电路输出电流不能完全抵消, 严重情况下 甚至会导致器件烧毁。
发明内容 有鉴于此, 本发明实施例的目的是提供一种磁集成器件及一种功率转 换电路, 以解决三相并联电路中各相支路可能会存在的不均流问题。
本发明实施例提供了一种磁集成器件, 所述磁集成器件包括平行的第 一磁芯底座、 第二磁芯底座和位于所述第一磁芯底座、 第二磁芯底座之间 的第一磁芯柱、 第二磁芯柱、 第三磁芯柱;
第一绕组、 第二绕组、 第三绕组以相同方式分别绕制在所述第一磁芯 柱、 第二磁芯柱、 第三磁芯柱上, 以组成闭合磁通回路;
其中, 所述第一绕组、 第二绕组、 第三绕组分别用于接入三相并联电 路的一相支路中, 所述三相并联电路每相支路中的电流大小相同、 电流相 位相互相差 120度。
优选的, 在所述两个磁芯底座之间还包括两个边柱, 所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱位于所述两个边柱之间。
优选的, 所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱上均开有气隙。 优选的, 所述气隙位于所在磁芯柱的中间或一端。
优选的, 所述三相并联电路为三相并联 LLC电源转换电路, 所述第一绕 组、 第二绕组、 第三绕组各自充当所述三相并联 LLC电源转换电路一相中的 谐振电感。
优选的, 还包括第四绕组、 第五绕组、 第六绕组;
所述第四绕组、 第五绕组、 第六绕组以相同方式分别叠加绕制在所述 第一绕组、 第二绕组、 第三绕组上;
所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱中每个所述磁芯柱上的一 对绕组构成所述三相并联电路一相支路中的变压器的原边以及副边。
优选的, 所述三相并联电路为三相并联 LLC电源转换电路, 所述第四绕 组、 第五绕组、 第六绕组各自充当所述三相并联 LLC电源转换电路一相中的 变压器的原边, 所述第一绕组、 第二绕组、 第三绕组各自充当所在磁芯柱 所对应的所述变压器的副边。
优选的, 还包括第三磁芯底座, 及第四磁芯柱、 第五磁芯柱、 第六磁 芯柱, 以及第七绕组、 第八绕组、 第九绕组、 第十绕组、 第十一绕组、 第 十二绕组;
所述第三磁芯底座与所述第一磁芯底座平行;
所述第四磁芯柱、 第五磁芯柱、 第六磁芯柱位于所述第一磁芯底座和 所述第三磁芯底座之间;
所述第七绕组、 第八绕组、 第九绕组以相同方式分别绕制在所述第四 磁芯柱、 第五磁芯柱、 第六磁芯柱上;
所述第十绕组、 第十一绕组、 第十二绕组以相同方式分别叠加绕制所 述第七绕组、 第八绕组、 第九绕组上;
所述第四磁芯柱、 第五磁芯柱、 第六磁芯柱中每个磁芯柱上的一对绕 组构成所述三相并联电路一相支路中的变压器的原边以及副边。
优选的,
所述三相并联电路为三相并联 LLC电源转换电路;
所述第一绕组、 第二绕组、 第三绕组各自充当所述三相并联 LLC电源转 换电路一相中的谐振电感, 所述第十绕组、 第十一绕组、 第十二绕组各自 充当所述三相并联 LLC电源转换电路一相中的变压器的原边, 所述第七绕 组、 第八绕组、 第九绕组各自充当所在磁芯柱所对应的所述变压器的副边。
优选的, 所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱上均开有气隙, 和 /或, 所述第四磁芯柱、 第五磁芯柱、 第六磁芯柱上均开有气隙。
本发明实施例还提供了一种功率转换电路, 包括开关变换电路、 三相 谐振电路、 三相变压器、 整流电路和滤波电路, 所述三相谐振电路可由上 文中只含有第一、 第二、 第三绕组的磁集成器件充当。
本发明实施例还提供了一种功率转换电路, 包括开关变换电路、 三相 谐振电路、 三相变压器、 整流电路和滤波电路, 所述三相变压器可由上文 中只含有第一、 第二、 第三、 第四、 第五、 第六绕组的磁集成器件充当。
本发明实施例还提供了一种功率转换电路, 包括开关变换电路、 三相 谐振电路、 三相变压器、 整流电路和滤波电路, 所述三相谐振电路和三相 变压器可由上文包括第三磁芯底座的磁集成器件充当。
本发明的一些有益效果可以包括:
本发明实施例利用磁通的耦合关系, 使三相并联电路的各相支路在磁 集成器件中相互作用, 一相的磁通的变化会引起另外两相的同时调整, 从 而实现了自动均流, 达到了自动平衡各相电流的效果。
应当理解的是, 以上的一般描述和后文的细节描述仅是示例性的, 并 不能限制本公开。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1是典型的 LLC半桥谐振转换电路的示意图;
图 2是三相并联 LLC电源转换电路的示意图;
图 3是现有技术中各相变压器的电流波形示意图;
图 4是本发明实施例一磁集成器件的横截面示意图;
图 5是本发明实施例一磁集成器件的横截面示意图;
图 6是本发明实施例二磁集成器件的横截面示意图;
图 7是本发明实施例二磁集成器件的俯视图;
图 8是本发明实施例三磁集成器件的横截面示意图;
图 9a~9c是本发明实施例三磁集成器件各相绕组工作时所产生的磁通 的示意图;
图 10是本发明实施例四磁集成器件的横截面示意图;
图 11是本发明实施例电路中可集成在一起的磁性部件示意图; 图 12是本发明实施例中电路驱动波形的示意图;
图 13是本发明实施例中原边电压波形的示意图; 图 14是本发明实施例磁集成器件的立体示意图。
通过上述附图, 已示出本发明明确的实施例, 后文中将有更详细的描
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为了全面理解本发明,在以下详细描述中提到了众多具体的细节,但是本 领域技术人员应该理解, 本发明可以无需这些具体细节而实现。在其他实施例 中, 不详细描述公知的方法、 过程、 组件和电路, 以免不必要地导致实施例模 糊。 图 4为本发明实施例一磁集成器件的横截面示意图。
为了解决三相并联电路中各相支路难免会出现的不均流问题,本实施例提 供了一种磁集成器件:
所述磁集成器件包括平行的第一磁芯底座、第二磁芯底座和位于所述第一 磁芯底座、 第二磁芯底座之间的第一磁芯柱、 第二磁芯柱、 第三磁芯柱; 第一绕组、 第二绕组、 第三绕组以相同方式分别绕制在所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱上, 以组成闭合磁通回路;
所述第一绕组、第二绕组、 第三绕组分别用于接入三相并联电路的一相支 路中, 所述三相并联电路每相支路中的电流大小相同、 电流相位相互相差 120 度。
