WO2015053005A1 - 磁気歯車装置 - Google Patents

磁気歯車装置 Download PDF

Info

Publication number
WO2015053005A1
WO2015053005A1 PCT/JP2014/072707 JP2014072707W WO2015053005A1 WO 2015053005 A1 WO2015053005 A1 WO 2015053005A1 JP 2014072707 W JP2014072707 W JP 2014072707W WO 2015053005 A1 WO2015053005 A1 WO 2015053005A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
cylinder
magnets
rotor
parallel
Prior art date
Application number
PCT/JP2014/072707
Other languages
English (en)
French (fr)
Inventor
弘光 大橋
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2015541474A priority Critical patent/JP6213573B2/ja
Priority to US15/027,880 priority patent/US10050510B2/en
Publication of WO2015053005A1 publication Critical patent/WO2015053005A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a magnetic gear device that transmits power in a non-contact manner using magnetism.
  • the magnetic gear device is configured by coaxially supporting an inner magnet cylinder, an outer magnet cylinder, and a magnetic cylinder, both of which are cylindrical, with a magnetic cylinder interposed between the two magnet cylinders.
  • a plurality of bar-shaped magnets extending in the axial length direction are arranged on the outer circumference of the inner magnet cylinder and the inner circumference of the outer magnet cylinder.
  • the magnetic cylinder is configured by arranging a plurality of rod-like magnetic bodies at equal intervals in the circumferential direction and holding them with a non-magnetic holding body arranged between them.
  • the equal numbers of magnets in the inner and outer magnet cylinders are different from each other, and the magnets are magnetized so that different magnetic poles are adjacent to each other in the circumferential direction. Further, the number of magnetic bodies arranged in parallel in the magnetic cylinder is different from the number of magnets in both magnet cylinders.
  • the magnetic gear device includes, for example, an inner magnet cylinder and an outer magnet cylinder that are rotatably supported, a magnetic cylinder that is a non-rotatably supported stator, and one of the inner rotor and the outer rotor.
  • the magnetomotive force is modulated by a magnetic body provided on the stator, and a magnetomotive force having a different waveform is applied to the other rotor, thereby shifting (deceleration, acceleration) between the two rotors and the rotating shaft that rotates integrally with each other. Used to transmit power (rotational torque) below.
  • the magnetic gear device has advantages such as non-contact power transmission, low generation of vibration and noise during operation, no need for lubrication, and excellent maintenance. Further, the gear ratio and the rotation direction can be appropriately set by selecting the numbers of magnets of the inner and outer rotors and the magnetic bodies of the stator. Furthermore, in recent years, it has become possible to obtain a high torque density (maximum transmission torque per size) by applying a strong magnetic force such as a rare earth iron boron-based magnet. Under such circumstances, the magnetic gear device is eagerly desired to be replaced with various gear devices that realize transmission with a plurality of mechanically meshed gears.
  • Patent Document 1 discloses that a cogging torque can be reduced by providing a magnetic body (magnetic tooth portion) of a stator configured as a magnetic cylinder in a skewed state with respect to the axial length direction of the stator.
  • Non-Patent Document 1 discloses that cogging torque is reduced by providing an inner rotor (high-speed rotor) magnet configured as a magnet cylinder so as to be skewed in two stages.
  • Patent Document 1 is limited to the skew arrangement of the magnetic teeth, and does not mention how much skew (amount, angle) is necessary for effective reduction of the cogging torque. .
  • Non-Patent Document 1 theoretically states that the skew arrangement of the magnets of the high-speed rotor is effective in reducing the cogging torque, but the effect of reducing the cogging torque by the two-stage skew arrangement is limited. No effective cogging torque reduction measures are disclosed.
  • the present invention has been made in view of such circumstances, and provides a magnetic gear device that can effectively reduce cogging torque and can realize stable power transmission under small torque fluctuations while ensuring high torque density. Objective.
  • a magnetic gear device includes a cylindrical inner magnet cylinder in which a plurality of magnets are arranged in parallel on the outer periphery, a cylindrical outer magnet cylinder in which a plurality of magnets are arranged in parallel on the inner periphery, and a circumferential direction.
  • a cylindrical magnetic body tube in which a plurality of magnetic bodies are arranged at equal intervals is supported coaxially with the magnetic body tube interposed between the inner magnet tube and the outer magnet tube,
  • the magnetic body is the magnetic cylinder.
  • It has a rod-like shape extending in the axial direction, and has a skew in the circumferential direction between one end and the other end in the axial direction, corresponding to 1/12 to 1/4 of the circumferentially arranged pitch. It is arranged.
  • the skew amount is variously changed to verify the effect of reducing the cogging torque, and the axial length of the magnetic body is determined based on the result.
  • the amount of displacement in the circumferential direction between one end and the other end of the direction is set to 1/12 to 1/4 of the parallel arrangement of the magnetic bodies on the circumference of the magnetic cylinder, thereby suppressing a decrease in torque density.
  • effective reduction of cogging torque is achieved.
  • a magnetic gear device includes a cylindrical inner magnet cylinder in which a plurality of magnets are arranged in parallel on the outer periphery, a cylindrical outer magnet cylinder in which a plurality of magnets are arranged in parallel on the inner periphery, and a circumferential direction.
  • a cylindrical magnetic cylinder in which a plurality of magnetic bodies are arranged in parallel at equal intervals is supported coaxially with the magnetic cylinder interposed between the inner magnet cylinder and the outer magnet cylinder.
  • the magnetic body is the magnetic cylinder.
  • the inner magnet cylinder and the outer magnet cylinder are displaced in the same direction in the circumferential direction between one end and the other end in the axial length direction. And a skew arrangement.
  • the cogging torque is reduced by a configuration in which the magnets of the inner magnet cylinder are skew arranged and the magnets of the outer magnet cylinder are also skew arranged in the same direction.
  • the amount of displacement of the magnets of the inner magnet cylinder and the outer magnet cylinder is 1/12 to 1/4 of the parallel arrangement pitch of the magnetic bodies on the circumference of the magnetic cylinder. It is characterized by being set to.
  • the proper skew amount of the magnets of the inner and outer magnet cylinders is verified, and based on the result, the positional deviation amount of each magnet is calculated based on the parallel pitch of the magnetic bodies on the circumference of the magnetic cylinder.
  • the magnets arranged in parallel to the magnetic cylinders or the magnets arranged equally on the inner and outer magnet cylinders are appropriately skewed based on the verification results, so that a high torque density is obtained.
  • the cogging torque can be effectively reduced while ensuring stable power transmission under small torque fluctuations.
  • FIG. 1 is a longitudinal sectional view schematically showing a magnetic gear device according to a first embodiment.
  • FIG. 2 is a transverse sectional view taken along line II-II in FIG. It is an external appearance perspective view which outlines a stator. It is explanatory drawing of the cogging torque reduction effect by skew arrangement
  • FIG. 6 is a longitudinal sectional view schematically showing a magnetic gear device according to a second embodiment.
  • FIG. 1 is a longitudinal sectional view schematically showing a magnetic gear device according to Embodiment 1
  • FIG. 2 is a transverse sectional view taken along the line II-II in FIG.
  • the illustrated magnetic gear device includes a cylindrical outer rotor 1 and inner rotor 2 inside a housing 3.
  • the outer rotor 1 has a rotary shaft 12 coaxially protruding from a bottom plate 11 provided on one side, and the rotary shaft 12 is supported on one end wall of the housing 3 via a bearing 13. Yes.
  • a plurality of rod-like magnets 10 extending in the axial length direction are arranged in parallel on the inner circumference of the outer rotor 1 in the circumferential direction.
  • the number of magnets 10 shown in FIG. 2 is 16, and each magnet 10 is magnetized in the radial direction of the outer rotor 1 and is arranged so that different magnetic poles are adjacent to each other in the circumferential direction.
  • the inner rotor 2 has a rotating shaft 21 that is coaxially fitted and fixed to the inner periphery, and one side of the rotating shaft 21 is connected to the center of the bottom plate 11 of the outer rotor 1 via a bearing 22. Similarly, the other side is supported on the other end wall of the housing 3 via a bearing 23.
  • the inner rotor 2 supported in this way is coaxially arranged inside the outer rotor 1 and can rotate around the axis together with the rotation shaft 21.
  • the bearing 22 also serves as a support function for the outer rotor 1.
  • the outer rotor 1 maintains coaxiality with the inner rotor 2 by the action of the bearings 13 and 22 on both sides, and rotates around the axis together with the rotary shaft 12. It can be rotated.
  • a plurality of rod-shaped magnets 20 extending in the axial length direction are arranged in parallel in the circumferential direction.
  • the number of magnets 20 shown in FIG. 2 is eight, which is different from the number of magnets 10 of the outer rotor 1.
  • Each magnet 20 is magnetized in the radial direction of the inner rotor 2, and is arranged such that different magnetic poles are adjacent to each other in the circumferential direction, like the magnet 10 of the outer rotor 1.
  • the magnets 10, 10... Equally arranged on the inner circumference of the outer rotor 1 and the magnets 20, 20... Equally arranged on the outer circumference of the inner rotor 2 are opposed to each other at an appropriate interval in the radial direction.
  • the cylindrical stator 4 is coaxially disposed between these opposed portions.
  • the stator 4 is configured by arranging a plurality of magnetic bodies 40 at equal intervals in the circumferential direction and holding these magnetic bodies 40 by a nonmagnetic holding body 41 arranged between them. Yes.
  • the number of magnetic bodies 40 shown in FIG. 2 is 24, which is different from the number of magnets 10 of the outer rotor 1 and the number of magnets 20 of the inner rotor 2.
  • the outer periphery of the stator 4 is opposed to the magnet 10 equally arranged on the inner periphery of the outer rotor 1 with a minute gap, and the inner periphery is the outer periphery of the inner rotor 2. It faces the magnet 20 equally arranged with a small gap.
  • a stator 4 may be integrally fixed to the other end wall of the housing 3 (the end wall on the support side of the rotating shaft 21) as shown in FIG. It may be provided and fixed to the other end wall so that the coaxiality with the outer rotor 1 and the inner rotor 2 can be maintained.
  • FIG. 3 is an external perspective view schematically showing the stator 4.
  • each magnetic body 40 has a rod shape extending in the axial length direction of the stator 4 and is not parallel to the axial length direction, but is surrounded by one end and the other end in the axial length direction.
  • a skew is arranged with a predetermined amount of displacement in the direction.
  • the positional deviation amount X of each magnetic body 40 is determined with reference to the parallel pitch P of the magnetic bodies 40, 40... Arranged in the circumferential direction of the stator 4, and in the stator 4 shown in FIG.
  • the positional deviation amount X is set to approximately 1 ⁇ 4 of the parallel pitch P.
  • the shaft end of the rotating shaft 12 protruding to one side of the housing 3 is connected to an appropriate rotational load, and the shaft end of the rotating shaft 21 protruding to the other side is connected to a motor or the like.
  • the rotary drive source is used as power transmission means for transmitting the rotational torque of the rotary drive source to the rotational load.
  • the inner rotor 2 rotates together with the rotating shaft 21 by transmission from a rotational drive source.
  • the magnets 20, 20... Equally distributed on the outer periphery rotate relative to each other so as to sequentially traverse the magnetic bodies 40, 40.
  • the magnets 10, 10... Modulated by the magnetic bodies 40, 40... And arranged in parallel on the inner periphery of the outer rotor 1 are given different magnetomotive forces, and the rotation of the inner rotor 2 is transmitted to the outer rotor 1. .
  • the outer rotor 1 rotates in a direction opposite to the inner rotor 2 at a lower speed than the inner rotor 2, and rotates from a rotational drive source. Reduced transmission to the load is realized.
  • the magnetic gear device can also be used by connecting the rotary shaft 12 to a rotary drive source and connecting the rotary shaft 21 to a rotary load. In this case, speed-up transmission from the rotary drive source to the rotary load is realized. .
  • the rotation direction of the rotating shafts 12 and 21 and the gear ratio (reduction ratio or speed increasing ratio) between the rotating shafts 12 and 21 are equal numbers of the magnets 10 of the outer rotor 1 and the magnets 20 of the inner rotor 20.
  • the number of magnetic bodies 40 of the stator 4 can be set appropriately depending on the combination.
  • magnets 10, 10... Of the outer rotor 1 and magnets 20, 20... Of the inner rotor 2 are magnets having a strong magnetic force such as rare earth iron boron-based magnets. 4 can be ensured to have a high torque density by making the gap between the magnetic bodies 40, 40,.
  • the above-described skew arrangement of the magnetic members 40, 40... In the stator 4 reduces the cogging torque associated with the relative rotation between the outer rotor 1 and the inner rotor 2 during the rotation transmission as described above, and the rotating shaft 12 (or It serves to reduce fluctuations in the output torque extracted to the rotating shaft 21).
  • FIG. 4 is an explanatory diagram of the effect of reducing the cogging torque by the skew arrangement, and shows the measurement result of the output torque output to the rotating shaft 12 when a constant rotating torque is input to the rotating shaft 21.
  • the horizontal axis in FIG. 4 indicates the rotation angle of the rotary shaft 12, and the vertical axis indicates the output torque.
  • the solid line in FIG. 4 shows the measurement results when the magnetic bodies 40, 40... Are not skewed, that is, when the magnetic bodies 40, 40... Are arranged parallel to the axial length direction of the stator 4.
  • the broken line shows the result when the skew arrangement shown in FIG. 3 is performed.
  • the output torque of the rotating shaft 12 fluctuates greatly according to the change in the rotation angle when there is no skew arrangement indicated by the solid line, whereas the output torque fluctuates when there is a skew arrangement indicated by the broken line.
  • the output torque indicated by the broken line is slightly smaller than the output torque indicated by the solid line, and it can be seen that the torque density decreases due to the skew arrangement, but the amount of decrease is slight.
  • the invention includes not only a skew arrangement of the magnetic bodies 40, 40, but also a configuration in which the magnets 10, 10,... Of the outer rotor 1 and the magnets 20, 20,. In this case, the magnetic bodies 40, 40... Are arranged without being skewed parallel to the axial length direction of the stator 4.
  • FIG. 5 is a diagram showing the relationship between the skew amount and the transmission torque, and shows the measurement result of the output torque output to the rotating shaft 12 when a constant rotating torque is input to the rotating shaft 21 as in FIG. Yes.
  • the horizontal axis in FIG. 5 indicates the rotation angle of the rotary shaft 12, and the vertical axis indicates the output torque.
  • a to F in FIG. 5 show the results when various amounts of circumferential displacement (hereinafter referred to as skew amount X) between one end and the other end of the magnetic body 40 in the axial length direction are changed.
  • the skew amount X (the amount of displacement in the circumferential direction between one end and the other end in the axial length direction) of the magnetic bodies 40, 40... Is equal to the parallel pitch P of the magnetic bodies 40, 40. 1/12 to 1/4 (more preferably 1/8 to 1/4) is appropriate, and the skew placement under these conditions effectively reduces cogging torque while suppressing a decrease in torque density. Reduction can be achieved, and power transmission at a high torque density can be performed under small torque fluctuations.
  • FIG. 6 is a longitudinal sectional view schematically showing the magnetic gear device according to the second embodiment.
  • the inner rotor 2 has a plurality of magnets 20 arranged on the outer periphery in the same manner as in the first embodiment. While constituting the inner magnet cylinder, the outer rotor 1 is held by a non-magnetic holding body (not shown) in which a plurality of magnetic bodies 14 are arranged at equal intervals in the circumferential direction. A magnetic cylinder is formed.
  • stator 4 forms an outer magnet cylinder by equally arranging a plurality of magnets 42 on the inner periphery of the housing 3.
  • the support structure of the outer rotor 1 and the inner rotor 2 is the same as that of the first embodiment, and the corresponding constituent members are denoted by the same reference numerals as those in FIG.
  • the inner rotor 2 as an inner magnet cylinder, the stator 4 as an outer magnet cylinder, and the outer rotor 1 as a magnetic cylinder interposed therebetween are coaxial.
  • magnets 20, 20... Equally arranged on the outer periphery are arranged side by side on the outer rotor 1.
  • the rotational torque of the inner rotor 2 is transmitted to the outer rotor 1 and is taken out by the rotating shaft 12 of the outer rotor 1.
  • the magnetic bodies 14, 14... Arranged in parallel to the outer rotor 1 are skewed with a skew amount corresponding to 1/12 to 1/4 of the parallel pitch.
  • cogging torque can be reduced.
  • the magnets 20, 20... Equally arranged on the inner rotor 2 and the magnets 42, 42... Equally arranged on the stator 4 are skewed in the same direction, and the respective skew amounts of the magnetic bodies 14, 14.
  • Cogging torque can also be reduced by setting the pitch to 1/12 to 1/4 of the parallel pitch.
  • the inner magnet cylinder and the magnetic cylinder are the rotor and the outer magnet cylinder is the stator.
  • the inner magnet cylinder is the stator
  • the outer magnet cylinder and the magnetic cylinder are the rotor. It may be configured to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

 同軸上での回転可能に支持された円筒形の外側回転子、内側回転子と、両回転子間に介在する円筒形の固定子とを備え、外側回転子の内周に等配された複数の磁石と、内側回転子の外周に等配された複数の磁石と、固定子の周方向に等間隔を隔てて並設した複数の磁性体との相互作用により外側回転子と内側回転子との間で回転トルクを伝達する構成において、固定子の軸長方向に延びる棒状の磁性体を使用し、夫々の磁性体を、軸長方向の一端と他端との間で、周方向の並設ピッチの1/12~1/4に相当する周方向の位置ずれ量を有してスキュー配置する。この配置により、コギングトルクを有効に低減でき、高いトルク密度を確保しながら小さいトルク変動下で安定した動力伝達を実現できる。

Description

磁気歯車装置
 本発明は、磁気を利用して非接触で動力を伝達する磁気歯車装置に関する。
 近年、回転軸間での動力伝達手段として磁気歯車装置が着目されている。磁気歯車装置は、共に円筒形をなす内側磁石筒、外側磁石筒及び磁性体筒を、両磁石筒間に磁性体筒を介在させて同軸上に支持して構成されている。内側磁石筒の外周と外側磁石筒の内周とには、軸長方向に延びる棒状の磁石が夫々複数等配されている。磁性体筒は、複数の棒状の磁性体を周方向に等間隔を隔てて並べ、これらを相互間に配した非磁性の保持体で保持して構成されている。内側磁石筒及び外側磁石筒の磁石の等配数は相互に異なり、夫々の磁石は、異なる磁極が周方向に相隣するように着磁されている。また、磁性体筒の磁性体の並設数は、両磁石筒の磁石の数の夫々と異ならせてある。
 磁気歯車装置は、例えば、内側磁石筒と外側磁石筒とを回転自在に支持された回転子とし、磁性体筒を回転不可に支持された固定子とし、内側回転子及び外側回転子の一方の起磁力が固定子に設けた磁性体により変調されて他方の回転子に異なる波形の起磁力を与えることにより、両回転子及び夫々と一体回転する回転軸間にて変速(減速、増速)下での動力(回転トルク)伝達を行わせるように使用される。
 磁気歯車装置は、非接触での動力伝達が可能であり、動作時の振動、騒音の発生を低く抑えることができ、また潤滑が不要でメインテナンス性に優れる等の利点を有している。また、内側、外側回転子の磁石、及び固定子の磁性体の並設数の選定により、変速比及び回転方向を適宜に設定することができる。更に、近年では、希土類鉄ホウ素系磁石等の強い磁力を適用することにより高いトルク密度(サイズ当たりの最大伝達トルク)を得ることが可能となっている。このような事情により、磁気歯車装置は、機械的に噛合する複数の歯車により変速伝動を実現する各種の歯車装置との置き換え使用が切望されている。
 ところが、磁気歯車装置のトルク伝動においては、磁石筒としての内側回転子と外側回転子との相対回転に伴って両回転子の磁石間の吸引力が逐次変化することによりコギングトルクが発生し、回転軸間の伝達トルクが周期的に変動するという問題がある。このトルク変動は、動力伝達手段として好ましくない現象であり、磁気歯車装置の実用化においては、コギングトルクの低減が重要な課題となっている。
 特許文献1には、磁性体筒として構成された固定子の磁性体(磁性歯部)を、該固定子の軸長方向に対してスキューした状態で設けることによりコギングトルクを低減できることが開示されており、また非特許文献1には、磁石筒として構成された内側回転子(高速ロータ)の磁石を2段階にスキューして設けることによりコギングトルクの低減を図ったことが開示されている。
特開2013-47546号公報
新口 昇、外2名、「表面磁石型磁気減速機の伝達トルク特性に関する研究、日本電気学会論文誌D、131巻3号、2011年、p396-402
 しかしながら特許文献1の開示は、磁性歯部をスキュー配置することに止まっており、コギングトルクの有効な低減のためにどの程度のスキュー(量、角度)が必要であるかについては言及されていない。
 また非特許文献1においては、高速ロータの磁石のスキュー配置がコギングトルクの低減に効果があることが理論的に述べられているが、2段階のスキュー配置によるコギングトルクの低減効果については限定的であったとされ、有効なコギングトルクの低減対策については開示されていない。
 本発明は斯かる事情に鑑みてなされたものであり、コギングトルクを有効に低減でき、高いトルク密度を確保しながら小さいトルク変動下で安定した動力伝達を実現できる磁気歯車装置を提供することを目的とする。
 本発明に係る磁気歯車装置は、外周に複数の磁石を並設してある円筒形の内側磁石筒、内周に複数の磁石を並設してある円筒形の外側磁石筒、及び周方向に等間隔を隔てて複数の磁性体を並設してある円筒形の磁性体筒を、該磁性体筒を前記内側磁石筒と前記外側磁石筒との間に介在させて同軸上に支持し、前記内側磁石筒、外側磁石筒及び磁性体筒のいずれか2つを回転子とし、残りの1つを固定子として回転トルクを伝達する磁気歯車装置において、前記磁性体は、前記磁性体筒の軸長方向に延びる棒状をなし、軸長方向の一端と他端との間で、周方向の並設ピッチの1/12~1/4に相当する周方向の位置ずれ量を有してスキュー配置してあることを特徴とする。
 本発明においては、磁性体筒に並設された磁性体をスキュー配置する構成において、スキュー量を種々に変更してコギングトルクの低減効果について検証し、その結果に基づいて、磁性体の軸長方向の一端と他端との間の周方向の位置ずれ量を、磁性体筒の周上での磁性体の並設ピッチ1/12~1/4とすることにより、トルク密度の低下を抑えた上でコギングトルクの効果的な低減を達成する。
 また本発明に係る磁気歯車装置は、外周に複数の磁石を並設してある円筒形の内側磁石筒、内周に複数の磁石を並設してある円筒形の外側磁石筒、及び周方向に等間隔を隔てて複数の磁性体を並設してある円筒形の磁性体筒を、該磁性体筒を前記内側磁石筒と前記外側磁石筒との間に介在させて同軸上に支持し、前記内側磁石筒、外側磁石筒及び磁性体筒のいずれか2つを回転子とし、残りの1つを固定子として回転トルクを伝達する磁気歯車装置において、前記磁性体は、前記磁性体筒の軸長方向に対して平行に延びる棒状をなしており、前記内側磁石筒及び外側磁石筒の磁石は、軸長方向の一端と他端との間で夫々の周方向に同じ向きの位置ずれを有してスキュー配置してあることを特徴とする。
 本発明においては、内側磁石筒の磁石をスキュー配置すると共に、外側磁石筒の磁石も同じ向きにスキュー配置する構成により、コギングトルクの低減を図る。
 更に本発明に係る磁気歯車装置は、前記内側磁石筒及び外側磁石筒の磁石の位置ずれ量が、前記磁性体筒の周上での前記磁性体の並設ピッチの1/12~1/4に設定してあることを特徴とする。
 本発明においては、内側、外側磁石筒の磁石の適正なスキュー量について検証し、その結果に基づいて、夫々の磁石の位置ずれ量を磁性体筒の周上での磁性体の並設ピッチの1/12~1/4とすることにより、トルク密度の低下を伴わずにコギングトルクの効果的な低減を達成する。
本発明に係る磁気歯車装置においては、磁性体筒に並設された磁性体、又は内側、外側磁石筒に等配された磁石を、検証結果に基づいて適正にスキュー配置したから、高いトルク密度を確保しながらコギングトルクを有効に低減し、小さいトルク変動下での安定した動力伝達を実現することが可能となる。
実施の形態1に係る磁気歯車装置を略示する縦断面図である。 図1のII-II線による横断面図である。 固定子を略示する外観斜視図である。 スキュー配置によるコギングトルクの低減効果の説明図である。 スキュー量と伝達トルクの関係を示す図である。 実施の形態2に係る磁気歯車装置を略示する縦断面図である。
 以下本発明をその実施の形態を示す図面に基づいて詳述する。図1は、実施の形態1に係る磁気歯車装置を略示する縦断面図、図2は、図1のII-II線による横断面図である。図示の磁気歯車装置は、円筒形をなす外側回転子1及び内側回転子2をハウジング3の内部に備えている。
 外側回転子1は、一側に設けた底板11に同軸的に突設した回転軸12を有しており、該回転軸12をハウジング3の一側端壁に軸受13を介して支持している。外側回転子1の内周には、軸長方向に延びる棒状の磁石10が、周方向に等配をなして複数並設されている。図2に示す磁石10の数は16個であり、各磁石10は、外側回転子1の径方向に夫々着磁され、異なる磁極が周方向に相隣するように配置されている。
 内側回転子2は、内周に同軸的に嵌合固定された回転軸21を有しており、該回転軸21の一側を外側回転子1の底板11の中心部に軸受22を介して支持し、同じく他側をハウジング3の他側端壁に軸受23を介して支持している。このように支持された内側回転子2は、外側回転子1の内側に同軸的に配置され、回転軸21と共に軸心回りに回転可能である。軸受22は、外側回転子1の支持機能を兼ねており、外側回転子1は、両側の軸受13、22の作用により内側回転子2との同軸性を保ち、回転軸12と共に軸心回りに回転可能である。
 内側回転子2の外周には、軸長方向の全長に亘る棒状の磁石20が、周方向に等配をなして複数並設されている。図2に示す磁石20の数は8個であり、外側回転子1の磁石10の数と異ならせてある。各磁石20は、内側回転子2の径方向に夫々着磁され、外側回転子1の磁石10と同様、異なる磁極が周方向に相隣するように配置されている。
 外側回転子1の内周に等配された磁石10,10…と内側回転子2の外周に等配された磁石20,20…とは、径方向に適宜の間隔を隔てて対向しており、これらの対向部間に円筒形の固定子4が同軸をなして配置されている。図2に示す如く固定子4は、複数の磁性体40を周方向に等間隔を隔てて並べ、これらの磁性体40を相互間に配した非磁性の保持体41で保持して構成されている。図2に示す磁性体40の数は24個であり、外側回転子1の磁石10及び内側回転子2の磁石20の数と夫々異ならせてある。
 図1、2に示す如く、固定子4の外周は、外側回転子1の内周に等配された磁石10と微小な隙間を隔てて対向し、同じく内周は、内側回転子2の外周に等配された磁石20と微小な隙間を隔てて対向する。このような固定子4は、図1に示す如く、ハウジング3の他側端壁(回転軸21の支持側の端壁)に一体に固設してもよく、またハウジング3とは別体に設け、外側回転子1及び内側回転子2との同軸性が保てるように他端壁に固定してもよい。
 図3は、固定子4を略示する外観斜視図である。本図に示す如く、各磁性体40は、固定子4の軸長方向に延びる棒状をなしており、軸長方向に対して平行ではなく、軸長方向の一端と他端との間で周方向に所定の位置ずれ量を有してスキュー配置されている。各磁性体40の位置ずれ量Xは、固定子4の周方向に並ぶ磁性体40,40…の並設ピッチPを基準として定めてあり、図3に示す固定子4において各磁性体40の位置ずれ量Xは、並設ピッチPの略1/4に設定してある。
 以上の如く構成された磁気歯車装置は、例えば、ハウジング3の一側に突出する回転軸12の軸端を適宜の回転負荷に連結し、他側に突出する回転軸21の軸端をモータ等の回転駆動源に連結して、回転駆動源の回転トルクを回転負荷に伝動する動力伝達手段として使用される。内側回転子2は、回転駆動源からの伝動により回転軸21と共に回転する。内側回転子2が回転した場合、外周に等配された磁石20,20…が固定子4に並設された磁性体40,40…を順次横切るように相対回転し、各磁石20の磁力が磁性体40,40…により変調されて外側回転子1の内周に並設された磁石10,10…に異なる波形の起磁力を与え、内側回転子2の回転が外側回転子1に伝えられる。
 図示の磁気歯車装置においては、図2中に矢符により示す如く、外側回転子1は、内側回転子2と逆向きに、内側回転子2よりも低速度で回転し、回転駆動源から回転負荷への減速伝動が実現される。磁気歯車装置は、回転軸12を回転駆動源に連結し、回転軸21を回転負荷に連結して使用することもでき、この場合、回転駆動源から回転負荷への増速伝動が実現される。
 なお、回転軸12、21の回転方向、及び回転軸12、21間の変速比(減速比又は増速比)は、外側回転子1の磁石10及び内側回転子20の磁石20の等配数、並びに固定子4の磁性体40の並設数の組み合わせにより適宜に設定することができる。また、外側回転子1の磁石10,10…及び内側回転子2の磁石20,20…として、希土類鉄ホウ素系磁石等の強い磁力を有する磁石を使用し、これらの磁石10、20と固定子4に並設された磁性体40,40…との間の隙間を可及的に小さくすることにより、高いトルク密度を確保することができる。
 固定子4における前述した磁性体40,40…のスキュー配置は、以上の如き回転伝動に際し、外側回転子1と内側回転子2との相対回転に伴うコギングトルクを低減し、回転軸12(又は回転軸21)に取り出される出力トルクの変動を小さくする作用をなす。
 図4は、スキュー配置によるコギングトルクの低減効果の説明図であり、回転軸21に一定の回転トルクを入力した場合に回転軸12に出力される出力トルクの測定結果を示している。図4の横軸は、回転軸12の回転角度を、縦軸は、出力トルクを示す。
 図4中の実線は、磁性体40,40…がスキュー配置されていない場合、即ち、磁性体40,40…が固定子4の軸長方向と平行に配置された場合の測定結果を示し、同じく破線は、図3に示すスキュー配置がなされた場合の結果を示している。両者の比較により、回転軸12の出力トルクは、実線で示すスキュー配置なしの場合、回転角度の変化に応じ大きく変動しているのに対し、破線で示すスキュー配置ありの場合、出力トルクの変動幅が小さくなっており、磁性体40,40…のスキュー配置がコギングトルクの低減に有効であり、トルク変動の小さい安定した伝動を実現し得ることがわかる。なお、破線により示す出力トルクは、実線により示す出力トルクよりも全体に亘って若干小さく、スキュー配置によりトルク密度が低下することもわかるが、この低下量は軽微である。
 図4中の一点鎖線は、外側回転子1の磁石10,10…を磁性体40,40…と同様にスキュー配置した場合の結果を、二点鎖線は、内側回転子2の磁石20,20…を同じくスキュー配置した場合の結果を夫々示している。これらの結果から、磁石10又は20のスキュー配置もコギングトルクの低減に所定の効果があることがわかるが、更に、外側回転子1の磁石10,10…及び内側回転子2の磁石20,20…の両方を互いに同向きにスキュー配置することにより、固定子4の磁性体40,40…をスキュー配置した場合と同等の変動幅でのトルク伝動が可能となることも確かめられており、本願発明は、磁性体40,40…のスキュー配置だけでなく、外側回転子1の磁石10,10…及び内側回転子2の磁石20,20…を同向きにスキュー配置した構成を含む。なおこの場合、磁性体40,40…は、固定子4の軸長方向と平行にスキューさせないで配置する。
 図5は、スキュー量と伝達トルクの関係を示す図であり、図4と同様、回転軸21に一定の回転トルクを入力した場合に回転軸12に出力される出力トルクの測定結果を示している。図5の横軸は、回転軸12の回転角度を、縦軸は、出力トルクを夫々示す。
 図5中のA~Fは、磁性体40の軸長方向の一端と他端との間での周方向の位置ずれ量(以下、スキュー量Xという)を種々に変更した場合の結果を示しており、図中のAは、磁性体40の並設ピッチPに対するスキュー量Xの比率(=X/P)が1/32である場合の結果を、図中のB~Fは、X/Pが、1/16、1/12、1/8、1/4、1/2である場合の結果を夫々示している。
 本図を参照すると、スキュー量Xが小さいA、Bの場合、コギングトルクの低減効果が限定的であるのに対し、スキュー量Xが大きく、X/Pを1/12以上としたC~Fの場合、コギングトルクの低減効果が大きく、出力トルクの変動幅が大幅に小さくなることが明らかである。コギングトルクの低減効果は、特に、X/Pを1/8以上としたD~Fの場合に顕著である。一方、X/Pを1/2としたFにおいては、出力トルクが全体的に大きく低下しており、トルク密度の低下を伴うという問題がある。
 以上の結果から、磁性体40,40…のスキュー量X(軸長方向の一端と他端との間での周方向の位置ずれ量)は、磁性体40,40…の並設ピッチPの1/12~1/4(より望ましくは1/8~1/4)とするのが適切であり、この条件下でのスキュー配置により、トルク密度の低下を抑えた上でコギングトルクの効果的な低減を達成することができ、小さいトルク変動下にて高いトルク密度での動力伝達を行わせることができる。
 同様の結果は、外側回転子1の磁石10,10…及び内側回転子2の磁石20,20…を同向きにスキュー配置する前述した構成においても得られており、磁石10,10…及び磁石20,20…のスキュー配置においても、固定子4における磁性体40、40…の並設ピッチを基準とし、この並設ピッチの1/12~1/4に相当するスキュー量とするのが望ましい。
 以上の実施の形態1においては、外側回転子1、内側回転子2が、外側磁石筒、内側磁石筒を夫々構成し、固定子4が磁性体筒を構成しているが、これらの構成は適宜に変更することができる。図6は、実施の形態2に係る磁気歯車装置を略示する縦断面図であり、本図において内側回転子2は、実施の形態1と同様、外周に複数の磁石20を等配して内側磁石筒を構成している一方、外側回転子1は、複数の磁性体14を周方向に等間隔を隔てて並べ、相互間に配した非磁性の保持体(図示を省略する)で保持し磁性体筒を構成している。更に、固定子4は、ハウジング3の内周に複数の磁石42を等配して外側磁石筒を構成している。外側回転子1及び内側回転子2の支持構造は、実施の形態1と同様であり、対応する構成部材に図1と同一の参照符号を付して説明を省略する。
 図6に示す磁気歯車装置においては、内側磁石筒としての内側回転子2と、外側磁石筒としての固定子4と、これらの間に介在する磁性体筒としての外側回転子1とが同軸的に支持された構成となっており、例えば、回転軸21に加わる回転トルクの作用により内側回転子2が回転した場合、外周に等配された磁石20,20…が外側回転子1に並設された磁性体14,14…を順次横切るように相対回転し、各磁石20の磁力が磁性体14,14…により変調されて固定子4の磁石42,42…に異なる波形の起磁力を与え、内側回転子2の回転トルクが外側回転子1に伝わり、該外側回転子1の回転軸12に取り出される。
 この実施の形態2においても、実施の形態1と同様、外側回転子1に並設された磁性体14,14…を並設ピッチの1/12~1/4に相当するスキュー量にてスキュー配置することにより、コギングトルクを低減することができる。また内側回転子2に等配された磁石20,20…及び固定子4に等配された磁石42,42…を同じ向きにスキュー配置し、夫々のスキュー量を、磁性体14,14…の並設ピッチの1/12~1/4に設定することによってもコギングトルクを低減することができる。
 実施の形態2においては、内側磁石筒と磁性体筒とを回転子とし、外側磁石筒を固定子としてあるが、内側磁石筒を固定子とし、外側磁石筒と磁性体筒とを回転子とする構成であってもよい。
 なお、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等な意味および範囲内でのすべての変更が含まれることが意図される。
 1  外側回転子
 2  内側回転子
 4  固定子
 10 磁石
 12 回転軸
 20 磁石
 21 回転軸
 40 磁性体

Claims (3)

  1.  外周に複数の磁石を並設してある円筒形の内側磁石筒、内周に複数の磁石を並設してある円筒形の外側磁石筒、及び周方向に等間隔を隔てて複数の磁性体を並設してある円筒形の磁性体筒を、該磁性体筒を前記内側磁石筒と前記外側磁石筒との間に介在させて同軸上に支持し、前記内側磁石筒、外側磁石筒及び磁性体筒のいずれか2つを回転子とし、残りの1つを固定子として回転トルクを伝達する磁気歯車装置において、
     前記磁性体は、前記磁性体筒の軸長方向に延びる棒状をなし、軸長方向の一端と他端との間で、周方向の並設ピッチの1/12~1/4に相当する周方向の位置ずれ量を有してスキュー配置してあることを特徴とする磁気歯車装置。
  2.  外周に複数の磁石を並設してある円筒形の内側磁石筒、内周に複数の磁石を並設してある円筒形の外側磁石筒、及び周方向に等間隔を隔てて複数の磁性体を並設してある円筒形の磁性体筒を、該磁性体筒を前記内側磁石筒と前記外側磁石筒との間に介在させて同軸上に支持し、前記内側磁石筒、外側磁石筒及び磁性体筒のいずれか2つを回転子とし、残りの1つを固定子として回転トルクを伝達する磁気歯車装置において、
     前記磁性体は、前記磁性体筒の軸長方向に対して平行に延びる棒状をなしており、
     前記内側磁石筒及び外側磁石筒の磁石は、軸長方向の一端と他端との間で夫々の周方向に同じ向きの位置ずれを有してスキュー配置してあることを特徴とする磁気歯車装置。
  3.  前記内側磁石筒及び外側磁石筒の磁石の位置ずれ量は、前記磁性体筒の周上での前記磁性体の並設ピッチの1/12~1/4に設定してあることを特徴とする請求項2に記載の磁気歯車装置。
PCT/JP2014/072707 2013-10-09 2014-08-29 磁気歯車装置 WO2015053005A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015541474A JP6213573B2 (ja) 2013-10-09 2014-08-29 磁気歯車装置
US15/027,880 US10050510B2 (en) 2013-10-09 2014-08-29 Magnetic gear device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-212114 2013-10-09
JP2013212114 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015053005A1 true WO2015053005A1 (ja) 2015-04-16

Family

ID=52812825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072707 WO2015053005A1 (ja) 2013-10-09 2014-08-29 磁気歯車装置

Country Status (3)

Country Link
US (1) US10050510B2 (ja)
JP (1) JP6213573B2 (ja)
WO (1) WO2015053005A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917352A (zh) * 2015-06-26 2015-09-16 中国石油大学(华东) 调磁环采用斜槽结构减小转矩脉动的磁齿轮
CN106130312A (zh) * 2016-06-30 2016-11-16 江苏金陵永磁产业研究院有限公司 一种永磁变速传动装置
CN109802520A (zh) * 2017-11-17 2019-05-24 成功大学 调速式磁性齿轮电机、其用途及含有其的电动载具
CN112968585A (zh) * 2021-02-05 2021-06-15 上海理工大学 一种具备转矩测量能力的高减速比谐波磁齿轮减速器
WO2021245884A1 (ja) * 2020-06-04 2021-12-09 国立大学法人大阪大学 アクチュエータユニット及びこれを有するリンク機構
JP7179244B1 (ja) * 2022-06-09 2022-11-28 三菱電機株式会社 磁気ギヤ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733387B1 (en) * 2011-07-15 2017-01-04 Hitachi Metals, Ltd. Magnetic gear device
CN104377923B (zh) * 2014-12-05 2016-08-31 刁俊起 一种固定磁隙的永磁调速器
US9667126B2 (en) * 2015-01-05 2017-05-30 Langham Automatic Co., Ltd. Motor
TWI607166B (zh) * 2016-08-29 2017-12-01 Push-type transmission
CN108361347A (zh) * 2017-01-13 2018-08-03 熵零技术逻辑工程院集团股份有限公司 一种变矩器
DE102018110151A1 (de) * 2018-04-26 2019-10-31 Linz Center Of Mechatronics Gmbh Elektrische Maschine mit Elektromotor und Magnetgetriebe
CN108683321B (zh) * 2018-05-03 2020-10-30 华中科技大学 一种铁轭开槽的磁齿轮装置
KR102213506B1 (ko) * 2019-03-08 2021-02-08 주식회사 삼양감속기 작동방식 선택 기능을 갖는 자석감속기
CN111431365B (zh) * 2020-04-28 2021-02-05 苏州鱼得水电气科技有限公司 一种交叉磁通滚刷叠转子电机
CN112615520B (zh) * 2020-11-30 2021-12-14 珠海格力电器股份有限公司 磁齿轮及具有其的复合电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037113A (ja) * 1999-07-23 2001-02-09 Seiko Instruments Inc ブラシレスモータ
JP2009027777A (ja) * 2007-07-17 2009-02-05 Jtekt Corp 永久磁石型ブラシレスモータ
WO2009087409A1 (en) * 2008-01-11 2009-07-16 Magnomatics Limited Drives for sealed systems
JP2011033166A (ja) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp 磁気ギヤおよびそれを搭載した車両
JP2012005218A (ja) * 2010-06-16 2012-01-05 Meidensha Corp ブラシレスモータ
WO2013001557A1 (ja) * 2011-06-27 2013-01-03 株式会社 日立製作所 磁気歯車型回転電機
WO2013011809A1 (ja) * 2011-07-15 2013-01-24 日立金属株式会社 磁気ギア装置
JP2013047546A (ja) * 2011-08-29 2013-03-07 Nissei Corp 磁気歯車装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828293B2 (ja) * 1987-04-07 1996-03-21 日立金属株式会社 円筒状永久磁石、それを用いたモータ及びその製造方法
JPH0374164A (ja) 1989-08-14 1991-03-28 Hitachi Ltd 電動機
JP4089527B2 (ja) * 2003-06-27 2008-05-28 三菱電機株式会社 永久磁石式回転電機
GB0800463D0 (en) * 2008-01-11 2008-02-20 Magnomatics Ltd Magnetic drive systems
GB0900022D0 (en) * 2009-01-05 2009-02-11 Rolls Royce Plc Management gear arrangement
US8598759B2 (en) * 2010-01-19 2013-12-03 Rolls-Royce Plc Magnetic gear arrangement
JP5835215B2 (ja) * 2010-05-17 2015-12-24 日立金属株式会社 カップリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037113A (ja) * 1999-07-23 2001-02-09 Seiko Instruments Inc ブラシレスモータ
JP2009027777A (ja) * 2007-07-17 2009-02-05 Jtekt Corp 永久磁石型ブラシレスモータ
WO2009087409A1 (en) * 2008-01-11 2009-07-16 Magnomatics Limited Drives for sealed systems
JP2011033166A (ja) * 2009-08-05 2011-02-17 Mitsubishi Electric Corp 磁気ギヤおよびそれを搭載した車両
JP2012005218A (ja) * 2010-06-16 2012-01-05 Meidensha Corp ブラシレスモータ
WO2013001557A1 (ja) * 2011-06-27 2013-01-03 株式会社 日立製作所 磁気歯車型回転電機
WO2013011809A1 (ja) * 2011-07-15 2013-01-24 日立金属株式会社 磁気ギア装置
JP2013047546A (ja) * 2011-08-29 2013-03-07 Nissei Corp 磁気歯車装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917352A (zh) * 2015-06-26 2015-09-16 中国石油大学(华东) 调磁环采用斜槽结构减小转矩脉动的磁齿轮
CN106130312A (zh) * 2016-06-30 2016-11-16 江苏金陵永磁产业研究院有限公司 一种永磁变速传动装置
CN109802520A (zh) * 2017-11-17 2019-05-24 成功大学 调速式磁性齿轮电机、其用途及含有其的电动载具
WO2021245884A1 (ja) * 2020-06-04 2021-12-09 国立大学法人大阪大学 アクチュエータユニット及びこれを有するリンク機構
JP7492284B2 (ja) 2020-06-04 2024-05-29 国立大学法人大阪大学 リンク機構
CN112968585A (zh) * 2021-02-05 2021-06-15 上海理工大学 一种具备转矩测量能力的高减速比谐波磁齿轮减速器
JP7179244B1 (ja) * 2022-06-09 2022-11-28 三菱電機株式会社 磁気ギヤ
WO2023238335A1 (ja) * 2022-06-09 2023-12-14 三菱電機株式会社 磁気ギヤ

Also Published As

Publication number Publication date
US20160241123A1 (en) 2016-08-18
JP6213573B2 (ja) 2017-10-18
US10050510B2 (en) 2018-08-14
JPWO2015053005A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6213573B2 (ja) 磁気歯車装置
KR102359816B1 (ko) 차동 유성 기어박스
WO2014128985A1 (ja) 磁気波動歯車装置
EP2133982A2 (en) An electrical machine with integrated magnetic gears
US10483831B2 (en) Permanent magnet applying motor
JP2011505533A (ja) 少なくとも1つの伝達段を有する駆動装置
WO2015137392A1 (ja) 環状磁極部材及び磁気波動歯車装置
TW201233010A (en) Moving magnetic field generating apparatus
JP2007282476A (ja) 回転電機
JP6147607B2 (ja) 歯車伝動装置
JP5722690B2 (ja) 発電装置
JP2012205441A (ja) 減速機付きモータ装置
CN108036034B (zh) 一种双向输出型谐波减速装置
JP2018533907A (ja) 回転抵抗回避機能を有する発電機
JP2007244014A (ja) 磁力による非接触歯車
CN103891109A (zh) 驱动装置
CN201352754Y (zh) 转动装置及其转子
CN103891110A (zh) 驱动装置
RU2545509C2 (ru) Магнитный редуктор
JP5914102B2 (ja) 磁気機能装置
Zaytoon et al. Cogging torque reduction of axial magnetic gearbox using pole pairing technique
US11411486B2 (en) Gearbox
KR101972624B1 (ko) 기어 전동 장치
JP2016025835A (ja) 永久磁石回転装置
JP2022174399A (ja) 磁気歯車装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541474

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15027880

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853075

Country of ref document: EP

Kind code of ref document: A1