WO2015065164A1 - Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same - Google Patents

Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same Download PDF

Info

Publication number
WO2015065164A1
WO2015065164A1 PCT/KR2014/010531 KR2014010531W WO2015065164A1 WO 2015065164 A1 WO2015065164 A1 WO 2015065164A1 KR 2014010531 W KR2014010531 W KR 2014010531W WO 2015065164 A1 WO2015065164 A1 WO 2015065164A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
oxide
graphene oxide
paint composition
Prior art date
Application number
PCT/KR2014/010531
Other languages
French (fr)
Korean (ko)
Inventor
김상재
케이카티케얀
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to EP14858569.8A priority Critical patent/EP3067394B1/en
Priority to EP18176146.1A priority patent/EP3392316B1/en
Priority claimed from KR1020140152156A external-priority patent/KR101678279B1/en
Publication of WO2015065164A1 publication Critical patent/WO2015065164A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present invention relates to a paint composition, more specifically, containing graphene oxide nanosheets (GO nanosheets), zinc oxide particles (ZnO nanoparticles) and molybdenum oxide nanoplates (MoO 3 nanoplates) (hereinafter referred to as oxide nanostructures) (hereinafter referred to as oxide nanostructures) It relates to a non-toxic paint composition and a method for producing the same.
  • GO nanosheets graphene oxide nanosheets
  • ZnO nanoparticles zinc oxide particles
  • MoO 3 nanoplates molybdenum oxide nanoplates
  • Paint is a kind of material used to decorate and / or protect surfaces. They are used in a variety of applications, including home appliances, biomedical devices, and industrial processes (particularly corrosion protection coatings).
  • Corrosion of steel structures means that rust or red blue (Fe (OH) 3 and Fe 2 O 3 ) are generated.Their causes are oxygen (O 2 ) and moisture (H 2 O) in the air. can see. This corrosion tends to be accelerated by polluted atmospheres, soot, salts in sea water, acid rain, chemicals (acids, alkalis and salts), and the like.
  • a corrosion inhibitor such as photo-list, zinc chromate, passivation when water comes into contact with the metal by the reaction suppression function, or inflow of water or air that causes corrosion
  • Sacrificial anodes such as aluminum or mica-like oxidized iron oxides, which act as barriers, or metal pigments, such as zinc, which tend to ionize more than iron in the cathode. have.
  • Republic of Korea Patent No. 503,561 is a coating composition for preventing corrosion and improving durability of the steel structure and aluminum oxide film adhesion method using the same, by applying a coating using zinc, chromium, nickel, aluminum oxide, etc.
  • the formation method is disclosed.
  • heavy metals such as chromium and lead are contained to improve the rust prevention function of the paint, they may be absorbed by the human body through the respiratory organ or the skin, which may cause serious problems.
  • marine vessels and marine steel structures, etc. play a major role in causing corrosion of marine organisms that cause macrofouling, such as silk tuna shells and scallop shells, as well as corrosion caused by marine salts.
  • Arthropod barnacles, algae brown algae, red algae, green algae, etc. are also placed on the steel, which serves to corrode and inhibit the operation of the ship.
  • the organic poison type TBT (Tributyltin) is an antifouling paint prepared by mixing TBT with self-polishing acrylic resin or synthetic resin, and its longest antifouling life is about 3 to 5 years, but this material is used for shellfish in shellfish. As a deadly environmental hormone that causes a problem, it has a problem that adversely affects the environment as recently called sea herbicides.
  • the inorganic poisonous copper dioxide is an antifouling paint prepared by mixing copper dioxide with an inorganic resin, which has a short antifouling life and has a severe problem of releasing copper oxide in the early stages, and also causes environmental hormones in shellfish. There is a problem.
  • Arsenic antifouling paints are manufactured by mixing arsenic materials with self-polishing acrylic resins or synthetic paints, and have good antifouling properties, but have serious problems of causing serious side effects in marine ecosystems.
  • the conventional technology is excellent in antifouling performance itself, but has a disadvantage of causing serious environmentally adverse side effects, while maintaining antifouling performance, development of an environmentally friendly antifouling paint is required without toxicity.
  • An object of the present invention is to prepare a paint composition by blending graphene oxide nanosheets (GO nanosheets), zinc oxide particles (ZnO nanoparticles) and molybdenum oxide nanoplates (MoO 3 nanoplates) in an optimal ratio of alkyd resin as a pigment, Compared to the conventional paint, it is not only excellent in corrosion resistance, but also free of toxic substances such as chromates or biocides, and to provide an environmentally friendly paint composition.
  • Another object of the present invention to provide a method for producing the paint composition.
  • oxide nanostructures as pigments 15-20 parts by weight of oxide nanostructures as pigments, 60-70 parts by weight of alkyd synthetic resins as binders, 0.5-1.0 parts by weight of stabilizers, 0.3-0.7 parts by weight of precipitation inhibitors, 0.05-0.15 parts by weight of thickeners, 0.5-1.0 parts by weight of wetting agents , 1.0-2.0 parts by weight of a desiccant and 15-20 parts by weight of a diluent are provided.
  • the paint composition comprising the oxide nanostructures according to the present invention is economical, has a high solids content compared to conventional paints, and dries quickly and is free of toxic substances such as chromates or biocides.
  • paint compositions comprising oxide nanostructures according to the present invention exhibited good corrosion resistance behavior in acidic and high salt content solutions, in particular oxide nanopaint coatings measured in saline, as measured from linear polarization studies. A corrosion protection efficiency of% was shown.
  • the paint composition comprising oxide nanostructures according to the present invention inhibits the growth of bacterial strains (E.
  • HR-TEM high-resolution transmission electron microscope
  • SAED selective area electron diffraction
  • FIG. 2 is a photograph of a graphene oxide nanopaint according to an embodiment of the present invention, (b) an embodiment of the present invention painted on a drawdown card for measurement of gloss level and hiding power. According to graphene oxide nanopaint.
  • FIG. 3 is a Fourier transform infrared spectrum of an alkyd synthetic resin and graphene oxide nanopaint according to an embodiment of the present invention, and (b) a Raman spectrum of an alkyd synthetic resin and graphene oxide nanopaint according to an embodiment of the present invention. Indicates.
  • Figure 4 is (a) the X-ray photoelectron spectrum of the alkyd synthetic resin and graphene oxide nanopaint according to an embodiment of the present invention, (b) of the graphene oxide nanopaint showing the presence of CC, COC and C-OO groups C 1s unwound spectrum (c) Low magnification (scale-10 ⁇ m) and d) high magnification (scale-1 ⁇ m) FE-SEM images of graphene oxide nanopaint coatings.
  • FIG. 5 is an optical image of uncoated (left) and graphene oxide-painted (right) GI substrates ((a) before exposure to acid and (b) after impregnation for 24 hours in 0.1 M HCl solution).
  • FIG. 8 shows (a) graphene oxide-nanopaint-coated and uncoated substrates impregnated in a lagoon with tide directly connected to Jeju sea, (b) uncoated substrate and painting before and after 3 weeks Of the substrate.
  • FIG. 9 is a result of XRD analysis of coating zinc oxide nanopaint on a glass material in order to measure the binding relationship between zinc oxide and alkyd resin.
  • FIG. 10 is a result of measuring Raman spectra by coating zinc oxide nanopaint on a glass material to measure a binding relationship between zinc oxide and alkyd resin.
  • Figure 12 shows the bacterial survival rate by coating with molybdenum oxide nanopaint, (a) the reduction rate of Escherichia coli (b) the reduction rate of Pseudomonas aeruginosa (c) the reduction rate of Staphylococcus aureus (d) the reduction rate of pneumococci.
  • 'oxide nano paint' means a paint composition containing oxide nanostructures such as graphene oxide nanosheets (GO nanosheets), zinc oxide particles (ZnO nanoparticles), and molybdenum oxide nanoplates (MoO 3 nanoplates). Oxide nanopaints and paint compositions containing oxide nanostructures are used interchangeably.
  • 'paint' and 'paint' have the same meaning and are used interchangeably within the specification.
  • the present invention is 15-20 parts by weight of oxide nanostructures as a pigment, 60-70 parts by weight of alkyd synthetic resin as a binder, 0.5-1.0 parts by weight of stabilizer, 0.3-0.7 parts by weight of precipitation inhibitor, 0.05-0.15 parts by weight of thickener, 0.5-wetting agent.
  • a paint composition comprising 1.0 part by weight, 0.5-1.0 part by weight of the internal coating desiccant, 0.5-1.0 part by weight of the top coating desiccant and 15-20 parts by weight of the diluent.
  • the oxide may use graphene oxide, zinc oxide (zinc oxide) or molybdenum oxide.
  • Graphene is a combination of graphite, which means graphite, and the suffix -ene, which means a molecule with a carbon double bond in chemistry.
  • graphene is the substance observed in graphite, an allotrope of carbon. Magnifying a pencil lead with an electron microscope reveals a stack of thin plates. It is a three-dimensional structure of numerous carbon atoms stacked in a hexagonal honeycomb.
  • Graphene is the thinnest layer here. That is, it is a thin film structure of the two-dimensional planar form of thickness 0.35 nm which consists of one layer of carbon atoms.
  • Such graphene compounds are called fullerenes, which are graphite when stacked in three dimensions, carbon nanotubes when dried in one dimension, and zero-dimensional structures when they become balls.
  • Graphene was first produced at room temperature in 2004 by a team at the University of Manchester, England.
  • Graphene oxide is a compound in which the graphene is oxidized and has various functional groups such as epoxyl, hydroxyl, and canonyl.
  • the graphene oxide nanosheets are harmless to the human body due to biocompatibility and non-toxic properties, and have environmentally friendly advantages.
  • the zinc oxide is a compound of oxygen and zinc, which is a light white powder, also referred to as zinc or zinc bag, and is used as a raw material for medicines, pigments and cosmetics.
  • Zinc oxide is a light white powder, melting point 1,975 °C (pressurization), 1,720 °C (atmospheric pressure), specific gravity 5.47 (non-crystalline), 5.78 (crystalline), when heated to about 300 °C turns yellow, but when cooled to its original color. Dilute acids and concentrated alkalis are soluble amphoteric oxides.
  • the molybdenum since the molybdenum is easily converted into an oxidized form, the molybdenum may act as an electron transport material in the oxidation-reduction reaction, and the molybdenum oxide refers to the oxidized molybdenum.
  • the oxide nanostructures according to the present invention may also be prepared by methods known in the art, for example, Krishnamoorthy K, et al., Carbon 2012, 53: 38-49; Krishnamoorthy K, et al., Appl. Phys. Lett. 2011,98: 244101 (1-3)] and the like can be prepared using, but is not limited thereto.
  • the graphene oxide nanosheets exhibited a sheet-like morphology with the presence of folded regions at the corners, as shown in FIG. 1.
  • the corresponding selective area electron diffraction (SAED) pattern shows a clear diffraction point with six-fold symmetry, which coincides with the hexagonal lattice.
  • the Raman spectra of the graphene oxide nanosheets show the presence of wide D bands (1350 cm ⁇ 1 ) and G bands (1597 cm ⁇ 1 ) since graphite oxidizes to form graphene oxide.
  • the content of the oxide nanosheets is preferably 15-20 parts by weight.
  • the alkyd synthetic resin serves as a binder and occupies most of the paint composition.
  • the content of the alkyd synthetic resin is preferably 60 to 70 parts by weight.
  • soybean lecithin can be used as the humectant, wherein the soybean lecithin is preferably used 0.5-1.0 parts by weight. The absence of the humectant can cause non-uniform surface finish due to the aggregation of graphene oxide nanosheets.
  • the desiccant is used for the formulation, whereby an external desiccant and an internal desiccant can be used.
  • the external desiccant is an active catalyst for the lipid oxidation process, which results in faster drying times and more homogeneous coatings on the surface.
  • the internal desiccant is a chemical cross-linker for unsaturated fatty acids, which improves the rate of cross-linking during drying.
  • the external desiccant preferably uses cobalt naphthenate, but is not limited thereto, and its content is preferably 0.5-1.0 parts by weight.
  • the internal desiccant preferably uses nano-sized zirconia, but is not limited thereto, and its content is preferably 0.5-1.0 parts by weight.
  • thickeners and precipitation inhibitors may be used to adjust the viscosity and prevent solidification, the content of which is 0.05-0.15 parts by weight and 0.3-0.7 parts by weight of precipitation inhibitor, respectively. It is preferable.
  • commercially available thickener A may be used as the thickener, and aluminum stearate may be used as the precipitation inhibitor, but is not limited thereto.
  • a stabilizer may be used to inhibit the separation of graphene oxide nanosheets in the alkyd synthetic resin and also to reduce the color fading when stored for a long period of time.
  • Nano-sized ZnO may be used, but is not limited thereto.
  • the stabilizer is preferably used 0.5 to 1.0 parts by weight based on the total weight of the paint composition.
  • the diluent serves to effectively and evenly mix the synthetic resin and graphene oxide nanosheets, thereby improving antifouling performance and coating work, mineral solvent, ether solvent, glycidyl It is preferably at least one of an ether solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a hydrocarbon solvent or a nitrogen solvent, more preferably a mineral solvent and even more preferably a mineral terebin oil. effective.
  • the content of the diluent may vary depending on the viscosity, but generally it is preferable to use 15-20 parts by weight.
  • the present invention also provides a method for producing the paint composition.
  • the method for producing a paint composition according to the present invention is characterized in that the paint composition is homogeneously mixed by a ball-milling process, and the common contents of both inventions are described in order to avoid excessive complexity of the specification according to the repeated description. Omit.
  • the ball milling is characterized by maintaining for 4-6 hours at a milling speed of approximately 300 rpm, then adding a diluent and maintaining milling for an additional 20 minutes-1 hour.
  • the drying mechanism of the oxide nanopaints according to the invention relies on lipid autooxidation of alkyd synthetic resins, which is a well-known free-radical mechanism present in atmospheric oxygen [Muizebelt WJ, et al., Prog. Org. Coat. 2000, 40: 121-30; Bieleman, JH., Wiley-VCH, Weinheim, 2000].
  • Polyunsaturated fatty acids in alkyd resins undergo cross-linking by free radical-mediated chain reactions, resulting in a uniform film coating dried on the surface [Schaich KM. Baileys Industrial Oil and Fat Products. 6th ed. Edited by Fereidoon Shahidi. John Wiley & Sons, Inc; 2005].
  • graphene oxide pigments in paints can facilitate lipid auto-oxidation reactions due to the carbocatalytic properties of graphene oxide for the oxidation, polymerization and ionization of long chain fatty acids [Liu Y, et al. , Rapid Commun. Mass Spectrom. 2011; 25: 3223-34.
  • Graphene oxide can easily cross-link with macromolecules during oxidative polymerization, which acts as a template for the growth of macromolecules [Park S, et al., ACS Nano. 2008; 4: 572-78.
  • graphene oxide nanosheets are cross-linked through electrostatic interaction and hydrogen bonding with lipid molecules present in the alkyd resin, which leads to the formation of a homogeneous black paint.
  • graphene oxide nanosheets will catalyze the lipid autooxidation process by providing a sufficient amount of oxygen during the drying process.
  • partial reduction of graphene oxide can occur due to free radicals occurring during the autooxidation process, which has been reported previously for graphene oxide reduction via bacterial respiration, free radical reduction, and during chemical functionalization [Akhavan O, et al., Carbon 2012, 50: 1853-60; Vinodgopal K, et al., J. Phys. Chem. Lett. 2010; 1: 1987-93.
  • the oxide nanopaint prepared by the above method is economical because it has a higher solids content than conventional paints, is fast drying, and is environmentally friendly since there is no toxic substance such as chromate or biocide.
  • the oxide nanopaints exhibited good corrosion resistance behavior in acidic and high salt content solutions, and in particular, as shown in FIG. 6, about 76% corrosion protection in saline in linear polarization studies. Efficiency was shown.
  • the oxide nanopaints inhibit growth against bacterial strains (E. coli ( Esherichia coli ), Staphylococcus aureus , and Pseudomonas aeruginosa ) on the painted surface, as shown in FIG. As shown in FIG. 8, the effect of suppressing the attachment of marine organisms was excellent. Therefore, the oxide nanopaint according to the present invention may be usefully used in place of paint used in general steel structures and ships or marine steel structures.
  • the graphene oxide nanosheets are described in Krishnamoorthy K, et al., J. Phys. Chem. C 2012; 116: 17280-87, according to the modified Hummers method.
  • Raman spectra of graphene oxide nanosheets indicate the presence of wide D bands (1350 cm -1 ) and G bands (1597 cm -1 ), from which graphite was oxidized to form graphene oxide [Krishnamoorthy K , et al., Carbon 2012; 53: 38-49. Freshly synthesized graphene oxide nanosheets were used to prepare graphene oxide nanopaints.
  • Alkyd paints incorporating graphene oxide nanosheets were prepared using a ball-milling approach.
  • the paint used graphene oxide as pigment, and other additional additives for binders, thickeners, wetting agents, internal coating desiccants, external coating desiccants, diluents, and stabilizers are listed in Table 1.
  • Alkyd paints bound with zinc oxide (ZnO) were prepared using a ball-milling approach.
  • the paint used zinc oxide as pigment, and other additional additives for binders, thickeners, wetting agents, internal coating desiccants, external coating desiccants, diluents, and stabilizers are listed in Table 2.
  • Pigment ZnO Nanoparticles Provide color of paint 20.0 Binder Alkyd resin Film-forming composition of paint 60.0 Stabilizer Nano-sized ZnO Reduced the color fading effect of paint 0.6
  • Precipitation inhibitor Aluminum stearate Prevention of precipitation of pigments and binders 0.5 Thickener Polyvinyl alcohol Improve viscosity and prevent solidification 0.1 Humectant Soy lecithin Wetting on the pigments in the binder for homogeneous dispersion 0.6
  • Exterior coating desiccant Cobalt naphthenate Active Catalysts for Lipid Autooxidation 0.6 Thinner (solvent) toluene Dispersion 17.0
  • Molybdenum Oxide (MoO) 3 Preparation of Paint Composition Comprising Nanoplates
  • Alkyd paints bonded with molybdenum oxide nanoplates were prepared using a ball-milling approach.
  • the paint used molybdenum as pigment, and other additional additives for binders, thickeners, wetting agents, internal coating desiccants, external coating desiccants, diluents, and stabilizers are listed in Table 3.
  • the hiding power and gloss levels of graphene oxide nanopaints were tested by applying a certain amount of paint on a drawdown card with a controlled thickness of about 150 ⁇ m using a multifunctional film applicator.
  • 1 g of paint was placed on a drop-down card, cut using a multifunctional film applicator, and then dried at room temperature.
  • the hiding power of the paint was then visually observed by testing whether the background color (black or white) was covered by the paint.
  • Gloss measurement was performed using a Rajdhani digital gloss meter (RSPT-200 model, India).
  • the graphene oxide nanopaint completely concealed both the black and white background of the voltage drop card.
  • the gloss level of graphene oxide nanopaints was 60 to 75 GU. According to ASTM (American Standard for Testing and Materials) standards, 60 to at least 60 GU coatings are classified as high-gloss surfaces, which demonstrates the excellent surface finish of graphene oxide nanopaints according to the present invention.
  • the solids content of the paint is the ratio of the solid phase components to the weight of the total components in the paint.
  • the amount of solids present in the paint was determined by drying 1 g of paint on a clean, dried watch glass. Based on the initial and final weight measurements, the solids content of graphene oxide and commercial paints was evaluated using the following formula.
  • W 1 is the initial weight of the paint and W 2 is the weight of the paint after drying.
  • the solids content of graphene oxide nanopaint was 64.24%, but only 39.21% of commercial paints. This means that graphene oxide nanopaints can be more economical than commercial paints.
  • surface drying time, drying time to hardening and drying time to coating were observed as 1, 3, and 6 hours, respectively. Drying times for graphene oxide nanopaints were faster than commercial paints.
  • FT-IR Fourier transform infrared
  • XPS X-ray photoelectron spectroscopy
  • Figure 3a shows the FT-IR spectrum of the uncoated alkyd synthetic resin and the final graphene oxide nanopaints.
  • the FT-IR spectra of the uncoated alkyd resins are CO bonds (1070 cm -1 ), as well as planar CH vibrations (1121 cm -1 ), COC groups (1261 cm -1 ), pyrrole rings (1459 cm -1 , 1579 cm ⁇ 1 ), CC stretching (1600 cm ⁇ 1 ), carboxyl group (1730 cm ⁇ 1 ), and CH vibrations (2800-3000 cm ⁇ 1 ) in the methyl and methylene groups. All these functional groups are conserved in the FT-IR spectrum of graphene oxide nanopaints, as well as the oxygen-containing functional groups present in the graphene oxide nanosheets.
  • the spectral characteristics of the epoxy, hydroxyl, carbonyl, and carboxyl groups add to the spectrum of the alkyd synthetic resin.
  • the strength of the CH groups in the alkyd synthetic resin was significantly reduced in (2800-3000 cm ⁇ 1 ) graphene oxide nanopaints, and the peaks were blue-shifted due to CC oscillation.
  • the change in carbonyl groups is due to the chemical cross-linking process that occurs in graphene oxide nanopaints. This experiment suggests that structural changes occur in graphene oxide nanopaints as a result of electrostatic interactions and / or hydrogen bonding between graphene oxide and alkyd resins.
  • Raman spectroscopy is one of the nondestructive analyzes used to study the binding properties, crystallinity, defects, and displacement of nanomaterials and also functional coatings.
  • the Raman spectra of the alkyd synthetic resin and the graphene oxide nanopaint were examined as shown in FIG. 3B to study the binding interactions between the graphene oxide and the alkyd synthetic resin in the nanopaint.
  • Raman spectra of alkyd synthetic resins exhibit characteristic bands at 1265 cm ⁇ 1 , 1443 cm ⁇ 1 , 1675 cm ⁇ 1 , 2900 cm ⁇ 1 , and 3100 cm ⁇ 1 , respectively.
  • the surface state and composition of graphene oxide nanopaints were investigated by XPS analysis.
  • 4A shows XPS measurement spectra of alkyd resin and graphene oxide nanopaints.
  • the graphene oxide nanopaints from Figure 4a showed an increase in oxygen content compared to alkyd synthetic resins, due to the presence of oxygen-containing functional groups in graphene oxide.
  • the C / O ratios calculated from the XPS spectra of the uncoated alkyd resin and the graphene oxide nanopaint were respectively 3.75 and 3.29.
  • the C-1s unwinded spectrum is shown in FIG.
  • the surface morphology of the painted surface was investigated using field emission scanning electron microscopy (FE-SEM) studies.
  • 4C and 4D show low- and high-magnification images of the paint coating, respectively. Both images showed a uniform coating of the pate on the substrate and no porosity was observed in the FE-SEM data.
  • the presence of graphene oxide nanosheets in the paint was not distinguished from these images due to the effectiveness of the ball-milling process in preparing a homogeneous mixture of paints.
  • Corrosion inhibition properties (in acidic environment) of graphene oxide nanopaints were determined by weight-loss method.
  • graphene oxide nanopaint was coated onto a zinc iron (GI) substrate using brush coating.
  • the uncoated GI substrate (control) and the painted GI substrate were immersed in 0.1 N HCl for 24 hours at room temperature. Thereafter, the substrate was removed from the beaker and immersed in distilled water to remove acidic impurities and dried at room temperature. The weight of each substrate before and after the reaction was measured and used to calculate the degree of corrosion inhibition of the coating. The experiment was repeated three times and the average value was recorded.
  • Inhibition Efficiency% [(W uncoated -W coated ) / W uncoated ] ⁇ 100,... ... ... ... ... ... (2)
  • W uncoated is the weight loss of the uncoated substrate
  • W coated is the weight loss of the substrate coated with graphene oxide nanopaint
  • the corrosion-inhibition efficiency of the graphene oxide nanopaint coating was about 88.70%, indicating the potential usefulness of graphene oxide nanopaint in acid resistant coatings.
  • the upper and lower potential limits of linear sweep voltammetry were set to +200 and -200 mV, respectively, for the OCP.
  • the cleaning speed was 1 mV ⁇ s ⁇ 1 .
  • Corrosion potential E corr and corrosion current I corr were determined by Tafel extrapolation.
  • Tafel electrochemical analysis is one of the standard methods used for the study of corrosion in metals. Corrosion behavior of metals can be explained by combining anodic oxidation of the metal to metal ions and cathodic reduction utilizing electrons that disappear during the oxidation reaction. Both reactions occur at the same time, so the limitation of these reactions leads to the inhibition of corrosion.
  • the potential mechanical polarization curves measured in 3.5% NaCl solution for both the uncoated GI substrate and the GI substrate coated with graphene oxide nanopaint are shown in FIG. 6.
  • the corrosion potentials E corr , and the corrosion current density I corr for uncoated GI substrates and painted substrates were calculated from the polarization curves by the Tafel equation. It is clear from FIG. 6 that the anode current density of the painted substrate was at least one order of magnitude lower than that of the uncoated substrate. This explains that the graphene oxide nanopaint coating significantly reduced the dissolution of metal ions from the substrate.
  • the measured E corr of the GI substrate was -1047 mV and the painted substrate was -995 mV.
  • the movement of the painted substrate in the E corr was about +52 mV, accompanied by a significant decrease in the I corr , which corroded the uncoated substrate by acting as graphene oxide nanopaint as a protective layer between the substrate and the corrosive environment. It suggests that the resistance is significantly improved.
  • the protective efficiency P i of the graphene oxide nanopaint coating was obtained from the polarization curve calculated from the following equation:
  • I corr and I ' corr are the corrosion current densities of substrates coated with graphene oxide nanopaint and uncoated keys, respectively.
  • Microbial Escherichia coli (MTCC739), Staphylococcus aureus (MTCC96), and Pseudomonas aeruginosa (MTCC1688) were collected from bacterial strains and from the Gene Bank (IMTECH, Chandigarh, India). Were obtained and maintained in an incubator (Sigma Aldrich, India).
  • the microbial activity of the graphene oxide nanosheets was determined by microdilution and the corresponding minimum inhibitory concentration (MIC) was determined.
  • the MIC values of the graphene oxide nanosheets for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were 0.5, 0.5, and 1 ⁇ g / mL, respectively. From this, the antimicrobial properties of the graphene oxide nanosheets can be seen.
  • the coated and uncoated (ie, control) surfaces were exposed to 200 ⁇ L of microorganisms, respectively, in culture at an initial concentration of 10 5 CFU / mL. They were then air dried and kept at room temperature. After the exposure period (24 and 48 hours), the material surface was washed three times with 2 mL of culture. The washed culture was used for colony counting by agar dilution and to count fractions of dead cells.
  • a 10-fold serial dilution was prepared using the culture, sprinkled onto nutrient agar plates and incubated at 37 ° C. for 24 hours. All experiments were performed three times. The number of colonies in each sample was recorded and the percentage of bacterial reduction was calculated as follows.
  • A is the number of live bacteria on the uncoated surface and B is the number of live bacteria on the painted surface.
  • FIG. 7C shows the percentage loss of bacterial populations in the phase of graphene oxide nanopaints after 24 and 48 hours.
  • the antimicrobial test was repeated three times to ensure reproducibility and at least two different times were used.
  • the distribution of viable cells on the painted surface was reduced by 76, 73, and 69% for E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa, respectively.
  • the painted surface inhibited 94, 88, and 85% of living cells, respectively, against E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa. From this it can be seen that the graphene oxide nanopaint according to the present invention inhibited the growth of all tested bacterial strains and increased the rate of death upon prolonged exposure.
  • the washed nutrient solution was centrifuged and the pellets stained using the live / dead BacLight kit (Molecular Probes, Invitrogen, Carlsbad, Calif.) According to the manufacturer's protocol. Colors comprising a mixture of SYTO 9 and propidium iodide were dissolved in a mixture of 3% dimethylsulfoxide and double-distilled water and incubated for 15 minutes. In this process, living bacteria with intact cell membranes were colored green, while dead bacteria with damaged membranes were colored red. Excitation and emission peaks for these two dyes were 480 and 500 nm for SYTO 9 colorants and 490 and 635 nm for propidium iodide, respectively.
  • Bacterial colonies are the first step in the formation of biofilms, which induce colony of biofouling on the surface of the main part of the hull.
  • Marine biofouling is estimated at $ 260 million annually in the US Navy fleet alone, and is a significant problem for the marine industry.
  • the current problem with marine antimicrobial paints is the release of toxic biocides that are harmful to nature. Thus, a non-pollution approach to inhibit colonies is highly desirable.
  • an uncoated and graphene oxide nanopaint coated GI substrate (2 ⁇ 2 cm) was immersed in seawater in a tide lagoon connected to Jeju sea for a period of 3 weeks, as shown in FIG. 8A. Thereafter, the substrate was recovered, and biofouling was observed.
  • XRD of the zinc oxide nanopaint coated glass material showed a diffraction peak corresponding to the zincite of zinc oxide. Peaks at 2 ⁇ 31.77, 34.42, 36.25, 47.54, 56.59, 62.85, 66.32, 67.95, 69.02 and 72.79 Temperatures are (100), (002), (110), (103), (200), (112), ( 201) and (004) hexagonal zinc oxide zinc oxide particles were assigned to the reflection line and coincided with the zinc oxide in the hexagonal zinc oxide state (see FIG. 9).
  • Raman spectra of alkyd synthetic resin and zinc oxide nanopaints were examined as provided in FIG. 3B.
  • Raman spectra of the alkyd synthetic resin show characteristic bands at 439 cm ⁇ 1 , respectively (see FIG. 10).
  • Zinc oxide nanoparticles are antibacterial materials that have been shown in previous studies that zinc oxide nanopaints inhibit the growth of bacteria on the surface, which is why anti-fouling of zinc oxide nanopaints in the lagoon of Jeju sea. The antifouling properties were tested.
  • Escherichia coli ATCC 25922
  • Staphylococcus aureus ATCC 25923
  • Pseudomonas aeruginosa ATCC 27853
  • klebsiella pneumoniae ATCC 10031
  • the antimicrobial activity of molybdenum (MoO 3 ) nanoplates was determined by microdilution method and the corresponding minimum inhibitory concentration (MIC) was determined.
  • the MIC values of the molybdenum (MoO 3 ) nanoplates for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Pneumococcus were 8, 8, 16, and 32 ⁇ g / mL ⁇ 1 , respectively. From this, the antibacterial properties of the molybdenum nanoplates can be seen.
  • the coated and uncoated (ie, control) surfaces were exposed to 200 ⁇ L of microorganisms, respectively, in culture at an initial concentration of 10 5 CFU / mL. They were then air dried and kept at room temperature. After the exposure period (24 and 48 hours), the material surface was washed three times with 2 mL of culture. The washed culture was used for colony counting by agar dilution and to count fractions of dead cells.
  • a 10-fold serial dilution was prepared using the culture, sprinkled onto nutrient agar plates and incubated at 37 ° C. for 24 hours. All experiments were performed three times. The number of colonies in each sample was recorded and the percentage of bacterial reduction was calculated as follows.
  • A is the number of live bacteria on the uncoated surface and B is the number of live bacteria on the painted surface.