在图 4所示的横截面视图中, 401为其中一个磁芯底座, 402为其中一个 磁芯柱, 403、 404、 405分别为所述第一、 第二、 第三绕组。 图中的小圓圈为 线圈导线的横截面,分布在磁芯柱两侧的两排小圓圈即表示该磁芯柱上缠绕的 绕组线圈。 本实施例利用了磁性耦合原理。 磁性器件(简称磁件), 如变压器、 电感, 是电路的重要组成部分, 也是完成能量储存与转换、滤波和电气隔离的主要器 件。本实施例将原本分离的三部分磁件集成在一起,各磁件所产生的磁通从没 有联系变为相互作用,三相耦合,一相的磁通变化会引起另外两相的同时调整, 从而实现了自动均流。
在本实施例中, 三个线圈的绕制方式应该一致, 即在大小、 方向相同的激 励电流注入下, 绕组包围的磁芯柱上产生的磁通方向必须相同。 否则, 各相绕 组产生的磁通不能相互抵消, 起不到均流的效果, 影响电路功能, 甚至严重情 况导致铁芯饱和, 电路无法正常工作。
具体实施时, 例如三相并联电路具体为三相并联 LLC电源转换电路时, 所述第一绕组、 第二绕组、 第三绕组各自充当所述三相并联 LLC电源转换电 路一相中的谐振电感。
此外, 所述第一、 第二、 第三磁芯柱上可以均开有气隙。 参见图 4中 406 所示。可以通过不同的气隙大小来调整三个线圈之间的耦合系数,从而调整个 各相电流之间的平衡程度, 达到更好的均流效果。
另外, 所述气隙可以位于所在磁芯柱的中间或一端。 图 4中气隙位于磁芯 柱中间, 而图 5中气隙则位于磁芯柱的一端。
在具体实施时,可以利用两个 E形磁芯对扣形成本磁集成器件,或者也可 以使用一个 E形磁芯和一个 I形磁芯对扣形成。
本发明实施例利用磁通的耦合关系,使三相并联电路的各相支路在磁集成 器件中相互作用, 一相的磁通的变化会引起另外两相的同时调整,从而实现了 自动均流, 达到了自动平衡各相电流的效果。 图 6为本发明实施例二磁集成器件的横截面示意图。
本实施例以实施例一为基础,给出了磁集成器件另一种结构示意图。 与实 施例一相比, 在本实施例中:
在所述两个磁芯底座之间还包括两个边柱, 所述第一、 第二、 第三磁芯柱 位于所述两个边柱之间。 另外较佳的, 所述边柱的内侧可以为与绕组线包外形 相吻合的圓弧型。 在图 6中, 601为其中一个磁芯底座, 602为其中一个磁芯柱, 603为其 中一个气隙, 604为其中一个边柱。 与实施例一相比, 本实施例增加了边柱, 可以减少外部的 EMI辐射干扰, 同时增加了边柱之后进一步调整了磁芯内磁 通耦合作用, 可以使得磁集成器件的体积进一步缩小, 损耗进一步降低, 效率 进一步提高。
图 14为图 6所示磁集成器件的立体示意图, 图 7为图 6所示磁集成器件 的俯视图, 从图 7可以看到第一或第二磁芯底座为 I片形状。 当然在本发明其 他某些实施例中, 可以根据具体情况将第一或第二磁芯底座设计其他形状,如 长方形等。 可以在此处使用的这些方式都没有背离本发明的精神和保护范围。
本发明实施例利用磁通的耦合关系,使三相并联电路的各相支路在磁集成 器件中相互作用, 一相的磁通的变化会引起另外两相的同时调整,从而实现了 自动均流, 达到了自动平衡各相电流的效果。 图 8是本发明实施例三磁集成器件的结构示意图。
本实施例在实施例一或二基础上, 又增加了三个绕组, 即:
还包括第四绕组、 第五绕组、 第六绕组, 所述第四绕组、 第五绕组、 第六 绕组以相同方式分别叠加绕制在所述第一绕组、 第二绕组、 第三绕组上; 所述 第一磁芯柱、第二磁芯柱、 第三磁芯柱中每个所述磁芯柱上的一对绕组构成所 述三相并联电路一相支路中的变压器的原边以及副边。
在图 8中, 801为第二绕组, 802为叠加绕制在第二绕组上的第五绕组。 增加了三个绕组之后,每个磁性柱上的绕组有一个变为一对,磁集成器件 由三个绕组变为三对绕组, 故可以相当于三个变压器使用。 在具体实施时, 例 如可以这样使用本实施例中的磁集成器件:
所述三相并联电路为三相并联 LLC电源转换电路, 所述第四绕组、 第五 绕组、 第六绕组各自充当所述三相并联 LLC电源转换电路一相中的变压器的 原边, 所述第一绕组、 第二绕组、 第三绕组各自充当所在磁芯柱所对应的所述 变压器的副边。
图 9a为本实施例磁集成器件第一相绕组(由第一绕组和第四绕组组成) 工作时的磁芯中磁通的工作情况示意图; 图 9b为本实施例磁集成器件第二相 绕组(由第二绕组和第五绕组组成) 工作时的磁芯中磁通的工作情况示意图; 图 9c为本实施例磁集成器件第三相绕组(由第三绕组和第六绕组组成)工作 时的磁芯中磁通的工作情况示意图。 实际工作中, 三相电路同时工作, 同一时 刻,两相电流同方向,另外一相电流方向相反。对于磁集成器件中的一段来讲, 三相绕组在该段所产生的磁通相互抵消, 实际中该段等效磁通变得很小。
本发明实施例利用磁通的耦合关系,使三相并联电路的各相支路在磁集成 器件中相互作用, 一相的磁通的变化会引起另外两相的同时调整,从而实现了 自动均流, 达到了自动平衡各相电流的效果。 图 10是本发明实施例四磁集成器件的结构示意图。
本实施例以上述实施例为基础, 并对上述实施例进一步作了整合。 图 10 中的磁集成器件可以看作是两部分磁集成器件堆叠而成,第二部分的磁集成器 件由两个磁芯对扣而成, 第一部分的磁集成器件再扣在第一部分之上, 与第二 部分公用一部分磁芯底座。 即:
还包括第三磁芯底座, 及第四磁芯柱、 第五磁芯柱、 第六磁芯柱, 以及第 七绕组、 第八绕组、 第九绕组、 第十绕组、 第十一绕组、 第十二绕组;
所述第三磁芯底座与所述第一磁芯底座平行;
所述第四磁芯柱、 第五磁芯柱、第六磁芯柱位于所述第一磁芯底座和所述 第三磁芯底座之间;
所述第七绕组、第八绕组、 第九绕组以相同方式分别绕制在所述第四磁芯 柱、 第五磁芯柱、 第六磁芯柱上;
所述第十绕组、第十一绕组、第十二绕组以相同方式分别叠加绕制所述第 七绕组、 第八绕组、 第九绕组上;
所述第四磁芯柱、 第五磁芯柱、第六磁芯柱中每个磁芯柱上的一对绕组构 成所述三相并联电路一相支路中的变压器的原边以及副边。
当两部分磁集成器件堆叠以后,在实际应用中便可以令第一部分作为变压 器, 第二部分作为谐振电感, 例如:
所述三相并联电路为三相并联 LLC电源转换电路;
所述第一绕组、 第二绕组、 第三绕组各自充当所述三相并联 LLC电源转 换电路一相中的谐振电感, 所述第十绕组、 第十一绕组、 第十二绕组各自充当 所述三相并联 LLC电源转换电路一相中的变压器的原边, 所述第七绕组、 第 八绕组、 第九绕组各自充当所在磁芯柱所对应的所述变压器的副边。
此外, 所述第一、 第二、 第三磁芯柱上均开有气隙, 和 /或, 所述第四、 第五、第六磁芯柱上均开有气隙, 以进一步起到防止磁芯饱和及调节各相电感 耦合系数的作用。
本发明实施例利用磁通的耦合关系,使三相并联电路的各相支路在磁集成 器件中相互作用, 一相的磁通的变化会引起另外两相的同时调整,从而实现了 自动均流, 达到了自动平衡各相电流的效果。 本发明实施例还提供了一种功率转换电路, 包括开关变换电路、三相谐振 电路、 三相变压器、 整流电路和滤波电路, 所述三相谐振电路由实施例一或二 所述的磁集成器件充当。 所述功率转换电路具体可以为三相并联 LLC电源转 换电路。
