WO2015052984A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015052984A1
WO2015052984A1 PCT/JP2014/070880 JP2014070880W WO2015052984A1 WO 2015052984 A1 WO2015052984 A1 WO 2015052984A1 JP 2014070880 W JP2014070880 W JP 2014070880W WO 2015052984 A1 WO2015052984 A1 WO 2015052984A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
terminal
inverter
smoothing capacitor
switching element
Prior art date
Application number
PCT/JP2014/070880
Other languages
English (en)
French (fr)
Inventor
敦明 横山
早川 和宏
貴也 石井
雅広 宮下
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015052984A1 publication Critical patent/WO2015052984A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars

Definitions

  • the present invention relates to a power conversion device.
  • a smoothing capacitor and IGBT are mounted on a substrate having a water cooling mechanism, and a power conversion circuit is configured by a power supply bus bar to integrate inverter components.
  • the problem to be solved by the present invention is to provide a power conversion device capable of suppressing the influence on the components even when water enters the housing.
  • the present invention provides a power conversion device in which a component including a switching element and a smoothing capacitor is housed in a housing, and includes at least a first connection part between the smoothing capacitor and the input terminal and a second connection part between the switching element and the output terminal. Arrange the surface on the upper side of the housing and the surface opposite to the first connection portion of the smoothing capacitor and the surface on the opposite side of the second connection portion of the switching element on the lower side of the housing. To solve the above problem.
  • the present invention when water enters the case, it is concentrated at the bottom of the case, but the first connection part and the second connection part that are affected by water are disposed at least on the upper side of the case. It can suppress that these components contact water.
  • FIG. 1 is an electric circuit diagram showing an embodiment in which a power control device according to the present invention is embodied as a DC-three-phase AC conversion device (hereinafter referred to as an inverter 30) and applied to a motor control system 1.
  • the motor control system 1 of the present embodiment can be applied to an AC uninterruptible power supply and the like in addition to a traveling drive device of an electric vehicle.
  • the three-phase AC load 20 shown in FIG. 1 corresponds to a travel drive motor, and is constituted by a secondary battery or the like.
  • the DC power source 10 corresponds to a travel drive battery.
  • the motor control system 1 of this embodiment includes a DC power supply 10, a three-phase AC load 20, and an inverter 30 that converts DC power of the DC power supply 10 into three-phase AC power.
  • the DC power supply 10 can be constituted by, for example, a secondary battery such as a lithium ion battery, a solar battery, a fuel cell, a PFC (Power factor correction) converter, or the like.
  • the AC load 20 has a regeneration function, the AC power of the AC load 20 may be converted into DC power by the inverter 30 and the DC power supply 10 may be charged.
  • the inverter 30 includes upper arm circuits 31, 33, 35, lower arm circuits 32, 34, 36, smoothing capacitors 37, 38, 39, and a controller 40.
  • the inverter 30 converts the DC power of the DC power supply 10 into three-phase AC power. And this is supplied to the three-phase AC load 20.
  • the upper arm circuits 31, 33, and 35 are mainly composed of circuits in which switching elements Q1, Q3, and Q5 as power devices and diodes D1, D3, and D5 are connected in parallel, respectively.
  • the lower arm circuits 32, 34, and 36 are mainly configured by a circuit in which switching elements Q2, Q4, and Q6 as power devices are connected in parallel with diodes D2, D4, and D6, respectively.
  • three pairs of circuits in which two switching elements Q1, Q2, Q3, Q4, Q5, and Q6 are connected in series are connected between the power supply line P and the power supply line N, so that DC
  • the connection midpoints connected in parallel to the power supply 10 and connecting each pair of switching elements Q1 and Q2, Q3 and Q4, Q5 and Q6, and the three-phase input portion of the three-phase AC load 20 are electrically connected to each other. It is connected. That is, in the inverter 30 of this embodiment, the upper arm circuit 31 and the lower arm circuit 32, the upper arm circuit 33 and the lower arm circuit 34, and the upper arm circuit 35 and the lower arm circuit 36 are connected in series, respectively.
  • connection intermediate point between the upper arm circuit 31 and the lower arm circuit 32 is connected to the U phase of the AC load 20
  • the connection intermediate point between the upper arm circuit 33 and the lower arm circuit 34 is connected to the V phase of the AC load 20
  • a connection intermediate point between the upper arm circuit 35 and the lower arm circuit 36 and the W phase of the AC load 20 are connected.
  • the controller 40 alternately turns ON / OFF the upper arm circuit 31 and the lower arm circuit 32 to increase / decrease the ON time ratio and control the output from the inverter 30.
  • the upper arm circuit 31 includes a switching element Q1, a diode D1, and a gate drive circuit.
  • the drain electrode of the switching element Q1 is connected to the cathode terminal of the diode D1, and the source electrode of the switching element Q1 is connected to the anode terminal of the diode D1.
  • the gate electrode of the switching element Q1 is connected to the controller 40 through a gate drive circuit.
  • the other terminals of the upper arm circuit and the lower arm circuits 32 to 36 are also connected to the controller 40 with the same configuration.
  • the switching elements Q1 to Q6 of the present embodiment are wide gap semiconductor devices (SiC devices, GaN devices, diamond devices) or Si devices, such as junction field effect transistors (JFETs), MOSFETs or insulated gate bipolars.
  • a transistor IGBT
  • FRD high-speed rectifying element, Fast Recovery Diode
  • SBD Schottky barrier diode, Schottky Barrier Diode
  • the inverter 30 of this embodiment has three smoothing capacitors 37, 38, and 39, and each of the smoothing capacitors 37 to 39 is paired between the power supply line P and the power supply line N and the lower arm circuit and the lower arm.
  • the circuits 31 and 32, 33 and 34, and 35 and 36 are connected in parallel, respectively.
  • three smoothing capacitors 37 to 39 are provided, one for each of the three upper arm circuits and the lower arm circuits 31 and 32, 33 and 34, and 35 and 36 that form a pair.
  • one or two smoothing capacitors may be provided by increasing the capacitor capacity, or four or more smoothing capacitors may be provided by reducing the capacitor capacity. It can select suitably according to the layout of the inverter 30 mentioned later.
  • FIG. 2A is a plan view (upper view) and a front view (lower view) showing the smoothing capacitor module 41 of the present embodiment
  • FIG. 2B is a plan view (upper view) and a front view (lower view) of the switching module 52 of the present embodiment. It is.
  • the main bodies of the smoothing capacitors 37 to 39, the main bodies of the switching elements Q1 to Q6, the main bodies of the diodes D1 to D6, and the internal wiring, which are components, are external to the package 42 and 53. Is not visible, but is shown in a perspective view using a circuit symbol for convenience in each plan view.
  • the smoothing capacitor module 41 of the present embodiment incorporates three smoothing capacitors 37, 38, and 39 as shown in FIG. 2A, and has a substantially rectangular parallelepiped packaging with wiring as shown in FIG. 2A inside. Consists of the body. As shown in the figure, at the left end of the upper surface of the package 42, a P terminal portion 43 connected to the plus terminal of the DC power source 10 and an N terminal portion 44 connected to the minus terminal of the DC power source 10 are provided. Is provided so as to be exposed to the outside of the package 42. Further, on the right end portion of the upper surface of the package 42, the capacitor side for connecting the smoothing capacitors 37, 38, and 39 to the upper and lower arm circuits 31 and 32, 33 and 34, 35 and 36 which form a pair.
