WO2015050353A1 - Method for fabricating graphene flake for electrode material of electric double-layer capacitor, graphene flake fabricated by same, and electric double-layer capacitor comprising same as electrode material - Google Patents

Method for fabricating graphene flake for electrode material of electric double-layer capacitor, graphene flake fabricated by same, and electric double-layer capacitor comprising same as electrode material Download PDF

Info

Publication number
WO2015050353A1
WO2015050353A1 PCT/KR2014/009155 KR2014009155W WO2015050353A1 WO 2015050353 A1 WO2015050353 A1 WO 2015050353A1 KR 2014009155 W KR2014009155 W KR 2014009155W WO 2015050353 A1 WO2015050353 A1 WO 2015050353A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
electric double
layer capacitor
electrode material
doping source
Prior art date
Application number
PCT/KR2014/009155
Other languages
French (fr)
Korean (ko)
Inventor
박영민
권순근
윤동명
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Publication of WO2015050353A1 publication Critical patent/WO2015050353A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for producing graphene flakes for electrode materials of an electric double layer capacitor, to graphene flakes prepared by the present invention, and to an electric double layer capacitor including the same as an electrode material.
  • Method of manufacturing graphene flakes for the electrode material of the electric double layer capacitor which can improve the electrochemical properties of the graphene flakes by doping (P) and nitrogen (N) at the same time, the graphene flakes produced thereby and the electrode material It relates to an electric double layer capacitor comprising.
  • an electrode active material a key material that determines the capacity performance of the device is an electrode active material.
  • the electrode active material a high specific surface area carbon-based material is utilized.
  • activated carbon having a high specific surface area of 1500 to 2000 m 2 / g is commonly used.
  • graphene is a material attracting attention in various fields due to its excellent electrical and mechanical properties. Such graphene has been spotlighted as an electrode for ultracapacitors due to its large specific surface area and excellent electrical properties.
  • the electrode for ultracapacitors including graphene as an electrode material is manufactured through various methods. Among them, electrode production using graphene oxide which is easy to produce at low cost in solution process has been actively studied.
  • graphene As such, as graphene is used as an electrode material for ultracapacitors, the production of graphene having excellent electrical properties is required.
  • the present invention has been made to solve the problems of the prior art as described above, an object of the present invention by doping phosphorus (P) or phosphorus (P) and nitrogen (N) simultaneously in the graphene flakes, graphene flakes
  • the present invention provides a method for producing graphene flakes for an electrode material of an electric double layer capacitor capable of improving electrochemical properties of the graphene flakes and an electric double layer capacitor including the same.
  • the solution preparation step of preparing a solution in which graphene oxide or graphene is added A doping source addition step of adding a phosphorus (P) doping source to the solution; Microwave processing to microwave the solution to which the doping source is added; And it provides a graphene flake manufacturing method for the electrode material of the electric double layer capacitor comprising a thermal reduction treatment step of thermally reducing the microwave-treated solution.
  • phosphonic acid-based powder may be used as the phosphorous (P) doping source.
  • phenylphosphonic acid may be used as the phosphorus (P) doping source.
  • a nitrogen (N) doping source may be further added to the solution.
  • the nitrogen (N) doping source may be used any one of ammonia, hydrazine and pyrrole (pyrrole).
  • the solution preparation step may further comprise the step of preparing the graphene oxide.
  • the manufacturing of the graphene oxide may include a first process of acid-processing graphite to form graphite oxide, and a second process of layer-separating the graphene oxide from the graphite oxide.
  • the present invention provides a graphene flake characterized in that the phosphorus (P) or phosphorus (P) and nitrogen (N) is covalently bonded.
  • the present invention provides an electric double layer capacitor comprising the graphene flake as an electrode material.
  • the present invention by simultaneously doping phosphorus (P) or phosphorus (P) and nitrogen (N) in the graphene flake through a series of microwave reaction and thermal reduction, thereby improving the electrochemical properties of the graphene flake Accordingly, when the prepared graphene flake is applied to the electrode material of the electric double layer capacitor, the capacity characteristic of the electric double layer capacitor can be improved.
  • FIG. 1 is a process flow chart illustrating a method for producing graphene flakes for electrode materials of an electric double layer capacitor according to an embodiment of the present invention.
  • a 2 is a phenylphosphonic acid (a) and nitrogen (N) used as a phosphorus (P) doping source in the doping source addition step of the method for producing graphene flakes for the electrode material of the electric double layer capacitor according to an embodiment of the present invention.
  • N nitrogen
  • P phosphorus
  • 3 and 4 are XPS analysis results of the graphene flakes prepared by the graphene flake manufacturing method for the electrode material of the electric double layer capacitor according to an embodiment of the present invention.
  • Graphene flake manufacturing method is a method for manufacturing a graphene flake (graphene flake) used as the electrode material of the electric double layer capacitor (electric double layer capacitor).
  • the electric double layer capacitor is an energy storage device using a pair of charge layers (electric double layers) having different signs, and has a better output characteristic than a general battery, resulting in short charge / discharge time, excellent durability and stability, and thus a semi-permanent lifetime.
  • Such an electric double layer capacitor is generally composed of a cell formed by placing two electrodes of a positive electrode and a negative electrode facing each other with a separator therebetween and then impregnating the electrolyte.
  • the graphene flake manufacturing method is a method for manufacturing the graphene flake used as the electrode material of at least one of the two electrodes of the electric double layer capacitor.
  • the graphene flake manufacturing method includes a solution preparation step S1, a doping source addition step S2, a microwave treatment step S3, and a thermal reduction treatment step S4.
  • the solution preparation step (S1) is a step of preparing a solution in which graphene oxide or graphene is added.
  • the step of preparing the graphene oxide or the production of graphene is preceded.
  • a method for producing graphene oxide first, a graphite (Hummer's method) of the graphite (Hummer's method), the surface of the hydroxyl group (hydroxyl group, epoxide group and carboxylic group (carboxylic group) To make graphite oxide. Then, graphene oxide is obtained through layer separation from the produced graphite oxide.
  • the layer separation process may be performed by adding graphite oxide to a predetermined concentration in distilled water as a solvent and then performing liquid sonication.
  • the graphene may be separated from a carbon material such as graphite.
  • a graphene oxide solution or a graphene solution is prepared by dipping the graphene oxide or graphene thus prepared, for example, in methanol.
  • the doping source addition step (S2) is a step of adding a phosphorus (P) doping source to the graphene oxide solution or graphene solution, in order to dope the phosphorus (P) in the graphene flakes.
  • phosphonic acid-based powder may be used as the phosphorus (P) doping source.
  • phenylphosphonic acid which is well dissolved in an aqueous solution, as shown in (a) of FIG. 2, may be added to the graphene oxide solution or the graphene solution. . And by adding phenylphosphonic acid in this way, the effect of maintaining the dispersibility of a solution can also be acquired.
  • a nitrogen (N) doping source in order to dope nitrogen (N) together with phosphorus (P) in the graphene flakes, a nitrogen (N) doping source may be further added to the graphene oxide solution or the graphene solution.
  • a nitrogen (N) doping source may be used ammonia, hydrazine (hydrazine) or as shown in Figure 2 (b), pyrrole (pyrrole).
  • pyridinic Nitrogen (N) is doped in pyridinic and pyrrolic forms.
  • the microwave treatment step (S3) is a microwave (graphene oxide solution or graphene solution to which a phosphorus (P) doping source or a phosphorus (P) doping source and nitrogen (N) doping source is added at the same time as the microwave ( microwave) processing.
  • the microwave treatment step (S3) the graphene oxide solution or the graphene solution to which the doping source is added is subjected to microwave treatment at high temperature (eg, 180 degrees) and under high pressure. Through this, in the microwave processing step (S3) to induce thermal decomposition of the doping source and doping in the graphene flakes.
  • the thermal reduction treatment step (S4) is a step of thermally reducing the microwave-treated solution.
  • the thermal reduction step (S4) by thermally reducing at a temperature of 800 degrees or more, the graphene is reduced, and the carbonization of the doping source is induced, whereby phosphorus (P) or phosphorus (P) and Nitrogen (N) is doped.
  • FIG. 4 shows that the phosphorus (P) is well doped inside the graphene flakes as a result of XPS element analysis when the phosphorus (P) doping source is doped.
  • the thermal reduction treatment step S4 when the thermal reduction treatment step S4 is completed, phosphorus (P) or phosphorus (P) and nitrogen (N) are doped to produce graphene flakes covalently bonded with graphene.
  • the graphene flakes doped with phosphorus (P) unlike the graphene without defects or doping dopants, excess charge may be introduced. Accordingly, when the graphene flakes prepared by the graphene flake manufacturing method according to an embodiment of the present invention is applied as an electrode material of the electric double layer capacitor, the distance between the ions in the electrolyte is shortened and the adsorption energy with the ions is large.
  • the graphene flakes prepared by the graphene flake manufacturing method according to an embodiment of the present invention has a high charge density due to the simultaneous doping of phosphorus (P) or phosphorus (P) and nitrogen (N), excellent electrical conductivity Will have Accordingly, the characteristics of the electric double layer capacitor including the graphene flake manufactured by the graphene flake manufacturing method according to the embodiment of the present invention as an electrode material can be further improved.

Abstract

The present invention relates to: a method for fabricating a graphene flake for an electrode material of an electric double-layer capacitor, which can improve the electrochemical characteristics of a graphene flake by doping phosphorous (P) or both phosphorous and nitrogen (N) in the graphne flake; a graphene flake fabricated by the method; and an electric double-layer capacitor comprising the graphene flake as an electrode material. To this end, the present invention provides a method for fabricating a graphene flake for an electrode material of an electric double-layer capacitor, a graphene flake fabricated by same, and an electric double-layer capacitor comprising same as an electrode material, the method comprising: a solution preparation step for preparing a solution to which a graphene oxide or graphene has been added; a doping source addition step for adding a phosphorus (P) doping source to the solution; a microwave treatment step for performing a microwave treatment on the solution to which the doping source has been added; and a thermal reduction treatment step for performing a thermal reduction treatment on the solution on which the microwave treatment has been performed.

Description

전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법, 이에 의해 제조된 그래핀 플레이크 및 이를 전극 소재로 포함하는 전기 이중층 캐패시터Graphene Flake Manufacturing Method for Electrode Material of Electric Double Layer Capacitor, Graphene Flake Prepared thereby and Electric Double Layer Capacitor
본 발명은 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법, 이에 의해 제조된 그래핀 플레이크 및 이를 전극 소재로 포함하는 전기 이중층 캐패시터에 관한 것으로서 더욱 상세하게는 그래핀 플레이크 내에 인(P) 또는 인(P)과 질소(N)를 동시에 도핑함으로써, 그래핀 플레이크의 전기 화학적 특성을 향상시킬 수 있는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법, 이에 의해 제조된 그래핀 플레이크 및 이를 전극 소재로 포함하는 전기 이중층 캐패시터에 관한 것이다.The present invention relates to a method for producing graphene flakes for electrode materials of an electric double layer capacitor, to graphene flakes prepared by the present invention, and to an electric double layer capacitor including the same as an electrode material. Method of manufacturing graphene flakes for the electrode material of the electric double layer capacitor, which can improve the electrochemical properties of the graphene flakes by doping (P) and nitrogen (N) at the same time, the graphene flakes produced thereby and the electrode material It relates to an electric double layer capacitor comprising.
전기 이중층 캐패시터의 전극 소재 중 소자의 용량 성능을 좌우하는 핵심 물질은 전극 활물질이다. 이러한 전극 활물질로는 고 비표면적의 탄소계 소재가 활용되고 있다. 예를 들어, 1500~2000㎡/g의 높은 비표면적 특성을 가지는 활성탄(activated carbon)이 상용적으로 활용되고 있다. 하지만, 활성탄은 높은 비표면적에도 불구하고 전기 전도성 저하 문제가 있어, 전극 구성 시 전기 전도성이 우수한 카본 블랙을 도전재로 혼합(예: 활성탄:도전재=8:2)하여 사용하고 있다.Among the electrode materials of the electric double layer capacitor, a key material that determines the capacity performance of the device is an electrode active material. As the electrode active material, a high specific surface area carbon-based material is utilized. For example, activated carbon having a high specific surface area of 1500 to 2000 m 2 / g is commonly used. However, activated carbon has a problem of deterioration in electrical conductivity despite a high specific surface area, and thus carbon black having excellent electrical conductivity is used as a conductive material (eg, activated carbon: conductor = 8: 2) in the electrode configuration.
한편, 그래핀(graphene)은 우수한 전기적 특성과 기계적 특성으로 인해 다양한 분야에서 주목 받고 있는 물질이다. 이러한 그래핀은 특히, 넓은 비표면적과 우수한 전기적 특성으로 인해 울트라캐패시터(ultracapacitor)용 전극으로 각광 받고 있다.On the other hand, graphene (graphene) is a material attracting attention in various fields due to its excellent electrical and mechanical properties. Such graphene has been spotlighted as an electrode for ultracapacitors due to its large specific surface area and excellent electrical properties.
이때, 그래핀을 전극 소재로 포함하는 울트라캐패시터용 전극은 다양한 방법을 통해 제조되고 있다. 그 중 용액 공정에서 저가로 생산이 용이한 산화 그래핀을 이용한 전극 제조가 활발히 연구되고 있다.In this case, the electrode for ultracapacitors including graphene as an electrode material is manufactured through various methods. Among them, electrode production using graphene oxide which is easy to produce at low cost in solution process has been actively studied.
이와 같이, 그래핀이 울트라캐패시터용 전극 소재로 사용됨에 따라, 우수한 전기적 특성을 갖는 그래핀의 제조가 요구되고 있다.As such, as graphene is used as an electrode material for ultracapacitors, the production of graphene having excellent electrical properties is required.
(선행기술문헌)(Prior art document)
대한민국 등록특허공보 제10-1237351호(2013.02.20.)Republic of Korea Patent Publication No. 10-1237351 (2013.02.20.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 그래핀 플레이크 내에 인(P) 또는 인(P)과 질소(N)를 동시에 도핑함으로써, 그래핀 플레이크의 전기 화학적 특성을 향상시킬 수 있는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법, 이에 의해 제조된 그래핀 플레이크 및 이를 전극 소재로 포함하는 전기 이중층 캐패시터를 제공하는 것이다.The present invention has been made to solve the problems of the prior art as described above, an object of the present invention by doping phosphorus (P) or phosphorus (P) and nitrogen (N) simultaneously in the graphene flakes, graphene flakes The present invention provides a method for producing graphene flakes for an electrode material of an electric double layer capacitor capable of improving electrochemical properties of the graphene flakes and an electric double layer capacitor including the same.
이를 위해, 본 발명은, 산화 그래핀 또는 그래핀이 첨가되어 있는 용액을 준비하는 용액 준비단계; 상기 용액에 인(P) 도핑 소스를 첨가하는 도핑 소스 첨가단계; 상기 도핑 소스가 첨가된 상기 용액을 마이크로웨이브(microwave) 처리하는 마이크로웨이브 처리단계; 및 마이크로웨이브 처리된 상기 용액을 열적 환원 처리하는 열적 환원 처리단계를 포함하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법을 제공한다.To this end, the present invention, the solution preparation step of preparing a solution in which graphene oxide or graphene is added; A doping source addition step of adding a phosphorus (P) doping source to the solution; Microwave processing to microwave the solution to which the doping source is added; And it provides a graphene flake manufacturing method for the electrode material of the electric double layer capacitor comprising a thermal reduction treatment step of thermally reducing the microwave-treated solution.
여기서, 상기 도핑 소스 첨가단계에서는 포스포닉산 계열의 분말을 상기 인(P) 도핑 소스로 사용할 수 있다.In the doping source addition step, phosphonic acid-based powder may be used as the phosphorous (P) doping source.
이때, 상기 도핑 소스 첨가단계에서는 페닐포스포닉산을 상기 인(P) 도핑 소스로 사용할 수 있다.In this case, in the step of adding the doping source, phenylphosphonic acid may be used as the phosphorus (P) doping source.
또한, 상기 도핑 소스 첨가단계에서는 상기 용액에 질소(N) 도핑 소스를 더 첨가할 수 있다.In addition, in the doping source addition step, a nitrogen (N) doping source may be further added to the solution.
이때, 상기 질소(N) 도핑 소스로는 암모니아, 하이드라진 및 피롤(pyrrole) 중 어느 하나를 사용할 수 있다.At this time, the nitrogen (N) doping source may be used any one of ammonia, hydrazine and pyrrole (pyrrole).
그리고 상기 용액 준비단계 전, 상기 산화 그래핀을 제조하는 단계를 더 포함할 수 있다.And before the solution preparation step, it may further comprise the step of preparing the graphene oxide.
이때, 상기 산화 그래핀을 제조하는 단계는, 흑연을 산처리하여 산화 흑연을 만드는 제1 과정, 및 상기 산화 흑연으로부터 상기 산화 그래핀을 층 분리시키는 제2 과정을 포함할 수 있다.In this case, the manufacturing of the graphene oxide may include a first process of acid-processing graphite to form graphite oxide, and a second process of layer-separating the graphene oxide from the graphite oxide.
한편, 본 발명은, 인(P) 또는 인(P)과 질소(N)가 공유 결합되어 있는 것을 특징으로 하는 그래핀 플레이크를 제공한다.On the other hand, the present invention provides a graphene flake characterized in that the phosphorus (P) or phosphorus (P) and nitrogen (N) is covalently bonded.
더불어, 본 발명은, 상기 그래핀 플레이크를 전극 소재로 포함하는 것을 특징으로 하는 전기 이중층 캐패시터를 제공한다.In addition, the present invention provides an electric double layer capacitor comprising the graphene flake as an electrode material.
본 발명에 따르면, 일련의 마이크로웨이브(microwave) 반응 및 열적 환원을 통해 그래핀 플레이크 내에 인(P) 또는 인(P)과 질소(N)를 동시에 도핑함으로써, 그래핀 플레이크의 전기 화학적 특성을 향상시킬 수 있고, 이에 따라, 제조된 그래핀 플레이크를 전기 이중층 캐패시터의 전극 소재로 적용 시 전기 이중층 캐패시터의 용량 특성을 향상시킬 수 있다.According to the present invention, by simultaneously doping phosphorus (P) or phosphorus (P) and nitrogen (N) in the graphene flake through a series of microwave reaction and thermal reduction, thereby improving the electrochemical properties of the graphene flake Accordingly, when the prepared graphene flake is applied to the electrode material of the electric double layer capacitor, the capacity characteristic of the electric double layer capacitor can be improved.
도 1은 본 발명의 실시 예에 따른 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법을 나타낸 공정 순서도.1 is a process flow chart illustrating a method for producing graphene flakes for electrode materials of an electric double layer capacitor according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법의 도핑 소스 첨가단계에서, 인(P) 도핑 소스로 사용되는 페닐포스포닉산(a)과 질소(N) 도핑 소스로 사용되는 피롤(b)을 나타낸 화학식.2 is a phenylphosphonic acid (a) and nitrogen (N) used as a phosphorus (P) doping source in the doping source addition step of the method for producing graphene flakes for the electrode material of the electric double layer capacitor according to an embodiment of the present invention. Formula showing pyrrole (b) used as a doping source.
도 3 및 도 4는 본 발명의 실시 예에 따른 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법을 통해 제조한 그래핀 플레이크에 대한 XPS 분석 결과.3 and 4 are XPS analysis results of the graphene flakes prepared by the graphene flake manufacturing method for the electrode material of the electric double layer capacitor according to an embodiment of the present invention.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법, 이에 의해 제조된 그래핀 플레이크 및 이를 전극 소재로 포함하는 전기 이중층 캐패시터에 대해 상세히 설명한다.Hereinafter, a method for manufacturing graphene flakes for an electrode material of an electric double layer capacitor according to an exemplary embodiment of the present invention, a graphene flake manufactured by the same, and an electric double layer capacitor including the same as an electrode material will be described in detail. .
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.In addition, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

본 발명의 실시 예에 따른 그래핀 플레이크 제조방법은 전기 이중층 캐패시터(electric double layer capacitor)의 전극 소재로 사용되는 그래핀 플레이크(graphene flake)를 제조하기 위한 방법이다. 여기서, 전기 이중층 캐패시터는 부호가 다른 한 쌍의 전하층(전기 이중층)이 생성된 것을 이용한 에너지 저장장치로, 일반적인 축전지에 비해 출력 특성이 좋아 충방전 시간이 짧고 내구성 및 안정성이 뛰어나 반영구적인 수명을 가지고 있다. 이러한 전기 이중층 캐패시터는 일반적으로 분리막을 사이에 두고 양극, 음극 2개의 전극을 서로 대향되게 배치한 다음 전해질에 함침시켜 구성한 셀로 이루어진다. 즉, 본 발명의 실시 예에 따른 그래핀 플레이크 제조방법은 상기 전기 이중층 캐패시터의 2개의 전극 중 적어도 어느 하나의 전극 소재로 사용되는 그래핀 플레이크를 제조하기 위한 방법이다. 도 1에 도시한 바와 같이, 이러한 그래핀 플레이크 제조방법은 용액 준비단계(S1), 도핑 소스 첨가단계(S2), 마이크로웨이브 처리단계(S3) 및 열적 환원 처리단계(S4)를 포함한다.Graphene flake manufacturing method according to an embodiment of the present invention is a method for manufacturing a graphene flake (graphene flake) used as the electrode material of the electric double layer capacitor (electric double layer capacitor). Here, the electric double layer capacitor is an energy storage device using a pair of charge layers (electric double layers) having different signs, and has a better output characteristic than a general battery, resulting in short charge / discharge time, excellent durability and stability, and thus a semi-permanent lifetime. Have. Such an electric double layer capacitor is generally composed of a cell formed by placing two electrodes of a positive electrode and a negative electrode facing each other with a separator therebetween and then impregnating the electrolyte. That is, the graphene flake manufacturing method according to the embodiment of the present invention is a method for manufacturing the graphene flake used as the electrode material of at least one of the two electrodes of the electric double layer capacitor. As shown in FIG. 1, the graphene flake manufacturing method includes a solution preparation step S1, a doping source addition step S2, a microwave treatment step S3, and a thermal reduction treatment step S4.

먼저, 용액 준비단계(S1)는 산화 그래핀 또는 그래핀이 첨가되어 있는 용액을 준비하는 단계이다. 이때, 용액 준비단계(S1) 전, 산화 그래핀을 제조하는 단계 또는 그래핀을 제조하는 단계가 선행된다. 일례로, 산화 그래핀을 제조하기 위한 방법으로는 먼저, 흑연(graphite)을 산처리(Hummer's method)하여, 표면에 하이드록시기(hydroxyl group), 에폭시드기(epoxide group) 및 카르복시기(carboxylic group)를 갖는 산화 흑연을 만든다. 그 다음, 만들어진 산화 흑연으로부터의 층 분리를 통해 산화 그래핀을 얻는다. 이때, 층 분리 공정은 용매인 증류수에 산화 흑연을 소정 농도로 첨가한 후 액상 초음파 처리하는 방식으로 진행될 수 있다. 또한, 그래핀을 제조하기 위한 방법으로는 흑연 등과 같은 탄소재로부터 그래핀을 박리시킬 수 있다.First, the solution preparation step (S1) is a step of preparing a solution in which graphene oxide or graphene is added. At this time, before the solution preparation step (S1), the step of preparing the graphene oxide or the production of graphene is preceded. For example, as a method for producing graphene oxide, first, a graphite (Hummer's method) of the graphite (Hummer's method), the surface of the hydroxyl group (hydroxyl group, epoxide group and carboxylic group (carboxylic group) To make graphite oxide. Then, graphene oxide is obtained through layer separation from the produced graphite oxide. In this case, the layer separation process may be performed by adding graphite oxide to a predetermined concentration in distilled water as a solvent and then performing liquid sonication. In addition, as a method for producing graphene, the graphene may be separated from a carbon material such as graphite.
용액 준비단계(S1)에서는 이와 같이 제조한 산화 그래핀 또는 그래핀을 예컨대, 메탄올 등에 담그는 방식으로 산화 그래핀 용액 또는 그래핀 용액을 제조한다.In the solution preparation step (S1), a graphene oxide solution or a graphene solution is prepared by dipping the graphene oxide or graphene thus prepared, for example, in methanol.

다음으로, 도핑 소스 첨가단계(S2)는 그래핀 플레이크 내에 인(P)을 도핑하기 위해, 산화 그래핀 용액 또는 그래핀 용액에 인(P) 도핑 소스를 첨가하는 단계이다. 도핑 소스 첨가단계(S2)에서는 포스포닉산(phosphonic acid) 계열의 분말을 인(P) 도핑 소스로 사용할 수 있다. 예를 들어, 도핑 소스 첨가단계(S2)에서는 도 2의 (a)에 나타낸 바와 같은, 수용액 상에 잘 녹는 페닐포스포닉산(phenylphosphonic acid)을 산화 그래핀 용액 또는 그래핀 용액에 첨가할 수 있다. 그리고 이와 같이 페닐포스포닉산을 첨가함으로써, 용액의 분산성을 유지시키는 효과도 얻을 수 있다.Next, the doping source addition step (S2) is a step of adding a phosphorus (P) doping source to the graphene oxide solution or graphene solution, in order to dope the phosphorus (P) in the graphene flakes. In the doping source addition step (S2), phosphonic acid-based powder may be used as the phosphorus (P) doping source. For example, in the doping source addition step (S2), phenylphosphonic acid, which is well dissolved in an aqueous solution, as shown in (a) of FIG. 2, may be added to the graphene oxide solution or the graphene solution. . And by adding phenylphosphonic acid in this way, the effect of maintaining the dispersibility of a solution can also be acquired.
한편, 도핑 소스 첨가단계(S2)에서는 그래핀 플레이크 내에 인(P)과 아울러, 질소(N)를 동시에 도핑시키기 위해, 산화 그래핀 용액 또는 그래핀 용액에 질소(N) 도핑 소스를 더 첨가할 수 있다. 이때, 질소(N) 도핑 소스로는 암모니아나 하이드라진(hydrazine) 또는 도 2의 (b)에 나타낸 바와 같이, 피롤(pyrrole)을 사용할 수 있다. 이와 같이, 질소(N) 도핑 소스를 첨가하게 되면, 후속 공정으로 진행되는 마이크로웨이브 처리단계(S3) 및 열적 환원 처리단계(S4) 후, 도 3의 XPS 분석 결과에 나타낸 바와 같이, 파이리디닉(pyridinic) 및 파이롤닉(pyrrolic) 형태로 질소(N)가 도핑된다.Meanwhile, in the doping source addition step (S2), in order to dope nitrogen (N) together with phosphorus (P) in the graphene flakes, a nitrogen (N) doping source may be further added to the graphene oxide solution or the graphene solution. Can be. At this time, a nitrogen (N) doping source may be used ammonia, hydrazine (hydrazine) or as shown in Figure 2 (b), pyrrole (pyrrole). As such, when the nitrogen (N) doping source is added, after the microwave treatment step (S3) and the thermal reduction treatment step (S4) to proceed to the subsequent process, as shown in the XPS analysis results of FIG. 3, pyridinic Nitrogen (N) is doped in pyridinic and pyrrolic forms.

다음으로, 마이크로웨이브 처리단계(S3)는 상기와 같이 인(P) 도핑 소스 또는 인(P) 도핑 소스와 질소(N) 도핑 소스가 동시에 첨가된 산화 그래핀 용액 또는 그래핀 용액을 마이크로웨이브(microwave) 처리하는 단계이다. 마이크로웨이브 처리단계(S3)에서는 도핑 소스가 첨가된 산화 그래핀 용액 또는 그래핀 용액을 고온(예컨대, 180도), 고압 하에서 마이크로웨이브 처리한다. 이를 통해, 마이크로웨이브 처리단계(S3)에서는 도핑 소스의 열적 분해 및 그래핀 플레이크 내의 도핑을 유도한다.Next, the microwave treatment step (S3) is a microwave (graphene oxide solution or graphene solution to which a phosphorus (P) doping source or a phosphorus (P) doping source and nitrogen (N) doping source is added at the same time as the microwave ( microwave) processing. In the microwave treatment step (S3), the graphene oxide solution or the graphene solution to which the doping source is added is subjected to microwave treatment at high temperature (eg, 180 degrees) and under high pressure. Through this, in the microwave processing step (S3) to induce thermal decomposition of the doping source and doping in the graphene flakes.

마지막으로, 열적 환원 처리단계(S4)는 마이크로웨이브 처리된 용액을 열적 환원 처리하는 단계이다. 열적 환원 처리단계(S4)에서는 800도 이상의 온도에서 열적 환원 처리함으로써, 그래핀을 환원시키고, 도핑 소스의 탄화를 유도하고, 이를 통해, 그래핀 플레이크 내부에 인(P) 또는 인(P)과 질소(N)를 도핑시킨다. 도 4는 인(P) 도핑 소스를 도핑한 경우, XPS 원소 분석 결과로, 그래핀 플레이크 내부에 인(P)이 잘 도핑되어 있음을 확인할 수 있다.Finally, the thermal reduction treatment step (S4) is a step of thermally reducing the microwave-treated solution. In the thermal reduction step (S4), by thermally reducing at a temperature of 800 degrees or more, the graphene is reduced, and the carbonization of the doping source is induced, whereby phosphorus (P) or phosphorus (P) and Nitrogen (N) is doped. FIG. 4 shows that the phosphorus (P) is well doped inside the graphene flakes as a result of XPS element analysis when the phosphorus (P) doping source is doped.

상기와 같이, 열적 환원 처리단계(S4)가 완료되면, 인(P) 또는 인(P)과 질소(N)가 도핑되어, 그래핀과 공유 결합되어 있는 그래핀 플레이크가 제조된다. 본 발명의 실시 예에 따른 그래핀 플레이크 제조방법과 같이, 인(P)이 도핑된 그래핀 플레이크는 결함이나 도펀트의 도핑이 없는 그래핀과 달리, 잉여 전하가 도입될 수 있다. 이에 따라, 본 발명의 실시 예에 따른 그래핀 플레이크 제조방법을 통해 제조한 그래핀 플레이크를 전기 이중층 캐패시터의 전극 소재로 적용 시, 전해질 속의 이온과의 거리가 짧아지고, 이온과의 흡착 에너지가 커서, 많은 양의 전하가 도입될 수 있으며, 전해질과 계면의 임피던스도 감소하게 되어 전극의 용량이 증대되는 효과를 얻을 수 있다. 또한, 본 발명의 실시 예에 따른 그래핀 플레이크 제조방법을 통해 제조한 그래핀 플레이크는 인(P) 또는 인(P)과 질소(N)의 동시 도핑으로 인해 전하 밀도가 높아져서, 우수한 전기 전도도를 갖게 된다. 이에 따라, 본 발명의 실시 예에 따른 그래핀 플레이크 제조방법을 통해 제조한 그래핀 플레이크를 전극 소재로 포함하는 전기 이중층 캐패시터의 특성은 보다 향상될 수 있다.As described above, when the thermal reduction treatment step S4 is completed, phosphorus (P) or phosphorus (P) and nitrogen (N) are doped to produce graphene flakes covalently bonded with graphene. Like the graphene flake manufacturing method according to an embodiment of the present invention, the graphene flakes doped with phosphorus (P), unlike the graphene without defects or doping dopants, excess charge may be introduced. Accordingly, when the graphene flakes prepared by the graphene flake manufacturing method according to an embodiment of the present invention is applied as an electrode material of the electric double layer capacitor, the distance between the ions in the electrolyte is shortened and the adsorption energy with the ions is large. A large amount of charge may be introduced, and the impedance of the electrolyte and the interface may be reduced, thereby increasing the capacity of the electrode. In addition, the graphene flakes prepared by the graphene flake manufacturing method according to an embodiment of the present invention has a high charge density due to the simultaneous doping of phosphorus (P) or phosphorus (P) and nitrogen (N), excellent electrical conductivity Will have Accordingly, the characteristics of the electric double layer capacitor including the graphene flake manufactured by the graphene flake manufacturing method according to the embodiment of the present invention as an electrode material can be further improved.

이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described with reference to the limited embodiments and the drawings, the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (9)

  1. 산화 그래핀 또는 그래핀이 첨가되어 있는 용액을 준비하는 용액 준비단계;
    상기 용액에 인(P) 도핑 소스를 첨가하는 도핑 소스 첨가단계;
    상기 도핑 소스가 첨가된 상기 용액을 마이크로웨이브(microwave) 처리하는 마이크로웨이브 처리단계; 및
    마이크로웨이브 처리된 상기 용액을 열적 환원 처리하는 열적 환원 처리단계;
    를 포함하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    A solution preparation step of preparing a solution containing graphene oxide or graphene is added;
    A doping source addition step of adding a phosphorus (P) doping source to the solution;
    Microwave processing to microwave the solution to which the doping source is added; And
    A thermal reduction step of thermally reducing the microwave-treated solution;
    Graphene flakes manufacturing method for the electrode material of the electric double layer capacitor comprising a.
  2. 제1항에 있어서,
    상기 도핑 소스 첨가단계에서는 포스포닉산 계열의 분말을 상기 인(P) 도핑 소스로 사용하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    The method of claim 1,
    The method of manufacturing a graphene flake for the electrode material of the electric double layer capacitor, characterized in that in the doping source addition step using a phosphonic acid-based powder as the phosphorus (P) doping source.
  3. 제2항에 있어서,
    상기 도핑 소스 첨가단계에서는 페닐포스포닉산을 상기 인(P) 도핑 소스로 사용하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    The method of claim 2,
    The method of manufacturing a graphene flake for the electrode material of the electric double layer capacitor, characterized in that in the doping source addition step using phenylphosphonic acid as the phosphorus (P) doping source.
  4. 제1항에 있어서,
    상기 도핑 소스 첨가단계에서는 상기 용액에 질소(N) 도핑 소스를 더 첨가하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    The method of claim 1,
    In the doping source addition step of the graphene flake manufacturing method for the electrode material of the electric double layer capacitor, characterized in that further adding a nitrogen (N) doping source to the solution.
  5. 제4항에 있어서,
    상기 질소(N) 도핑 소스로는 암모니아, 하이드라진 및 피롤(pyrrole) 중 어느 하나를 사용하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    The method of claim 4, wherein
    The nitrogen (N) doping source is a graphene flakes manufacturing method for the electrode material of the electric double layer capacitor, characterized in that using any one of ammonia, hydrazine and pyrrole (pyrrole).
  6. 제1항에 있어서,
    상기 용액 준비단계 전, 상기 산화 그래핀을 제조하는 단계를 더 포함하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    The method of claim 1,
    Before the solution preparation step, the graphene flake manufacturing method for the electrode material of the electric double layer capacitor, characterized in that it further comprises the step of preparing the graphene oxide.
  7. 제6항에 있어서,
    상기 산화 그래핀을 제조하는 단계는,
    흑연을 산처리하여 산화 흑연을 만드는 제1 과정, 및
    상기 산화 흑연으로부터 상기 산화 그래핀을 층 분리시키는 제2 과정을 포함하는 것을 특징으로 하는 전기 이중층 캐패시터의 전극 소재용 그래핀 플레이크 제조방법.
    The method of claim 6,
    Preparing the graphene oxide,
    A first process of acid treating the graphite to produce graphite oxide, and
    And a second process of layering the graphene oxide from the graphite oxide, wherein the graphene flakes are prepared for the electrode material of the electric double layer capacitor.
  8. 인(P) 또는 인(P)과 질소(N)가 공유 결합되어 있는 것을 특징으로 하는 그래핀 플레이크.Phosphorus (P) or graphene flakes characterized in that the phosphorus (P) and nitrogen (N) is covalently bonded.
  9. 제8항에 따른 그래핀 플레이크를 전극 소재로 포함하는 것을 특징으로 하는 전기 이중층 캐패시터.An electric double layer capacitor comprising the graphene flakes according to claim 8 as an electrode material.
PCT/KR2014/009155 2013-10-01 2014-09-30 Method for fabricating graphene flake for electrode material of electric double-layer capacitor, graphene flake fabricated by same, and electric double-layer capacitor comprising same as electrode material WO2015050353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130117298A KR20150038915A (en) 2013-10-01 2013-10-01 Method of fabricating graphene flake for electrode material of electric double layer capacitor, graphene flake fabricated by the same and electric double layer capacitor including the same by electrode material
KR10-2013-0117298 2013-10-01

Publications (1)

Publication Number Publication Date
WO2015050353A1 true WO2015050353A1 (en) 2015-04-09

Family

ID=52778903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009155 WO2015050353A1 (en) 2013-10-01 2014-09-30 Method for fabricating graphene flake for electrode material of electric double-layer capacitor, graphene flake fabricated by same, and electric double-layer capacitor comprising same as electrode material

Country Status (2)

Country Link
KR (1) KR20150038915A (en)
WO (1) WO2015050353A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106276864A (en) * 2015-06-12 2017-01-04 中国石油化工股份有限公司 The synthetic method of phosphorus doping Graphene
CN106276866A (en) * 2015-06-12 2017-01-04 中国石油化工股份有限公司 The production method of phosphorus doping Graphene
CN106276865A (en) * 2015-06-12 2017-01-04 中国石油化工股份有限公司 The method producing phosphorus doping Graphene
CN112420991A (en) * 2020-08-21 2021-02-26 华南农业大学 Doping method of novel carbon material and application thereof
US11098098B2 (en) 2013-12-29 2021-08-24 Curelab Oncology, Inc. Methods and compositions relating to p62/SQSTM1 for the treatment and prevention of inflammation-associated diseases

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101629835B1 (en) * 2015-11-11 2016-06-14 한국지질자원연구원 Manufacturing method of three-dimensional graphene composite via multi-doping and supercapacitor using thereof
CN107331530A (en) * 2017-06-26 2017-11-07 中国科学技术大学 A kind of low-temperature-doped graphene and preparation method thereof and ultracapacitor
CN108772079B (en) * 2018-04-26 2021-03-02 昆明理工大学 Preparation method of nano black phosphorus/graphene composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130022565A (en) * 2011-08-25 2013-03-07 한국과학기술원 Nitrogen-doped graphene, ultracapacitor using the same and doping methode of the same
KR20130027199A (en) * 2011-09-07 2013-03-15 성균관대학교산학협력단 Field-effect transistor using n-doped graphene and preparing method of the same
US20130099197A1 (en) * 2010-02-02 2013-04-25 Seacrete Llc Doped graphene electronic materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099197A1 (en) * 2010-02-02 2013-04-25 Seacrete Llc Doped graphene electronic materials
KR20130022565A (en) * 2011-08-25 2013-03-07 한국과학기술원 Nitrogen-doped graphene, ultracapacitor using the same and doping methode of the same
KR20130027199A (en) * 2011-09-07 2013-03-15 성균관대학교산학협력단 Field-effect transistor using n-doped graphene and preparing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG CAN ET AL.: "Synthesis of Nitrogen Doped Graphene through Microwave Irradiation", J. INORG. MATER., vol. 27, February 2012 (2012-02-01), pages 146 - 150 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098098B2 (en) 2013-12-29 2021-08-24 Curelab Oncology, Inc. Methods and compositions relating to p62/SQSTM1 for the treatment and prevention of inflammation-associated diseases
CN106276864A (en) * 2015-06-12 2017-01-04 中国石油化工股份有限公司 The synthetic method of phosphorus doping Graphene
CN106276866A (en) * 2015-06-12 2017-01-04 中国石油化工股份有限公司 The production method of phosphorus doping Graphene
CN106276865A (en) * 2015-06-12 2017-01-04 中国石油化工股份有限公司 The method producing phosphorus doping Graphene
CN112420991A (en) * 2020-08-21 2021-02-26 华南农业大学 Doping method of novel carbon material and application thereof

Also Published As

Publication number Publication date
KR20150038915A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
WO2015050353A1 (en) Method for fabricating graphene flake for electrode material of electric double-layer capacitor, graphene flake fabricated by same, and electric double-layer capacitor comprising same as electrode material
Cao et al. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density
Li et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry
Qin et al. High‐performance ultrathin flexible solid‐state supercapacitors based on solution processable Mo1. 33C MXene and PEDOT: PSS
Jabeen et al. High‐performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0. 5MnO2 nanosheet assembled nanowall arrays
Liu et al. 2D metal–organic frameworks derived nanocarbon arrays for substrate enhancement in flexible supercapacitors
Chen et al. Three‐dimensional heteroatom‐doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors
Ye et al. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance
Ng et al. Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor
Sun et al. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi‐walled carbon nanotubes for solid‐state, flexible, asymmetric supercapacitors
Gokhale et al. Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application
Mukherjee et al. Photothermally reduced graphene as high-power anodes for lithium-ion batteries
Yang et al. Methanol and diethanolamine assisted synthesis of flexible nitrogen-doped Ti3C2 (MXene) film for ultrahigh volumetric performance supercapacitor electrodes
Tiwari et al. Self-assembled polypyrrole hierarchical porous networks as the cathode and porous three dimensional carbonaceous networks as the anode materials for asymmetric supercapacitor
US8213157B2 (en) Single-wall carbon nanotube supercapacitor
KR101793040B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode using the electrode active material and ultracapacitorusing the electrode active material
KR101274991B1 (en) The method for manufacturing nitrogen doped graphene electrode for capacitor, electrode and electric double layer capacitor using the same
KR20170078555A (en) Flexible supercapacitor and method of fabricating the same
Zhao et al. Achieving high capacitance of paper‐like graphene films by adsorbing molecules from hydrolyzed polyimide
Yuan et al. Efficient utilization of the active sites in defective graphene blocks through functionalization synergy for compact capacitive energy storage
Wei et al. Integrating carbon dots with porous hydrogels to produce full carbon electrodes for electric double-layer capacitors
KR102172609B1 (en) Conductive polymer coated hydrophilic fiber membrane based large-area electrical energy generator and manufacturing method thereof
Bae et al. Flexible sodium‐ion supercapacitor based on polypyrrole/carbon electrode by use of harmless aqueous electrolyte for wearable devices
Li et al. Supercapacitor electrodes based on hierarchical mesoporous MnOx/nitrided TiO2 nanorod arrays on carbon fiber paper
Li et al. Enhancing the supercapacitor performance of flexible MXene/carbon cloth electrodes by oxygen plasma and chemistry modification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850311

Country of ref document: EP

Kind code of ref document: A1