Abstract

The present invention relates to a paint composition and, more specifically, to a nonpoisonous paint composition containing graphene oxide (GO) nanosheets, ZnO nanoparticles, and MoO3 nanoplates, and to a method for preparing the same. Especially, the paint composition containing GO nanosheets according to the present invention is economical and fast dries since the solid content is high compared with conventional paints; is eco-friendly and exhibits excellent corrosion resistance in an acidic and high-salt solution since poisonous materials, such as chromic acid or biocide are absent; and has excellent effects of inhibiting the growth of bacteria strains (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) and suppressing the adhesion of marine organisms, and thus can be useful as a substitute for paints used in general steel structures and ships or marine steel structures.

Description

유기 및 무기 산화 나노구조물을 함유하는 무독성 페인트 조성물 및 이의 제조 방법Non-toxic paint compositions containing organic and inorganic oxide nanostructures and methods for their preparation
본 발명은 페인트 조성물에 관한 것으로서, 보다 구체적으로는 산화그래핀 나노시트(GO nanosheets), 산화아연입자(ZnO nanoparticles) 및 산화몰리브덴 나노플레이트(MoO3 nanoplates)(이하 옥사이드 나노구조물로 칭함)를 함유하는 무독성 페인트 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a paint composition, more specifically, containing graphene oxide nanosheets (GO nanosheets), zinc oxide particles (ZnO nanoparticles) and molybdenum oxide nanoplates (MoO 3 nanoplates) (hereinafter referred to as oxide nanostructures) It relates to a non-toxic paint composition and a method for producing the same.
2010년에 3억 5천만 달러로 추산되는 금속 부식의 연간 세계적 비용은 계속 증가하고 있으며, 2015년까지 연간 9억 달러로 추산된다. The annual global cost of metal corrosion, estimated at $ 350 million in 2010, continues to increase, and is estimated at $ 900 million per year by 2015.
페인트는 표면의 장식 및/또는 보호에 사용되는 일종의 물질이다. 이들은 가정용품, 생체의료 장치, 및 산업 공정 (특히 부식 보호 코팅)을 포함하는 다양한 응용 분야에서 사용된다.Paint is a kind of material used to decorate and / or protect surfaces. They are used in a variety of applications, including home appliances, biomedical devices, and industrial processes (particularly corrosion protection coatings).
철을 포함하는 철재 구조물은 대부분 부식환경에 노출되므로, 내구성을 증진시키기 위하여 철재 구조물 표면에 부식방지 처리를 하는 것이 일반화되어 있다. 철재 구조물의 부식이란 녹(rust) 혹 적청(Fe(OH)3 및 Fe2O3)이 발생됨을 말하는데, 이들의 생성 원인은 공기중의 산소(O2), 수분(H2O) 등이라고 볼 수 있다. 이러한 부식은 오염된 대기, 매연, 해수의 염분, 산성비, 화학물질(산, 알칼리 및 염) 등에 의해서 가속화되는 경향이 있다. 상기와 같은 철재 구조물의 부식을 억제하기 위한 방법으로는, 반응 억제 기능으로 물이 금속에 닿으면 부동태화하는 광명단, 크롬산 아연 등의 방청 안료를 사용하거나, 부식의 원인이 되는 물 또는 공기의 유입을 차단(barrier)하는 기능을 하는 알루미늄 또는 운모상 산화철 등의 편상 방청안료를 사용하거나, 혹은 음극 방식으로 철보다 이온화 경향이 큰 징크 등의 금속안료를 이용하는 희생 양극법(Sacrificial anode) 등이 사용되고 있다.Since most steel structures including iron are exposed to a corrosive environment, it is common to perform anti-corrosion treatment on the surface of steel structures in order to enhance durability. Corrosion of steel structures means that rust or red blue (Fe (OH) 3 and Fe 2 O 3 ) are generated.Their causes are oxygen (O 2 ) and moisture (H 2 O) in the air. can see. This corrosion tends to be accelerated by polluted atmospheres, soot, salts in sea water, acid rain, chemicals (acids, alkalis and salts), and the like. As a method for suppressing the corrosion of the steel structure as described above, using a corrosion inhibitor such as photo-list, zinc chromate, passivation when water comes into contact with the metal by the reaction suppression function, or inflow of water or air that causes corrosion Sacrificial anodes are used, such as aluminum or mica-like oxidized iron oxides, which act as barriers, or metal pigments, such as zinc, which tend to ionize more than iron in the cathode. have.
대한민국 등록특허 제503,561호는 철재 구조물의 부식방지 및 내구성 증진을 위한 도료 조성물 및 이를 이용한 산화 알루미늄 피막 접착 공법으로서, 징크, 크롬, 니켈, 산화알루미늄 등을 이용한 도료를 도포하여 철재 구조물에 금속 피막을 형성하는 공법이 개시되어 있다. 그러나, 도료의 방청 기능을 향상시키기 위하여 크롬, 납 등과 같은 중금속이 함유되는 경우, 호흡기나 피부를 통해 인체에 흡수 될 수 있어 심각한 문제를 야기할 수 있으며, 환경적인 측면에서도 바람직하지 않다.Republic of Korea Patent No. 503,561 is a coating composition for preventing corrosion and improving durability of the steel structure and aluminum oxide film adhesion method using the same, by applying a coating using zinc, chromium, nickel, aluminum oxide, etc. The formation method is disclosed. However, when heavy metals such as chromium and lead are contained to improve the rust prevention function of the paint, they may be absorbed by the human body through the respiratory organ or the skin, which may cause serious problems.
또한, 선박이나 해양철재 구조물 등은 해양의 염분으로 인한 부식뿐만 아니라, 비단참치조개류나 삿갓조개와 같은 매크로폴링(macrofouling)을 유발하는 해양생물들이 부식을 일으키는데 가장 큰 역할을 하고 있다. 절지동물인 따개비류, 해조류인 갈조류, 홍조류, 녹조류 등 또한 철재에 착상하여 근식하면서 부식을 일으키고 선박의 운항을 저해하는 역할을 한다.In addition, marine vessels and marine steel structures, etc., play a major role in causing corrosion of marine organisms that cause macrofouling, such as silk tuna shells and scallop shells, as well as corrosion caused by marine salts. Arthropod barnacles, algae brown algae, red algae, green algae, etc. are also placed on the steel, which serves to corrode and inhibit the operation of the ship.
이에, 다양한 해양생물로 인한 부식 및 선박운항 저해를 방지하기 위해, 방오도료 및 방오방법에 대한 다양한 기술이 개발되어 사용되고 있다. 그러나, 종래의 방오도료는 다음과 같은 문제가 있다.Accordingly, in order to prevent corrosion and inhibition of ship operation due to various marine life, various technologies for antifouling paints and antifouling methods have been developed and used. However, conventional antifouling paints have the following problems.
먼저, 유기독물형의 TBT(Tributyltin)은 자기연마형 아크릴수지나 합성수지에 TBT를 배합하여 제조된 방오도료로, 방오수명이 3~5년 정도로 길어 가장 많이 사용되고 있으나, 이 물질은 패류에 임포섹스를 일으키는 치명적인 환경호르몬으로써, 최근 바다의 제초제로 불릴만큼 환경에 악영향을 주는 문제가 있다.First, the organic poison type TBT (Tributyltin) is an antifouling paint prepared by mixing TBT with self-polishing acrylic resin or synthetic resin, and its longest antifouling life is about 3 to 5 years, but this material is used for shellfish in shellfish. As a deadly environmental hormone that causes a problem, it has a problem that adversely affects the environment as recently called sea herbicides.
또한, 무기독물형의 이산화구리는 무기계수지에 이산화구리를 배합하여 제조된 방오도료로, 방오수명이 짧고, 초기에 산화구리의 방출이 심한 문제가 있을 뿐만 아니라, 패류에 임포섹스를 일으키는 환경호르몬으로 문제가 있다.In addition, the inorganic poisonous copper dioxide is an antifouling paint prepared by mixing copper dioxide with an inorganic resin, which has a short antifouling life and has a severe problem of releasing copper oxide in the early stages, and also causes environmental hormones in shellfish. There is a problem.
비소계 방오도료는 자기연마형 아크릴수지나 합성도료에 비소계물질을 혼합하여 제조된 것으로, 방오성은 양호하나 맹독성 물질로써, 해양생태계에 심각한 부작용을 유발하는 문제가 있다.Arsenic antifouling paints are manufactured by mixing arsenic materials with self-polishing acrylic resins or synthetic paints, and have good antifouling properties, but have serious problems of causing serious side effects in marine ecosystems.
즉, 이러한 종래 기술은 방오성능 자체는 우수하나 환경적으로 심각한 부작용을 발생시키는 단점이 있어, 방오성능을 유지하면서도 독성이 없고 친환경적인 방오도료의 개발이 요구되고 있다.That is, the conventional technology is excellent in antifouling performance itself, but has a disadvantage of causing serious environmentally adverse side effects, while maintaining antifouling performance, development of an environmentally friendly antifouling paint is required without toxicity.
본 발명의 목적은 안료로서 산화그래핀 나노시트(GO nanosheets), 산화아연입자(ZnO nanoparticles) 및 산화몰리브덴 나노플레이트(MoO3 nanoplates)를 알키드 합성수지에 최적의 비율로 배합하여 페인트 조성물을 제조함으로써, 종래의 페인트에 비해, 내부식성이 우수할 뿐만 아니라, 크롬산염 또는 살생물제와 같은 독성 물질이 없으며, 친환경적인 페인트 조성물을 제공하는데 있다.An object of the present invention is to prepare a paint composition by blending graphene oxide nanosheets (GO nanosheets), zinc oxide particles (ZnO nanoparticles) and molybdenum oxide nanoplates (MoO 3 nanoplates) in an optimal ratio of alkyd resin as a pigment, Compared to the conventional paint, it is not only excellent in corrosion resistance, but also free of toxic substances such as chromates or biocides, and to provide an environmentally friendly paint composition.
본 발명의 다른 목적은 상기 페인트 조성물의 제조 방법을 제공하는데 있다.Another object of the present invention to provide a method for producing the paint composition.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
안료로서 옥사이드 나노구조물 15-20 중량부, 결합제로서 알키드 합성수지 60-70 중량부, 안정화제 0.5-1.0 중량부, 침전방지제 0.3-0.7 중량부, 증점제 0.05-0.15 중량부, 습윤제 0.5-1.0 중량부, 건조제 1.0-2.0 중량부 및 희석제 15-20 중량부를 포함하는 페인트 조성물을 제공한다.15-20 parts by weight of oxide nanostructures as pigments, 60-70 parts by weight of alkyd synthetic resins as binders, 0.5-1.0 parts by weight of stabilizers, 0.3-0.7 parts by weight of precipitation inhibitors, 0.05-0.15 parts by weight of thickeners, 0.5-1.0 parts by weight of wetting agents , 1.0-2.0 parts by weight of a desiccant and 15-20 parts by weight of a diluent are provided.
또한, 본 발명은In addition, the present invention
(a) 안료로서 옥사이드 나노구조물 15-20 중량부, 결합제로서 알키드 합성수지 60-70 중량부, 안정화제 0.5-1.0 중량부, 침전방지제 0.3-0.7 중량부, 증점제 0.05-0.15 중량부, 습윤제 0.5-1.0 중량부, 건조제 1.0-2.0 중량부를 볼-밀링(ball-milling)하여 혼합하는 단계; 및(a) 15-20 parts by weight of oxide nanostructures as pigment, 60-70 parts by weight of alkyd synthetic resin as binder, 0.5-1.0 parts by weight of stabilizer, 0.3-0.7 parts by weight of precipitation inhibitor, 0.05-0.15 parts by weight of thickener, 0.5-wetting agent Ball-milling and mixing 1.0 parts by weight and 1.0-2.0 parts by weight of a desiccant; And
(b) 상기 볼-밀링된 혼합물에 희석제 15-20 중량부를 첨가하고 추가 밀링하여 균질한 페인트 조성물을 얻는 단계를 포함하는, 옥사이드 나노구조물을 포함하는 페인트 조성물의 제조 방법을 제공한다.(b) adding 15-20 parts by weight of the diluent to the ball-milled mixture and further milling to obtain a homogeneous paint composition, the method of producing a paint composition comprising oxide nanostructures.
본 발명에 따른 옥사이드 나노구조물을 포함하는 페인트 조성물은 종래 페인트에 비하여 고체 함량이 높아 경제적이고, 빠르게 건조하며, 크롬산염 또는 살생물제와 같은 독성 물질이 없어, 친환경적이다. 또한, 본 발명에 따른 옥사이드 나노구조물을 포함하는 페인트 조성물은 산성 및 높은 염 함량 용액에서 우수한 내부식성 거동을 나타냈으며, 특히, 직선 편광 연구로부터 측정된 바와 같이, 옥사이드 나노페인트 코팅은 염수에서 약 76%의 부식 보호 효율을 나타냈다. 나아가, 본 발명에 따른 옥사이드 나노구조물을 포함하는 페인트 조성물은 페인팅된 표면 상에 세균 균주(대장균(Escherichia coli), 황색포도상구균(Staphylococcus aureus), 및 녹농균(Pseudomonas aeruginosa))에 대한 성장을 억제하고, 해양 생물의 부착을 억제하는 효과가 뛰어나므로, 일반 철재 구조물 및 선박이나 해양철재 구조물에 사용되는 페인트를 대체하여 유용하게 사용될 수 있다.The paint composition comprising the oxide nanostructures according to the present invention is economical, has a high solids content compared to conventional paints, and dries quickly and is free of toxic substances such as chromates or biocides. In addition, paint compositions comprising oxide nanostructures according to the present invention exhibited good corrosion resistance behavior in acidic and high salt content solutions, in particular oxide nanopaint coatings measured in saline, as measured from linear polarization studies. A corrosion protection efficiency of% was shown. Furthermore, the paint composition comprising oxide nanostructures according to the present invention inhibits the growth of bacterial strains (E. coli ( Escherichia coli ), Staphylococcus aureus , and Pseudomonas aeruginosa ) on the painted surface. In addition, since the effect of inhibiting the attachment of marine organisms is excellent, it can be useful to replace the paint used in general steel structures and ships or marine steel structures.
도 1은 본 발명의 일 실시예에 따른 그래핀 옥사이드 나노시트의 고-해상도 투과 전자 현미경(HR-TEM) 이미지이고, 삽도는 그래핀 옥사이드 나노시트의 선택 영역 전자 회절(SAED) 패턴을 나타낸다.1 is a high-resolution transmission electron microscope (HR-TEM) image of graphene oxide nanosheets according to an embodiment of the present invention, and an inset shows a selective area electron diffraction (SAED) pattern of graphene oxide nanosheets.
도 2는 (a) 본 발명의 일 실시예에 따른 그래핀 옥사이드 나노페인트의 사진, (b) 광택 수준 및 은폐력의 측정을 위해 전압강하(drawdown) 카드상에 페인팅된 본 발명의 일 실시예에 따른 그래핀 옥사이드 나노페인트를 나타낸다.2 is a photograph of a graphene oxide nanopaint according to an embodiment of the present invention, (b) an embodiment of the present invention painted on a drawdown card for measurement of gloss level and hiding power. According to graphene oxide nanopaint.
도 3은 (a) 본 발명의 일 실시예에 따른 알키드 합성수지와 그래핀 옥사이드 나노페인트의 푸리에 변환 적외선 스펙트럼, (b) 본 발명의 일 실시예에 따른 알키드 합성수지와 그래핀 옥사이드 나노페인트의 라만 스펙트럼을 나타낸다. 3 is a Fourier transform infrared spectrum of an alkyd synthetic resin and graphene oxide nanopaint according to an embodiment of the present invention, and (b) a Raman spectrum of an alkyd synthetic resin and graphene oxide nanopaint according to an embodiment of the present invention. Indicates.
도 4는 (a) 본 발명의 일 실시예에 따른알키드 합성수지 및 그래핀 옥사이드 나노페인트의 X-선 광전자 스펙트럼, (b) C-C, C-O-C 및 C-OO 기의 존재를 나타내는 그래핀 옥사이드 나노페인트의 C 1s 비권취된 스펙트럼 (c) 그래핀 옥사이드 나노페인트 코팅의 저 배율 (규모-10 μm) 및 d) 고 배율 (규모-1 μm) FE-SEM 이미지를 나타낸다.Figure 4 is (a) the X-ray photoelectron spectrum of the alkyd synthetic resin and graphene oxide nanopaint according to an embodiment of the present invention, (b) of the graphene oxide nanopaint showing the presence of CC, COC and C-OO groups C 1s unwound spectrum (c) Low magnification (scale-10 μm) and d) high magnification (scale-1 μm) FE-SEM images of graphene oxide nanopaint coatings.
도 5는 코팅되지 않은 (왼쪽) 및 그래핀 옥사이드-페인팅된 (오른쪽) GI 기판의 광학 이미지이다((a) 산에 노출되기 전 및 (b) 0.1 M HCl 용액에서 24 시간 동안 함침 후). FIG. 5 is an optical image of uncoated (left) and graphene oxide-painted (right) GI substrates ((a) before exposure to acid and (b) after impregnation for 24 hours in 0.1 M HCl solution).
도 6은 3.5% NaCl 용액에서 코팅되지 않은 및 그래핀 옥사이드 나노페인트로 코팅된 기판의 선형 편광 곡선을 나타낸다. 6 shows linear polarization curves of substrates uncoated and coated with graphene oxide nanopaint in 3.5% NaCl solution.
도 7은 48 시간 후의 대장균 분포를 나타내는 형광 이미지를 나타낸다((a) 대조군 표면, (b) 그래핀 옥사이드-나노페인트로 코팅된 표면; 살아있는 세포들은 녹색으로, 죽은 세포들은 적색으로 관찰됨 (규모 바(bar)= 8μm), (c) 24 및 48 시간 후에 그래핀 옥사이드 나노페인트-코팅된 표면 상에서 세 개의 상이한 세균 집단에 대한 죽은 세포의 백분율을 나타낸다.FIG. 7 shows fluorescence images showing the E. coli distribution after 48 hours ((a) control surface, (b) surface coated with graphene oxide-nanopaint; live cells green, dead cells red) (scale Bar = 8 μm), (c) the percentage of dead cells for three different bacterial populations on graphene oxide nanopaint-coated surfaces after 24 and 48 hours.
도 8은 (a) 제주 바다와 직접적으로 연결된 조수를 갖는 석호에 함침된 그래핀 옥사이드-나노페인트-코팅된 기판 및 코팅되지 않은 기판, (b) 함침 전 및 3주 후 코팅되지 않은 기판 및 페인팅된 기판의 사진이다.FIG. 8 shows (a) graphene oxide-nanopaint-coated and uncoated substrates impregnated in a lagoon with tide directly connected to Jeju sea, (b) uncoated substrate and painting before and after 3 weeks Of the substrate.
도 9는 산화아연과 알키드 수지의 결합관계를 측정하기 위해, 유리 물질에 산화아연 나노페인트를 코팅하여 XRD 분석을 한 결과이다. FIG. 9 is a result of XRD analysis of coating zinc oxide nanopaint on a glass material in order to measure the binding relationship between zinc oxide and alkyd resin.
도 10은 산화아연과 알키드 수지의 결합관계를 측정하기 위해, 유리 물질에 산화아연 나노페인트를 코팅하여 라만 스펙트럼을 측정한 결과이다.FIG. 10 is a result of measuring Raman spectra by coating zinc oxide nanopaint on a glass material to measure a binding relationship between zinc oxide and alkyd resin.
도 11은 산화아연 나노페인트의 안티포울링 특성 측정 결과 사진이다.11 is a photograph of the measurement results of antifouling properties of zinc oxide nanopaints.
도 12는 산화몰리브덴 나노페인트로 코팅하여 이에 대한 박테리아 생존율을 나타내는 결과로, (a) 대장균의 감소율 (b) 녹농균의 감소율 (c) 황색포도상구균의 감소율 (d) 폐렴 간균의 감소율을 나타낸다. Figure 12 shows the bacterial survival rate by coating with molybdenum oxide nanopaint, (a) the reduction rate of Escherichia coli (b) the reduction rate of Pseudomonas aeruginosa (c) the reduction rate of Staphylococcus aureus (d) the reduction rate of pneumococci.
본 명세서에서 '옥사이드 나노페인트'는 산화그래핀 나노시트(GO nanosheets), 산화아연입자(ZnO nanoparticles) 및 산화몰리브덴 나노플레이트(MoO3 nanoplates)와 같은 옥사이드 나노구조물을 함유하는 페인트 조성물을 의미하며, '옥사이드 나노페인트'와 '옥사이드 나노구조물을 함유하는 페인트 조성물'은 상호 교환적으로 사용된다.In the present specification, 'oxide nano paint' means a paint composition containing oxide nanostructures such as graphene oxide nanosheets (GO nanosheets), zinc oxide particles (ZnO nanoparticles), and molybdenum oxide nanoplates (MoO 3 nanoplates). Oxide nanopaints and paint compositions containing oxide nanostructures are used interchangeably.
본 명세서에서 '페인트'와 '도료'는 같은 의미이며, 명세서 내에서 상호 교환적으로 사용된다.As used herein, 'paint' and 'paint' have the same meaning and are used interchangeably within the specification.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 안료로서 옥사이드 나노구조물 15-20 중량부, 결합제로서 알키드 합성수지 60-70 중량부, 안정화제 0.5-1.0 중량부, 침전방지제 0.3-0.7 중량부, 증점제 0.05-0.15 중량부, 습윤제 0.5-1.0 중량부, 내부 코팅 건조제 0.5-1.0 중량부, 상부 코팅 건조제 0.5-1.0 중량부 및 희석제 15-20 중량부를 포함하는 페인트 조성물을 제공한다.The present invention is 15-20 parts by weight of oxide nanostructures as a pigment, 60-70 parts by weight of alkyd synthetic resin as a binder, 0.5-1.0 parts by weight of stabilizer, 0.3-0.7 parts by weight of precipitation inhibitor, 0.05-0.15 parts by weight of thickener, 0.5-wetting agent. A paint composition comprising 1.0 part by weight, 0.5-1.0 part by weight of the internal coating desiccant, 0.5-1.0 part by weight of the top coating desiccant and 15-20 parts by weight of the diluent.
본 발명에 따른 페인트 조성물 중, 안료로서 사용된 옥사이드 나노구조물에 있어서, 상기 옥사이드는 그래핀 옥사이드, 아연 옥사이드(산화아연) 또는 몰리브덴 옥사이드를 사용할 수 있다.In the oxide nanostructures used as pigments in the paint composition according to the present invention, the oxide may use graphene oxide, zinc oxide (zinc oxide) or molybdenum oxide.
'그래핀(graphene)'은 흑연을 뜻하는 그래파이트(graphite)와 화학에서 탄소 이중결합을 가진 분자를 뜻하는 접미사 -ene을 결합해 만든 용어이다. 이름에서도 알 수 있듯이 그래핀은 탄소로 이루어진 동소체인 흑연에서 관찰되어진 물질이다. 전자현미경으로 연필심을 확대해 보면 켜켜이 쌓인 얇은 판이 관찰된다. 탄소원자들이 무수히 연결돼 6각형의 벌집 모양으로 수없이 쌓아올린 3차원 구조이다. 그래핀은 여기서 가장 얇게 한 겹을 떼어낸 것이라고 보면 된다. 즉 탄소 원자 한 층으로 되어 있는, 두께 0.35nm의 2차원 평면 형태의 얇은 막 구조이다. 이러한 그래핀 화합물은 3차원으로 쌓이면 흑연, 1차원적으로 말리면 탄소나노튜브, 공 모양이 되면 0차원 구조인 풀러렌(fullerene)이라 한다. 그래핀은 지난 2004년, 영국 맨체스터 대학의 연구팀에서 상온에서 처음으로 제작되었다.Graphene is a combination of graphite, which means graphite, and the suffix -ene, which means a molecule with a carbon double bond in chemistry. As the name suggests, graphene is the substance observed in graphite, an allotrope of carbon. Magnifying a pencil lead with an electron microscope reveals a stack of thin plates. It is a three-dimensional structure of numerous carbon atoms stacked in a hexagonal honeycomb. Graphene is the thinnest layer here. That is, it is a thin film structure of the two-dimensional planar form of thickness 0.35 nm which consists of one layer of carbon atoms. Such graphene compounds are called fullerenes, which are graphite when stacked in three dimensions, carbon nanotubes when dried in one dimension, and zero-dimensional structures when they become balls. Graphene was first produced at room temperature in 2004 by a team at the University of Manchester, England.
'그래핀 옥사이드'는 그래핀이 산화된 형태의 화합물로 에폭실, 하이드록실, 카노닐과 같은 다양한 기능기를 가지고 있다. 상기 그래핀 옥사이드 나노시트는 생체적합성 및 무독한 성질로 인해 인체에 무해하며, 친환경적인 장점이 있다.Graphene oxide is a compound in which the graphene is oxidized and has various functional groups such as epoxyl, hydroxyl, and canonyl. The graphene oxide nanosheets are harmless to the human body due to biocompatibility and non-toxic properties, and have environmentally friendly advantages.
또한 상기 아연 옥사이드(산화아연; ZnO)"는 산소와 아연의 화합물로서 가벼운 백색 분말이며 아연화, 아연백이라고도 하며, 의약품, 안료, 화장품의 원료로 사용된다. 산화아연은 가벼운 백색 분말로 녹는점 1,975℃(가압), 1,720℃(상압)이며, 비중 5.47(비결정성), 5.78(결정성)이며, 약 300℃로 가열하면 황색으로 변하지만, 식히면 원래의 빛깔이 된다. 물에는 거의 녹지 않지만, 묽은 산 및 진한 알칼리에는 녹는 양쪽성산화물이다.In addition, the zinc oxide (zinc oxide; ZnO) "is a compound of oxygen and zinc, which is a light white powder, also referred to as zinc or zinc bag, and is used as a raw material for medicines, pigments and cosmetics. Zinc oxide is a light white powder, melting point 1,975 ℃ (pressurization), 1,720 ℃ (atmospheric pressure), specific gravity 5.47 (non-crystalline), 5.78 (crystalline), when heated to about 300 ℃ turns yellow, but when cooled to its original color. Dilute acids and concentrated alkalis are soluble amphoteric oxides.
상기 몰리브덴은 쉽게 산화형태로 변화하므로 산화-환원방응에서 전자전달물질로 작용할 수 있으며, 몰리브덴 옥사이드는 산화된 몰리브덴을 일컫는 말이다.Since the molybdenum is easily converted into an oxidized form, the molybdenum may act as an electron transport material in the oxidation-reduction reaction, and the molybdenum oxide refers to the oxidized molybdenum.
또한 상기 본 발명에 따른 옥사이드 나노구조물 종래 당 업계에 알려진 방법에 의해 제조할 수 있으며, 예를 들면 문헌[Krishnamoorthy K, et al., Carbon 2012, 53:38-49; Krishnamoorthy K, et al., Appl. Phys. Lett. 2011,98:244101(1-3)] 등에 기재된 방법을 이용하여 제조할 수 있으나, 이에 제한되는 것은 아니다.The oxide nanostructures according to the present invention may also be prepared by methods known in the art, for example, Krishnamoorthy K, et al., Carbon 2012, 53: 38-49; Krishnamoorthy K, et al., Appl. Phys. Lett. 2011,98: 244101 (1-3)] and the like can be prepared using, but is not limited thereto.
상기 그래핀 옥사이드 나노시트는 도 1에 나타낸 바와 같이, 모서리에서 접혀진 영역의 존재를 가진 시트 같은 모폴로지를 나타내었다. 대응하는 선택 영역 전자 회절 (SAED) 패턴은 6-겹 대칭을 갖는 명확한 회절 점을 나타내며, 이는 육방격자와 일치한다. 상기 그래핀 옥사이드 나노시트의 라만 스펙트럼은 넓은 D 밴드 (1350 cm-1) 및 G 밴드 (1597 cm-1)의 존재를 나타내며, 이는 그래파이트가 산화하여 그래핀 옥사이드를 형성하기 때문이다.The graphene oxide nanosheets exhibited a sheet-like morphology with the presence of folded regions at the corners, as shown in FIG. 1. The corresponding selective area electron diffraction (SAED) pattern shows a clear diffraction point with six-fold symmetry, which coincides with the hexagonal lattice. The Raman spectra of the graphene oxide nanosheets show the presence of wide D bands (1350 cm −1 ) and G bands (1597 cm −1 ) since graphite oxidizes to form graphene oxide.
본 발명에 따른 페인트 조성물에 있어서, 상기 옥사이드 나노시트의 함량은 15-20 중량부인 것이 바람직하다. In the paint composition according to the invention, the content of the oxide nanosheets is preferably 15-20 parts by weight.
본 발명에 따른 페인트 조성물 중, 상기 알키드 합성수지는 결합제의 역할을 하며, 페인트 조성물의 대부분을 차지한다. 상기 알키드 합성수지의 함량은 60-70 중량부인 것이 바람직하다.In the paint composition according to the present invention, the alkyd synthetic resin serves as a binder and occupies most of the paint composition. The content of the alkyd synthetic resin is preferably 60 to 70 parts by weight.
결합제 내의 안료의 균질한 혼합물을 얻는 것은 우수한 표면 마감을 위해 매우 중요하다. 분산을 향상시키기 위해, 상기 결합제의 표면 에너지는 최소화되어야 하고, 이는 습윤제의 첨가에 의해 성취될 수 있다. 본 발명에 따른 페인트 조성물에 있어서, 상기 습윤제로서 콩 레시틴을 사용할 수 있으며, 이때, 상기 콩 레시틴은 0.5-1.0 중량부를 사용하는 것이 바람직하다. 상기 습윤제의 부재는 그래핀 옥사이드 나노시트의 응집 때문에 불균일한 표면 마감을 유발할 수 있다.Obtaining a homogeneous mixture of pigments in the binder is very important for good surface finish. In order to improve dispersion, the surface energy of the binder should be minimized, which can be achieved by the addition of wetting agents. In the paint composition according to the present invention, soybean lecithin can be used as the humectant, wherein the soybean lecithin is preferably used 0.5-1.0 parts by weight. The absence of the humectant can cause non-uniform surface finish due to the aggregation of graphene oxide nanosheets.
본 발명에 따른 페인트 조성물에 있어서, 상기 건조제는 제형화를 위해 사용되고, 이때 건조제로서 외부 건조제 및 내부 건조제를 사용할 수 있다.In the paint composition according to the invention, the desiccant is used for the formulation, whereby an external desiccant and an internal desiccant can be used.
상기 외부 건조제는 지질 산화 공정을 위한 활성 촉매이고, 이는 더욱 빠른 건조 시간과 표면 상에 더욱 균질한 코팅을 야기한다. 상기 내부 건조제는 불포화 지방산을 위한 화학적 가교-결합제이고, 이는 건조 동안 가교-결합의 속도를 향상시킨다.The external desiccant is an active catalyst for the lipid oxidation process, which results in faster drying times and more homogeneous coatings on the surface. The internal desiccant is a chemical cross-linker for unsaturated fatty acids, which improves the rate of cross-linking during drying.
본 발명에 따른 일 구현예의 페인트 조성물에 있어서, 상기 외부 건조제는 코발트 나프테네이트를 사용하는 것이 바람직하나, 이에 제한되는 것은 아니고, 그 함량은 0.5-1.0 중량부인 것이 바람직하다. 본 발명에 따른 페인트 조성물에 있어서, 상기 내부 건조제는 나노크기의 지르코니아를 사용하는 것이 바람직하나, 이에 제한되는 것은 아니고, 그 함량은 0.5-1.0 중량부인 것이 바람직하다. 이들 건조제들은 그래핀 옥사이드 나노페인트의 건조 시간을 현저하게 감소시킨다. In the paint composition of one embodiment according to the present invention, the external desiccant preferably uses cobalt naphthenate, but is not limited thereto, and its content is preferably 0.5-1.0 parts by weight. In the paint composition according to the present invention, the internal desiccant preferably uses nano-sized zirconia, but is not limited thereto, and its content is preferably 0.5-1.0 parts by weight. These desiccants significantly reduce the drying time of the graphene oxide nanopaints.
본 발명에 따른 일 구현예의 페인트 조성물에 있어서, 점도를 조절하고 응고를 방지하기 위해 증점제 및 침전방지제를 사용할 수 있으며, 그 함량은 각각 증점제 0.05-0.15 중량부 및 침전방지제 0.3-0.7 중량부를 사용하는 것이 바람직하다. 일례로서, 상기 증점제로는 시판되는 증점제 A를 사용할 수 있고, 침전방지제로는 알루미늄 스테아레이트를 사용할 수 있으나, 이에 제한되는 것은 아니다.In the paint composition of one embodiment according to the present invention, thickeners and precipitation inhibitors may be used to adjust the viscosity and prevent solidification, the content of which is 0.05-0.15 parts by weight and 0.3-0.7 parts by weight of precipitation inhibitor, respectively. It is preferable. As an example, commercially available thickener A may be used as the thickener, and aluminum stearate may be used as the precipitation inhibitor, but is not limited thereto.
본 발명에 따른 일 구현예의 페인트 조성물에 있어서, 장기간 저장할 경우 알키드 합성수지 내의 그래핀 옥사이드 나노시트의 분리를 억제하고, 또한 색-바램을 감소시키기 위해 안정화제를 사용할 수 있으며, 일례로서 상기 안정화제로서 나노크기의 ZnO를 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 안정화제는 페인트 조성물 전체 중량에 대하여 0.5-1.0 중량부를 사용하는 것이 바람직하다.In the paint composition of one embodiment according to the present invention, a stabilizer may be used to inhibit the separation of graphene oxide nanosheets in the alkyd synthetic resin and also to reduce the color fading when stored for a long period of time. Nano-sized ZnO may be used, but is not limited thereto. The stabilizer is preferably used 0.5 to 1.0 parts by weight based on the total weight of the paint composition.
본 발명에 따른 일 구현예의 페인트 조성물에 있어서, 희석제는 합성수지 및 그래핀 옥사이드 나노시트를 효과적으로 고르게 혼합함으로써, 방오성능 및 도포작업성을 향상시키는 역할을 하며, 광물계 용제, 에테르계 용제, 글리시딜에테르계 용제, 알코올계 용제, 에테르계 용제, 에스테르계 용제, 케톤계 용제, 탄화수소계 용제 또는 질소계 용제 중 적어도 하나인 것이 바람직하며, 더욱 바람직하게는 광물계 용제, 더욱더 바람직하게는 광물 테레빈유인 것이 효과적이다. 상기 희석제의 함량은 점도에 따라 달라질 수 있으나, 일반적으로 15-20 중량부를 사용하는 것이 바람직하다.In the paint composition of one embodiment according to the present invention, the diluent serves to effectively and evenly mix the synthetic resin and graphene oxide nanosheets, thereby improving antifouling performance and coating work, mineral solvent, ether solvent, glycidyl It is preferably at least one of an ether solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a hydrocarbon solvent or a nitrogen solvent, more preferably a mineral solvent and even more preferably a mineral terebin oil. effective. The content of the diluent may vary depending on the viscosity, but generally it is preferable to use 15-20 parts by weight.
또한, 본 발명은 상기 페인트 조성물의 제조 방법을 제공한다.The present invention also provides a method for producing the paint composition.
본 발명에 따른 페인트 조성물의 제조 방법은,Method for producing a paint composition according to the invention,
(a) 안료로서 옥사이드 나노구조물 15-20 중량부, 결합제로서 알키드 합성수지 60-70 중량부, 안정화제 0.5-1.0 중량부, 침전방지제 0.3-0.7 중량부, 증점제 0.05-0.15 중량부, 습윤제 0.5-1.0 중량부, 건조제 1.0-2.0 중량부를 볼-밀링(ball-milling)하여 혼합하는 단계; 및 (b) 상기 볼-밀링된 혼합물에 희석제 15-20 중량부를 첨가하고 추가 밀링하여 균질한 페인트 조성물을 얻는 단계를 포함한다.(a) 15-20 parts by weight of oxide nanostructures as pigment, 60-70 parts by weight of alkyd synthetic resin as binder, 0.5-1.0 parts by weight of stabilizer, 0.3-0.7 parts by weight of precipitation inhibitor, 0.05-0.15 parts by weight of thickener, 0.5-wetting agent Ball-milling and mixing 1.0 parts by weight and 1.0-2.0 parts by weight of a desiccant; And (b) adding 15-20 parts by weight of the diluent to the ball-milled mixture and further milling to obtain a homogeneous paint composition.
본 발명에 따른 페인트 조성물의 제조 방법은 상기 페인트 조성물을 볼-밀링 공정에 의해 균질하게 혼합하여 제조함에 특징이 있으며, 양 발명의 공통된 내용은 반복 기재에 따른 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The method for producing a paint composition according to the present invention is characterized in that the paint composition is homogeneously mixed by a ball-milling process, and the common contents of both inventions are described in order to avoid excessive complexity of the specification according to the repeated description. Omit.
이때, 상기 볼-밀링은 대략 300 rpm의 밀링 속도로 4-6 시간 동안 유지한 후, 희석제를 첨가하고 추가 20분-1시간 동안 밀링을 유지하는 것을 특징으로 한다.At this time, the ball milling is characterized by maintaining for 4-6 hours at a milling speed of approximately 300 rpm, then adding a diluent and maintaining milling for an additional 20 minutes-1 hour.