  • High voltage connection terminal portions 45 to 50 are provided so as to be exposed to the outside of the package 42. Also, a mounting portion 51 is provided at the bottom of the package 42, and the smoothing capacitor module 41 is fixed to a housing 65 described later by inserting and tightening a bolt through the through hole.
  • the switching module 52 of the present embodiment incorporates six switching elements Q1 to Q6 and six diodes D1 to D6, and has a substantially rectangular parallelepiped shape with wiring as shown in FIG. 2B inside. It consists of a packaging body. As shown in the figure, the upper and lower arm circuits 31 and 32, 33 and 34, 35 and 36, and smoothing capacitors 37, 38 and 39, which are paired, are formed at the left end of the upper surface of the package 53. Switching-side high-voltage connection terminal portions 54 to 59 for connecting are connected to the outside of the package 53.
  • a U terminal portion 60 connected to the U phase of the AC load 20, a V terminal portion 61 connected to the V phase of the AC load 20, and a W phase of the AC load 20.
  • a W terminal portion 62 to be connected to the outside of the package 53 so as to be exposed to the outside.
  • a mounting portion 63 is provided at the bottom of the package 53, and the switching module 52 is fixed to a housing 65 to be described later by inserting and tightening a bolt through the through hole.
  • Reference numeral 64 indicated by a two-dot chain line in FIG. 2B is a heat sink for releasing heat generated in the switching module 52.
  • capacitor-side high-voltage connection terminal portions 45 to 50 provided at the right end portion of the upper surface of the smoothing capacitor module 41, and switching-side high-voltage connection terminal portions 54 to 59 provided at the left end portion of the upper surface of the switching module 52; are connected in the configuration of the electric circuit diagram shown in FIG. 1, but in this embodiment, the capacitor-side high-voltage connection terminal portions 45 to 50 and the switching-side high-voltage connection terminal portions 54 to 59 formed at substantially opposite positions, that is, 45 and 54, 46 and 55, 47 and 56, 48 and 57, 49 and 58, and 50 and 59, the arrangement position of each high-voltage connection terminal portion is considered.
  • FIG. 3 is a plan view showing the inside of the casing 65 of the inverter 30 of the present embodiment
  • FIG. 4 is a front view of the same.
  • the smoothing capacitor module 41 and the switching module 52 described above are accommodated in a casing 65, and circuit boards 66 and 67 such as a printed circuit board PCB and a printed wiring board PWB constituting the controller 40 are also provided in the casing.
  • the housing 65 of the present embodiment has a substantially rectangular parallelepiped shape, and includes a housing body 65 a that forms the lower portion of the housing 65, and a lid body 65 b that forms the upper portion of the housing 65.
  • the flange portion of the casing body 65a and the flange portion of the lid body 65b are combined and tightened with bolts, nuts, or the like to close the inside.
  • the casing 65 is made of an insulating material.
  • the smoothing capacitor module 41 and the switching module 52 described above are fixed to the bottom of the housing body 65 a.
  • the fixing structure to these housing main bodies 65a is not particularly limited, in the present embodiment, the smoothing capacitor module 41 is attached to each boss portion 68 constituting an attachment portion provided at an appropriate position on the bottom surface of the housing main body 65a.
  • the attachment part 51 and the attachment part 63 of the switching module are aligned and fixed by bolting.
  • the height of the boss portion 68 makes the space between the bottom surface of the package 42 of the smoothing capacitor module 41 and the bottom surface of the housing body 65a, and between the bottom surface of the package 53 of the switching module 52 and the bottom surface of the housing body 65a.
  • a space is formed in each.
  • the smoothing capacitor module 41 and the switching module 52 may be fixed to a rigid substrate, and this substrate may be fixed to the housing body 65a.
  • the bus terminal 69 for connecting to the connector (not shown) of the DC power source 10 shown in FIG. 1 is connected to each of the P terminal portion 43 and the N terminal portion 44 of the smoothing capacitor module 41.
  • 70 are fixed by bolts or the like.
  • six bus bars 71 for electrically connecting the capacitor-side high-voltage connection terminal portions 45 to 50 and the switching-side high-voltage connection terminal portions 54 to 59 of the switching module 52 within the housing 65 are provided.
  • 76 are fixed by bolts or the like.
  • bus bars 77 to 79 for connecting each of the U terminal portion 60, the V terminal portion 61, and the W terminal portion 62 of the switching module 52 to a connector (not shown) of the AC load 20 are fixed with bolts or the like.
  • Bus bars 69 and 70 for connecting to the DC power source 10 and bus bars 77, 78 and 79 for connecting to the AC load 20 are provided so as to be exposed from the inside of the housing 65 to the outside. .
  • Circuit boards 66 and 67 on which various drive circuit components for driving the switching elements Q1 to Q6 are mounted are also accommodated in the housing 65. These circuit boards 66 and 67 constitute the controller 40 shown in FIG. As shown in FIGS. 3 and 4, the circuit boards 66 and 67 of the present embodiment are divided into two parts with sizes to be placed on the upper surfaces of the smoothing capacitor module 41 and the switching module 52, and the boss part 80 is interposed therebetween. The upper surfaces of the smoothing capacitor module 41 and the switching module 52 are fixed by bolts or the like.
  • circuit terminals 81 and 82 for connecting the wiring circuits of the circuit boards 66 and 67 are provided on the upper surfaces of the circuit boards 66 and 67, and these circuit terminals 81 and 82 are electrically connected by a wire harness 83. ing.
  • an input / output terminal 84 for transmitting / receiving command signals and detection signals to / from the controller 40 is provided on the upper surface of one circuit board 66, and the lid 65 b of the housing 65 is provided.
  • the connector 85 and the wire harness 86 provided on the upper surface are electrically connected.
  • the connector 85 is provided on the upper surface of the lid body 65b.
  • the connector 85 may be provided on the side surface of the lid body 65b or the side surface of the housing body 65a.
  • an air-cooled heat sink 64 is provided on the lower surface of the switching module 52.
  • the heat sink 64 is fixed to the lower surface of the switching module 52 by a bolt or the like (not shown), and the heat radiating portion 64a is provided so as to be exposed to the outside through an opening 87 formed on the bottom surface of the housing main body 65a.
  • the heat generated by the switching module 52 can be removed by the heat radiating portion 64a exchanging heat (dissipating heat) with the outside air.
  • a seal member is provided between the opening 87 formed at the bottom of the housing main body 65a and the heat sink 64 so that water and dust from the outside do not enter.
  • the inverter 30 includes the connection portion between the P terminal portion 43 of the smoothing capacitor module 41 and the bus bar 69 connected to the DC power supply 10, and the N terminal portion 44 of the smoothing capacitor module 41.
  • Connection portions with the bus bar 70 connected to the DC power supply 10 are arranged on the upper side of the housing 65.
  • the upper portion of the housing 65 in the present embodiment is 1/3 or more from the bottom of the height dimension of the housing 65 in the vertical direction, as indicated by the alternate long and short dash line in the side view of FIG. An area of 1/2 or more, more preferably 2/3 or more is meant.
  • the inverter 30 is provided with a first connection portion 1 ⁇ / b> C that is a connection portion between the P terminal portion 43 and the N terminal portion 44 of the smoothing capacitor module 41 and the bus bars 69 and 70.
  • the surface 1Fo of the smoothing capacitor module 41 on the side opposite to 1F is disposed on the lower side of the housing 65.
  • the terminal portions 43 and 44 of the smoothing capacitor module 41 are disposed on the upper side, and the main body of the smoothing capacitor module 41 is disposed on the lower side.
  • the surface 2Fo of the module 52 is also disposed on the lower side of the housing 65.
  • the terminal portions 60 to 62 of the switching module 52 are arranged on the upper side
  • the main body of the switching module 52 is arranged on the lower side.
  • the lower side portion of the casing 65 in the present embodiment refers to an area other than the upper side portion of the casing 65 described above, and the casing in the vertical direction as indicated by a dashed line in the side view of FIG.
  • the area below the height dimension of 65 is 1/3 or less, preferably 1/2 or less, more preferably 2/3 or less.
  • the inverter 30 includes a connection portion between the capacitor-side high-voltage connection terminal portions 45 to 50 of the smoothing capacitor module 41 and the switching-side high-voltage connection terminal portions 54 to 59 of the switching module 52 (these connection portions are connected to each other).
  • the third connection portion 3 ⁇ / b> C) is also disposed on the upper portion of the housing 65.
  • the circuit boards 66 and 67 divided into two are arranged on the upper side in the vertical direction above the upper surfaces of the smoothing capacitor module 41 and the switching module 52.
  • the inverter 30 when water enters the housing 65 due to some cause such as the usage environment of the inverter 30, the water is collected at the bottom of the housing 65.
  • the first connection portion 1C, the second connection portion 2C, the third connection portion 3C, and the circuit boards 66 and 67 through which high-voltage power from the DC power supply 10 flows are arranged on the upper portion of the housing 65. It can suppress that these high voltage electric power parts contact water.
  • the smoothing capacitor module 41 and the switching module 52 are assembled to the housing 65, the bus bars 69 to 79 are assembled, the circuit boards 66 and 67 are then assembled, and then the wire harnesses 83 and 86 are assembled.
  • FIG. 5 is a front view showing the inside of the housing 65 of the inverter 30 (power converter) according to the second embodiment of the present invention
  • FIG. 6 is a cross-sectional view showing the heat sink 64 of FIG.
  • the inverter 30 according to the second embodiment is different from the air-cooled inverter 30 according to the first embodiment shown in FIG. Since the other configuration is the same as that of the first embodiment, the description of the configuration is incorporated herein.
  • FIG. 6 is an exploded cross-sectional view showing the water-cooled heat sink 64 of the present embodiment.
  • the heat sink 64 of the present embodiment has a jacket lid 64b in which a heat radiating portion 64a is formed on the lower surface of a flat plate member and an upper surface opened.
  • a cooling jacket 64c having a bottom surface.
  • the heat radiating portion 64a formed on the jacket lid 64b is composed of fins meandering along the lower surface of the jacket lid 64b, and from the state shown in FIG.
  • the cooling water flow path 64d is formed in cooperation with the side surface and the bottom surface of the cooling jacket 64c.
  • One end of the cooling water channel 64d of the cooling jacket 64c is provided with an opening for sucking the cooling water flowing through the cooling water channel, and the other end of the cooling water channel 64d returns the sucked cooling water to the cooling water channel.
  • An opening is provided. Then, as shown in FIG. 5, the cooling water is sucked from the opening at one end of the cooling water flow path by the circulation pump 88 and is circulated to the other opening.
  • the heat sink 64 of this embodiment is a water cooling type, the switching module 52 can be sufficiently cooled even if the vehicle stops and the air cooling capability is low.
  • a seal portion 89 including a gasket such as FIPG (Formed in place gasket) or a rubber gasket is provided on the joint surface between the jacket lid 64b and the cooling jacket 64c. Yes.
  • the seal portion 89 for stopping the cooling water that leaks into the housing 65 is disposed on the lower side of the housing 65.
  • the seal portion 89 is disposed on the lower side of the housing 65, and the first connection portion 1 ⁇ / b> C, the second connection portion 2 ⁇ / b> C, and the third connection portion 3 ⁇ / b> C through which high-voltage power from the DC power supply 10 flows are the housing 65. Since it is arrange
  • FIG. 7 is a front view showing the inside of the housing 65 of the inverter 30 (power converter) according to the third embodiment of the present invention.
  • the inverter 30 according to the third embodiment is different from the inverter 30 according to the first embodiment shown in FIG. 4 in that the drainage portion 90 is provided at the bottom of the housing 65. Since the other configuration is the same as that of the first embodiment, the description of the configuration is incorporated herein.
  • the boss 68 provided at the bottom of the rightmost housing 65 and the attachment 63 of the switching module 52 are different from the drain 90 described later in a direction perpendicular to the paper surface of FIG. Since it is provided at the position, it is indicated by a dotted line.
  • a drain pipe having a L-shaped cross section is attached to the lowermost surface of the bottom (bottom) of the casing 65, and this constitutes the drain 90.
  • the drainage part 90 can be provided at an arbitrary part. Further, a partial lowermost surface may be formed on the bottom surface of the housing 65, and the drainage portion 90 may be provided here.
  • the drainage unit 90 of the present embodiment is disposed on the lower side of the housing 65.
  • the inverter 30 when water enters the housing 65 due to some cause such as the usage environment of the inverter 30, the water is collected at the bottom of the housing 65 and is collected from the drainage section 90.
  • the drainage portion 90 is disposed on the bottom surface of the lower portion of the housing 65, and the first connection portion 1C, the second connection portion 2C, and the second connection portion through which high-voltage power from the DC power supply 10 flows. Since the three connecting portions 3C are arranged on the upper side of the housing 65, it is possible to suppress these high-voltage power portions from coming into contact with water.
  • FIG. 8 is a front view showing the inside of the casing 65 of the inverter 30 (power converter) according to the fourth embodiment of the present invention, which is compared with the air-cooled inverter 30 according to the first embodiment shown in FIG.
  • the configuration of the water-cooled heat sink 64 is different from the configuration having the drainage portion 90 at the bottom of the housing 65. Since the other configuration is the same as that of the first embodiment, the description of the configuration is incorporated herein.
  • the boss 68 provided at the bottom of the rightmost housing 65 and the mounting part 63 of the switching module 52 are different from the drain part 90 described later in the direction perpendicular to the paper surface of FIG. Since it is provided at the position, it is indicated by a dotted line.
  • FIG. 6 is an exploded cross-sectional view showing the water-cooled heat sink 64 of the present embodiment, similar to the second embodiment described above.
  • the heat sink 64 of the present embodiment has a heat radiating portion 64a formed on the lower surface of a flat plate member. And a cooling jacket 64c having an open top surface and a bottom surface.
  • the heat radiating portion 64a formed on the jacket lid 64b is composed of fins meandering along the lower surface of the jacket lid 64b, and from the state shown in FIG.
  • the cooling water flow path 64d is formed in cooperation with the side surface and the bottom surface of the cooling jacket 64c.
  • One end of the cooling water channel 64d of the cooling jacket 64c is provided with an opening for sucking the cooling water flowing through the cooling water channel, and the other end of the cooling water channel 64d returns the sucked cooling water to the cooling water channel.
  • An opening is provided. Then, as shown in FIG. 8, the cooling water is sucked from the opening at one end of the cooling water flow path by the circulation pump 88 and is circulated to the other opening.
  • the heat sink 64 of this embodiment is a water cooling type, the switching module 52 can be sufficiently cooled even if the vehicle stops and the air cooling capability is low.
  • a seal portion 89 including a gasket such as FIPG (Formed in place gasket) or a rubber gasket is provided on the joint surface between the jacket lid 64b and the cooling jacket 64c. Yes.
  • the seal portion 89 for stopping the cooling water that leaks into the housing 65 is disposed on the lower side of the housing 65.
  • the seal portion 89 is disposed on the lower side of the housing 65, and the first connection portion 1 ⁇ / b> C, the second connection portion 2 ⁇ / b> C, and the third connection portion 3 ⁇ / b> C through which high-voltage power from the DC power supply 10 flows are the housing 65. Since it is arrange
  • a drain pipe having a L-shaped cross section is attached to the lowermost surface of the bottom portion (bottom surface) of the housing 65, and this constitutes the drain portion 90.
  • the drainage part 90 can be provided at an arbitrary part. Further, a partial lowermost surface may be formed on the bottom surface of the housing 65, and the drainage portion 90 may be provided here.
  • the drainage unit 90 of the present embodiment is disposed on the lower side of the housing 65. In the inverter 30 of the present embodiment, the drainage part 90 is disposed below the seal part 89 in the vertical direction.
  • the inverter 30 when water enters the housing 65 due to some cause such as a usage environment of the inverter 30 or when water leaks into the housing 65 from the cooling water flow path 64d.
  • the water is collected at the bottom of the housing 65 and discharged from the drainage unit 90 to the outside.
  • the drainage portion 90 is disposed on the bottom surface of the lower side portion of the casing 65, and the first connection portion 1C, the second connection portion 2C, and the third connection portion 3C through which high-voltage power from the DC power supply 10 flows. Since it is arrange
  • the bus bars 69, 70 correspond to input terminals according to the present invention
  • the bus bars 77, 78, 79 correspond to output terminals according to the present invention
  • the P terminal portion 43 and the N terminal portion 44 according to the present invention.
  • the U terminal portion 60, the V terminal portion 61 and the W terminal portion 62 correspond to the first terminal of the switching element according to the present invention
  • the capacitor side high voltage connection terminal portions 45 to 50 correspond to the first terminal of the capacitor.
  • the switching-side high-voltage connection terminal portions 54 to 59 correspond to the second terminal of the switching element according to the present invention.
  • Heat sink 64a ... Heat radiation part 64b ... Jack cover 64c ... Cooling jacket 64d ... Cooling water flow path 65 ... Case 65a ... Case body 65b ... Cover body 66, 67 ... Circuit board 68 ... Boss Portions 69 to 79: Bus bar 80 ... Boss portions 81, 82 ... Circuit terminals 83 ... Wire harness 84 ... In / out Terminal 85 ... Connector 86 ... Wire harness 87 ... Opening part 88 ... Circulating pump 89 ... Seal part 90 ... Drainage part 1C ... First connection part 2C ... Second connection part 3C ... Third connection part 1F ... First connection part 1C Provided surface 1Fo... Surface 2F opposite to surface 1F... Surface 2Fo provided with second connecting portion 2C... Surface opposite to surface 2F

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 スイッチング素子(31~36)及び平滑コンデンサ(37~39)を含む電力変換回路の構成部品が筐体(65)に収容され、前記電力変換回路の入力端子(69,70)に入力された電力を変換して出力端子(77~79)へ出力するインバータ(30)において、前記平滑コンデンサの第1端子(43,44)と前記入力端子(69,70)とが接続された第1接続部(1C)と、前記スイッチング素子の第1端子(60~62)と前記出力端子(77~79)とが接続された第2接続部(2C)は、前記筐体の上側部に配置され、前記平滑コンデンサの前記第1接続部が設けられた面(1F)とは反対側の面(1Fo)と、前記スイッチング素子の前記第2接続部が設けられた面(2F)とは反対側の面(2Fo)は、前記筐体の下側部に配置されている。

Description

電力変換装置
 本発明は、電力変換装置に関するものである。
 SRモータに給電するためのインバータ(電力変換装置)として、水冷機構を有する基板上に平滑用コンデンサとIGBTとを実装し、給電バスバにより電力変換回路を構成することでインバータの構成部品を集積化したものが知られている(特許文献1)。
特開平11-69840号公報
 この種の電力変換装置を電気自動車用走行駆動モータの給電・充電に適用する場合には、構成部品を保護するために筐体に収容する必要があり、筐体内に浸入した水による影響を抑制しなければならない。しかしながら、上記従来技術はこうした車両への搭載が考慮されていないため、筐体内に浸入した水が電力変換装置の構成部品に悪影響を与えるおそれがある。
 本発明が解決しようとする課題は、筐体内に水が浸入しても構成部品への影響を抑制することができる電力変換装置を提供することである。
 本発明は、スイッチング素子と平滑コンデンサを含む構成部品を筐体に収容した電力変換装置において、平滑コンデンサと入力端子との第1接続部及びスイッチング素子と出力端子との第2接続部を、少なくとも筐体の上側部に配置し、平滑コンデンサの第1接続部とは反対側の面と、スイッチング素子の第2接続部とは反対側の面とを、筐体の下側部に配置することによって上記課題を解決する。
 本発明によれば、筐体内に水が浸入すると筐体の底部に集約するが、水によって影響を受ける第1接続部及び第2接続部が少なくとも筐体の上側部に配置されているので、これらの部品が水に接触するのを抑制することができる。
本発明に係る電力変換装置の一実施の形態を適用したモータ制御システムを示す電気回路図である。 本発明に係る電力変換装置の一実施の形態に含まれる平滑コンデンサモジュールを示す平面図及び正面図である。 本発明に係る電力変換装置の一実施の形態に含まれるスイッチングモジュールを示す平面図及び正面図である。 本発明に係る電力変換装置の一実施の形態の筐体内部を示す平面図である。 本発明に係る電力変換装置の一実施の形態の筐体内部を示す正面図である。 本発明に係る電力変換装置の他の実施の形態の筐体内部を示す正面図である。 図5のヒートシンクを示す断面図である。 本発明に係る電力変換装置のさらに他の実施の形態の筐体内部を示す正面図である。 本発明に係る電力変換装置のさらに他の実施の形態の筐体内部を示す正面図である。
 図1は、本発明に係る電力変換装置を直流-三相交流変換装置(以下、インバータ30という)として具現化したものをモータ制御システム1に適用した実施形態を示す電気回路図である。詳細な図示は省略するが、本実施形態のモータ制御システム1は、電気自動車の走行駆動装置のほか、交流無停電電源装置等にも適用することができる。本実施形態のモータ制御システム1を電気自動車、ハイブリッド車両、燃料電池自動車に適用する場合は、図1に示す三相の交流負荷20が走行駆動用モータに相当し、二次電池などで構成される直流電源10が走行駆動用バッテリに相当する。
 本実施形態のモータ制御システム1は、直流電源10と、三相の交流負荷20と、直流電源10の直流電力を三相交流電力に変換するインバータ30とを備える。直流電源10は、たとえばリチウムイオン電池などの二次電池、太陽電池、燃料電池、PFC(力率改善,Power factor correction)コンバータなどで構成することができる。交流負荷20に回生機能がある場合には、交流負荷20の交流電力をインバータ30により直流電力に変換し、直流電源10を充電するように構成してもよい。
 インバータ30は、上アーム回路31,33,35と、下アーム回路32,34,36と、平滑コンデンサ37,38,39と、コントローラ40とを含み、直流電源10の直流電力を三相交流電力に変換して、これを三相の交流負荷20に供給する。上アーム回路31,33,35は、パワーデバイスとしてのスイッチング素子Q1、Q3、Q5と、ダイオードD1、D3、D5とをそれぞれ並列に接続した回路を主要な構成とする。下アーム回路32,34,36は、同じくパワーデバイスとしてのスイッチング素子Q2、Q4、Q6と、ダイオードD2、D4、D6とをそれぞれ並列に接続した回路を主要な構成とする。
 本実施形態では、2つのスイッチング素子Q1とQ2,Q3とQ4,Q5とQ6をそれぞれ直列に接続した3対の回路が、電源線P及び電源線Nとの間に接続されることにより、直流電源10に並列に接続され、各対のスイッチング素子Q1とQ2,Q3とQ4,Q5とQ6を接続する各接続中間点と、三相の交流負荷20の三相入力部とがそれぞれ電気的に接続されている。すなわち本実施形態のインバータ30は、上アーム回路31と下アーム回路32、上アーム回路33と下アーム回路34、上アーム回路35と下アーム回路36が、それぞれ対になって直列に接続され、上アーム回路31と下アーム回路32との接続中間点と交流負荷20のU相が接続され、上アーム回路33と下アーム回路34との接続中間点と交流負荷20のV相が接続され、上アーム回路35と下アーム回路36との接続中間点と交流負荷20のW相が接続されている。
 これら上アーム回路及び下アーム回路31~36は、コントローラ40により高周波でスイッチング制御される。コントローラ40は、上アーム回路31及び下アーム回路32を交互にON/OFFして、オン時間比率を増減させて、インバータ30からの出力を制御する。上アーム回路31は、スイッチング素子Q1、ダイオードD1及びゲート駆動回路で構成され、スイッチング素子Q1のドレイン電極はダイオードD1のカソード端子に接続され、スイッチング素子Q1のソース電極はダイオードD1のアノード端子に接続されている。またスイッチング素子Q1のゲート電極は、ゲート駆動回路を介してコントローラ40に接続されている。他の上アーム回路及び下アーム回路32~36の各端子も同様の構成でコントローラ40に接続されている。
 本実施形態のスイッチング素子Q1~Q6としては、ワイドギャップ半導体デバイス(SiCデバイス、GaNデバイス、ダイヤモンドデバイス)またはSiデバイスであって、たとえば、接合型電界効果トランジスタ(JFET)、MOSFET又は絶縁ゲートパイポーラトランジスタ(IGBT)を用いることができる。また本実施形態の各ダイオードD1~D6としては、たとえばFRD(高速整流素子,Fast Recovery Diode)、SBD(ショットキーバリアダイオード,Schottky Barrier Diode)などを用いることができる。
 本実施形態のインバータ30は、3つの平滑コンデンサ37,38,39を有し、各平滑コンデンサ37~39は、電源線P及び電源線Nとの間に、対をなす上アーム回路と下アーム回路31と32,33と34,35と36に対してそれぞれ並列に接続されている。なお、本実施形態のインバータ30では、対をなす3つの上アーム回路と下アーム回路31と32,33と34,35と36のそれぞれに対して1つずつ、都合3つの平滑コンデンサ37~39を設けたが、コンデンサ容量を大きくすることで1つまたは2つの平滑コンデンサとしてもよいし、コンデンサ容量を小さくすることで4つ以上の平滑コンデンサとしてもよい。後述するインバータ30のレイアウトに応じて適宜選択することができる。
 以上が本実施形態のインバータ30の電気的構成であるが、次にインバータ30の構成部品の外形形状やレイアウトその他の機械的構造について説明する。以下の説明において「上下」又は「鉛直」といった方向を示す場合は、本実施形態のインバータ30が車両や無停電電源装置に装着された状態における方向を意味するものとする。図2Aは本実施形態の平滑コンデンサモジュール41を示す平面図(上図)及び正面図(下図)、図2Bは本実施形態のスイッチングモジュール52を示す平面図(上図)及び正面図(下図)である。図2A,図2Bともに、構成部品である平滑コンデンサ37~39の本体、スイッチング素子Q1~Q6の本体及びダイオードD1~D6の本体並びに内部配線については、パッケージ42,53の内部にあるため外部からは視認できないが、それぞれの平面図において便宜的に回路記号を用いた透視図で示す。
 本実施形態の平滑コンデンサモジュール41は、図2Aに示すように3つの平滑コンデンサ37,38,39の本体を内蔵し、内部において図2Aに示すとおりの配線がされた、略直方体形状のパッケージング体で構成されている。そして同図に示すように、パッケージ42の上面の左側端部には、直流電源10のプラス端子に接続されるP端子部43と、直流電源10のマイナス端子に接続されるN端子部44とが、パッケージ42の外部に露出するように設けられている。またパッケージ42の上面の右側端部には、平滑コンデンサ37,38,39と、対をなす上アーム回路及び下アーム回路31と32,33と34,35と36とを接続するためのコンデンサ側高圧接続端子部45~50が、パッケージ42の外部に露出するように設けられている。また、パッケージ42の底部には取付部51が設けられ、その通孔にボルトを挿通させて締め付けることにより、平滑コンデンサモジュール41を後述する筐体65に固定するようになっている。
 本実施形態のスイッチングモジュール52は、図2Bに示すように6つのスイッチング素子Q1~Q6と6つのダイオードD1~D6を内蔵し、内部において図2Bに示すとおりの配線がされた、略直方体形状のパッケージング体で構成されている。そして同図に示すように、パッケージ53の上面の左側端部には、対をなす上アーム回路及び下アーム回路31と32,33と34,35と36と、平滑コンデンサ37,38,39とを接続するためのスイッチング側高圧接続端子部54~59が、パッケージ53の外部に露出するように設けられている。またパッケージ53の上面の右側端部には、交流負荷20のU相に接続されるU端子部60と、交流負荷20のV相に接続されるV端子部61と、交流負荷20のW相に接続されるW端子部62とが、パッケージ53の外部に露出するように設けられている。さらに、パッケージ53の底部には取付部63が設けられ、その通孔にボルトを挿通させて締め付けることにより、スイッチングモジュール52を後述する筐体65に固定するようになっている。図2Bに二点鎖線で示す符号64はスイッチングモジュール52で発生する熱を放出するためのヒートシンクである。
 なお、平滑コンデンサモジュール41の上面の右側端部に設けられたコンデンサ側高圧接続端子部45~50と、スイッチングモジュール52の上面の左側端部に設けられたスイッチング側高圧接続端子部54~59とは、図1に示す電気回路図の構成で接続されるが、本実施形態ではほぼ対向する位置に形成されたコンデンサ側高圧接続端子部45~50とスイッチング側高圧接続端子部54~59、すなわち45と54,46と55,47と56,48と57,49と58,50と59とをそれぞれ接続するように各高圧接続端子部の配置位置が考慮されている。
 以上の構成が本発明の実施形態に共通するものであり、以下に説明する筐体65の内部における配置構造が各実施形態により相違するので実施形態ごとに説明する。
《第1実施形態》
 図3は、本実施形態のインバータ30の筐体65の内部を示す平面図、図4は同じく正面図である。本実施形態のインバータ30は、上述した平滑コンデンサモジュール41とスイッチングモジュール52が筐体65に収容され、さらにコントローラ40を構成するプリント回路基板PCBやプリント配線基板PWBなどの回路基板66,67も筐体65内に収容されている。図3,図4に示すように本実施形態の筐体65は、略直方体形状とされ、筐体65の下部を構成する筐体本体65aと、筐体65の上部を構成する蓋体65bとを有し、これら筐体本体65aのフランジ部と蓋体65bのフランジ部とを合わせ、ボルト及びナット等で締め付けることで内部が閉塞される。筐体65は、絶縁性材料により構成されている。
 筐体本体65aの底部には、図4に示すように、上述した平滑コンデンサモジュール41とスイッチングモジュール52が固定されている。これらの筐体本体65aへの固定構造は特に限定されないが、本実施形態では、筐体本体65aの底面の適宜箇所に設けられた取付部を構成する各ボス部68に、平滑コンデンサモジュール41の取付部51とスイッチングモジュールの取付部63をそれぞれ合わせ、ボルト締めすることで固定する。これにより、ボス部68の高さ分だけ平滑コンデンサモジュール41のパッケージ42の底面と筐体本体65aの底面との間、及びスイッチングモジュール52のパッケージ53の底面と筐体本体65aの底面との間にそれぞれ空間が形成されることになる。なお、平滑コンデンサモジュール41とスイッチングモジュール52を剛性のある基板に固定し、この基板を筐体本体65aに固定してもよい。
 図3及び図4に示すように、平滑コンデンサモジュール41のP端子部43と、N端子部44のそれぞれには、図1に示す直流電源10のコネクタ(不図示)と接続するためのバスバ69,70がボルト等により固定されている。また、コンデンサ側高圧接続端子部45~50と、スイッチングモジュール52のスイッチング側高圧接続端子部54~59との間には、これらを筐体65内で電気的に接続するための6つのバスバ71~76がそれぞれボルト等により固定されている。さらにスイッチングモジュール52のU端子部60、V端子部61及びW端子部62のそれぞれには、これらそれぞれを交流負荷20のコネクタ(不図示)と接続するためのバスバ77~79がボルト等により固定されている。直流電源10と接続するためのバスバ69,70と、交流負荷20と接続するためのバスバ77,78,79は、筐体65の内部から外部へ露出するように延在して設けられている。
 スイッチング素子Q1~Q6を駆動する各種の駆動回路部品が実装された回路基板66,67も筐体65の内部に収容されている。これら回路基板66,67が図1に示すコントローラ40を構成する。本実施形態の回路基板66,67は、図3及び図4に示すように、平滑コンデンサモジュール41とスイッチングモジュール52のそれぞれの上面に載置される大きさで2分割され、ボス部80を介して平滑コンデンサモジュール41とスイッチングモジュール52のそれぞれの上面にボルト等により固定されている。また各回路基板66,67の上面には、各回路基板66,67の配線回路を接続する回路端子81,82が設けられ、これら回路端子81,82は、ワイヤーハーネス83により電気的に接続されている。
 さらに、図4に示すように一方の回路基板66の上面には、コントローラ40との間で指令信号や検出信号を送受信するための入出力端子84が設けられ、筐体65の蓋体65bの上面に設けられたコネクタ85とワイヤーハーネス86により電気的に接続されている。このコネクタ85に、図外の車両コントローラや無停電電源装置のコントローラのコネクタが接続されることにより、本実施形態のインバータ30が制御されることになる。なお、本実施形態ではコネクタ85を蓋体65bの上面に設けたが、蓋体65bの側面や筐体本体65aの側面に設けてもよい。
 図4に示すように、本実施形態のインバータ30では、スイッチングモジュール52の下面に空冷式のヒートシンク64が設けられている。このヒートシンク64は、図示しないボルト等によりスイッチングモジュール52の下面に固定され、その放熱部64aが筐体本体65aの底面に開設された開口部87から外部に露出するように設けられている。そして、放熱部64aが外気と熱交換(放熱)することで、スイッチングモジュール52で発生した熱を抜熱することができる。なお、図示は省略するが、筐体本体65aの底部に形成した開口部87とヒートシンク64との間には、外部からの水や塵埃が浸入しないようにシール部材が設けられている。
 以上のように、第1実施形態に係るインバータ30は、平滑コンデンサモジュール41のP端子部43と直流電源10に接続されるバスバ69との接続部、及び平滑コンデンサモジュール41のN端子部44と直流電源10に接続されるバスバ70との接続部(これらの接続部を第1接続部1Cという)は、筐体65の上部側に配置されている。また、スイッチングモジュール52のU端子部60と交流負荷20のU相に接続されるバスバ77との接続部、スイッチングモジュール52のV端子部61と交流負荷20のV相に接続されるバスバ78との接続部、及びスイッチングモジュール52のW端子部62と交流負荷20のW相に接続されるバスバ79との接続部(これらの接続部を第2接続部2Cという)も、筐体65の上側部に配置されている。本実施形態でいう筐体65の上側部とは、図4の側面図に一点鎖線でその境界を示すように、鉛直方向において筐体65の高さ寸法の下から1/3以上、好ましくは1/2以上、より好ましくは2/3以上の領域をいうものとする。
 これに対して、第1実施形態に係るインバータ30は、平滑コンデンサモジュール41のP端子部43及びN端子部44とバスバ69,70との接続部である第1接続部1Cが設けられた面1Fとは反対側の平滑コンデンサモジュール41の面1Foは、筐体65の下側部に配置されている。換言すれば、平滑コンデンサモジュール41の端子部43,44が上側部に配置され、平滑コンデンサモジュール41の本体が下側部に配置されている。また、スイッチングモジュール52のU端子部60,V端子部61及びW端子部62とバスバ77,78,79との接続部である第2接続部2Cが設けられた面2Fとは反対側のスイッチングモジュール52の面2Foも、筐体65の下側部に配置されている。換言すれば、スイッチングモジュール52の端子部60~62が上側部に配置され、スイッチングモジュール52の本体が下側部に配置されている。本実施形態でいう筐体65の下側部とは、上述した筐体65の上側部以外の領域をいい、図4の側面図に一点鎖線でその境界を示すように、鉛直方向において筐体65の高さ寸法の下から1/3以下、好ましくは1/2以下、より好ましくは2/3以下の領域をいうものとする。
 また第1実施形態に係るインバータ30は、平滑コンデンサモジュール41のコンデンサ側高圧接続端子部45~50と、スイッチングモジュール52のスイッチング側高圧接続端子部54~59との接続部(これらの接続部を第3接続部3Cという)も、筐体65の上側部に配置されている。さらに、第1実施形態に係るインバータ30は、2分割された回路基板66,67は、平滑コンデンサモジュール41とスイッチングモジュール52の上面より鉛直上方向の上側部に配置されている。
 以上のことから、第1実施形態に係るインバータ30において、インバータ30の使用環境など何らかの原因によって筐体65内に水が浸入した場合に、当該水は筐体65の底部に集約されるが、本実施形態では直流電源10からの高圧電力が流れる第1接続部1C、第2接続部2C及び第3接続部3Cや回路基板66,67が筐体65の上側部に配置されているので、これらの高圧電力部分が水に接触するのを抑制することができる。また、インバータ30を組み立てる場合において、筐体65に平滑コンデンサモジュール41とスイッチングモジュール52を組み付け、次いでバスバ69~79を組み付け、次いで回路基板66,67を組み付け、次いでワイヤーハーネス83,86を組み付けるといった、構成部品を下側から順に組み付けるという工程を採用することで、組み付け作業性を格段に向上させることができる。
《第2実施形態》
 図5は、本発明の第2実施形態に係るインバータ30(電力変換装置)の筐体65の内部を示す正面図、図6は図5のヒートシンク64を示す断面図である。この第2実施形態に係るインバータ30は、図4に示す第1実施形態に係る空冷式のインバータ30と比較して水冷式のヒートシンク64である構成が相違する。その他の構成については第1実施形態と同じであるため、その構成の説明をここに援用する。
 図6は本実施形態の水冷式のヒートシンク64を示す分解断面図であり、本実施形態のヒートシンク64は、平板状部材の下面に放熱部64aが形成されたジャケット蓋64bと、上面が開口し底面を有する冷却ジャケット64cとを備える。ジャケット蓋64bに形成された放熱部64aは、図6の断面図では詳細な図示を省略するが、ジャケット蓋64bの下面に沿って蛇行して形成されたフィンからなり、図6に示す状態からジャケット蓋64bを冷却ジャケット64cに被せて固定することで、冷却ジャケット64cの側面及び底面と協働して冷却水流路64dを形成する。冷却ジャケット64cの冷却水流路64dの一端には、当該冷却水流路を流れる冷却水を吸引する開口部が設けられ、冷却水流路64dの他端には、吸引した冷却水を冷却水流路に戻す開口部が設けられている。そして、図5に示すように、循環ポンプ88によって冷却水流路の一端の開口部から冷却水を吸引し、他方の開口部へ循環させる。このように、本実施形態のヒートシンク64は水冷式であることから、車両が停車するなどして空冷能力が低くてもスイッチングモジュール52を十分に冷却することができる。
 ただし、図5に示すように水冷式のヒートシンク64をインバータ30の筐体65の内部に収容すると、冷却水流路64dを流れる冷却水が筐体65の内部に漏洩した場合に、インバータの構成部品に悪影響を与える可能性がある。このため、本実施形態の水冷式のヒートシンク64では、ジャケット蓋64bと冷却ジャケット64cとの接合面に、FIPG(Formed in place gasket)などのガスケットやゴムガスケット等を含むシール部89が設けられている。そして、本実施形態のインバータ30では、筐体65内へ漏洩する冷却水を止水するためのシール部89が筐体65の下側部に位置するように配置されている。
 したがって、第2実施形態に係るインバータ30において、インバータ30の使用環境など何らかの原因によってヒートシンク64の冷却水が筐体65内に漏洩した場合に当該水は筐体65の底部に集約されるが、本実施形態ではシール部89を筐体65の下側部に配置し、直流電源10からの高圧電力が流れる第1接続部1C、第2接続部2C及び第3接続部3Cが筐体65の上側部に配置されているので、これらの高圧電力部分が水に接触するのを抑制することができる。
《第3実施形態》
 図7は、本発明の第3実施形態に係るインバータ30(電力変換装置)の筐体65の内部を示す正面図である。この第3実施形態に係るインバータ30は、図4に示す第1実施形態に係るインバータ30と比較して筐体65の底部に排水部90を有する構成が相違する。その他の構成については第1実施形態と同じであるため、その構成の説明をここに援用する。なお図7において、向かって右端の筐体65の底部に設けられたボス部68及びスイッチングモジュール52の取付部63は、後述する排水部90とは同図の紙面に垂直な方向に対して異なる位置に設けられているので点線で示すこととする。
 本実施形態のインバータ30では、筐体65の底部(底面)の最下面に断面がL字状に形成された排水管が装着され、これが排水部90を構成する。筐体65の底面が全くの平板である場合は任意の部位に排水部90を設けることができる。また筐体65の底面に部分的な最下面を形成し、ここに排水部90を設けてもよい。本実施形態の排水部90は筐体65の下側部に配置されることになる。
 このように、第3実施形態に係るインバータ30において、インバータ30の使用環境など何らかの原因によって筐体65内に水が浸入した場合に当該水は筐体65の底部に集約して排水部90から外部へ排出され、しかも、本実施形態では排水部90が筐体65の下側部の底面に配置され、直流電源10からの高圧電力が流れる第1接続部1C、第2接続部2C及び第3接続部3Cが筐体65の上側部に配置されているので、これらの高圧電力部分が水に接触するのを抑制することができる。
《第4実施形態》
 図8は、本発明の第4実施形態に係るインバータ30(電力変換装置)の筐体65の内部を示す正面図であり、図4に示す第1実施形態に係る空冷式のインバータ30と比較して、水冷式のヒートシンク64である構成と、筐体65の底部に排水部90を有する構成が相違する。その他の構成については第1実施形態と同じであるため、その構成の説明をここに援用する。なお図8において、向かって右端の筐体65の底部に設けられたボス部68及びスイッチングモジュール52の取付部63は、後述する排水部90とは同図の紙面に垂直な方向に対して異なる位置に設けられているので点線で示すこととする。
 図6は、上述した第2実施形態と同様に、本実施形態の水冷式のヒートシンク64を示す分解断面図であり、本実施形態のヒートシンク64は、平板状部材の下面に放熱部64aが形成されたジャケット蓋64bと、上面が開口し底面を有する冷却ジャケット64cとを備える。ジャケット蓋64bに形成された放熱部64aは、図6の断面図では詳細な図示を省略するが、ジャケット蓋64bの下面に沿って蛇行して形成されたフィンからなり、図6に示す状態からジャケット蓋64bを冷却ジャケット64cに被せて固定することで、冷却ジャケット64cの側面及び底面と協働して冷却水流路64dを形成する。冷却ジャケット64cの冷却水流路64dの一端には、当該冷却水流路を流れる冷却水を吸引する開口部が設けられ、冷却水流路64dの他端には、吸引した冷却水を冷却水流路に戻す開口部が設けられている。そして、図8に示すように、循環ポンプ88によって冷却水流路の一端の開口部から冷却水を吸引し、他方の開口部へ循環させる。このように、本実施形態のヒートシンク64は水冷式であることから、車両が停車するなどして空冷能力が低くてもスイッチングモジュール52を十分に冷却することができる。
 ただし、図8に示すように水冷式のヒートシンク64をインバータ30の筐体65の内部に収容すると、冷却水流路64dを流れる冷却水が筐体65の内部に漏洩した場合に、インバータの構成部品に悪影響を与える可能性がある。このため、本実施形態の水冷式のヒートシンク64では、ジャケット蓋64bと冷却ジャケット64cとの接合面に、FIPG(Formed in place gasket)などのガスケットやゴムガスケット等を含むシール部89が設けられている。そして、本実施形態のインバータ30では、筐体65内へ漏洩する冷却水を止水するためのシール部89が筐体65の下側部に位置するように配置されている。
 したがって、第4実施形態に係るインバータ30において、インバータ30の使用環境など何らかの原因によってヒートシンク64の冷却水が筐体65内に漏洩した場合に当該水は筐体65の底部に集約されるが、本実施形態ではシール部89を筐体65の下側部に配置し、直流電源10からの高圧電力が流れる第1接続部1C、第2接続部2C及び第3接続部3Cが筐体65の上側部に配置されているので、これらの高圧電力部分が水に接触するのを抑制することができる。
 また、本実施形態のインバータ30では、筐体65の底部(底面)の最下面に断面がL字状に形成された排水管が装着され、これが排水部90を構成する。筐体65の底面が全くの平板である場合は任意の部位に排水部90を設けることができる。また筐体65の底面に部分的な最下面を形成し、ここに排水部90を設けてもよい。本実施形態の排水部90は筐体65の下側部に配置されることになる。本実施形態のインバータ30では、排水部90はシール部89より鉛直方向の下側に配置されている。
 このように、第4実施形態に係るインバータ30において、インバータ30の使用環境など何らかの原因によって筐体65内に水が浸入した場合又は冷却水流路64dから筐体65内に水が漏えいした場合に、当該水は筐体65の底部に集約して排水部90から外部へ排出される。しかも、本実施形態では排水部90が筐体65の下側部の底面に配置され、直流電源10からの高圧電力が流れる第1接続部1C、第2接続部2C及び第3接続部3Cが筐体65の上側部に配置されているので、これらの高圧電力部分が水に接触するのを抑制することができる。
 上記バスバ69,70は本発明に係る入力端子に相当し、上記バスバ77,78,79は本発明に係る出力端子に相当し、上記P端子部43及びN端子部44は本発明に係る平滑コンデンサの第1端子に相当し、上記U端子部60,V端子部61及びW端子部62は本発明に係るスイッチング素子の第1端子に相当し、上記コンデンサ側高圧接続端子部45~50は本発明に係る平滑コンデンサの第2端子に相当し、上記スイッチング側高圧接続端子部54~59は本発明に係るスイッチング素子の第2端子に相当する。
1…モータ制御システム
10…直流電源
20…交流負荷
30…インバータ(電力変換装置)
31,33,35…上アーム回路
32,34,36…下アーム回路
Q1~Q6…スイッチング素子
D1~D6…ダイオード
37,38,39…平滑コンデンサ
40…コントローラ
41…平滑コンデンサモジュール
42…パッケージ
43…P端子部
44…N端子部
45~50…コンデンサ側高圧接続端子部
51…取付部
52…スイッチングモジュール
53…パッケージ
54~59…スイッチング側高圧接続端子部
60…U端子部
61…V端子部
62…W端子部
63…取付部
64…ヒートシンク
64a…放熱部
64b…ジャケット蓋
64c…冷却ジャケット
64d…冷却水流路
65…筐体
65a…筐体本体
65b…蓋体
66,67…回路基板
68…ボス部
69~79…バスバ
80…ボス部
81,82…回路端子
83…ワイヤーハーネス
84…入出力端子
85…コネクタ
86…ワイヤーハーネス
87…開口部
88…循環ポンプ
89…シール部
90…排水部
1C…第1接続部
2C…第2接続部
3C…第3接続部
1F…第1接続部1Cが設けられた面
1Fo…面1Fの反対側の面
2F…第2接続部2Cが設けられた面
2Fo…面2Fの反対側の面

Claims (6)

  1.  スイッチング素子及び平滑コンデンサを含む電力変換回路の構成部品が筐体に収容され、前記電力変換回路の入力端子に入力された電力を変換して出力端子へ出力する電力変換装置において、
     前記平滑コンデンサの第1端子と前記入力端子とが接続された第1接続部と、前記スイッチング素子の第1端子と前記出力端子とが接続された第2接続部は、前記筐体の上側部に配置され、
     前記平滑コンデンサの前記第1接続部が設けられた面とは反対側の面と、前記スイッチング素子の前記第2接続部が設けられた面とは反対側の面は、前記筐体の下側部に配置されている電力変換装置。
  2.  前記平滑コンデンサの第2端子と前記スイッチング素子の第2端子が接続された第3接続部は、前記筐体の上側部に配置されている請求項1に記載の電力変換装置。
  3.  前記電力変換回路の構成部品は、前記スイッチング素子を駆動する駆動回路部品が実装された回路基板を含み、
     前記回路基板は、前記平滑コンデンサと前記スイッチング素子より鉛直上方向の前記上側部に配置されている請求項1又は2に記載の電力変換装置。
  4.  冷却水が流れる冷却水流路と当該冷却水流路からの前記冷却水の漏洩を止水するシール部とを有し、前記スイッチング素子を冷却するヒートシンクをさらに備え、
     前記シール部は、前記筐体の下側部に配置されている請求項1~3のいずれか一項に記載の電力変換装置。
  5.  前記筐体の内部に浸入した水を外部へ排出する排水部をさらに備え、
     前記排水部は、前記筐体の下側部に配置されている請求項4に記載の電力変換装置。
  6.  前記排水部は、前記シール部より鉛直方向の下側に配置されている請求項5に記載の電力変換装置。
PCT/JP2014/070880 2013-10-09 2014-08-07 電力変換装置 WO2015052984A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013211649 2013-10-09
JP2013-211649 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015052984A1 true WO2015052984A1 (ja) 2015-04-16

Family

ID=52812805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070880 WO2015052984A1 (ja) 2013-10-09 2014-08-07 電力変換装置

Country Status (1)

Country Link
WO (1) WO2015052984A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032132A1 (ja) * 2018-08-10 2020-02-13 株式会社デンソー 電力変換装置
JP2020028215A (ja) * 2018-08-10 2020-02-20 株式会社デンソー 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050685A (ja) * 2004-07-30 2006-02-16 Nissan Motor Co Ltd インバータ装置
JP2008148530A (ja) * 2006-12-13 2008-06-26 Toshiba Corp インバータ装置
JP2008295238A (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp 電力変換装置
JP2009219270A (ja) * 2008-03-11 2009-09-24 Hitachi Ltd 電力変換装置
JP2013046481A (ja) * 2011-08-23 2013-03-04 Hitachi Koki Co Ltd 波形変換機およびそれを備える電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050685A (ja) * 2004-07-30 2006-02-16 Nissan Motor Co Ltd インバータ装置
JP2008148530A (ja) * 2006-12-13 2008-06-26 Toshiba Corp インバータ装置
JP2008295238A (ja) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp 電力変換装置
JP2009219270A (ja) * 2008-03-11 2009-09-24 Hitachi Ltd 電力変換装置
JP2013046481A (ja) * 2011-08-23 2013-03-04 Hitachi Koki Co Ltd 波形変換機およびそれを備える電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032132A1 (ja) * 2018-08-10 2020-02-13 株式会社デンソー 電力変換装置
JP2020028215A (ja) * 2018-08-10 2020-02-20 株式会社デンソー 電力変換装置
JP7036092B2 (ja) 2018-08-10 2022-03-15 株式会社デンソー 電力変換装置
US11563384B2 (en) 2018-08-10 2023-01-24 Denso Corporation Capacitor device

Similar Documents

Publication Publication Date Title
JP6137334B2 (ja) 電力変換装置
US10128770B2 (en) Converter and electric power conversion apparatus
US8422230B2 (en) Power converter
KR102131684B1 (ko) 차량 탑재용 전력 변환 장치
US9526194B2 (en) Power conversion device with flow conduits for coolant
US7333331B2 (en) Power unit device and power converter device
CN107863891B (zh) 电力转换装置
US10374523B2 (en) Power conversion device
JP5866103B2 (ja) 電動車両用電力変換装置
EP3057216A1 (en) Dc-dc converter device
GB2539761A (en) Power converter and railway vehicle
JP2015100223A (ja) 電力変換装置
US20210273575A1 (en) Power conversion device
JP5482406B2 (ja) 電力変換装置
JP2018085792A (ja) 半導体装置
WO2015052984A1 (ja) 電力変換装置
JP5682550B2 (ja) 電力変換装置
JP7052609B2 (ja) 電力変換装置
JP6721066B2 (ja) 電力変換装置
JP2012005191A (ja) 電力変換装置
CN115516751A (zh) 电力转换装置
WO2024154478A1 (ja) 電力変換装置
JP2019126203A (ja) 電力変換装置
JP2024101332A (ja) 電力変換装置
JP2023181374A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP