WO2015047052A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2015047052A1
WO2015047052A1 PCT/KR2014/009237 KR2014009237W WO2015047052A1 WO 2015047052 A1 WO2015047052 A1 WO 2015047052A1 KR 2014009237 W KR2014009237 W KR 2014009237W WO 2015047052 A1 WO2015047052 A1 WO 2015047052A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic light
light emitting
emitting device
insulating layer
Prior art date
Application number
PCT/KR2014/009237
Other languages
English (en)
French (fr)
Inventor
문영균
강민수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14847343.2A priority Critical patent/EP3016161B1/en
Priority to JP2016531558A priority patent/JP6302552B2/ja
Priority to US14/908,419 priority patent/US9847502B2/en
Priority to CN201480045674.1A priority patent/CN105474427B/zh
Publication of WO2015047052A1 publication Critical patent/WO2015047052A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Definitions

  • the present application relates to an organic light emitting device.
  • the organic light emitting device is composed of two opposite electrodes and a thin film of organic material having a multilayer semiconductor property therebetween.
  • the organic light emitting device having such a configuration uses a phenomenon of converting electrical energy into light energy using an organic material, that is, an organic light emitting phenomenon.
  • an organic light emitting phenomenon Specifically, in the structure in which the organic material layer is positioned between the anode and the cathode, when a voltage is applied between the two electrodes, holes are injected into the organic material and electrons are injected into the cathode. When the injected holes and electrons meet, excitons are formed, and when the excitons fall back to the ground, they shine.
  • the organic light emitting device As described above, light generated in the organic material layer is emitted through the light transmitting electrode, and the organic light emitting device may be classified into top emission, bottom emission, and double emission.
  • the organic light emitting device may be classified into top emission, bottom emission, and double emission.
  • one of the two electrodes In the case of the front emission or the bottom emission type, one of the two electrodes must be a light transmissive electrode, and in the case of the double emission type, both electrodes must be the light transmissive electrode.
  • the device In order to use an organic light emitting device as an illumination, the device must be driven at a high brightness unlike a conventional color display, and maintain a constant luminance like a conventional illumination. In order to sufficiently improve the luminance of the organic light emitting device, light emission should be performed in a large area, and in order to emit light in such a large area, a high driving current should be used. In addition, in order to maintain a constant brightness in a large area, such a high current must be uniformly injected into the device of a large area.
  • a first electrode provided on the substrate
  • An auxiliary electrode provided in at least a partial region on the first electrode
  • An insulating layer provided on the auxiliary electrode and having an overhang structure having a width greater than that of the auxiliary electrode;
  • a second electrode provided on the first electrode and the insulating layer
  • the second electrode provided on the first electrode and the second electrode provided on the insulating layer provide an organic light emitting device, characterized in that it comprises an electrode structure that is electrically shorted with each other.
  • the organic light emitting device forms a second electrode having an electrically shorted form on the first electrode and the overhang structure, thereby using a mask for pattern formation, which is conventionally used in the manufacturing process of the second electrode. Can be excluded. Accordingly, there is a feature that can reduce the manufacturing process cost of the organic light emitting device.
  • 1 and 2 illustrate a conventional electrode for an organic light emitting device.
  • 3 to 5 are diagrams illustrating an electrode for an organic light emitting device according to an exemplary embodiment of the present application.
  • FIG. 6 is a diagram illustrating an electrophotograph of an overhang structure according to an exemplary embodiment of the present application.
  • an organic light emitting device for illumination has a structure in which a transparent electrode, an organic material layer, and a metal electrode are sequentially deposited on a substrate. Since the area of the organic material layer and the planar pattern of the deposition pattern of the metal electrode are different from each other when the organic light emitting device is manufactured, different masks are used to deposit the organic layer and the metal electrode. Accordingly, the mask needs to be replaced in the middle of the deposition process, the deposition equipment is complicated, the productivity is not high, and the manufacturing cost is also high.
  • the present inventors have completed the present invention by studying a conductive pattern that can be manufactured by a simpler process and can be applied to an electrode of an organic light emitting device.
  • An organic light emitting device is a substrate; A first electrode provided on the substrate; An auxiliary electrode provided in at least a partial region on the first electrode; An insulating layer provided on the auxiliary electrode and having an overhang structure having a width greater than that of the auxiliary electrode; And a second electrode provided on the first electrode and the insulating layer, wherein the second electrode provided on the first electrode and the second electrode provided on the insulating layer are electrically shorted to each other. It is characterized by including a structure.
  • the second electrode and the auxiliary electrode provided on the first electrode may have a structure that is electrically shorted to each other, and the second electrode and the insulating layer provided on the first electrode are mutually It may be a structure of an electrically shorted form.
  • the auxiliary electrode may be provided on a portion of the first electrode other than the front surface.
  • the structure of the electrically shorted form means a form that is physically separated and structurally spaced apart from each other.
  • a pattern forming mask is used to form a second electrode, that is, a second electrode pattern, having an electrically shorted structure.
  • a second electrode pattern having an electrically shorted structure.
  • An organic light emitting device including an electrode structure in which a second electrode formed on a double layer of a structure is electrically shorted to each other may be manufactured.
  • the insulating layer having a width larger than that of the auxiliary electrode may be formed by including a material having different etching rates by the same etching solution from the auxiliary electrode and the insulating layer. That is, the insulating layer may include a material whose etching rate by the same etching solution is lower than that of the auxiliary electrode.
  • an insulating layer having an overhang structure may be formed by changing the type of etchant used to form the auxiliary electrode and the insulating layer.
  • etching solution examples include hydrofluoric acid (HF), phosphoric acid (H 3 PO 4 ), BOE (buffered oxide etchant), BHF (Buffered HF solution), hydrogen peroxide system, CH 3 COOH, HCl, HNO 3 , ferric (ferric) Although the system etc. can be mentioned, It is not limited to this.
  • an optimized overhang structure may be formed by appropriately adjusting an etching time and a temperature during an etching process of the auxiliary electrode and the insulating layer.
  • a photo of an overhang structure according to an exemplary embodiment of the present application is shown in FIG. 6.
  • the auxiliary electrode is for improving the resistance of the first electrode, and the auxiliary electrode may be formed using a deposition process or a printing process at least one selected from the group consisting of a conductive sealant and a metal.
  • the auxiliary electrode may include at least one of magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, chromium, molybdenum, copper, and alloys thereof. But it is not limited thereto.
  • the thickness of the auxiliary electrode may be 50 nm to 5 ⁇ m, but is not limited thereto.
  • the insulating layer may be formed using materials and methods known in the art. More specifically, common photoresist materials; Polyimide; Polyacrylic; Silicon nitride; Silicon oxide; Aluminum oxide; Aluminum nitride; Alkali metal oxides; It may be formed using an alkaline earth metal oxide or the like, but is not limited thereto.
  • the thickness of the insulating layer may be 10 nm to 10 ⁇ m, but is not limited thereto.
  • the substrate may be used without limitation what is known in the art, and more specifically, it may include a glass substrate, a plastic substrate and the like, but is not limited thereto.
  • the first electrode may include a transparent conductive oxide.
  • the transparent conductive oxide may be indium (In), tin (Sn), zinc (Zn), gallium (Ga), cerium (Ce), cadmium (Cd), magnesium (Mg), beryllium (Be), silver (Ag), Molybdenum (Mo), Vanadium (V), Copper (Cu), Iridium (Ir), Rhodium (Rh), Ruthenium (Ru), Tungsten (W), Cobalt (Co), Nickel (Ni), Manganese (Mn) , At least one oxide selected from aluminum (Al) and lanthanum (La).
  • the first electrode may include magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, platinum, gold, tungsten, tantalum, copper, tin, lead, and alloys thereof. It may include more.
  • the first electrode may be formed by sputtering, e-beam evaporation, thermal evaporation, laser molecular beam epitaxy (L-MBE), and pulsed laser evaporation ( Pulsed Laser Deposition (PLD), any one of the physical vapor deposition (Physical Vapor Deposition, PVD); Thermal Chemical Vapor Deposition, Plasma-Enhanced Chemical Vapor Deposition (PECVD), Light Chemical Vapor Deposition, Laser Chemical Vapor Deposition, Metal- Chemical Vapor Deposition selected from any one of an Organic Chemical Vapor Deposition (MOCVD) and a Hydride Vapor Phase Epitaxy (HVPE); Or it may be formed using an atomic layer deposition method (ALD).
  • PVD Physical Vapor Deposition
  • PECVD Plasma-Enhanced Chemical Vapor Deposition
  • MOCVD Organic Chemical Vapor Deposition
  • HVPE Hydride Vapor Phase Epitaxy
  • ALD atomic layer deposition method
  • the second electrode may include a transparent conductive oxide.
  • the transparent conductive oxide may be indium (In), tin (Sn), zinc (Zn), gallium (Ga), cerium (Ce), cadmium (Cd), magnesium (Mg), beryllium (Be), silver (Ag), Molybdenum (Mo), Vanadium (V), Copper (Cu), Iridium (Ir), Rhodium (Rh), Ruthenium (Ru), Tungsten (W), Cobalt (Co), Nickel (Ni), Manganese (Mn) , At least one oxide selected from aluminum (Al) and lanthanum (La).
  • the second electrode may include magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, platinum, gold, tungsten, tantalum, copper, tin, lead, and alloys thereof. It may include more.
  • the second electrode may include sputtering, e-beam evaporation, thermal evaporation, laser molecular beam epitaxy, and pulsed laser evaporation.
  • Pulsed Laser Deposition any one of the physical vapor deposition (Physical Vapor Deposition, PVD); Thermal Chemical Vapor Deposition, Plasma-Enhanced Chemical Vapor Deposition (PECVD), Light Chemical Vapor Deposition, Laser Chemical Vapor Deposition, Metal- Chemical Vapor Deposition selected from any one of an Organic Chemical Vapor Deposition (MOCVD) and a Hydride Vapor Phase Epitaxy (HVPE); Or it may be formed using an atomic layer deposition method (ALD).
  • PLD Pulsed Laser Deposition
  • PVD Physical vapor deposition
  • PECVD Plasma-Enhanced Chemical Vapor Deposition
  • MOCVD Organic Chemical Vapor Deposition
  • HVPE Hydride Vapor Phase Epitaxy
  • ALD atomic layer deposition method
  • the thickness of the second electrode may be 50 nm to 5 ⁇ m, but is not limited thereto.
  • a region where the auxiliary electrode is provided on the first electrode may be a non-light emitting region, and a region where the auxiliary electrode is not provided may be a light emitting region.
  • an organic material layer may be further provided on the first electrode in the emission area. That is, a first electrode, an organic material layer, and a second electrode may be sequentially provided in the emission area.
  • organic material layer is not particularly limited, and materials and formation methods well known in the art may be used.
  • the organic layer may be formed into a smaller number of layers by a deposition method or a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing or thermal transfer using various polymer materials. It can manufacture.
  • the organic material layer may include a light emitting layer, and may have a stacked structure including at least one selected from a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • hole injection materials such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the material capable of forming the electron injection layer it is usually preferable that the material has a small work function to facilitate electron injection into the organic material layer.
  • the electron injection material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, and the same material as the hole injection electrode material may be used, but is not limited thereto.
  • a material capable of forming the light emitting layer a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, is preferably a material having good quantum efficiency with respect to fluorescence or phosphorescence.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene; Phosphorescent host CBP [[4,4'-bis (9-carbazolyl) biphenyl]; Etc., but is not limited thereto.
  • the light emitting material may further include a phosphorescent dopant or a fluorescent dopant to improve fluorescence or phosphorescent properties.
  • a phosphorescent dopant include ir (ppy) (3) (fac tris (2-phenylpyridine) iridium) or F2Irpic [iridium (III) bis (4,6-di-fluorophenyl-pyridinato-N, C2) picolinate] Etc.
  • the fluorescent dopant those known in the art may be used.
  • the material capable of forming the electron transport layer a material capable of injecting electrons well from the electron injection layer and transferring the electrons to the light emitting layer is suitable.
  • Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the organic light emitting device according to the exemplary embodiment of the present application may be more preferably applied to the organic light emitting device for lighting, but is not limited thereto.
  • FIGS. 1 and 2 Conventional organic light emitting device electrodes are shown in FIGS. 1 and 2, and an organic light emitting device electrode according to an exemplary embodiment of the present application is illustrated in FIGS. 3 to 5.
  • the organic light emitting diode includes a substrate; (10) an anode electrode provided on the substrate 10; An auxiliary electrode 30 provided on the anode electrode 20; An insulating layer 40 provided on the auxiliary electrode 30 and having an overhang structure having a width greater than that of the auxiliary electrode 30; And a cathode electrode 50 provided on the anode electrode 20 and the insulating layer 40, and on the cathode electrode 50 and the insulating layer 40 provided on the anode electrode 20.
  • the cathode electrode 50 provided is characterized in that it comprises an electrode structure that is electrically shorted with each other.
  • a metal mask is used as the shadow mask. More specifically, one or more shadow masks are used in the organic deposition process, and one shadow mask is used in the deposition process of the second electrode.
  • the metal shadow mask is not necessary, which not only reduces the manufacturing cost of the mask but also reduces the administrative cost of periodically cleaning and replacing the mask.
  • a combination of an organic patterning technology and the like may be used to configure a deposition process without a mask.
  • the facility conveyance unit can be simplified. In particular, as the size of the facility, the size of the glass, etc. become larger, the cost reduction effect due to the simplification as described above may greatly increase.
  • the organic light emitting device forms a second electrode having an electrically shorted form on the first electrode and the overhang structure, thereby forming a pattern used in the manufacturing process of the second electrode.
  • the use of a forming mask can be ruled out. Accordingly, there is a feature that can reduce the manufacturing process cost of the organic light emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 발광 소자에 관한 것이다. 본 출원에 따른 유기 발광 소자는 기판; 상기 기판 상에 구비되는 제1 전극; 상기 제1 전극 상의 적어도 일부 영역에 구비되는 보조전극; 상기 보조전극 상에 구비되고, 상기 보조전극보다 큰 폭을 가지는 오버행(overhang) 구조의 절연층; 및 상기 제1 전극 및 절연층 상에 구비되는 제2 전극을 포함하고, 상기 제1 전극 상에 구비되는 제2 전극과 상기 절연층 상에 구비되는 제2 전극은 서로 전기적으로 단락된 형태인 전극 구조를 포함하는 것을 특징으로 한다.

Description

유기 발광 소자
본 출원은 2013년 9월 30일에 한국특허청에 제출된 한국 특허 출원 제10-2013-0116196호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 유기 발광 소자에 관한 것이다.
유기 발광 소자는 두 개의 반대 전극과 그 사이에 존재하는 다층의 반도체적 성질을 갖는 유기물의 박막들로 구성되어 있다. 이와 같은 구성의 유기 발광 소자는 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상, 즉 유기 발광 현상을 이용한다. 구체적으로, 양극과 음극 사이에 유기물층을 위치시킨 구조에 있어서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되고, 이 엑시톤이 다시 바닥 상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에서는 유기물층에서 생성된 빛이 광 투과성 전극을 통하여 방출하게 되며, 유기 발광 소자는 통상 전면 발광(top emission), 후면 발광(bottom emisstion) 및 양면 발광형으로 분류할 수 있다. 전면 또는 후면 발광형의 경우는 두 개의 전극 중 하나가 광 투과성 전극이어야 하며, 양면 발광형의 경우는 두 개의 전극이 모두 광 투과성 전극이어야 한다.
상기와 같은 유기 발광 소자에 대해서는 다층 구조를 사용하는 경우 저전압에서 구동할 수 있다는 코닥사의 발표 이래 많은 연구가 집중되어 왔으며, 최근에는 유기 발광 소자를 이용한 천연색 디스플레이가 휴대용 전화기에 부착되어 상용화되고 있다.
또한, 최근의 유기 발광 소자는 기존의 형광 물질을 이용하는 대신 인광 물질의 이용에 대한 연구가 진행되면서 효율의 향상이 급격히 이루어지고 있으며, 가까운 미래에는 기존의 조명을 대체할 수 있다는 예상도 나오고 있다.
유기 발광 소자가 조명으로 이용되기 위해서는 기존의 천연색 디스플레이와는 달리 고휘도에서 소자가 구동하여야 하며, 기존의 조명과 같이 일정한 휘도를 유지하여야 한다. 유기 발광 소자의 휘도를 충분히 향상시키기 위해서는 넓은 면적에서 발광이 이루어져야 하고, 이와 같이 넓은 면적에서 발광이 이루어지게 하기 위해서는 높은 구동 전류를 이용해야 한다. 또한, 넓은 면적에서 일정한 휘도를 유지하기 위해서는 상기와 같은 높은 전류가 넓은 면적의 소자에 균일하게 주입되어야 한다.
당 기술분야에서는 보다 간단한 공정에 의하여 제조할 수 있는 유기 발광 소자에 대한 연구가 필요하다.
본 출원의 일 실시상태는,
기판;
상기 기판 상에 구비되는 제1 전극;
상기 제1 전극 상의 적어도 일부 영역에 구비되는 보조전극;
상기 보조전극 상에 구비되고, 상기 보조전극보다 큰 폭을 가지는 오버행(overhang) 구조의 절연층; 및
상기 제1 전극 및 절연층 상에 구비되는 제2 전극을 포함하고,
상기 제1 전극 상에 구비되는 제2 전극과 상기 절연층 상에 구비되는 제2 전극은 서로 전기적으로 단락된 형태인 전극 구조를 포함하는 것을 특징으로 하는 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 제1 전극 및 오버행 구조 상에 전기적으로 단락된 형태의 제2 전극을 형성함으로써, 제2 전극의 제조공정시 종래에 사용되던 패턴 형성용 마스크의 사용을 배제할 수 있다. 이에 따라, 유기 발광 소자의 제조공정 비용을 절감할 수 있는 특징이 있다.
도 1 및 도 2는 종래의 유기 발광 소자용 전극을 나타낸 도이다.
도 3 내지 5는 본 출원의 일 실시상태에 따른 유기 발광 소자용 전극을 나타낸 도이다.
도 6은 본 출원의 일 실시상태에 따른 오버행 구조의 전자사진을 나타낸 도이다.
<도면의 주요 부호의 설명>
10: 기판
20: 애노드 전극
30: 보조전극
40: 절연층
50: 캐소드 전극
이하 본 출원에 대해서 자세히 설명한다.
일반적으로, 조명용 유기 발광 소자는 기판에 투명 전극, 유기물층 및 금속 전극이 순차적으로 증착되는 구조를 갖는다. 상기 유기 발광 소자의 제조시 유기물층과 금속 전극의 증착 패턴의 평면도상의 면적이 서로 상이하기 때문에, 상기 유기물층과 금속 전극의 증착시에는 각각 서로 다른 마스크를 사용하게 된다. 이에 따라 증착 공정 중간에 마스크의 교체가 필요하고, 증착 설비가 복잡하여 생산성이 높지 않으며, 제조비용 또한 높은 문제점이 있다.
이에 따라, 본 발명자들은 보다 간단한 공정에 의하여 제조할 수 있고, 유기 발광 소자의 전극에 적용할 수 있는 도전성 패턴에 대한 연구를 진행하여 본 발명을 완성하였다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 기판; 상기 기판 상에 구비되는 제1 전극; 상기 제1 전극 상의 적어도 일부 영역에 구비되는 보조전극; 상기 보조전극 상에 구비되고, 상기 보조전극보다 큰 폭을 가지는 오버행(overhang) 구조의 절연층; 및 상기 제1 전극 및 절연층 상에 구비되는 제2 전극을 포함하고, 상기 제1 전극 상에 구비되는 제2 전극과 상기 절연층 상에 구비되는 제2 전극은 서로 전기적으로 단락된 형태인 전극 구조를 포함하는 것을 특징으로 한다.
본 출원에 있어서, 상기 제1 전극 상에 구비되는 제2 전극과 상기 보조전극은 서로 전기적으로 단락된 형태의 구조일 수 있고, 상기 제1 전극 상에 구비되는 제2 전극과 상기 절연층은 서로 전기적으로 단락된 형태의 구조일 수 있다.
즉, 상기 보조전극은 제1 전극 상의 전면이 아닌 일부분에 구비될 수 있다.
본 출원에 있어서, 상기 전기적으로 단락된 형태의 구조라 함은 물리적으로 분리되고, 그 구조적으로 서로 이격 배치된 형태를 의미하는 것으로 한다.
종래에는, 전기적으로 단락된 구조를 포함하는 제2 전극, 즉 제2 전극 패턴을 형성하기 위하여 패턴 형성용 마스크를 이용하였다. 그러나, 본 출원에서는 제1 전극과 제1 전극 상에 형성된 오버행 구조의 이중층 상에 제2 전극을 형성함으로써, 별도의 패턴 형성용 마스크가 필요 없이, 제1 전극 상에 형성되는 제2 전극과 오버행 구조의 이중층 상에 형성되는 제2 전극이 서로 전기적으로 단락된 형태의 전극 구조를 포함하는 유기 발광 소자를 제조할 수 있다.
본 출원에 있어서, 상기 보조전극보다 큰 폭을 가지는 오버행 구조의 절연층은, 상기 보조전극 및 절연층이 동일한 식각액에 의한 식각속도가 서로 상이한 물질을 포함함으로써 형성될 수 있다. 즉, 상기 절연층은 동일한 식각액에 의한 식각속도가 보조전극보다 떨어지는 물질을 포함할 수 있다.
또한, 상기 보조전극 및 절연층의 형성시 사용되는 식각액의 종류를 달리하여 오버행 구조의 절연층을 형성할 수도 있다.
상기 식각액의 구체적인 예시로는 불산(HF), 인산(H3PO4), BOE(buffered oxide etchant), BHF(Buffered HF solution), 과산화수소계, CH3COOH, HCl, HNO3, 페릭(ferric) 계 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
특히, 상기 보조전극 및 절연층의 식각공정시 식각시간, 온도 등을 적절하게 조절함으로써 최적화된 오버행 구조를 형성할 수 있다. 본 출원의 일 실시상태에 따른 오버행 구조의 사진을 하기 도 6에 나타내었다.
본 출원에 있어서, 상기 보조전극은 제1 전극의 저항 개선을 위한 것으로서, 상기 보조전극은 전도성 실란트(sealant) 및 금속으로 이루어진 군으로부터 선택되는 1종 이상을 증착 공정 또는 프린팅 공정을 이용하여 형성할 수 있다. 보다 구체적으로, 상기 보조전극은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 크롬, 몰리브덴, 구리, 이들의 합금 등을 1종 이상 포함할 수 있으나, 이에만 한정되는 것은 아니다. 상기 보조전극의 두께는 50nm ~ 5㎛일 수 있으나, 이에만 한정되는 것은 아니다.
상기 절연층은 당 기술분야에 알려진 재료 및 방법을 이용하여 형성될 수 있다. 보다 구체적으로, 일반적인 포토 레지스트 물질; 폴리이미드; 폴리아크릴; 실리콘 나이트라이드; 실리콘 옥사이드; 알루미늄 옥사이드; 알루미늄 나이트라이드; 알카리금속 산화물; 알카리토금속 산화물 등을 이용하여 형성될 수 있으나, 이에만 한정되는 것은 아니다. 상기 절연층의 두께는 10nm ~ 10㎛일 수 있으나, 이에 한정되는 것은 아니다.
본 출원에 있어서, 상기 기판은 당 기술분야에 알려진 것을 제한 없이 이용할 수 있으며, 보다 구체적으로는 유리 기판, 플라스틱 기판 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 출원에 있어서, 상기 제1 전극은 투명 전도성 산화물을 포함할 수 있다. 상기 투명 전도성 산화물은 인듐(In), 주석(Sn), 아연(Zn), 갈륨(Ga), 세륨(Ce), 카드뮴(Cd), 마그네슘(Mg), 베릴륨(Be), 은(Ag), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 알루미늄(Al), 및 란탄(La) 중에서 선택된 적어도 하나의 산화물일 수 있다.
또한, 상기 제1 전극은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 백금, 금, 텅스텐, 탄탈륨, 구리, 주석, 납, 이들의 합금 등을 1종 이상 포함할 수 있다.
상기 제1 전극은, 스퍼터링(Sputtering)법, 전자-빔 증착법(E-beam evaporation), 열 증착법(Thermal evaporation), 레이저 분자 빔 증착법(Laser Molecular Beam Epitaxy, L-MBE), 및 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 중에서 선택된 어느 하나의 물리 기상 증착법(Physical Vapor Deposition, PVD); 열 화학 기상 증착법(Thermal Chemical Vapor Deposition), 플라즈마 화학 기상 증착법(Plasma-Enhanced Chemical Vapor Deposition, PECVD), 광 화학 기상 증착법(Light Chemical Vapor Deposition), 레이저 화학 기상 증착법(Laser Chemical Vapor Deposition), 금속-유기 화학 기상 증착법(Metal-Organic Chemical Vapor Deposition, MOCVD), 및 수소화물 기상 증착법(Hydride Vapor Phase Epitaxy, HVPE) 중에서 선택된 어느 하나의 화학 기상 증착법(Chemical Vapor Deposition); 또는 원자층 증착법(Atomic Layer Deposition, ALD)을 이용하여 형성할 수 있다.
본 출원에 있어서, 상기 제2 전극은 투명 전도성 산화물을 포함할 수 있다. 상기 투명 전도성 산화물은 인듐(In), 주석(Sn), 아연(Zn), 갈륨(Ga), 세륨(Ce), 카드뮴(Cd), 마그네슘(Mg), 베릴륨(Be), 은(Ag), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 알루미늄(Al), 및 란탄(La) 중에서 선택된 적어도 하나의 산화물일 수 있다.
또한, 상기 제2 전극은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 백금, 금, 텅스텐, 탄탈륨, 구리, 주석, 납, 이들의 합금 등을 1종 이상 포함할 수 있다.
상기 제2 전극은, 스퍼터링(Sputtering)법, 전자-빔 증착법(E-beam evaporation), 열 증착법(Thermal evaporation), 레이저 분자 빔 증착법(Laser Molecular Beam Epitaxy, L-MBE), 및 펄스 레이저 증착법(Pulsed Laser Deposition, PLD) 중에서 선택된 어느 하나의 물리 기상 증착법(Physical Vapor Deposition, PVD); 열 화학 기상 증착법(Thermal Chemical Vapor Deposition), 플라즈마 화학 기상 증착법(Plasma-Enhanced Chemical Vapor Deposition, PECVD), 광 화학 기상 증착법(Light Chemical Vapor Deposition), 레이저 화학 기상 증착법(Laser Chemical Vapor Deposition), 금속-유기 화학 기상 증착법(Metal-Organic Chemical Vapor Deposition, MOCVD), 및 수소화물 기상 증착법(Hydride Vapor Phase Epitaxy, HVPE) 중에서 선택된 어느 하나의 화학 기상 증착법(Chemical Vapor Deposition); 또는 원자층 증착법(Atomic Layer Deposition, ALD)을 이용하여 형성할 수 있다.
상기 제2 전극의 두께는 50nm ~ 5㎛일 수 있으나, 이에 한정되는 것은 아니다.
본 출원에 있어서, 상기 제1 전극 상에서, 상기 보조전극이 구비되는 영역은 비발광영역이고, 상기 보조전극이 구비되지 않은 영역은 발광영역일 수 있다. 이 때, 상기 발광영역 내 제1 전극 상에는 유기물층이 추가로 구비될 수 있다. 즉, 상기 발광영역에는 제1 전극, 유기물층 및 제2 전극이 순차적으로 구비될 수 있다.
상기 유기물층의 구체적인 물질, 형성방법은 특별히 제한되는 것은 아니고, 당 기술분야에 널리 알려진 물질 및 형성방법을 이용할 수 있다.
상기 유기물층은 다양한 고분자 소재를 사용하여 증착법, 또는 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 유기물층은 발광층을 포함하고, 정공 주입층, 정공 수송층, 전자 수송층 및 전자 주입층 중에서 선택된 하나 이상을 포함하는 적층 구조일 수 있다.
상기 정공 주입층을 형성할 수 있는 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 출원에서 사용될 수 있는 정공 주입 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자 주입층을 형성할 수 있는 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 전자 주입 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있고, 정공 주입 전극 물질과 동일한 물질을 사용할 수도 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층을 형성할 수 있는 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌; 인광 호스트 CBP[[4,4'-bis(9-carbazolyl)biphenyl]; 등이 있으나, 이들에만 한정되는 것은 아니다.
또한, 상기 발광 물질은 형광 또는 인광 특성을 향상시키기 위해 인광 도판트 또는 형광 도판트를 추가로 포함할 수 있다. 상기 인광 도판트의 구체적인 예로는 ir(ppy)(3)(fac tris(2-phenylpyridine) iridium) 또는 F2Irpic[iridium(Ⅲ)bis(4,6-di-fluorophenyl-pyridinato-N,C2) picolinate] 등이 있다. 형광 도판트로는 당 기술분야에 알려진 것들을 사용할 수 있다.
상기 전자 수송층을 형성할 수 있는 물질로는 전자 주입층으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 출원의 일 실시상태에 따른 유기 발광 소자는 조명용 유기 발광 소자에 보다 바람직하게 적용될 수 있으나, 이에만 한정되는 것은 아니다.
종래의 유기 발광 소자용 전극을 하기 도 1 및 2에 나타내었고, 본 출원의 일 실시상태에 따른 유기 발광 소자용 전극을 하기 도 3 내지 5에 나타내었다.
하기 도 3 내지 5의 결과와 같이, 본 출원의 일 실시상태에 따른 유기 발광 소자는 기판;(10) 상기 기판(10) 상에 구비되는 애노드 전극(20); 상기 애노드 전극(20) 상에 구비되는 보조전극(30); 상기 보조전극(30) 상에 구비되고, 상기 보조전극(30)보다 큰 폭을 가지는 오버행(overhang) 구조의 절연층(40); 및 상기 애노드 전극(20) 및 절연층(40) 상에 구비되는 캐소드 전극(50)을 포함하고, 상기 애노드 전극(20) 상에 구비되는 캐소드 전극(50)과 상기 절연층(40) 상에 구비되는 캐소드 전극(50)은 서로 전기적으로 단락된 형태인 전극 구조를 포함하는 것을 특징으로 한다.
유기 발광 소자의 제조시 수반되는 증착 공정에는, 섀도우 마스크로서 금속 재질의 마스크가 사용된다. 보다 구체적으로, 유기물 증착 공정시에는 1개 이상의 섀도우 마스크가 사용되고, 제2 전극의 증착 공정시에는 1개의 섀도우 마스크가 사용된다.
그러나, 본 출원의 일 실시상태에 따른 적층체의 제조시에는 금속 섀도우 마스크가 불필요하게 되어, 마스크의 제조비용을 절감할 수 있을 뿐만 아니라, 마스크를 주기적으로 세정하고 교체하여야 하는 관리비용을 절감할 수 있는 특징이 있다. 또한, 유기물 패터닝 기술 등을 접목하여 마스크가 필요 없는 증착 공정의 구성이 가능할 수 있다. 또한, 증착설비에서 마스크의 제거가 가능한 경우, 설비 반송부를 단순화 시킬 수 있다. 특히, 설비 크기, 글래스 크기 등이 대형화될수록, 전술한 바와 같은 단순화에 따른 비용 절감 효과가 크게 증가할 수 있다.
전술한 바와 같이, 본 출원의 일 실시상태에 따른 유기 발광 소자는 제1 전극 및 오버행 구조 상에 전기적으로 단락된 형태의 제2 전극을 형성함으로써, 제2 전극의 제조공정시 종래에 사용되던 패턴 형성용 마스크의 사용을 배제할 수 있다. 이에 따라, 유기 발광 소자의 제조공정 비용을 절감할 수 있는 특징이 있다.

Claims (13)

  1. 기판;
    상기 기판 상에 구비되는 제1 전극;
    상기 제1 전극 상의 적어도 일부 영역에 구비되는 보조전극;
    상기 보조전극 상에 구비되고, 상기 보조전극보다 큰 폭을 가지는 오버행(overhang) 구조의 절연층; 및
    상기 제1 전극 및 절연층 상에 구비되는 제2 전극을 포함하고,
    상기 제1 전극 상에 구비되는 제2 전극과 상기 절연층 상에 구비되는 제2 전극은 서로 전기적으로 단락된 형태인 전극 구조를 포함하는 것을 특징으로 하는 유기 발광 소자.
  2. 청구항 1에 있어서, 상기 제1 전극 상에 구비되는 제2 전극과 상기 보조전극은 서로 전기적으로 단락된 형태의 구조인 것을 특징으로 하는 유기 발광 소자.
  3. 청구항 1에 있어서, 상기 제1 전극 상에 구비되는 제2 전극과 상기 절연층은 서로 전기적으로 단락된 형태의 구조인 것을 특징으로 하는 유기 발광 소자.
  4. 청구항 1에 있어서, 상기 보조전극 및 절연층은 동일한 식각액에 의한 식각속도가 서로 상이한 물질을 포함하는 것을 특징으로 하는 유기 발광 소자.
  5. 청구항 1에 있어서, 상기 보조전극 및 절연층의 형성시 사용되는 식각액의 종류가 서로 상이한 것을 특징으로 하는 유기 발광 소자.
  6. 청구항 4 또는 5에 있어서, 상기 식각액은 불산(HF), 인산(H3PO4), BOE(buffered oxide etchant), BHF(Buffered HF solution), 과산화수소계, CH3COOH, HCl, HNO3, 및 페릭(ferric) 계로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 유기 발광 소자.
  7. 청구항 1에 있어서, 상기 보조전극은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 크롬, 몰리브덴, 구리, 및 이들의 합금으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 유기 발광 소자.
  8. 청구항 1에 있어서, 상기 절연층은 포토 레지스트 물질; 폴리이미드; 폴리아크릴; 실리콘 나이트라이드; 실리콘 옥사이드; 알루미늄 옥사이드; 알루미늄 나이트라이드; 알카리금속 산화물; 및 알카리토금속 산화물로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 유기 발광 소자.
  9. 청구항 1에 있어서, 상기 제1 전극 또는 제2 전극은 인듐(In), 주석(Sn), 아연(Zn), 갈륨(Ga), 세륨(Ce), 카드뮴(Cd), 마그네슘(Mg), 베릴륨(Be), 은(Ag), 몰리브덴(Mo), 바나듐(V), 구리(Cu), 이리듐(Ir), 로듐(Rh), 루세늄(Ru), 텅스텐(W), 코발트(Co), 니켈(Ni), 망간(Mn), 알루미늄(Al), 및 란탄(La) 중에서 선택된 적어도 하나의 산화물을 포함하는 것을 특징으로 하는 유기 발광 소자.
  10. 청구항 1에 있어서, 상기 제1 전극 또는 제2 전극은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 백금, 금, 텅스텐, 탄탈륨, 구리, 주석, 납 및 이들의 합금으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 유기 발광 소자.
  11. 청구항 1에 있어서, 상기 제1 전극 상에서, 상기 보조전극이 구비되는 영역은 비발광영역이고, 상기 보조전극이 구비되지 않은 영역은 발광영역인 것을 특징으로 하는 유기 발광 소자.
  12. 청구항 11에 있어서, 상기 발광영역 내 제1 전극 상에는 유기물층이 추가로 구비되는 것을 특징으로 하는 유기 발광 소자.
  13. 청구항 1에 있어서, 상기 유기 발광 소자는 조명용인 것을 특징으로 하는 유기 발광 소자.
PCT/KR2014/009237 2013-09-30 2014-09-30 유기 발광 소자 WO2015047052A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14847343.2A EP3016161B1 (en) 2013-09-30 2014-09-30 Organic light emitting device
JP2016531558A JP6302552B2 (ja) 2013-09-30 2014-09-30 有機発光素子
US14/908,419 US9847502B2 (en) 2013-09-30 2014-09-30 Organic light emitting device
CN201480045674.1A CN105474427B (zh) 2013-09-30 2014-09-30 有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130116196 2013-09-30
KR10-2013-0116196 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015047052A1 true WO2015047052A1 (ko) 2015-04-02

Family

ID=52744051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009237 WO2015047052A1 (ko) 2013-09-30 2014-09-30 유기 발광 소자

Country Status (7)

Country Link
US (1) US9847502B2 (ko)
EP (1) EP3016161B1 (ko)
JP (1) JP6302552B2 (ko)
KR (1) KR20150037708A (ko)
CN (1) CN105474427B (ko)
TW (1) TW201526330A (ko)
WO (1) WO2015047052A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453297B (zh) * 2013-09-30 2018-04-06 乐金显示有限公司 层压体及其制造方法
JP2017182892A (ja) 2016-03-28 2017-10-05 セイコーエプソン株式会社 発光素子、発光装置、及び電子機器
CN110785867B (zh) * 2017-04-26 2023-05-02 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
CN108040435B (zh) * 2017-12-12 2020-06-19 北京科技大学 一种氮化铝陶瓷基板线路刻蚀方法
KR102559097B1 (ko) * 2018-07-27 2023-07-26 삼성디스플레이 주식회사 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767599A2 (en) * 1995-10-06 1997-04-09 Pioneer Electronic Corporation Organic electroluminescent display panel and method for manufacturing the same
US20070087468A1 (en) * 2003-09-03 2007-04-19 Theodor Doll Method for producing electronic components
KR20070118425A (ko) * 2006-06-12 2007-12-17 엘지.필립스 엘시디 주식회사 전계발광소자 및 그 제조방법
JP2009004347A (ja) * 2007-05-18 2009-01-08 Toppan Printing Co Ltd 有機el表示素子の製造方法及び有機el表示素子
US20090321764A1 (en) * 2006-07-25 2009-12-31 Lg Chem, Ltd. Method of Manufacturing Organic Light Emitting Device and Organic Light Emitting Device Manufactured by Using The Method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9616265D0 (en) * 1996-08-02 1996-09-11 Philips Electronics Uk Ltd Electron devices
TWI249363B (en) * 2000-02-25 2006-02-11 Seiko Epson Corp Organic electroluminescence device and manufacturing method therefor
JP2004127933A (ja) * 2002-09-11 2004-04-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
KR101026812B1 (ko) * 2003-11-28 2011-04-04 삼성전자주식회사 박막 트랜지스터 표시판 및 그의 제조 방법
JP2005197190A (ja) * 2004-01-09 2005-07-21 Seiko Epson Corp 回路基板及び電気光学装置の製造方法、電気光学装置、及び電子機器
KR100620849B1 (ko) * 2004-03-23 2006-09-13 엘지전자 주식회사 유기 전계 발광 소자 및 그 제조방법
KR100642490B1 (ko) * 2004-09-16 2006-11-02 엘지.필립스 엘시디 주식회사 유기전계발광 소자 및 그 제조방법
KR101192017B1 (ko) * 2006-06-30 2012-10-16 엘지디스플레이 주식회사 유기 전계 발광 표시 장치 및 이의 제조 방법
KR100859084B1 (ko) * 2006-07-25 2008-09-17 주식회사 엘지화학 유기발광소자 및 그의 제조방법
JP2008108512A (ja) * 2006-10-24 2008-05-08 Toyota Industries Corp 有機エレクトロルミネッセンス素子の製造方法及び電気光学装置
US8269838B2 (en) 2007-09-05 2012-09-18 Tohoku University Solid-state image sensor and imaging device
KR101622563B1 (ko) * 2009-12-18 2016-05-19 엘지디스플레이 주식회사 상부발광 방식 유기전계 발광소자
GB2479120A (en) * 2010-03-26 2011-10-05 Cambridge Display Tech Ltd Organic electrolumunescent device having conductive layer connecting metal over well defining layer and cathode
TWI562423B (en) 2011-03-02 2016-12-11 Semiconductor Energy Lab Co Ltd Light-emitting device and lighting device
JP2012204250A (ja) * 2011-03-28 2012-10-22 Denso Corp 有機el素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767599A2 (en) * 1995-10-06 1997-04-09 Pioneer Electronic Corporation Organic electroluminescent display panel and method for manufacturing the same
US20070087468A1 (en) * 2003-09-03 2007-04-19 Theodor Doll Method for producing electronic components
KR20070118425A (ko) * 2006-06-12 2007-12-17 엘지.필립스 엘시디 주식회사 전계발광소자 및 그 제조방법
US20090321764A1 (en) * 2006-07-25 2009-12-31 Lg Chem, Ltd. Method of Manufacturing Organic Light Emitting Device and Organic Light Emitting Device Manufactured by Using The Method
JP2009004347A (ja) * 2007-05-18 2009-01-08 Toppan Printing Co Ltd 有機el表示素子の製造方法及び有機el表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3016161A4 *

Also Published As

Publication number Publication date
US20160190506A1 (en) 2016-06-30
KR20150037708A (ko) 2015-04-08
JP2016525784A (ja) 2016-08-25
TW201526330A (zh) 2015-07-01
EP3016161A4 (en) 2017-02-15
JP6302552B2 (ja) 2018-03-28
EP3016161A1 (en) 2016-05-04
EP3016161B1 (en) 2019-09-04
CN105474427A (zh) 2016-04-06
CN105474427B (zh) 2018-04-06
US9847502B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2014084529A1 (ko) 플렉서블 기판을 포함하는 유기 발광 소자 및 이의 제조방법
WO2012005540A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2015047052A1 (ko) 유기 발광 소자
US10153454B2 (en) Organic light-emitting element and production method thereof
KR20130135184A (ko) 유기 발광 소자 및 이의 제조방법
WO2015047054A1 (ko) 유기 발광 소자의 제조방법
KR101314452B1 (ko) 유기 발광 소자 및 이의 제조 방법
WO2011046262A1 (ko) 발광 소자, 이를 구비하는 표시 장치 및 조명 유닛
KR101806940B1 (ko) 유기 발광 소자 및 이의 제조방법
KR101677425B1 (ko) 유기 발광 소자 및 이의 제조방법
KR101410576B1 (ko) 유기 발광 소자
WO2015047057A1 (ko) 적층체 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045674.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531558

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908419

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014847343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE