WO2015053558A1 - Electrolyte composition for secondary battery and secondary battery including same - Google Patents

Electrolyte composition for secondary battery and secondary battery including same Download PDF

Info

Publication number
WO2015053558A1
WO2015053558A1 PCT/KR2014/009480 KR2014009480W WO2015053558A1 WO 2015053558 A1 WO2015053558 A1 WO 2015053558A1 KR 2014009480 W KR2014009480 W KR 2014009480W WO 2015053558 A1 WO2015053558 A1 WO 2015053558A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
electrolyte
weight
carbonate
Prior art date
Application number
PCT/KR2014/009480
Other languages
French (fr)
Korean (ko)
Inventor
하재민
정희원
이태웅
신정주
박대운
방지민
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2015053558A1 publication Critical patent/WO2015053558A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte composition comprising a poorly soluble lithium salt and a secondary battery including the same. Specifically, the present invention can be used to improve low temperature performance of a lithium secondary battery. It relates to a secondary battery electrolyte composition comprising a poorly soluble lithium salt solid addition system and a secondary battery comprising the same.
  • Background Art As the technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and high discharge voltage have been widely used.
  • Lithium secondary batteries may be classified into lithium ion batteries containing liquid electrolytes as they are, electrolyte lithium batteries containing electrolytes in the form of gels, and lithium polymer batteries of solid electrolytes, depending on the type of electrolyte.
  • Preferred characteristics of the electrolyte include those having high ion conductivity, those having an electrochemically stable potential range, and those thermally stable.
  • various additives of organic and inorganic materials may be added to the electrolyte.
  • Vinylene carbonate-based additives are used.
  • the vinylene carbonate-based additive is to form a stable solid electrolyte film (SEI) in the initial chemical conversion process of the battery, the battery layer. Even if the discharge is repeated, the decrease in capacity is small and the battery capacity is kept high.
  • carbonate electrolyte additives eg, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene fluoride (FEC), etc.
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC ethylene fluoride
  • oxalate-based additives eg, lithium bis (oxalato) borate (LiBOB), lithium difluorohobis (oxalato) phosphate (LiDFOP)
  • oxalate-based additives eg, lithium bis (oxalato) borate (LiBOB), lithium difluorohobis (oxalato) phosphate (LiDFOP)
  • LiBOB lithium bis (oxalato) borate
  • LiDFOP lithium difluorohobis
  • the SEI film can be formed to provide good battery performance.
  • an object of the present invention is to include a poorly soluble lithium salt, which can improve deterioration of battery performance due to precipitation of inorganic and organic lithium salts, extend the high temperature life of the battery, and improve safety.
  • Electrolyte for secondary battery which can improve It is to provide a composition.
  • Another object of the present invention is to provide a secondary battery comprising the electrolyte solution composition for the secondary battery.
  • the present invention provides a secondary battery electrolyte composition comprising a solvent, a lithium salt, and poorly soluble lithium salt, containing 0.0001 to 1 part by weight based on 100 parts by weight of the poorly soluble lithium salt. do.
  • the present invention provides a lithium secondary battery comprising the electrolyte solution composition for the secondary battery.
  • the electrolyte composition for a secondary battery according to the present invention includes poorly soluble lithium salt in the electrolyte, and can improve deterioration of battery performance due to precipitation of organic and inorganic lithium salts, improve low-temperature layer_discharge capacity characteristics, and improve the high temperature of the battery. While extending the life, it is possible to improve the electrical resistance characteristics of the battery can be usefully used in the manufacture of secondary batteries. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention is described in more detail.
  • the electrolyte composition for a secondary battery according to the present invention is characterized by containing a poorly soluble lithium salt.
  • the poorly soluble lithium salt may be included in a secondary battery electrolyte composition including a solvent and a lithium salt. Therefore, the electrolyte composition for secondary batteries of this invention contains a solvent, a lithium salt, and a poorly soluble lithium salt. The poorly soluble lithium salt is contained in the electrolyte and dispersed, and in the electrolyte It is suspended in powder form.
  • the poorly soluble lithium salt is dispersed in the electrolyte and acts as a nucleus when the lithium salts contained in the electrolyte crystallize, so that the lithium salts are deposited on the surface of the positive electrode and the negative electrode, or the separator, and as the particles become larger, By preventing the performance degradation of the battery that may be caused by blocking the passage, it is possible to prevent the increase in battery resistance and reduced capacity.
  • the amount of the poorly soluble lithium salt is 0.0001 to 1 parts by weight, 0.00 to 0.5 parts by weight, 0.0001 to 0.4 parts by weight, 0.00 to 0.3 parts by weight, 0.001 to 1 parts by weight based on 100 parts by weight of the total weight of the electrolyte composition , 0.001 to 0.5 parts by weight, 0.001 to 0.4 parts by weight, 0.0 to 0.3 parts by weight, 0.005 to 0.3 parts by weight, 0.01 to 1 parts by weight, 0.01 to 0.5 parts by weight, 0.01 to 0.4 parts by weight, 0.01 to 0.3 parts by weight, 0.02 to 1 part by weight, 0.02 to 0.5 part by weight, 0.02 to 0.4 part by weight, or 0.02 to 0.3 part by weight, preferably 0.001 to 0.3 part by weight, 0.005 to 0.3 part by weight, 0.01 to 0.3 part by weight, or 0.02 To 0.3 part by weight.
  • the amount of the poorly soluble lithium salt is 0.0001 parts by weight or more, a sufficient amount of poorly soluble lithium salt may be included to exhibit the above-described effects, and when the amount of the poorly soluble lithium salt is less than 1 part by weight, the content of the poorly soluble lithium salt is excessively increased. Increasing the resistance and decreasing the capacity of the battery as a side effect can be prevented.
  • Examples of the poorly soluble lithium salts include lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), lithium oxide (Li 2 O), lithium oxalate (Li 2 C 2 O 4 ), lithium chloride (LiCl), And lithium hydroxide (LiOH).
  • the poorly soluble lithium salt when lithium oxalate is used as the poorly soluble lithium salt, complexes with the transition metal ions may be prevented from forming conductive protrusions in the form of transition metal on the surface of the negative electrode.
  • carbon dioxide and carbon dioxide radicals are formed by electrochemical oxidation reaction, and the generated carbon dioxide vents the battery before the battery explosion occurs due to overcharging, and the carbon dioxide radical, which is a strong reducing agent, reduces the transition metal ion to negative electrode. Can be suppressed.
  • the particle size of the poorly soluble lithium salt particles may be 0.01 to 80, preferably 1 to 50, more preferably 10 to 30.
  • the particle diameter of the poorly soluble lithium salt particles is in the above range, The problem of poor dispersibility does not occur, and the poorly soluble lithium salt dispersed in the electrolyte can effectively act as a nucleus when the lithium salts are crystallized. If the particle size of the poorly soluble lithium salt particles is less than 0.01 ⁇ , particle preparation , Increasing the difficulty of the process and increasing the cost in battery assembly, and the disadvantage of dissolving and slowing the reaction rate when the particle size of the particle is more than 80.
  • the solvent is a special organic electrolyte solution commonly used in secondary batteries. There is no limitation, but high solubility in the lithium salt is preferred.
  • a carbonate organic solvent having a high dielectric constant may be used for long life of the battery, and may be, for example, a non-aqueous solvent composed of a mixture of a linear carbonate compound and a cyclic carbonate compound.
  • the solvent examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, dietoxy ethane, vinylene carbonate, gamma-butyro Lactone, ethylene sulfite, propylene sulfite, tetrahydrofuran, and mixtures thereof, specifically, a mixture of linear carbonates such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate and cyclic carbonates such as propylene carbonate and ethylene carbonate It may be, but is not limited thereto.
  • the lithium salt is not particularly limited as long as it is used in a conventional lithium secondary battery, for example lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium arsenic fluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethanesulfonylamide (UN (CF 3 SO 2 ) 2 ), and combinations thereof, but are not limited thereto.
  • the electrolyte composition for a secondary battery of the present invention may further include an SEI film forming additive.
  • film-forming additives examples include vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene fluoride carbonate (FEC), propene sultone (PRS), propane sultone (PS), lithium bis (oxalato) borate (LiBOB), lithium difluorobis (oxalato) phosphate (LiDFOP), and a mixture thereof.
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC ethylene fluoride carbonate
  • PRS propene sultone
  • PS propane sultone
  • LiBOB lithium bis (oxalato) borate
  • LiDFOP lithium difluorobis
  • the film-forming additive may form a stable solid electrolyte interfacial film in the initial chemical forming process of the battery, so that the battery may have a small capacity decrease and high battery capacity even when the battery repeats layers and discharges.
  • Sultone-based additives form a film on the anode and the cathode, and the film formed on the anode can suppress oxidative decomposition at the anode of a nonaqueous solvent which may occur under high temperature environment, while the film formed on the cathode is formed on the surface of the cathode. Precipitation of lithium can be suppressed.
  • the film forming additive may be included in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 4 parts by weight, preferably 1 to 2 parts by weight, based on 100 parts by weight of the electrolyte composition.
  • the secondary battery may be manufactured by injecting the electrolyte composition for a secondary battery of the present invention as described above into an electrode assembly including a positive electrode and a negative electrode, and a separator interposed therebetween.
  • the secondary battery includes all kinds of secondary batteries, and preferably, may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
  • the positive electrode, the negative electrode, and the separator constituting the electrode assembly may be any ones conventionally used in manufacturing a lithium secondary battery.
  • the positive electrode may be prepared by applying a mixture of a positive electrode active material, a conductive material, and a binder on a current collector and then drying.
  • the conductive material may be generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material, and is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists in bonding the active material and the conductive material to the current collector and may be added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material.
  • the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyridone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluorine rubber, various Copolymers and the like can be used.
  • the negative electrode is manufactured by applying and drying a negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.
  • the negative electrode current collector is not particularly limited as long as it has a conductive oxide without causing chemical changes in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon, nickel titanium, Surface treated with silver or the like, aluminum-cadmium alloy or the like can be used.
  • Carbon such as a decoated softened carbon and an inferior carbon
  • Sn x Mei— x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ metal complex oxides such as l ⁇ y ⁇ 3; 1 ⁇ ⁇ 6); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, Sn3 ⁇ 4, PbO, Pb0 2 , Pb 2 0 3 , Pb 3 0 4 , Sb 2 0 3) Sb 2 0 4) Sb 2 0 5 , GeO, Ge3 ⁇ 4, Bi 2 0 3 , Bi 2 0 4 , and Bi Oxides such as 2 0 5 ; Polyacetylene-based conductive polymers; Li-Co-Ni system material etc.
  • olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven spouts made of glass fiber or polyethylene may be used, preferably polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyether Group consisting of sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, polyethylene, polypropylene, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile and polyvinylidene fluoride-nucleofluoropropylene copolymer It may be made of one or more selected from.
  • Pore size and porosity of the separator is not particularly limited, porosity is.
  • pore size (diameter) can be 0.01 to 10 mm 3. If the pore size and porosity are more than 0.01 i and 5%, respectively, electrolyte flows smoothly, and battery performance is not degraded. Pore size and porosity are less than 10 and 95% In this case, mechanical properties can be properly maintained, and internal short circuits of the positive and negative electrodes can be prevented.
  • the thickness of the separator is not particularly limited, but may be 1 to 300, preferably 5 to 100 m. If it is 1 or more, it can exhibit proper mechanical properties, and if it is 300 or less, it can prevent the separator from acting as a resistive layer.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may have a cylindrical, square, pouch or coin type using a can. In addition, it may be a cable type lithium secondary battery having a structure such as a linear wire.
  • Preparation Example Preparation of electrolyte mother liquor Mixing 300 g of ethylene carbonate and 300 g of ethylmethyl carbonate and 300 g of diethyl carbonate as a linear carbonate in a glove box heated and dissolved in a controlled moisture and oxygen mixture, 50 g of molecular sieves were added, followed by stirring for 12 hours or more to remove moisture to 20 ppm or less. LiPF was added thereto at a concentration of 1 M (152 g) to prepare an electrolyte solution liquid.
  • Examples 1 to 5 Preparation of Electrolytic Solution Composition A poorly soluble lithium salt was added to the electrolyte solution prepared in Preparation Example as shown in Table 1, followed by stirring to prepare an electrolyte solution composition in a suspended state.
  • a positive electrode mixture slurry was prepared by adding weight% to a solvent, N-methyl-2-pyridone (XP), and coated, dried, and pressed on both sides of aluminum foil to prepare a positive electrode.
  • XP N-methyl-2-pyridone
  • a negative electrode mixture slurry was prepared by adding 97.5% by weight of artificial graphite (Hitachi Co., Ltd.), 1.5% by weight of SBRCStyrene-Butadiene Rubber (Binder) and 1% by weight of CMC (Thickener and Binder) as a negative electrode active material.
  • the negative electrode was prepared by coating, drying and pressing on both sides of the copper foil.
  • An electrode assembly was prepared by laminating the positive electrode and the negative electrode using a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) having a thickness of 5 i, and then prepared in Example 1 as an electrolyte solution, respectively.
  • An electrolyte composition was injected to prepare a pouch-type lithium secondary battery such that the battery capacity was about 1,000 mAh.
  • Examples 26 to 53 Preparation of Secondary Battery As shown in Table 2 or Table 3 below, lithium secondary batteries were prepared in the same manner as in Example 25, except that the electrolyte compositions prepared in Examples 1 to 24, respectively, and the cathode material as described above were used. The battery was prepared.
  • Comparative Examples 1 and 2 Preparation of Electrolyte Composition Comprising Coating Forming Additives The film forming additive was added to the electrolyte solution prepared in Preparation Example as shown in Table 1, followed by stirring to prepare an electrolyte composition.
  • Comparative Examples 3 to 6 Preparation of electrolyte composition comprising poorly soluble lithium salt and film forming additive After adding poorly soluble lithium salt and film forming additive to the electrolyte solution prepared in Preparation Example as shown in Table 1 below The mixture was stirred to prepare an electrolyte solution composition in a suspended state.
  • Comparative Examples 7 to 12 Preparation of Secondary Batteries Except for using the electrolyte compositions prepared in Comparative Examples 1 to 6 and the cathode materials as described in Table 2 or Table 3, respectively, In the same manner, a lithium secondary battery was prepared.
  • Example 6 Lithium oxide 0.2 ethylene fluoride 1
  • Example 7 Lithium fluoride 0.2 ethylene carbonate 1
  • Example 8 Lithium carbonate 0.2 ethylene carbonate 1
  • Example 9 Lithium oxalate 0.2 Ethylene fluoride 1
  • Example 10 Lithium hydroxide 0.2 Ethylene fluoride 1
  • Example 11 Lithium oxide 0.1 Vinylene carbonate 1
  • Example 12 Lithium fluoride 0.1 Vinylene carbonate 1
  • Example 13 Lithium carbonate 0.1 Vinylene carbonate 1
  • Example 14 Lithium oxalate 0.1 vinylene Carbonate Example 1
  • Example 15 Lithium Hydroxide 0.1 Vinylene Carbonate 1 Lithium Difluorobisoxalato
  • Example 21 Lithium Oxalate 0.05 Ethylene Fluoride 1
  • Example 22 Lithium Oxalate 0.1 Ethylene Fluoride 1
  • Example 23 Lithium Oxalate 0.3 Ethylene Fluoride 1
  • Example 24 Lithium Oxalate 0.5 Volatile Ethylene Carbonate 1 Comparative Example 1- -Ethylene fluoride carbonate 1 Comparative Example 2-Vinylene carbonate 1 Lithium difluorobisoxalato
  • Comparative Example 4 Lithium oxalate 1.5 ethylene fluoride 1 Comparative Example 5 Lithium oxalate 1.5 vinylene carbonate 1 Comparative Example 6 Lithium oxalate 3 Ethylene carbonate 1
  • the addition amount in Table 1 is based on the total weight of the electrolyte composition 100% to be.
  • Experimental Example 1 low temperature capacity evaluation In order to evaluate the low-temperature capacity of the battery, the batteries prepared in Examples 25 to 53, and Comparative Examples 7 to 12 were charged to 4.2 V at -10 ° C. to 1 C, discharged to 3 V, and 10 layer 'discharges. After that, the ratio of the discharge capacity after 10 cycles to the initial discharge capacity was expressed as%. The results are shown in Table 2 and Table 3.
  • Experimental Example 2 Evaluation of recovery rate of silver recovery Discharge recovering after completion of 10 cycles of room temperature to the initial discharge capacity after charging the battery after the low temperature capacity evaluation, charged to 4.2V, and discharged to 3V after 3 hours at room temperature Doses are expressed in%. The results are shown in Table 2 and Table 3.
  • Experimental Example 3 Battery Resistance Evaluation The batteries prepared in Examples 50 to 53 and Comparative Example 12 were placed in a chamber at 23 ° C., respectively, and then CC / CV (constant current / constant voltage) using a layer / discharger.
  • Experimental Example 4 Evaluation of high-temperature capacity storage rate After placing the cells prepared in Examples 50 to 53, and Comparative Example 12 in a chamber at 60 ° C, respectively, using a layer / discharger CC / CV (const ant current / const ant vol tage) After 100 cycles of layer / discharge with 1C / 1C condition current in the range of 3 to 4.2 V in the mode, report the discharge capacity of CC mode 1C at room temperature as the recovery capacity (PNE solut ion, PEBC0506 ), The initial It is expressed in% of the dose. The results are shown in Table 3.
  • the secondary battery of the present invention compared to the secondary batteries of Comparative Examples 7 to 12, in terms of room temperature recovery rate, battery resistance and / or high temperature capacity storage rate has excellent life characteristics, it can be seen that Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an electrolyte composition for a secondary battery and a secondary battery including the same, and the electrolyte composition for a secondary battery of the present invention comprises: a solvent; a lithium salt; and an insoluable lithium salt, wherein the electrolyte composition contains the insoluable lithium salt of 0.0001 to 1 part by weight on the basis of 100 parts by weight, and can improve battery performance deterioration due to the precipitation of inorganic and organic lithium salts, extend the high-temperature life span of the battery and enhance stability, and thus is useful in the manufacture of the secondary battery.

Description

명세서  Specification
이차전지용 전해액 조성물 및 이를포함하는 이차 전지 발명의 분야 본 발명은 난용성 리튬염을 포함하는 전해액 조성물 및 이를 포함하는 이차 전지에 관한 것으로, 상세하게는 리튬 이차 전지의 저온 성능을 개선하기 위해 사용될 수 있는 난용성 리튬염 고체 첨가계를 포함하는 이차 전지용 전해액 조성물 및 이를 포함하는 이차 전지에 관한 것이다. 배경기술 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급증하고 있고, 그러한 이차 전지 중 고 에너지 밀도와 높은 방전 전압을 가지는 리튬 이차 전지가 최근 널리 사용되고 있다.  TECHNICAL FIELD The present invention relates to an electrolyte composition comprising a poorly soluble lithium salt and a secondary battery including the same. Specifically, the present invention can be used to improve low temperature performance of a lithium secondary battery. It relates to a secondary battery electrolyte composition comprising a poorly soluble lithium salt solid addition system and a secondary battery comprising the same. Background Art As the technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and high discharge voltage have been widely used.
리튬 이차 전지는 전해액의 형태에 따라 액체인 전해액올 그대로 포함하고 있는 리튬이온 전지와, 전해액이 겔과 같은 형태로 포함되어 있는 리튬이온 폴리머 전지, 및 고체 전해질의 리튬 폴리머 전지로 분류되기도 한다.  Lithium secondary batteries may be classified into lithium ion batteries containing liquid electrolytes as they are, electrolyte lithium batteries containing electrolytes in the form of gels, and lithium polymer batteries of solid electrolytes, depending on the type of electrolyte.
전해액의 요구 특성으로는, 높은 이온전도도를 가질 것을 우선적으로 들 수 있고, 전기화학적으로 안정한 전위 범위를 가질 것과, 열적으로 안정할 것을 들 수 있다.  Preferred characteristics of the electrolyte include those having high ion conductivity, those having an electrochemically stable potential range, and those thermally stable.
리튬 이차 전지의 특성 , 예컨대 초기 용량,사이클 특성 ,고온보존 특성, 저온 특성, 자기방전 특성, 과층전 특성 등을 개선하기 위하여, 전해액에 유기 · 무기의 다양한 첨가제를 첨가하기도 한다. 이러한 기능 중 리튬이온 전지의 중요한 기능인 용량 증대 및 사이클 수명 증대를 위해서 비닐렌카보네이트계 첨가제가 사용되고 있다. 상기 비닐렌카보네이트계 첨가제는 전지의 초기 화성공정에서 안정한 고체 전해질 피막 (Sol id Electrolyte interface , SEI )을 형성하도록 하여, 전지가 층. 방전을 반복 하여도 용량의 감소가 적고 전지 용량이 높게 유지되도록 한다. 따라서, 전지의 성능을 유지하기 위하여 SEI를 형성할 수 있는 카보네이트계 전해액 첨가제 (예컨대, 비닐렌카보네이트 (VC) , 비닐에틸렌카보네이트 (VEC) , 불화에틸렌카보네이트 (FEC) 등), -황계 첨가제 (예컨대, 프로펜술톤 (PRS) , 프로판술톤 (PS) 등), 및 옥살레이트계 첨가제 (예컨대, 리튬 비스 (옥살라토)보레이트 (LiBOB) , 리튬 디플루오호비스 (옥살라토)포스페이트 (LiDFOP)등) 등의 다양한 유기 첨가제가사용되고 있다. 이에 따라 SEI 피막을 형성하여 양호한 전지의 성능을 낼 수 있지만, 여전히 전지가 저온환경에 노출되었을 때에는 저항 증가, 용량 감소 등의 비가역적 전지 성능 저하가 발생되는 문제점이 있다. 예컨대, 전지가 영하 0°C 이하의 저온에서 작동하게 되면 전해액 내 카보네이트 용제에 녹아있는, 전해질로 사용되는 리튬이온염 (LiPF)의 용해성 및 이온전도도가 감소하여 전지의 용량 및 출력 특성이 열화된다. 게다가 전해액 내 부산물로서 존재하는 무기 · 유기 리튬염 (Li2C03, LiF, Li20, Li2C204, LiOR)이 불용화되어 고체로 석출된다. 이는 전지 내 저항을 증가시키고, 전기용량을 감소시키며, 전지의 고온, 저온 수명, 사이클 특성을 저하시키는 문제가 있다. In order to improve the characteristics of the lithium secondary battery, such as initial capacity, cycle characteristics, high temperature storage characteristics, low temperature characteristics, self-discharge characteristics, and overlayer characteristics, various additives of organic and inorganic materials may be added to the electrolyte. Among these functions, to increase capacity and cycle life, which are important functions of lithium ion batteries, Vinylene carbonate-based additives are used. The vinylene carbonate-based additive is to form a stable solid electrolyte film (SEI) in the initial chemical conversion process of the battery, the battery layer. Even if the discharge is repeated, the decrease in capacity is small and the battery capacity is kept high. Therefore, carbonate electrolyte additives (eg, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene fluoride (FEC), etc.) capable of forming SEI to maintain battery performance, , Propenesultone (PRS), propanesultone (PS), etc., and oxalate-based additives (eg, lithium bis (oxalato) borate (LiBOB), lithium difluorohobis (oxalato) phosphate (LiDFOP) Various organic additives, such as etc., are used. As a result, the SEI film can be formed to provide good battery performance. However, when the battery is exposed to a low temperature environment, there is a problem in that irreversible degradation of battery performance such as increased resistance and reduced capacity occurs. For example, when the battery is operated at a low temperature below minus 0 ° C, the solubility and ion conductivity of lithium ion salt (LiPF), which is dissolved in the carbonate solvent in the electrolyte, decreases, thereby degrading the capacity and output characteristics of the battery. . In addition, inorganic and organic lithium salts (Li 2 CO 3 , LiF, Li 2 O, Li 2 C 2 O 4 , LiOR) present as by-products in the electrolyte are insolubilized to precipitate as solids. This increases the resistance in the battery, decreases the capacitance, and has a problem of lowering the high temperature, low temperature life, and cycle characteristics of the battery.
따라서 , 저온 환경에 노출되는 전지의 성능 저하를 최소화하여 전지의 저온 사이클 특성, 충* 방전 용량 특성, 전기 저항 특성을 향상시킬 수 있는 전해액 첨가제 조성물의 개발이 요구된다. 발명의 요약 따라서, 본 발명의 목적은 별도의 난용성 리튬염을 포함하여 , 무기 · 유기 리튬염의 석출에 의한 전지 성능의 열화를 개선할 수 있고, 전지의 고온 수명을 연장시킬 수 있으며, 안전성을 향상시킬 수 있는 이차 전지용 전해액 조성물을 제공하는 것이다. Therefore, the low-temperature cycle characteristics of the battery, with minimal degradation of the battery is exposed to a low temperature environment, the charge - discharge capacity characteristics, and the development of the electrolyte additive composition to improve the electrical resistance properties are required. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to include a poorly soluble lithium salt, which can improve deterioration of battery performance due to precipitation of inorganic and organic lithium salts, extend the high temperature life of the battery, and improve safety. Electrolyte for secondary battery which can improve It is to provide a composition.
본 발명의 다른 목적은 상기 이차 전지용 전해액 조성물을 포함하는 이차 전지를 제공하는 것이다. 상기 목적을 달성하기 위하여 본 발명은, 용매, 리튬염, 및 난용성 리튬염을 포함하고, 상기 난용성 리튬염을 전해액 조성물 100 중량부를 기준으로 0.0001 내지 1 중량부 포함하는 이차 전지용 전해액 조성물을 제공한다.  Another object of the present invention is to provide a secondary battery comprising the electrolyte solution composition for the secondary battery. In order to achieve the above object, the present invention provides a secondary battery electrolyte composition comprising a solvent, a lithium salt, and poorly soluble lithium salt, containing 0.0001 to 1 part by weight based on 100 parts by weight of the poorly soluble lithium salt. do.
상기 다른 목적을 달성하기 위하여 본 발명은, 상기 이차 전지용 전해액 조성물을 포함하는 리튬 이차 전지를 제공한다. 본 발명에 따른 이차 전지용 전해액 조성물은 전해액 내에 난용성 리튬염을 포함하여, 유기 · 무기 리튬염의 석출에 의한 전지 성능의 열화를 개선할 수 있고, 저온 층_ 방전 용량 특성을 향상시키고ᅳ 전지의 고온 수명을 연장시킬 수 있으면서 전지의 전기 저항 특성을 향상시킬 수 있어 이차 전지의 제조에 유용하게 사용될 수 있다. 발명의 상세한설명 이하 본 발명에 대하여 보다 상세히 설명한다. 본 발명에 따른 이차 전지용 전해액 조성물은 난용성 리튬염을 포함하는 것을 특징으로 한다.  In order to achieve the above another object, the present invention provides a lithium secondary battery comprising the electrolyte solution composition for the secondary battery. The electrolyte composition for a secondary battery according to the present invention includes poorly soluble lithium salt in the electrolyte, and can improve deterioration of battery performance due to precipitation of organic and inorganic lithium salts, improve low-temperature layer_discharge capacity characteristics, and improve the high temperature of the battery. While extending the life, it is possible to improve the electrical resistance characteristics of the battery can be usefully used in the manufacture of secondary batteries. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention is described in more detail. The electrolyte composition for a secondary battery according to the present invention is characterized by containing a poorly soluble lithium salt.
상기 난용성 리튬염은 용매 및 리튬염을 포함하는 이차 전지용 전해액 조성물에 포함될 수 있다. 따라서 본 발명의 이차 전지용 전해액 조성물은 용매, 리튬염, 및 난용성 리튬염을 포함한다. 상기 난용성 리튬염은 전해액에 포함되어 분산되며, 상기 전해액 내에서 분말 입자상으로 현탁된다. 상기 난용성 리튬염은 전해액 중에 분산되어 전해액에 포함된 리튬염들이 결정화될 경우에 핵으로서 작용함으로써, 상기 리튬염들이 양극 · 음극의 표면,또는 분리막에 침착되고, 입자가 커지면서 리튬 이온의 이동의 통로를 막게 되어 발생할 수 있는 전지의 성능저하 현상을 방지함으로써, 전지의 저항 증가 및 용량 감소가 초래되는 것을 막을 수 있다. 상기 난용성 리튬염의 포함량은, 전해액 조성물의 총 중량 100 중량부를 기준으로 0.0001내지 1중량부 , 0.00이내지 0.5중량부, 0.0001내지 0.4중량부, 0.00이내지 0.3중량부, 0.001내지 1중량부, 0.001내지 0.5중량부 , 0.001내지 0.4중량부, 0.0이내지 0.3중량부, 0.005내지 0.3중량부, 0.01내지 1중량부, 0.01내지 0.5중량부, 0.01내지 0.4중량부, 0.01내지 0.3중량부, 0.02내지 1 중량부, 0.02 내지 0.5 중량부, 0.02 내지 0.4 중량부, 또는 0.02 내지 0.3 중량부일 수 있고,바람직하게는 0.001내지 0.3중량부 , 0.005내지 0.3중량부, 0.01 내지 0.3 중량부, 또는 0.02 내지 0.3 중량부일 수 있다. The poorly soluble lithium salt may be included in a secondary battery electrolyte composition including a solvent and a lithium salt. Therefore, the electrolyte composition for secondary batteries of this invention contains a solvent, a lithium salt, and a poorly soluble lithium salt. The poorly soluble lithium salt is contained in the electrolyte and dispersed, and in the electrolyte It is suspended in powder form. The poorly soluble lithium salt is dispersed in the electrolyte and acts as a nucleus when the lithium salts contained in the electrolyte crystallize, so that the lithium salts are deposited on the surface of the positive electrode and the negative electrode, or the separator, and as the particles become larger, By preventing the performance degradation of the battery that may be caused by blocking the passage, it is possible to prevent the increase in battery resistance and reduced capacity. The amount of the poorly soluble lithium salt is 0.0001 to 1 parts by weight, 0.00 to 0.5 parts by weight, 0.0001 to 0.4 parts by weight, 0.00 to 0.3 parts by weight, 0.001 to 1 parts by weight based on 100 parts by weight of the total weight of the electrolyte composition , 0.001 to 0.5 parts by weight, 0.001 to 0.4 parts by weight, 0.0 to 0.3 parts by weight, 0.005 to 0.3 parts by weight, 0.01 to 1 parts by weight, 0.01 to 0.5 parts by weight, 0.01 to 0.4 parts by weight, 0.01 to 0.3 parts by weight, 0.02 to 1 part by weight, 0.02 to 0.5 part by weight, 0.02 to 0.4 part by weight, or 0.02 to 0.3 part by weight, preferably 0.001 to 0.3 part by weight, 0.005 to 0.3 part by weight, 0.01 to 0.3 part by weight, or 0.02 To 0.3 part by weight.
상기 난용성 리륨염의 포함량이 0.0001 중량부 이상인 경우, 전술한 효과를 나타낼 수 있을 정도로 충분한 양의 난용성 리튬염이 포함될 수 있으며, 1 중량부 이하인 경우, 상기 난용성 리튬염의 함량이 지나치게 많아짐에 따른 부작용인 전지의 저항 증가 및 용량 감소를 방지할 수 있다.  When the amount of the poorly soluble lithium salt is 0.0001 parts by weight or more, a sufficient amount of poorly soluble lithium salt may be included to exhibit the above-described effects, and when the amount of the poorly soluble lithium salt is less than 1 part by weight, the content of the poorly soluble lithium salt is excessively increased. Increasing the resistance and decreasing the capacity of the battery as a side effect can be prevented.
상기 난용성 리튬염의 예로는, 리튬 플루오라이드 (LiF) , 리튬 카보네이트 (Li2C03) , 리튬 옥사이드 (Li20) , 리튬 옥살레이트 (Li2C204) , 리튬 클로라이드 (LiCl ) , 및 리튬 하이드록사이드 (LiOH)로 이루어진 군으로부터 선택된 1종 이상을 들 수 있다. Examples of the poorly soluble lithium salts include lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ), lithium oxide (Li 2 O), lithium oxalate (Li 2 C 2 O 4 ), lithium chloride (LiCl), And lithium hydroxide (LiOH).
예컨대, 상기 난용성 리튬염으로서 리튬 옥살레이트가 사용되는 경우, 전이금속 이온과 착물을 형성하여 음극 표면에 전이금속 형태의 전도성 돌기가 형성되는 것을 방지할 수 있다. 또한, 전기 화학적 산화반웅에 의해 이산화탄소와 이산화탄소 라디칼을 형성하여, 생성된 이산화탄소가 과충전으로 인한 전지의 폭발이 일어나기 전에 전지를 벤트 (vent )시키고, 강환원제인 이산화탄소 라디칼은 전이금속 이온을 환원시켜 음극으로의 확산을 억제할 수 있다. 상기 난용성 리튬염 입자의 입경은 0.01 내지 80 일 수 있고, 바람직하게는 1내지 50 ,보다 바람직하게는 10내지 30 일 수 있다.난용성 리튬염 입자의 입경이 상기 범위인 경우, 전해액에 대한 분산성이 나빠지는 문제가 발생하지 않고, 전해액 속에 분산된 난용성 리튬염이 상기 리튬염들이 결정화될 경우에 핵으로서 효과적으로 작용할 수 있다, 만일 난용성 리튬염 입자의 입경이 0.01 μπι 미만인 경우 입자 제조, 전지 조립에서 공정의 난이도가 증가하고 비용이 증가하는 단점이 있으며, 입자의 입경이 80 초과인 경우 용해, 반웅속도가 느려지는 단점이 있다 상기 용매는 통상적으로 이차 전지에 사용되는 유기 전해액이라면 특별한 제한은 없지만, 상기 리튬염에 대한 용해도가 높은 것이 바람직하다. 전지의 장수명화를 위해 유전상수가 큰 카보네이트계 유기용매가 사용될 수 있으며, 예컨대 선형 카보네이트 화합물과 환형 카보네이트 화합물의 흔합물로 이루어진 비수계 용매일 수 있다. For example, when lithium oxalate is used as the poorly soluble lithium salt, complexes with the transition metal ions may be prevented from forming conductive protrusions in the form of transition metal on the surface of the negative electrode. In addition, carbon dioxide and carbon dioxide radicals are formed by electrochemical oxidation reaction, and the generated carbon dioxide vents the battery before the battery explosion occurs due to overcharging, and the carbon dioxide radical, which is a strong reducing agent, reduces the transition metal ion to negative electrode. Can be suppressed. The particle size of the poorly soluble lithium salt particles may be 0.01 to 80, preferably 1 to 50, more preferably 10 to 30. When the particle diameter of the poorly soluble lithium salt particles is in the above range, The problem of poor dispersibility does not occur, and the poorly soluble lithium salt dispersed in the electrolyte can effectively act as a nucleus when the lithium salts are crystallized. If the particle size of the poorly soluble lithium salt particles is less than 0.01 μπι, particle preparation , Increasing the difficulty of the process and increasing the cost in battery assembly, and the disadvantage of dissolving and slowing the reaction rate when the particle size of the particle is more than 80. The solvent is a special organic electrolyte solution commonly used in secondary batteries. There is no limitation, but high solubility in the lithium salt is preferred. A carbonate organic solvent having a high dielectric constant may be used for long life of the battery, and may be, for example, a non-aqueous solvent composed of a mixture of a linear carbonate compound and a cyclic carbonate compound.
상기 용매의 예로는, 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에록시에탄, 비닐렌 카보네이트, 감마-부티로락톤, 에틸렌 설파이트, 프로필렌 설파이트, 테트라하이드로퓨란, 및 그 흔합물일 수 있고, 구체적으로 에틸메틸 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트 등의 선형 카보네이트와 프로필렌 카보네이트, 에틸렌 카보네이트 등의 환형 카보네이트의 흔합물일 수 있으나, 이에 한정되지 않는다. 상기 리튬염 역시 통상적인 리튬 이차 전지에 사용되는 것이라면 특별한 제한이 없으며, 예컨대 과염소산 리튬 (LiC104) , 사불화붕산 리튬 (LiBF4) , 육불화인산 리튬 (LiPF6) , 육불화비소 리튬 (LiAsF6) , 삼불화메탄술폰산 리튬 (LiCF3S03) , 리튬 비스트리플루오로메탄술포닐아미드 (UN(CF3S02)2) , 및 그 흔합물을 들 수 있으나, 이에 한정되지 않는다. 한편, 본 발명의 이차 전지용 전해액 조성물은 SEI 피막형성 첨가제를 추가로 포함할 수 있다. Examples of the solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, dietoxy ethane, vinylene carbonate, gamma-butyro Lactone, ethylene sulfite, propylene sulfite, tetrahydrofuran, and mixtures thereof, specifically, a mixture of linear carbonates such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate and cyclic carbonates such as propylene carbonate and ethylene carbonate It may be, but is not limited thereto. The lithium salt is not particularly limited as long as it is used in a conventional lithium secondary battery, for example lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium arsenic fluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethanesulfonylamide (UN (CF 3 SO 2 ) 2 ), and combinations thereof, but are not limited thereto. Meanwhile, the electrolyte composition for a secondary battery of the present invention may further include an SEI film forming additive.
상기 피막형성 첨가제의 예로는, 비닐렌카보네이트 (VC) , 비닐에틸렌카보네이트 (VEC) , 불화에틸렌카보네이트 (FEC) , 프로펜술톤 (PRS) , 프로판술톤 (PS) , 리튬 비스 (옥살라토)보레이트 (LiBOB) , 리튬디플루오로비스 (옥살라토)포스페이트 (LiDFOP) , 및 그 흔합물을 들 수 있다.  Examples of the film-forming additives include vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene fluoride carbonate (FEC), propene sultone (PRS), propane sultone (PS), lithium bis (oxalato) borate (LiBOB), lithium difluorobis (oxalato) phosphate (LiDFOP), and a mixture thereof.
상기 피막형성 첨가제는 전지의 초기 화성공정에서 안정한 고체 전해질 계면 막을 형성하도록 하여 전지가 층, 방전을 반복하여도 용량의 감소가 적고 전지 용량이 높게 유지되도톡 할 수 있다. 예컨대, 카보네이트계 첨가제는 주로 음극에 피막을 형성하여 비수용매의 분해를 억제하고, 용매 중 C=C 불포화 결합을 가지는 환상 카보네이트의 산화 분해에서 유래하는 가스 발생을 억제할 수 있다. 술톤계 첨가제는 양극 및 음극에 피막을 형성하고, 양극에 형성된 피막은 고온 환경 하에서 일어날 수 있는 비수 용매의 양극에서의 산화 분해를 억제할 수 있는 한편, 음극에 형성된 피막은 음극의 표면에 있어서의 리튬의 석출을 억제할 수 있다.  The film-forming additive may form a stable solid electrolyte interfacial film in the initial chemical forming process of the battery, so that the battery may have a small capacity decrease and high battery capacity even when the battery repeats layers and discharges. For example, the carbonate-based additive mainly forms a film on the negative electrode to suppress decomposition of the non-aqueous solvent, and can suppress gas generation resulting from oxidative decomposition of the cyclic carbonate having a C = C unsaturated bond in the solvent. Sultone-based additives form a film on the anode and the cathode, and the film formed on the anode can suppress oxidative decomposition at the anode of a nonaqueous solvent which may occur under high temperature environment, while the film formed on the cathode is formed on the surface of the cathode. Precipitation of lithium can be suppressed.
상기 피막형성 첨가제는 전해액 조성물 100 중량부를 기준으로 0. 1 내지 5 중량부, 바람직하게는 0.5 내지 4 중량부, 바람직하게는 1 내지 2 중량부 포함될 수 있다. 전술한 본 발명의 이차 전지용 전해액 조성물을 양극 및 음극, 및 그 사이에 개재된 분리막을 포함하는 전극 조립체에 주입하여 이차 전지를 제조할 수 있다. 본 발명에서 이차 전지는 모든 종류의 이차 전지를 포함하며, 바람직하게는 리튬이온 전지, 리튬이온 폴리머 전지, 또는 리튬 폴리머 전지일 수 있다.  The film forming additive may be included in an amount of 0.1 to 5 parts by weight, preferably 0.5 to 4 parts by weight, preferably 1 to 2 parts by weight, based on 100 parts by weight of the electrolyte composition. The secondary battery may be manufactured by injecting the electrolyte composition for a secondary battery of the present invention as described above into an electrode assembly including a positive electrode and a negative electrode, and a separator interposed therebetween. In the present invention, the secondary battery includes all kinds of secondary batteries, and preferably, may be a lithium ion battery, a lithium ion polymer battery, or a lithium polymer battery.
상기 전극 조립체를 이루는 상기 양극, 음극 및 분리막은 리튬 이차 전지 제조에 통상적으로 사용되는 것들이 모두 사용될 수 있다. 상기 양극은 집전체 상에 양극 활물질, 도전재 및 결착제의 흔합물을 도포한후 건조하여 제조될 수 있다. The positive electrode, the negative electrode, and the separator constituting the electrode assembly may be any ones conventionally used in manufacturing a lithium secondary battery. The positive electrode may be prepared by applying a mixture of a positive electrode active material, a conductive material, and a binder on a current collector and then drying.
상기 양극 활물질로는 리튬 함유 전이금속 산화물이 바람직하며, 예컨대 리륨 코발트 산화물 (LiCo02) , 리튬 니켈 산화물 (LiNi02) 등의 층상 화합물 또는 하나 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn2-x04 (여기서, X는 0 ~ 0.33 임), LiMn03, LiMn203 ) LiMn02, LiMn204 등의 리튬 망간 산화물; 리튬 동 산화물 (Li2Cu02) ; LiV308, V205, Cu2V207 등의 바나듭 산화물; 화학식 LiNi 1-xMx02 (여기서 , M = Co, Mn, Al , Cu, Fe , Mg, B, Ga또는 이의 조합이고, x = 0.01 ~ 0.3 임)로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMx02 (여기서, M = Co, Ni , Fe, Cr , Zn또는 Ta이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3M08 (여기서 , M = Fe, Co, Ni , Cu또는 Zn임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn204 ; 디설파이드 화합물; Fe2(Mo04)3; LiFe3P04 등을 들 수 있다. The positive electrode active material is preferably a lithium-containing transition metal oxide, for example, a layered compound such as lithium cobalt oxide (LiCo0 2 ), lithium nickel oxide (LiNi0 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2 -x 0 4 (wherein X is 0 to 0.33), LiMn0 3 , LiMn 2 0 3) LiMn0 2 , LiMn 2 0 4, and the like; Lithium copper oxide (Li 2 Cu 0 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Ni-site type lithium nickel oxide represented by the formula LiNi 1 - x M x 0 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, Ga, or a combination thereof, wherein x = 0.01 to 0.3 ; Formula LiMn 2 - x M x 0 2 , wherein M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1 or Li 2 Mn 3 M0 8 where M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu, or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (Mo0 4 ) 3 ; LiFe 3 P0 4 and the like.
상기 도전재는 통상적으로 양극 활물질을 포함한 흔합물 전체 중량을 기준으로 1내지 50중량 %로 첨가될 수 있으며, 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않는다. 상기 도전재로는, 예컨대 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙 서머 블¾ 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.  The conductive material may be generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material, and is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 결착제는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 흔합물 전체 중량을 기준으로 1 내지 50 중량 %로 첨가될 수 있다. 상기 결착제로는, 예컨대 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀를로우즈 (CMC) , 전분, 히드록시프로필셀를로우즈, 재생 셀를로우즈, 폴리비닐피를리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 -디엔 테르 폴리머 (EPDM) , 술폰화 EPDM, 스티렌-부타디엔 고무 (SBR) , 불소 고무, 다양한 공중합체 등이 사용될 수 있다. 음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다. The binder is a component that assists in bonding the active material and the conductive material to the current collector and may be added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material. Examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyridone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber (SBR), fluorine rubber, various Copolymers and the like can be used. The negative electrode is manufactured by applying and drying a negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성올 가진 것이라면 특별히 제한되지 않으며, 예컨대 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소,구리나 스테인리스 스틸의 표면에 카본, 니켈 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 음극 재료로는, 예컨대 난혹연화 탄소, 혹연계 탄소 등의 탄소; SnxMei— xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3 족 원소, 할로겐; 0<x<l; l<y<3; 1<ζ<6) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, Sn¾, PbO, Pb02, Pb203, Pb304, Sb203) Sb204) Sb205, GeO, Ge¾, Bi203, Bi204, 및 Bi205등의 산화물; 폴리아세틸렌 둥의 도전성 고분자; Li-Co-Ni계 재료 등을 들 수 있다. 상기 분리막으로는, 예컨대 내화학성 및 소수성의 폴리프로필렌 등의 을레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 둥이 사용될 수 있고, 바람직하게는 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌옥사이드, 폴리아크릴로나이트릴 및 폴리비닐리덴 플루오라이드-핵사플루오로프로필렌 공중합체로 이루어진 군으로부터 선택된 1종 이상으로 이루어진 것일 수 있다. The negative electrode current collector is not particularly limited as long as it has a conductive oxide without causing chemical changes in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon, nickel titanium, Surface treated with silver or the like, aluminum-cadmium alloy or the like can be used. As said negative electrode material, For example, Carbon, such as a decoated softened carbon and an inferior carbon; Sn x Mei— x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 <x < metal complex oxides such as l <y <3; 1 <ζ <6); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, Sn¾, PbO, Pb0 2 , Pb 2 0 3 , Pb 3 0 4 , Sb 2 0 3) Sb 2 0 4) Sb 2 0 5 , GeO, Ge¾, Bi 2 0 3 , Bi 2 0 4 , and Bi Oxides such as 2 0 5 ; Polyacetylene-based conductive polymers; Li-Co-Ni system material etc. are mentioned. As the separator, for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven spouts made of glass fiber or polyethylene may be used, preferably polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyether Group consisting of sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, polyethylene, polypropylene, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile and polyvinylidene fluoride-nucleofluoropropylene copolymer It may be made of one or more selected from.
상기 분리막의 기공 크기 및 기공도는 특별한 제한이 없으나, 기공도는. Pore size and porosity of the separator is not particularly limited, porosity is.
5% 내지 95%일 수 있고, 기공 크기 (직경)는 0.01 내지 10 卿일 수 있다. 기공 크기 및 기공도가 각각 0.01 i 및 5% 이상일 경우 전해액의 이동이 원활하여 전지 성능이 저하되지 않으며, 기공 크기 및 기공도가 10 및 95% 이하인 경우 기계적 물성을 적절히 유지할 수 있고, 양극과 음극의 내부 단락을 방지할 수 있다. 5% to 95%, pore size (diameter) can be 0.01 to 10 mm 3. If the pore size and porosity are more than 0.01 i and 5%, respectively, electrolyte flows smoothly, and battery performance is not degraded. Pore size and porosity are less than 10 and 95% In this case, mechanical properties can be properly maintained, and internal short circuits of the positive and negative electrodes can be prevented.
또한, 분리막의 두께는 크게 제한이 없으나, 1 내지 300 일 수 있고, 바람직하게는 5내지 100 m일 수 있다. 1 이상일 경우 적절한 기계적 물성을 발휘할 수 있고, 300 이하일 경우 분리막이 저항층으로 작용하는 것을 방지할 수 있다. 본 발명의 리튬 이차 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등의 형태를 가질 수 있다. 또한, 선형의 전선과 같은 구조를 갖는 케이블형 리튬 이차 전지일 수 있다. 이하, 본 발명을 하기 실시예에 의거하여 좀 더 상세하게 설명하고자 한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다. 제조예: 전해액 모액의 제조 수분과 산소가 제어되는 글로브 박스 내에서 가온 용해된 환형 카보네이트로서 에틸렌 카보네이트 300 g 과 선형 카보네이트로서 에틸메틸 카보네이트 300 g 및 디에틸 카보네이트 300 g 을 흔합하고, 상기 흔합물에 분자체 50 g 을 투입한 다음, 12 시간 이상 교반 후 여과하여 수분을 20 ppm 이하로 제거하였다. 여기에 LiPF 을 1M농도 (152 g)로 첨가하여 전해액 모액을 제조하였다. 실시예 1 내지 5: 전해액 조성물의 제조 상기 제조예에서 제조한 전해액에 난용성 리튬염을 하기 표 1 에 나타나 있는 바와 같이 첨가한 후 교반하여, 현탁 상태의 전해액 조성물을 제조하였다. 실시예 6 내지 24: 피막형성 첨가제를 추가로 포함하는 전해액 조성물의 제조 상기 전해액에 난용성 리튬염 및 피막형성 첨가제를 하기 표 1 에 나타나 있는 바와 같이 첨가한 후 교반하여, 현탁 상태의 전해액 조성물을 제조하였다. 실시예 25: 이차 전지의 제조 In addition, the thickness of the separator is not particularly limited, but may be 1 to 300, preferably 5 to 100 m. If it is 1 or more, it can exhibit proper mechanical properties, and if it is 300 or less, it can prevent the separator from acting as a resistive layer. The external shape of the lithium secondary battery of the present invention is not particularly limited, but may have a cylindrical, square, pouch or coin type using a can. In addition, it may be a cable type lithium secondary battery having a structure such as a linear wire. Hereinafter, the present invention will be described in more detail based on the following examples. The following examples are only for illustrating the present invention, but the scope of the present invention is not limited thereto. Preparation Example: Preparation of electrolyte mother liquor Mixing 300 g of ethylene carbonate and 300 g of ethylmethyl carbonate and 300 g of diethyl carbonate as a linear carbonate in a glove box heated and dissolved in a controlled moisture and oxygen mixture, 50 g of molecular sieves were added, followed by stirring for 12 hours or more to remove moisture to 20 ppm or less. LiPF was added thereto at a concentration of 1 M (152 g) to prepare an electrolyte solution liquid. Examples 1 to 5: Preparation of Electrolytic Solution Composition A poorly soluble lithium salt was added to the electrolyte solution prepared in Preparation Example as shown in Table 1, followed by stirring to prepare an electrolyte solution composition in a suspended state. Prepared. Examples 6 to 24 Preparation of an Electrolyte Composition Comprising Additional Film Forming Additives A poorly soluble lithium salt and a film forming additive were added to the electrolyte as shown in Table 1, followed by stirring to prepare the electrolyte composition in a suspended state. Prepared. Example 25 Preparation of Secondary Battery
LM0/NCM 흔합계 양극재 (리튬망간산화물: LiNiMnCo02 = 50: 50(w/v) ) 95 중량 %, Super-P (도전재) 2 중량 %및 폴리비닐리덴플루오라이드 (PVdF , 바인더) 3 중량 %를 용제인 N-메틸 -2-피를리돈 (匪 P)에 첨가하여 양극 흔합물 슬러리를 제조하고, 알루미늄 호일의 양면에 각각 코팅, 건조 및 압착하여 양극을 제조하였다. LM0 / NCM composite cathode material (lithium manganese oxide: LiNiMnCo0 2 = 50: 50 (w / v)) 95% by weight, Super-P (conductive material) 2% by weight and polyvinylidene fluoride (PVdF, binder) 3 A positive electrode mixture slurry was prepared by adding weight% to a solvent, N-methyl-2-pyridone (XP), and coated, dried, and pressed on both sides of aluminum foil to prepare a positive electrode.
음극 활물질로서 인조 혹연 (히타치사) 97.5 중량 %, SBRCStyrene-Butadi ene Rubber , 바인더) 1.5중량 %및 CMC (증점제 및 바인더) 1 중량 %를 용제인 물에 첨가하여 음극 흔합물 슬러리를 제조한 후, 구리 호일의 양면에 코팅, 건조 및 압착하여 음극을 제조하였다.  A negative electrode mixture slurry was prepared by adding 97.5% by weight of artificial graphite (Hitachi Co., Ltd.), 1.5% by weight of SBRCStyrene-Butadiene Rubber (Binder) and 1% by weight of CMC (Thickener and Binder) as a negative electrode active material. The negative electrode was prepared by coating, drying and pressing on both sides of the copper foil.
두깨 5 i 의 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 사용하여 상기 양극과 음극을 적층함으로써 전극 조립체를 제조한 후, 전해액으로서 각각 상기 실시예 1 에서 제조한 전해액 조성물을 주입하여 전지 용량이 약 1 , 000 mAh가 되도록 파우치 형태의 리튬 이차 전지를 제조하였다. 실시예 26 내지 53: 이차 전지의 제조 하기 표 2또는 표 3에 나타나 있는 바와 같이,각각 상기 실시예 1내지 24 에서 제조한 전해액 조성물과, 기재되어 있는 바와 같은 양극재를 사용한 것을 제외하고는, 상기 실시예 25 와 동일한 방법으로 리튬 이차 전지를 제조하였다. 비교예 1 및 2: 피막형성 첨가제를 포함하는 전해액 조성물의 제조 상기 제조예에서 제조한 전해액 모액에 피막형성 첨가제를 하기 표 1 에 나타나 있는 바와 같이 첨가한 후 교반하여, 전해액 조성물을 제조하였다. 비교예 3 내지 6: 난용성 리튬염 및 피막형성 첨가제를 포함하는 전해액 조성물의 제조 상기 제조예에서 제조한 전해액 모액에 난용성 리튬염 및 피막형성 첨가제를 하기 표 1 에 나타나 있는 바와 같이 첨가한 후 교반하여, 현탁 상태의 전해액 조성물을 제조하였다. 비교예 7 내지 12: 이차 전지의 제조 각각 상기 비교예 1내지 6에서 제조한 전해액 조성물과,하기 표 2또는 표 3 에 기재되어 있는 바와 같은 양극재를 사용한 것을 제외하고는, 상기 실시예 25와 동일한 방법으로 리튬 이차 전지를 제조하였다. An electrode assembly was prepared by laminating the positive electrode and the negative electrode using a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) having a thickness of 5 i, and then prepared in Example 1 as an electrolyte solution, respectively. An electrolyte composition was injected to prepare a pouch-type lithium secondary battery such that the battery capacity was about 1,000 mAh. Examples 26 to 53: Preparation of Secondary Battery As shown in Table 2 or Table 3 below, lithium secondary batteries were prepared in the same manner as in Example 25, except that the electrolyte compositions prepared in Examples 1 to 24, respectively, and the cathode material as described above were used. The battery was prepared. Comparative Examples 1 and 2: Preparation of Electrolyte Composition Comprising Coating Forming Additives The film forming additive was added to the electrolyte solution prepared in Preparation Example as shown in Table 1, followed by stirring to prepare an electrolyte composition. Comparative Examples 3 to 6: Preparation of electrolyte composition comprising poorly soluble lithium salt and film forming additive After adding poorly soluble lithium salt and film forming additive to the electrolyte solution prepared in Preparation Example as shown in Table 1 below The mixture was stirred to prepare an electrolyte solution composition in a suspended state. Comparative Examples 7 to 12: Preparation of Secondary Batteries Except for using the electrolyte compositions prepared in Comparative Examples 1 to 6 and the cathode materials as described in Table 2 or Table 3, respectively, In the same manner, a lithium secondary battery was prepared.
[표 1] TABLE 1
Figure imgf000012_0001
실시예 3 리튬카보네이트 0.5
Figure imgf000012_0001
Example 3 Lithium Carbonate 0.5
실시예 4 리륨옥살레이트 0.5  Example 4 Lilium Oxalate 0.5
실시예 5 리튬하이드록사이드 0.5  Example 5 Lithium Hydroxide 0.5
실시예 6 리튬옥사이드 0.2 불화에틸렌카보네이트 1 실시예 7 리튬플루오라이드 0.2 불화에틸렌카보네이트 1 실시예 8 리튬카보네이트 0.2 블화에틸렌카보네이트 1 실시예 9 리튬옥살레이트 0.2 불화에틸렌카보네이트 1 실시예 10 리튬하이드록사이드 0.2 불화에틸렌카보네이트 1 실시예 11 리튬옥사이드 0. 1 비닐렌카보네이트 1 실시예 12 리튬플루오라이드 0. 1 비닐렌카보네이트 1 실시예 13 리튬카보네이트 0. 1 비닐렌카보네이트 1 실시예 14 리튬옥살레이트 0.1 비닐렌카보네이트 1 실시예 15 리톱하이드특사이드 0. 1 비닐렌카보네이트 1 리튬디플루오로비스옥살라토  Example 6 Lithium oxide 0.2 ethylene fluoride 1 Example 7 Lithium fluoride 0.2 ethylene carbonate 1 Example 8 Lithium carbonate 0.2 ethylene carbonate 1 Example 9 Lithium oxalate 0.2 Ethylene fluoride 1 Example 10 Lithium hydroxide 0.2 Ethylene fluoride 1 Example 11 Lithium oxide 0.1 Vinylene carbonate 1 Example 12 Lithium fluoride 0.1 Vinylene carbonate 1 Example 13 Lithium carbonate 0.1 Vinylene carbonate 1 Example 14 Lithium oxalate 0.1 vinylene Carbonate Example 1 Example 15 Lithium Hydroxide 0.1 Vinylene Carbonate 1 Lithium Difluorobisoxalato
실시예 16 리튬옥사이드 0.1 1 포스페이트  Example 16 Lithium Oxide 0.1 1 Phosphate
리튬디플루오로비스옥살라토  Lithium Difluorobisoxalato
실시예 17 리튬플루오라이드 0. 1 1 포스페이트  Example 17 Lithium Fluoride 0.11 Phosphate
리튬디플루오로비스옥살라토  Lithium Difluorobisoxalato
실시예 18 리튬카보네이트 0.1 1 포스페이트  Example 18 Lithium Carbonate 0.1 1 Phosphate
리튬디플루오로비스옥살라토  Lithium Difluorobisoxalato
실시예 19 리튬옥살레이트 0.1 1 포스페이트  Example 19 Lithium Oxalate 0.1 1 Phosphate
리륨디플루오로비스옥살라토  Lilium difluorobisoxalato
실시예 20 리튬하이드록사이드 0. 1 1 포스페이트  Example 20 Lithium Hydroxide 0.1 1 Phosphate
실시예 21 리튬옥살레이트 0.05 불화에틸렌카보네이트 1 실시예 22 리튬옥살레이트 0. 1 불화에틸렌카보네이트 1 실시예 23 리튬옥살레이트 0.3 불화에틸렌카보네이트 1 실시예 24 리튬옥살레이트 0.5 볼화에틸렌카보네이트 1 비교예 1 - - 불화에틸렌카보네이트 1 비교예 2 ᅳ - 비닐렌카보네이트 1 리튬디플루오로비스옥살라토  Example 21 Lithium Oxalate 0.05 Ethylene Fluoride 1 Example 22 Lithium Oxalate 0.1 Ethylene Fluoride 1 Example 23 Lithium Oxalate 0.3 Ethylene Fluoride 1 Example 24 Lithium Oxalate 0.5 Volatile Ethylene Carbonate 1 Comparative Example 1- -Ethylene fluoride carbonate 1 Comparative Example 2-Vinylene carbonate 1 Lithium difluorobisoxalato
비교예 3 리튬옥살레이트 1.5 1 포스페이트  Comparative Example 3 Lithium Oxalate 1.5 1 Phosphate
비교예 4 리튬옥살레이트 1.5 불화에틸렌카보네이트 1 비교예 5 리튬옥살레이트 1.5 비닐렌카보네이트 1 비교예 6 리튬옥살레이트 3 불화에틸렌카보네이트 1 상기 표 1 에서 첨가량은 전해액 조성물 총 중량 100%를 기준으로 한 값이다. 실험예 1: 저온용량평가 전지의 저온용량을 평가하기 위해 실시예 25 내지 53, 및 비교예 7 내지 12 에서 제조된 전지를 -10 °C에서 1 C 으로 4.2 V 까지 충전하고, 3 V 까지 방전하며, 10회 층' 방전한 후 초기 방전 용량 대비 10사이클 후 방전 용량의 비율을 %로 나타내었다. 그 결과를 표 2 및 표 3에 나타내었다. 실험예 2: 상은회복율평가 저온용량 평가를 마친 전지를 상온 조건에서 3 시간 방치 후 4.2 V까지 충전하고, 3 V까지 방전하며, 10 회 사이클 거친 후 초기 방전 용량 대비 상온 10 회 사이클 후 회복되는 방전 용량을 %로 나타내었다. 그 결과를 표 2 및 표 3에 나타내었다. 실험예 3: 전지저항평가 실시예 50 내지 53 , 및 비교예 12 에서 제조된 전지를 각각 23 °C의 챔버에 놓은 뒤, 층 /방전기를 이용하여 CC/CV(constant current /const ant vol tage) 모드로 3 내지 4.2 V 의 범위에서 1C/1C 조건 전류로 층 /방전을 연속적으로 100 사이클 (cycle) 실시한 후 전지의 저항값 (AC-IR, ιιιΩ )을 전기저항계측기 (Hioki3554, 히오끼사제)로 측정하였다. 그 결과를 표 3 에 나타내었다. 실험예 4: 고온용량보존율평가 실시예 50 내지 53 , 및 비교예 12 에서 제조된 전지를 각각 60 °C의 챔버에 놓은 뒤, 층 /방전기를 이용하여 CC/CV( const ant current /const ant vol tage) 모드로 3 내지 4.2 V 의 범위에서 1C/1C 조건 전류로 층 /방전을 연속적으로 100 사이클 실시한 후 상온에서 CC 모드 1C 의 방전 용량을 회복용량으로 보고 층 /방전기 (PNE solut ion 사제, PEBC0506)로 측정하여, 초기 용량 대비 %로 나타내었다. 그 결과를 표 3에 나타내었다.Comparative Example 4 Lithium oxalate 1.5 ethylene fluoride 1 Comparative Example 5 Lithium oxalate 1.5 vinylene carbonate 1 Comparative Example 6 Lithium oxalate 3 Ethylene carbonate 1 The addition amount in Table 1 is based on the total weight of the electrolyte composition 100% to be. Experimental Example 1: low temperature capacity evaluation In order to evaluate the low-temperature capacity of the battery, the batteries prepared in Examples 25 to 53, and Comparative Examples 7 to 12 were charged to 4.2 V at -10 ° C. to 1 C, discharged to 3 V, and 10 layer 'discharges. After that, the ratio of the discharge capacity after 10 cycles to the initial discharge capacity was expressed as%. The results are shown in Table 2 and Table 3. Experimental Example 2: Evaluation of recovery rate of silver recovery Discharge recovering after completion of 10 cycles of room temperature to the initial discharge capacity after charging the battery after the low temperature capacity evaluation, charged to 4.2V, and discharged to 3V after 3 hours at room temperature Doses are expressed in%. The results are shown in Table 2 and Table 3. Experimental Example 3: Battery Resistance Evaluation The batteries prepared in Examples 50 to 53 and Comparative Example 12 were placed in a chamber at 23 ° C., respectively, and then CC / CV (constant current / constant voltage) using a layer / discharger. After 100 cycles of layer / discharge with 1C / 1C condition current in the range of 3 to 4.2 V in mode, the resistance value of the battery (AC-IR, ιιιΩ) is measured by an electric resistance meter (Hioki3554, manufactured by Hioki Co., Ltd.). Was measured. The results are shown in Table 3. Experimental Example 4: Evaluation of high-temperature capacity storage rate After placing the cells prepared in Examples 50 to 53, and Comparative Example 12 in a chamber at 60 ° C, respectively, using a layer / discharger CC / CV (const ant current / const ant vol tage) After 100 cycles of layer / discharge with 1C / 1C condition current in the range of 3 to 4.2 V in the mode, report the discharge capacity of CC mode 1C at room temperature as the recovery capacity (PNE solut ion, PEBC0506 ), The initial It is expressed in% of the dose. The results are shown in Table 3.
[표 2]TABLE 2
Figure imgf000015_0001
[표 3]
Figure imgf000015_0001
TABLE 3
Figure imgf000016_0001
상기 표 2 및 3 에서 보는 바와 같이, 본 발명의 이차 전지는, 비교예 7 내지 12 의 이차 전지에 비해, 상온 회복율, 전지저항 및 /또는 고온 용량 보존율 측면에서 우수하여 향상된 수명 특성을 가짐을 알 수 있다. 본 발명을 상기의 구체적인 실시예와 관련하여 기술하였지만, 첨부된 특허청구범위에 의해 정의된 본 발명의 범위 내에서 당 분야의 숙련자는 본 발명을 다양하게 변형 및 변화시킬 수 있다.
Figure imgf000016_0001
As shown in Tables 2 and 3, the secondary battery of the present invention, compared to the secondary batteries of Comparative Examples 7 to 12, in terms of room temperature recovery rate, battery resistance and / or high temperature capacity storage rate has excellent life characteristics, it can be seen that Can be. Although the present invention has been described in connection with the specific embodiments described above, those skilled in the art can variously modify and change the present invention within the scope of the present invention as defined by the appended claims.

Claims

특허청구의 범위 Scope of claim
1. 용매, 리륨염, 및 난용성 리튬염을 포함하고, 1. containing a solvent, a lithium salt, and a poorly soluble lithium salt,
상기 난용성 리튬염을 전해액 조성물 100중량부를 기준으로 0.0001내지 1 중량부 포함하는 이차 전지용 전해액 조성물.  Electrolyte composition for a secondary battery containing the poorly soluble lithium salt 0.0001 to 1 part by weight based on 100 parts by weight of an electrolyte composition.
2. 제 1 항에 있어서, 2. The method of paragraph 1,
상기 난용성 리튬염이 리튬 플루오라이드 (LiF) , 리튬 카보네이트 (U2C03) 리튬 옥사이드 (Li20) , 리튬 옥살레이트 (Li2C204) , 리튬 클로라이드 (LiCl ) , 및 리튬 하이드록사이드 (LiOH)로 이루어진 군으로부터 선택된 1종 이상인 이차 전지용 전해액 조성물. The poorly soluble lithium salts are lithium fluoride (LiF), lithium carbonate (U 2 C0 3 ) lithium oxide (Li 2 0), lithium oxalate (Li 2 C 2 0 4 ), lithium chloride (LiCl), and lithium hydride An electrolyte solution composition for secondary batteries, which is at least one member selected from the group consisting of a hydroxide (LiOH).
3. 제 1 항에 있어서, 3. Clause 1,
상기 난용성 리튬염 입자의 입경이 0.01 내지 80 인 이차 전지용 전해액 조성물.  The electrolyte solution composition for secondary batteries whose particle size of the said poorly soluble lithium salt particle is 0.01-80.
4. 제 1 항에 있어서, 4. The method of 1,
상기 난용성 리튬염을 전해액 조성물 100 중량부를 기준으로 0.01 내지 0.3 중량부 포함하는 이차 전지용 전해액 조성물.  Electrolyte composition for a secondary battery containing the poorly soluble lithium salt 0.01 to 0.3 parts by weight based on 100 parts by weight of the electrolyte composition.
5. 제 1 항에 있어서, 5. The method of paragraph 1,
상기 난용성 리튬염이 분말 입자상으로 전해액에 현탁되어 있는 이차 전지용 전해액 조성물.  The electrolyte composition for secondary batteries in which the said poorly soluble lithium salt is suspended in electrolyte solution in powder form.
6. 제 1 항에 있어서, 6. Paragraph 1 according to claim 1,
상기 용매가 선형 카보네이트 화합물과 환형 카보네이트 화합물의 흔합물로 이루어진 비수계 용매인 이차 전지용 전해액 조성물. 제 1 항에 있어서, The electrolyte composition for a secondary battery, wherein the solvent is a non-aqueous solvent composed of a mixture of a linear carbonate compound and a cyclic carbonate compound. The method of claim 1,
상기 리튬염이 과염소산 리튬 (LiC104) , 사불화붕산 리튬 (LiBF4) , 육불화인산 리튬 (LiPF6) , 육불화비소 리튬 (LiAsF6) , 삼불화메탄술폰산 리튬 (LiCF3S03) , 리튬 비스:트리플루오로메탄술포닐아미드 (LiN(CF3S02)2) 또는 이들의 흔합물인 이차 전지용 전해액 조성물. 제 1 항에 있어서, The lithium salt may be lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium arsenic fluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium bis: trifluoromethane sulfonyl amide (LiN (CF 3 S0 2) 2) is water or a heunhap secondary battery electrolyte compositions. The method of claim 1,
상기 전해액 조성물이 피막형성 첨가제로서 비닐렌카보네이트 (VC) , 비닐에틸렌카보네이트 ( VEC), 불화에틸렌카보네이트 (FEC), 프로펜술톤 (PRS) ,프로판술톤 (PS) , 리튬 비스 (옥살라토)보레이트 (LiBOB) , 리튬 디플루오로비스 (옥살라토)포스페이트 (LiDFOP) 또는 그 흔합물을 추가로 포함하는 이차 전지용 전해액 조성물. 제 8 항에 있어서, The electrolytic solution composition includes vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene fluoride carbonate (FEC), propene sultone (PRS), propane sultone (PS), and lithium bis (oxalato) borate. (LiBOB), lithium difluorobis (oxalato) phosphate (LiDFOP) or a mixture thereof, further comprising an electrolyte solution for a secondary battery. The method of claim 8,
상기 전해액 조성물이 상기 피막형성 첨가제를 전해액 조성물 100 중량부를 기준으로 0.1 내지 5 중량부 포함하는 이차 전지용 전해액 조성물. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 이차 전지용 전해액 조성물을 포함하는 리튬 이차 전지 . Electrolyte composition for a secondary battery, wherein the electrolyte composition comprises 0.1 to 5 parts by weight based on 100 parts by weight of the film forming additive. The lithium secondary battery containing the electrolyte solution composition for secondary batteries of any one of Claims 1-9.
PCT/KR2014/009480 2013-10-10 2014-10-08 Electrolyte composition for secondary battery and secondary battery including same WO2015053558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0120615 2013-10-10
KR20130120615A KR20150041978A (en) 2013-10-10 2013-10-10 Electrolyte for secondary cell and secondary cell comprising same

Publications (1)

Publication Number Publication Date
WO2015053558A1 true WO2015053558A1 (en) 2015-04-16

Family

ID=52813328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009480 WO2015053558A1 (en) 2013-10-10 2014-10-08 Electrolyte composition for secondary battery and secondary battery including same

Country Status (2)

Country Link
KR (1) KR20150041978A (en)
WO (1) WO2015053558A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209840A3 (en) * 2015-06-22 2017-02-23 Wildcat Discovery Technologies, Inc. Electrolyte formulations for lithium ion batteries
US10128537B2 (en) 2016-08-30 2018-11-13 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
CN110521049A (en) * 2017-06-15 2019-11-29 株式会社日立制作所 Semisolid electrolyte, electrode, electrode and secondary cell with semisolid electrolyte layer
CN112670569A (en) * 2020-12-23 2021-04-16 远景动力技术(江苏)有限公司 Non-aqueous electrolyte and lithium ion battery with normal-temperature cycle and low-temperature characteristics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014152A (en) * 2000-08-16 2002-02-25 최용국 A lithium ion cell having increased reversible capacity and a manufacturing method there of
KR100322452B1 (en) * 1999-07-05 2002-03-18 김순택 A electrolyte for a lithium-manganese secondary battery with enhanced long life span at high temperature
KR100408513B1 (en) * 1998-06-26 2004-01-24 삼성전자주식회사 Organic electrolyte for lithium secondary battery and lithium secondary battery using same
KR100788565B1 (en) * 2004-06-21 2007-12-26 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
KR20080067003A (en) * 2005-11-10 2008-07-17 비와이디 컴퍼니 리미티드 A type of non-aqueous electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408513B1 (en) * 1998-06-26 2004-01-24 삼성전자주식회사 Organic electrolyte for lithium secondary battery and lithium secondary battery using same
KR100322452B1 (en) * 1999-07-05 2002-03-18 김순택 A electrolyte for a lithium-manganese secondary battery with enhanced long life span at high temperature
KR20020014152A (en) * 2000-08-16 2002-02-25 최용국 A lithium ion cell having increased reversible capacity and a manufacturing method there of
KR100788565B1 (en) * 2004-06-21 2007-12-26 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
KR20080067003A (en) * 2005-11-10 2008-07-17 비와이디 컴퍼니 리미티드 A type of non-aqueous electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209840A3 (en) * 2015-06-22 2017-02-23 Wildcat Discovery Technologies, Inc. Electrolyte formulations for lithium ion batteries
US10014553B2 (en) 2015-06-22 2018-07-03 Wildcat Discovery Technologies, Inc Electrolyte formulations for lithium ion batteries
US10707521B2 (en) 2015-06-22 2020-07-07 Wildcat Discovery Technologies, Inc. Electrolyte formulations for lithium ion batteries
US10128537B2 (en) 2016-08-30 2018-11-13 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
US10797349B2 (en) 2016-08-30 2020-10-06 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
CN110521049A (en) * 2017-06-15 2019-11-29 株式会社日立制作所 Semisolid electrolyte, electrode, electrode and secondary cell with semisolid electrolyte layer
CN110521049B (en) * 2017-06-15 2022-03-15 株式会社日立制作所 Semi-solid electrolyte, electrode with semi-solid electrolyte layer, and secondary battery
CN112670569A (en) * 2020-12-23 2021-04-16 远景动力技术(江苏)有限公司 Non-aqueous electrolyte and lithium ion battery with normal-temperature cycle and low-temperature characteristics

Also Published As

Publication number Publication date
KR20150041978A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
US10193182B2 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
KR101212203B1 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR100674011B1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
CN110998959B (en) Lithium secondary battery having improved high-temperature storage characteristics
CN106505242B (en) Electrolyte, and lithium battery and secondary battery comprising the same
US11799132B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP6380376B2 (en) Non-aqueous electrolyte secondary battery
CN108713272B (en) Nonaqueous electrolyte solution and lithium secondary battery including the same
CN111052485A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20190001556A (en) Lithium secondary battery
CN108701865B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20180089244A (en) Lithium secondary battery comprising the electrolyte containing monofluorosilane compound
US20210075011A1 (en) Lithium Secondary Battery Having Improved High-Temperature Storage Characteristics
KR20140147038A (en) Secondary Battery of Improved Life Characteristic
KR101542071B1 (en) Electrolyte for long cycle life secondary battery and secondary battery containing the same
US20140356733A1 (en) Additive for lithium battery electrolyte, organic electrolyte solution including the same and lithium battery using the electrolyte solution
KR20150050082A (en) Lithium secondary battery having improved cycle life
WO2015053558A1 (en) Electrolyte composition for secondary battery and secondary battery including same
US10700381B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20190130307A (en) Anode comprising electrode protective layer and lithium secondary battery comprising the same
KR20190018940A (en) Lithium secondary battery comprising sulfone-based additive
US11081728B2 (en) Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same
KR101499588B1 (en) Electrode for Secondary Battery and Manufacturing Method thereof
KR20150034499A (en) Lithium secondary battery with improved output performance
KR20180086993A (en) Lithium secondary battery comprising disilane-based additive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852062

Country of ref document: EP

Kind code of ref document: A1