본 발명에 따른 옥사이드 나노페인트의 건조 메커니즘은 알키드 합성수지의 지질 자동산화에 의존하고, 이는 대기 중의 산소에 존재하는 잘 알려진 자유-라디칼 메커니즘이다[Muizebelt WJ, et al., Prog. Org. Coat. 2000, 40:121-30; Bieleman, JH., Wiley-VCH, Weinheim, 2000]. 알키드 합성수지 내의 폴리불포화 지방산은 자유 라디칼-매개 사슬 반응에 의한 가교-결합을 겪고, 그 결과, 표면 상에 건조된 균일한 필름 코팅이 유발된다[Schaich KM. Baileys Industrial Oil and Fat Products. 6th ed. Edited by Fereidoon Shahidi. John Wiley & Sons, Inc; 2005]. 페인트 내의 그래핀 옥사이드 안료의 존재는 긴 사슬 지방산의 산화, 중합 및 이온화를 위한 그래핀 옥사이드의 카보촉매적(carbocatalytic) 특성 때문에 지질 자동-산화 반응을 용이하게 할 수 있다[Liu Y, et al., Rapid Commun. Mass Spectrom. 2011;25:3223-34]. 그래핀 옥사이드는 산화적 중합 동안 거대분자와 쉽게 가교-결합될 수 있고, 이는 거대분자의 성장을 위한 주형(template)으로서 작용한다[Park S, et al., ACS Nano. 2008;4:572-78]. 볼-밀 공정 동안, 그래핀 옥사이드 나노시트는 알키드 합성수지 내에 존재하는 지질 분자와 정전기 상호작용 및 수소 결합을 통해 가교-결합하고, 이는 균질한 검정색 페인트의 형성을 야기한다. 마찬가지로, 그래핀 옥사이드 나노시트는 건조 공정 동안 충분한 양의 산소를 제공함으로써 지질 자동산화 공정을 촉매할 것이다. 특히, 자동산화 공정 중에 발생하는 자유 라디칼 때문에 그래핀 옥사이드의 부분적 환원이 일어날 수 있으며, 이는 세균의 호흡, 자유 라디칼 환원을 통한, 및 화학적 기능화 동안 그래핀 옥사이드 환원에 대한 이전의 보고[Akhavan O, et al., Carbon 2012, 50:1853-60; Vinodgopal K, et al., J. Phys. Chem. Lett. 2010;1:1987-93]와 일치한다.The drying mechanism of the oxide nanopaints according to the invention relies on lipid autooxidation of alkyd synthetic resins, which is a well-known free-radical mechanism present in atmospheric oxygen [Muizebelt WJ, et al., Prog. Org. Coat. 2000, 40: 121-30; Bieleman, JH., Wiley-VCH, Weinheim, 2000]. Polyunsaturated fatty acids in alkyd resins undergo cross-linking by free radical-mediated chain reactions, resulting in a uniform film coating dried on the surface [Schaich KM. Baileys Industrial Oil and Fat Products. 6th ed. Edited by Fereidoon Shahidi. John Wiley & Sons, Inc; 2005]. The presence of graphene oxide pigments in paints can facilitate lipid auto-oxidation reactions due to the carbocatalytic properties of graphene oxide for the oxidation, polymerization and ionization of long chain fatty acids [Liu Y, et al. , Rapid Commun. Mass Spectrom. 2011; 25: 3223-34. Graphene oxide can easily cross-link with macromolecules during oxidative polymerization, which acts as a template for the growth of macromolecules [Park S, et al., ACS Nano. 2008; 4: 572-78. During the ball-mill process, graphene oxide nanosheets are cross-linked through electrostatic interaction and hydrogen bonding with lipid molecules present in the alkyd resin, which leads to the formation of a homogeneous black paint. Likewise, graphene oxide nanosheets will catalyze the lipid autooxidation process by providing a sufficient amount of oxygen during the drying process. In particular, partial reduction of graphene oxide can occur due to free radicals occurring during the autooxidation process, which has been reported previously for graphene oxide reduction via bacterial respiration, free radical reduction, and during chemical functionalization [Akhavan O, et al., Carbon 2012, 50: 1853-60; Vinodgopal K, et al., J. Phys. Chem. Lett. 2010; 1: 1987-93.
상기 방법에 의해 제조된 옥사이드 나노페인트는 종래 페인트에 비하여 고체 함량이 높아 경제적이고, 빠르게 건조하며, 크롬산염 또는 살생물제와 같은 독성 물질이 없어, 친환경적이다. 또한, 도 5에 나타내 바와 같이, 상기 옥사이드 나노페인트는 산성 및 높은 염 함량 용액에서 우수한 내부식성 거동을 나타냈으며, 특히, 도 6에 나타낸 바와 같이, 직선 편광 연구에서 염수에서 약 76%의 부식 보호 효율을 나타냈다. 나아가, 상기 옥사이드 나노페인트는 도 7에 나타낸 바와 같이, 페인팅된 표면 상에 세균 균주(대장균(Escherichia coli), 황색포도상구균(Staphylococcus aureus), 및 녹농균(Pseudomonas aeruginosa))에 대한 성장을 억제하고, 도 8에 나타낸 바와 같이, 해양 생물의 부착을 억제하는 효과가 뛰어났다. 따라서, 본 발명에 따른 옥사이드 나노페인트는 일반 철재 구조물 및 선박이나 해양철재 구조물에 사용되는 페인트를 대체하여 유용하게 사용될 수 있다.The oxide nanopaint prepared by the above method is economical because it has a higher solids content than conventional paints, is fast drying, and is environmentally friendly since there is no toxic substance such as chromate or biocide. In addition, as shown in FIG. 5, the oxide nanopaints exhibited good corrosion resistance behavior in acidic and high salt content solutions, and in particular, as shown in FIG. 6, about 76% corrosion protection in saline in linear polarization studies. Efficiency was shown. Furthermore, the oxide nanopaints inhibit growth against bacterial strains (E. coli ( Esherichia coli ), Staphylococcus aureus , and Pseudomonas aeruginosa ) on the painted surface, as shown in FIG. As shown in FIG. 8, the effect of suppressing the attachment of marine organisms was excellent. Therefore, the oxide nanopaint according to the present invention may be usefully used in place of paint used in general steel structures and ships or marine steel structures.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited to these examples.
<실시예 1> <Example 1>
그래핀 옥사이드 나노시트를 포함하는 페인트 조성물(그래핀 옥사이드 나노페인트)의 제조Preparation of Paint Composition (Graphene Oxide NanoPaint) Including Graphene Oxide Nanosheets
<1-1> 그래핀 옥사이드 나노시트의 합성 <1-1> Synthesis of Graphene Oxide Nanosheets
상기 그래핀 옥사이드 나노시트를 문헌 [Krishnamoorthy K, et al., J. Phys. Chem. C 2012;116:17280-87]에서 기재된 바와 같이, 수정된 허머스(Hummers) 방법에 따라 합성하였다.The graphene oxide nanosheets are described in Krishnamoorthy K, et al., J. Phys. Chem. C 2012; 116: 17280-87, according to the modified Hummers method.
도 1은 그래핀 옥사이드 나노시트의 고-해상도 투과 전자 현미경 (HR-TEM) 이미지를 나타내고, 이는 모서리에서 접혀진 영역의 존재를 가진 시트 같은 모폴로지를 나타내었다. 대응하는 선택 영역 전자 회절 (SAED) 패턴은 6-겹 대칭을 갖는 명확한 회절 점을 나타내며, 이는 육방격자와 일치한다. 이들 결과는 이전의 Wilson 등[Wilson NR, et al., ACS Nano 2009;3:2547-56]의 발견과 일치하였다. 1 shows a high-resolution transmission electron microscopy (HR-TEM) image of graphene oxide nanosheets, which shows a sheet-like morphology with the presence of folded regions at the corners. The corresponding selective area electron diffraction (SAED) pattern shows a clear diffraction point with six-fold symmetry, which coincides with the hexagonal lattice. These results are consistent with previous findings by Wilson et al. (Wilson NR, et al., ACS Nano 2009; 3: 2547-56).
그래핀 옥사이드 나노시트의 라만 스펙트럼은 넓은 D 밴드 (1350 cm-1) 및 G 밴드(1597 cm-1)의 존재를 나타내며, 이로부터 그래파이트가 산화하여 그래핀 옥사이드를 형성함을 확인하였다[Krishnamoorthy K, et al., Carbon 2012;53:38-49]. 갓-합성된 그래핀 옥사이드 나노시트는 그래핀 옥사이드 나노페인트의 제조에 사용되었다.Raman spectra of graphene oxide nanosheets indicate the presence of wide D bands (1350 cm -1 ) and G bands (1597 cm -1 ), from which graphite was oxidized to form graphene oxide [Krishnamoorthy K , et al., Carbon 2012; 53: 38-49. Freshly synthesized graphene oxide nanosheets were used to prepare graphene oxide nanopaints.
<1-2> 그래핀 옥사이드(GO) 나노페인트의 제조 <1-2> Preparation of graphene oxide (GO) nanopaint
그래핀 옥사이드 나노시트가 결합된 알키드 페인트를 볼-밀링 접근을 이용하여 제조하였다. 상기 페인트는 안료로서 그래핀 옥사이드를 사용하였고, 결합제, 증점제, 습윤제, 내부 코팅 건조제, 외부 코팅 건조제, 희석제, 및 안정화제에 대한 다른 추가적 첨가제는 표 1에 나열된 바와 같다. Alkyd paints incorporating graphene oxide nanosheets were prepared using a ball-milling approach. The paint used graphene oxide as pigment, and other additional additives for binders, thickeners, wetting agents, internal coating desiccants, external coating desiccants, diluents, and stabilizers are listed in Table 1.
Figure PCTKR2014010531-appb-I000001
Figure PCTKR2014010531-appb-I000001
간단하게, 페인트의 모든 성분(희석제 제외)을 텅스텐 카바이드 사발에 넣고 텅스텐 카바이드 볼을 사용하여 밀링하였다. 볼 대 분말 중량비를 10:1로 유지하고, 대략 300 rpm의 밀링 속도로, 5 시간 동안 유지하였다. 이후, 희석제를 첨가하였고, 밀링을 30분 동안 계속하였고, 그 결과 도 2에 나타낸 바와 같이 검은색의 균질한 그래핀 옥사이드 나노페인트가 형성되었다. 최종 생성물을 수집하여 이후 특성분석을 위해 밀폐된 용기에 보관하였다. Briefly, all components of the paint (except diluent) were placed in a tungsten carbide bowl and milled using tungsten carbide balls. The ball to powder weight ratio was maintained at 10: 1 and maintained at a milling speed of approximately 300 rpm for 5 hours. Thereafter, the diluent was added and milling continued for 30 minutes, resulting in black homogeneous graphene oxide nanopaint as shown in FIG. 2. The final product was collected and stored in a closed container for later characterization.
<실시예 2> <Example 2>
산화아연(ZnO) 나노입자를 포함하는 페인트의 제조Preparation of Paints Containing Zinc Oxide (ZnO) Nanoparticles
산화아연(ZnO)이 결합된 알키드 페인트를 볼-밀링 접근을 이용하여 제조하였다. 상기 페인트는 안료로서 산화아연을 사용하였고, 결합제, 증점제, 습윤제, 내부 코팅 건조제, 외부 코팅 건조제, 희석제, 및 안정화제에 대한 다른 추가적 첨가제는 표 2에 나열된 바와 같다. Alkyd paints bound with zinc oxide (ZnO) were prepared using a ball-milling approach. The paint used zinc oxide as pigment, and other additional additives for binders, thickeners, wetting agents, internal coating desiccants, external coating desiccants, diluents, and stabilizers are listed in Table 2.
표 2
첨가제 물질 목적 중량%
안료 ZnO 나노입자 페인트의 색 제공 20.0
결합제 알키드 수지 페인트의 필름-형성 성분 60.0
안정화제 나노크기의 ZnO 페인트의 색 바램 효과 감소 0.6
침전방지제 알루미늄 스테아레이트 안료 및 결합제의 침전 방지 0.5
증점제 폴리비닐 알콜 점도 향상 및 응고 방지 0.1
습윤제 콩 레시틴 균질한 분산을 위해 결합제 내의 안료에 습윤 0.6
내부 코팅 건조제 나노크기의 지르코니아 불포화 지방산의 화학적 가교-결합 0.6
외부 코팅 건조제 코발트 나프테네이트 지질 자동산화 진행을 위한 활성 촉매 0.6
희석제(용매) 톨루엔 분산 17.0
TABLE 2
additive matter purpose weight%
Pigment ZnO Nanoparticles Provide color of paint 20.0
Binder Alkyd resin Film-forming composition of paint 60.0
Stabilizer Nano-sized ZnO Reduced the color fading effect of paint 0.6
Precipitation inhibitor Aluminum stearate Prevention of precipitation of pigments and binders 0.5
Thickener Polyvinyl alcohol Improve viscosity and prevent solidification 0.1
Humectant Soy lecithin Wetting on the pigments in the binder for homogeneous dispersion 0.6
Internal coating desiccant Nanosized Zirconia Chemical cross-linking of unsaturated fatty acids 0.6
Exterior coating desiccant Cobalt naphthenate Active Catalysts for Lipid Autooxidation 0.6
Thinner (solvent) toluene Dispersion 17.0
간단하게, 페인트의 모든 성분(희석제 제외)을 텅스텐 카바이드 사발에 넣고 텅스텐 카바이드 볼을 사용하여 6시간 동안 밀링하여 제조하였다.Briefly, all components of the paint (except diluents) were prepared by placing them in a tungsten carbide bowl and milling for 6 hours using tungsten carbide balls.
<실시예 3> <Example 3>
산화몰리브덴(MoOMolybdenum Oxide (MoO) 33 ) 나노플레이트를 포함하는 페인트 조성물의 제조) Preparation of Paint Composition Comprising Nanoplates
<3-1> 산화몰리브덴(MoO 3 ) 나노페인트의 제조 <3-1> Preparation of molybdenum oxide (MoO 3 ) nanopaint
산화몰리브덴 나노플레이트가 결합된 알키드 페인트를 볼-밀링 접근을 이용하여 제조하였다. 상기 페인트는 안료로서 몰리브덴을 사용하였고, 결합제, 증점제, 습윤제, 내부 코팅 건조제, 외부 코팅 건조제, 희석제, 및 안정화제에 대한 다른 추가적 첨가제는 표 3에 나열된 바와 같다. Alkyd paints bonded with molybdenum oxide nanoplates were prepared using a ball-milling approach. The paint used molybdenum as pigment, and other additional additives for binders, thickeners, wetting agents, internal coating desiccants, external coating desiccants, diluents, and stabilizers are listed in Table 3.
표 3
첨가제 물질 목적 중량%
안료 산화몰리브덴 나노시트 페인트의 색 제공 20.0
결합제 아마인 알키드 수지 페인트의 필름-형성 성분 60.0
안정화제 나노크기의 ZnO 페인트의 색 바램 효과 감소 0.6
침전방지제 알루미늄 스테아레이트 안료 및 결합제의 침전 방지 0.5
증점제 증점제 A 점도 향상 및 응고 방지 0.1
습윤제 콩 레시틴 균질한 분산을 위해 결합제 내의 안료에 습윤 0.6
내부 코팅 건조제 나노크기의 지르코니아 불포화 지방산의 화학적 가교-결합 0.6
외부 코팅 건조제 코발트 나프테네이트 지질 자동산화 진행을 위한 활성 촉매 0.6
희석제(용매) 광물 테레빈유 분산 17.0
TABLE 3
additive matter purpose weight%
Pigment Molybdenum Oxide Nanosheets Provide color of paint 20.0
Binder Flax Seed Alkyd Resin Film-forming composition of paint 60.0
Stabilizer Nano-sized ZnO Reduced the color fading effect of paint 0.6
Precipitation inhibitor Aluminum stearate Prevention of precipitation of pigments and binders 0.5
Thickener Thickener A Improve viscosity and prevent solidification 0.1
Humectant Soy lecithin Wetting on the pigments in the binder for homogeneous dispersion 0.6
Internal coating desiccant Nanosized Zirconia Chemical cross-linking of unsaturated fatty acids 0.6
Exterior coating desiccant Cobalt naphthenate Active Catalysts for Lipid Autooxidation 0.6
Thinner (solvent) Mineral turpentine Dispersion 17.0
페인트의 모든 성분(희석제 제외)을 텅스텐 카바이드 사발에 넣고 텅스텐 카바이드 볼을 사용하여 밀링하였다. 볼 대 분말 중량비를 10:1로 유지하고, 대략 300 rpm의 밀링 속도로, 5 시간 동안 유지하였다. 이후, 희석제를 첨가하였고, 밀링을 30분 동안 계속하였고, 그 결과 도 2에 나타낸 바와 같이 검은색의 균질한 그래핀 옥사이드 나노페인트가 형성되었다. 최종 생성물을 수집하여 이후 특성분석을 위해 밀폐된 용기에 보관하였다. All components of the paint (except diluent) were placed in a tungsten carbide bowl and milled using tungsten carbide balls. The ball to powder weight ratio was maintained at 10: 1 and maintained at a milling speed of approximately 300 rpm for 5 hours. Thereafter, the diluent was added and milling continued for 30 minutes, resulting in black homogeneous graphene oxide nanopaint as shown in FIG. 2. The final product was collected and stored in a closed container for later characterization.
<실험예 1> Experimental Example 1
그래핀 옥사이드 나노페인트의 특성 측정Characterization of Graphene Oxide Nanopaints
<1-1> 광택 측정 및 은폐력 <1-1> Gloss measurement and hiding power
다기능성 필름 도포기를 이용하여 약 150 μm의 조절된 두께로 전압강하(drawdown) 카드 상에 일정 양의 페인트를 도포함으로써 그래핀 옥사이드 나노페인트의 은폐력 및 광택 수준을 시험하였다. 먼저, 1 g의 페인트를 전압강하 카드에 놓고 다기능성 필름 도포기를 이용하여 편 다음 실온에서 건조하였다. 이후, 바탕 색(검정 또는 흰색)이 페인트에 의해 덮이는지 아닌지 시험함으로써 페인트의 은폐력을 육안으로 관찰하였다. 광택 측정은 라즈하니(Rajdhani) 디지털 광택 미터기(RSPT-200 model, 인도)를 이용하여 수행하였다. The hiding power and gloss levels of graphene oxide nanopaints were tested by applying a certain amount of paint on a drawdown card with a controlled thickness of about 150 μm using a multifunctional film applicator. First, 1 g of paint was placed on a drop-down card, cut using a multifunctional film applicator, and then dried at room temperature. The hiding power of the paint was then visually observed by testing whether the background color (black or white) was covered by the paint. Gloss measurement was performed using a Rajdhani digital gloss meter (RSPT-200 model, India).
그 결과, 도 2b로부터 나타난 바와 같이, 은폐력에 있어서, 그래핀 옥사이드 나노페인트는 전압강하 카드의 검정색 및 흰색 배경 모두를 완벽하게 감추었다. 그래핀 옥사이드 나노페인트의 광택 수준은 60에서 75 GU였다. ASTM(시험 및 물질을 위한 미국 기준) 기준에 따르면, 60에서 적어도 60 GU의 코팅은 고-광택 표면으로서 분류되고, 이는 본 발명에 따른 그래핀 옥사이드 나노페인트의 우수한 표면 마감을 증명한다.As a result, as shown in FIG. 2B, in hiding power, the graphene oxide nanopaint completely concealed both the black and white background of the voltage drop card. The gloss level of graphene oxide nanopaints was 60 to 75 GU. According to ASTM (American Standard for Testing and Materials) standards, 60 to at least 60 GU coatings are classified as high-gloss surfaces, which demonstrates the excellent surface finish of graphene oxide nanopaints according to the present invention.
<1-2> 그래핀 옥사이드 나노페인트의 고체 함량 측정 <1-2> Solid content measurement of graphene oxide nanopaint
페인트의 고체 함량은 페인트 내의 전체 성분의 중량에 대한 고체상 성분의 비율이다. 깨끗하고, 건조된 시계 유리에 1 g의 페인트를 건조함으로써 페인트에 존재하는 고체의 양을 결정하였다. 초기 및 최종 중량 측정치를 기반으로, 그래핀 옥사이드 및 시판 페인트의 고체 함량은 하기 식을 이용하여 평가하였다.The solids content of the paint is the ratio of the solid phase components to the weight of the total components in the paint. The amount of solids present in the paint was determined by drying 1 g of paint on a clean, dried watch glass. Based on the initial and final weight measurements, the solids content of graphene oxide and commercial paints was evaluated using the following formula.
페인트의 고체 함량 (%) = [W2 / W1] × 100 ……………………………… (1)Solid content of paint (%) = [W 2 / W 1 ] × 100... … … … … … … … … … … … (One)
여기서 W1은 페인트의 초기 중량이고, W2는 건조 후 페인트의 중량이다.Where W 1 is the initial weight of the paint and W 2 is the weight of the paint after drying.
식 (1)에 의해 계산된 바와 같이, 그래핀 옥사이드 나노페인트의 고체 함량은 64.24%였으나, 시판되는 페인트는 단지 39.21%였다. 이는 그래핀 옥사이드 나노페인트가 시판 페인트보다 더욱 경제적일 수 있음을 의미한다. 그래핀 옥사이드 나노페인트에 대하여 표면 건조시간, 굳기까지 건조 시간 및 덧칠하기까지 건조시간은 각각 1, 3, 및 6 시간으로 관찰되었다. 그래핀 옥사이드 나노페인트에 대한 건조시간은 시판 페인트보다 더 빨랐다.As calculated by equation (1), the solids content of graphene oxide nanopaint was 64.24%, but only 39.21% of commercial paints. This means that graphene oxide nanopaints can be more economical than commercial paints. For the graphene oxide nanopaints, surface drying time, drying time to hardening and drying time to coating were observed as 1, 3, and 6 hours, respectively. Drying times for graphene oxide nanopaints were faster than commercial paints.
<1-3> 분광학적 조사 및 표면 분석 <1-3> Spectroscopic Investigation and Surface Analysis
알키드 합성수지와 그래핀 옥사이드 나노시트 간의 결합 상호작용의 이해를 증진시키기 위해, 푸리에 변환 적외선(FT-IR) 분광학, 레이져 라만 분광학, 및 X-선 광전자 분광학(XPS)을 사용하여 분석하였다. To enhance the understanding of the binding interactions between alkyd resins and graphene oxide nanosheets, they were analyzed using Fourier transform infrared (FT-IR) spectroscopy, laser Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS).
도 3a는 코팅되지 않은 알키드 합성수지와 최종 그래핀 옥사이드 나노페인트의 FT-IR 스펙트럼을 나타낸다. Figure 3a shows the FT-IR spectrum of the uncoated alkyd synthetic resin and the final graphene oxide nanopaints.
코팅되지 않은 알키드 합성수지의 FT-IR 스펙트럼은 C-O 결합 (1070 cm-1), 뿐만 아니라 평면상의 C-H 진동 (1121 cm-1), C-O-C기 (1261 cm-1), 피롤 고리 (1459 cm-1, 1579 cm-1), C-C 신축 (1600 cm-1), 카복실기 (1730 cm-1) 및 메틸 및 메틸렌기 내의 C-H 진동 (2800-3000 cm-1)의 존재를 나타낸다. 모든 이들 관능기는 그래핀 옥사이드 나노페인트, 뿐만 아니라 그래핀 옥사이드 나노시트에서 존재하는 산소함유 관능기의 FT-IR 스펙트럼에서 보존된다. 에폭실, 히드록실, 카보닐, 및 카복실 기의 스펙트럼 특성이 알키드 합성수지의 스펙트럼에 더하여진다. 그러나, 알키드 합성수지 내의 C-H 기의 강도는 (2800-3000 cm-1) 그래핀 옥사이드 나노페인트에서 현저하게 감소되었고, C-C 진동 때문에 피크는 청색-이동하였다. 카보닐 기 내의 변화는 그래핀 옥사이드 나노페인트에서 일어나는 화학적 가교-결합 공정에 기인한다. 이러한 실험은 그래핀 옥사이드와 알키드 합성수지 간의 정전기 상호작용 및/또는 수소 결합의 결과로서 그래핀 옥사이드 나노페인트 내에서 구조적 변화가 일어남을 시사한다.The FT-IR spectra of the uncoated alkyd resins are CO bonds (1070 cm -1 ), as well as planar CH vibrations (1121 cm -1 ), COC groups (1261 cm -1 ), pyrrole rings (1459 cm -1 , 1579 cm −1 ), CC stretching (1600 cm −1 ), carboxyl group (1730 cm −1 ), and CH vibrations (2800-3000 cm −1 ) in the methyl and methylene groups. All these functional groups are conserved in the FT-IR spectrum of graphene oxide nanopaints, as well as the oxygen-containing functional groups present in the graphene oxide nanosheets. The spectral characteristics of the epoxy, hydroxyl, carbonyl, and carboxyl groups add to the spectrum of the alkyd synthetic resin. However, the strength of the CH groups in the alkyd synthetic resin was significantly reduced in (2800-3000 cm −1 ) graphene oxide nanopaints, and the peaks were blue-shifted due to CC oscillation. The change in carbonyl groups is due to the chemical cross-linking process that occurs in graphene oxide nanopaints. This experiment suggests that structural changes occur in graphene oxide nanopaints as a result of electrostatic interactions and / or hydrogen bonding between graphene oxide and alkyd resins.
라만 분광학은 나노물질의 결합 특성, 결정도, 결함, 및 변위 그리고 또한 기능성 코팅을 연구하기 위해 사용되는 비파괴성 분석 중 하나이다. FT-IR 스펙트럼 이외에도 나노페인트 내의 그래핀 옥사이드과 알키드 합성수지 간에서 일어나는 결합 상호작용을 연구하기 위해, 도 3b에 제공된 바와 같이 알키드 합성수지와 그래핀 옥사이드 나노페인트의 라만 스펙트럼을 조사하였다. 알키드 합성수지의 라만 스펙트럼은 각각 1265 cm-1, 1443 cm-1, 1675 cm-1, 2900 cm-1, 및 3100 cm-1에서 특징적 밴드를 나타낸다. FT-IR 스펙트럼과 대조적으로, 알키드 합성수지의 라만 스펙트럼에서 관찰되는 밴드는 그래핀 옥사이드 나노페인트의 스펙트럼에서 완전히 사라졌으며 단지 sp3 탄소에 대응하는 밴드(1610 cm-1) 및 탄소 물질에서의 결함 (1350 cm-1)이 관찰되었다 [41,42]. 페인트 내의 알키드 합성수지의 라만 밴드의 사라짐은 그래핀 옥사이드의 형광 특성에 기인될 수 있다. 이는 Palus 등의 실험 결과와 일치한다[Palus JZ, et al., J. Mol. Struct. 2011;993:134-41]. sp3 탄소(1610 cm-1) 내의 이동이 그래핀 옥사이드 나노시트에 비해 나노페인트의 스펙트럼에서 관찰되었고, 이는 알키드 합성수지의 첨가에 의한 sp3 도메인에서의 증가를 암시하였다.Raman spectroscopy is one of the nondestructive analyzes used to study the binding properties, crystallinity, defects, and displacement of nanomaterials and also functional coatings. In addition to the FT-IR spectra, the Raman spectra of the alkyd synthetic resin and the graphene oxide nanopaint were examined as shown in FIG. 3B to study the binding interactions between the graphene oxide and the alkyd synthetic resin in the nanopaint. Raman spectra of alkyd synthetic resins exhibit characteristic bands at 1265 cm −1 , 1443 cm −1 , 1675 cm −1 , 2900 cm −1 , and 3100 cm −1 , respectively. In contrast to the FT-IR spectra, the bands observed in the Raman spectra of alkyd resins disappeared completely from the spectra of graphene oxide nanopaints, with only bands corresponding to sp 3 carbon (1610 cm −1 ) and defects in carbon material ( 1350 cm-1) was observed [41,42]. The disappearance of the Raman band of the alkyd resin in the paint can be attributed to the fluorescence properties of graphene oxide. This is consistent with the results of Palus et al. [Palus JZ, et al., J. Mol. Struct. 2011; 993: 134-41. Migration in sp 3 carbon (1610 cm −1 ) was observed in the spectrum of nanopaints compared to graphene oxide nanosheets, suggesting an increase in the sp 3 domain by the addition of alkyd synthetic resin.
그래핀 옥사이드 나노페인트의 표면 상태 및 조성을 XPS 분석에 의해 조사하였다. 도 4a는 알키드 합성수지 및 그래핀 옥사이드 나노페인트의 XPS 측정 스펙트럼을 나타낸다. 도 4a로부터 상기 그래핀 옥사이드 나노페인트는 알키드 합성수지와 비교시 산소 함량의 증가를 나타내었고, 이는 그래핀 옥사이드 내의 산소함유 관능기의 존재 때문이다. 코팅되지 않은 알키드 합성수지와 그래핀 옥사이드 나노페인트의 XPS 스펙트럼으로부터 계산된 C/O 비율은 각각 3.75 및 3.29이었다. C-1s 비권취된 스펙트럼이 도 4b에 나타났고, 이는 각각 285.4 eV, 286.37 eV, 및 288.88 eV에서 C-C, C-O-C, 및 C-OO 기의 존재를 나타내고, 이로부터 알키드 합성수지 내의 지방산 및 에스테르기의 존재를 확인하였다. ZnO 및 ZrO를 비롯하여 페인트의 기타 성분들에 대응하는 피크는 XPS 데이터에서 관찰되지 않았고, 이는 이들 성분들의 낮은 질량 비율 때문이다. The surface state and composition of graphene oxide nanopaints were investigated by XPS analysis. 4A shows XPS measurement spectra of alkyd resin and graphene oxide nanopaints. The graphene oxide nanopaints from Figure 4a showed an increase in oxygen content compared to alkyd synthetic resins, due to the presence of oxygen-containing functional groups in graphene oxide. The C / O ratios calculated from the XPS spectra of the uncoated alkyd resin and the graphene oxide nanopaint were respectively 3.75 and 3.29. The C-1s unwinded spectrum is shown in FIG. 4B, indicating the presence of CC, COC, and C-OO groups at 285.4 eV, 286.37 eV, and 288.88 eV, respectively, from which fatty acid and ester groups in the alkyd resin Confirmed its presence. Peaks corresponding to other components of the paint, including ZnO and ZrO, were not observed in the XPS data because of the low mass ratio of these components.
페인팅된 표면의 표면 모폴로지를 전계 방출 주사 전자 현미경 (FE-SEM) 연구를 이용하여 조사하였다. 도 4c 및 4d는 각각 페인트 코팅의 저-배율 및 고-배율 이미지를 나타낸다. 양쪽 이미지는 기판 상의 페이트의 균일한 코팅을 나타내고, FE-SEM 데이터에서 공극률은 관찰되지 않았다. 페인트 내에서 그래핀 옥사이드 나노시트의 존재는 이들 이미지로부터 구별되지 않았고, 이는 페인트의 균질한 혼합물을 제조함에 있어서 볼-밀링 공정의 유효성에 기인한다.The surface morphology of the painted surface was investigated using field emission scanning electron microscopy (FE-SEM) studies. 4C and 4D show low- and high-magnification images of the paint coating, respectively. Both images showed a uniform coating of the pate on the substrate and no porosity was observed in the FE-SEM data. The presence of graphene oxide nanosheets in the paint was not distinguished from these images due to the effectiveness of the ball-milling process in preparing a homogeneous mixture of paints.
<실험예 2> Experimental Example 2
부식 억제 시험Corrosion inhibition test
그래핀 옥사이드 나노페인트의 부식 억제 특성(산성 환경에서)을 중량-손실 방법에 의해 측정하였다. 이 실험을 위해, 브러쉬 코팅(brush coating)을 이용하여 그래핀 옥사이드 나노페인트를 아연철(GI) 기판 위에 코팅하였다. 코팅되지 않은 GI 기판(대조군)과 페인트된 GI 기판을 실온에서 0.1 N HCl에 24시간 동안 침지시켰다. 이후, 기판을 비커에서 꺼내어 증류수에 침지시켜 산성 불순물을 제거하고 실온에서 건조하였다. 반응 전후의 각각의 기판의 중량을 측정하여 코팅의 부식 억제 정도를 계산하는데 사용하였다. 실험을 세 번 반복하여 수행하고, 평균 값을 기록하였다.Corrosion inhibition properties (in acidic environment) of graphene oxide nanopaints were determined by weight-loss method. For this experiment, graphene oxide nanopaint was coated onto a zinc iron (GI) substrate using brush coating. The uncoated GI substrate (control) and the painted GI substrate were immersed in 0.1 N HCl for 24 hours at room temperature. Thereafter, the substrate was removed from the beaker and immersed in distilled water to remove acidic impurities and dried at room temperature. The weight of each substrate before and after the reaction was measured and used to calculate the degree of corrosion inhibition of the coating. The experiment was repeated three times and the average value was recorded.
도 5는 산에서 함침 전후의 두 GI 기판 표면의 광학 이미지를 나타낸다; 함침 후, 금속의 산화 때문에 코팅되지 않은 GI 기판 상에 녹이 형성되었다. 그러나, 그래핀 옥사이드 나노페인트로 코팅된 GI 기판에는 (녹의 형성 또는 박리와 같은) 유의적인 변화가 관찰되지 않았고, 이는 갓 제조된 페인트의 산성 환경에서의 안정성을 시사한다. 정량적으로, 그래핀 옥사이드 나노페인트 코팅의 부식 억제 효율을 식 (2)의 중량 손실법에 의해 연구하였다.5 shows optical images of two GI substrate surfaces before and after impregnation in acid; After impregnation, rust was formed on the uncoated GI substrate due to oxidation of the metal. However, no significant changes (such as rust formation or delamination) were observed on GI substrates coated with graphene oxide nanopaints, suggesting stability in the acidic environment of freshly prepared paints. Quantitatively, the corrosion inhibition efficiency of graphene oxide nanopaint coatings was studied by the weight loss method of formula (2).
억제 효율 % = [(W코팅되지 않음 - W코팅됨)/W코팅되지 않음] × 100,………………(2)Inhibition Efficiency% = [(W uncoated -W coated ) / W uncoated ] × 100,... … … … … … (2)
여기서 W코팅되지 않음은 코팅되지 않은 기판의 중량 손실이고, 그리고 W코팅됨은 그래핀 옥사이드 나노페인트로 코팅된 기판의 중량 손실이다.Where W uncoated is the weight loss of the uncoated substrate, and W coated is the weight loss of the substrate coated with graphene oxide nanopaint.
그 결과, 그래핀 옥사이드 나노페인트 코팅의 부식-억제 효율은 약 88.70%이었고, 이는 산성 저항 코팅에서의 그래핀 옥사이드 나노페인트의 잠재적 유용성을 시사한다. As a result, the corrosion-inhibition efficiency of the graphene oxide nanopaint coating was about 88.70%, indicating the potential usefulness of graphene oxide nanopaint in acid resistant coatings.
<실험예 3> Experimental Example 3
전기화학적 부식 연구Electrochemical Corrosion Research
Autolab PGSTAT 정전류법/정전위법 시스템[Chang CH, et al., Carbon 2012;50:5044-51]을 이용하여 전기화학적 시험(전위 역학적 편광 측정)에 의해 염수에서 나노페인트 코팅의 부식 억제 특성을 측정하였다. 측정은 3.5% NaCl 전해질 용액에서 실온에서 수행하였다. 관습적 삼-전극계 전지에서 백금 상대 전극 및 은/염화은(Ag/AgCl) 기준 전극, 작동 전극으로서 시험 시료(1 cm2의 노출 영역)가 함께 사용되었다. 편광 측정 전에, 개방 회로 전위(OCP)를 1시간 동안 모니터링하여 안정성을 확인하였다. 일단 안정한 OCP를 결정한 후, 상기 OCP에 대하여 선형 청소 전압전류법의 상한 및 하한 전위 한계를 각각 +200 및 -200 mV으로 세팅하였다. 청소 속도는 1 mV.s-1이었다. 부식 전위 Ecorr 및 부식 전류 Icorr를 타펠(Tafel) 외삽법에 의해 결정하였다. Determination of Corrosion Inhibitory Properties of Nanopaint Coatings in Brine by Electrochemical Testing (potential Mechanical Polarization Measurement) Using an Autolab PGSTAT Constant Current / Copotential System [Chang CH, et al., Carbon 2012; 50: 5044-51] It was. The measurement was performed at room temperature in a 3.5% NaCl electrolyte solution. In a conventional three-electrode cell, a platinum counter electrode, a silver / silver chloride (Ag / AgCl) reference electrode, and a test sample (exposed area of 1 cm 2 ) were used as the working electrode. Prior to the polarization measurement, the open circuit potential (OCP) was monitored for 1 hour to confirm the stability. Once the stable OCP was determined, the upper and lower potential limits of linear sweep voltammetry were set to +200 and -200 mV, respectively, for the OCP. The cleaning speed was 1 mV · s −1 . Corrosion potential E corr and corrosion current I corr were determined by Tafel extrapolation.
타펠 전기화학적 분석은 금속 내의 부식의 연구를 위해 사용되는 표준 방법 중 하나이다. 금속의 부식 거동은 금속의 금속이온으로의 양극 산화와 산화 반응 동안 사라지는 전자들을 활용하는 음극 환원을 조합하여 고려함으로써 설명될 수 있다. 두 반응은 동시에 일어나며, 그러므로 이들 반응의 제한은 부식의 억제를 유발한다.Tafel electrochemical analysis is one of the standard methods used for the study of corrosion in metals. Corrosion behavior of metals can be explained by combining anodic oxidation of the metal to metal ions and cathodic reduction utilizing electrons that disappear during the oxidation reaction. Both reactions occur at the same time, so the limitation of these reactions leads to the inhibition of corrosion.
코팅되지 않은 GI 기판 및 그래핀 옥사이드 나노페인트로 코팅된 GI 기판 둘다에 대하여 3.5% NaCl 용액에서 측정된 전위 역학적 편광 곡선을 도 6에 나타내었다. 코팅되지 않은 GI 기판 및 페인팅된 기판에 대한 부식 전위 Ecorr, 및 부식 전류 밀도 Icorr를 타펠 식에 넣음으로써 상기 편광 곡선으로부터 계산하였다. 도 6으로부터 페인팅된 기판의 양극 전류 밀도는 코팅되지 않은 기판보다 한 자리수 이상 작았음이 분명하다. 이는 그래핀 옥사이드 나노페인트 코팅이 기판으로부터 금속이온의 용해를 현저히 감소시켰음을 설명한다. GI 기판의 측정된 Ecorr는 -1047 mV였고, 페인팅된 기판은 -995 mV였다. 페인팅된 기판의 Ecorr에서의 이동은 약 +52 mV이었고, Icorr에서의 현저한 감소도 동반하였으며, 이는 그래핀 옥사이드 나노페인트가 기판과 부식성 환경 사이의 보호 층으로서 작용함으로써 코팅되지 않은 기판의 부식 저항성을 현저하게 향상시킴을 시사한다. 그래핀 옥사이드 나노페인트 코팅의 보호 효율 Pi는 하기 식으로부터 계산되는 편광 곡선으로부터 얻었다:The potential mechanical polarization curves measured in 3.5% NaCl solution for both the uncoated GI substrate and the GI substrate coated with graphene oxide nanopaint are shown in FIG. 6. The corrosion potentials E corr , and the corrosion current density I corr for uncoated GI substrates and painted substrates were calculated from the polarization curves by the Tafel equation. It is clear from FIG. 6 that the anode current density of the painted substrate was at least one order of magnitude lower than that of the uncoated substrate. This explains that the graphene oxide nanopaint coating significantly reduced the dissolution of metal ions from the substrate. The measured E corr of the GI substrate was -1047 mV and the painted substrate was -995 mV. The movement of the painted substrate in the E corr was about +52 mV, accompanied by a significant decrease in the I corr , which corroded the uncoated substrate by acting as graphene oxide nanopaint as a protective layer between the substrate and the corrosive environment. It suggests that the resistance is significantly improved. The protective efficiency P i of the graphene oxide nanopaint coating was obtained from the polarization curve calculated from the following equation:
Pi (%) = [1 - (Icorr/ I'corr )] × 100,……………………………………(3) P i (%) = [1 - (I corr / I 'corr)] × 100, ... … … … … … … … … … … … … … (3)
여기서 Icorr 및 I'corr는 각각 그래핀 옥사이드 나노페인트로 코팅된 기판 및 코팅되지 않은 키판의 부식 전류 밀도이다. Where I corr and I ' corr are the corrosion current densities of substrates coated with graphene oxide nanopaint and uncoated keys, respectively.
그래핀 옥사이드 나노페인트의 보호 효율은 76.61%로 계산되고 이는 이 페인트의 부식 저항성 코팅에서의 적용을 시사한다.The protective efficiency of graphene oxide nanopaint is calculated to be 76.61%, suggesting the application of this paint in corrosion resistant coatings.
<실험예 4> Experimental Example 4
항균 및 항생물부착 특성 연구Antimicrobial and Antibiotic Adhesion Study
<4-1> 세균 균주 <4-1> bacterial strain
미생물 대장균(Escherichia coli) (MTCC739), 황색포도상구균(Staphylococcus aureus) (MTCC96), 및 녹농균(Pseudomonas aeruginosa) (MTCC1688)을 세균형 균주 수집 및 유전자 은행(IMTECH, 찬디가르(Chandigarh), 인도)로부터 얻었고, 배양기 (Sigma Aldrich, India)에서 유지시켰다. Microbial Escherichia coli (MTCC739), Staphylococcus aureus (MTCC96), and Pseudomonas aeruginosa (MTCC1688) were collected from bacterial strains and from the Gene Bank (IMTECH, Chandigarh, India). Were obtained and maintained in an incubator (Sigma Aldrich, India).
<4-2> 그래핀 옥사이드 나노페인트의 항균 활성 <4-2> Antimicrobial Activity of Graphene Oxide Nanopaint
미량 희석법에 의해 그래핀 옥사이드 나노시트의 항균 활성을 결정하였고, 이에 대응하는 최소 저해 농도 (MIC)를 측정하였다.The microbial activity of the graphene oxide nanosheets was determined by microdilution and the corresponding minimum inhibitory concentration (MIC) was determined.
그 결과, 대장균, 황색포도상구균, 및 녹농균에 대한 그래핀 옥사이드 나노시트의 MIC 값은 각각 0.5, 0.5, 및 1 μg/mL이었다. 이로부터 그래핀 옥사이드 나노시트의 항균 특성을 알 수 있다.As a result, the MIC values of the graphene oxide nanosheets for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were 0.5, 0.5, and 1 μg / mL, respectively. From this, the antimicrobial properties of the graphene oxide nanosheets can be seen.
또한, 문헌[Akhavan, O., et al., J. Mater. Chem. 21, 9634-9640, (2011)]을 이용하여 그래핀 옥사이드 나노페인트로 코팅된 표면의 항균 특성을 평가하였다. See also Akhavan, O., et al., J. Mater. Chem. 21, 9634-9640, (2011)] to evaluate the antimicrobial properties of the surface coated with graphene oxide nanopaints.
구체적으로, 코팅된 및 코팅되지 않은(즉, 대조군) 표면을 105 CFU/mL의 초기 농도의 배양액에서 각각 200 μL의 미생물에게 노출시켰다. 이들은 이후 공기 건조시키고 실온에서 유지시켰다. 노출 기간(24시간 및 48시간) 이후, 물질 표면을 2 mL의 배양액으로 세 번 세정하였다. 세정된 배양액을 한천 희석법에 의한 군락 계수(colony counting)에 사용하였고, 죽은 세포의 분획을 가늠하는 데 사용하였다. Specifically, the coated and uncoated (ie, control) surfaces were exposed to 200 μL of microorganisms, respectively, in culture at an initial concentration of 10 5 CFU / mL. They were then air dried and kept at room temperature. After the exposure period (24 and 48 hours), the material surface was washed three times with 2 mL of culture. The washed culture was used for colony counting by agar dilution and to count fractions of dead cells.
배양액을 이용하여 10-배의 일련의 희석액을 제조하여 영양 한천 플레이트 상에 뿌리고, 37 ℃에서 24 시간 동안 배양하였다. 모든 실험은 세 번씩 수행하였다. 각각의 시료에서 군락의 수를 기록하고, 다음과 같이 세균 감소의 백분율을 계산하였다.A 10-fold serial dilution was prepared using the culture, sprinkled onto nutrient agar plates and incubated at 37 ° C. for 24 hours. All experiments were performed three times. The number of colonies in each sample was recorded and the percentage of bacterial reduction was calculated as follows.
세균 감소 (%) = [(A - B)/A] × 100,……………………………………(4) Bacterial reduction (%) = [(A-B) / A] x 100,... … … … … … … … … … … … … … (4)
여기에서 A는 코팅되지 않은 표면의 생균의 수이고, B는 페인팅된 표면상의 생균의 수이다.Where A is the number of live bacteria on the uncoated surface and B is the number of live bacteria on the painted surface.
도 7c는 24 및 48 시간 후의 그래핀 옥사이드 나노페인트의 상의 세균 집단의 백분율 손실을 나타낸다. 재현성을 보장하기 위해 항균 시험을 세 번 반복하여 수행하였고, 최소한도의 두 가지 상이한 시간을 사용하였다. 그 결과, 배양 24 시간 후, 페인팅된 표면 상의 살아있는 세포의 분포는 대장균, 황색포도상구균, 및 녹농균에 대하여 각각 76, 73, 및 69%까지 감소되었다. 또한, 48 시간 후, 페인팅된 표면은 대장균, 황색포도상구균, 및 녹농균에 대하여 각각 94, 88, 및 85%의 살아있는 세포를 억제하였다. 이로부터 본 발명에 따른 그래핀 옥사이드 나노페인트가 모든 시험된 세균 균주의 성장을 억제하였고, 장시간 노출에 사멸 속도를 증가시킴을 알 수 있다.7C shows the percentage loss of bacterial populations in the phase of graphene oxide nanopaints after 24 and 48 hours. The antimicrobial test was repeated three times to ensure reproducibility and at least two different times were used. As a result, after 24 hours of culture, the distribution of viable cells on the painted surface was reduced by 76, 73, and 69% for E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa, respectively. In addition, after 48 hours, the painted surface inhibited 94, 88, and 85% of living cells, respectively, against E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa. From this it can be seen that the graphene oxide nanopaint according to the present invention inhibited the growth of all tested bacterial strains and increased the rate of death upon prolonged exposure.
<4-3> 살아있는/죽은 세균 분석 연구 <4-3> Live / Dead Bacterial Assays
추가적으로, 본 발명자들은 항균 코팅의 용도를 위한 나노페인트의 항균 특성을 연구하는 실험을 수행하였다. 이 실험에서, 페인팅된 기판 및 코팅되지 않은 기판 모두를 24 및 48 시간 동안 세균 배양액에 노출시켰고, 이후, 표면을 영양액으로 세정하였다. 세정된 영양액을 세균 세포 생존능에 대하여 분석하였다.In addition, we conducted experiments to study the antimicrobial properties of nanopaints for the use of antimicrobial coatings. In this experiment, both the painted and uncoated substrates were exposed to bacterial culture for 24 and 48 hours, after which the surfaces were washed with nutrient solution. The washed nutrient solution was analyzed for bacterial cell viability.
구체적으로, 세정된 영양액을 원심분리하고, 펠렛을 살아있는/죽은 BacLight 키트 (Molecular Probes, Invitrogen, Carlsbad, CA)를 이용하여 제조사의 프로토콜에 따라 착색시켰다. SYTO 9 및 프로피디움 요오드화물의 혼합물을 포함하는 착색물을 3% 디메틸설폭사이드 및 이중-증류수의 혼합물에 용해시키고, 15분 동안 배양하였다. 이 공정에서 온전한 세포막을 가진 살아있는 세균은 녹색으로 착색되었고, 반면 손상된 막을 가진 죽은 세균은 적색으로 착색되었다. 이들 두 염료에 대한 여기 및 발광 최고치는 각각 SYTO 9 착색물에 대하여 480 및 500 nm이고 프로피디움 요오드화물에 대하여 490 및 635 nm였다.Specifically, the washed nutrient solution was centrifuged and the pellets stained using the live / dead BacLight kit (Molecular Probes, Invitrogen, Carlsbad, Calif.) According to the manufacturer's protocol. Colors comprising a mixture of SYTO 9 and propidium iodide were dissolved in a mixture of 3% dimethylsulfoxide and double-distilled water and incubated for 15 minutes. In this process, living bacteria with intact cell membranes were colored green, while dead bacteria with damaged membranes were colored red. Excitation and emission peaks for these two dyes were 480 and 500 nm for SYTO 9 colorants and 490 and 635 nm for propidium iodide, respectively.
그 결과, 도 7a에 나타낸 바와 같이, 코팅되지 않은 표면에서 세균 배양액의 노출은 48시간 후에 상당 수의 살아있는 세포를 야기했으나, 도 7b에 나타낸 바와 같이 페인팅된 표면에서는 세균 집단이 거의 대부분 죽은 세포들로 이루어져 있음을 알 수 있었다. As a result, as shown in FIG. 7A, exposure of the bacterial culture on the uncoated surface resulted in a significant number of viable cells after 48 hours, while on the painted surface as shown in FIG. 7B, most of the bacterial population was dead. It was found to consist of.
<4-4> 인시츄(In situ) 해양 항-생물부착 실험 <4-4> In situ marine anti-biofouling experiment
세균 집락은 생물막의 형성에서 첫번째 단계이고, 상기 생물막은 선체의 주요 부분의 표면 상에 생물 부착의 집락을 유발한다. 해양 생물부착은 미 해군 함대(US Navy fleet)에서만 연간 2억 6천만 달러의 비용이 추산되며, 해양 산업에 상당한 문제이다. 해양 항생물부착 페인트에 대한 현재의 문제는 자연에 해로운 독성 살생물제의 방출이다. 따라서, 집락을 억제하기 위한 비-오염 접근이 매우 바람직하다.Bacterial colonies are the first step in the formation of biofilms, which induce colony of biofouling on the surface of the main part of the hull. Marine biofouling is estimated at $ 260 million annually in the US Navy fleet alone, and is a significant problem for the marine industry. The current problem with marine antimicrobial paints is the release of toxic biocides that are harmful to nature. Thus, a non-pollution approach to inhibit colonies is highly desirable.
이에, 코팅되지 않은 및 그래핀 옥사이드 나노페인트로 코팅된 GI 기판 (2 × 2 cm)을 도 8a에 나타낸 바와 같이, 3 주의 기간 동안 제주 바다에 연결되어 있는 조수 석호에 있는 바다물에 침지시켰다. 이후, 상기 기판을 회수하여, 생물부착(fouling)을 관찰하였다.Thus, an uncoated and graphene oxide nanopaint coated GI substrate (2 × 2 cm) was immersed in seawater in a tide lagoon connected to Jeju sea for a period of 3 weeks, as shown in FIG. 8A. Thereafter, the substrate was recovered, and biofouling was observed.
그 결과, 도 8 b에 나타낸 바와 같이, 3주 후, 코팅되지 않은 표면은 상당한 생물부착이 관찰되었으나, 페인팅된 표면은 뚜렷한 생물부착이 관찰되지 않았다. 게다가, 상기 그래핀 옥사이드 나노페인트는 크롬산염 또는 살생물제와 같은 독성 물질이 없으며, 이는 그래핀 옥사이드 나노페인트가 환경적 영향을 현저히 감소시킴을 시사한다.As a result, as shown in FIG. 8B, after 3 weeks, significant bioadhesion was observed on the uncoated surface, but no obvious bioadhesion was observed on the painted surface. Moreover, the graphene oxide nanopaints are free of toxic substances such as chromates or biocides, suggesting that graphene oxide nanopaints significantly reduce environmental impact.
<실험예 5> Experimental Example 5
산화아연(ZnOZinc Oxide (ZnO 33 ) 나노페인트의 특성 분석) Characterization of Nano Paint
<5-1> 분광학적 조사 및 표면 분석<5-1> Spectroscopic Investigation and Surface Analysis
알키드 합성수지와 산화아연 나노입자 간의 결합 상호작용의 이해를 증진시키기 위해, XRD 분석을 하였다. To improve the understanding of the binding interaction between alkyd resin and zinc oxide nanoparticles, XRD analysis was performed.
산화아연 나노페인트가 코팅된 유리 물질의 XRD는 산화아연의 징카이트(zincite)에 상응하는 회절 피크를 보였다. 2θ에서의 피크 31.77, 34.42, 36.25, 47.54, 56.59, 62.85, 66.32, 67.95, 69.02 및 72.79 온도는 (100), (002), (110), (103), (200), (112), (201) 및 (004) 육각 징카이트 산화아연 입자의 반사선에 할당되었고, 육각 징카이트 상태의 산화아연과 일치하였다(도 9 참조).XRD of the zinc oxide nanopaint coated glass material showed a diffraction peak corresponding to the zincite of zinc oxide. Peaks at 2θ 31.77, 34.42, 36.25, 47.54, 56.59, 62.85, 66.32, 67.95, 69.02 and 72.79 Temperatures are (100), (002), (110), (103), (200), (112), ( 201) and (004) hexagonal zinc oxide zinc oxide particles were assigned to the reflection line and coincided with the zinc oxide in the hexagonal zinc oxide state (see FIG. 9).
나노페인트 내의 산화아연과 알키드 합성수지 간에서 일어나는 결합 상호작용을 연구하기 위해, 도 3b에 제공된 바와 같이 알키드 합성수지와 산화아연 나노페인트의 라만 스펙트럼을 조사하였다. 알키드 합성수지의 라만 스펙트럼은 각각 439 cm-1에서 특징적 밴드를 나타낸다(도 10 참조).To study the binding interactions that occur between zinc oxide and alkyd synthetic resin in nanopaints, Raman spectra of alkyd synthetic resin and zinc oxide nanopaints were examined as provided in FIG. 3B. Raman spectra of the alkyd synthetic resin show characteristic bands at 439 cm −1 , respectively (see FIG. 10).
<실험예 6> Experimental Example 6
산화아연(ZnOZinc Oxide (ZnO 33 ) 나노페인트의 특성 분석) Characterization of Nano Paint
<6-1> 산화아연 나노페인트의 안티포울링 특성 분석 <6-1> Antifouling Characterization of Zinc Oxide Nanopaint
산화아연 나노입자는 항박테리아 물질로 산화아연 나노페인트가 표면의 박테리아의 성장을 억제한다는 것을 이전의 연구를 통해 밝힌바 있으며, 이러한 이유로 제주바다의 라군(lagoon)에서 산화아연 나노페인트의 안티포울링(antifouling) 특성을 시험하였다.Zinc oxide nanoparticles are antibacterial materials that have been shown in previous studies that zinc oxide nanopaints inhibit the growth of bacteria on the surface, which is why anti-fouling of zinc oxide nanopaints in the lagoon of Jeju sea. The antifouling properties were tested.
나노페인트를 코팅하지 않은 표면과 산화아연 나노페인트로 코팅한 표면은 1달간 담궈 포울링 효과를 관찰하였다. 그 결과, 산화아연 나노페인트 표면이 바이오포울링(biofouling)을 억제했음을 명확히 드러내어 산화아연 나노페인트의 안티포울링 페인트로 사용 가능함을 확인하였다(도 11 참조).Surfaces not coated with nanopaint and coated with zinc oxide nanopaint were immersed for 1 month to observe the fouling effect. As a result, it was clearly revealed that the zinc oxide nanopaint surface inhibited biofouling, confirming that it can be used as an antifouling paint of zinc oxide nanopaint (see FIG. 11).
<실험예 7> Experimental Example 7
MoOMoO 33 의 항균 특성 연구Study on antimicrobial properties
<7-1> 세균 균주 <7-1> bacterial strain
미생물 대장균(Escherichia coli) (ATCC 25922), 황색포도상구균(Staphylococcus aureus) (ATCC 25923), 녹농균(Pseudomonas aeruginosa) (ATCC 27853) 및 폐렴간균(klebsiella pneumoniae) (ATCC 10031)을 항균활성을 평가하기 위해 사용하였다. Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), and klebsiella pneumoniae (ATCC 10031) for the evaluation of antimicrobial activity Used.
<7-2> 몰리브덴(MoO 3) 나노페인트의 항균 활성 <7-2> Antimicrobial Activity of Molybdenum (MoO 3) Nanopaint
미량 희석법에 의해 몰리브덴(MoO3) 나노플레이트의 항균 활성을 결정하였고, 이에 대응하는 최소 저해 농도 (MIC)를 측정하였다.The antimicrobial activity of molybdenum (MoO 3 ) nanoplates was determined by microdilution method and the corresponding minimum inhibitory concentration (MIC) was determined.
그 결과, 대장균, 황색포도상구균, 녹농균 및 폐렴간균에 대한 몰리브덴(MoO3) 나노플레이트의 MIC 값은 각각 8, 8, 16, 및 32 μg/mL-1이었다. 이로부터 몰리브덴 나노플레이트의 항균 특성을 알 수 있다.As a result, the MIC values of the molybdenum (MoO 3 ) nanoplates for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Pneumococcus were 8, 8, 16, and 32 μg / mL −1 , respectively. From this, the antibacterial properties of the molybdenum nanoplates can be seen.
또한, 문헌[Akhavan, O., et al., J. Mater. Chem. 21, 9634-9640, (2011)]을 이용하여 몰리브덴 나노페인트로 코팅된 표면의 항균 특성을 평가하였다. See also Akhavan, O., et al., J. Mater. Chem. 21, 9634-9640, (2011)] to evaluate the antimicrobial properties of the surface coated with molybdenum nanopaint.
구체적으로, 코팅된 및 코팅되지 않은(즉, 대조군) 표면을 105 CFU/mL의 초기 농도의 배양액에서 각각 200 μL의 미생물에게 노출시켰다. 이들은 이후 공기 건조시키고 실온에서 유지시켰다. 노출 기간(24시간 및 48시간) 이후, 물질 표면을 2 mL의 배양액으로 세 번 세정하였다. 세정된 배양액을 한천 희석법에 의한 군락 계수(colony counting)에 사용하였고, 죽은 세포의 분획을 가늠하는 데 사용하였다. Specifically, the coated and uncoated (ie, control) surfaces were exposed to 200 μL of microorganisms, respectively, in culture at an initial concentration of 10 5 CFU / mL. They were then air dried and kept at room temperature. After the exposure period (24 and 48 hours), the material surface was washed three times with 2 mL of culture. The washed culture was used for colony counting by agar dilution and to count fractions of dead cells.
배양액을 이용하여 10-배의 일련의 희석액을 제조하여 영양 한천 플레이트 상에 뿌리고, 37 ℃에서 24 시간 동안 배양하였다. 모든 실험은 세 번씩 수행하였다. 각각의 시료에서 군락의 수를 기록하고, 다음과 같이 세균 감소의 백분율을 계산하였다.A 10-fold serial dilution was prepared using the culture, sprinkled onto nutrient agar plates and incubated at 37 ° C. for 24 hours. All experiments were performed three times. The number of colonies in each sample was recorded and the percentage of bacterial reduction was calculated as follows.
세균 감소 (%) = [(A - B)/A] × 100,……………………………………… (4) Bacterial reduction (%) = [(A-B) / A] x 100,... … … … … … … … … … … … … … … (4)
여기에서 A는 코팅되지 않은 표면의 생균의 수이고, B는 페인팅된 표면상의 생균의 수이다.Where A is the number of live bacteria on the uncoated surface and B is the number of live bacteria on the painted surface.
도 12는 24 및 48 시간 후의 몰리브덴 옥사이드 나노페인트 상의 세균 집단의 백분율 손실을 나타낸다. 재현성을 보장하기 위해 항균 시험을 세 번 반복하여 수행하였고, 최소한도의 두 가지 상이한 시간을 사용하였다. 그 결과, 배양 24 시간 후, 페인팅된 표면 상의 살아있는 세포의 분포는 대장균, 폐렴간균, 황색포도상구균 및 녹농균에 대하여 각각 60, 65, 58, 및 53%까지 감소되었다. 또한, 48 시간 후, 페인팅된 표면은 대장균, 폐렴간균, 황색포도상구균 및 녹농균에 대하여 각각 91, 90, 91 및 88%의 살아있는 세포를 억제하였다. 이로부터 본 발명에 따른 몰리브덴 옥사이드 나노페인트가 모든 시험된 세균 균주의 성장을 억제하였고, 장시간 노출에 사멸 속도를 증가시킴을 알 수 있다(도 12 참조).12 shows the percentage loss of bacterial population on molybdenum oxide nanopaints after 24 and 48 hours. The antimicrobial test was repeated three times to ensure reproducibility and at least two different times were used. As a result, after 24 hours of culture, the distribution of viable cells on the painted surface was reduced by 60, 65, 58, and 53% for E. coli, pneumococcal, Staphylococcus aureus and Pseudomonas aeruginosa, respectively. In addition, after 48 hours, the painted surface inhibited 91, 90, 91 and 88% viable cells, respectively, against E. coli, pneumococcal, Staphylococcus aureus and Pseudomonas aeruginosa. It can be seen that the molybdenum oxide nanopaint according to the present invention inhibited the growth of all tested bacterial strains and increased the rate of death upon prolonged exposure (see FIG. 12).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (12)

  1. 안료로서 옥사이드 나노구조물 15-20 중량부, 결합제로서 알키드 합성수지 60-70 중량부, 안정화제 0.5-1.0 중량부, 침전방지제 0.3-0.7 중량부, 증점제 0.05-0.15 중량부, 습윤제 0.5-1.0 중량부, 건조제 1.0-2.0 중량부 및 희석제 15-20 중량부를 포함하는 페인트 조성물.15-20 parts by weight of oxide nanostructures as pigments, 60-70 parts by weight of alkyd synthetic resins as binders, 0.5-1.0 parts by weight of stabilizers, 0.3-0.7 parts by weight of precipitation inhibitors, 0.05-0.15 parts by weight of thickeners, 0.5-1.0 parts by weight of wetting agents , 1.0-2.0 parts by weight of a desiccant and 15-20 parts by weight of a diluent.
  2. 제1항에 있어서,The method of claim 1,
    상기 옥사이드는 그래핀 옥사이드 나노시트, 아연 옥사이드(산화아연)입자 또는 몰리브덴 옥사이드 나노플레이트인 것을 특징으로 하는 조성물.The oxide is a composition, characterized in that the graphene oxide nanosheets, zinc oxide (zinc oxide) particles or molybdenum oxide nanoplates.
  3. 제1항에 있어서,The method of claim 1,
    상기 안정화제는 나노크기의 ZnO인 것을 특징으로 하는 페인트 조성물.The stabilizer is a paint composition, characterized in that the nano-sized ZnO.
  4. 제1항에 있어서,The method of claim 1,
    상기 침전방지제는 알루미늄 스테아레이트인 것을 특징으로 하는 페인트 조성물.The precipitation inhibitor is a paint composition, characterized in that aluminum stearate.
  5. 제1항에 있어서,The method of claim 1,
    상기 습윤제는 콩 레시틴인 것을 특징으로 하는 페인트 조성물.The wetting agent paint composition, characterized in that the soy lecithin.
  6. 제1항에 있어서,The method of claim 1,
    상기 건조제는 외부 건조제 0.5-1.0 중량부 및 내부 건조제 0.5-1.0 중량부를 포함하는 것을 특징으로 하는 페인트 조성물.The desiccant comprises 0.5-1.0 parts by weight of the external desiccant and 0.5-1.0 parts by weight of the internal desiccant.
  7. 제6항에 있어서,The method of claim 6,
    상기 외부 건조제는 코발트 나프테네이트이고, 상기 내부 건조제는 나노크기의 지르코니아인 것을 특징으로 하는 페인트 조성물.Wherein said external desiccant is cobalt naphthenate and said internal desiccant is nanosized zirconia.
  8. 제1항에 있어서,The method of claim 1,
    상기 희석제는 광물 테레빈유인 것을 특징으로 하는 페인트 조성물.The diluent is a paint composition, characterized in that the mineral turpentine.
  9. 제1항에 있어서,The method of claim 1,
    상기 옥사이드 구조물은 대장균(Escherichia coli), 황색포도상구균(Staphylococcus aureus), 녹농균(Pseudomonas aeruginosa) 및 폐렴간균(klebsiella pneumoniae)에 대해 항균활성을 갖는 것을 특징으로 하는 페인트 조성물. The oxide structure is a paint composition characterized in that it has an antimicrobial activity against Escherichia coli , Staphylococcus aureus , Pseudomonas aeruginosa and Klebsiella pneumoniae .
  10. (a) 안료로서 옥사이드 나노구조물 15-20 중량부, 결합제로서 알키드 합성수지 60-70 중량부, 안정화제 0.5-1.0 중량부, 침전방지제 0.3-0.7 중량부, 증점제 0.05-0.15 중량부, 습윤제 0.5-1.0 중량부, 건조제 1.0-2.0 중량부를 볼-밀링(ball-milling)하여 혼합하는 단계; 및(a) 15-20 parts by weight of oxide nanostructures as pigment, 60-70 parts by weight of alkyd synthetic resin as binder, 0.5-1.0 parts by weight of stabilizer, 0.3-0.7 parts by weight of precipitation inhibitor, 0.05-0.15 parts by weight of thickener, 0.5-wetting agent Ball-milling and mixing 1.0 parts by weight and 1.0-2.0 parts by weight of a desiccant; And
    (b) 상기 볼-밀링된 혼합물에 희석제 15-20 중량부를 첨가하고 추가 밀링하여 균질한 페인트 조성물을 얻는 단계를 포함하는, 제1항의 페인트 조성물의 제조 방법.(b) adding 15-20 parts by weight of a diluent to the ball-milled mixture and further milling to obtain a homogeneous paint composition.
  11. 제10항에 있어서,The method of claim 10,
    상기 옥사이드는 그래핀 옥사이드 나노시트, 아연 옥사이드(산화아연)입자 또는 몰리브덴 옥사이드 나노플레이트인 것을 특징으로 하는 방법.The oxide is characterized in that the graphene oxide nanosheets, zinc oxide (zinc oxide) particles or molybdenum oxide nanoplates.
  12. 제10항에 있어서,The method of claim 10,
    상기 볼-밀링은 300 rpm의 밀링 속도로 4-6 시간 동안 유지한 후, 희석제를 첨가하고 추가 20분-1시간 동안 밀링을 유지하는 것을 특징으로 하는 페인트 조성물의 제조 방법.The ball-milling is maintained for 4-6 hours at a milling speed of 300 rpm, after which a diluent is added and milling for an additional 20 minutes-1 hour.
PCT/KR2014/010531 2013-11-04 2014-11-04 Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same WO2015065164A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14858569.8A EP3067394B1 (en) 2013-11-04 2014-11-04 Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same
EP18176146.1A EP3392316B1 (en) 2013-11-04 2014-11-04 Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0133070 2013-11-04
KR20130133070 2013-11-04
KR1020140152156A KR101678279B1 (en) 2013-11-04 2014-11-04 Nontoxic paint composition comprising organic and inorganic oxide nanostructure and the preparation thereof
KR10-2014-0152156 2014-11-04

Publications (1)

Publication Number Publication Date
WO2015065164A1 true WO2015065164A1 (en) 2015-05-07

Family

ID=53004657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010531 WO2015065164A1 (en) 2013-11-04 2014-11-04 Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same

Country Status (1)

Country Link
WO (1) WO2015065164A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693153A (en) * 2016-01-27 2016-06-22 同济大学 Graphene oxide modified fireproof antiseptic dual-functional coating and method for non-expanding steel structure
CN105944522A (en) * 2016-05-21 2016-09-21 杨勇 Mildew preventive with drying function
CN105976941A (en) * 2016-06-13 2016-09-28 天津宝兴威科技有限公司 Preparation process for flexible aluminum-doped zinc oxide/graphene composite material
CN107556852A (en) * 2017-10-17 2018-01-09 三河市安霸生物技术有限公司 A kind of one-component antibiotic paint
CN110157288A (en) * 2018-03-28 2019-08-23 山东佳星环保科技有限公司 A kind of anticorrosive paint of graphene enhancing
CN111729664A (en) * 2020-06-05 2020-10-02 吉林大学 Supported nano zinc oxide and preparation and application thereof
CN114836122A (en) * 2022-06-29 2022-08-02 佛山市高明区首邦化工有限公司 Furniture coating with quick-drying and high weather resistance and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503561B1 (en) 2004-12-03 2005-07-26 주식회사 삼주에스엠씨 Paint composition for preventing corrosion and improving long-term duability of iron structure and process for forming an aluminum oxide coating layer using the same
KR20060041368A (en) * 2004-11-08 2006-05-12 강윤식 Nature paint composition and manufacturing process
JP2006143807A (en) * 2004-11-17 2006-06-08 Dainippon Toryo Co Ltd Rust-preventive coating composition
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR20130027374A (en) * 2011-09-07 2013-03-15 순천향대학교 산학협력단 Antifoul agent and antifouling paint composition comprising hexadecyl methacylate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060041368A (en) * 2004-11-08 2006-05-12 강윤식 Nature paint composition and manufacturing process
JP2006143807A (en) * 2004-11-17 2006-06-08 Dainippon Toryo Co Ltd Rust-preventive coating composition
KR100503561B1 (en) 2004-12-03 2005-07-26 주식회사 삼주에스엠씨 Paint composition for preventing corrosion and improving long-term duability of iron structure and process for forming an aluminum oxide coating layer using the same
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides
KR20130027374A (en) * 2011-09-07 2013-03-15 순천향대학교 산학협력단 Antifoul agent and antifouling paint composition comprising hexadecyl methacylate

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AKHAVAN O ET AL., CARBON, vol. 50, 2012, pages 1853 - 1860
AKHAVAN, O. ET AL., J. MATER. CHEM., vol. 21, 2011, pages 9634 - 9640
CHANG CH ET AL., CARBON, vol. 50, 2012, pages 5044 - 5051
KARTHIKEYAN.: "Graphene oxide and Graphene nanosheets: Tunable properties and multifunctional applications.", MECHANICAL ENGINEERING, DOCTOR'S THESIS, December 2012 (2012-12-01) *
KRISHNAMOORTHY K ET AL., APPL. PHYS. LETT., vol. 98, no. 1 - 3, 2011, pages 244101
KRISHNAMOORTHY K ET AL., CARBON, vol. 53, 2012, pages 38 - 49
KRISHNAMOORTHY K ET AL., J. PHYS. CHEM. C, vol. 116, 2012, pages 17280 - 17287
LIU Y ET AL., RAPID COMMUN. MASS SPECTROM., vol. 25, 2011, pages 3223 - 3234
MUIZEBELT WJ ET AL., PROG. ORG. COAT., vol. 40, 2000, pages 121 - 130
PALUS JZ ET AL., J. MOL. STRUCT., vol. 993, 2011, pages 134 - 141
PARK S ET AL., ACS NANO, vol. 4, 2008, pages 572 - 578
SCHAICH KM: "Baileys Industrial Oil and Fat Products", 2005, JOHN WILEY & SONS, INC
See also references of EP3067394A4
VINODGOPAL K ET AL., J. PHYS. CHEM. LETT., vol. 1, 2010, pages 1987 - 93
WILSON NR ET AL., ACS NANO, vol. 3, 2009, pages 2547 - 2556

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693153A (en) * 2016-01-27 2016-06-22 同济大学 Graphene oxide modified fireproof antiseptic dual-functional coating and method for non-expanding steel structure
CN105944522A (en) * 2016-05-21 2016-09-21 杨勇 Mildew preventive with drying function
CN105976941A (en) * 2016-06-13 2016-09-28 天津宝兴威科技有限公司 Preparation process for flexible aluminum-doped zinc oxide/graphene composite material
CN107556852A (en) * 2017-10-17 2018-01-09 三河市安霸生物技术有限公司 A kind of one-component antibiotic paint
CN110157288A (en) * 2018-03-28 2019-08-23 山东佳星环保科技有限公司 A kind of anticorrosive paint of graphene enhancing
CN111729664A (en) * 2020-06-05 2020-10-02 吉林大学 Supported nano zinc oxide and preparation and application thereof
CN111729664B (en) * 2020-06-05 2022-11-11 吉林大学 Supported nano zinc oxide and preparation and application thereof
CN114836122A (en) * 2022-06-29 2022-08-02 佛山市高明区首邦化工有限公司 Furniture coating with quick-drying and high weather resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2015065164A1 (en) Nonpoisonous paint composition containing organic and inorganic oxidation nanostructures and method for preparing same
KR101678279B1 (en) Nontoxic paint composition comprising organic and inorganic oxide nanostructure and the preparation thereof
Krishnamoorthy et al. Graphene oxide nanopaint
Yong et al. Preparation of ZnO nanopaint for marine antifouling applications
Mostafaei et al. Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications
EP1208167B1 (en) Self-polishing marine antifouling paint composition comprising silicon-containing co-polymers and fibres
Wang et al. Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications
Baldissera et al. Using conducting polymers as active agents for marine antifouling paints
EP0952194B1 (en) Antifouling paint composition
Abd El-Fattah et al. Potential application of some coumarin derivatives incorporated thiazole ring as ecofriendly antimicrobial, flame retardant and corrosion inhibitor additives for polyurethane coating
Lv et al. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring
EP1910477A1 (en) Use of a combination of substances to prevent biofouling organisms
Bressy et al. Optimized silyl ester diblock methacrylic copolymers: A new class of binders for chemically active antifouling coatings
DE60030332T2 (en) A self-polishing antifouling underwater paint composition comprising fibers and metal-containing copolymers
US3684752A (en) Underwater anti-fouling coating composition
Seter et al. Cetrimonium nalidixate as a multifunctional inhibitor to combat biofilm formation and microbiologically influenced corrosion
Saravanan et al. Twin applications of tetra-functional epoxy monomers for anticorrosion and antifouling studies
EP0725563A1 (en) Marine structure
Abu Ayana et al. Zinc‐ferrite pigment for corrosion protection
Abd El-Wahab The synthesis and characterization of the hydrazone ligand and its metal complexes and their performance in epoxy formulation surface coatings
Iannazzo et al. 1, 2, 3-Triazole/MWCNT Conjugates as filler for gelcoat nanocomposites: New active antibiofouling coatings for marine application
Liu et al. AgNP Hybrid Organosilicon Antifouling Coating with Spontaneous Self-Healing and Long-Term Antifouling Properties
Loredo-Becerra et al. Waterborne antifouling paints containing nanometric copper and silver against marine Bacillus species
Ahmed et al. Modified properties of Egyptian kaolin‐phosphate core‐shell pigments in solvent‐based paints for protection of cold‐rolled steel surfaces
JP2000516297A (en) Corrosion resistant paint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014858569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014858569

Country of ref document: EP