本发明实施例还提供了一种功率转换电路, 包括开关变换电路、三相谐振 电路、 三相变压器、 整流电路和滤波电路, 所述三相变压器由实施例三所述的 所述的磁集成器件充当。 所述功率转换电路具体可以为三相并联 LLC电源转 换电路。
本发明实施例还提供了一种功率转换电路, 包括开关变换电路、三相谐振 电路、 三相变压器、 整流电路和滤波电路, 所述三相谐振电路和三相变压器由 实施例四所述的磁集成器件充当。所述功率转换电路具体可以为三相并联 LLC 电源转换电路。
图 11为本发明实施例电路中可集成在一起的磁性部件示意图。作为示例, 该图所展示的电路具体为三相并联 LLC电源转换电路, 图中有六个主要的磁 性部件, 即 Lrl、 Lr2、 Lr3、 Trl、 Tr2、 Tr3; Lrl、 Lr2、 Lr3分别为各相的谐 振电感, 在本发明中可以将这三个谐振电感整合成 Lr—IM, 由图 4所示的磁集 成器件实现; Trl、 Tr2、 Tr3分别为各相的变压器, 在本发明中可以将这三个 变压器整合成 Tr— IM, 由图 8所示的磁集成器件实现; 甚至还可以将上述六个 磁性部件一并整合在一起, 由图 10所示的磁集成器件实现。对于具体的电路: 包括开关变换电路、 三相谐振电路、 三相变压器、 整流电路、 滤波电路。 具体链接关系如下: 开关变换电路包括单个桥臂并联构成, 用于将直流电压转 换成一个方波或阶梯波电压。 第一个桥臂由两个开关管 Ql、 Q4串联构成, 第 二个桥臂由两个开关管 Q2、 Q5串联构成, 第三个桥臂由两个开关管 Q3、 Q6 串联构成。 当个桥臂错相 120度, 开关管 Ql、 Q4和 Q2、 Q5以及 Q3、 Q6的 驱动信号是固定 50%占空比的互补信号, 都是釆用频率调制方式改变开关 Q1~Q6的频率以控制输出电压。 谐振电路由三组谐振电感 Lrl、 Lr2、 Lr3和谐 振电容 Crl、 Cr2、 Cr3 串联连接后和集成三相变压器 Tr—IM的三个励磁电感 Lml、 Lm2、 Lm3构成谐振电路。 集成三相变压器 Tr—IM的原边三个绕组与三 个谐振电感以及谐振电容分别串联连接, 副边与三相整流电路连接。整流电路 由整流二极管 D1 D6构成, D1 D6构成的三相整流电路与三相集成变压器集 成三相变压器 Tr—IM的副边连接。输出滤波电容 C连接在整流电路的输出端, 将集成三相变压器 Tr—IM 副边提供的同一方向的脉冲电流变换成对输出负载 电路 R提供能量的直流电压。
谐振电容釆用三角型连接方式,除出了参与谐振功能外还可以起到平衡以 及补偿每相电流的作用。包括第一相开关器件 Ql、 Q4、第一相励谐振电感 Lrl、 第一相励磁电感 Lml、 第一相谐振电容 Crl、 第一相变压器 Trl和第一相整流 器 Dl、 D4, 第二相开关器件 Q2、 Q5、 第二相励谐振电感 Lr2、 第二相励磁电 感 Lm2、 第二相谐振电容 Cr2、 第二相变压器 Tr2和第一相整流器 D2、 D5 , 第三相开关器件 Q3、 Q6、 第三相励谐振电感 Lr3、 第三相励磁电感 Lm3、 第 三相谐振电容 Cr3、 第三相变压器 Tr3和第三相整流器 D3、 D6。
电路工作原理如下: 以一相 LLC电路为例, 直流输入电压经开关变换电 路 Ql、 Q4之后形成方波电压, 加于谐振网络 Lrl、 Crl、 Lml , 谐振网络 Lrl、 Crl、 Lml 串接于桥式电路中点和变压器之间, 再经变压器 Trl和输出整流、 滤波电路后得到输出电压。整个单相工作电路原理同经典 LLC工作原理相同。 三相电路工作原理相同,只是相位相差 120度,三个谐振电容末端连接在一起, 形成三角型连接方式。
Drvl、 Drv2、 Drv3、 Drv4、 Drv5、 Drv6为控制 IC发出的驱动波形, 分别 用来驱动 MOS管 Ql、 Q2、 Q3、 Q4、 Q5、 Q6。 Drvl和 Drv4组成一对互补驱 动, 工作原理同半桥谐振电路, 两个开关管交替导通; Drv2和 Drv5组成一对 互补驱动, 工作原理同半桥谐振电路, 两个开关管交替导通; Drv3和 Drv6组 成一对互补驱动, 工作原理同半桥谐振电路, 两个开关管交替导通。 电路驱动 波形如图 12所示。
此外需要说明的是, 本发明电路的工作原理同半桥谐振电路有很大不同, 不能简单的认为是三个半桥 LLC电路并联组成。 三个半桥简单的并联起来, 每路 LLC的工作状态都相同, 加在变压器两端的电压波形为对称的方波, 这 种电路每路单独工作, 互不影响, 从而会出现前面所说的电流不平衡问题, 严 重时会烧毁电路。 而对于本发明中半桥式三相 LLC谐振电路中的磁集成变换 器, 变换器向副边传递功率时原边绕组的电流流入点为同名端, 连接于谐振电 容的一端, 三个谐振电容构正、 负端相连, 构成具有自动平衡电流的三角型接 法, 流出点连接于直流电源的负端。 实际工作中, 从驱动波形可以看出, 任意 时刻都有三个管子同时工作, 例如, 上管 Ql、 Q2导通时, 励磁电感 Lml、 Lm2、 Lm3 , Lrl、 Lr2、 Lr3与 Crl、 Cr2、 Cr3分别参与谐振, 实现 LLC功能, 并通 Q3回到电源 DC的负端。另外图 13为磁集成器件作为集成三相变压器时 的原边电压波形, Vab、 Vcd、 Vef分别为加在磁集成器件 Tr— IM上的三个变压 器 Trl、 Tr2、 Tr3原边绕组上的电压波形 , Ia、 Ib、 Ic分别加在磁集成器件 Tr— IM 上的三个变压器 Trl、 Tr2、 Tr3原边绕组上的电流波形, 可以看到本实施例的 波形与传统半桥 LLC也是有明显不同的。 还需要说明的是, 在本文中,诸如第一和第二等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这 些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括"、
"包含"或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列 要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列 出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一个 ... ... " 限定的要素, 并不排除在 包括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域的 一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变 之处。 综上所述, 本说明书内容不应理解为对本发明的限制。 凡在本发明的精 神和原则之内所作的任何修改、 等同替换、 改进等, 均包含在本发明的保护范 围内。

Claims

权 利 要 求
1、 一种磁集成器件, 其特征在于, 所述磁集成器件包括平行的第一磁 芯底座、 第二磁芯底座和位于所述第一磁芯底座、 第二磁芯底座之间的第 一磁芯柱、 第二磁芯柱、 第三磁芯柱;
第一绕组、 第二绕组、 第三绕组以相同方式分别绕制在所述第一磁芯 柱、 第二磁芯柱、 第三磁芯柱上, 以组成闭合磁通回路;
其中, 所述第一绕组、 第二绕组、 第三绕组分别用于接入三相并联电 路的一相支路中, 所述三相并联电路每相支路中的电流大小相同、 电流相 位相互相差 120度。
2、 根据权利要求 1所述的磁集成器件, 其特征在于, 在所述两个磁芯 底座之间还包括两个边柱, 所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱位 于所述两个边柱之间。
3、根据权利要求 1所述的磁集成器件,其特征在于,所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱上均开有气隙。
4、 根据权利要求 3所述的磁集成器件, 其特征在于, 所述气隙位于所 在磁芯柱的中间或一端。
5、 根据权利要求 1所述的磁集成器件, 其特征在于, 所述三相并联电 路为三相并联 LLC电源转换电路, 所述第一绕组、 第二绕组、 第三绕组各 自充当所述三相并联 LLC电源转换电路一相中的谐振电感。
6、根据权利要求 1所述的磁集成器件,其特征在于,还包括第四绕组、 第五绕组、 第六绕组;
所述第四绕组、 第五绕组、 第六绕组以相同方式分别叠加绕制在所述 第一绕组、 第二绕组、 第三绕组上;
所述第一磁芯柱、 第二磁芯柱、 第三磁芯柱中每个所述磁芯柱上的一 对绕组构成所述三相并联电路一相支路中的变压器的原边以及副边。
7、 根据权利要求 6所述的磁集成器件, 其特征在于, 所述三相并联电 路为三相并联 LLC电源转换电路, 所述第四绕组、 第五绕组、 第六绕组各 自充当所述三相并联 LLC电源转换电路一相中的变压器的原边, 所述第一 绕组、 第二绕组、 第三绕组各自充当所在磁芯柱所对应的所述变压器的副 边。
8、 根据权利要求 1所述的磁集成器件, 其特征在于, 还包括第三磁芯 底座, 及第四磁芯柱、 第五磁芯柱、 第六磁芯柱, 以及第七绕组、 第八绕 组、 第九绕组、 第十绕组、 第十一绕组、 第十二绕组;
所述第三磁芯底座与所述第一磁芯底座平行;
所述第四磁芯柱、 第五磁芯柱、 第六磁芯柱位于所述第一磁芯底座和 所述第三磁芯底座之间;
所述第七绕组、 第八绕组、 第九绕组以相同方式分别绕制在所述第四 磁芯柱、 第五磁芯柱、 第六磁芯柱上;
所述第十绕组、 第十一绕组、 第十二绕组以相同方式分别叠加绕制所 述第七绕组、 第八绕组、 第九绕组上;
所述第四磁芯柱、 第五磁芯柱、 第六磁芯柱中每个磁芯柱上的一对绕 组构成所述三相并联电路一相支路中的变压器的原边以及副边。
9、 根据权利要求 8所述的磁集成器件, 其特征在于,
所述三相并联电路为三相并联 LLC电源转换电路;
所述第一绕组、 第二绕组、 第三绕组各自充当所述三相并联 LLC电源 转换电路一相中的谐振电感, 所述第十绕组、 第十一绕组、 第十二绕组各 自充当所述三相并联 LLC电源转换电路一相中的变压器的原边, 所述第七 绕组、 第八绕组、 第九绕组各自充当所在磁芯柱所对应的所述变压器的副 边。
10、 根据权利要求 8所述的磁集成器件, 其特征在于, 所述第一磁芯 柱、 第二磁芯柱、 第三磁芯柱上均开有气隙, 和 /或, 所述第四磁芯柱、 第 五磁芯柱、 第六磁芯柱上均开有气隙。
11、 一种功率转换电路, 包括开关变换电路、 三相谐振电路、 三相变 压器、 整流电路和滤波电路, 其特征在于, 所述三相谐振电路由权利要求
1-5任一项所述的磁集成器件充当。
12、 一种功率转换电路, 包括开关变换电路、 三相谐振电路、 三相变 压器、 整流电路和滤波电路, 其特征在于, 所述三相变压器由权利要求 6~7 任一项所述的磁集成器件充当。
13、 一种功率转换电路, 包括开关变换电路、 三相谐振电路、 三相变 压器、 整流电路和滤波电路, 其特征在于, 所述三相谐振电路和三相变压
PCT/CN2014/074792 2013-11-07 2014-04-04 一种磁集成器件及一种功率转换电路 WO2015066997A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14860192.5A EP3054593B1 (en) 2013-11-07 2014-04-04 Magnetic integrated device and power conversion circuit
US15/147,589 US10186974B2 (en) 2013-11-07 2016-05-05 Magnetic integrated device for coupling with a three-phase parallel circuit and power conversion circuit
US16/212,822 US10855190B2 (en) 2013-11-07 2018-12-07 Magnetic integrated device including multiple core columns and windings and power conversion circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310552297.8 2013-11-07
CN201310552297.8A CN103595367B (zh) 2013-11-07 2013-11-07 一种磁集成器件及一种功率转换电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/147,589 Continuation US10186974B2 (en) 2013-11-07 2016-05-05 Magnetic integrated device for coupling with a three-phase parallel circuit and power conversion circuit

Publications (1)

Publication Number Publication Date
WO2015066997A1 true WO2015066997A1 (zh) 2015-05-14

Family

