WO2015064272A1 - 遠心圧縮機及び過給機 - Google Patents

遠心圧縮機及び過給機 Download PDF

Info

Publication number
WO2015064272A1
WO2015064272A1 PCT/JP2014/076028 JP2014076028W WO2015064272A1 WO 2015064272 A1 WO2015064272 A1 WO 2015064272A1 JP 2014076028 W JP2014076028 W JP 2014076028W WO 2015064272 A1 WO2015064272 A1 WO 2015064272A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
impeller
housing
centrifugal compressor
scroll
Prior art date
Application number
PCT/JP2014/076028
Other languages
English (en)
French (fr)
Inventor
和枝 石川
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2015544880A priority Critical patent/JP6128230B2/ja
Priority to DE112014005001.6T priority patent/DE112014005001T5/de
Priority to CN201480041571.8A priority patent/CN105408638B/zh
Publication of WO2015064272A1 publication Critical patent/WO2015064272A1/ja
Priority to US14/983,655 priority patent/US10330102B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a centrifugal compressor and a supercharger that compress a fluid containing a gas such as air using centrifugal force.
  • General centrifugal compressors have a housing.
  • the housing has a shroud on the inside.
  • An impeller is provided in the housing so as to be rotatable about its axis.
  • the impeller has a disk.
  • the hub surface of the disk extends from the one side in the axial direction of the turbine impeller toward the outside in the radial direction.
  • a plurality of blades are integrally provided on the hub surface of the disk at intervals in the circumferential direction. The leading edge of each blade extends along the shroud of the housing.
  • an introduction flow path for introducing fluid into the housing is formed.
  • an annular diffuser is formed on the outlet side of the impeller in the housing to decelerate and pressurize the compressed fluid.
  • the inlet side and the outlet side of the impeller mean the upstream side and the downstream side, respectively, when viewed from the mainstream flow direction.
  • a throttle part is provided between the impeller and the diffuser in the housing.
  • the throttle portion is formed in communication with the diffuser. Further, the flow path width of the narrowed portion is gradually reduced along the mainstream flow direction.
  • a spiral scroll is formed in communication with the diffuser.
  • a discharge passage for discharging the compressed fluid to the outside of the housing is formed at an appropriate position of the housing so as to communicate with the scroll. Note that the discharge flow path and the scroll start side of the scroll are partitioned by the tongue of the housing.
  • the diffuser outlet static pressure was measured. As shown in FIG. 4, although the circumferential fluctuation of the diffuser outlet static pressure was small on the large flow rate side (choke side), It was confirmed that the flow rate increased on the small flow rate side (surge side). Specifically, assuming that the line passing through the tip of the tongue and the axis of the impeller is the reference line, the static pressure at the outlet of the diffuser on the small flow rate side is around 30 to 135 degrees from the reference line in the rotation direction of the impeller. It was confirmed that the value was high in a certain region and decreased in a region near 210 to 315 degrees from the reference line.
  • the diffuser outlet static pressure on the small flow rate side is higher in the region (first region) located immediately before the tip of the tongue in the rotation direction of the impeller, and the first pressure across the impeller shaft center. It was confirmed that the level was lower in a region (second region) located on the opposite side of the first region. If the circumferential fluctuation of the diffuser outlet static pressure on the small flow rate side is further increased, this triggers the surging of the centrifugal compressor. Under such circumstances, it becomes difficult to expand the operating range of the centrifugal compressor to the small flow rate side.
  • FIG. 4 is a diagram showing the relationship between the angular position from the reference line in the rotation direction of the impeller and the recovery rate of the diffuser outlet static pressure (ratio of the diffuser outlet static pressure to the impeller inlet total pressure). .
  • An object of the present invention is to provide a centrifugal compressor and a supercharger that can reduce fluctuations in the circumferential direction of the outlet static pressure of the diffuser on the small flow rate side.
  • a first aspect of the present invention is a centrifugal compressor that compresses a fluid using centrifugal force, a housing having an inner shroud, an impeller rotatably provided in the housing, and the housing Provided on the inlet side of the impeller in which the fluid is introduced into the housing, an annular diffuser provided on the outlet side of the impeller in the housing, and between the impeller and the diffuser.
  • An annular throttle portion provided in communication with the diffuser and having a channel width that gradually decreases along the flow direction of the main flow; a spiral scroll provided in communication with the diffuser on the outlet side of the diffuser; A discharge passage provided in communication with a scrolling end side of the scroll for discharging the fluid to the outside of the housing; and the discharge And a tongue portion that partitions between the path and the winding start side of the scroll, and the flow path length of the diffuser sandwiches the impeller shaft center from the first region located on the winding start side of the scroll.
  • the gist is that the second region is located on the opposite side of the first region and is located on the winding end side of the first region.
  • the second aspect of the present invention is a supercharger, and the gist thereof includes the centrifugal compressor according to the first aspect.
  • the present invention it is possible to cancel the tendency of the diffuser outlet static pressure on the small flow rate side and reduce the fluctuation in the circumferential direction of the diffuser outlet static pressure on the small flow rate side. Therefore, the surge of the centrifugal compressor can be sufficiently suppressed, and the operating range of the centrifugal compressor can be expanded to the small flow rate side.
  • FIG. 1 is a cross-sectional view taken along the line II in FIG.
  • FIG. 2 is a partially enlarged view of FIG. 1 showing the relationship between the diffuser and the impeller.
  • FIG. 3 is a front sectional view showing a centrifugal compressor according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between the angular position in the rotational direction of the impeller and the recovery rate of the outlet static pressure of the diffuser.
  • a centrifugal compressor compresses air using centrifugal force. As shown in FIGS. 1 and 3, the centrifugal compressor 1 according to this embodiment is used for a supercharger 3.
  • the centrifugal compressor 1 includes a housing (compressor housing) 5.
  • the housing 5 includes a housing main body 7 having a shroud 7s on the inner side, and a seal plate 9 provided on the right side of the housing main body 7 and suppressing air leakage.
  • the seal plate 9 is integrally connected to another housing (bearing housing) 11 in the supercharger 3.
  • An impeller (compressor impeller) 13 is provided in the housing 5 so as to be rotatable around its axis 13c.
  • the impeller 13 is integrally connected to a left end portion of a rotating shaft 15 that is rotatably provided in the housing 11 via a plurality of bearings (not shown).
  • the impeller 13 includes a disk 17.
  • the hub surface 17 h of the disk 17 extends outward in the radial direction (the radial direction of the impeller 13) from the left direction (one side in the axial direction of the impeller 13).
  • a plurality of long blades (full blades, long blades) 19 are integrally formed on the hub surface 17h of the disk 17 at intervals in the circumferential direction.
  • each long blade 19 extends along the shroud 7s of the housing body 7. Further, between the long blades 19 adjacent to each other in the circumferential direction, a short blade (spliter blades, short blades) 21 is integrally provided on the hub surface 17h.
  • the short blade 21 has a shorter axial length than the long blade 19. Further, the tip edge 21 t of each short blade 21 extends along the shroud 7 s of the housing body 7.
  • blades with the same axial length may be used.
  • An introduction flow path (introduction port) 23 is formed on the inlet side of the impeller 13 in the housing body 7 (upstream side when viewed from the main flow direction).
  • the introduction channel 23 introduces air into the housing 5.
  • the introduction flow path 23 is connected to an air cleaner (not shown) that purifies the air.
  • a diffuser (diffuser flow path) 25 is formed on the outlet side of the impeller 13 in the housing 5 (downstream side as viewed from the main flow direction).
  • the diffuser 25 is formed in an annular shape, and depressurizes and pressurizes compressed air.
  • the diffuser 25 includes a shroud side wall surface 25 s formed by a part of the housing body 7 and a hub side wall surface 25 h formed by a part of the seal plate 9.
  • the shroud side wall surface 25s refers to a wall surface located on the surface side of the housing body 7 that extends radially outward from the shroud 7s, and the hub side wall surface 25h refers to the hub surface 17h of the disk 17 radially outward. It means the wall surface located on the surface side extended to the side.
  • a throttle part (throttle channel) 27 is formed between the impeller 13 and the diffuser 25 in the housing 5.
  • the aperture 27 communicates with the diffuser 25.
  • the flow path width of the narrowed portion 27 in the axial direction gradually decreases along the mainstream flow direction.
  • a spiral scroll (scroll channel) 29 is formed on the outlet side of the diffuser 25 in the housing 5.
  • the scroll 29 communicates with the diffuser 25.
  • the cross-sectional area of the scroll 29 is larger on the winding end side (downstream side) than on the winding start side (upstream side).
  • a discharge channel (discharge port) 31 is formed at an appropriate position of the housing body 7.
  • the discharge channel 31 discharges the compressed air to the outside of the housing 5.
  • the discharge channel 31 communicates with the end of winding of the scroll 29.
  • the exhaust passage 31 is connected to an intake manifold (not shown) of the engine.
  • the discharge channel 31 and the winding start side of the scroll 29 are partitioned by the tongue 33 of the housing body 7.
  • the outer peripheral edge 25 o of the diffuser 25 is located concentrically with the impeller 13. Further, the center (axial center) 25 ic of the inner peripheral edge 25 i (the outer peripheral edge of the throttle part 27) of the diffuser 25 is more in the rotational direction RD of the impeller 13 than the tip 33 t of the tongue 33 with respect to the axial center 13 c of the impeller 13. It is decentered in the direction (region PA side) toward the region (immediately preceding region, first region) PA located immediately before viewing. In other words, the flow path length (radial length) m of the diffuser 25 is a region (opposite region, second region) located on the opposite side of the region PA from the region PA around the axis 13c of the impeller 13.
  • the area PA of the diffuser 25 is positioned on the winding start side of the scroll 29.
  • the area CA of the diffuser 25 is located on the opposite side of the area PA across the shaft center 13c of the impeller 13 and is located on the winding end side of the scroll 29 with respect to the area PA.
  • the flow path length of the diffuser 25 increases from the area PA to the area CA.
  • a line passing through the tip 33t of the tongue 33 and the axis 13c of the impeller 13 is assumed as a reference line VL, and an angle from the reference line VL in the rotational direction RD is defined as an eccentric angle for an arbitrary position.
  • the distance from the center 13c is defined as the amount of eccentricity.
  • the eccentric angle ⁇ of the center 25 ic of the inner peripheral edge 25 i of the diffuser 25 is set to 45 to 115 degrees.
  • the static pressure recovery rate (static pressure increase rate) in the region PA of the diffuser 25 and the improvement in the static pressure recovery rate in the region CA opposite to the diffuser 25 are more easily obtained than in other ranges.
  • the eccentricity e of the center 25 ic of the inner peripheral edge 25 i of the diffuser 25 is set to 3 to 8% of the maximum diameter d of the impeller 13.
  • the reason why the eccentricity e of the center 25ic of the inner peripheral edge 25i of the diffuser 25 is set to 3% or more of the maximum diameter d of the impeller 13 is to suppress the static pressure recovery rate in the area PA of the diffuser 25, and This is because the effect of increasing the static pressure recovery rate in the area CA of the diffuser 25 is sufficiently exhibited.
  • the shape of the inner peripheral edge 25i of the diffuser 25 is not limited to a circle. That is, the inner peripheral edge 25i only needs to have a shape in which the flow path length m of the diffuser 25 gradually increases from the area PA to the area CA. That is, as long as this condition is satisfied, the curvature of the inner peripheral edge 25i in the rotation direction RD may change. Also in this case, the group of curvature centers at each point of the inner peripheral edge 25i is eccentric from the axis 13c of the impeller 13 to the area PA.
  • the impeller 13 By driving a radial turbine (not shown) in the supercharger 3, the impeller 13 rotates integrally with the rotary shaft 15 around its axis 13c. By the rotation of the impeller 13, the air introduced into the housing 5 from the introduction flow path 23 can be compressed. Then, the compressed air is rectified by the throttle portion 27, pressurized while being decelerated by the diffuser 25, and discharged from the discharge flow path 31 to the outside of the housing 5 via the scroll 29.
  • the flow path length m of the diffuser 25 is configured to gradually increase from the area PA to the area CA. Therefore, the static pressure recovery rate in the region CA can be increased while suppressing the static pressure recovery rate in the region PA. Thereby, the tendency that the outlet static pressure of the diffuser 25 on the small flow rate side is high in the region PA and low in the region CA (see FIG. 4) is offset, and the circumferential pressure of the outlet static pressure of the diffuser 25 on the small flow rate side is offset. Variations can be reduced.
  • the shroud side wall surface 25s of the diffuser 25 is constituted by a part of the housing body 7. Therefore, when the housing body 7 is finished by machining, the flow path length m of the diffuser 25 is configured as described above by adjusting the radial length of the shroud side wall surface 25s of the diffuser 25 along the circumferential direction. can do. In other words, fluctuations in the circumferential direction of the outlet static pressure of the diffuser 25 on the small flow rate side can be reduced without making a significant design change.
  • the outer peripheral edge 25o of the diffuser 25 is located concentrically with the impeller 13. Therefore, although the flow path length of the diffuser 25 changes in the circumferential direction, the scroll 29 does not need to be eccentric according to the change in the flow path length of the diffuser 25. That is, no significant design change is required for the scroll 29. Further, the influence on the flow of the fluid flowing from the diffuser 25 into the scroll 29 can be suppressed as much as possible.
  • the change in the circumferential direction of the outlet static pressure of the diffuser 25 on the small flow rate side is canceled by canceling the tendency related to the outlet static pressure of the diffuser 25 on the small flow rate side without making a significant design change. Therefore, while reducing the manufacturing cost of the centrifugal compressor 1, the surge of the centrifugal compressor 1 can be sufficiently suppressed, and the operating range of the centrifugal compressor 1 can be expanded to the small flow rate side.
  • the present invention is not limited to the description of the above-described embodiment.
  • the technical idea applied to the centrifugal compressor 1 can be applied to a gas turbine, industrial air equipment, or the like, or a plurality of diffuser vanes can be added to the diffuser 25.
  • the present invention can be implemented in various modes, such as arranging (not shown) at intervals in the circumferential direction.
  • the scope of rights encompassed by the present invention extends not only to the centrifugal compressor 1 but also to the supercharger 3 using the centrifugal compressor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

遠心圧縮機(1)は、ハウジング(5)と、ハウジング(5)内に回転可能に設けられたインペラ(13)と、圧縮した空気を減速させて昇圧するディフューザ(25)と、インペラ(13)とディフューザ(25)との間に設けれる絞り部(27)とを備える。ディフューザ(25)の内周縁(25i)の中心(25ic)は、インペラ(13)の軸心(13c)から領域(PA)に偏心している。

Description

遠心圧縮機及び過給機
 本発明は、遠心力を利用して空気等のガスを含む流体を圧縮する遠心圧縮機及び過給機に関するものである。
 近年、過給機、ガスタービン、産業用空気設備等に用いられる遠心圧縮機について種々の研究開発がなされている(特許文献1から特許文献3参照)。
 一般的な遠心圧縮機は、ハウジングを具備している。このハウジングは、内側にシュラウドを有している。ハウジング内には、インペラがその軸心周りに回転可能に設けられている。インペラはディスクを備えている。このディスクのハブ面は、タービンインペラの軸方向一方側から径方向外側に向かって延びている。更に、ディスクのハブ面には、複数のブレードが周方向に間隔を置いて一体的に設けられている。各ブレードの先端縁は、ハウジングのシュラウドに沿うように延びている。
 ハウジングにおけるインペラの入口側には、流体をハウジング内に導入するための導入流路(導入口)が形成されている。また、ハウジング内におけるインペラの出口側には、圧縮した流体を減速させて昇圧する環状のディフューザ(ディフューザ流路)が形成されている。なお、インペラの入口側及び出口側は、主流の流れ方向から見て上流側及び下流側をそれぞれ意味する。
 ハウジング内におけるインペラとディフューザの間には絞り部が設けられている。絞り部は、ディフューザに連通して形成されている。また、絞り部の流路幅は、主流の流れ方向に沿って漸次小さくなっている。ハウジング内におけるディフューザの出口側には、渦巻き状のスクロール(スクロール流路)がディフューザに連通して形成されている。そして、ハウジングの適宜位置には、圧縮した流体をハウジングの外側へ排出するための排出流路(排出口)がスクロールに連通して形成されている。なお、排出流路とスクロールの巻き始め側は、ハウジングの舌部によって仕切られている。
特開2012-246931号公報 特開2012-197749号公報 特開2011-89490号公報
 実際の運転条件を模擬した試験において、ディフューザの出口静圧を測定したところ、図4に示すように、ディフューザの出口静圧の周方向の変動が大流量側(チョーク側)においては小さいものの、小流量側(サージ側)おいては大きくなることが確認された。具体的には、舌部の先端とインペラの軸心を通る線を基準線として仮定した場合、小流量側におけるディフューザの出口静圧が、インペラの回転方向において基準線から30~135度付近にある領域で高くなり、基準線から210~315度付近にある領域で低くなることが確認された。換言すれば、小流量側におけるディフューザの出口静圧は、インペラの回転方向において舌部の先端よりも直前側に位置する領域(第1の領域)で高くなり、インペラの軸心を挟んで第1の領域の反対側に位置する領域(第2の領域)で低くなることが確認された。仮に、小流量側におけるディフューザの出口静圧の周方向の変動が更に大きくなったとすると、それが引き金となって遠心圧縮機のサージングが引き起こされる。このような状況では、遠心圧縮機の作動域を小流量側へ拡大させることが困難になる。
 なお、図4は、インペラの回転方向における上記基準線からの角度位置とディフューザの出口静圧の回復率(インペラの入口全圧に対するディフューザの出口静圧の比率)との関係を示す図である。
 本発明は、小流量側におけるディフューザの出口静圧の周方向の変動を低減できる遠心圧縮機及び過給機を提供することを目的とする。
 本発明の第1の態様は、遠心力を利用して流体を圧縮する遠心圧縮機であって、内側にシュラウドを有したハウジングと、前記ハウジング内に回転可能に設けられたインペラと、前記ハウジングにおける前記インペラの入口側に設けられ、流体を前記ハウジング内に導入する導入流路と、前記ハウジング内における前記インペラの出口側に設けられた環状のディフューザと、前記インペラと前記ディフューザの間に前記ディフューザに連通して設けられ、主流の流れ方向に沿って漸次小さくなる流路幅を有する環状の絞り部と、前記ディフューザの出口側に前記ディフューザに連通して設けられる渦巻き状のスクロールと、前記スクロールの巻き終わり側に連通して設けられ、流体を前記ハウジングの外側へ排出する排出流路と、前記排出流路と前記スクロールの巻き始め側との間を仕切る舌部とを備え、前記ディフューザの流路長さは、前記スクロールの前記巻き始め側に位置する第1の領域から前記インペラの軸心を挟んで前記第1の領域と反対側に位置し且つ前記第1の領域よりも前記巻き終わり側に位置する第2の領域にかけて増加していることを要旨とする。
 なお、本願の明細書又は特許請求の範囲において、「設けられ」とは、直接的に設けられたことの他に、別部材を介して間接的に設けられたことを含む意であって、「一体的に設けられ」とは、一体形成されたことを含む意である。また、「軸方向」とは、インペラの軸方向のことをいい、「径方向」とは、インペラの径方向のことをいう。
 本発明の第2の態様は過給機であって、第1の態様に係る遠心圧縮機を具備することを要旨とする。
 本発明によれば、小流量側における前記ディフューザの出口静圧に関する傾向を相殺して、小流量側における前記ディフューザの出口静圧の周方向の変動を低減できる。そのため、前記遠心圧縮機のサージを十分に抑制して、前記遠心圧縮機の作動域を小流量側へ拡大することができる。
図1は、図3におけるI-I線に沿った断面図である。 図2は、ディフューザとインペラの関係を示す図1の部分拡大図である。 図3は、本発明の実施形態に係る遠心圧縮機を示す正断面図である。 図4は、インペラの回転方向における角度位置とディフューザの出口静圧の回復率との関係を示す図である。
 本発明の実施形態について図1から図3を参照して説明する。なお、図面に示すとおり、「L」は、左方向、「R」は、右方向である。
 遠心圧縮機は遠心力を利用して空気を圧縮するものである。図1及び図3に示すように、本実施形態に係る遠心圧縮機1は、過給機3に用いられる。
 遠心圧縮機1は、ハウジング(コンプレッサハウジング)5を具備している。ハウジング5は、内側にシュラウド7sを有したハウジング本体7と、ハウジング本体7の右側に設けられかつ空気の漏れを抑えるシールプレート9とを備えている。シールプレート9は、過給機3における別のハウジング(軸受ハウジング)11に一体的に連結されている。
 ハウジング5内には、インペラ(コンプレッサインペラ)13がその軸心13c周りに回転可能に設けられている。インペラ13は、ハウジング11に複数の軸受(図示省略)を介して回転可能に設けた回転軸15の左端部に一体的に連結されている。また、インペラ13は、ディスク17を備えている。ディスク17のハブ面17hは、左方向(インペラ13の軸方向一方側)からの径方向(インペラ13の径方向)外側へ延びている。ディスク17のハブ面17hには、複数の長ブレード(full blades, long blades)19が周方向に間隔を置いて一体形成されている。各長ブレード19の先端縁19tは、ハウジング本体7のシュラウド7sに沿うように延びている。更に、周方向に隣接する長ブレード19間には、短ブレード(splitter blades, short blades)21がハブ面17hに一体的に設けられている。短ブレード21は、長ブレード19よりも軸長が短い。また、各短ブレード21の先端縁21tは、ハウジング本体7のシュラウド7sに沿うように延びている。なお、軸長の異なるブレード(長ブレード19及び短ブレード21)を用いる代わりに、同じ軸長のブレード(図示省略)を用いてもよい。
 ハウジング本体7におけるインペラ13の入口側(主流の流れ方向から見て上流側)には導入流路(導入口)23が形成されている。導入流路23は、空気をハウジング5内に導入する。導入流路23は、空気を浄化するエアクリーナ(図示省略)に接続する。また、ハウジング5内におけるインペラ13の出口側(主流の流れ方向から見て下流側)にはディフューザ(ディフューザ流路)25が形成されている。ディフューザ25は環状に形成され、圧縮した空気を減速させて昇圧する。ディフューザ25は、ハウジング本体7の一部により構成されたシュラウド側壁面25sと、シールプレート9の一部により構成されたハブ側壁面25hとを含む。なお、シュラウド側壁面25sとは、ハウジング本体7のシュラウド7sを径方向外側へ延長した面側に位置する壁面のことをいい、ハブ側壁面25hとは、ディスク17のハブ面17hを径方向外側へ延長した面側に位置する壁面のことをいう。
 ハウジング5内におけるインペラ13とディフューザ25との間には絞り部(絞り流路)27が形成されている。絞り部27は、ディフューザ25に連通している。軸方向における絞り部27の流路幅は、主流の流れ方向に沿って漸次小さくなっている。また、ハウジング5内におけるディフューザ25の出口側には、渦巻き状のスクロール(スクロール流路)29が形成されている。スクロール29は、ディフューザ25に連通している。スクロール29の断面積は、巻き終わり側(下流側)が巻き始め側(上流側)よりも大きい。そして、ハウジング本体7の適宜位置には排出流路(排出口)31が形成されている。排出流路31は、圧縮された空気をハウジング5の外側へ吐出させる。排出流路31は、スクロール29の巻き終わり側に連通する。また排出流路31は、エンジンの吸気マニホールド(図示省略)に接続する。なお、排出流路31とスクロール29の巻き始め側との間は、ハウジング本体7の舌部33によって仕切られている。
 図1から図3に示すように、ディフューザ25の外周縁25oは、インペラ13と同心上に位置している。また、ディフューザ25の内周縁25i(絞り部27の外周縁)の中心(軸心)25icは、インペラ13の軸心13cに対して、舌部33の先端33tよりもインペラ13の回転方向RDから見て直前側に位置する領域(直前側領域、第1の領域)PAに向かう方向(領域PA側)へ偏心してている。換言すれば、ディフューザ25の流路長さ(径方向長さ)mは、領域PAから、インペラ13の軸心13cを中心として領域PAの反対側に位置する領域(反対領域、第2の領域)CAにかけて漸次大きくなっている。更に換言すれば、ディフューザ25の領域PAはスクロール29の巻き始め側に位置する。一方、ディフューザ25の領域CAはインペラ13の軸心13cを挟んで領域PAと反対側に位置し且つ領域PAよりもスクロール29の巻き終わり側に位置する。ディフューザ25の流路長さは、この領域PAから領域CAにかけて増加している。
 ここで、舌部33の先端33tとインペラ13の軸心13cを通る線を基準線VLとして仮定し、任意の位置について、回転方向RDにおける基準線VLからの角度を偏心角度と定義し、軸心13cからの距離を偏心量と定義する。この定義の下、ディフューザ25の内周縁25iの中心25icの偏心角度θは、45~115度に設定されている。この設定の範囲では、他の範囲よりも、ディフューザ25の領域PAの静圧回復率(静圧上昇率)の抑制と、ディフューザ25の反対領域CAの静圧回復率の向上が得られやすい。
 上記の定義の下、ディフューザ25の内周縁25iの中心25icの偏心量eは、インペラ13の最大径dの3~8%に設定されている。ディフューザ25の内周縁25iの中心25icの偏心量eをインペラ13の最大径dの3%以上に設定されるようにしたのは、ディフューザ25の領域PAの静圧回復率を抑制する作用、及びディフューザ25の領域CAの静圧回復率を高める作用を十分に発揮させるためである。一方、ディフューザ25の内周縁25iの中心25icの偏心量eをインペラ13の最大径dの8%以下に設定されるようにしたのは、絞り部27の整流作用を十分に発揮させるためである。
 なお、ディフューザ25の内周縁25iの形状は円形に限られない。即ち、内周縁25iは、ディフューザ25の流路長さmが領域PAから領域CAにかけて漸次大きくなる形状を有していればよい。つまり、この条件を満たす限り、回転方向RDにおける内周縁25iの曲率は変化していてもよい。この場合も、内周縁25iの各点における曲率中心の群は、インペラ13の軸心13cから領域PAに偏心していることになる。
 続いて、本実施形態の作用及び効果について説明する。
 過給機3におけるラジアルタービン(図示省略)の駆動によって、インペラ13がその軸心13c周りに回転軸15と一体的に回転する。このインペラ13の回転によって、導入流路23からハウジング5内に導入した空気を圧縮することができる。そして、圧縮した空気は、絞り部27によって整流され、ディフューザ25によって減速させながら昇圧され、スクロール29を経由して排出流路31からハウジング5の外側へ吐出される。
 ディフューザ25の流路長さmが領域PAから領域CAにかけて漸次大きくなるように構成されている。そのため、領域PAにおける静圧回復率を抑えつつ、領域CAにおける静圧回復率を高めることができる。これにより、小流量側におけるディフューザ25の出口静圧が領域PAにおいて高く、領域CAにおいて低くなるという傾向(図4参照)を相殺して、小流量側におけるディフューザ25の出口静圧の周方向の変動を低減することができる。
 そして、ディフューザ25のシュラウド側壁面25sがハウジング本体7の一部により構成されている。そのため、機械加工によってハウジング本体7を仕上げる際に、ディフューザ25のシュラウド側壁面25sの径方向長さを周方向に沿って調節することにより、ディフューザ25の流路長さmを前述のように構成することができる。換言すれば、大幅な設計変更を行うことなく、小流量側におけるディフューザ25の出口静圧の周方向の変動を低減することができる。
 また、ディフューザ25の外周縁25oはインペラ13と同心上に位置している。従って、ディフューザ25の流路長さが周方向で変化するにも関わらず、スクロール29については、ディフューザ25の流路長さの変化に応じた偏心させる必要がない。つまり、スクロール29については大幅な設計変更が不要である。また、ディフューザ25からスクロール29に流入する流体の流れへの影響を極力抑えることが可能となる。
 従って、本実施形態によれば、大幅な設計変更を行うことなく、小流量側におけるディフューザ25の出口静圧に関する傾向を相殺して、小流量側におけるディフューザ25の出口静圧の周方向の変動を低減できるため、遠心圧縮機1の製造コストの低減を図りつつ、遠心圧縮機1のサージを十分に抑制して、遠心圧縮機1の作動域を小流量側へ拡大することができる。
 なお、本発明は、前述の実施形態の説明に限るものでなく、例えば遠心圧縮機1に適用した技術的思想をガスタービン、産業用空気設備等に適用したり、ディフューザ25に複数のディフューザベーン(図示省略)を周方向に間隔を置いて配設したりする等、その他、種々の態様で実施可能である。また、本発明に包含される権利範囲は、遠心圧縮機1だけでなく、遠心圧縮機1を用いた過給機3にも及ぶものである。
 1:遠心圧縮機、3:過給機、5:ハウジング、7:ハウジング本体、7s:シュラウド、9:シールプレート、13:インペラ、13c:インペラの軸心、17:ディスク、17h:ディスクのハブ面、19:長ブレード、19t:長ブレードの先端縁、21:短ブレード、21t:短ブレードの先端縁、23:導入流路、25:ディフューザ、25h:ディフューザのハブ側壁面、25s:ディフューザのシュラウド側壁面、25i:ディフューザの内周縁、25ic:ディフューザの内周縁の中心、25o:ディフューザの外周縁、27:絞り部、29:スクロール、31:排出流路、33:舌部、33t:舌部の先端、PA:ディフューザの直前側領域、CA:ディフューザの反対領域、RD:インペラの回転方向、VL:基準線
 

Claims (6)

  1.  遠心力を利用して流体を圧縮する遠心圧縮機であって、
     内側にシュラウドを有したハウジングと、
     前記ハウジング内に回転可能に設けられたインペラと、
     前記ハウジングにおける前記インペラの入口側に設けられ、流体を前記ハウジング内に導入する導入流路と、
     前記ハウジング内における前記インペラの出口側に設けられた環状のディフューザと、
     前記インペラと前記ディフューザの間に前記ディフューザに連通して設けられ、主流の流れ方向に沿って漸次小さくなる流路幅を有する環状の絞り部と、
     前記ディフューザの出口側に前記ディフューザに連通して設けられる渦巻き状のスクロールと、
     前記スクロールの巻き終わり側に連通して設けられ、流体を前記ハウジングの外側へ排出する排出流路と、
     前記排出流路と前記スクロールの巻き始め側との間を仕切る舌部と
    を備え、
     前記ディフューザの流路長さは、前記スクロールの前記巻き始め側に位置する第1の領域から前記インペラの軸心を挟んで前記第1の領域と反対側に位置し且つ前記第1の領域よりも前記巻き終わり側に位置する第2の領域にかけて増加している
    ことを特徴とする遠心圧縮機。
  2.  前記ディフューザの外周縁は前記インペラと同心上に位置していることを特徴とする請求項1に記載の遠心圧縮機。
  3.  前記ディフューザの内周縁の中心は、前記インペラの前記軸心から前記第1の領域に偏心していることを特徴とする請求項1又は請求項2に記載の遠心圧縮機。
  4.  前記舌部の先端と前記インペラの前記軸心を通る線を基準線として仮定し、任意の位置について前記インペラの回転方向における前記基準線からの角度を偏心角度と定義した場合、前記ディフューザの前記内周縁の前記中心の偏心角度は、45~115度に設定されていることを特徴とする請求項3に記載の遠心圧縮機。
  5.  任意の位置について前記インペラの前記軸心から距離を偏心量と定義した場合、前記ディフューザの前記内周縁の前記中心の偏心量は、前記インペラの最大径の3~8%に設定されていることを特徴とする請求項3又は請求項4に記載の遠心圧縮機。
  6.  請求項1から請求項5のうちのいずれか1項に記載の遠心圧縮機を具備したことを特徴とする過給機。
     
PCT/JP2014/076028 2013-10-31 2014-09-30 遠心圧縮機及び過給機 WO2015064272A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015544880A JP6128230B2 (ja) 2013-10-31 2014-09-30 遠心圧縮機及び過給機
DE112014005001.6T DE112014005001T5 (de) 2013-10-31 2014-09-30 Zentrifugalkompressor und Turbolader
CN201480041571.8A CN105408638B (zh) 2013-10-31 2014-09-30 离心压缩机以及增压器
US14/983,655 US10330102B2 (en) 2013-10-31 2015-12-30 Centrifugal compressor and turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-226828 2013-10-31
JP2013226828 2013-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/983,655 Continuation US10330102B2 (en) 2013-10-31 2015-12-30 Centrifugal compressor and turbocharger

Publications (1)

Publication Number Publication Date
WO2015064272A1 true WO2015064272A1 (ja) 2015-05-07

Family

ID=53003885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076028 WO2015064272A1 (ja) 2013-10-31 2014-09-30 遠心圧縮機及び過給機

Country Status (5)

Country Link
US (1) US10330102B2 (ja)
JP (1) JP6128230B2 (ja)
CN (1) CN105408638B (ja)
DE (1) DE112014005001T5 (ja)
WO (1) WO2015064272A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351218A (zh) * 2015-12-24 2016-02-24 清华大学 具有可调双出口蜗壳的离心压气机
JP2018080619A (ja) * 2016-11-15 2018-05-24 株式会社Ihi 遠心圧縮機
CN108700089A (zh) * 2015-12-25 2018-10-23 三菱重工发动机和增压器株式会社 离心压缩机以及涡轮增压器
CN109790851A (zh) * 2016-09-19 2019-05-21 法雷奥热***公司 空气入口壳体及相应的机动车辆供暖、通风和/或空调装置
WO2019097640A1 (ja) 2017-11-16 2019-05-23 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
WO2020129234A1 (ja) * 2018-12-21 2020-06-25 三菱重工エンジン&ターボチャージャ株式会社 ターボ機械

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908472B2 (ja) * 2017-08-31 2021-07-28 三菱重工コンプレッサ株式会社 遠心圧縮機
US11536287B2 (en) * 2017-12-04 2022-12-27 Hanwha Power Systems Co., Ltd Dual impeller
CN111601972B (zh) 2018-01-19 2022-09-23 概创机械设计有限责任公司 具有分离的收集器的涡轮机
CN112236584B (zh) * 2018-06-29 2022-05-10 株式会社Ihi 涡轮机及增压器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103293U (ja) * 1991-01-25 1992-09-07 三菱重工業株式会社 デイフユーザポンプ
JP2008215250A (ja) * 2007-03-06 2008-09-18 Toyota Industries Corp 遠心圧縮機
JP2009036099A (ja) * 2007-08-01 2009-02-19 Toyota Industries Corp 遠心ポンプ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1065732A (en) * 1912-06-18 1913-06-24 Joseph Schneible Centrifugal pump.
DE3707103C1 (de) 1987-03-05 1988-01-28 Borsig Gmbh Turbo-Arbeitsmaschine radialer Bauart mit Scheibendiffusor
JP2751418B2 (ja) 1989-06-13 1998-05-18 ダイキン工業株式会社 ターボ圧縮機のディフューザ
JPH0794840B2 (ja) 1989-07-21 1995-10-11 株式会社酉島製作所 遠心形回転機械
JP3053639B2 (ja) 1990-08-22 2000-06-19 松下電器産業株式会社 Bsチューナのキードafc特性測定装置
JPH10176699A (ja) 1996-12-18 1998-06-30 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
WO2006018591A1 (en) * 2004-08-19 2006-02-23 Honeywell International, Inc. Compressor wheel housing
DE102007034236A1 (de) * 2007-07-23 2009-02-05 Continental Automotive Gmbh Radialverdichter mit einem Diffusor für den Einsatz bei einem Turbolader
JP5461143B2 (ja) 2009-10-23 2014-04-02 三菱重工業株式会社 遠心圧縮機
JP2012184706A (ja) 2011-03-04 2012-09-27 Toyota Central R&D Labs Inc 可変容量コンプレッサハウジング及び可変容量コンプレッサ
JP2012197749A (ja) 2011-03-22 2012-10-18 Toyota Motor Corp 遠心圧縮機
JP5167403B1 (ja) 2011-12-08 2013-03-21 三菱重工業株式会社 遠心式流体機械
JP5630488B2 (ja) 2012-09-17 2014-11-26 株式会社豊田自動織機 遠心圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103293U (ja) * 1991-01-25 1992-09-07 三菱重工業株式会社 デイフユーザポンプ
JP2008215250A (ja) * 2007-03-06 2008-09-18 Toyota Industries Corp 遠心圧縮機
JP2009036099A (ja) * 2007-08-01 2009-02-19 Toyota Industries Corp 遠心ポンプ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351218A (zh) * 2015-12-24 2016-02-24 清华大学 具有可调双出口蜗壳的离心压气机
CN108700089B (zh) * 2015-12-25 2020-05-26 三菱重工发动机和增压器株式会社 离心压缩机以及涡轮增压器
CN108700089A (zh) * 2015-12-25 2018-10-23 三菱重工发动机和增压器株式会社 离心压缩机以及涡轮增压器
EP3369939A4 (en) * 2015-12-25 2018-12-12 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
US10837297B2 (en) 2015-12-25 2020-11-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
CN109790851A (zh) * 2016-09-19 2019-05-21 法雷奥热***公司 空气入口壳体及相应的机动车辆供暖、通风和/或空调装置
JP2018080619A (ja) * 2016-11-15 2018-05-24 株式会社Ihi 遠心圧縮機
JP7146364B2 (ja) 2016-11-15 2022-10-04 株式会社Ihi 遠心圧縮機
WO2019097640A1 (ja) 2017-11-16 2019-05-23 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
US11092165B2 (en) 2017-11-16 2021-08-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger including the same
WO2020129234A1 (ja) * 2018-12-21 2020-06-25 三菱重工エンジン&ターボチャージャ株式会社 ターボ機械
JPWO2020129234A1 (ja) * 2018-12-21 2021-09-02 三菱重工エンジン&ターボチャージャ株式会社 ターボ機械
JP7036949B2 (ja) 2018-12-21 2022-03-15 三菱重工エンジン&ターボチャージャ株式会社 ターボ機械
US11401828B2 (en) 2018-12-21 2022-08-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Asymmetric turbomachinery housing for thermal expansion

Also Published As

Publication number Publication date
JPWO2015064272A1 (ja) 2017-03-09
CN105408638A (zh) 2016-03-16
CN105408638B (zh) 2017-06-13
US20160108921A1 (en) 2016-04-21
DE112014005001T5 (de) 2016-07-14
JP6128230B2 (ja) 2017-05-17
US10330102B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
JP6128230B2 (ja) 遠心圧縮機及び過給機
JP6323454B2 (ja) 遠心圧縮機及び過給機
EP2960528B1 (en) Centrifugal compressor
US9874224B2 (en) Centrifugal compressor and turbocharger
EP2803866B1 (en) Centrifugal compressor with casing treatment for surge control
JP7220097B2 (ja) 遠心圧縮機及びターボチャージャ
WO2018146753A1 (ja) 遠心圧縮機、ターボチャージャ
WO2013008599A1 (ja) 遠心圧縮機
US10138898B2 (en) Centrifugal compressor and turbocharger
JP5920966B2 (ja) 超音速圧縮機ロータおよびそれを組み立てる方法
JP6357830B2 (ja) 圧縮機インペラ、遠心圧縮機、及び過給機
WO2018155546A1 (ja) 遠心圧縮機
US11187242B2 (en) Multi-stage centrifugal compressor
US11339797B2 (en) Compressor scroll shape and supercharger
JP2015031237A (ja) 可変ノズルユニット及び可変容量型過給機
US11821339B2 (en) Turbocharger
JP2016108994A (ja) 圧縮機インペラ、遠心圧縮機、及び過給機
US11047393B1 (en) Multi-stage centrifugal compressor, casing, and return vane
JP2012180833A (ja) 径方向流路を含む超音速圧縮機ロータを組み立てるシステム及び方法
JP2017002910A (ja) タービン及び車両用過給機
JP2015040505A (ja) 遠心圧縮機及び過給機
JP2009197614A (ja) 遠心圧縮機及びディフューザベーン
JP2015075013A (ja) 遠心圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041571.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544880

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005001

Country of ref document: DE

Ref document number: 1120140050016

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857204

Country of ref document: EP

Kind code of ref document: A1