WO2015053253A1 - 超音波センサおよびセンサ装置 - Google Patents

超音波センサおよびセンサ装置 Download PDF

Info

Publication number
WO2015053253A1
WO2015053253A1 PCT/JP2014/076770 JP2014076770W WO2015053253A1 WO 2015053253 A1 WO2015053253 A1 WO 2015053253A1 JP 2014076770 W JP2014076770 W JP 2014076770W WO 2015053253 A1 WO2015053253 A1 WO 2015053253A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
piezoelectric layer
piezoelectric
thickness
ultrasonic sensor
Prior art date
Application number
PCT/JP2014/076770
Other languages
English (en)
French (fr)
Inventor
秀嗣 三神
恒介 渡辺
純 多保田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015053253A1 publication Critical patent/WO2015053253A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic sensor having a piezoelectric element, and a sensor device including such an ultrasonic sensor.
  • a general ultrasonic sensor forms a unimorph structure by bonding a piezoelectric element to the inner bottom surface of a metal case, and transmits and receives ultrasonic waves by bending vibration of the bottom of the metal case.
  • Patent Documents 1 and 2 disclose an ultrasonic sensor including a stacked piezoelectric element.
  • a stacked piezoelectric element is configured by stacking a plurality of piezoelectric layers and connecting the plurality of piezoelectric layers in parallel.
  • the technology using the laminated piezoelectric element is disclosed in Patent Document 3 below, although the technical field is different from that of the ultrasonic sensor.
  • JP 2002-204497 A Japanese Patent Laid-Open No. 01-245799 JP 2003-337140 A
  • the present invention relates to an ultrasonic sensor capable of increasing the sound pressure when ultrasonic waves are transmitted using a laminated piezoelectric element as compared with the prior art, and a sensor device including such an ultrasonic sensor.
  • the purpose is to provide.
  • An ultrasonic sensor includes a bottomed cylindrical case and a piezoelectric element that is provided on an inner surface of a bottom portion of the case and that bends and vibrates together with the bottom portion of the case. Includes a plurality of piezoelectric layers that are sequentially stacked in the direction away from the bottom with electrodes interposed therebetween and electrically connected in parallel, and the plurality of piezoelectric layers are provided farthest from the case side. The thickness of the piezoelectric layer is the smallest.
  • An ultrasonic sensor includes a bottomed cylindrical case and a piezoelectric element that is provided on an inner surface of a bottom portion of the case and that bends and vibrates together with the bottom portion of the case. Includes a first piezoelectric layer and a second piezoelectric layer, which are sequentially stacked in a direction away from the bottom portion with electrodes interposed therebetween and electrically connected in parallel, and the first piezoelectric layer has a thickness greater than the thickness of the first piezoelectric layer. 2 The thickness of the piezoelectric layer is smaller.
  • the ratio of the thickness of the first piezoelectric layer to the total thickness of the first piezoelectric layer and the second piezoelectric layer is from 58% to 80%.
  • An ultrasonic sensor includes: a bottomed cylindrical case; and a piezoelectric element that is provided on an inner surface of a bottom portion of the case and that bends and vibrates together with the bottom portion of the case. Includes a first piezoelectric layer, a second piezoelectric layer, and a third piezoelectric layer, which are sequentially stacked in a direction away from the bottom portion with an electrode interposed therebetween and electrically connected in parallel. The thicknesses of the second piezoelectric layer and the third piezoelectric layer become smaller in this order.
  • the ratio of the thickness of the first piezoelectric layer to the total thickness of the first piezoelectric layer, the second piezoelectric layer, and the third piezoelectric layer is 40% or more and 72% or less,
  • the ratio of the total thickness of the first piezoelectric layer and the second piezoelectric layer is 76% or more and 90% or less.
  • An ultrasonic sensor includes: a bottomed cylindrical case; and a piezoelectric element that is provided on an inner surface of the bottom of the case and that bends and vibrates with the bottom of the case. Includes a first piezoelectric layer, a second piezoelectric layer, a third piezoelectric layer, and a fourth piezoelectric layer, which are sequentially stacked in a direction away from the bottom portion with electrodes interposed therebetween and electrically connected in parallel, The thicknesses of the first piezoelectric layer, the second piezoelectric layer, the third piezoelectric layer, and the fourth piezoelectric layer are reduced in this order.
  • the ratio of the thickness of the first piezoelectric layer to the total thickness of the first piezoelectric layer, the second piezoelectric layer, the third piezoelectric layer, and the fourth piezoelectric layer is 40% or more. 60% or less, and the ratio of the total thickness of the first piezoelectric layer and the second piezoelectric layer is 64% or more and 83% or less, and the first piezoelectric layer, the second piezoelectric layer, and the second piezoelectric layer.
  • the ratio of the total thickness of the three piezoelectric layers is 84% or more and 95% or less.
  • An ultrasonic sensor includes a bottomed cylindrical case, and a piezoelectric element that is provided on an inner surface of the bottom of the case and bends and vibrates together with the bottom of the case. Includes a piezoelectric layer composed of n layers (n is an integer of 2 or more) stacked in a direction away from the bottom portion with an electrode interposed therebetween, and wherein the piezoelectric layer is composed of the n layers.
  • the thickness T1 of the piezoelectric layer positioned first from the bottom side is a value satisfying the following formula (1):
  • the thickness Tk of the piezoelectric layer located kth (k is an integer of 2 or more) from the bottom side is a value that satisfies the following formula (2).
  • the electrode provided in the piezoelectric element is formed so as to be electrically connected to the external electrode, and is formed so as not to be electrically connected to the internal electrode connecting the piezoelectric layers in parallel.
  • a floating electrode is provided at a position symmetrical to the internal electrode with respect to a plane passing through the center in the stacking direction of the piezoelectric elements.
  • a sensor device includes the ultrasonic sensor according to the present invention and a signal generation circuit that outputs a signal for driving the ultrasonic sensor, and the ultrasonic sensor includes the signal generation circuit.
  • the signal output from the circuit is input without being amplified.
  • an ultrasonic sensor capable of increasing the sound pressure when transmitting ultrasonic waves using a multilayer piezoelectric element as compared with the conventional one, and such an ultrasonic sensor.
  • a sensor device can be provided.
  • FIG. 2 is a diagram illustrating an outline of a circuit configuration of a sensor device according to Embodiment 1.
  • FIG. 3 is a diagram showing functional blocks of the sensor device in Embodiment 1.
  • FIG. 1 is a cross-sectional view illustrating an ultrasonic sensor according to Embodiment 1.
  • FIG. (A) is a top view which shows a part of ultrasonic sensor in Embodiment 1
  • (B) is sectional drawing which shows a part of ultrasonic sensor in Embodiment 1.
  • FIG. FIG. 3 is a cross-sectional view showing a state when a part of the ultrasonic sensor according to Embodiment 1 is bending-vibrated.
  • FIG. 3 is an enlarged cross-sectional view showing a metal case and a piezoelectric element of the ultrasonic sensor according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a circuit configuration of a first piezoelectric layer and a second piezoelectric layer that constitute a piezoelectric element of the ultrasonic sensor according to Embodiment 1.
  • FIG. It is a figure for demonstrating the relationship between the thickness of a general piezoelectric element (piezoelectric body layer), and electric field strength. It is a figure for demonstrating the relationship between the piezoelectric material layer which has half thickness of the piezoelectric element shown in FIG. 8, and electric field strength.
  • FIG. 6 is an enlarged cross-sectional view showing a piezoelectric element in a second embodiment.
  • FIG. 6 is a diagram illustrating a circuit configuration of each piezoelectric layer constituting a piezoelectric element of an ultrasonic sensor according to Embodiment 2.
  • FIG. 6 In the configuration of the second embodiment, the voltage sensitivity, the charge sensitivity, and the generated electric energy are numerically calculated by changing the thickness ratio of each piezoelectric layer.
  • FIG. 6 is an enlarged cross-sectional view illustrating a piezoelectric element in a third embodiment.
  • FIG. 6 is a diagram showing a circuit configuration of each piezoelectric layer constituting a piezoelectric element of an ultrasonic sensor in a third embodiment.
  • the voltage sensitivity, the charge sensitivity, and the generated electric energy are numerically calculated by changing the thickness ratio of each piezoelectric layer.
  • FIG. 10 is an enlarged cross-sectional view illustrating a piezoelectric element according to a fifth embodiment.
  • FIG. 9 is an equivalent circuit corresponding to the circuit configuration of Embodiments 1 to 5 in Embodiment 6.
  • FIG. It is a figure which expands and shows the connection part of the amplifier circuit (transformer) and capacity
  • FIG. 10 is a diagram showing an outline of a circuit configuration of a sensor device in a sixth embodiment.
  • FIG. 10 is a diagram illustrating functional blocks of a sensor device according to a sixth embodiment.
  • FIG. 25 is a diagram showing functional blocks of a sensor device in a modification of the sixth embodiment.
  • FIG. 1 is a diagram illustrating an outline of a circuit configuration of the sensor device 1000.
  • the sensor device 1000 includes an ultrasonic sensor 100, a power source 200, a signal generation circuit 300, an amplification circuit 400, and a detection circuit 500.
  • the power source 200 outputs a DC voltage of 12 V, for example, and the DC voltage is input to the signal generation circuit 300 and converted into an AC voltage having a predetermined frequency.
  • the AC voltage is supplied to the ultrasonic sensor 100 while being boosted by the amplifier circuit 400.
  • the ultrasonic sensor 100 is driven, and ultrasonic waves are transmitted (transmitted) from the ultrasonic sensor 100 toward the air.
  • the sensor device 1000 will be described in more detail.
  • FIG. 2 is a diagram illustrating functional blocks of the sensor device 1000.
  • the sensor device 1000 includes an IC, and the IC includes a microcomputer 600 and a memory 610.
  • the microcomputer 600 reads data stored in the memory 610 and outputs a control signal suitable for driving the ultrasonic sensor 100.
  • the signal generation circuit 300 generates an AC voltage from the DC voltage based on the control signal output from the microcomputer 600, and outputs the AC voltage to the amplification circuit 400 (transformer).
  • the AC voltage boosted by the amplifier circuit 400 is supplied to the ultrasonic sensor 100. The higher the voltage input to the ultrasonic sensor 100 is, the stronger the ultrasonic sensor 100 is driven, the stronger the sound pressure generated, and the longer the detectable distance.
  • the ultrasonic sensor 100 has a resistor 110 and a capacitor 120 connected in parallel.
  • the received signal generated by the ultrasonic sensor 100 is sent to the reception amplifier 510 and input to the microcomputer 600 through the detection circuit 500.
  • the microcomputer 600 makes it possible to grasp the presence / absence of the target and information related to movement.
  • FIG. 3 is a cross-sectional view showing the ultrasonic sensor 100.
  • 4A is a plan view showing only the metal case 10 and the piezoelectric element 20 in the ultrasonic sensor 100
  • FIG. 4B is a plan view showing the metal case 10 and the piezoelectric element 20 in the ultrasonic sensor 100.
  • the ultrasonic sensor 100 includes a metal case 10, a piezoelectric element 20, a sound absorbing material 40, silicone 41 to 44, a relay substrate 51, lead wires 52, 53, Pin terminals 54 and 55, a connector 56, and a filling resin 60 are provided.
  • the metal case 10 includes a disk-shaped bottom part 11 and a cylindrical side wall part 14 provided along the periphery of the bottom part 11 and has a bottomed cylindrical shape as a whole.
  • the bottom portion 11 has an inner surface 12 and an outer surface 13, and the piezoelectric element 20 is disposed on the inner surface 12 of the bottom portion 11, and is joined to the inner surface 12 using an adhesive or the like (not shown).
  • the metal case 10 is made of aluminum having high elasticity and light weight, for example.
  • the metal case 10 is manufactured by forging or cutting such aluminum, for example.
  • the metal case 10 is an example of the “case” in the present invention.
  • the material of the case is not necessarily limited to metal, and may be made of resin, for example.
  • the silicones 41 and 42 have an annular shape, and are arranged so as to fix the piezoelectric element 20 to the inner surface 12 while surrounding the piezoelectric element 20.
  • the sound absorbing material 40 (also referred to as a damper) is made of a molded body having high elasticity, and faces the piezoelectric element 20 with a space therebetween.
  • the silicone 43 is provided so as to block the space on the side where the piezoelectric element 20 and the sound absorbing material 40 are arranged in the internal space of the metal case 10.
  • the silicone 44 holds the relay substrate 51.
  • the piezoelectric element 20 is provided with electrodes (not shown) on the front and back surfaces.
  • the electrode located on the inner surface 12 side of the bottom 11 when viewed from the piezoelectric element 20 is electrically connected to the outside (GND) through the metal case 10, the lead wire 52, the relay substrate 51, the pin terminal 54, and the connector 56.
  • the electrode located on the side opposite to the bottom 11 when viewed from the piezoelectric element 20 is electrically connected to the outside through the lead wire 53, the relay substrate 51, the pin terminal 55, and the connector 56.
  • FIG. 5 is a cross-sectional view showing a state where the bottom 11 of the metal case 10 and the piezoelectric element 20 are bending-vibrated.
  • a unimorph structure is formed by the bottom 11 of the metal case 10 and the piezoelectric element 20, and a stress neutral surface is formed during bending vibration.
  • the stress neutral surface is a surface serving as a boundary between the portion where the tensile stress is generated and the portion where the compressive stress is generated, and is located at the position of the joint surface between the bottom portion 11 of the metal case 10 and the piezoelectric element 20. It is formed.
  • the amount of expansion / contraction on the stress neutral surface is almost zero, the amount of expansion / contraction is small near the stress neutral surface, and the amount of expansion / contraction increases as the distance from the stress neutral surface increases.
  • each piezoelectric layer has a configuration in which the piezoelectric layer farthest from the bottom 11 of the metal case 10 is thinner than the piezoelectric layer closest to the bottom 11 of the metal case 10. According to this configuration, the sound pressure at the time of transmitting an ultrasonic wave increases, and the maximum detection distance by the ultrasonic sensor increases. In addition, by setting the thickness of each piezoelectric layer to be within an optimal range, it is possible to efficiently extract energy at the time of reception. This will be specifically described below.
  • FIG. 6 is an enlarged cross-sectional view showing the bottom 11 of the metal case 10 and the piezoelectric element 20.
  • the piezoelectric element 20 has a two-layer structure including a first piezoelectric layer 21 (hereinafter referred to as a first layer 21) and a second piezoelectric layer 22 (hereinafter referred to as a second layer 22).
  • the first layer 21 and the second layer 22 are produced by laminating a common electrode 32 between two piezoelectric layers made of thin piezoelectric ceramic having a strip shape, and firing them together. Is done.
  • the first layer 21 and the second layer 22 are laminated in this order in a direction away from the bottom 11, and an electrode 31 is provided on the opposite side of the electrode 32 of the first layer 21.
  • An electrode 33 is provided on the opposite side.
  • Two unit cells are constituted by the first layer 21 and the second layer 22 sandwiched between the electrodes 31 to 33 (internal electrodes). As shown in FIG. 7, these two unit cells are arranged on the side surface of the piezoelectric element. They are connected in parallel by provided external electrodes (electrode patterns or wiring members) (not shown).
  • the white arrow in FIG. 6 shows the polarization direction of each piezoelectric material layer.
  • the piezoelectric element will be described as having a laminated structure.
  • the white arrows in FIGS. 8 to 10 indicate the polarization direction of each piezoelectric layer.
  • the driving force per unit thickness of the piezoelectric element is proportional to the electric field strength E applied to the piezoelectric element.
  • E Vdd / t is established between the thickness t of the piezoelectric element having a single layer (one layer) structure and the electric field intensity E formed by the voltage Vdd applied to the piezoelectric element.
  • the electric field strength E is proportional to the force F. That is, the force F increases as the thickness decreases.
  • the power supply outputs a DC voltage of about 12V, for example, the AC voltage that can be generated by the signal generation circuit is 12V or less in principle. In order to realize a detection range on the order of several meters, 12 V or less is insufficient, and a mechanism for increasing the voltage is required.
  • a transformer (amplifying circuit 400) using magnetic coupling is simple and inexpensive.
  • the piezoelectric element shown in FIG. 10 has a structure in which two piezoelectric elements (piezoelectric layers) shown in FIG. 9 are laminated. With this structure, even with a piezoelectric element having a thickness t, the electric field strength can be doubled. In other words, the same force as before lamination can be realized with half the voltage before lamination.
  • the required voltage can be reduced accordingly.
  • the ultrasonic sensor can be driven without using a boosting means such as a transformer.
  • a two-layer structure including the first layer 21 and the second layer 22 is employed.
  • the thickness T2 of the second layer 22 is smaller than the thickness T1 of the first layer 21. That is, the second layer 22 farthest from the bottom 11 of the metal case 10 has a feature that it is thinner than the first layer 21 closest to the bottom 11 of the metal case 10. More specifically, the ratio of the thickness T1 of the first layer 21 to the total thickness (T1 + T2) of the thickness T1 of the first layer 21 and the thickness T2 of the second layer 22 is 58% or more and 80% or less. . That is, a relationship of 0.58 ⁇ T1 / (T1 + T2) ⁇ 0.80 is established between T1 and T2.
  • T1 is, for example, 350 ⁇ m
  • T2 is, for example, 150 ⁇ m.
  • the first layer 21 and the second layer 22 are polarized in the thickness direction as indicated by white arrows in FIG.
  • the first layer 21 and the second layer 22 are polarized in opposite directions with the electrode 32 as a boundary.
  • the work amount (F ⁇ m) is small in the portion near the stress neutral plane formed by the bending vibration. The further away from the elevation, the greater the work load.
  • the sound pressure of the transmitted ultrasonic wave is larger in the portion far from the stress neutral surface than in the portion near the stress neutral surface.
  • the sound pressure when transmitting ultrasonic waves can be calculated by adding the sound pressure of each piezoelectric layer.
  • the influence of the work amount of the piezoelectric layer (the second layer 22 in the present embodiment) farthest from the bottom 11 of the metal case 10 is dominant. That is, compared with the case where the thickness of the 1st layer 21 and the 2nd layer 22 is the same, or the case where the 2nd layer 22 is thicker than the 1st layer 21, in the case of this Embodiment, the 2nd layer 22 is By being thinner than the first layer 21, it is possible to increase the sound pressure when transmitting ultrasonic waves.
  • the sensitivity when receiving the reflected wave by the above configuration is improved.
  • there are two types of sensitivity when receiving reflected waves voltage sensitivity and charge sensitivity, and the generated electrical energy expressed as 1 ⁇ 2 of the product of charge sensitivity and voltage sensitivity is large. It can be said that the sensor has a high S / N, that is, a high sensitivity during reception.
  • the deformation stress generated in the piezoelectric layer due to bending vibration is reversed between positive and negative with respect to the stress neutral plane, and its magnitude increases in proportion to the distance from the stress neutral plane.
  • the electric field generated in the piezoelectric layer is proportional to the deformation stress generated in the piezoelectric layer, the electric field generated in the piezoelectric layer increases in proportion to the distance from the stress neutral plane.
  • the stress neutral surface is a joint surface between the metal case 10 and the piezoelectric element 20.
  • the voltage inside the piezoelectric layer increases in a quadratic function with respect to the thickness direction. Therefore, in the case of a laminated structure composed of a plurality of piezoelectric layers having the same thickness as in Patent Document 1 described at the beginning, a portion near the stress neutral plane, that is, a layer near the bottom of the metal case 10 is generated. An unbalanced state is formed in which the voltage is low and the generated voltage is high as the distance from the bottom of the metal case 10 increases.
  • Patent Document 2 has a demerit that requires a complicated circuit operation in which all layers are connected at the time of transmission and other than the outermost layer is disconnected at the time of reception.
  • the ratio of the thickness T1 of the first layer 21 to the total thickness (T1 + T2) of the thickness T1 of the first layer 21 and the thickness T2 of the second layer 22 is 58%. More than 80%.
  • the generated voltage of the first layer 21 and the second layer 22 is substantially the same, reducing the loss, and more Much of the generated electrical energy can be extracted. That is, the generated electrical energy can be greatly increased, and a highly sensitive ultrasonic sensor can be realized.
  • FIG. 11 shows the result of numerical calculation of the voltage sensitivity and the charge sensitivity when receiving a reflected wave having a certain intensity by changing the thickness ratio of the first layer in the configuration of the first embodiment by the finite element method. is there.
  • FIG. 12 is based on the voltage sensitivity and the charge sensitivity shown in FIG. 11, and is a diagram showing the relationship between the thickness ratio of the first layer and the generated electric energy.
  • the metal case 10 is made of aluminum with a Young's modulus of 70 GPa, and the bottom 11 has a disk shape with a thickness of 650 ⁇ m and a radius of 7 mm.
  • the piezoelectric element is made of, for example, lead zirconate titanate having a Young's modulus of 75 GPa, has a total thickness of 500 ⁇ m, and is a rectangular parallelepiped having a surface direction of 6.5 mm ⁇ 3.9 mm.
  • the piezoelectric element is composed of two piezoelectric layers, and has a structure in which the polarization direction is reversed with a common electrode provided therein as a boundary.
  • the electrode provided on the adhesion surface with the metal case and the electrode on the opposite side are short-circuited, and are fixed to 0V.
  • a common electrode provided inside the piezoelectric element is taken out as an electrode that doubles as drive and detection.
  • the charge sensitivity, voltage sensitivity, and generated electrical energy when the thickness ratio of the first layer was changed from 0% to 100% were determined. As shown in FIG. 11, the charge sensitivity increases the thickness ratio of the first layer. It increased monotonously. On the other hand, the voltage sensitivity was maximized when the thickness ratio of the first layer was approximately 62%, and thereafter decreased as the thickness ratio of the first layer increased.
  • the generated electric energy becomes maximum when the thickness ratio of the first layer is about 70%, and the generated electric energy is about 20% compared to the case where the thickness ratio of the first layer is 50%. Increased.
  • the generated electric energy is maximized when the thickness ratio of the first layer is approximately 70%, but a sufficient effect is exhibited even in the range of 58% to 80%.
  • FIG. 13 is an enlarged cross-sectional view of the piezoelectric element 20A according to the second embodiment.
  • the piezoelectric element 20A includes a first piezoelectric layer 21 (first layer 21), a second piezoelectric layer 22 (second layer 22), and a third piezoelectric layer 23 (hereinafter referred to as a third layer 23). It has a layer structure.
  • the first layer 21, the second layer 22, and the third layer 23 are stacked in this order in the direction away from the bottom 11.
  • An electrode 31 is provided between the first layer 21 and the bottom 11 of the metal case 10
  • an electrode 32 is provided between the first layer 21 and the second layer 22, and the second layer 22 and the third layer are provided.
  • 23 is provided with an electrode 33, and an electrode 34 is provided on the surface of the third layer 23.
  • Three unit cells are constituted by the first layer 21, the second layer 22, and the third layer 23 sandwiched between the electrodes 31 to 34 (internal electrodes). As shown in FIG. They are connected in parallel by an external electrode (electrode pattern or wiring member) (not shown) provided on the side surface of the piezoelectric element.
  • the ratio of the thickness T1 of the first layer 21 to the total thickness (T1 + T2 + T3) of the thickness T1 of the first layer 21, the thickness T2 of the second layer 22, and the thickness T3 of the third layer 23 is 40% or more and 72. % Or less.
  • the ratio of the total thickness of the first layer 21 and the second layer 22 to the total thickness (T1 + T2 + T3) is 76% or more and 90% or less.
  • the piezoelectric layer farthest from the bottom 11 of the metal case 10 is thinner than the piezoelectric layer closest to the bottom 11 of the metal case 10. It has a configuration.
  • the first layer, the second layer, and the third layer may be configured such that each thickness decreases in this order.
  • the first layer 21, the second layer 22, and the third layer 23 are polarized in the thickness direction as indicated by white arrows in FIG.
  • the first layer 21 and the second layer 22 are polarized in a direction away from each other with the electrode 32 therebetween.
  • the second layer 22 and the third layer 23 are polarized in a direction approaching each other with the electrode 33 therebetween.
  • the third layer 23 is thinner than the first layer 21, the sound pressure at the time of transmitting ultrasonic waves can be increased. Furthermore, since the voltage generated in the piezoelectric layer is a quadratic function, according to this configuration, the generated voltages of the first layer 21, the second layer 22, and the third layer 23 are substantially the same, reducing the loss. Therefore, it becomes possible to extract more generated electric energy. That is, the generated electrical energy can be greatly increased, and a highly sensitive ultrasonic sensor can be realized.
  • FIG. 15 shows the result of calculating the generated electric energy based on the numerical calculation of the voltage sensitivity and the charge sensitivity by the finite element method by changing the thickness ratio of each layer in the configuration of the second embodiment.
  • the generated electric energy becomes maximum when the thickness ratio of the first layer is about 58% and the total ratio of the first layer and the second layer is 82%.
  • the generated electrical energy increased by about 25%.
  • the thickness ratio of the first layer is 40% or more and 72% or less and the ratio of the total thickness of the first layer and the second layer is 76% or more and 90% or less. (See Examples A2 to A4).
  • FIG. 16 is an enlarged cross-sectional view of the piezoelectric element 20B according to the third embodiment.
  • the piezoelectric element 20B includes a first piezoelectric layer 21 (first layer 21), a second piezoelectric layer 22 (second layer 22), a third layer 23 (third layer 23), and a fourth piezoelectric layer (first layer). It has a four-layer structure consisting of four layers 24).
  • the first layer 21, the second layer 22, the third layer 23, and the fourth layer 24 are stacked in this order in a direction away from the bottom 11.
  • An electrode 31 is provided between the first layer 21 and the bottom 11 of the metal case 10
  • an electrode 32 is provided between the first layer 21 and the second layer 22, and the second layer 22 and the third layer are provided.
  • An electrode 33 is provided between the third layer 23 and the fourth layer 24, and an electrode 35 is provided on the surface of the fourth layer 24.
  • Each unit cell is constituted by the first layer 21, the second layer 22, the third layer 23, and the fourth layer 24 sandwiched between the electrodes 31 to 35 (internal electrodes). As shown in FIG.
  • the two unit cells are connected in parallel by an external electrode (an electrode pattern or a wiring member) (not shown) provided on the side surface of the piezoelectric element.
  • the ratio of the thickness T1 of the first layer 21 to the total thickness (T1 + T2 + T3 + T4) of the thickness T1 of the first layer 21, the thickness T2 of the second layer 22, and the thickness T3 of the third layer 23 is 40% or more 60 % Or less.
  • the ratio of the total thickness of the first layer 21 and the second layer 22 to the total thickness (T1 + T2 + T3 + T4) is 64% or more and 83% or less.
  • the ratio of the total thickness of the first layer 21, the second layer 22, and the third layer 23 to the total thickness (T1 + T2 + T3 + T4) is 84% or more and 95% or less.
  • each piezoelectric layer has a piezoelectric layer farthest from the bottom 11 of the metal case 10 than a piezoelectric layer closest to the bottom 11 of the metal case 10.
  • the structure is thin.
  • the first layer, the second layer, the third layer, and the fourth layer may be configured such that the thicknesses thereof are reduced in this order.
  • the first layer 21, the second layer 22, the third layer 23, and the fourth layer 24 are polarized in the thickness direction as indicated by white arrows in FIG.
  • the first layer 21 and the second layer 22 are polarized in a direction away from each other with the electrode 32 therebetween.
  • the second layer 22 and the third layer 23 are polarized in a direction approaching each other with the electrode 33 therebetween.
  • the third layer 23 and the fourth layer 24 are polarized in a direction away from each other with the electrode 34 therebetween.
  • the fourth layer 24 is thinner than the first layer 21, it is possible to increase the sound pressure when transmitting ultrasonic waves. Furthermore, since the voltage generated in the piezoelectric layer is a quadratic function, according to the configuration, the generated voltages of the first layer 21, the second layer 22, the third layer 23, and the fourth layer 24 are substantially the same. Thus, loss can be reduced and more generated electric energy can be extracted. That is, the generated electrical energy can be greatly increased, and a highly sensitive ultrasonic sensor can be realized.
  • FIG. 18 shows the results of calculating the generated electrical energy based on the numerical calculation of the voltage sensitivity and the charge sensitivity by the finite element method with the thickness ratio of each layer changed in the configuration of the third embodiment.
  • the generated electric energy is such that the thickness ratio of the first layer is 50%, the total ratio of the first layer and the second layer is 69%, and the first layer and the second layer When the total ratio of the third layer and the third layer is 87%, the maximum is obtained, and the generated electric energy is increased by about 25% as compared with the case of Comparative Example B.
  • the ratio of the thickness of the first layer is 40% or more and 60% or less, and the ratio of the total thickness of the first layer and the second layer is 64% or more and 83% or less, and When the ratio of the total thickness of the first layer, the second layer, and the third layer was 84% or more and 95% or less, a sufficient effect was exhibited (see Examples B2 to B5).
  • the voltage generated in the piezoelectric layer is a quadratic function.
  • the piezoelectric element has a piezoelectric layer composed of n layers (n is an integer of 2 or more).
  • the total thickness of the piezoelectric layer composed of n layers is T.
  • the k-th coordinate (k is an integer between 1 and n) in the t-axis direction that divides the voltage V (t) at the coordinate t farthest from the bottom 11 of the metal case 10 into n equal parts.
  • the voltage is ideally k * V (t) / n.
  • the voltage V (t) at the coordinate t farthest from the bottom 11 of the metal case 10 among the piezoelectric elements. Is divided into n equal parts. If the value obtained at this time is the target voltage value, the generated voltage at each coordinate (t1, t2, t3...) When the coordinate t (thickness t) is divided into n is substantially the same as the target voltage value (for example, , ⁇ 10%). Therefore, the thickness T1 of the piezoelectric layer located first from the bottom 11 side of the metal case 10 is a value that satisfies the following equation (1).
  • the thickness Tk of the piezoelectric layer located kth (k is an integer of 2 or more) from the bottom 11 side of the metal case 10 is a value that satisfies the following equation (2).
  • the generated voltage in each piezoelectric layer is substantially the same as the target voltage value ( ⁇ 10%), reducing loss and extracting more generated electric energy. Can do.
  • FIG. 19 is an enlarged cross-sectional view of the piezoelectric element 20C according to the fifth embodiment.
  • the piezoelectric element 20C includes a first piezoelectric layer 21 (first layer 21), a second piezoelectric layer 22 (second layer 22), a third layer 23 (third layer 23), and a fourth piezoelectric layer (first layer). It has a four-layer structure consisting of four layers 24).
  • the first layer 21, the second layer 22, the third layer 23, and the fourth layer 24 are stacked in this order in a direction away from the bottom 11.
  • An electrode 31 is provided between the first layer 21 and the bottom 11 of the metal case 10
  • an electrode 32 is provided between the first layer 21 and the second layer 22, and the second layer 22 and the third layer are provided.
  • An electrode 33 is provided between the third layer 23 and the fourth layer 24, and an electrode 35 is provided on the surface of the fourth layer 24.
  • a first external electrode 38 is provided on the first side surface of the piezoelectric element 20C.
  • a second external electrode 39 is provided on the second side surface facing the first side surface.
  • the electrode 31, the electrode 33, and the electrode 35 are electrically connected to the first external electrode 38, and the electrode 32 and the electrode 34 are electrically connected to the second external electrode 39.
  • unit cells are constituted by the first layer 21, the second layer 22, the third layer 23, and the fourth layer 24 sandwiched between the electrodes 31 to 35 (internal electrodes), and these four unit cells are piezoelectric elements. These are connected in parallel by external electrodes 38 and 39 provided on the side surfaces of them and wiring members (not shown).
  • the floating electrode is provided so as to be plane-symmetric with the internal electrode with respect to the plane X.
  • the first floating electrodes 36a and 36b are provided so as to be plane-symmetric with the electrode 33 with respect to the plane X. Although the first floating electrodes 36a and 36b are separated from each other, they may be integrally formed. In the stacking direction of the piezoelectric elements 20C, the dimension Ta from the position of the surface X to the position where the electrode 33 is formed is the dimension Ta from the position of the surface X to the position where the first floating electrodes 36a and 36b are formed. Is equal to
  • second floating electrodes 37a and 37b are provided so as to be plane-symmetric with the electrode 34 with respect to the plane X. Although the second floating electrodes 37a and 37b are separated from each other, they may be integrally formed. In the stacking direction of the piezoelectric elements 20C, the dimension Tb from the position of the surface X to the position where the electrode 34 is formed is the dimension Tb from the position of the surface X to the position where the second floating electrodes 37a and 37b are formed. Is equal to
  • an electrode 35 is further provided so as to be plane-symmetric with the electrode 31 with respect to the plane X.
  • the dimension Tc from the position of the surface X to the position where the electrode 31 is formed is equal to the dimension Tc from the position of the surface X to the position where the electrode 35 is formed.
  • the floating electrodes 36a, 36b, 37a, and 37b are electrodes that are not electrically connected to any of the internal electrodes (electrodes 31 to 35) and the external electrodes 38 and 39.
  • the floating electrodes 36a, 36b, 37a, 37b are preferably made of the same material as the internal electrodes (electrodes 31 to 35), but may be made of another electrode material.
  • the fourth layer 24 is thinner than the first layer 21, it is possible to increase the sound pressure when transmitting ultrasonic waves. Further, by providing the floating electrode, it is possible to prevent a warp that may occur due to a difference in shrinkage rate between the internal electrode and the ceramic during firing of the piezoelectric ceramic.
  • the idea of providing a floating electrode to prevent warping can also be applied when the piezoelectric element is composed of a piezoelectric layer having a two-layer structure (Embodiment 1), and the piezoelectric element is a piezoelectric layer having a three-layer structure
  • the present invention can be applied to the case where the piezoelectric element is composed of piezoelectric layers having a plurality of layer structures other than 2 to 4 (Embodiment 2). Also with the configuration of the present embodiment, the generated electrical energy can be significantly increased, and a highly sensitive ultrasonic sensor can be realized.
  • an amplifier circuit 400 is used in the sensor device of each of the embodiments described above. In the fifth embodiment, the amplifier circuit 400 is not used. This configuration can be applied to any of Embodiments 1 to 5 described above. Hereinafter, the operation and effect when the amplifier circuit 400 is not used and the signal output from the signal generation circuit 300 is input to the ultrasonic sensor 100 without being amplified will be described.
  • FIG. 20 is an equivalent circuit corresponding to the circuit configuration of the first to fifth embodiments, and shows an equivalent circuit including the amplifier circuit 400 (transformer) and the ultrasonic sensor 100 (piezoelectric element).
  • the ultrasonic sensor 100 In addition to the function of transmitting ultrasonic waves, the ultrasonic sensor 100 also has a detection function of receiving ultrasonic waves, and the charge accumulated in the capacitor C2 is detected at the time of detection.
  • FIG. 21 is an enlarged view showing a connection portion between the amplifier circuit 400 (transformer) and the capacitor C2.
  • the circuit including L2 and C2 constitutes an LC resonance circuit.
  • this LC resonance circuit has a very large amplification factor at the resonance frequency, a component close to the resonance frequency in the electromagnetic wave (external noise) is greatly amplified. Therefore, it can be said that the configuration having a transformer is more susceptible to external noise than the configuration having no transformer.
  • the piezoelectric element may have a thickness of 340 ⁇ m and a stacked configuration including six piezoelectric layers.
  • the step-up ratio of the transformer can be reduced. That is, since the size of the transformer can be reduced, an effect that the entire detection function can be made smaller than before can be obtained.
  • a sensor device 1002 shown in FIG. 25 is obtained by adding a booster circuit 210 to the configuration of FIG.
  • the point that the transformer is not used is common to the case of FIG. 24, and the voltage can be raised from the power supply (12 V) to, for example, 40 V by the booster circuit 210. That is, the sound pressure of the ultrasonic sensor can be increased, the sensitivity of the ultrasonic sensor can be increased, and the detection distance can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

 超音波センサは、ケース(10)と、ケースの底部(11)の内面(12)上に設けられ、底部(11)とともにベンディング振動する圧電素子(20)とを備える。圧電素子(20)は、電極を介在させて底部(11)から遠ざかる方向に積層され且つ電気的に並列接続された第1圧電体層(21)および第2圧電体層(22)を含む。第1圧電体層(21)の厚みよりも第2圧電体層(22)の厚みの方が小さい。超音波を送波する際の音圧を大きくすることができる。

Description

超音波センサおよびセンサ装置
 本発明は、圧電素子を有する超音波センサ、およびそのような超音波センサを備えたセンサ装置に関する。
 一般的な超音波センサは、金属ケースの内底面に圧電素子を接合することによりユニモルフ構造体を構成し、金属ケースの底部をベンディング振動させて超音波を送受信する。下記の特許文献1,2には、積層型の圧電素子を備えた超音波センサが開示されている。積層型の圧電素子は、複数の圧電体層を積層し、複数の圧電体層を並列接続することにより構成される。積層型の圧電素子を用いる技術に関しては、超音波センサとは技術分野が異なるが下記の特許文献3にも開示されている。
特開2002-204497号公報 特開平01-245799号公報 特開2003-337140号公報
 本発明は、積層型の圧電素子を用いて超音波を送波する際の音圧を従来に比して大きくすることが可能な超音波センサ、およびそのような超音波センサを備えたセンサ装置を提供することを目的とする。
 本発明の第1局面に基づく超音波センサは、有底筒状のケースと、上記ケースの底部の内面上に設けられ、上記ケースの上記底部とともにベンディング振動する圧電素子とを備え、上記圧電素子は、電極を介在させて上記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された複数の圧電体層を含み、上記複数の圧電体層は、上記ケース側から最も遠くに設けられた圧電体層の厚みが最も小さい。
 本発明の第2局面に基づく超音波センサは、有底筒状のケースと、上記ケースの底部の内面上に設けられ、上記ケースの上記底部とともにベンディング振動する圧電素子とを備え、上記圧電素子は、電極を介在させて上記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された第1圧電体層および第2圧電体層を含み、上記第1圧電体層の厚みよりも上記第2圧電体層の厚みの方が小さい。好ましくは、上記第1圧電体層および上記第2圧電体層の合計厚みに対し、上記第1圧電体層の厚みの比率は58%以上80%以下である。
 本発明の第3局面に基づく超音波センサは、有底筒状のケースと、上記ケースの底部の内面上に設けられ、上記ケースの上記底部とともにベンディング振動する圧電素子とを備え、上記圧電素子は、電極を介在させて上記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された第1圧電体層、第2圧電体層および第3圧電体層を含み、上記第1圧電体層、上記第2圧電体層および上記第3圧電体層は、各々の厚みがこの順に小さくなる。好ましくは、上記第1圧電体層、上記第2圧電体層および上記第3圧電体層の合計厚みに対し、上記第1圧電体層の厚みの比率は40%以上72%以下であり、上記第1圧電体層および上記第2圧電体層の合計厚みの比率は76%以上90%以下である。
 本発明の第4局面に基づく超音波センサは、有底筒状のケースと、上記ケースの底部の内面上に設けられ、上記ケースの上記底部とともにベンディング振動する圧電素子とを備え、上記圧電素子は、電極を介在させて上記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された第1圧電体層、第2圧電体層、第3圧電体層および第4圧電体層を含み、上記第1圧電体層、上記第2圧電体層、上記第3圧電体層および上記第4圧電体層は、各々の厚みがこの順に小さくなる。好ましくは、上記第1圧電体層、上記第2圧電体層、上記第3圧電体層および上記第4圧電体層の合計厚みに対し、上記第1圧電体層の厚みの比率は40%以上60%以下であり、上記第1圧電体層および上記第2圧電体層の合計厚みの比率は64%以上83%以下であり、上記第1圧電体層、上記第2圧電体層および上記第3圧電体層の合計厚みの比率は84%以上95%以下である。
 本発明の第5局面に基づく超音波センサは、有底筒状のケースと、上記ケースの底部の内面上に設けられ、上記ケースの上記底部とともにベンディング振動する圧電素子とを備え、上記圧電素子は、電極を介在させて上記底部から遠ざかる方向に積層され且つ電気的に並列接続されたn層(nは2以上の整数)からなる圧電体層を含み、上記n層からなる上記圧電体層の合計厚みをTとした場合、上記底部の側から1番目に位置する上記圧電体層の厚みT1は、次の式(1)を満足する値であり、
Figure JPOXMLDOC01-appb-M000003
 上記底部の側からk番目(kは2以上の整数)に位置する上記圧電体層の厚みTkは、次の式(2)を満足する値である。
Figure JPOXMLDOC01-appb-M000004
 好ましくは、上記圧電素子の中に設けられている上記電極は、外部電極に導通するように形成され各圧電体層を並列接続している内部電極と、上記外部電極に導通しないように形成された浮き電極と、を有している。好ましくは、上記圧電素子の積層方向における中心を通る面に対して、上記浮き電極は、上記内部電極と面対称となる位置に設けられている。
 本発明に基づくセンサ装置は、本発明に基づく上記の超音波センサと、上記超音波センサを駆動するための信号を出力する信号生成回路と、を備え、上記超音波センサには、上記信号生成回路から出力された上記信号が増幅されない状態で入力される。
 本発明によれば、積層型の圧電素子を用いて超音波を送波する際の音圧を従来に比して大きくすることが可能な超音波センサ、およびそのような超音波センサを備えたセンサ装置を提供できる。
実施の形態1におけるセンサ装置の回路構成の概要を示す図である。 実施の形態1におけるセンサ装置の機能ブロックを示す図である。 実施の形態1における超音波センサを示す断面図である。 (A)は、実施の形態1における超音波センサの一部を示す平面図であり、(B)は、実施の形態1における超音波センサの一部を示す断面図である。 実施の形態1における超音波センサの一部がベンディング振動している際の様子を示す断面図である。 実施の形態1における超音波センサの金属ケースおよび圧電素子を拡大して示す断面図である。 実施の形態1における超音波センサの圧電素子を構成している第1圧電体層および第2圧電体層の回路構成を示す図である。 一般的な圧電素子(圧電体層)の厚みと電界強度との関係を説明するための図である。 図8に示す圧電素子の半分の厚みを有する圧電体層と電界強度との関係を説明するための図である。 図9に示す圧電素子の2つを積層した際の電界強度を説明するための図である。 実施の形態1の構成において、第1層の厚み比率を変えて、一定の強さの反射波を受波する際の電圧感度および電荷感度を有限要素法によって数値計算した結果である。 図11に示す電圧感度および電荷感度に基づくものであり、第1層の厚み比率と発生電気エネルギーとの関係を示す図である。 実施の形態2における圧電素子を拡大して示す断面図である。 実施の形態2における超音波センサの圧電素子を構成している各圧電体層の回路構成を示す図である。 実施の形態2の構成において、各圧電体層の厚み比率を変えて、電圧感度、電荷感度および発生電気エネルギーを数値計算した結果である。 実施の形態3における圧電素子を拡大して示す断面図である。 実施の形態3における超音波センサの圧電素子を構成している各圧電体層の回路構成を示す図である。 実施の形態3の構成において、各圧電体層の厚み比率を変えて、電圧感度、電荷感度および発生電気エネルギーを数値計算した結果である。 実施の形態5における圧電素子を拡大して示す断面図である。 実施の形態6における実施の形態1~5の回路構成に相当する等価回路である。 図20中の増幅回路(トランス)と容量との接続部を拡大して示す図である。 周波数と回路ゲインとの関係を示す図である。 実施の形態6におけるセンサ装置の回路構成の概要を示す図である。 実施の形態6におけるセンサ装置の機能ブロックを示す図である。 実施の形態6の変形例におけるセンサ装置の機能ブロックを示す図である。
 各実施の形態について、以下、図面を参照しながら説明する。個数および量などに言及する場合、特に記載がある場合を除き本発明の範囲は必ずしもその個数およびその量などに限定されない。同一の部品および相当部品に対しては同一の参照番号を付し、重複する説明は繰り返さない場合がある。
 [実施の形態1]
 (センサ装置1000)
 図1~図12を参照して実施の形態1におけるセンサ装置1000について説明する。図1は、センサ装置1000の回路構成の概要を示す図である。センサ装置1000は、超音波センサ100、電源200、信号生成回路300、増幅回路400、および検出回路500を備える。
 電源200は、たとえば12Vの直流電圧を出力し、直流電圧は信号生成回路300に入力され、所定周波数の交流電圧に変換される。交流電圧は、増幅回路400により昇圧された状態で超音波センサ100に供給される。超音波センサ100が駆動され、超音波センサ100から気中などに向けて超音波が送信(送波)される。以下、センサ装置1000についてより詳細に説明する。
 図2は、センサ装置1000の機能ブロックを示す図である。センサ装置1000は、ICを備えており、ICはマイコン600およびメモリ610などを搭載している。マイコン600は、メモリ610に格納されているデータを読み出して、超音波センサ100の駆動に適した制御信号を出力する。
 信号生成回路300は、マイコン600から出力された制御信号に基づいて直流電圧から交流電圧を生成し、増幅回路400(トランス)に出力する。増幅回路400により昇圧された交流電圧は、超音波センサ100に供給される。超音波センサ100に入力される電圧を大きくすればするほど、超音波センサ100は強く駆動され、発生する音圧も強くなり、検出可能距離も伸びる。
 超音波センサ100には、抵抗110およびコンデンサ120が並列接続されている。超音波センサ100が物標からの反射波を受信した際、超音波センサ100にて発生した受波信号は受信アンプ510に送られ、検出回路500を通してマイコン600に入力される。マイコン600により、物標の有無や移動に関する情報を把握することが可能となる。
 (超音波センサ100)
 図3は、超音波センサ100を示す断面図である。図4(A)は、超音波センサ100のうちの金属ケース10および圧電素子20のみを示す平面図であり、図4(B)は、超音波センサ100のうちの金属ケース10および圧電素子20のみを示す断面図である。図3、図4(A)および(B)を参照して、超音波センサ100は、金属ケース10、圧電素子20、吸音材40、シリコーン41~44、中継基板51、リード線52,53、ピン端子54,55、コネクタ56、および充填樹脂60を備える。
 金属ケース10は、円盤状の底部11と、底部11の周縁に沿って設けられた円筒状の側壁部14とを含み、全体として有底筒状の形状を有している。底部11は、内面12および外面13を有し、圧電素子20は底部11の内面12上に配置され、接着剤など(図示せず)を用いて内面12に接合されている。金属ケース10は、たとえば、高い弾性を有し且つ軽量なアルミニウムからなる。金属ケース10は、このようなアルミニウムをたとえば鍛造または切削加工をすることによって作製される。なお、金属ケース10が本願発明の「ケース」の一例である。ケースの材料は必ずしも金属に限るものではなく、例えば樹脂からなっていてもよい。
 シリコーン41,42は、環状の形状を有し、圧電素子20の周囲を取り囲みつつ圧電素子20を内面12に固定するように配置されている。吸音材40(ダンパーともいう)は、高い弾性を有する成形体からなり、圧電素子20に間隔を空けて対向している。シリコーン43は、金属ケース10の内部空間のうち、圧電素子20および吸音材40が配置されている側の空間を塞ぐように設けられる。シリコーン44は、中継基板51を保持している。
 圧電素子20は、表裏面に図示しない電極が設けられている。圧電素子20から見て底部11の内面12側に位置する電極は、金属ケース10、リード線52、中継基板51、ピン端子54、およびコネクタ56を通して外部(GND)に電気的に接続される。圧電素子20から見て底部11とは反対側に位置する電極は、リード線53、中継基板51、ピン端子55、およびコネクタ56を通して外部に電気的に接続される。
 図5は、金属ケース10の底部11と圧電素子20とがベンディング振動している際の様子を示す断面図である。金属ケース10の底部11と圧電素子20とによりユニモルフ構造体が構成されており、ベンディング振動の際には応力中立面が形成される。応力中立面とは、引張応力が発生している部分と圧縮応力が発生している部分との境界となる面であり、金属ケース10の底部11と圧電素子20との接合面の位置に形成される。
 応力中立面上では伸縮量はほぼゼロであり、応力中立面の近傍では伸縮量が小さく、応力中立面から遠ざかるにつれて伸縮量は大きくなる。金属ケース10の底部11と圧電素子20とをベンディング振動させて超音波を送受信する場合、ベンディング振動により形成される応力中立面に近い部分は、送信時および受信時ともに仕事量が小さくなる。
 このような実情が存在する中で、超音波センサ100に備えられる圧電素子20は積層型の構造を採用している。さらに、各圧電体層は、金属ケース10の底部11から最も離れている圧電体層の方が、金属ケース10の底部11に最も近い圧電体層よりも薄いという構成を有している。この構成によれば、超音波を送波する際の音圧が大きくなり、超音波センサによる最大検出距離が長くなる。加えて、それぞれの圧電体層の厚みを最適な範囲内となるように設定することで、受信時のエネルギーを効率よく取り出すことが可能となる。以下、具体的に説明する。
 (圧電素子20)
 図6は、金属ケース10の底部11および圧電素子20を拡大して示す断面図である。圧電素子20は、第1圧電体層21(以下、第1層21という)および第2圧電体層22(以下、第2層22という)からなる2層構造を有している。第1層21および第2層22は、短冊形状を有する薄肉の圧電セラミックよりなる2層の圧電体層の間に共通の電極32を介在させてこれらを積層し、一体に焼成することにより作製される。
 第1層21および第2層22は、底部11から遠ざかる方向にこの順に積層され、第1層21の電極32とは反対側には電極31が設けられ、第2層22の電極32とは反対側には電極33が設けられている。電極31~33(内部電極)によって挟まれた第1層21および第2層22によって2つの単位セルが構成され、図7に示すように、これらの2つの単位セルは、圧電素子の側面に設けられた図示しない外部電極(電極パターンまたは配線部材など)により並列接続されている。なお、図6中の白色矢印は、各圧電体層の分極方向を示す。
 図8~図10を参照して、ここで、圧電素子を積層構造にすることについて説明する。図8~図10中の白色矢印は、各圧電体層の分極方向を示す。図8をまず参照して、圧電素子の単位厚み当たりの駆動力は、圧電素子に印加される電界強度Eに比例する。単層(1層)構造を有する圧電素子の厚みtと、圧電素子に印加した電圧Vddにより形成される電界強度Eとの間には、E=Vdd/tの関係が成立する。電界強度Eは力Fに比例する。すなわち、厚みが薄いほど力Fが大きくなる。
 一方で、電源はたとえば12V程度の直流電圧を出力するため、信号生成回路が生成できる交流電圧は原理的には12V以下である。数mオーダーの検出範囲を実現するには、12V以下では不十分であり、電圧を上昇させる機構が必要となる。交流電圧を昇圧する手段としては、図2で示すように磁気結合を用いたトランス(増幅回路400)が簡便かつ安価である。
 図9に示すように、圧電素子の厚みを半分(t/2)にした場合、電界強度は2倍になる。しかしながら、圧電素子の厚みを半分にした場合、圧電素子の単位厚み当たりの駆動力を発揮する体積も半分になってしまうため、電界強度が2倍になったとしても、圧電素子のベンディング振動により得られる力は減少する。
 図10を参照して、図10中に示す圧電素子は、図9に示す圧電素子(圧電体層)を2つ積層させた構造を有している。この構造であれば、厚みtを有する圧電素子であっても、電界強度を2倍にすることができる。換言すると、積層前と同じ力を、積層前の半分の電圧で実現できる。
 圧電体層を3層、4層と増やしていけば、その分、必要な電圧を小さくすることが可能となる。たとえば、電源から供給される電圧で十分な駆動ができるような層数に圧電素子を分割することにより、トランスなどの昇圧手段を介することなく超音波センサを駆動することも可能となる。
 ただし、図10にも示しているように、隣り合う圧電体層において電界強度の向きが反転するため、ベンディング振動の際にすべての圧電体層を同じ方向に駆動させるために、隣り合う層同士は分極方向を反転させておく必要がある。したがって、圧電素子の内部には共通電極を設けたり、その電極を並列接続したり、各セル同士を外部接続可能なようにしておく必要がある。
 図6を再び参照して、本実施の形態では、第1層21および第2層22からなる2層構造が採用される。第1層21の厚みT1よりも第2層22の厚みT2の方が小さい。すなわち、金属ケース10の底部11から最も離れている第2層22は、金属ケース10の底部11に最も近い第1層21よりも薄いという特徴を有している。より具体的には、第1層21の厚みT1と第2層22の厚みT2との合計厚み(T1+T2)に対して、第1層21の厚みT1の比率は58%以上80%以下である。すなわち、T1とT2との間には、0.58≦T1/(T1+T2)≦0.80の関係が成立している。T1は、たとえば350μmであり、T2はたとえば150μmである。
 第1層21および第2層22は、図6中に白色矢印で示すように、厚み方向に分極されている。第1層21および第2層22は、電極32を境にして互いに逆向きに分極されている。
 金属ケース10の底部11と圧電素子20とをベンディング振動させて超音波を送信する場合、ベンディング振動により形成される応力中立面に近い部分は仕事量(F・m)が小さくなり、応力中立面から離れるほど仕事量が大きくなる。送信される超音波の音圧も、応力中立面に近い部分に比べて応力中立面から遠い部分の方が大きくなる。
 超音波を送信する際の音圧は、各圧電体層の音圧の足し算により算出できる。積層型の圧電素子の場合、金属ケース10の底部11から最も離れている圧電体層(本実施の形態では第2層22)の仕事量の影響が支配的である。つまり、第1層21および第2層22の厚さが同一の場合や、第2層22が第1層21よりも厚い場合と比較すると、本実施の形態の場合は、第2層22が第1層21よりも薄いことにより超音波を送信する際の音圧を大きくすることができる。さらに、超音波を送波する際の音圧が大きくなることにより、反射波を受波する際のS/Nも高くなる。N(ノイズ)の大きさは変わらないが、S(シグナル)が高くなることにより、相対的にS/Nが高くなるからである。
 次に、上記構成による反射波を受波する際の感度が向上する理由について説明する。ここで、反射波を受波する際の感度とは電圧感度と電荷感度との2種類があり、電荷感度と電圧感度との積の1/2として表される発生電気エネルギーが大きいことが、受波時において高S/Nすなわち感度の高いセンサであると言える。ベンディング振動により圧電体層に発生する変形応力は、応力中立面を境に正負が反転し、その大きさは応力中立面からの距離に比例して大きくなる。圧電体層の発生電界は、圧電体層に発生する変形応力に比例するため、圧電体層の内部に発生する電界は、応力中立面からの距離に比例して大きくなる。上述の通り、応力中立面は、金属ケース10と圧電素子20との間の接合面である。
 電圧は、電界を圧電体層の厚み方向に積分したものであるから、圧電体層の内部の電圧は、厚み方向に対して2次関数状に大きくなる。したがって、冒頭で述べた特許文献1のように同じ厚みを有する複数の圧電体層からなる積層構造の場合、応力中立面に近い部分、すなわち、金属ケース10の底部に近い部分の層は発生電圧が低く、金属ケース10の底部から離れるほど発生電圧が高いというアンバランスな状態が形成される。
 加えて、圧電体層の各層は並列に接続されているため、各層間で生じた電位差は、内部抵抗で熱として消費される。その結果、各層で発生した電荷のすべてを取り出すことはできなくなる。換言すると、同じ厚みを有する複数の圧電体層からなる積層構造においては、各層の発生電圧を平均した電圧しか外部に取り出すことができなくなる。これを回避するために、最も発生電圧が高い層、すなわち、金属ケース10の底部からもっとも離れた層のみから発生電圧を検出し、受信信号として外部に取り出すことで、ロスを最小限にするという手段が考えられる(特許文献2)。
 しかしながら、発生電圧が低い部分においても電圧は発生している。特許文献2の構成では、受信信号として取り出される情報の中にこの発生電圧が低い部分から得られる情報が反映されていないため、電圧感度が低い。さらに、特許文献2の構成は、送信時にはすべての層を接続し、受信時には、最外の層以外を切り離すという複雑な回路動作を要するデメリットがある。
 これに対して本実施の形態の構成では、第1層21の厚みT1と第2層22の厚みT2との合計厚み(T1+T2)に対して、第1層21の厚みT1の比率は58%以上80%以下としている。上述の通り、圧電体層に発生する電圧は2次関数状であるため、当該構成によれば第1層21と第2層22との発生電圧がほぼ同じになり、ロスを低減し、より多くの発生電気エネルギーを取り出すことが可能となる。つまり、発生電気エネルギーを大幅に増加させることができ、感度の高い超音波センサを実現できる。
 (実験例)
 図11は、実施の形態1の構成において、第1層の厚み比率を変えて、一定の強さの反射波を受波する際の電圧感度および電荷感度を有限要素法によって数値計算した結果である。図12は、図11に示す電圧感度および電荷感度に基づくものであり、第1層の厚み比率と発生電気エネルギーとの関係を示す図である。実験条件のセンサ構成としては、金属ケース10は、ヤング率70GPaのアルミニウムからなり、底部11は、厚みが650μmであり、半径が7mmの円盤形状である。
 圧電素子は、例えばヤング率75GPaのチタン酸ジルコン酸鉛からなり、全体の厚みが500μmであり、面方向6.5mm×3.9mmの直方体である。圧電素子は、2層の圧電体層からなり、内部に設けられた共通電極を境に分極方向が反転した構造を有している。圧電素子の電極は、金属ケースとの接着面に設けられた電極と、その反対側の電極とが短絡してあり、0Vに固定されている。圧電素子の内部に設けられた共通電極が、駆動および検出を兼ねた電極として取り出されている。
 第1層の厚み比率を0%~100%まで変えた場合の電荷感度および電圧感度、発生電気エネルギーを求めたところ、図11に示すように、電荷感度は、第1層の厚み比率を大きくするほど単調増加した。一方、電圧感度は第1層の厚み比率が略62%で最大となり、その後は第1層の厚み比率が大きくなるほど低下した。
 図12に示すように、発生電気エネルギーは、第1層の厚み比率を略70%としたときに最大となり、第1層の厚み比率が50%の場合に比べて発生電気エネルギーが約20%増加した。なお、第1層の厚み比率を略70%としたときに発生電気エネルギーは最大となるが、58%以上80%以下の範囲でも十分な効果が発揮された。
 [実施の形態2]
 (圧電素子20A)
 図13~図15を参照して実施の形態2について説明する。ここでは、上述の実施の形態1における圧電素子20との相違点について中心に説明し、重複する説明は繰り返さないものとする。図13は、実施の形態2の圧電素子20Aを拡大して示す断面図である。圧電素子20Aは、第1圧電体層21(第1層21)、第2圧電体層22(第2層22)、および第3圧電体層23(以下、第3層23という)からなる3層構造を有している。
 第1層21、第2層22および第3層23は、底部11から遠ざかる方向にこの順に積層されている。第1層21と金属ケース10の底部11との間には電極31が設けられ、第1層21と第2層22との間には電極32が設けられ、第2層22と第3層23との間には電極33が設けられ、第3層23の表面には電極34が設けられている。
 電極31~34(内部電極)によって挟まれた第1層21、第2層22および第3層23によって3つの単位セルが構成され、図14に示すように、これらの3つの単位セルは、圧電素子の側面に設けられた図示しない外部電極(電極パターンまたは配線部材など)により並列接続されている。
 ここで、第1層21の厚みT1と第2層22の厚みT2と第3層23の厚みT3の合計厚み(T1+T2+T3)に対して、第1層21の厚みT1の比率は40%以上72%以下である。また、合計厚み(T1+T2+T3)に対して、第1層21と第2層22との合計厚みの比率は、76%以上90%以下である。実施の形態1の場合と同様に、各圧電体層は、金属ケース10の底部11から最も離れている圧電体層の方が、金属ケース10の底部11に最も近い圧電体層よりも薄いという構成を有している。好ましくは、第1層、第2層および第3層は、各々の厚みがこの順に小さくなるように構成されているとよい。
 第1層21、第2層22および第3層23は、図13中に白色矢印で示すように、厚み方向に分極されている。第1層21および第2層22は、電極32を間にして互いに遠ざかる方向に分極されている。第2層22および第3層23は、電極33を間にして互いに近づく方向に分極されている。
 実施の形態1で述べたのと同様に、第3層23が第1層21よりも薄いことにより、超音波を送信する際の音圧を大きくすることができる。さらに、圧電体層に発生する電圧は2次関数状であるため、当該構成によれば第1層21と第2層22と第3層23との発生電圧がほぼ同じになり、ロスを低減し、より多くの発生電気エネルギーを取り出すことが可能となる。つまり、発生電気エネルギーを大幅に増加させることができ、感度の高い超音波センサを実現できる。
 (実験例)
 図15は、実施の形態2の構成において、各層の厚み比率を変えて、電圧感度および電荷感度を有限要素法によって数値計算し、その結果に基づき発生電気エネルギーを算出した結果である。図15の実施例A1に示すように、発生電気エネルギーは、第1層の厚み比率を略58%とし、第1層と第2層との合計比率を82%としたときに最大となり、比較例Aの場合に比べて発生電気エネルギーが約25%増加した。なお、3層構成の場合、第1層の厚みの比率が40%以上72%以下であり、かつ第1層および第2層の合計厚みの比率が76%以上90%以下であれば、十分な効果が発揮された(実施例A2~A4参照)。
 [実施の形態3]
 (圧電素子20B)
 図16~図18を参照して実施の形態3について説明する。ここでは、上述の実施の形態1における圧電素子20との相違点について中心に説明し、重複する説明は繰り返さないものとする。図16は、実施の形態3の圧電素子20Bを拡大して示す断面図である。圧電素子20Bは、第1圧電体層21(第1層21)、第2圧電体層22(第2層22)、第3層23(第3層23)、および第4圧電体層(第4層24)からなる4層構造を有している。
 第1層21、第2層22、第3層23および第4層24は、底部11から遠ざかる方向にこの順に積層されている。第1層21と金属ケース10の底部11との間には電極31が設けられ、第1層21と第2層22との間には電極32が設けられ、第2層22と第3層23との間には電極33が設けられ、第3層23と第4層24との間には電極34が設けられ、第4層24の表面には電極35が設けられている。
 電極31~35(内部電極)によって挟まれた第1層21、第2層22、第3層23および第4層24によって4つの単位セルが構成され、図17に示すように、これらの4つの単位セルは、圧電素子の側面に設けられた図示しない外部電極(電極パターンまたは配線部材など)により並列接続されている。
 ここで、第1層21の厚みT1と第2層22の厚みT2と第3層23の厚みT3の合計厚み(T1+T2+T3+T4)に対して、第1層21の厚みT1の比率は40%以上60%以下である。合計厚み(T1+T2+T3+T4)に対して、第1層21と第2層22との合計厚みの比率は、64%以上83%以下である。また、合計厚み(T1+T2+T3+T4)に対して、第1層21と第2層22と第3層23の合計厚みの比率は、84%以上95%以下である。実施の形態1,2の場合と同様に、各圧電体層は、金属ケース10の底部11から最も離れている圧電体層の方が、金属ケース10の底部11に最も近い圧電体層よりも薄いという構成を有している。好ましくは、第1層、第2層、第3層および第4層は、各々の厚みがこの順に小さくなるように構成されているとよい。
 第1層21、第2層22、第3層23および第4層24は、図16中に白色矢印で示すように、厚み方向に分極されている。第1層21および第2層22は、電極32を間にして互いに遠ざかる方向に分極されている。第2層22および第3層23は、電極33を間にして互いに近づく方向に分極されている。第3層23および第4層24は、電極34を間にして互いに遠ざかる方向に分極されている。
 実施の形態1で述べたのと同様に、第4層24が第1層21よりも薄いことにより、超音波を送信する際の音圧を大きくすることができる。さらに、圧電体層に発生する電圧は2次関数状であるため、当該構成によれば第1層21と第2層22と第3層23と第4層24との発生電圧がほぼ同じになり、ロスを低減し、より多くの発生電気エネルギーを取り出すことが可能となる。つまり、発生電気エネルギーを大幅に増加させることができ、感度の高い超音波センサを実現できる。
 (実験例)
 図18は、実施の形態3の構成において、各層の厚み比率を変えて、電圧感度および電荷感度を有限要素法によって数値計算し、その結果に基づき発生電気エネルギーを算出した結果である。図18の実施例B1に示すように、発生電気エネルギーは、第1層の厚み比率を50%とし、第1層と第2層との合計比率を69%とし、第1層と第2層と第3層との合計比率を87%としたときに最大となり、比較例Bの場合に比べて発生電気エネルギーが約25%増加した。なお、4層構成の場合、第1層の厚みの比率が40%以上60%以下であり、かつ第1層および第2層の合計厚みの比率が64%以上83%以下であり、かつ第1層と第2層と第3層との合計厚みの比率が84%以上95%以下であれば、十分な効果が発揮された(実施例B2~B5参照)。
 [実施の形態4]
 上述の通り、圧電体層に発生する電圧は2次関数状である。各層の発生電圧がほぼ同じになるように各層の厚みを最適化することにより、ロスを低減し、より多くの発生電気エネルギーを取り出すことができる。このことについては、たとえば次のようにも説明できる。
 圧電素子は、n層(nは2以上の整数)からなる圧電体層を有しているとする。n層からなる圧電体層の合計厚みはTである。圧電素子と金属ケース10の底部11との接合面を0電位であるとすれば、圧電素子の厚み方向に座標軸tをとった場合、厚さ方向における任意位置での電位は、V(t)=atとあらわされる。aは、圧電定数や、金属ケース10の材質、受信した音圧などを含む定数である。
 圧電素子のうち、金属ケース10の底部11からもっとも離れた座標tでの電圧V(t)をn等分割するようなt軸方向のk番目(kは1以上n以下の整数)の座標tにおいて、電圧は理想的にはk*V(t)/nになっている。V(t)の式を利用すると、at =k*aT/nという関係が成立する。これをtの式にすると、次の式(A)となる。
Figure JPOXMLDOC01-appb-M000005
 金属ケース10の底部11の側からk番目(kは2以上の整数)に位置する前記圧電体層の厚みTkは、座標値同士の引き算であるから、Tk=t-tk-1で算出でき、次の式(B)であらわされる。
Figure JPOXMLDOC01-appb-M000006
 なお、各圧電体層で発生する電圧を略同一(たとえば、±10%)とするためには、圧電素子のうち、金属ケース10の底部11からもっとも離れた座標tでの電圧V(t)をn等分割する。この際に得られた値を目標電圧値とすると、座標t(厚みt)をn分割したときの各座標(t1、t2、t3・・・)における発生電圧が目標電圧値と略同一(たとえば、±10%)になっている必要がある。したがって、金属ケース10の底部11の側から1番目に位置する圧電体層の厚みT1は、次の式(1)を満足する値である。
Figure JPOXMLDOC01-appb-M000007
 金属ケース10の底部11の側からk番目(kは2以上の整数)に位置する圧電体層の厚みTkは、次の式(2)を満足する値である。
Figure JPOXMLDOC01-appb-M000008
 上記の式(1)~式(2)によれば、各圧電体層における発生電圧が目標電圧値と略同一(±10%)となり、ロスを低減し、より多くの発生電気エネルギーを取り出すことができる。
 [実施の形態5]
 (圧電素子20C)
 図19を参照して実施の形態5について説明する。ここでは、上述の実施の形態3における圧電素子20Bとの相違点について中心に説明し、重複する説明は繰り返さないものとする。図19は、実施の形態5の圧電素子20Cを拡大して示す断面図である。圧電素子20Cは、第1圧電体層21(第1層21)、第2圧電体層22(第2層22)、第3層23(第3層23)、および第4圧電体層(第4層24)からなる4層構造を有している。
 第1層21、第2層22、第3層23および第4層24は、底部11から遠ざかる方向にこの順に積層されている。第1層21と金属ケース10の底部11との間には電極31が設けられ、第1層21と第2層22との間には電極32が設けられ、第2層22と第3層23との間には電極33が設けられ、第3層23と第4層24との間には電極34が設けられ、第4層24の表面には電極35が設けられている。これらの電極31~35が本願発明の「内部電極」に相当する。
 圧電素子20Cの第1の側面には、第1の外部電極38が設けられている。第1の側面と対向する第2の側面には、第2の外部電極39が設けられている。電極31、電極33および電極35は第1の外部電極38と導通しており、電極32および電極34は第2の外部電極39と導通している。
 電極31~35(内部電極)によって挟まれた第1層21、第2層22、第3層23および第4層24によって4つの単位セルが構成され、これらの4つの単位セルは、圧電素子の側面に設けられた外部電極38,39および図示しない配線部材などにより並列接続されている。本実施の形態では、圧電素子20Cの積層方向における中心を通る面をXとすると、面Xに対して、内部電極と面対称になるように浮き電極が設けられている。
 具体的には、面Xに対して電極33と面対称になるように第1の浮き電極36a,36bが設けられている。第1の浮き電極36a,36bは互いに分離しているが、これらは一体的に形成されていてもよい。圧電素子20Cの積層方向において、面Xの位置から電極33が形成されている位置までの寸法Taは、面Xの位置から第1の浮き電極36a,36bが形成されている位置までの寸法Taと等しい。
 同様に、面Xに対して電極34と面対称になるように第2の浮き電極37a,37bが設けられている。第2の浮き電極37a,37bは互いに分離しているが、これらは一体的に形成されていてもよい。圧電素子20Cの積層方向において、面Xの位置から電極34が形成されている位置までの寸法Tbは、面Xの位置から第2の浮き電極37a,37bが形成されている位置までの寸法Tbと等しい。
 本実施の形態では、さらに、面Xに対して電極31と面対称になるように電極35が設けられている。圧電素子20Cの積層方向において、面Xの位置から電極31が形成されている位置までの寸法Tcは、面Xの位置から電極35が形成されている位置までの寸法Tcと等しい。
 浮き電極36a,36b,37a,37bは、内部電極(電極31~35)および外部電極38,39のいずれとも導通していない電極である。浮き電極36a,36b,37a,37bは、内部電極(電極31~35)と同一の材料からなることが好ましいが、別の電極材料からなっていてもよい。
 実施の形態1で述べたのと同様に、第4層24が第1層21よりも薄いことにより、超音波を送信する際の音圧を大きくすることができる。また、浮き電極を設けることによって、圧電セラミックスの焼成時に内部電極とセラミックスとの収縮率の違いに起因して起こり得る反りを防止することができる。浮き電極を設けて反りを防止するという思想は、圧電素子が2層構造の圧電体層から構成される場合(実施の形態1)にも適用できるし、圧電素子が3層構造の圧電体層から構成される場合(実施の形態2)にも適用できるし、圧電素子が2~4以外の複数の層構造の圧電体層から構成される場合にも適用できるものである。本実施の形態の構成によっても、発生電気エネルギーを大幅に増加させることができ、感度の高い超音波センサを実現できる。
 [実施の形態6]
 図20を参照して、上述の各実施の形態のセンサ装置では、増幅回路400が用いられる。実施の形態5では、増幅回路400が用いられないという構成を有している。この構成は、上述の実施の形態1~5のいずれにも適用可能である。以下、増幅回路400が用いられず、信号生成回路300から出力された信号が増幅されない状態で超音波センサ100に入力される場合の作用および効果について説明する。
 図20は、実施の形態1~5の回路構成に相当する等価回路であり、増幅回路400(トランス)と超音波センサ100(圧電素子)とを含む等価回路を示している。超音波センサ100は、超音波を発信するという機能に加えて、超音波を受信するという検出機能も兼ねており、検出時には容量C2にたまった電荷が検出されることになる。
 図21は、増幅回路400(トランス)と容量C2との接続部を拡大して示す図である。両者の接続部(配線ラインなど)から進入した電磁波(外来ノイズ)は、L2およびC2を含む回路内を電流信号Iとして流れる。ここで、L2およびC2を含む回路はLC共振回路を構成している。
 図22に示すように、このLC共振回路は、共振周波数において非常に大きな増幅率を持つため、電磁波(外来ノイズ)のうちの共振周波数に近い成分が非常に大きく増幅されてしまう。したがって、トランスを有する構成では、トランスを有していない構成に比べて外来ノイズの影響を受けやすいといえる。
 したがって、図23および図24に示すセンサ装置1001のように、トランスがない構造であれば、外来ノイズの影響を受けることを低減でき、外来ノイズに強い構成といえる。また、回路構成としても部品点数が減らせ、回路が簡略化できるため、小型化および低コスト化が可能である。図23および図24に示す構成では、たとえば圧電素子を340μmの厚みとし、6層の圧電体層からなる積層構成とするとよい。
 なお、上述の実施の形態1~5では、圧電素子を多層構造にした超音波センサを用いているので、トランスの昇圧比を小さくすることができる。すなわち、トランスの大きさを小さくすることができるため、検出機能の全体を従来よりも小型化することができるという効果も得られる。
 (変形例)
 図25に示すセンサ装置1002は、図24の構成に昇圧回路210を加えたものである。トランスを使わない点は、図24の場合と共通しており、昇圧回路210により電圧を電源(12V)からたとえば40Vに引き上げることができる。すなわち、超音波センサの音圧を上げることができ、超音波センサの感度も上がり、検出距離を長くすることができる。
 以上、本発明に基づいた各実施の形態および各実験例について説明したが、今回開示された各実施の形態および各実験例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 金属ケース、11 底部、12 内面、13 外面、14 側壁部、20,20A,20B,20C 圧電素子、21 第1圧電体層(第1層)、22 第2圧電体層(第2層)、23 第3圧電体層(第3層)、24 第4圧電体層(第4層)、31~35 電極(内部電極)、36a,36b 浮き電極(第1の浮き電極)、37a,37b 浮き電極(第2の浮き電極)、38 外部電極(第1の外部電極)、39 外部電極(第2の外部電極)、40 吸音材、41~44 シリコーン、51 中継基板、52,53 リード線、54,55 ピン端子、56 コネクタ、60 充填樹脂、100 超音波センサ、110 抵抗、120 コンデンサ、200 電源、210 昇圧回路、300 信号生成回路、400 増幅回路、500 検出回路、510 受信アンプ、600 マイコン、610 メモリ、1000,1001,1002 センサ装置。

Claims (11)

  1.  有底筒状のケースと、
     前記ケースの底部の内面上に設けられ、前記ケースの前記底部とともにベンディング振動する圧電素子とを備え、
     前記圧電素子は、電極を介在させて前記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された複数の圧電体層を含み、
     前記複数の圧電体層は、前記ケース側から最も遠くに設けられた圧電体層の厚みが最も小さい、
    超音波センサ。
  2.  有底筒状のケースと、
     前記ケースの底部の内面上に設けられ、前記ケースの前記底部とともにベンディング振動する圧電素子とを備え、
     前記圧電素子は、電極を介在させて前記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された第1圧電体層および第2圧電体層を含み、
     前記第1圧電体層の厚みよりも前記第2圧電体層の厚みの方が小さい、
    超音波センサ。
  3.  前記第1圧電体層および前記第2圧電体層の合計厚みに対し、前記第1圧電体層の厚みの比率は58%以上80%以下である、
    請求項2に記載の超音波センサ。
  4.  有底筒状のケースと、
     前記ケースの底部の内面上に設けられ、前記ケースの前記底部とともにベンディング振動する圧電素子とを備え、
     前記圧電素子は、電極を介在させて前記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された第1圧電体層、第2圧電体層および第3圧電体層を含み、
     前記第1圧電体層、前記第2圧電体層および前記第3圧電体層は、各々の厚みがこの順に小さくなる、
    超音波センサ。
  5.  前記第1圧電体層、前記第2圧電体層および前記第3圧電体層の合計厚みに対し、前記第1圧電体層の厚みの比率は40%以上72%以下であり、前記第1圧電体層および前記第2圧電体層の合計厚みの比率は76%以上90%以下である、
    請求項4に記載の超音波センサ。
  6.  有底筒状のケースと、
     前記ケースの底部の内面上に設けられ、前記ケースの前記底部とともにベンディング振動する圧電素子とを備え、
     前記圧電素子は、電極を介在させて前記底部から遠ざかる方向に順に積層され且つ電気的に並列接続された第1圧電体層、第2圧電体層、第3圧電体層および第4圧電体層を含み、
     前記第1圧電体層、前記第2圧電体層、前記第3圧電体層および前記第4圧電体層は、各々の厚みがこの順に小さくなる、
    超音波センサ。
  7.  前記第1圧電体層、前記第2圧電体層、前記第3圧電体層および前記第4圧電体層の合計厚みに対し、前記第1圧電体層の厚みの比率は40%以上60%以下であり、前記第1圧電体層および前記第2圧電体層の合計厚みの比率は64%以上83%以下であり、前記第1圧電体層、前記第2圧電体層および前記第3圧電体層の合計厚みの比率は84%以上95%以下である、
    請求項6に記載の超音波センサ。
  8.  有底筒状のケースと、
     前記ケースの底部の内面上に設けられ、前記ケースの前記底部とともにベンディング振動する圧電素子とを備え、
     前記圧電素子は、電極を介在させて前記底部から遠ざかる方向に順に積層され且つ電気的に並列接続されたn層(nは2以上の整数)からなる圧電体層を含み、
     前記n層からなる前記圧電体層の合計厚みをTとした場合、
     前記底部の側から1番目に位置する前記圧電体層の厚みT1は、次の式(1)を満足する値であり、
    Figure JPOXMLDOC01-appb-M000001
     前記底部の側からk番目(kは2以上の整数)に位置する前記圧電体層の厚みTkは、次の式(2)を満足する値である、
    Figure JPOXMLDOC01-appb-M000002
    超音波センサ。
  9.  前記圧電素子の中に設けられている前記電極は、外部電極に導通するように形成され各圧電体層を並列接続している内部電極と、前記外部電極に導通しないように形成された浮き電極と、を有している、
    請求項1から8のいずれか1項に記載の超音波センサ。
  10.  前記圧電素子の積層方向における中心を通る面に対して、前記浮き電極は、前記内部電極と面対称となる位置に設けられている、
    請求項9に記載の超音波センサ。
  11.  請求項1から10のいずれか1項に記載の超音波センサと、
     前記超音波センサを駆動するための信号を出力する信号生成回路と、を備え、
     前記超音波センサには、前記信号生成回路から出力された前記信号が増幅されない状態で入力される、
    センサ装置。
PCT/JP2014/076770 2013-10-11 2014-10-07 超音波センサおよびセンサ装置 WO2015053253A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013213962 2013-10-11
JP2013-213962 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015053253A1 true WO2015053253A1 (ja) 2015-04-16

Family

ID=52813069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076770 WO2015053253A1 (ja) 2013-10-11 2014-10-07 超音波センサおよびセンサ装置

Country Status (1)

Country Link
WO (1) WO2015053253A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324769A (zh) * 2018-03-28 2019-10-11 精工爱普生株式会社 超声波传感器以及超声波装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261879A (ja) * 1988-04-13 1989-10-18 Jgc Corp 積層型変位素子
JP2000156988A (ja) * 1998-09-18 2000-06-06 Seiko Instruments Inc 圧電アクチュエ―タおよび圧電アクチュエ―タ付電子機器
JP2002204497A (ja) * 2000-12-28 2002-07-19 Ngk Spark Plug Co Ltd 超音波センサ
JP2010069618A (ja) * 2008-09-16 2010-04-02 Brother Ind Ltd 液体吐出ヘッド及び圧電アクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261879A (ja) * 1988-04-13 1989-10-18 Jgc Corp 積層型変位素子
JP2000156988A (ja) * 1998-09-18 2000-06-06 Seiko Instruments Inc 圧電アクチュエ―タおよび圧電アクチュエ―タ付電子機器
JP2002204497A (ja) * 2000-12-28 2002-07-19 Ngk Spark Plug Co Ltd 超音波センサ
JP2010069618A (ja) * 2008-09-16 2010-04-02 Brother Ind Ltd 液体吐出ヘッド及び圧電アクチュエータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324769A (zh) * 2018-03-28 2019-10-11 精工爱普生株式会社 超声波传感器以及超声波装置
CN110324769B (zh) * 2018-03-28 2022-04-08 精工爱普生株式会社 超声波传感器以及超声波装置

Similar Documents

Publication Publication Date Title
CN108141669B (zh) 具有集成压电结构的mems印刷电路板模块和声换能器组装件
CN108389958B (zh) 超声波振动元件和超声波传感器
CN106488366A (zh) 具有位置传感器的mems扬声器
US9135906B2 (en) Ultrasonic generator
US20130038174A1 (en) Ultrasonic sensor
JP6252678B2 (ja) 圧電センサおよび圧電素子
CN108291796B (zh) 压电挠曲传感器以及检测装置
JP2003337140A (ja) 加速度センサ
JP5692383B2 (ja) 超音波トランスデューサーおよび重送検知用センサ
WO2015053253A1 (ja) 超音波センサおよびセンサ装置
CN107113510B (zh) 超声波传感器
JP6048616B2 (ja) 超音波センサ
CN113066924B (zh) 薄膜压电感应元件及其制造方法、感测装置以及终端
KR101550298B1 (ko) 적층형 압전 소자, 및, 중송 검지용 센서
US9061319B2 (en) Ultrasound probe
WO2016171003A1 (ja) 超音波センサ
KR102587885B1 (ko) 압전 액츄에이터, 이를 포함하는 압전 모듈 및 패널 스피커
JP2020169881A (ja) 物理量センサ素子、圧力センサ、マイクロフォン、超音波センサおよびタッチパネル
JPH11298056A (ja) 圧電トランスとその駆動方法
JP4894363B2 (ja) 加速度センサ
JPH03259750A (ja) 圧電型加速度センサ
JPH0120555B2 (ja)
JPH09159690A (ja) 加速度センサ
JP2020202357A (ja) 圧電センサ及び積層体
JPWO2018061805A1 (ja) 圧電式マイクロフォン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14851662

Country of ref document: EP

Kind code of ref document: A1