ID=50085380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074792 WO2015066997A1 (zh) 2013-11-07 2014-04-04 一种磁集成器件及一种功率转换电路

Country Status (4)

Country Link
US (2) US10186974B2 (zh)
EP (1) EP3054593B1 (zh)
CN (1) CN103595367B (zh)
WO (1) WO2015066997A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194164A1 (en) * 2016-05-13 2017-11-16 Huawei Technologies Co., Ltd. Resonant dc-dc converter
CN109768707A (zh) * 2017-11-09 2019-05-17 国际商业机器公司 一种耦合电感直流-直流电源转换器
CN113162428A (zh) * 2021-04-27 2021-07-23 石家庄通合电子科技股份有限公司 一种三相交错llc电路及电源
US20210366650A1 (en) * 2020-05-25 2021-11-25 Delta Electronics (Shanghai) Co., Ltd Three-phase inductor and power module
US11664146B2 (en) 2020-05-25 2023-05-30 Delta Electronics (Shanghai) Co., Ltd Three-phase transformer assembly and power module

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595367B (zh) * 2013-11-07 2017-03-08 华为技术有限公司 一种磁集成器件及一种功率转换电路
CN103943307B (zh) * 2014-04-28 2016-09-28 华为技术有限公司 一种交错并联耦合电感及变换器
CN105262343A (zh) * 2014-06-26 2016-01-20 亚荣源科技(深圳)有限公司 具均流功能的并联式llc谐振转换器电路
CN104078195B (zh) * 2014-06-30 2017-01-11 深圳市汇川技术股份有限公司 三相耦合电抗器及变流器
CN104300802A (zh) * 2014-07-14 2015-01-21 南京航空航天大学 一种采用磁集成变压器的单级升压逆变器
CN105895302B (zh) * 2014-09-01 2019-05-28 杨玉岗 一种多相磁集成耦合电感器
CN104578733A (zh) * 2015-02-04 2015-04-29 四川英杰电气股份有限公司 一种串联式高压直流电源低纹波输出方法
EP3133614B1 (en) * 2015-08-18 2019-11-20 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component
US10491123B2 (en) * 2015-09-18 2019-11-26 Murata Manufacturing Co., Ltd. Modular parallel technique for resonant converter
CN106920648A (zh) * 2015-12-28 2017-07-04 杨玉岗 一种多相耦合电感器
CA3009719C (en) * 2015-12-29 2023-03-28 Ingeteam Power Technology, S.A. Power conversion system
CN106998142B (zh) 2016-01-25 2019-08-30 台达电子企业管理(上海)有限公司 多路并联的谐振变换器、电感集成磁性元件和变压器集成磁性元件
CN107134358A (zh) * 2016-02-26 2017-09-05 艾默生网络能源有限公司 一种电感绕制方法及装置
CN109874380A (zh) * 2016-07-07 2019-06-11 华为技术有限公司 四开关三相dc-dc谐振转换器
WO2018006960A1 (en) * 2016-07-07 2018-01-11 Huawei Technologies Co., Ltd. Two-transformer three-phase dc-dc resonant converter
US10395819B2 (en) * 2016-08-30 2019-08-27 Astec International Limited Multiple phase power converters having integrated magnetic cores for transformer and inductor windings
DE102017104138A1 (de) * 2017-02-28 2018-08-30 Christian-Albrechts-Universität Zu Kiel Spannungswandler, Verfahren zu dessen Betrieb und Computerprogramm
TWI630805B (zh) * 2017-05-02 2018-07-21 光壽科技有限公司 Signal transmission method and system using power transmission path
EP3401935B1 (en) * 2017-05-08 2020-12-02 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component and power converter
CN109326419A (zh) * 2017-07-31 2019-02-12 联合汽车电子有限公司 集成器件及其制作方法与直流变换器
KR102211454B1 (ko) * 2017-08-31 2021-02-04 한국전자기술연구원 절연형 dc-dc 컨버터 및 그 구동방법
CN108039267B (zh) * 2017-11-25 2019-10-25 华为数字技术(苏州)有限公司 电流互感器
WO2019208318A1 (ja) * 2018-04-26 2019-10-31 パナソニックIpマネジメント株式会社 電力変換装置
CN108648902B (zh) * 2018-05-21 2019-09-17 中广核核电运营有限公司 磁集成器件和电源转换电路
US11404967B2 (en) 2018-06-12 2022-08-02 Virginia Tech Intellectual Properties, Inc. Interleaved converters with integrated magnetics
US10790081B2 (en) 2018-05-21 2020-09-29 Virginia Tech Intellectual Properties, Inc. Interleaved converters with integrated magnetics
CN108777220B (zh) * 2018-05-28 2022-01-21 台达电子工业股份有限公司 磁性元件及开关电源装置
US10873265B2 (en) 2018-06-12 2020-12-22 Virginia Tech Intellectual Properties, Inc. Bidirectional three-phase direct current (DC)/DC converters
CN109036800B (zh) * 2018-09-21 2024-07-12 安徽动力源科技有限公司 一种三相磁集成器件
CN111342661A (zh) * 2018-12-19 2020-06-26 台达电子工业股份有限公司 Llc谐振变换***
CN111740631B (zh) * 2019-03-19 2021-11-02 台达电子工业股份有限公司 谐振变换器及其变压器的制造方法
CN111755215B (zh) * 2019-03-28 2024-01-30 株式会社村田制作所 一种磁集成器件
US12009146B2 (en) 2019-05-02 2024-06-11 Virginia Tech Intellectual Properties, Inc. Magnetic integration of matrix transformer with controllable leakage inductance
CN110212784B (zh) * 2019-06-20 2020-11-10 湘潭大学 一种用于单相三电平交直流谐振变换器的无源元件集成装置
CN110634655B (zh) 2019-08-14 2021-05-14 华为技术有限公司 磁集成器件、功率变换电路、充电器及电动车辆
US11532428B2 (en) 2019-09-18 2022-12-20 Delta Electronics, Inc. Power conversion system and magnetic component thereof
US11205958B2 (en) 2019-09-18 2021-12-21 Delta Electronics, Inc. Power conversion system
US11309878B2 (en) 2019-09-18 2022-04-19 Delta Electronics, Inc. Power conversion system
US11205963B2 (en) 2019-09-18 2021-12-21 Delta Electronics, Inc. Multiphase buck converter with extended duty cycle range using multiple bootstrap capacitors
US11070136B2 (en) * 2019-10-31 2021-07-20 Deere & Company System for controlling a direct-current-to-direct-current converter to provide electrical energy to a vehicle implement
US11070138B2 (en) * 2019-10-31 2021-07-20 Deere & Company System for controlling a direct-current-to-direct-current converter to provide electrical energy to a vehicle implement
WO2021111601A1 (ja) * 2019-12-05 2021-06-10 三菱電機株式会社 絶縁トランスおよびそれを備えた電力変換装置
US11398333B2 (en) * 2020-04-15 2022-07-26 Monolithic Power Systems, Inc. Inductors with multipart magnetic cores
JP7501172B2 (ja) 2020-07-08 2024-06-18 オムロン株式会社 電力変換装置及び電力システム
CN114070076B (zh) * 2020-08-04 2023-08-08 明纬(广州)电子有限公司 直流电压转换装置
CN112564497B (zh) * 2020-12-02 2022-08-30 阳光电源股份有限公司 一种三相llc谐振直流变换器
JP2022101013A (ja) * 2020-12-24 2022-07-06 オムロン株式会社 電力変換装置、電力変換装置の制御装置及び制御方法
US12027986B2 (en) 2021-01-08 2024-07-02 Ford Global Technologies, Llc Magnetic integration of three-phase resonant converter and accessory power supply
CN115589149A (zh) * 2021-07-06 2023-01-10 光宝电子(广州)有限公司 三相交错谐振变换器和电源电路
CN113782320B (zh) * 2021-09-22 2024-07-12 台达电子企业管理(上海)有限公司 功率变换电路
CN113872432A (zh) * 2021-11-17 2021-12-31 四川莱福德科技有限公司 一种功率因数校正变换器及控制方法
FR3132378A1 (fr) 2022-02-01 2023-08-04 Valeo Siemens Eautomotive France Sas Dispositif magnétique intégré

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201278509Y (zh) * 2008-09-20 2009-07-22 梁伟国 一种电容滤波器
CN102208242A (zh) * 2011-03-18 2011-10-05 华为技术有限公司 一种磁集成电感及其制作方法和一种无桥pfc电路
CN102611315A (zh) * 2012-03-22 2012-07-25 华为技术有限公司 一种谐振转换电路
CN103595367A (zh) * 2013-11-07 2014-02-19 华为技术有限公司 一种磁集成器件及一种功率转换电路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110744B (de) * 1960-04-14 1961-07-13 Bbc Brown Boveri & Cie Anordnung zur UEberwachung des Stromflusses parallelgeschalteter Halbleiterventile
US3323033A (en) * 1963-02-15 1967-05-30 Douglas Aircraft Co Inc Static inverter system
DE3305708A1 (de) 1983-02-18 1984-08-23 Transformatoren Union Ag, 7000 Stuttgart Drehstromdrosselspule mit fuenfschenkelkern
US5287288A (en) * 1992-10-30 1994-02-15 Electric Power Research Institute, Inc. Active power line conditioner with low cost surge protection and fast overload recovery
SE0000410D0 (sv) 2000-02-06 2000-02-06 Lennart Hoeglund Trefas transformatorkärna
US7321283B2 (en) * 2004-08-19 2008-01-22 Coldwatt, Inc. Vertical winding structures for planar magnetic switched-mode power converters
US7256677B2 (en) 2005-03-30 2007-08-14 Abb Technology Ag Transformer having a stacked core with a cruciform leg and a method of making the same
CN2877003Y (zh) 2005-12-30 2007-03-07 南通友邦变压器有限公司 三相四框五柱式铁芯
US7864013B2 (en) * 2006-07-13 2011-01-04 Double Density Magnetics Inc. Devices and methods for redistributing magnetic flux density
CN101051549B (zh) 2007-02-07 2011-05-04 浙江大学 柔性电路板实现的llc谐振变换器中无源元件集成结构
JP4301342B2 (ja) * 2007-12-18 2009-07-22 サンケン電気株式会社 Dc/dcコンバータ
JP5144284B2 (ja) * 2008-01-16 2013-02-13 本田技研工業株式会社 電力変換回路
CN101771351A (zh) 2009-01-07 2010-07-07 力博特公司 一种三相三电平llc谐振变换器
CN101872674A (zh) * 2009-04-27 2010-10-27 台达电子工业股份有限公司 均流变压器及其适用的供电电路
USD644607S1 (en) 2009-05-29 2011-09-06 Seiden Mfg. Co., Ltd. Core for a high-frequency three-phase transformer
US8648686B2 (en) * 2009-11-05 2014-02-11 Delta Electronics, Inc. Resonant transformer and resonant converter employing same
US20120075051A1 (en) * 2010-09-23 2012-03-29 Northern Power Systems, Inc. Magnetic Devices and Transformer Circuits Made Therewith
PL221896B1 (pl) * 2011-03-23 2016-06-30 Akademia Górniczo Hutnicza Im Stanisława Staszica W Krakowie Zintegrowany element indukcyjny
CN103177848B (zh) 2011-12-23 2017-03-29 台达电子企业管理(上海)有限公司 直流滤波电感器及其制作方法
DE102012202578A1 (de) 2012-02-20 2013-08-22 Robert Bosch Gmbh Multiphasenwandler
CN102646494A (zh) 2012-05-10 2012-08-22 苏州天铭磁业有限公司 一种铁氧体磁芯
CN106998142B (zh) * 2016-01-25 2019-08-30 台达电子企业管理(上海)有限公司 多路并联的谐振变换器、电感集成磁性元件和变压器集成磁性元件
CN107078642B (zh) * 2016-05-13 2020-04-03 华为技术有限公司 谐振dc-dc转换器
WO2018006960A1 (en) * 2016-07-07 2018-01-11 Huawei Technologies Co., Ltd. Two-transformer three-phase dc-dc resonant converter
EP3401935B1 (en) * 2017-05-08 2020-12-02 Delta Electronics (Thailand) Public Co., Ltd. Integrated magnetic component and power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201278509Y (zh) * 2008-09-20 2009-07-22 梁伟国 一种电容滤波器
CN102208242A (zh) * 2011-03-18 2011-10-05 华为技术有限公司 一种磁集成电感及其制作方法和一种无桥pfc电路
CN102611315A (zh) * 2012-03-22 2012-07-25 华为技术有限公司 一种谐振转换电路
CN103595367A (zh) * 2013-11-07 2014-02-19 华为技术有限公司 一种磁集成器件及一种功率转换电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054593A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194164A1 (en) * 2016-05-13 2017-11-16 Huawei Technologies Co., Ltd. Resonant dc-dc converter
US10381938B2 (en) 2016-05-13 2019-08-13 Huawei Technologies Co., Ltd. Resonant DC-DC converter
CN109768707A (zh) * 2017-11-09 2019-05-17 国际商业机器公司 一种耦合电感直流-直流电源转换器
CN109768707B (zh) * 2017-11-09 2021-10-26 国际商业机器公司 一种耦合电感直流-直流电源转换器
US20210366650A1 (en) * 2020-05-25 2021-11-25 Delta Electronics (Shanghai) Co., Ltd Three-phase inductor and power module
US11664146B2 (en) 2020-05-25 2023-05-30 Delta Electronics (Shanghai) Co., Ltd Three-phase transformer assembly and power module
US11961658B2 (en) * 2020-05-25 2024-04-16 Delta Electronics (Shanghai) Co., Ltd Three-phase inductor and power module
CN113162428A (zh) * 2021-04-27 2021-07-23 石家庄通合电子科技股份有限公司 一种三相交错llc电路及电源
CN113162428B (zh) * 2021-04-27 2022-06-24 石家庄通合电子科技股份有限公司 一种三相交错llc电路及电源

Also Published As

Publication number Publication date
EP3054593A4 (en) 2016-11-30
US20160254756A1 (en) 2016-09-01
US10855190B2 (en) 2020-12-01
EP3054593B1 (en) 2021-06-09
US20190109542A1 (en) 2019-04-11
EP3054593A1 (en) 2016-08-10
CN103595367A (zh) 2014-02-19
US10186974B2 (en) 2019-01-22
CN103595367B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015066997A1 (zh) 一种磁集成器件及一种功率转换电路
TWI690952B (zh) 磁性元件及其適用之電源轉換裝置
TWI675534B (zh) 電源轉換裝置
TWI698078B (zh) 基於變壓器的混合電力轉換器
CN106057433B (zh) 磁集成器件、n相llc谐振转换电路和电源转换装置
US9735685B2 (en) Interleaved LLC current equalizing converter
EP2600512B1 (en) Resonant conversion circuit
TWI814025B (zh) Dc-dc諧振轉換器及其控制方法
EP2887523A1 (en) Resonant bidirectional converter, uninterruptible power supply apparatus, and control method
KR100983033B1 (ko) 집적화된 트랜스포머 및 이를 이용한 전원 장치
US8966294B2 (en) Clamp circuits for power converters
Khan et al. Three-phase three-limb coupled inductor for three-phase direct PWM AC–AC converters solving commutation problem
JP6939874B2 (ja) 磁気集積デバイス及びdc−dc変換回路
CN111010044B (zh) 一种磁集成双有源桥变换器
KR20140033708A (ko) 자기 집적 회로 및 위상 천이에 의한 자속 밀도 감소 방법
TWI685187B (zh) 雙向直流對直流轉換器
TW200427201A (en) A DC/DC converter with voltage clamp circuit
KR20090128260A (ko) 집적화된 트랜스포머를 이용한 전원 장치
TWI685169B (zh) 雙向儲能系統
KR101341476B1 (ko) 위상 조절이 가능한 인버터 및 컨버터 장치
Aguillon-Garcia et al. High-power-density three-phase converter utilizing a balanced-flux transformer core
Mansour et al. Phase Shift Design of Three Phase Transformers for Soft Switching of Three Phase Dual Active Bridge
TWI474600B (zh) Single - phase AC - DC power conversion device
Ljusev et al. Integrated magnetics design for HF-link power converters
RU2004128048A (ru) Преобразователь постоянного напряжения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860192

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014860192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE