WO2015062415A1 - 控制供电的方法和无线终端 - Google Patents

控制供电的方法和无线终端 Download PDF

Info

Publication number
WO2015062415A1
WO2015062415A1 PCT/CN2014/088678 CN2014088678W WO2015062415A1 WO 2015062415 A1 WO2015062415 A1 WO 2015062415A1 CN 2014088678 W CN2014088678 W CN 2014088678W WO 2015062415 A1 WO2015062415 A1 WO 2015062415A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
wireless terminal
radio frequency
processing circuit
Prior art date
Application number
PCT/CN2014/088678
Other languages
English (en)
French (fr)
Inventor
高春禹
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to US15/032,025 priority Critical patent/US10194397B2/en
Priority to JP2016527388A priority patent/JP6458279B2/ja
Priority to EP14857166.4A priority patent/EP3046261A4/en
Publication of WO2015062415A1 publication Critical patent/WO2015062415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication applications, and in particular, to a method for wireless terminal power supply and a wireless terminal.
  • the wireless terminal When the wireless terminal communicates with the network side device, the wireless terminal can switch between the idle state and the connected state. In order to reduce the power consumption of the wireless terminal, when the wireless terminal is in an idle state, the wireless terminal often uses a discontinuous reception (DRX) mode to monitor the paging channel, and uses a discontinuous transmission (DTX) method to the network side device. send data.
  • DRX discontinuous reception
  • DTX discontinuous transmission
  • Figure 1 shows the DRX state diagram of a wireless terminal.
  • the wireless terminal In a DRX cycle, the wireless terminal has two states: a sleep state and an awake state. The wireless terminal receives the message (for example, the paging message) sent by the network side device only when the wireless terminal is in the sleep state in the DRX cycle, and does not receive the message sent by the network side device, and some circuits of the wireless terminal are at this time. Low power state.
  • the wireless terminal also has two states: a sleep state and an awake state, and the wireless terminal sends a message (such as a voice message or a paging network status message) to the network side device only when the awake state is in the wireless state.
  • the message When the terminal is in the sleep state in the DTX cycle, the message is not sent to the network side, and part of the circuit of the wireless terminal is in a state of low power consumption.
  • the wireless terminal when the wireless terminal is in a dormant state, part of the circuits in the wireless terminal are in a low power consumption state, but the radio frequency circuit is always powered. If the RF circuit is powered for a long time, the reliability and service life of the RF circuit will be significantly affected, and some of the power will be wasted.
  • Embodiments of the present invention provide a method for controlling power supply, and a wireless terminal, which solves the problem of waste of power and shortened service life of the wireless terminal.
  • a method of controlling power supply comprising: stopping power supply to a portion or all of a circuit of a radio frequency circuit in the wireless terminal during a partial time period or all of a time period in which the wireless terminal is in a sleep state;
  • the sleep state includes at least one of: discontinuously transmitting a sleep state in a DTX cycle, and discontinuously receiving a sleep state in a DRX cycle.
  • the dormant state in the DTX period of the discontinuous transmission is specifically: a sleep state in all DTX cycles, or a sleep state in a partial DTX cycle
  • the discontinuous reception of the sleep state in the DRX cycle is specifically: a sleep state in all DRX cycles, or a sleep state in a partial DRX cycle.
  • power supply to some or all of the circuits of the radio frequency circuit can be performed in at least one sleep period portion or all of the DRX or DTX cycles, and the period of power-off is more flexible.
  • the radio frequency circuit includes: a transmit processing circuit, a receive processing circuit, and an antenna switch;
  • Stopping power supply to a part of the circuit of the radio frequency circuit in the wireless terminal specifically including one or two of the following:
  • Stopping power supply to all circuits of the radio frequency circuit in the wireless terminal specifically including:
  • An electronic switch located on a power supply line of the transmission processing circuit, an electronic switch located on a power supply line of the transmission processing circuit, and an electronic switch located on a power supply line of the antenna switch are disconnected.
  • the radio frequency circuit includes: a transmit processing circuit and a receive processing circuit;
  • Stopping power supply to a part of the circuit of the radio frequency circuit in the wireless terminal specifically:
  • Stopping power supply to all circuits of the radio frequency circuit in the wireless terminal specifically including:
  • the electronic switch located on the power supply line of the receiving processing circuit is disconnected.
  • the method further includes powering all of the circuits of the radio frequency circuit at all other times than the time period in which all or part of the circuit of the radio frequency circuit is powered off.
  • a wireless terminal comprising a communication unit, the communication unit comprising: a power processing circuit, a radio frequency circuit, a baseband control circuit, an antenna, and a switch circuit;
  • the radio frequency circuit is configured to receive a downlink analog signal sent by the antenna, convert the downlink digital signal to the baseband control circuit for processing, and receive an uplink digital signal sent by the baseband control circuit, and convert the uplink digital signal into an uplink analog signal. Sending to the antenna for transmission;
  • the power processing circuit is configured to supply power to the baseband control circuit and receive the baseband control circuit Sending a power control signal, and supplying power to the radio frequency circuit according to the power control signal;
  • the switch circuit is located on the power supply line of the power processing circuit to the radio frequency circuit, and is configured to receive a disconnect command of the baseband control circuit, and disconnect part or all of the circuit of the radio frequency circuit according to the disconnect command a power supply line; wherein the sleep state includes at least one of: discontinuously transmitting a sleep state in a DTX cycle, and discontinuously receiving a sleep state in a DRX cycle;
  • the baseband control circuit is configured to receive and process the downlink digital signal sent by the radio frequency circuit, generate the uplink digital signal, and send the uplink digital signal to the radio frequency circuit, and send a power control signal to the power processing circuit;
  • the disconnection command is sent to the switch circuit when the wireless terminal is in a partial or all of the sleep state.
  • the dormant state in the DTX cycle is not continuously transmitted, specifically: a sleep state in all DTX cycles, or a sleep state in a partial DTX cycle
  • the discontinuous reception of the sleep state in the DRX cycle is specifically: a sleep state in all DRX cycles, or a sleep state in a partial DRX cycle.
  • the power supply to some or all of the circuits of the radio frequency circuit is used in at least one of the DRX or DTX cycles for at least one of the sleep state periods or all of the periods, and the period of power-off is more flexible and diverse.
  • power supply to some or all of the circuits of the radio frequency circuit can be performed in at least one sleep period portion or all of the DRX or DTX cycles, and the period of power-off is more flexible.
  • the radio frequency circuit includes: a transmit processing circuit, a receive processing circuit, and an antenna switch;
  • the transmitting processing circuit is configured to convert, according to a command of the baseband processing circuit, an uplink digital signal sent by the uplink baseband control circuit into an uplink analog signal, and send the uplink digital signal to the antenna switch;
  • the receiving processing circuit is configured to receive a downlink analog signal sent by the antenna switch, and convert the downlink digital signal into a downlink digital signal for processing by the baseband control circuit;
  • the antenna switch is configured to receive a downlink analog signal sent by the antenna according to a timing requirement, and send the signal to the receiving processing circuit, and receive an uplink analog signal sent by the transmitting processing circuit according to a timing requirement, and send the uplink analog signal to the antenna;
  • the switch circuit includes an electronic switch disposed on at least one of the following power supply lines:
  • a power supply circuit of the power processing circuit to the transmitting processing circuit a power supply circuit of the power processing circuit to the receiving processing circuit, and a power supply line of the power processing circuit to the antenna switch;
  • the electronic switch is configured to disconnect a power supply line where the electronic switch is located according to the disconnection command;
  • the baseband control circuit is specifically configured to send the disconnection command to at least one of the electronic switches when a part of the time period or all of the time periods in which the wireless terminal is in a sleep state.
  • the radio frequency circuit includes: a transmit processing circuit and a receive processing circuit;
  • the transmitting processing circuit is configured to convert, according to a command of the baseband processing circuit, an uplink digital signal sent by the uplink baseband control circuit into an uplink analog signal and send the uplink digital signal to the antenna;
  • the receiving processing circuit is configured to receive a downlink analog signal sent by the antenna, and convert the downlink digital signal into a downlink digital signal for processing by the baseband control circuit;
  • the switch circuit includes an electronic switch disposed on at least one of the following power supply lines:
  • the electronic switch is configured to disconnect a power supply line where the electronic switch is located according to the disconnection command;
  • the baseband control circuit is specifically configured to send the disconnection command to at least one of the electronic switches when a part of the time period or all of the time periods in which the wireless terminal is in a sleep state.
  • the baseband control circuit is further configured to be used in all circuits of the radio frequency circuit or At the end of the period when the partial circuit is powered off, a communication command is sent to the switch circuit, and the switch circuit is controlled to communicate with the radio frequency circuit at all time periods except for a period in which all or part of the circuit of the radio frequency circuit is powered off. Power supply line for all circuits;
  • the switch circuit is configured to receive the connection command, and connect a power supply line to all circuits of the radio frequency circuit according to the connection command.
  • the baseband control circuit is further configured to At the end of the period when all or part of the circuit of the radio frequency circuit is powered off, a communication command is sent to all the electronic switches that have received the disconnection command;
  • the electronic switch is further configured to receive the communication command, and connect the power supply line where the electronic switch is located according to the communication command.
  • the method for controlling power supply and the wireless terminal do not need to supply power to all the radio frequency circuits when the wireless terminal is in the dormant state, thereby reducing the power consumption of the wireless terminal and prolonging the Standby time also extends the life of the RF circuit in the wireless terminal.
  • 1 is a DRX state diagram of a wireless terminal
  • FIG. 2 is a schematic diagram of the composition of a wireless communication system
  • FIG. 3 is a schematic structural diagram of a wireless terminal according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a communication unit according to an embodiment of the present invention.
  • FIG. 5a is a schematic structural diagram of a communication unit according to another embodiment of the present invention.
  • FIG. 5b is a schematic structural diagram of a communication unit of another embodiment
  • FIG. 5c is a schematic structural diagram of a communication unit of another embodiment
  • FIG. 5d is a schematic structural diagram of a communication unit of another embodiment
  • FIG. 6 is a flowchart of a method for controlling power supply according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an electronic switch according to an embodiment of the present invention.
  • the method and the wireless terminal provided by the embodiments of the present invention enable the power consumption of the wireless terminal to be reduced when the wireless terminal is in the sleep state, thereby reducing the power consumption of the wireless terminal and prolonging the standby time.
  • the circuit does not need to be always in a power supply state, and also prolongs the service life of the radio frequency circuit in the wireless terminal.
  • the wireless terminal in the following embodiments includes wireless connection with the network side device.
  • Communications mobile phones personal digital assistants (PDAs), wireless modems, tablets, laptops, data cards, and wearable devices.
  • PDAs personal digital assistants
  • wireless modems wireless modems
  • tablets laptops
  • data cards wearable devices.
  • the embodiments of the present invention can be applied to various wireless communication systems using DRX cycles, such as GSM (Global System of Mobile communication) system, WCDMA (Wideband Code Division Multiple Access) system, CDMA ( Code Division Multiple Access (CDMA) system and LTE (Long Term Evolution) system.
  • GSM Global System of Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • LTE Long Term Evolution
  • the network side device herein may include a base station (such as a Node B) and a radio network controller according to actual needs.
  • a period in which the wireless terminal is in a sleep state is referred to as a sleep period; a period in which the wireless terminal is in an awake state is referred to as a wake-up period.
  • the entire period of each DRX cycle is thus divided into two periods, and the entire period of each DTX period is similarly divided into two periods.
  • FIG. 3 is a schematic structural diagram of a wireless terminal according to an embodiment of the present invention.
  • the wireless terminal includes components such as an input unit, a processor unit, an output unit, a communication unit, a storage unit, and a peripheral unit. These components communicate over one or more buses.
  • the structure of the wireless terminal shown in the figure does not constitute a limitation of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more or less than the illustration. Parts, or combine some parts, or different parts.
  • the input unit and the output unit may not be included, or even a power source.
  • the input unit is configured to implement user interaction with the wireless terminal and/or information input into the wireless terminal.
  • the input unit can receive numeric or character information input by the user to generate a signal input related to user settings or function control.
  • the input unit may be a touch panel, or may be other human-computer interaction interfaces, such as a physical input key, a microphone, etc., and may be other external information capture devices, such as a camera.
  • the processor unit is a control center of the wireless terminal, and connects various parts of the entire wireless terminal by using various interfaces and lines, by running or executing software programs and/or modules stored in the storage unit, and calling data stored in the storage unit. To perform various functions of the wireless terminal and/or process data.
  • the processor unit may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor unit may include only a central processing unit (CPU), or may be a CPU, a digital signal processor (DSP), and a control chip (eg, a baseband chip) in the communication unit.
  • the CPU may be a single operation core, and may also include multiple operation cores.
  • the communication unit is configured to establish a communication channel, to cause the wireless terminal to connect to the remote server through the communication channel, and to download data from the remote server.
  • the communication unit may include a wireless local area network (Wireless Local Area Network) module, a Bluetooth module, a baseband module, and the like, and a radio frequency (RF) circuit corresponding to the communication module.
  • RF radio frequency
  • W-CDMA Wideband Code Division Multiple Access
  • HSDPA High Speed Downlink Packet Access
  • the communication module is used to control communication of components in the wireless terminal, and can support Direct Memory Access.
  • various communication modules in the communication unit generally appear in the form of an integrated circuit chip, and can be selectively combined without including all communication modules and corresponding antennas. group.
  • the communication unit may include only baseband control circuitry, radio frequency circuitry, and corresponding antennas to provide communication functionality in a cellular communication system.
  • the wireless terminal can be connected to a cellular network (Cellular Network) or the Internet (Internet) via a wireless communication connection established by the communication unit, such as wireless local area network access or WCDMA access.
  • a communication module in the communication unit such as a baseband control circuit, may be integrated into the above-described processor unit, typically an APQ+MDM series platform such as that provided by Qualcomm.
  • the output unit includes, but is not limited to, an image output unit and a sound output unit.
  • the image output unit is used to output text, pictures, and/or video.
  • the image output unit may include a display panel, such as an LCD (Liquid Crystal Display), an OLED (Organic Light-Emitting Diode), a field emission display (FED), or the like. Display panel.
  • the image output unit may comprise a reflective display, such as an electrophoretic display, or a display utilizing an Interferometric Modulation of Light.
  • the image output unit may comprise a single display or multiple displays of different sizes.
  • the storage unit can be used to store software programs and modules, and the processing unit executes various functional applications of the wireless terminal and implements data processing by running software programs and modules stored in the storage unit.
  • the storage unit mainly includes a program storage area and a data storage area, wherein the program storage area can store an operating system, an application required for at least one function, such as a sound playing program, an image playing program, and the like; and the data storage area can be stored according to the wireless terminal. Use the created data (such as audio data, phone book, etc.).
  • the storage unit may include a volatile memory, such as a non- Volatile Dynamic Random Access Memory (NVRAM), Phase Change RAM (PRAM), Magnetoresistive Random Access Memory (MRAM), etc.
  • NVRAM non- Volatile Dynamic Random Access Memory
  • PRAM Phase Change RAM
  • MRAM Magnetoresistive Random Access Memory
  • non-volatile memory such as at least one disk storage device, Electronically Erasable Programmable Read-Only Memory (EEPROM), flash memory device, such as NOR flash memory or In contrast to NAND flash memory.
  • the non-volatile memory stores operating systems and applications executed by the processing unit.
  • the processing unit loads the running program and data from the non-volatile memory into the memory and stores the digital content in a plurality of storage devices.
  • the operating system includes various components and/or drivers for controlling and managing conventional system tasks such as memory management, storage device control, power management, and the like, as well as facilitating communication between various hardware and software.
  • the operating system may be an Android system of Google Inc., an iOS system developed by Apple Corporation, a Windows operating system developed by Microsoft Corporation, or an embedded operating system such as Vxworks.
  • the peripheral interface is an interface for connecting an external device, including but not limited to a USB (Universal Serial Bus) interface, a PCMCIA (Personal Computer Memory Card International Association) interface, and the like.
  • USB Universal Serial Bus
  • PCMCIA Personal Computer Memory Card International Association
  • the power supply in the figure is used to power different parts of the wireless terminal to maintain its operation.
  • the power source may be a built-in battery, such as a common lithium ion battery, a nickel hydrogen battery, etc., and an external power source that directly supplies power to the wireless terminal.
  • FIG. 4 is a schematic structural diagram of a communication unit according to an embodiment of the present invention.
  • the communication unit includes: a power control circuit, a radio frequency circuit, a baseband control circuit, an antenna, and a switch circuit.
  • the radio frequency circuit is configured to receive a downlink analog signal sent by the antenna, convert the downlink digital signal to the baseband control circuit for processing, and receive an uplink digital signal sent by the baseband control circuit, and convert the uplink digital signal into an uplink analog signal. Sended to the antenna for transmission.
  • uplink digital signal and uplink analog signal herein refer to digital signals and analog signals transmitted by the wireless terminal to the network side device, respectively, and “downstream digital signal” and “downlink analog signal” respectively refer to The digital signal and the analog signal sent by the network side device to the wireless terminal.
  • the power processing circuit is configured to supply power to the baseband control circuit, and receive a power control signal sent by the baseband control circuit, and supply power to the radio frequency circuit according to the power control signal.
  • the relationship between the power processing circuit and the power supply of FIG. 3 is omitted in FIG. 4. It can be understood that the power processing circuit of FIG. 4 may include a power source and a circuit for processing and distributing power supplied by the power source; A circuit that processes and distributes the electrical energy provided by the power supply.
  • the switch circuit is located on the power supply line of the power processing circuit to the radio frequency circuit, and is configured to receive a disconnect command of the baseband control circuit, and disconnect part or all of the circuit of the radio frequency circuit according to the disconnect command
  • the number of DTX cycles is at least one, and the number of DRX cycles is at least one.
  • the power supply to some or all of the circuits of the radio frequency circuit is used in at least one of the DRX or DTX cycles for at least one of the sleep state periods or all of the periods, and the period of power-off is more flexible and diverse.
  • the baseband control circuit is configured to receive and process the downlink digital signal sent by the radio frequency circuit, generate the uplink digital signal, and send the uplink digital signal to the radio frequency circuit, and send a power control signal to the power processing circuit;
  • the wireless terminal is in a partial or all of the sleep state, and sends a disconnect command to the switch circuit.
  • the wireless terminal when specifically implemented, when determining that the wireless terminal enters a power saving function (for example, wireless terminal The terminal receives the command that the user inputs the power saving mode, or the wireless terminal automatically detects that the remaining power is lower than a certain threshold, or the wireless terminal detects that the wireless terminal is currently in the set time period or detects that the wireless terminal is located at the set location.
  • a power saving function for example, wireless terminal
  • the terminal receives the command that the user inputs the power saving mode, or the wireless terminal automatically detects that the remaining power is lower than a certain threshold, or the wireless terminal detects that the wireless terminal is currently in the set time period or detects that the wireless terminal is located at the set location.
  • the fixed location, the wireless terminal is automatically executed after being turned on, etc.), the power supply of the baseband control circuit can be maintained at all times, the timing of the baseband control circuit is continuously, and the power supply is stopped for all or part of the circuit of the radio frequency circuit (ie, the wireless terminal)
  • a disconnection command is sent to the switch circuit, and the switch circuit disconnects the power supply line where the switch circuit is located immediately after receiving the disconnection command to cut off the RF circuit.
  • the switching circuit here receives the entire response time of the disconnection command and performs the disconnection, and the entire time period for stopping the power supply to all or part of the circuit of the radio frequency circuit is short, so the response time is negligible.
  • the time for stopping power supply to some or all of the circuits of the radio frequency circuit is not greater than the time when the wireless terminal is in a sleep state.
  • the period of stopping power supply to all or part of the circuit of the radio frequency circuit may specifically include the following eight time periods:
  • all the periods of the sleep period in the DTX period refer to all sleep periods in the DTX period, and the number of DTX periods is at least one.
  • Part of the sleep period in the DTX cycle refers to DTX A portion of the sleep period in the cycle, the number of DTX cycles is at least one, for example, the first half of the sleep period in one DTX period, or the first third of the sleep period in all DTX periods, and the like.
  • the all periods of the sleep period in the DRX cycle refer to all sleep periods in the DRX cycle, and the number of DRX cycles is at least one.
  • the partial period of the sleep period in the DRX cycle refers to a portion of the sleep period in the DRX cycle, and the number of DRX cycles is at least one, for example, the first half of the sleep period in one DRX cycle, or the sleep period in all DRX cycles The first third of the ranking.
  • stopping power supply to all or part of the circuits of the radio frequency circuit in the above eight time periods that is, stopping power supply to all or part of the circuits of the radio frequency circuit only during the eight time periods
  • stopping power supply to all or part of the circuits of the radio frequency circuit only during all periods of the sleep period in the DTX cycle of the wireless terminal when the baseband control circuit is outside the full period of the sleep period of the DTX cycle At all other times, power is restored to all circuits of the RF circuit.
  • the other cases of (b)-(h) are similar and will not be repeated here.
  • Recovering power to all circuits of the radio frequency circuit specifically by the baseband control circuit, when the period of stopping power supply to all or part of the circuits of the radio frequency circuit in the wireless terminal ends, to the switch circuit that has received the disconnect command
  • a connect command is sent to connect to the previously disconnected power line. Due to the response time used by the switching circuit from receiving the communication command to the entire process of performing the communication, the period of time for stopping power supply to all or part of the circuit of the radio frequency circuit, and the period of time for maintaining power to all circuits of the radio frequency circuit are short, This response time is negligible.
  • the period of stopping power supply to all or part of the circuits of the radio frequency circuit may include more than one continuous time period, for example, the first half of the sleep period in one DRX cycle, or the first one third; It may also contain a plurality of non-contiguous time periods, for example, all sleep periods in each DRX cycle, or the first half of the sleep period in each DTX cycle, or in (a)-(h) a combination of situations.
  • the power supply of the relevant circuit of the RF circuit can be designed to stop supplying power to all or part of the circuits of the RF circuit only when it is currently in the sleep period of DTX and also in the sleep period of DRX.
  • the meaning of "(a) and (c)" in (e) is that (a) and (c) are satisfied at the same time.
  • the meanings of (f)--(h) are similar.
  • Another embodiment of the present invention further provides a wireless terminal using the foregoing communication unit.
  • the wireless terminal may further include other units such as those shown in FIG. 3, and data transmission or connection between the communication unit and other units. For the relationship, reference may be made to the description of FIG. 3, which is not repeated here.
  • the wireless terminal adopts the communication unit provided in this embodiment, it can realize that all the radio frequency circuits are not required to be powered when the wireless terminal is in the dormant state, thereby reducing power consumption of the wireless terminal and prolonging the standby time, and at the same time, due to the radio frequency In the case of long-term power supply, the reliability of the circuit is gradually reduced. Therefore, the embodiment of the present invention also prolongs the service life of the radio frequency circuit in the wireless terminal.
  • the dormant state in the DTX cycle is not continuously transmitted, specifically: a sleep state in all DTX cycles, or a sleep state in a partial DTX cycle; and the dormant state in the discontinuous reception DRX cycle, specifically : Sleep state in all DRX cycles, or sleep state in partial DRX cycles.
  • the partial DTX period described in (2) and the partial DTX period described in (4) are selected in various manners, for example, one of every two consecutive periods may be selected, or every three consecutive periods Select one or two, or select the first two, etc., every four consecutive cycles.
  • an appropriate "partial period" can be selected based on the complexity of the algorithm, the efficiency of power saving, etc., and the manner of selection does not constitute a limitation of the present invention. It can be understood that the longer the total time of power-off, the more obvious the effect of power saving, but when the total power saving time is small, although the power saving effect is weak, the working load of the baseband control circuit and the switching circuit is also small.
  • stopping power supply to all or part of the circuits of the radio frequency circuit in the above eight time periods that is, stopping power supply to all or part of the circuits of the radio frequency circuit only during the eight time periods, (1) For example, stopping power supply to all or part of the circuits of the radio frequency circuit only during all or part of the sleep period in each DTX cycle of the wireless terminal, specifically, If the power supply is stopped at all of the sleep periods in each DTX cycle of the wireless terminal, then all the time periods except the full time period in the sleep period in each DTX cycle of the wireless terminal are restored to the radio frequency circuit Power to all circuits.
  • disconnecting the power supply of all or part of the circuit of the radio frequency circuit during the period of (1)-(8) can be understood not only as a single power saving scheme, for example, all sleep periods of each DRX cycle, and the radio frequency circuit All of the circuits stop supplying power; at the same time, they can also be understood as a combination of various power saving schemes, for example, all circuits of the RF circuit are powered off during all sleep periods of each DRX cycle, and, at the end of each DTX cycle During the sleep period, one of the circuits in the RF circuit is powered off.
  • the two circuits of the radio frequency circuit are powered down during all sleep periods of one DRX cycle in every two consecutive DRX cycles, and, during all sleep periods of one DTX cycle of every three consecutive DTX cycles, Power down one of the circuits in the RF circuit.
  • various power saving schemes, and combinations thereof can be conceived by those skilled in the art, and are not described herein again.
  • a suitable power saving period (such as the period described in (1)-(8)) and a power saving range (all circuits or partial circuits of the RF circuit) can be designed as needed.
  • the wireless terminal when the wireless terminal currently has neither discontinuous transmission nor discontinuous reception, there may be a special The special case is that although it is in the sleep period of DRX, it is not in the sleep period of DTX, or is currently in the sleep period of DTX, but not in the sleep period of DRX, in order to ensure the normal operation of discontinuous transmission or discontinuous reception.
  • it may be designed to stop all or part of the circuit of the RF circuit only when it is currently in the sleep period of DTX and also in the sleep period of DRX. powered by.
  • the meaning of "(1) and (3)" in (5) is that (1) and (3) are simultaneously satisfied.
  • (6)--(8) has similar meanings.
  • the baseband control circuit is further configured to send a connection command to the switch circuit, and control the switch circuit to connect all the time periods except for a period in which all or part of the circuit of the radio frequency circuit is powered off.
  • a power supply line of all circuits of the radio frequency circuit the switch circuit is configured to receive the connection command, and connect a power supply line to all circuits of the radio frequency circuit according to the connection command.
  • the power supply of the baseband control circuit can be maintained at all times, maintaining the continuous timing of the baseband control circuit, and sending a communication command to the switch circuit when the period of stopping the supply of power to the partial circuit of the radio frequency circuit in the wireless terminal is ended. Enables communication of previously disconnected power lines.
  • the baseband control circuit if all circuits of the radio frequency circuit are powered off during all sleep periods in each DRX cycle, the baseband control circuit continues to time, and the baseband control circuit switches to the switch at the beginning of the sleep period of the Nth DRX cycle.
  • the circuit sends a disconnect command, and the switch circuit disconnects the power supply of all the circuits in the radio frequency circuit.
  • the baseband control circuit sends the switch circuit to the switch circuit.
  • connection command the switching circuit is connected to the power supply of all the circuits in the radio frequency circuit, and the baseband control circuit sends the disconnection to the switch circuit when the wake-up period of the Nth DRX cycle ends (ie, at the beginning of the sleep period of the N+1th DRX cycle) Command, switching circuit Disconnect all circuits in the RF circuit, and so on.
  • N is a positive integer, and it is assumed that in the Nth DRX cycle, the wireless terminal does not receive a message (such as a paging message) that the wireless terminal needs to process. At this time, after the end of the Nth DRX cycle, the Nth is continued. +1 DRX cycle.
  • the wireless terminal receives a message (such as a paging message) that the wireless terminal needs to process
  • the idle state is jumped out of the idle state to enter the connected state, according to the manner of processing the paging message in the prior art until the user enters again.
  • the foregoing process of controlling the power supply is continued.
  • FIG. 5 is a schematic structural diagram of a communication unit according to another embodiment of the present invention.
  • Figure 5a is a detailed implementation of the RF circuit on the basis of Figure 4.
  • connection lines between the circuits wherein the thicker connection line represents the power supply relationship, and the thinner connection line represents the signal transmission relationship.
  • the new content of this embodiment includes:
  • the radio frequency circuit includes: a transmission processing circuit, a reception processing circuit, and an antenna switch.
  • the transmitting processing circuit is configured to convert, according to a command of the baseband processing circuit, an uplink digital signal sent by the uplink baseband control circuit into an uplink analog signal and send the signal to the antenna switch.
  • the receiving processing circuit is configured to receive a downlink analog signal sent by the antenna switch, and convert the downlink digital signal into a downlink digital signal for processing by the baseband control circuit.
  • the antenna switch is configured to receive a downlink analog signal sent by the antenna according to a timing requirement, and send the signal to the receiving processing circuit, and receive an uplink analog signal sent by the transmitting processing circuit according to a timing requirement, and send the uplink analog signal to the antenna.
  • the various uplink data and downlink data described above can be referred to the description in the foregoing embodiment.
  • the switch circuit includes an electronic switch disposed on at least one of the following power supply lines:
  • the power processing circuit to the power supply line of the transmission processing circuit, the power processing circuit to The power supply line of the receiving processing circuit and the power supply circuit of the power processing circuit to the antenna switch.
  • the electronic switch is configured to disconnect a power supply line where the electronic switch is located according to the disconnection command.
  • the baseband control circuit is specifically configured to send the disconnection command to at least one of the electronic switches when a part of the time period or all of the time periods in which the wireless terminal is in a sleep state.
  • This function is for implementing an electronic switch that controls the disconnection command, a power supply line in which the electronic switch that receives the disconnection command is disconnected during a partial or full time period in which the wireless terminal is in a sleep state.
  • Another embodiment of the present invention further provides a wireless terminal using the foregoing communication unit.
  • the wireless terminal may further include other units such as those shown in FIG. 3, and data transmission or connection between the communication unit and other units. For the relationship, reference may be made to the description of FIG. 3, which is not repeated here.
  • the wireless terminal adopts the communication unit provided in this embodiment, it can realize that all the radio frequency circuits are not required to be powered when the wireless terminal is in the dormant state, thereby reducing the power consumption of the wireless terminal and prolonging the standby time, and also prolonging the time.
  • the service life of the radio frequency circuit in the wireless terminal at the same time, in this embodiment, since the switch circuit adopts one or more electronic switches, the whole scheme is simple, effective and flexible, and the hardware cost is low.
  • the switching circuit of FIG. 5a includes three electronic switches respectively located at a power supply line of the power processing circuit to the transmitting processing circuit, a power supply line of the power processing circuit to the receiving processing circuit, and
  • the power processing circuit is connected to the power supply line of the antenna switch, and when determining that the wireless terminal enters a power saving function (for example, the wireless terminal receives a command selected by the user, or the wireless terminal automatically detects that the remaining power is lower than a certain threshold, or When the wireless terminal detects the set time period or the set location, etc., the power supply of the baseband control circuit can be maintained at all times, maintaining the continuous timing of the baseband control circuit, and during the period in which the RF circuit is powered off (the wireless terminal is in a sleep state) At the beginning of part or all of the time period, a disconnect command is sent to at least one of the three electronic switches, and the disconnection is received.
  • a disconnect command is sent to at least one of the three electronic switches, and the disconnection is received.
  • the electronic switch of the open command immediately disconnects the power supply line where the electronic switch is located, so as to cut off all or part of the power supply of the RF circuit. Since three electronic switches respectively control three power supply lines, the power can be more targeted when the power is turned off, and the power-off scheme is more flexible. If some electronic switches fail, the remaining fault-free electronic switches can still be powered off. Improve the stability of the program.
  • FIG. 5b is a schematic structural diagram of a communication unit according to another embodiment of the present invention.
  • the switch circuit includes an electronic switch that is simultaneously located in the power supply circuit of the power processing circuit to the power transmission circuit of the transmission processing circuit, and the power supply processing circuit to the receiving processing circuit.
  • the power processing circuit to the power supply line of the antenna switch, the on/off of the electronic switch simultaneously controls the three power supply lines, when determining that the wireless terminal enters a power saving function (eg, the wireless terminal receives a user selected command) , or the wireless terminal automatically detects that the remaining power is below a certain threshold, or the wireless terminal detects the set time period or the set location, etc., the power supply of the baseband control circuit can be maintained at all times, and the baseband control circuit continues to be timed.
  • a power saving function eg, the wireless terminal receives a user selected command
  • the wireless terminal automatically detects that the remaining power is below a certain threshold, or the wireless terminal detects the set time period or the set location, etc.
  • the implementation of the foregoing electronic switch may further have other implementation manners, such as a power supply circuit from the power processing circuit to the transmit processing circuit, a power supply line from the power processing circuit to the receive processing circuit, and the Two of the three lines of the power processing circuit to the power supply line of the antenna switch share one electronic switch, and the other line uses an electronic switch, and the baseband control circuit is in a period of stopping power supply to the radio frequency circuit (the wireless terminal is in a sleep state)
  • a disconnect command is sent to at least one of the two electronic switches, and the electronic switch that receives the disconnect command immediately disconnects the power supply line where the electronic switch is located, so as to cut off the RF circuit. All or part Power supply.
  • the electronic switch may further include four electronic switches in total, one of the switches serving as a power supply line of the power processing circuit to the transmitting processing circuit, a power supply circuit of the power processing circuit to the receiving processing circuit, And a total switch of the three lines of the power processing circuit to the power supply line of the antenna switch, and the other three electronic switches are sub-switches respectively located on the three lines, and the baseband control circuit is in a period of stopping power supply to the radio frequency circuit (wireless When a part of the terminal is in a sleep state or all of the time period starts, a disconnect command is sent to the main switch to disconnect all power supply of the radio frequency circuit; or a disconnect command is simultaneously sent to the three sub-switches to disconnect all power supply of the radio frequency circuit.
  • the scheme is provided with a main switch and a sub-switch, and the power-off scheme can be flexibly selected according to requirements. Even if some electronic switches fail, the power-off can be completed through the fault-free electronic switch, and the stability of the solution is better. .
  • the component division of the radio frequency circuit is mainly based on the function.
  • FIG. 5 is a schematic structural diagram of a communication unit according to another embodiment of the present invention.
  • Figure 5c is a detailed implementation of the RF circuit on the basis of Figure 4.
  • connection lines between the circuits wherein the thicker connection line represents the power supply relationship, and the thinner connection line represents the signal transmission relationship.
  • the new content of this embodiment includes:
  • the radio frequency circuit includes: a transmission processing circuit and a reception processing circuit.
  • the transmitting processing circuit is configured to convert, according to a command of the baseband processing circuit, an uplink digital signal sent by the uplink baseband control circuit into an uplink analog signal and send the signal to the antenna.
  • the receiving processing circuit is configured to receive a downlink analog signal sent by the antenna, and convert the downlink digital signal into a downlink digital signal for processing by the baseband control circuit.
  • the switch circuit includes an electronic switch disposed on at least one of the following power supply lines:
  • the electronic switch is configured to disconnect a power supply line where the electronic switch is located according to the disconnection command;
  • the baseband control circuit is specifically configured to send the disconnection to at least one of the electronic switches when a partial period or all periods of the wireless terminal are in a sleep state.
  • the function is to implement an electronic switch that controls the receipt of the disconnection command, a power supply line in which the electronic switch that receives the disconnection command is disconnected during a partial or full time period in which the wireless terminal is in a sleep state.
  • Another embodiment of the present invention further provides a wireless terminal using the foregoing communication unit.
  • the wireless terminal may further include other units such as those shown in FIG. 3, and data transmission or connection between the communication unit and other units. For the relationship, reference may be made to the description of FIG. 3, which is not repeated here.
  • the wireless terminal adopts the communication unit provided in this embodiment, it can realize that all the radio frequency circuits are not required to be powered when the wireless terminal is in the dormant state, thereby reducing the power consumption of the wireless terminal and prolonging the standby time, and also prolonging the time.
  • the service life of the radio frequency circuit in the wireless terminal at the same time, in this embodiment, since the switch circuit adopts one or more electronic switches, the whole scheme is simple, effective and flexible, and the hardware cost is low.
  • the switching circuit of Figure 5c includes two electronic switches located at the power supply line of the power processing circuit to the transmitting processing circuit, and the power processing circuit to the receiving portion, respectively On the power supply line of the circuit, when it is determined that the wireless terminal enters the power saving function (for example, the wireless terminal receives the command selected by the user, or the wireless terminal automatically detects that the remaining power is below a certain threshold, or the wireless terminal detects the set time)
  • the power supply of the baseband control circuit can be maintained at all times, maintaining the continuous timing of the baseband control circuit, and at the beginning of the period in which the radio frequency circuit is stopped (the partial period or all of the period in which the wireless terminal is in the sleep state)
  • sending a disconnect command to at least one of the two electronic switches, and the electronic switch receiving the disconnect command immediately disconnects the power supply line where the electronic switch is located, so as to cut off all or part of the power supply of the radio frequency circuit. Since there are two electronic switches to control the two power supply lines respectively, the power supply can be more targeted, and the power
  • FIG. 5 is a schematic structural diagram of a communication unit according to another embodiment of the present invention. Different from FIG. 5c, the switch circuit includes an electronic switch that is simultaneously located in the power supply circuit of the power processing circuit to the transmit processing circuit, and the power processing circuit to the receive processing circuit.
  • the on/off of the electronic switch simultaneously controls the three power supply lines, and when determining that the wireless terminal enters a power saving function (for example, the wireless terminal receives a command selected by the user, or the wireless terminal automatically detects that the remaining power is below a certain threshold) , or the wireless terminal detects the set time period or the set location, etc., the power supply of the baseband control circuit can be maintained at all times, maintaining the continuous timing of the baseband control circuit, and during the period when the RF circuit is stopped (the wireless terminal is at When a part of the sleep state or all of the time period starts, a disconnect command is sent to the electronic switch, and the electronic switch disconnects the power supply line where the electronic switch is located immediately after receiving the disconnect command, so as to cut off the entire RF circuit. powered by.
  • This solution only uses one electronic switch, which can disconnect three lines at the same time, with higher power-off efficiency and lower hardware cost.
  • the above electronic switch may further comprise three electronic switches in total, one of which acts as The main switch of the power supply circuit of the power processing circuit to the power supply line of the transmitting processing circuit and the power supply circuit of the receiving processing circuit, and the other two electronic switches are sub-switches, respectively located here
  • the baseband control circuit sends a disconnect command to the main switch to disconnect all power of the radio frequency circuit when the radio frequency circuit stops supplying power (a partial period or a full period of time when the wireless terminal is in a sleep state); or Simultaneously send a disconnect command to the two sub-switches to disconnect all power to the radio frequency circuit; or send a disconnect command to one of the two sub-switches to disconnect part of the RF circuit.
  • the scheme is provided with a main switch and a sub-switch, and the power-off scheme can be flexibly selected according to requirements. Even if some electronic switches fail, the power-off can be completed through the fault-free electronic switch, and the stability of the solution is better. .
  • the baseband control circuit is further configured to be disposed on the power supply line at the end of the period when all or part of the circuit of the radio frequency circuit is powered off.
  • the at least one electronic switch transmits a communication command to control the at least one electronic switch to connect the power supply line where the at least one electronic switch is located when the wireless terminal is in an awake state.
  • the division of the radio frequency circuit is mainly divided according to functions.
  • multiple chips may implement one circuit function, or several circuits may be in one chip.
  • the implementation, such as the receive processing circuit and the transmit processing circuit, can be combined into one chip.
  • the baseband control circuit is further configured to receive the disconnection at the end of a period in which all or part of the circuit of the radio frequency circuit is powered off Turn on all the electronic switches of the command and send the connect command.
  • the function is to control the electronic switch that receives the communication command, all the time periods except the time period in which all the circuits of the radio frequency circuit or part of the circuit is powered off, and the power supply line in which the electronic switch that controls the communication command is connected.
  • the electronic switch is further configured to receive the communication command, and connect the power supply line where the electronic switch is located according to the communication command.
  • the scheme ensures that the radio terminal is normally powered and operating at other times than the period in which the power supply to the portion of the RF circuit in the wireless terminal is stopped. It can be understood that the power supply of the baseband control circuit can be maintained at all times, maintaining the continuous timing of the baseband control circuit, and the disconnection command has been received when the period of stopping the supply of power to the partial circuits of the radio frequency circuit in the wireless terminal is ended.
  • the electronic switch sends a communication command to enable communication of the previously disconnected power supply line.
  • the wireless terminal receives the command to exit the power saving mode sent by the user during the whole process of controlling the power supply, or the wireless terminal is powered off, or the remaining power of the wireless terminal is higher than a certain threshold, or It is a specific time period, or the wireless terminal is in a specific location, or the wireless terminal switches from the idle state to the connected state, or other set conditions, and the method is immediately suspended.
  • the process of controlling the power supply is not started until the user enters the command to enter the power saving mode or other trigger condition.
  • the baseband control circuit in the communication unit is notified to stop the process of performing the foregoing control power supply, if the disconnect command has been sent yet
  • the connection command is immediately sent to the switch circuit that has received the disconnection command, and the disconnect command is not sent until the process of controlling the power supply is restarted; if the connection command has been sent after the disconnect command is sent, the control is performed. The disconnect command is no longer sent until the power supply process is restarted.
  • the embodiment of the invention further provides a method for controlling power supply, which is applicable to a wireless terminal that will enter a sleep state.
  • the method includes:
  • the sleep state includes at least one of: discontinuously transmitting a sleep state in a DTX cycle, and discontinuously receiving a sleep state in a DRX cycle. Use at least one of the DRX or DTX cycles During the partial or full period of the sleep state, the power supply to some or all of the circuits of the radio frequency circuit is more flexible and diverse.
  • the executive body of the present invention may be a wireless terminal or a baseband control circuit of the wireless terminal.
  • the time for stopping power supply to some or all of the circuits of the radio frequency circuit is not greater than the time when the wireless terminal is in a sleep state.
  • the wireless terminal when the wireless terminal is in the sleep state in the DTX cycle, the message sent by the network side device is not received, and part of the circuit of the wireless terminal is in a state of low power consumption at this time.
  • the wireless terminal is in the sleep state in the DTX cycle, the message is not sent to the network side device, and part of the circuit of the wireless terminal is in a state of low power consumption at this time.
  • the wireless terminal may receive the command selected by the user, or the wireless terminal automatically detects that the remaining power is lower than a certain threshold, or the wireless terminal detects that the current time is currently set or detects that the wireless terminal is located. The location of the setting, etc.
  • radio frequency circuit in this embodiment For the meaning of the radio frequency circuit in this embodiment, reference may be made to the description of the radio frequency circuit in the foregoing device embodiment.
  • the period of stopping power supply to all or part of the circuits of the radio frequency circuit specifically includes the following eight periods:
  • all the periods of the sleep period in the DTX period refer to all sleep periods in the DTX period, and the number of DTX periods is at least one.
  • the partial period of the sleep period in the DTX period refers to a portion of the sleep period in the DTX period, and the number of DTX periods is at least one, for example, the first half of the sleep period in one DTX period, or the sleep period in all DTX periods The first third of the ranking.
  • the all periods of the sleep period in the DRX cycle refer to all sleep periods in the DRX cycle, and the number of DRX cycles is at least one.
  • the partial period of the sleep period in the DRX cycle refers to a portion of the sleep period in the DRX cycle, and the number of DRX cycles is at least one, for example, the first half of the sleep period in one DRX cycle, or the sleep period in all DTX cycles The first third of the ranking.
  • the embodiment of the present invention By adopting the method of the embodiment of the invention, when the wireless terminal is in the dormant state, power is not required for all the radio frequency circuits, thereby reducing the power consumption of the wireless terminal and prolonging the standby time, and at the same time, the radio frequency circuit is powered for a long time. In this case, the reliability will gradually decrease, so the embodiment of the present invention also prolongs the service life of the radio frequency circuit in the wireless terminal.
  • stopping power supply to all or part of the circuits of the radio frequency circuit in the above eight time periods that is, stopping power supply to all or part of the circuits of the radio frequency circuit only during the eight time periods
  • stopping power supply to all or part of the circuits of the radio frequency circuit only during all periods of the sleep period in the DTX cycle of the wireless terminal when the baseband control circuit is outside the full period of the sleep period of the DTX cycle At all other times, power is restored to all circuits of the RF circuit.
  • the other cases of (b)-(h) are similar and will not be repeated here.
  • the wireless terminal resumes power supply to all circuits of the radio frequency circuit, and may specifically be turned off by the baseband control circuit to the switch circuit that has received the disconnection command at the end of the period of stopping power supply to the part of the radio frequency circuit in the wireless terminal.
  • a connect command is sent to connect to the previously disconnected power line.
  • the power supply to stop all or part of the circuit of the RF circuit is (e)--(h)
  • the current sleep period of the DRX is not in the sleep period of the DTX, or the sleep is currently in the DTX.
  • the dormant state in the DTX cycle is not continuously transmitted, specifically: a sleep state in all DTX cycles, or a sleep state in a partial DTX cycle;
  • the discontinuous reception of the sleep state in the DRX cycle is specifically: a sleep state in all DRX cycles, or a sleep state in a partial DRX cycle.
  • partial DTX period described in (2) and the selection of the partial DTX period described in (4) There are various ways of selecting, for example, one out of every two consecutive cycles, or one or two out of every three consecutive cycles, or the first two in every four consecutive cycles.
  • an appropriate "partial period" can be selected based on the complexity of the algorithm, the efficiency of power saving, etc., and the manner of selection does not constitute a limitation of the present invention. It can be understood that the longer the total time of power failure, the more obvious the effect of power saving, but when the total power saving time is small, although the power saving effect is weak, the burden of the module responsible for power supply control in the wireless terminal is small.
  • each of the above (1)-(4) actually includes “all” and “partial” two.
  • each of (5)-(8) actually contains four cases of "all + part”, “all + all”, “part + part” and “part + all”, the above eight cases
  • the division is just for the sake of simplicity.
  • stopping power supply to all or part of the circuits of the radio frequency circuit in the above eight time periods that is, stopping power supply to all or part of the circuits of the radio frequency circuit only during the eight time periods
  • stopping power supply to all or part of the circuits of the radio frequency circuit only during all or part of the sleep period in each DTX cycle of the wireless terminal specifically, if it is in each DTX of the wireless terminal
  • the power supply is stopped for all of the sleep periods in the cycle, and then all of the circuits of the radio frequency circuit are restored at all times except for all of the sleep periods in each DTX cycle of the wireless terminal.
  • disconnecting the power supply of all or part of the circuit of the radio frequency circuit during the period of (1)-(8) can be understood not only as a single power saving scheme, for example, all sleep periods of each DRX cycle, and the radio frequency circuit All circuits are powered off; at the same time, they can also be understood as a combination of various power saving schemes, for example in All of the circuits of the RF circuit are powered down during all sleep periods of each DRX cycle, and some of the circuits in the RF circuit are powered down during all sleep periods of each DTX cycle.
  • a suitable power saving period such as the period described in (1)-(8)
  • a power saving range all circuits or partial circuits of the RF circuit
  • the period of stopping power supply to all or part of the circuits of the radio frequency circuit is (5)-(8), when the wireless terminal currently has neither discontinuous transmission nor discontinuous reception, there may be a special case. That is, although currently in the sleep period of the DRX, but not in the sleep period of the DTX, or currently in the sleep period of the DTX, but not in the sleep period of the DRX, in order to ensure the normal operation of the discontinuous transmission or the discontinuous reception, it is necessary to maintain the In order to simplify the design, the power supply of the relevant circuit of the RF circuit can be designed to stop supplying power to all or part of the circuits of the RF circuit only when it is currently in the sleep period of DTX and also in the sleep period of DRX. In other words, the meaning of "(1) and (3)" in (5) is that (1) and (3) are simultaneously satisfied. (6)--(8) has similar meanings.
  • the wireless terminal (specifically, the baseband control circuit) continues to count, starting in the sleep period of the Nth DRX cycle.
  • the wireless terminal disconnects all the circuits in the RF circuit (specifically, the baseband control circuit sends a disconnect command to the switch circuit, the switch circuit disconnects all circuits in the RF circuit), and goes to sleep in the Nth DRX cycle.
  • the wireless terminal resumes power supply to all circuits in the RF circuit (specifically, the baseband control circuit sends a connection command to the switch circuit, and the switch circuit connects all of the RF circuits)
  • the power supply of the circuit until the end of the wake-up period of the Nth DRX cycle (ie, at the beginning of the sleep period of the N+1th DRX cycle), the wireless terminal again disconnects the power supply of all circuits in the RF circuit (specifically: baseband
  • the control circuit sends a disconnect command to the switch circuit, and the switch circuit disconnects all circuits in the RF circuit Power supply), and so on.
  • N is a positive integer, and it is assumed that in the Nth DRX cycle, the wireless terminal does not receive a message (such as a paging message) that the wireless terminal needs to process. At this time, after the end of the Nth DRX cycle, the Nth is continued. +1 DRX cycle. If, in the Nth DRX cycle, the wireless terminal receives a message (such as a paging message) that the wireless terminal needs to process, the idle state is jumped out of the idle state to enter the connected state, according to the manner of processing the paging message in the prior art until the user enters again. When the idle state continues and the discontinuous reception is continued according to the DRX cycle, the foregoing process of controlling the power supply is continued.
  • a message such as a paging message
  • the radio frequency circuit of the wireless terminal includes: a transmission processing circuit, a receiving processing circuit, and an antenna switch; wherein the description of the three components can refer to the previous FIG. 5a to FIG. 5b. Description of related embodiments.
  • Stopping power supply to a part of the circuit of the radio frequency circuit in the wireless terminal specifically including one or two of the following:
  • Stopping power supply to all circuits of the radio frequency circuit in the wireless terminal specifically including:
  • Disconnecting an electronic switch located on a power supply line of the transmit processing circuit disconnecting an electronic switch located on a power supply line of the transmit processing circuit, and disconnecting an electronic switch located on a power supply line of the antenna switch.
  • the number of electronic switches is at least one, and the position of the electronic switch can refer to the specific embodiment before with respect to FIG. 5a - FIG. 5b, and will not be repeated here. It should be noted that, in this embodiment, a solution for flexibly controlling the power supply of the radio frequency circuit is provided. If necessary, the power supply of a specific part of the radio frequency circuit is disconnected in a part of the time period or all of the time period in which the wireless terminal is in the sleep state.
  • the radio frequency circuit includes: a transmission processing circuit and a reception processing circuit; wherein the description of the three components can refer to the related embodiments of the previous FIG. 5c to FIG. 5d. description.
  • Stopping power supply to a part of the circuit of the radio frequency circuit in the wireless terminal specifically:
  • Stopping power supply to all circuits of the radio frequency circuit in the wireless terminal specifically including:
  • the electronic switch located on the power supply line of the receiving processing circuit is disconnected.
  • restoring power to all circuits of the radio frequency circuit specifically, the baseband control circuit, the electronic switch that has received the disconnection command at the end of the period of stopping power supply to the part of the radio frequency circuit in the wireless terminal
  • a communication command is sent to connect the previously disconnected power supply line, thereby ensuring that the wireless terminal resumes normal power supply and operation after the power failure ends.
  • the wireless terminal receives the command to exit the power saving mode sent by the user during the execution of the entire method, or the wireless terminal is powered off, or the remaining power of the wireless terminal is higher than a certain threshold, or enters a specific time period, either the wireless terminal is in a specific location, or The wireless terminal switches from the idle state to the connected state, or other set conditions, the method is immediately suspended, and the method of starting the control power supply is not started until the user enters the power-saving mode command or other trigger condition input again. .
  • FIG. 6 is a flowchart of a method for controlling power supply according to an embodiment of the present invention, where an execution body of the method is a wireless terminal.
  • the power supply circuit of each circuit of the radio frequency circuit of the wireless terminal can be disconnected and connected through the switch circuit.
  • the method comprises the following steps:
  • the power saving mode herein may be integrated with the existing power saving mode of the wireless terminal, for example, adding a sub-option based on the existing power saving mode, and triggering the method of controlling the power supply when the sub-option is selected; or directly When the existing power saving mode is selected, a method of controlling the power supply is triggered.
  • the command to enter the power saving mode can be input through the input unit of the wireless terminal. For details, refer to the description of the input unit in FIG. 3, and details are not described herein again.
  • the 601 herein may also be replaced by the wireless terminal detecting that the wireless terminal is currently in the set position, or is currently in the set time period, etc., or automatically executing after the wireless terminal is powered on, or the like.
  • the terminal automatically detects that the remaining power is below a certain threshold, etc., and will not repeat it here.
  • the power saving data herein includes which circuits of the radio frequency circuit are disconnected, and a period of time during which power supply to a part of the circuits of the radio frequency circuit in the wireless terminal is stopped.
  • the power supply of the radio frequency circuit of the wireless terminal will be controlled in accordance with the power saving data.
  • the power-off range is all the circuits of the radio frequency circuit, and may be only part of the circuit of the radio frequency circuit.
  • timing can be performed by the baseband control circuit, and if a power-off period (a period in which power supply to a part of the circuits of the radio frequency circuit in the wireless terminal is stopped, for example, a sleep period in all DRX cycles) is entered, the subsequent step is triggered 604, if there is no power outage period, continue to time.
  • a power-off period a period in which power supply to a part of the circuits of the radio frequency circuit in the wireless terminal is stopped, for example, a sleep period in all DRX cycles
  • the baseband control circuit can send a disconnect command to the switch circuit to cut off power to all circuits of the radio frequency circuit.
  • 605. Determine whether the power-off period ends. If yes, continue to perform 606. If no, continue to execute 605.
  • the baseband control circuit can continue to count. If the power down period has ended, then continue 606. If the power down period has not ended, the baseband control circuit continues to time.
  • the baseband control circuit can send a communication command to the switch circuit to restore power to all circuits of the radio frequency circuit.
  • the baseband control circuit can continuously count to determine whether to enter the power saving period again, where the situation applies to the power-off period not only for one continuous period but also for multiple non-continuous times. Segment, if the wireless terminal switches from the idle state to the connected state in the whole process, the wireless terminal processes the related message according to the connection state in the prior art, and waits until the wireless terminal enters the idle state again, or when other trigger conditions are met, Continue to perform the method of controlling the power supply.
  • the power-off period is all sleep periods in each DRX cycle, and it is necessary to perform a power-off in each DRX cycle.
  • the wireless terminal receives the command to exit the power saving mode sent by the user during the execution of the entire method, or the wireless terminal is powered off, or the remaining power of the wireless terminal is higher than a certain threshold, or enters a specific time period, either the wireless terminal is in a specific location, or The wireless terminal switches from the idle state to the connected state, or other set conditions, and the method is immediately suspended, and then waits for the step of entering the power saving mode again when the user inputs the command to enter the power saving mode, or performs the step after the 601 or the wireless terminal restarts automatically. Perform the steps after 601.
  • the method provided in this embodiment provides a specific scheme for controlling the power supply. Since the power supply of all the RF circuits can be disconnected according to the power-off period, the power consumption can be significantly reduced, and the standby time and the service life of the RF circuit are prolonged. .
  • FIG. 7 is a schematic structural diagram of an electronic switch used in an embodiment of the present invention.
  • the electronic switch includes: a slow start circuit, a switch main circuit, and a filter circuit. The three circuits are in electrical communication in sequence.
  • the thicker arrows indicate the power transfer relationship, and the thinner arrows indicate the signal transmission relationship.
  • the slow start circuit is in electrical communication with the power processing circuit, the filter circuit is in electrical communication with the radio frequency circuit, and the connection command or the disconnect command issued by the base control circuit is sent to the switch main circuit for execution.
  • the slow start circuit is used to realize slow start of current, the switch main circuit is used for realizing electrical connection according to the connection command, and the electric disconnection is realized according to the disconnection command, and the filter circuit is used for filtering noise generated by the switch main circuit at the moment of opening and closing. .
  • the above three circuits can adopt various implementations in the prior art, which are not limited herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

一种控制供电的方法和无线终端,该方法包括:在无线终端处于休眠状态的部分时段或全部时段,停止对所述无线终端中的射频电路的部分或全部电路的供电;其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态。解决了无线终端的电能浪费和使用寿命缩短的问题。

Description

控制供电的方法和无线终端
本申请要求于2013年10月30日提交中国专利局、申请号为201310529506.7、发明名称为“控制供电的方法和无线终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信应用领域,特别涉及无线终端供电的方法和无线终端。
背景技术
当无线终端与网络侧设备通信时,无线终端可以在空闲状态和连接状态之间进行切换。为了减少无线终端的电能消耗,当无线终端处于空闲状态时,无线终端常常采用不连续接收DRX(Discontinuous Reception)的方式监听寻呼信道,采用不连续发送DTX(Discontinuous Transmission)的方式向网络侧设备发送数据。
图1所示为无线终端的DRX状态图,在一个DRX周期中,无线终端有两种状态:休眠状态和唤醒状态。无线终端仅在唤醒状态时接收网络侧设备发送的消息(例如寻呼消息),当无线终端处于DRX周期中的休眠状态时,不接收网络侧设备发送的消息,无线终端的部分电路此时处于低功耗的状态。类似的,一个DTX周期中,无线终端也有两种状态:休眠状态和唤醒状态,无线终端仅在唤醒状态时向网络侧设备发送消息(例如语音消息、或者寻呼网络状态的消息),当无线终端处于DTX周期中的休眠状态时,不向网络侧发送消息,无线终端的部分电路此时处于低功耗的状态。
现有技术中,当无线终端处于休眠状态时,无线终端中的部分电路处于低功耗状态,但是射频电路是一直被供电的。如果射频电路长期被供电,射频电路的可靠性和使用寿命会受到明显影响,而且也会浪费部分电能。
发明内容
本发明实施例提供一种控制供电的方法,和无线终端,解决了无线终端的电能浪费和使用寿命缩短的问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
根据本发明第一方面,提供一种控制供电的方法,该方法包括:在无线终端处于休眠状态的部分时段或全部时段,停止对所述无线终端中的射频电路的部分或全部电路的供电;其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态。
结合第一方面,在第一方面的第一种可能的实现方式中,所述不连续发送DTX周期中的休眠状态,具体为:全部DTX周期中的休眠状态,或者部分DTX周期中的休眠状态;所述不连续接收DRX周期中的休眠状态,具体为:全部DRX周期中的休眠状态,或者部分DRX周期中的休眠状态。采用该第一种可能的实现方式,可以在DRX或者DTX周期中至少一个休眠状态部分时段或全部时段,对射频电路的部分或全部电路的供电,其断电的时段更加灵活多样。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述射频电路包括:发射处理电路、接收处理电路和天线开关;
停止对所述无线终端中的射频电路的部分电路的供电,具体包括以下的一个或两个:
断开位于所述发射处理电路的供电线路上的电子开关;
断开位于所述接收处理电路的供电线路上的电子开关;
断开位于所述天线开关的供电线路上的电子开关;
停止对所述无线终端中的射频电路的全部电路的供电,具体包括:
断开位于所述发射处理电路的供电线路上的电子开关、位于所述发射处理电路的供电线路上的电子开关和位于所述天线开关的供电线路上的电子开关。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述射频电路包括:发射处理电路和接收处理电路;
停止对所述无线终端中的射频电路的部分电路的供电,具体包括:
断开位于所述发射处理电路的供电线路上的电子开关;或
断开位于所述接收处理电路的供电线路上的电子开关;
停止对所述无线终端中的射频电路的全部电路的供电,具体包括:
断开位于所述发射处理电路的供电线路上的电子开关,和
断开位于所述接收处理电路的供电线路上的电子开关。
结合第一方面、或第一方面的第一种可能的实现方式、或第一方面的第二种可能的实现方式、或第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括,在所述射频电路的全部电路或部分电路断电的时段之外的其他所有时段,为所述射频电路的全部电路供电。
根据本发明第二方面,提供一种无线终端,该无线终端包括通信单元,所述通信单元包括:电源处理电路、射频电路、基带控制电路,天线和开关电路;
所述射频电路,用于接收所述天线发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理,和接收所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线发射;
所述电源处理电路,用于为基带控制电路供电,并接收所述基带控制电路 发送的电源控制信号,根据所述电源控制信号对射频电路供电;
所述开关电路位于所述电源处理电路到射频电路的供电线路上,并用于接收所述基带控制电路的断开命令,根据所述断开命令,断开对所述射频电路的部分或全部电路的供电线路;其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态;
所述基带控制电路,用于接收所述射频电路发送的所述下行数字信号并处理,生成所述上行数字信号并向所述射频电路发送,向所述电源处理电路发送电源控制信号;并在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述开关电路发送所述断开命令。
结合第二方面,在第二方面的第一种可能的实现方式中,所述不连续发送DTX周期中的休眠状态,具体为:全部DTX周期中的休眠状态,或者部分DTX周期中的休眠状态;所述不连续接收DRX周期中的休眠状态,具体为:全部DRX周期中的休眠状态,或者部分DRX周期中的休眠状态。采用DRX或者DTX周期中至少一个休眠状态部分时段或全部时段,对射频电路的部分或全部电路的供电,其断电的时段更加灵活多样。。采用该第一种可能的实现方式,可以在DRX或者DTX周期中至少一个休眠状态部分时段或全部时段,对射频电路的部分或全部电路的供电,其断电的时段更加灵活多样。
结合第二方面、或者第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述射频电路包括:发射处理电路、接收处理电路和天线开关;
所述发射处理电路用于根据所述基带处理电路的命令,对上行所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线开关;
所述接收处理电路用于接收所述天线开关发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理;
所述天线开关用于根据时序要求接收所述天线发送的下行模拟信号,并发送给接收处理电路,并根据时序要求接收所述发射处理电路发送的上行模拟信号,发送给所述天线;
所述开关电路包括电子开关,所述电子开关设置在以下供电线路的至少一个之上:
所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路;
所述电子开关用于根据所述断开命令、断开所述电子开关所在的供电线路;
所述基带控制电路具体用于,在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述电子开关中的至少一个发送所述断开命令。
结合第二方面、或者第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述射频电路包括:发射处理电路和接收处理电路;
所述发射处理电路用于根据所述基带处理电路的命令,对上行所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线;
所述接收处理电路用于接收所述天线发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理;
所述开关电路包括电子开关,所述电子开关设置在以下供电线路的至少一个之上:
所述电源处理电路到所述发射处理电路的供电线路,和所述电源处理电路到所述接收处理电路的供电线路;
所述电子开关用于根据所述断开命令、断开所述电子开关所在的供电线路;
所述基带控制电路具体用于,在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述电子开关中的至少一个发送所述断开命令。
结合第二方面、或者第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述基带控制电路还用于,在所述射频电路的全部电路或部分电路断电的时段结束时、向所述开关电路发送连通命令,控制所述开关电路在所述射频电路的全部电路或部分电路断电的时段之外的其他所有时段,连通所述射频电路的全部电路的供电线路;
所述开关电路,用于接收所述连通命令,根据所述连通命令、连通对所述射频电路的全部电路的供电线路。
结合第二方面的第二种可能的实现方式、或者第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,所述基带控制电路还用于,在所述射频电路的全部电路或部分电路断电的时段结束时、向收到了所述断开命令的所有的电子开关,发送连通命令;
所述电子开关,还用于接收所述连通命令,根据所述连通命令、连通所述电子开关所在的供电线路。
由上述方案可以看出,本发明实施例提供的控制供电的方法和无线终端,在无线终端处于休眠状态时,不需要对全部的射频电路一直供电,从而减少了无线终端的电能消耗,延长了待机时间,同时也延长了无线终端中射频电路的使用寿命。
附图说明
图1为无线终端的DRX状态图;
图2为无线通信***的组成示意图;
图3为本发明实施例无线终端的结构示意图;
图4为本发明实施例通信单元的结构示意图;
图5a为本发明另一实施例通信单元的结构示意图;
图5b为另一实施例通信单元的结构示意图;
图5c为另一实施例通信单元的结构示意图;
图5d为另一实施例通信单元的结构示意图;
图6为本发明实施例的控制供电的方法流程图;
图7为本发明实施例提供的电子开关的结构示意图。
具体实施方式
本发明实施例提供的方法和无线终端,使得终在无线终端处于休眠状态时,由于对不需要全部的射频电路进行供电,从而减少了无线终端的电能消耗,延长了待机时间,同时,由于射频电路不需要一直处于供电的状态,也延长了无线终端中射频电路的使用寿命,以下结合附图对具体实施方式加以说明。
可以理解,本发明所有的实施例适用于无线终端处于空闲状态的情况下,此时可能只有不连续发送,或者只有不连续接收,既有不连续发送,也有不连续接收。如果无线终端从空闲状态切换到连接状态,则实施例中提到的供电控制过程中止,无线终端按照现有技术中连接状态的流程进行处理。
需要说明的是,以下实施例中无线终端,包含可以与网络侧设备进行无线 通信的手机、个人数字助理(PDA)、无线调制解调器、平板电脑、笔记本电脑、数据卡和可穿戴式设备等。
本发明实施例可以应用于各种使用DRX周期的无线通信***,例如GSM(Global System of Mobile communication,全球移动通讯)***,WCDMA(Wideband Code Division Multiple Access,宽带码分多址)***,CDMA(Code Division Multiple Access,码分多址)***以及LTE(Long Term Evolution,长期演进)***等。
如图2所示,为一个典型的无线通信***,该无线通信***中包括网络侧设备和无线终端,网络侧设备与无线终端之间虚线表示为传输上行数据和下行数据的链路。以寻呼消息为例,此处的网络侧设备根据实际需要可以包括基站(如Node B)和无线网络控制器等。
需要说明的是,本发明的所有实施例中,在DRX周期或DTX周期中,无线终端处于休眠状态的时段,称为休眠时段;无线终端处于唤醒状态的时段,称为唤醒时段。每个DRX周期的整个时段因此被划分成两个时段,每个DTX周期的整个时段也类似的被划分成两个时段。
如图3所示,为本发明实施例无线终端的结构示意图。所述无线终端包括输入单元、处理器单元、输出单元、通信单元、存储单元、外设单元等组件。这些组件通过一条或多条总线进行通信。本领域技术人员可以理解,图中示出的无线终端的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。例如,对于数据卡或无线调制解调器,就可以不包含输入单元和输出单元,甚至不包括电源。对于可穿戴式设备,就可以不包含外设接口等。
输入单元用于实现用户与无线终端的交互和/或信息输入到无线终端中。例如,输入单元可以接收用户输入的数字或字符信息,以产生与用户设置或功能控制有关的信号输入。在本发明具体实施方式中,输入单元可以是触控面板,也可以是其他人机交互界面,例如实体输入键、麦克风等,还可是其他外部信息撷取装置,例如摄像头等。
处理器单元为无线终端的控制中心,利用各种接口和线路连接整个无线终端的各个部分,通过运行或执行存储在存储单元内的软件程序和/或模块,以及调用存储在存储单元内的数据,以执行无线终端的各种功能和/或处理数据。所述处理器单元可以由集成电路(Integrated Circuit,IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器单元可以仅包括中央处理器(Central Processing Unit,CPU),也可以是CPU、数字信号处理器(digital signal processor,DSP)、及通信单元中的控制芯片(例如基带芯片)的组合。在本发明实施方式中,CPU可以是单运算核心,也可以包括多运算核心。
所述通信单元用于建立通信信道,使无线终端通过所述通信信道以连接至远程服务器,并从所述远程服务器下载数据。所述通信单元可以包括无线局域网(Wireless Local Area Network,简称wireless LAN)模块、蓝牙模块、基带(Base Band)模块等通信模块,以及所述通信模块对应的射频(Radio Frequency,简称RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信***通信,例如宽带码分多重接入(Wideband Code Division Multiple Access,简称W-CDMA)及/或高速下行封包存取(High Speed Downlink Packet Access,简称HSDPA)。所述通信模块用于控制无线终端中的各组件的通信,并且可以支持直接内存存取(Direct Memory Access)。
在本发明的不同实施方式中,所述通信单元中的各种通信模块一般以集成电路芯片(Integrated Circuit Chip)的形式出现,并可进行选择性组合,而不必包括所有通信模块及对应的天线组。例如,所述通信单元可以仅包括基带控制电路、射频电路以及相应的天线以在一个蜂窝通信***中提供通信功能。经由所述通信单元建立的无线通信连接,例如无线局域网接入或WCDMA接入,所述无线终端可以连接至蜂窝网(Cellular Network)或因特网(Internet)。在本发明的一些可选实施方式中,所述通信单元中的通信模块,例如基带控制电路可以集成到上述的处理器单元中,典型的如高通(Qualcomm)公司提供的APQ+MDM系列平台。
输出单元包括但不限于影像输出单元和声音输出单元。影像输出单元用于输出文字、图片和/或视频。所述影像输出单元可包括显示面板,例如采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)、场发射显示器(field emission display,FED)等形式来配置的显示面板。或者所述影像输出单元可以包括反射式显示器,例如电泳式(electrophoretic)显示器,或利用光干涉调变技术(Interferometric Modulation of Light)的显示器。所述影像输出单元可以包括单个显示器或不同尺寸的多个显示器。
存储单元可用于存储软件程序以及模块,处理单元通过运行存储在存储单元的软件程序以及模块,从而执行无线终端的各种功能应用以及实现数据处理。存储单元主要包括程序存储区和数据存储区,其中,程序存储区可存储操作***、至少一个功能所需的应用程序,比如声音播放程序、图像播放程序等等;数据存储区可存储根据无线终端的使用所创建的数据(比如音频数据、电话本等)等。在本发明具体实施方式中,存储单元可以包括易失性存储器,例如非 挥发性动态随机存取内存(Nonvolatile Random Access Memory,简称NVRAM)、相变化随机存取内存(Phase Change RAM,简称PRAM)、磁阻式随机存取内存(Magetoresistive RAM,简称MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可抹除可规划只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)。非易失存储器储存处理单元所执行的操作***及应用程序。所述处理单元从所述非易失存储器加载运行程序与数据到内存并将数字内容储存于大量储存装置中。所述操作***包括用于控制和管理常规***任务,例如内存管理、存储设备控制、电源管理等,以及有助于各种软硬件之间通信的各种组件和/或驱动器。在本发明实施方式中,所述操作***可以是Google公司的Android***、Apple公司开发的iOS***或Microsoft公司开发的Windows操作***等,或者是Vxworks这类的嵌入式操作***。
外设接口为连接外部设备的接口,包括但不限于,USB(Universal Serial Bus,通用串行总线)接口、PCMCIA(Personal Computer Memory Card International Association)接口等。
图中的电源,用于给无线终端的不同部件进行供电以维持其运行。作为一般性理解,所述电源可以是内置的电池,例如常见的锂离子电池、镍氢电池等,也包括直接向无线终端供电的外接电源
如图4所示,为本发明实施例中通信单元的结构示意图,该通信单元包括:电源控制电路、射频电路、基带控制电路、天线和开关电路。图4中的电路之间连接线有两种,其中较粗的连接线表示的是供电关系,较细的连接线表示的是信号传输关系。
所述射频电路,用于接收所述天线发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理,和接收所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线发射。需要说明的是,此处的“上行数字信号”和“上行模拟信号”分别指的是无线终端向网络侧设备发送的数字信号和模拟信号,“下行数字信号”和“下行模拟信号”分别指的是网络侧设备向无线终端发送的数字信号和模拟信号。
所述电源处理电路,用于为基带控制电路供电,并接收所述基带控制电路发送的电源控制信号,根据所述电源控制信号对射频电路供电。图4中省略了电源处理电路与图3中的电源之间的关系,可以理解,图4中的电源处理电路可以包含电源和对电源提供的电能进行处理和分配的电路;也可以只包含和对电源提供的电能进行处理和分配的电路。
所述开关电路位于所述电源处理电路到射频电路的供电线路上,并用于接收所述基带控制电路的断开命令,根据所述断开命令,断开对所述射频电路的部分或全部电路的供电线路;其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态。其中,DTX周期的数目为至少一个,和DRX周期的数目为至少一个。采用DRX或者DTX周期中至少一个休眠状态部分时段或全部时段,对射频电路的部分或全部电路的供电,其断电的时段更加灵活多样。
所述基带控制电路,用于接收所述射频电路发送的所述下行数字信号并处理,生成所述上行数字信号并向所述射频电路发送,向所述电源处理电路发送电源控制信号;并在所述无线终端处于休眠状态的部分时段或全部时段开始时、并向所述开关电路发送断开命令。
需要说明的是,具体实现时,当确定无线终端进入省电功能(例如无线终 端接收到用户输入进入省电模式的命令,或者无线终端自动检测到剩余电量低于某个阈值,或者是无线终端检测到当前处于设定的时间段或检测到无线终端位于设定的地点设定的地点,无线终端开机后自动执行等等),基带控制电路的供电可以一直维持,以基带控制电路持续的计时,并在给射频电路的全部或者部分电路停止供电的时段(即:无线终端处于休眠状态的部分时段或全部时段)开始时,就向所述开关电路发送断开命令,所述开关电路收到断开命令后立即断开该开关电路所在的供电线路,以切断射频电路的全部或部分供电,此处的开关电路收到断开命令并执行断开的整个响应时间,相对于给射频电路的全部或者部分电路停止供电的整个时段很短,因此该响应时间可以忽略不计。显而易见的,停止对所述射频电路的部分或全部电路的供电的时间,不大于所述无线终端处于休眠状态的时间
停止对射频电路的全部或者部分电路进行供电的时段,具体可以包括以下八种时段:
(a)在无线终端的DTX周期中的休眠时段的全部时段;
(b)在无线终端的DTX周期中的休眠时段的部分时段;
(c)在无线终端的DRX周期中的休眠时段的全部时段;
(d)在无线终端的DRX周期中的休眠时段的部分时段;
(e)(a)和(c)所述的时段;
(f)(a)和(d)所述的时段;
(g)(b)和(c)所述的时段;
(h)(b)和(c)所述的时段。
其中,DTX周期中休眠时段的全部时段是指,DTX周期中的所有休眠时段,DTX周期的数目为至少一个。DTX周期中的休眠时段的部分时段是指,DTX 周期中休眠时段的一部分,DTX周期的数目为至少一个,例如:一个DTX周期中休眠时段的前二分之一,或者所有DTX周期中休眠时段的前三分之一等。
其中,DRX周期中休眠时段的全部时段是指,DRX周期中的所有休眠时段,DRX周期的数目为至少一个。DRX周期中的休眠时段的部分时段是指,DRX周期中休眠时段的一部分,DRX周期的数目为至少一个,例如:一个DRX周期中休眠时段的前二分之一,或者所有DRX周期中休眠时段的前三分之一等。
可选的,本发明实施例中,在上述八种时段停止对射频电路的全部或者部分电路进行供电,指的是,仅在这八种时段停止对射频电路的全部或者部分电路进行供电,以(a)为例,仅仅在无线终端的DTX周期中的休眠时段的全部时段,停止对射频电路的全部或者部分电路进行供电,当所述基带控制电路在DTX周期的休眠时段的全部时段之外的其他所有时段,恢复对射频电路的全部电路进行供电。其他的(b)-(h)的情况类似,此处不再赘述。恢复对射频电路的全部电路进行供电,具体可以由基带控制电路,在停止对所述无线终端中的射频电路的全部或部分电路的供电的时段结束时,向已收到了断开命令的开关电路发送连通命令,以连通之前断开的供电线路。由于开关电路从收到连通命令到执行连通的整个过程所用的响应时间、相对于停止对射频电路的全部或部分电路的供电的时段、以及维持对射频电路的全部电路供电的时段很短,因此该响应时间可以忽略不计。
可以理解,停止对射频电路的全部或者部分电路进行供电的时段,可以不仅仅只包含一个持续的时间段,例如一个DRX周期中的休眠时段的前二分之一、或者前三分之一;还可以包含多个非连续的时间段,例如为每个DRX周期中的全部休眠时段,或者为每个DTX周期中的休眠时段的前二分之一,或者是(a)-(h)中的情况的组合。
如果停止对射频电路的全部或者部分电路进行供电的时段是(e)--(h)的情况,当无线终端当前既有不连续发送,也有不连续接收,可能会存在一种特殊的情况,即当前虽然处于DRX的休眠时段,但是不处于DTX的休眠时段,或者当前虽然处于DTX的休眠时段,但是不处于DRX的休眠时段,为了保证不连续发送或不连续接收的正常进行,需要维持对射频电路的相关电路的供电,为了简化设计,可以设计为:只有当前既在处于DTX的休眠时段、同时也处于DRX的休眠时段时,才停止对射频电路的全部或者部分电路进行供电。换句话说,(e)中“(a)和(c)”的含义是(a)与(c)同时满足。(f)--(h)的含义也类似。
本发明另一实施例还提供一种采用上述通信单元的无线终端,无线终端除了包含上述通信单元,还可以根据需要包含例如图3所示的其他单元,通信单元与其他单元的数据传输或连接关系,可以参考对图3的描述,此处不再重复。
如果无线终端采用本实施例提供的通信单元,可以实现在无线终端处于休眠状态时,对不需要全部的射频电路进行供电,从而减少了无线终端的电能消耗、延长了待机时间,同时,由于射频电路在长期供电的情况下,可靠性会逐渐降低,因此本发明实施例也延长了无线终端中射频电路的使用寿命。
可选的,所述不连续发送DTX周期中的休眠状态,具体为:全部DTX周期中的休眠状态,或者部分DTX周期中的休眠状态;所述不连续接收DRX周期中的休眠状态,具体为:全部DRX周期中的休眠状态,或者部分DRX周期中的休眠状态。
这意味着,在前述的(a)-(h)的停止供电时段的基础上进一步细化,可以在以下8种时段中停止对所述射频电路的部分或全部电路的供电:
(1)在无线终端的每个DTX周期中的休眠时段中的全部或部分时段;
(2)在无线终端的部分DTX周期中的休眠时段中的全部或部分时段;
(3)在无线终端的每个DRX周期中的休眠时段中的全部或部分时段;
(4)在无线终端的部分DRX周期中的休眠时段中的全部或部分时段;
(5)在(1)和(3)所述的时段;
(6)在(2)和(4)所述的时段;
(7)在(1)和(4)所述的时段;
(8)在(2)和(3)所述的时段。
其中,(2)中所述的部分DTX周期和(4)中所述的部分DTX周期的选择方式有多种,例如可以每两个连续的周期中选择一个,或每三个连续的周期中选择一个或两个,或者每四个连续的周期中选择前两个等。选择时可以基于算法复杂程度和省电效率等选择合适的“部分周期”,其选择方式不构成对本发明的限定。可以理解,断电的总时间越长,省电的效果越明显,但是省电的总时间较少时,虽然省电效果较弱,但是基带控制电路和开关电路的工作负担也较小。
上面虽然将时段分成了八种情况,可以理解,上述(1)-(4)的每种情况实际包含了“全部”和“部分”两种情况,而(5)-(8)的每种情况实际上包含了“DTX全部周期+DRX部分周期”、“DTX全部周期+DRX全部周期”、“DTX部分周期+DRX部分周期”和“DTX部分周期+DRX部分周期”四种情况,上述(1)-(8)八种情况的划分,只是为了描述简单。
可选的,本发明实施例中,在上述八种时段停止对射频电路的全部或者部分电路进行供电,指的是,仅在这八种时段停止对射频电路的全部或者部分电路进行供电,以(1)为例,仅仅在无线终端的每个DTX周期中的休眠时段中的全部或部分时段,停止对射频电路的全部或者部分电路进行供电,具体的, 如果是在无线终端的每个DTX周期中的休眠时段中的全部时段停止供电,那么在无线终端的每个DTX周期中的休眠时段中的全部时段之外的其他所有时段,恢复对射频电路的全部电路的供电。如果是在无线终端的每个DTX周期中的休眠时段中的部分时段停止供电,那么在无线终端的每个DTX周期中的休眠时段中的部分时段之外的其他所有时段,恢复对射频电路的全部电路的供电。其中,恢复对射频电路的全部电路进行供电,具体可以由基带控制电路,在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,向已收到了断开命令的开关电路发送连通命令,以连通之前断开的供电线路。
如果选择在(2)-(8)的时段断开射频电路的全部电路或部分电路的供电,实现方式也类似,此处不再赘述。
可选的,在(1)-(8)的时段断开射频电路的全部电路或部分电路的供电,不仅可以理解为单一的省电方案,例如每个DRX周期的全部休眠时段,对射频电路的全部电路停止供电;同时,也可以理解为多种省电方案的组合,例如:在每个DRX周期的全部休眠时段,对射频电路的全部电路断电,并且,在每个DTX周期的全部休眠时段,对射频电路中的一个电路断电。又例如:在每两个连续的DRX周期中一个DRX周期的全部休眠时段,对射频电路的两个电路断电,并且,在每三个连续的DTX周期中的一个DTX周期的全部休眠时段,对射频电路中的一个电路断电。依次类推,本领域的技术人员可以想到多种省电方案,及其组合,此处不再赘述。
具体实现时,可以根据需要设计合适的省电时段(如(1)-(8)描述的时段)和省电范围(射频电路的全部电路或部分电路)。
如果停止对射频电路的全部或者部分电路进行供电的时段是(5)--(8)的情况,当无线终端当前既有不连续发送,也有不连续接收,可能会存在一种特 殊的情况,即当前虽然处于DRX的休眠时段,但是不处于DTX的休眠时段,或者当前虽然处于DTX的休眠时段,但是不处于DRX的休眠时段,为了保证不连续发送或不连续接收的正常进行,需要维持对射频电路的相关电路的供电,为了简化设计,可以设计为:只有当前既在处于DTX的休眠时段、同时也处于DRX的休眠时段时,才停止对射频电路的全部或者部分电路进行供电。换句话说,(5)中“(1)和(3)”的含义是(1)与(3)同时满足。(6)--(8)的含义也类似。
对应的,所述基带控制电路还用于,向所述开关电路发送连通命令,控制所述开关电路在所述射频电路的全部电路或部分电路断电的时段之外的其他所有时段,连通所述射频电路的全部电路的供电线路;所述开关电路,用于接收所述连通命令,根据所述连通命令、连通对所述射频电路的全部电路的供电线路。该方案保证了在所述无线终端,在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,射频电路能够正常供电和工作。可以理解,基带控制电路的供电可以一直维持,保持基带控制电路持续的计时,并在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,向开关电路发送连通命令,以实现对之前断开的供电线路的连通。
具体来说,如果是在每个DRX周期中的全部休眠时段,对射频电路的全部电路断电,那么基带控制电路持续计时,在第N个DRX周期的休眠时段开始时,基带控制电路向开关电路发送断开命令,开关电路断开射频电路中所有电路的供电,到了第N个DRX周期的休眠时段结束时(即第N个DRX周期的唤醒时段开始时),基带控制电路向开关电路发送连通命令,开关电路连通射频电路中所有电路的供电,到了第N个DRX周期的唤醒时段结束时(即第N+1个DRX周期的休眠时段开始时),基带控制电路向开关电路发送断开命令,开关电路 断开射频电路中所有电路的供电,依此类推。上述N为正整数,且假设在第N个DRX周期中、无线终端没有收到该无线终端需要处理的消息(例如寻呼消息),此时,在第N个DRX周期结束后,继续第N+1个DRX周期。如果在第N个DRX周期中,无线终端收到了该无线终端需要处理的消息(例如寻呼消息),则跳出空闲状态进入连接状态,按照现有技术中处理寻呼消息的方式,直到再次进入空闲状态、并继续按照DRX周期进行不连续接收时,再继续前述的控制供电的过程。
如图5a所示,为本发明另一个实施例提供的通信单元的结构示意图。图5a在图4的基础上,细化了射频电路的具体实现。其中电路之间连接线有两种,其中较粗的连接线表示的是供电关系,较细的连接线表示的是信号传输关系。
除了包含上述针对图4的实施例的描述,本实施例新增的内容包括:
所述射频电路包括:发射处理电路、接收处理电路和天线开关。
所述发射处理电路用于根据所述基带处理电路的命令,对上行所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线开关。
所述接收处理电路用于接收所述天线开关发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理。
所述天线开关用于根据时序要求接收所述天线发送的下行模拟信号,并发送给接收处理电路,并根据时序要求接收所述发射处理电路发送的上行模拟信号,发送给所述天线。上述的各种上行数据和下行数据可参考前述实施例中的描述。
所述开关电路包括电子开关,所述电子开关设置在以下供电线路的至少一个之上:
所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到 所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路。
所述电子开关用于根据所述断开命令、断开所述电子开关所在的供电线路。
所述基带控制电路具体用于,在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述电子开关中的至少一个发送所述断开命令。此功能是为了实现控制收到所述断开命令的电子开关、在所述无线终端处于休眠状态的部分时段或全部时段、断开收到所述断开命令的电子开关所在的供电线路。
本发明另一实施例还提供一种采用上述通信单元的无线终端,无线终端除了包含上述通信单元,还可以根据需要包含例如图3所示的其他单元,通信单元与其他单元的数据传输或连接关系,可以参考对图3的描述,此处不再重复。
如果无线终端采用本实施例提供的通信单元,可以实现在无线终端处于休眠状态时,对不需要全部的射频电路进行供电,从而减少了无线终端的电能消耗、延长了待机时间,同时也延长了无线终端中射频电路的使用寿命;同时,本实施例由于开关电路采用了一个或多个电子开关,整个方案简单、有效和灵活,同时硬件成本较低。
图5a中的开关电路包括三个电子开关,这三个电子开关分别位于所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路上,当确定无线终端进入省电功能(例如无线终端接收到用户选择的命令,或者无线终端自动检测到剩余电量低于某个阈值,或者是无线终端检测到设定的时间段或设定的地点等),基带控制电路的供电可以一直维持,保持基带控制电路持续的计时,并在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向这三个电子开关中的至少一个发送断开命令,收到断 开命令的电子开关立即断开该电子开关所在的供电线路,以实现切断射频电路的全部或部分供电。由于有三个电子开关分别控制三条供电线路,断电时可以更有针对性,断电的方案也更加灵活,如果有部分电子开关发生故障,剩下的无故障的电子开关仍可以实现断电,提高了方案的稳定性。
如图5b所示为为本发明另一个实施例提供的通信单元的结构示意图。与图5a不同的是,其中的开关电路包括了一个电子开关,这个电子开关同时位于所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路上,该电子开关的通断同时控制了这三条供电线路,当确定无线终端进入省电功能(例如无线终端接收到用户选择的命令,或者无线终端自动检测到剩余电量低于某个阈值,或者是无线终端检测到设定的时间段或设定的地点等),基带控制电路的供电可以一直维持,保持基带控制电路持续的计时,并在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向这个电子开关发送断开命令,所述电子开关收到断开命令后立即断开该电子开关所在的供电线路,以实现切断射频电路的全部供电。本方案只用到了一个电子开关,可以同时断开三条线路,断电效率更高,硬件成本更低。
可选的,上述电子开关的实现还可以有其他实现方式,例如所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路这三条线路中的两条线路公用一个电子开关,另一条线路使用一个电子开关,基带控制电路在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向这两个电子开关中的至少一个发送断开命令,收到断开命令的电子开关立即断开该电子开关所在的供电线路,以实现切断射频电路的全部或部 分供电。本方案中具有两个电子开关,即使一个电子开关出现故障,也可通过无故障的另一个电子开关完成断电,方案的稳定性更好。且由于两条线路公用一个电子开关,断电效率较高,硬件成本较低。
可选的,上述电子开关还可以总共包含四个电子开关,其中一个开关作为所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路这三条线路的总开关,另外三个电子开关为分开关,分别位于这三条线路上,基带控制电路在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向总开关发送断开命令以断开射频电路的全部供电;或者向三个分开关同时发送断开命令以断开射频电路的全部供电;或者向三个分开关中的一个或两个发送断开命令,以断开射频电路的部分供电。本方案既设置有总开关,同时还设置有分开关,可根据需要灵活的选择断电方案,即使部分电子开关出现故障,也可通过无故障的电子开关完成断电,方案的稳定性更好。
需要说明的是,需要说明的是,图5c和图5d的实施例描述中,射频电路的组成划分主要是依据功能,实际产品中,可以有多个芯片实现一个电路的功能,也可以有几个电路在一个芯片中实现,例如接收处理电路、发射处理电路和天线开关可以合并到一个芯片中。
如图5c所示,为本发明另一个实施例提供的通信单元的结构示意图。图5c在图4的基础上,细化了射频电路的具体实现。其中电路之间连接线有两种,其中较粗的连接线表示的是供电关系,较细的连接线表示的是信号传输关系。
除了包含上述针对图4的实施例的描述,本实施例新增的内容包括:
所述射频电路包括:发射处理电路和接收处理电路。
所述发射处理电路用于根据所述基带处理电路的命令,对上行所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线。
所述接收处理电路用于接收所述天线发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理。
所述开关电路包括电子开关,所述电子开关设置在以下供电线路的至少一个之上:
所述电源处理电路到所述发射处理电路的供电线路,和所述电源处理电路到所述接收处理电路的供电线路。
所述电子开关用于根据所述断开命令、断开所述电子开关所在的供电线路;
所述基带控制电路具体用于,在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述电子开关中的至少一个发送所述断开。该功能是为了实现控制收到所述断开命令的电子开关、在所述无线终端处于休眠状态的部分时段或全部时段、断开收到所述断开命令的电子开关所在的供电线路。
本发明另一实施例还提供一种采用上述通信单元的无线终端,无线终端除了包含上述通信单元,还可以根据需要包含例如图3所示的其他单元,通信单元与其他单元的数据传输或连接关系,可以参考对图3的描述,此处不再重复。
如果无线终端采用本实施例提供的通信单元,可以实现在无线终端处于休眠状态时,对不需要全部的射频电路进行供电,从而减少了无线终端的电能消耗、延长了待机时间,同时也延长了无线终端中射频电路的使用寿命;同时,本实施例由于开关电路采用了一个或多个电子开关,整个方案简单、有效和灵活,同时硬件成本较低。
图5c中的开关电路包括两个电子开关,这两个电子开关分别位于所述电源处理电路到所述发射处理电路的供电线路、和所述电源处理电路到所述接收处 理电路的供电线路上,当确定无线终端进入省电功能(例如无线终端接收到用户选择的命令,或者无线终端自动检测到剩余电量低于某个阈值,或者是无线终端检测到设定的时间段或设定的地点等),基带控制电路的供电可以一直维持,保持基带控制电路持续的计时,并在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向这两个电子开关中的至少一个发送断开命令,收到断开命令的电子开关立即断开该电子开关所在的供电线路,以实现切断射频电路的全部或部分供电。由于有两个电子开关分别控制两条供电线路,断电时可以更有针对性,断电的方案也更加灵活,如果有一个电子开关发生故障,剩下的无故障的电子开关仍可以实现断电,提高了方案的稳定性。
如图5d所示为为本发明另一个实施例提供的通信单元的结构示意图。与图5c不同的是,其中的开关电路包括了一个电子开关,这个电子开关同时位于所述电源处理电路到所述发射处理电路的供电线路、和所述电源处理电路到所述接收处理电路的供电线路上,该电子开关的通断同时控制了这三条供电线路,当确定无线终端进入省电功能(例如无线终端接收到用户选择的命令,或者无线终端自动检测到剩余电量低于某个阈值,或者是无线终端检测到设定的时间段或设定的地点等),基带控制电路的供电可以一直维持,保持基带控制电路持续的计时,并在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向这个电子开关发送断开命令,所述电子开关收到断开命令后立即断开该电子开关所在的供电线路,以实现切断射频电路的全部供电。本方案只用到了一个电子开关,可以同时断开三条线路,断电效率更高,硬件成本更低。
可选的,上述电子开关还可以总共包含三个电子开关,其中一个开关作为 所述电源处理电路到所述发射处理电路的供电线路、和所述电源处理电路到所述接收处理电路的供电线路这两条线路的总开关,另外两个电子开关为分开关,分别位于这两条线路上,基带控制电路在给射频电路停止供电的时段(无线终端处于休眠状态的部分时段或全部时段)开始时,就向总开关发送断开命令以断开射频电路的全部供电;或者向两个分开关同时发送断开命令以断开射频电路的全部供电;或者向两个分开关中的一个发送断开命令,以断开射频电路的部分供电。本方案既设置有总开关,同时还设置有分开关,可根据需要灵活的选择断电方案,即使部分电子开关出现故障,也可通过无故障的电子开关完成断电,方案的稳定性更好。
可选的,在前述的所有无线终端的实施例的基础上,所述基带控制电路还用于,在所述射频电路的全部电路或部分电路断电的时段结束时、向设置在供电线路上的至少一个电子开关发送连通命令,控制所述至少一个电子开关、在所述无线终端处于唤醒状态时、连通所述至少一个电子开关所在的供电线路。
需要说明的是,图5c和图5d的实施例描述中,射频电路的划分主要是按照功能划分,实际产品中,可以有多个芯片实现一个电路的功能,也可以有几个电路在一个芯片中实现,例如接收处理电路和发射处理电路可以合并到一个芯片中。
可选的,在上述针对图5a-图5d的实施例中,所述基带控制电路还用于,在所述射频电路的全部电路或部分电路断电的时段结束时、向收到了所述断开命令的所有的电子开关,发送连通命令。该功能是为了控制收到连通命令的电子开关、所述射频电路的全部电路或部分电路断电的时段之外的其他所有时段、连通所述控制收到连通命令的电子开关所在的供电线路。所述电子开关,还用于接收所述连通命令,根据所述连通命令、连通所述电子开关所在的供电线路。 该方案保证了无线终端、在停止对所述无线终端中的射频电路的部分电路的供电的时段之外的其他时段,射频电路正常供电和工作。可以理解,基带控制电路的供电可以一直维持,保持基带控制电路持续的计时,并在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,向已收到过断开命令的电子开关发送连通命令,以实现对之前断开的供电线路的连通。
可选的,如果无线终端在整个控制供电的过程中,收到了用户发送的退出省电模式的命令,或者是无线终端关机了,或者是无线终端的剩余电量高于某一设定阈值,或者是进入了特定的时段,或者是无线终端处于特定的位置,或者是无线终端从空闲状态切换到连接状态,或者是其他设定的条件,该方法立即中止。等到再次收到用户输入的进入省电模式的命令或者其他触发条件时,才开始执行该控制供电的过程。具体的,可以由无线终端中的处理器单元监控,如果监控到前述的中止条件发生,则通知通信单元中的基带控制电路停止正在执行前述的控制供电的过程,如果已发送了断开命令尚未发送连通命令,则立即向接收了断开命令的开关电路发送连通命令,在控制供电的流程重启之前,不再发送断开命令;如果发送了断开命令之后已发送了连通命令,则在控制供电的流程重启之前,不再发送断开命令。
本发明实施例还提供一种控制供电的方法,该方法适用于会进入休眠状态的无线终端。该方法包括:
在无线终端处于休眠状态的部分时段或全部时段,停止对所述无线终端中的射频电路的部分或全部电路的供电;
其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态。采用DRX或者DTX周期中至少一 个休眠状态部分时段或全部时段,对射频电路的部分或全部电路的供电,其断电的时段更加灵活多样。
本发明的执行主体可以是无线终端,也可以是无线终端的基带控制电路。
可以理解,停止对所述射频电路的部分或全部电路的供电的时间,不大于所述无线终端处于休眠状态的时间
参考之前的描述,当无线终端处于DTX周期中的休眠状态时,不接收网络侧设备发送的消息,无线终端的部分电路此时处于低功耗的状态。当无线终端处于DTX周期中的休眠状态时,不向网络侧设备发送消息,无线终端的部分电路此时处于低功耗的状态。
触发本方法执行的,可以是无线终端接收到用户选择的命令,或者无线终端自动检测到剩余电量低于某个阈值,或者是无线终端检测到当前处于设定的时间段或检测到无线终端位于设定的地点等。
本实施例中所述的射频电路的含义,可以参考前述的装置实施例中对射频电路的描述。
根据本实施例的描述,停止对射频电路的全部或者部分电路进行供电的时段具体包括以下8种时段:
(a)在无线终端的DTX周期中的休眠时段的全部时段;
(b)在无线终端的DTX周期中的休眠时段的部分时段;
(c)在无线终端的DRX周期中的休眠时段的全部时段;
(d)在无线终端的DRX周期中的休眠时段的部分时段;
(e)(a)和(c)所述的时段;
(f)(a)和(d)所述的时段;
(g)(b)和(c)所述的时段;
(h)(b)和(c)所述的时段;
其中,DTX周期中休眠时段的全部时段是指,DTX周期中的所有休眠时段,DTX周期的数目为至少一个。DTX周期中的休眠时段的部分时段是指,DTX周期中休眠时段的一部分,DTX周期的数目为至少一个,例如:一个DTX周期中休眠时段的前二分之一,或者所有DTX周期中休眠时段的前三分之一等。
其中,DRX周期中休眠时段的全部时段是指,DRX周期中的所有休眠时段,DRX周期的数目为至少一个。DRX周期中的休眠时段的部分时段是指,DRX周期中休眠时段的一部分,DRX周期的数目为至少一个,例如:一个DRX周期中休眠时段的前二分之一,或者所有DTX周期中休眠时段的前三分之一等。
采用本发明实施例的方法,可以实现在无线终端处于休眠状态时,对不需要全部的射频电路进行供电,从而减少了无线终端的电能消耗、延长了待机时间,同时,由于射频电路在长期供电的情况下,可靠性会逐渐降低,因此本发明实施例也延长了无线终端中射频电路的使用寿命。
可选的,本发明实施例中,在上述八种时段停止对射频电路的全部或者部分电路进行供电,指的是,仅在这八种时段停止对射频电路的全部或者部分电路进行供电,以(a)为例,仅仅在无线终端的DTX周期中的休眠时段的全部时段,停止对射频电路的全部或者部分电路进行供电,当所述基带控制电路在DTX周期的休眠时段的全部时段之外的其他所有时段,恢复对射频电路的全部电路进行供电。其他的(b)-(h)的情况类似,此处不再赘述。无线终端恢复对射频电路的全部电路进行供电,具体可以由基带控制电路、在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,向已收到了断开命令的开关电路发送连通命令,以连通之前断开的供电线路。
如果停止对射频电路的全部或者部分电路进行供电的时段是(e)--(h)的 情况,当无线终端当前既有不连续发送,也有不连续接收,可能会存在一种特殊的情况,即当前虽然处于DRX的休眠时段,但是不处于DTX的休眠时段,或者当前虽然处于DTX的休眠时段,但是不处于DRX的休眠时段,为了保证不连续发送或不连续接收的正常进行,需要维持对射频电路的相关电路的供电,为了简化设计,可以设计为:只有当前既在处于DTX的休眠时段、同时也处于DRX的休眠时段时,才停止对射频电路的全部或者部分电路进行供电。换句话说,(e)中“(a)和(c)”的含义是(a)与(c)同时满足。(f)--(h)的含义也类似。
可选的,所述不连续发送DTX周期中的休眠状态,具体为:全部DTX周期中的休眠状态,或者部分DTX周期中的休眠状态;
所述不连续接收DRX周期中的休眠状态,具体为:全部DRX周期中的休眠状态,或者部分DRX周期中的休眠状态。
这意味着,在前述的(a)-(h)的停止供电时段的基础上进一步细化,可以在以下8种时段中停止对所述射频电路的部分或全部电路的供电:
(1)在无线终端的每个DTX周期中的休眠时段中的全部或部分时段;
(2)在无线终端的部分DTX周期中的休眠时段中的全部或部分时段;
(3)在无线终端的每个DRX周期中的休眠时段中的全部或部分时段;
(4)在无线终端的部分DRX周期中的休眠时段中的全部或部分时段;
(5)在(1)和(3)所述的时段;
(6)在(2)和(4)所述的时段;
(7)在(1)和(4)所述的时段;
(8)在(2)和(3)所述的时段。
其中,(2)中所述的部分DTX周期和(4)中所述的部分DTX周期的选 择方式有多种,例如可以每两个连续的周期中选择一个,或每三个连续的周期中选择一个或两个,或者每四个连续的周期中选择前两个等。选择时可以基于算法复杂程度和省电效率等选择合适的“部分周期”,其选择方式不构成对本发明的限定。可以理解,断电的总时间越长,省电的效果越明显,但是省电的总时间较少时,虽然省电效果较弱,但是无线终端中负责供电控制的模块的负担也较小。
在本发明实施例提供的另一个方法实施例中,上面虽然将时段分成了八种情况,可以理解,上述(1)-(4)的每种情况实际包含了“全部”和“部分”两种情况,而(5)-(8)的每种情况实际上包含了“全部+部分”、“全部+全部”、“部分+部分”和“部分+全部”四种情况,上述八种情况的划分,只是为了描述简单。
可选的,本发明实施例中,在上述八种时段停止对射频电路的全部或者部分电路进行供电,指的是,仅在这八种时段停止对射频电路的全部或者部分电路进行供电,以(1)为例,仅仅在无线终端的每个DTX周期中的休眠时段中的全部或部分时段,停止对射频电路的全部或者部分电路进行供电,具体的,如果是在无线终端的每个DTX周期中的休眠时段中的全部时段停止供电,那么在无线终端的每个DTX周期中的休眠时段中的全部时段之外的其他所有时段,恢复对射频电路的全部电路的供电。如果是在无线终端的每个DTX周期中的休眠时段中的部分时段停止供电,那么在无线终端的每个DTX周期中的休眠时段中的部分时段之外的其他所有时段,恢复对射频电路的全部电路的供电。
可选的,在(1)-(8)的时段断开射频电路的全部电路或部分电路的供电,不仅可以理解为单一的省电方案,例如每个DRX周期的全部休眠时段,对射频电路的全部电路停止供电;同时,也可以理解为多种省电方案的组合,例如在 每个DRX周期的全部休眠时段,对射频电路的全部电路断电,并且,在每个DTX周期的全部休眠时段,对射频电路中的部分电路断电。具体实现时,可以根据需要设计合适的省电时段(如(1)-(8)描述的时段)和省电范围(射频电路的全部电路或部分电路)。
如果停止对射频电路的全部或者部分电路进行供电的时段是(5)--(8)的情况,当无线终端当前既有不连续发送,也有不连续接收,可能会存在一种特殊的情况,即当前虽然处于DRX的休眠时段,但是不处于DTX的休眠时段,或者当前虽然处于DTX的休眠时段,但是不处于DRX的休眠时段,为了保证不连续发送或不连续接收的正常进行,需要维持对射频电路的相关电路的供电,为了简化设计,可以设计为:只有当前既在处于DTX的休眠时段、同时也处于DRX的休眠时段时,才停止对射频电路的全部或者部分电路进行供电。换句话说,(5)中“(1)和(3)”的含义是(1)与(3)同时满足。(6)--(8)的含义也类似。
具体来说,如果是在每个DRX周期中的全部休眠时段,对射频电路的全部电路断电,那么无线终端(具体可以为基带控制电路)持续计时,在第N个DRX周期的休眠时段开始时,无线终端断开射频电路中所有电路的供电(具体可以是:基带控制电路向开关电路发送断开命令,开关电路断开射频电路中所有电路的供电),到了第N个DRX周期的休眠时段结束时(即第N个DRX周期的唤醒时段开始时),无线终端恢复对射频电路中所有电路的供电(具体可以是:基带控制电路向开关电路发送连通命令,开关电路连通射频电路中所有电路的供电),到了第N个DRX周期的唤醒时段结束时(即第N+1个DRX周期的休眠时段开始时),无线终端再次断开射频电路中所有电路的供电(具体可以是:基带控制电路向开关电路发送断开命令,开关电路断开射频电路中所有电路的 供电),依此类推。上述N为正整数,且假设在第N个DRX周期中、无线终端没有收到该无线终端需要处理的消息(例如寻呼消息),此时,在第N个DRX周期结束后,继续第N+1个DRX周期。如果在第N个DRX周期中,无线终端收到了该无线终端需要处理的消息(例如寻呼消息),则跳出空闲状态进入连接状态,按照现有技术中处理寻呼消息的方式,直到再次进入空闲状态、并继续按照DRX周期进行不连续接收时,再继续前述的控制供电的过程。
在本发明实施例提供的另一个方法实施例中,无线终端的射频电路包括:发射处理电路、接收处理电路和天线开关;其中这三个部件的描述,可以参考之前的图5a-图5b的相关实施例的描述。
停止对所述无线终端中的射频电路的部分电路的供电,具体包括以下的一个或两个:
断开位于所述发射处理电路的供电线路上的电子开关;
断开位于所述接收处理电路的供电线路上的电子开关;
断开位于所述天线开关的供电线路上的电子开关;
停止对所述无线终端中的射频电路的全部电路的供电,具体包括:
断开位于所述发射处理电路的供电线路上的电子开关、断开位于所述发射处理电路的供电线路上的电子开关和断开位于所述天线开关的供电线路上的电子开关。
可以理解,电子开关的数目至少有一个,电子开关的位置可以参考之前关于图5a—图5b的具体实施例,此处不再重复。需要说明的是,本实施例提供了一种灵活控制射频电路的供电的方案,根据需要,选择在前述的无线终端处于休眠状态的部分时段或全部时段,断开射频电路中特定部分的供电。
其中,恢复对射频电路的全部电路进行供电,具体可以由基带控制电路、 在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,向已收到了断开命令的电子开关发送连通命令,以连通之前断开的供电线路,从而保证无线终端在断电结束后,恢复正常供电和工作。
在本发明实施例提供的另一个方法实施例中,所述射频电路包括:发射处理电路和接收处理电路;其中这三个部件的描述,可以参考之前的图5c-图5d的相关实施例的描述。
停止对所述无线终端中的射频电路的部分电路的供电,具体包括:
断开位于所述发射处理电路的供电线路上的电子开关;或
断开位于所述接收处理电路的供电线路上的电子开关;
停止对所述无线终端中的射频电路的全部电路的供电,具体包括:
断开位于所述发射处理电路的供电线路上的电子开关,和
断开位于所述接收处理电路的供电线路上的电子开关。
可以理解,电子开关的数目至少有一个,电子开关的位置可以参考之前关于图5c—图5d的具体实施例,此处不再重复。需要说明的是,本实施例提供了一种灵活控制射频电路的供电的方案,根据需要,选择在前述的无线终端处于休眠状态的部分时段或全部时段,断开射频电路中特定部分的供电。
其中,恢复对射频电路的全部电路进行供电,具体可以由基带控制电路、在停止对所述无线终端中的射频电路的部分电路的供电的时段结束时,向已收到了断开命令的电子开关发送连通命令,以连通之前断开的供电线路,从而保证无线终端在断电结束后,恢复正常供电和工作。
可选的,如果无线终端在整个方法的执行过程中,收到了用户发送的退出省电模式的命令,或者是无线终端关机了,或者是无线终端的剩余电量高于某一阈值,或者是进入了特定的时段,或者是无线终端处于特定的位置,或者是 无线终端从空闲状态切换到连接状态,或者是其他设定的条件,该方法立即中止,等到再次收到用户输入的进入省电模式的命令或者其他触发条件时,才开始执行该控制供电的方法。
如图6所示,为本发明实施例提供的控制供电的方法流程图,该方法的执行主体为无线终端。该无线终端的射频电路的各个电路的供电电路可以通过开关电路断开和连通。该方法包括如下步骤:
601、接收用户输入的进入省电模式的命令。
当用户输入进入省电模式的命令,触发控制供电的方法执行。此处的省电模式可以与无线终端现有的省电模式融合,例如,在现有省电模式的基础上增加一个子选项,当选择了该子选项时触发控制供电的方法;或者直接在现有省电模式被选择时,触发控制供电的方法。进入省电模式的命令可以通过无线终端的输入单元输入,具体可参考图3中关于输入单元的描述,此处不再赘述。如之前的实施例所述,此处的601也可以替换为无线终端检测到无线终端当前处于设定的位置,或者当前处于设定的时间段等,或者无线终端开机后自动执行等,或无线终端自动检测到剩余电量低于某个阈值等,此处不再重复。
602、读取省电数据。
此处的省电数据,包括断开射频电路的哪些电路,以及停止对所述无线终端中的射频电路的部分电路的供电的时段等。后续将按照省电数据来控制无线终端的射频电路的供电。本实施例中,断电的范围是射频电路的全部电路,可选的,也可以只是射频电路的部分电路,具体可以参考之前的实施例描述。
603、判断是否进入断电时段,如果是,继续执行604,如果否,继续执行603。
此处,可以由基带控制电路进行计时,如果进入了断电时段(停止对所述无线终端中的射频电路的部分电路的供电的时段,例如:所有DRX周期中的休眠时段),则触发后续604,如果没有到断电时段,则继续计时。
604、断开射频电路的全部电路的供电。
此处可以由基带控制电路向开关电路发送断开命令,以切断射频电路的所有电路的供电。
605、判断断电时段是否结束,如果是,继续执行606,如果否,继续执行605。
此处可以由基带控制电路持续计时,如果断电时段已经结束,则继续606,如果断电时段还没结束,则由基带控制电路继续计时。
606、恢复射频电路的全部供电,继续执行603。
此处,可以由基带控制电路向开关电路发送连通命令,以恢复射频电路的所有电路的供电。
可选的,在恢复了供电之后,基带控制电路可以持续计时,判断是否再次进入省电时段,此处情况适用于断电时段不仅仅只有一个持续的时间段,而是多个非连续的时间段,如果在整个过程中,无线终端从空闲状态切换到连接状态,则无线终端按照现有技术中的连接状态处理相关消息,等到无线终端再次进入空闲状态时,或者其他触发条件满足时,再继续执行该控制供电的方法。
具体可以参考之前实施例的描述,例如断电时段为每个DRX周期中的全部休眠时段,此时需要在每个DRX周期中的都执行一次断电。
可选的,如果无线终端在整个方法的执行过程中,收到了用户发送的退出省电模式的命令,或者是无线终端关机了,或者是无线终端的剩余电量高于某一阈值,或者是进入了特定的时段,或者是无线终端处于特定的位置,或者是 无线终端从空闲状态切换到连接状态,或者是其他设定的条件,该方法立即中止,等到再次收到用户输入的进入省电模式的命令时再执行601之后的步骤、或者无线终端重启后自动执行601之后的步骤。
本实施例提供的方法,给出了一种控制供电的具体方案,由于可以根据断电时段,断开全部射频电路的供电,能够明显减少电能的消耗,延长了待机时间和射频电路的使用寿命。
需要说明的是,可以选用现有技术中电子开关来作为本发明各种实施例中提到的电子开关,特别的,需要选择响应时间较短的的电子开关,以提高供电控制的精度,另外,为了能够保证在电子开关的连通瞬间,给后级的器件供电不会超过其额定输入电压,可以考虑在电子开关中的电源输出之前设置一个吸收瞬间大电压的电容。如图7所示,为本发明实施例中采用的一种电子开关的结构示意图,该电子开关包括:缓启动电路,开关主体电路和滤波电路,这三个电路依次电连通。其中的较粗的箭头表示电能传递关系,较细的箭头表示的是信号传输关系。所述缓启动电路与电源处理电路电连通,所述滤波电路与射频电路电连通,基地控制电路发出的连通命令或者断开命令发送给开关主体电路执行。其中缓启动电路用于实现电流缓慢启动,开关主体电路用于根据连通命令实现电连通,根据断开命令实现电断开,滤波电路用于滤除开关主体电路在断开和闭合瞬间产生的噪声。上述三个电路可以采用现有技术中的各种实现方式,此处不作限定。
以上是对本发明具体实施例的说明,在具体的实施过程中可对本发明的方法进行适当的改进,以适应具体情况的具体需要。因此可以理解,根据本发明的具体实施方式只是起示范作用,并不用以限制本发明的保护范围。

Claims (11)

  1. 一种控制供电的方法,其特征在于,包括:
    在无线终端处于休眠状态的部分时段或全部时段,停止对所述无线终端中的射频电路的部分或全部电路的供电;
    其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态。
  2. 如权利要求1所述的方法,其特征在于,所述不连续发送DTX周期中的休眠状态,具体为:全部DTX周期中的休眠状态,或者部分DTX周期中的休眠状态;
    所述不连续接收DRX周期中的休眠状态,具体为:全部DRX周期中的休眠状态,或者部分DRX周期中的休眠状态。
  3. 如权利要求1或2所述的方法,其特征在于,所述射频电路包括:发射处理电路、接收处理电路和天线开关;
    停止对所述无线终端中的射频电路的部分电路的供电,具体包括以下的一个或两个:
    断开位于所述发射处理电路的供电线路上的电子开关;
    断开位于所述接收处理电路的供电线路上的电子开关;
    断开位于所述天线开关的供电线路上的电子开关;
    停止对所述无线终端中的射频电路的全部电路的供电,具体包括:
    断开位于所述发射处理电路的供电线路上的电子开关、断开位于所述发射处理电路的供电线路上的电子开关和断开位于所述天线开关的供电线路上的电 子开关。
  4. 如权利要求1或2所述的方法,其特征在于,所述射频电路包括:发射处理电路和接收处理电路;
    停止对所述无线终端中的射频电路的部分电路的供电,具体包括:
    断开位于所述发射处理电路的供电线路上的电子开关;或
    断开位于所述接收处理电路的供电线路上的电子开关;
    停止对所述无线终端中的射频电路的全部电路的供电,具体包括:
    断开位于所述发射处理电路的供电线路上的电子开关,和
    断开位于所述接收处理电路的供电线路上的电子开关。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述方法还包括,在所述射频电路的全部电路或部分电路断电的时段之外的其他所有时段,为所述射频电路的全部电路供电。
  6. 一种无线终端,包括通信单元,其特征在于,所述通信单元包括:电源处理电路、射频电路、基带控制电路,天线和开关电路;
    所述射频电路,用于接收所述天线发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理,和接收所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线发射;
    所述电源处理电路,用于为基带控制电路供电,并接收所述基带控制电路发送的电源控制信号,根据所述电源控制信号对射频电路供电;
    所述开关电路位于所述电源处理电路到射频电路的供电线路上,并用于接收所述基带控制电路的断开命令,根据所述断开命令,断开对所述射频电路的 部分或全部电路的供电线路;其中,所述休眠状态包括以下至少一个:不连续发送DTX周期中的休眠状态,和不连续接收DRX周期中的休眠状态;
    所述基带控制电路,用于接收所述射频电路发送的所述下行数字信号并处理,生成所述上行数字信号并向所述射频电路发送,向所述电源处理电路发送电源控制信号;并在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述开关电路发送所述断开命令。
  7. 如权利要求6所述的无线终端,其特征在于,所述不连续发送DTX周期中的休眠状态,具体为:全部DTX周期中的休眠状态,或者部分DTX周期中的休眠状态;
    所述不连续接收DRX周期中的休眠状态,具体为:全部DRX周期中的休眠状态,或者部分DRX周期中的休眠状态。
  8. 如权利要求6或7所述的无线终端,其特征在于,所述射频电路包括:发射处理电路、接收处理电路和天线开关;
    所述发射处理电路用于根据所述基带处理电路的命令,对上行所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线开关;
    所述接收处理电路用于接收所述天线开关发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理;
    所述天线开关用于根据时序要求接收所述天线发送的下行模拟信号,并发送给接收处理电路,并根据时序要求接收所述发射处理电路发送的上行模拟信号,发送给所述天线;
    所述开关电路包括电子开关,所述电子开关设置在以下供电线路的至少一个之上:
    所述电源处理电路到所述发射处理电路的供电线路、所述电源处理电路到所述接收处理电路的供电线路、和所述电源处理电路到所述天线开关的供电线路;
    所述电子开关用于根据所述断开命令、断开所述电子开关所在的供电线路;
    所述基带控制电路具体用于,在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述电子开关中的至少一个发送所述断开命令。
  9. 如权利要求6或7所述的无线终端,其特征在于,所述射频电路包括:发射处理电路和接收处理电路;
    所述发射处理电路用于根据所述基带处理电路的命令,对上行所述基带控制电路发送的上行数字信号,转换成上行模拟信号并发送给所述天线;
    所述接收处理电路用于接收所述天线发送的下行模拟信号,转换成下行数字信号发送给所述基带控制电路处理;
    所述开关电路包括电子开关,所述电子开关设置在以下供电线路的至少一个之上:
    所述电源处理电路到所述发射处理电路的供电线路,和所述电源处理电路到所述接收处理电路的供电线路;
    所述电子开关用于根据所述断开命令、断开所述电子开关所在的供电线路;
    所述基带控制电路具体用于,在所述无线终端处于休眠状态的部分时段或全部时段开始时、向所述电子开关中的至少一个发送所述断开命令。
  10. 如权利要求6或7所述的无线终端,其特征在于,所述基带控制电路还用于,在所述射频电路的全部电路或部分电路断电的时段结束时、向所述开关电路发送连通命令;
    所述开关电路,用于接收所述连通命令,根据所述连通命令、连通对所述射频电路的全部电路的供电线路。
  11. 如权利要求8或9所述的无线终端,其特征在于,所述基带控制电路还用于,在所述射频电路的全部电路或部分电路断电的时段结束时、向收到了所述断开命令的所有的电子开关,发送连通命令;
    所述电子开关,还用于接收所述连通命令,根据所述连通命令、连通所述电子开关所在的供电线路。
PCT/CN2014/088678 2013-10-30 2014-10-15 控制供电的方法和无线终端 WO2015062415A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/032,025 US10194397B2 (en) 2013-10-30 2014-10-15 Power supply control method and wireless terminal
JP2016527388A JP6458279B2 (ja) 2013-10-30 2014-10-15 電力供給制御方法及び無線端末
EP14857166.4A EP3046261A4 (en) 2013-10-30 2014-10-15 METHOD FOR CONTROLLING AN ELECTRIC POWER SUPPLY AND A WIRELESS TERMINAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310529506.7A CN104602327A (zh) 2013-10-30 2013-10-30 控制供电的方法和无线终端
CN201310529506.7 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015062415A1 true WO2015062415A1 (zh) 2015-05-07

Family

ID=53003318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088678 WO2015062415A1 (zh) 2013-10-30 2014-10-15 控制供电的方法和无线终端

Country Status (5)

Country Link
US (1) US10194397B2 (zh)
EP (1) EP3046261A4 (zh)
JP (1) JP6458279B2 (zh)
CN (1) CN104602327A (zh)
WO (1) WO2015062415A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106209652A (zh) * 2015-05-08 2016-12-07 西安中兴新软件有限责任公司 一种路由设备及其节电方法、装置
EP3292715A1 (en) * 2015-05-29 2018-03-14 Huawei Technologies Co., Ltd. User device, network node and methods thereof
US20170019858A1 (en) * 2015-07-15 2017-01-19 Qualcomm Incorporated Techniques for dynamically enabling or disabling a user equipment power saving feature based on application performance
CN106455016A (zh) * 2015-08-11 2017-02-22 中兴通讯股份有限公司 一种控制移动终端的方法及移动终端
KR102473790B1 (ko) 2016-08-30 2022-12-05 삼성전자 주식회사 저전력 상태에서 시간 정보 제공 방법 및 이 방법을 포함하는 전자 장치
WO2019136645A1 (zh) 2018-01-10 2019-07-18 Oppo广东移动通信有限公司 用于确定终端设备状态的方法、终端设备和接入网设备
CN112136343B (zh) * 2018-06-19 2024-01-12 奥林巴斯株式会社 无线通信终端、无线通信***、无线通信方法及存储介质
CN112751587B (zh) 2020-12-28 2022-07-22 北京小米移动软件有限公司 通路选择开关的控制方法及装置、终端及存储介质
WO2023000303A1 (zh) * 2021-07-23 2023-01-26 华为技术有限公司 动态控制芯片关断的方法及设备
WO2023003571A1 (en) * 2021-07-23 2023-01-26 Zeku, Inc. Apparatus and method for signal processing in wireless communication
WO2023014353A1 (en) * 2021-08-03 2023-02-09 Zeku, Inc. Apparatus and method of a reduced power receiver for wireless communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050060533A (ko) * 2003-12-16 2005-06-22 동부아남반도체 주식회사 스퍼터링 장치 및 방법 그리고 이를 이용한 반도체 소자의금속배선 형성방법
US20080113692A1 (en) * 2006-11-13 2008-05-15 Palm, Inc. Apparatus and Methods for Reducing Power Consumption and/or Radio Frequency Interference in a Mobile Computing Device
CN101404535A (zh) * 2008-11-14 2009-04-08 那微微电子科技(上海)有限公司 通讯终端的电源开关控制***
CN101663889A (zh) * 2007-03-19 2010-03-03 三星电子株式会社 数字电视广播数据的发送和接收方法及其设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433019B2 (ja) * 1996-09-12 2003-08-04 株式会社東芝 移動通信機とそのバッテリセービング方法
EP0939495B1 (en) * 1998-02-26 2004-04-14 Motorola Semiconducteurs S.A. Power saving system for an electronic portable device
JP2001345732A (ja) 2000-03-30 2001-12-14 Seiko Epson Corp 無線通信装置および無線通信装置の制御方法
US7496060B2 (en) * 2005-05-20 2009-02-24 Freescale Semiconductor, Inc. Extending battery life in communication devices having a plurality of receivers
WO2008001726A1 (fr) * 2006-06-26 2008-01-03 Panasonic Corporation Terminal de radiocommunications, station de base de radiocommunications et procédé de radiocommunications
SG177986A1 (en) * 2007-01-30 2012-02-28 Interdigital Tech Corp Implicit drx cycle length adjustment control in lte_active mode
US8169957B2 (en) * 2007-02-05 2012-05-01 Qualcomm Incorporated Flexible DTX and DRX in a wireless communication system
WO2008114943A1 (en) 2007-03-19 2008-09-25 Samsung Electronics Co., Ltd. Transmitting and receiving method and apparatus for digital television broadcasting data
GB2452022B (en) * 2007-07-24 2012-03-28 Nec Corp DRX configuration
US8289891B2 (en) * 2008-05-09 2012-10-16 Samsung Electronics Co., Ltd. Flexible sleep mode for advanced wireless systems
US20090295230A1 (en) * 2008-05-30 2009-12-03 Nokia Corporation Selective coupling of a powered component
KR20100052064A (ko) * 2008-11-10 2010-05-19 삼성전자주식회사 이동 통신 시스템에서 불연속 수신 동작 제어 방법 및 장치
KR101878883B1 (ko) * 2011-10-14 2018-07-17 삼성전자주식회사 무선 통신 시스템에서 송수신 동작을 제어하기 위한 장치 및 방법
US9014070B2 (en) * 2011-11-22 2015-04-21 Telefonaktiebolaget L M Ericsson (Publ) Energy efficient operation for dense deployment of wireless access nodes
US9332584B2 (en) * 2012-10-18 2016-05-03 Apple Inc. Discontinuous reception cycle scaling in a wireless device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050060533A (ko) * 2003-12-16 2005-06-22 동부아남반도체 주식회사 스퍼터링 장치 및 방법 그리고 이를 이용한 반도체 소자의금속배선 형성방법
US20080113692A1 (en) * 2006-11-13 2008-05-15 Palm, Inc. Apparatus and Methods for Reducing Power Consumption and/or Radio Frequency Interference in a Mobile Computing Device
CN101663889A (zh) * 2007-03-19 2010-03-03 三星电子株式会社 数字电视广播数据的发送和接收方法及其设备
CN101404535A (zh) * 2008-11-14 2009-04-08 那微微电子科技(上海)有限公司 通讯终端的电源开关控制***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046261A4 *

Also Published As

Publication number Publication date
US10194397B2 (en) 2019-01-29
US20160309416A1 (en) 2016-10-20
JP6458279B2 (ja) 2019-01-30
JP2017501612A (ja) 2017-01-12
CN104602327A (zh) 2015-05-06
EP3046261A4 (en) 2016-09-28
EP3046261A1 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2015062415A1 (zh) 控制供电的方法和无线终端
CN102239736B (zh) 移动装置中的电力管理
WO2015196763A1 (zh) 一种智能终端的省电管理方法及装置
US9021287B2 (en) Circuit arrangement and method for low power mode management with delayable request
CN101893926B (zh) 控制双处理器切换的方法、装置及终端
EP1727379B1 (en) Method and apparatus for reducing standby power consumption of a handheld communication system
JP6203983B1 (ja) バッテリー電荷に基づく動的スリープモード
WO2010139219A1 (zh) 基于多制式网络的切换装置及方法
WO2018157689A1 (zh) 一种实现蓝牙安全设备低功耗待机的方法及蓝牙安全设备
CN105373207A (zh) 一种无线通信终端的待机方法
CN101847043B (zh) 共用存储设备的方法及移动终端
CN101170777A (zh) 一种实现多模移动终端睡眠/唤醒的方法
EP3062564A1 (en) Power saving method and apparatus for multimode terminal
CN104756042A (zh) 用于在无线终端中控制操作模式的装置和方法
JP2014026648A (ja) ハイスピードインターチップhsicインタフェースに基づくウェイクアップ方法、ホットスワップ方法、およびデバイス
WO2021148049A1 (zh) 状态确定方法、***、介质及电子设备
US8219842B2 (en) Computer system and method for energy-saving operation of a computer system
CN105446916A (zh) Usb总线状态切换方法及装置
CN105744604B (zh) 基于android***的WIFI模块功耗控制装置及方法
US11372470B2 (en) Control system for controlling intelligent system to reduce power consumption based on bluetooth device
JP2013120130A (ja) 電子機器およびタイマ時刻設定方法
US10649515B2 (en) Power management of computing and communications systems during power fluctuation and sudden power failure events
JP6170184B2 (ja) 電源スイッチング回路及び端末
WO2016045363A1 (zh) Cpu通过hsic总线接口控制wifi模块的方法
CN209805473U (zh) 一种供电的控制电路及充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857166

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014857166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15032025

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016527388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE