WO2015045866A1 - 位置検出装置及びその位置指示器 - Google Patents

位置検出装置及びその位置指示器 Download PDF

Info

Publication number
WO2015045866A1
WO2015045866A1 PCT/JP2014/073898 JP2014073898W WO2015045866A1 WO 2015045866 A1 WO2015045866 A1 WO 2015045866A1 JP 2014073898 W JP2014073898 W JP 2014073898W WO 2015045866 A1 WO2015045866 A1 WO 2015045866A1
Authority
WO
WIPO (PCT)
Prior art keywords
position indicator
information
circuit
tablet
signal
Prior art date
Application number
PCT/JP2014/073898
Other languages
English (en)
French (fr)
Inventor
勇次 桂平
Original Assignee
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワコム filed Critical 株式会社ワコム
Priority to CN201480045609.9A priority Critical patent/CN105474137B/zh
Priority to EP14848861.2A priority patent/EP3051389B1/en
Priority to JP2015539088A priority patent/JP5984279B2/ja
Publication of WO2015045866A1 publication Critical patent/WO2015045866A1/ja
Priority to US15/063,388 priority patent/US10055035B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units

Definitions

  • the present invention relates to a position detection device that detects a position indicated by a position indicator.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-164356. reference
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-164356. reference
  • the electric double layer capacitor of the position indicator can be charged at a high speed of several seconds to several tens of seconds.
  • the electric double layer capacitor can be mounted. Therefore, it is necessary to perform the charging operation relatively frequently.
  • Patent Document 1 in order to prevent the operation of the position indicator from stopping during the work, when the voltage of the electric double layer capacitor drops below a certain level, information indicating that is transmitted. So that the worker can recognize it.
  • the present invention has an object to provide a position detection device that can recognize the remaining amount of power stored in a position indicator in a plurality of stages.
  • the position indicator includes a battery or an electric double layer capacitor, an AC signal generation circuit, an electric remaining amount detection circuit for detecting an electric remaining amount of the electric accumulator, and the detected Information transmission means for transmitting remaining amount information having a change frequency according to the remaining amount of electricity to the tablet, and the tablet includes information receiving means for receiving the remaining amount information from the position indicator.
  • a position detection device that detects the remaining amount of electricity of the battery by the change frequency of the received remaining amount information is proposed (claim 1).
  • the position indicator includes an electric double layer capacitor, a charging circuit for charging the electric double layer capacitor, and a circuit for converting a voltage stored in the electric double layer capacitor into a predetermined voltage, wherein at least one switch A voltage conversion circuit that generates a predetermined voltage using the voltage, a voltage detection circuit that detects whether or not the voltage output by the voltage conversion circuit has reached the predetermined value, and a detection result by the voltage detection circuit is the predetermined voltage
  • a voltage control circuit for supplying a pulse signal to the switch when the value has not been reached, an AC signal generation circuit for generating an AC signal for transmission to the tablet, and transmission of a pulse signal output by the voltage control circuit
  • a counter circuit for counting the number of times and a modulation circuit for modulating the AC signal in accordance with position indicator information represented by a binary code are provided.
  • the modulation circuit is controlled by setting a specific bit of the position indicator information to 0 or 1, so that the position indicator information is controlled by the tablet.
  • a position detection device is proposed in which the remaining electric power of the electric double layer capacitor is detected by the frequency at which a specific bit of the signal becomes 0 or 1 (claim 13).
  • the remaining amount information of the power source transmitted from the position indicator is expressed in a plurality of stages, it is possible to estimate how much it can be used without being charged, and efficiently during the work. Charging can be performed.
  • FIG. 1 shows the internal structure of the position indicator in the first embodiment of the present invention.
  • a pen-shaped position indicator that obtains a coordinate position by electrostatic coupling with a tablet is shown.
  • the position detection device is a device including a tablet and a position indicator, and the tablet is the position of a dedicated electronic pen or other pen-shaped object (including a finger). Is a device (pointing device) that reads the image using a sensor built in the tablet.
  • 11 is a pen core
  • 12 is an electrode built into the pen core
  • 13 is a variable that is physically connected to the pen core 11 and whose capacity changes according to the writing pressure applied to the pen core 11.
  • a capacitance capacitor, 14 is an electric double layer capacitor
  • 15 is a coil for charging the electric double layer capacitor 14 in a contactless manner
  • 16 is a printed circuit board.
  • FIG. 2 shows a circuit configuration of the position indicator according to the first embodiment of the present invention, and the same components as those in FIG. 1 are denoted by the same reference numerals. That is, 12 is an electrode, 13 is a variable capacitor, 14 is an electric double layer capacitor, and 15 is a coil.
  • Reference numeral 17 denotes a voltage conversion circuit, which includes coils 171, 172, a capacitor 173, a diode 174, and a switch 18.
  • the voltage conversion circuit 17 is a well-known voltage conversion circuit called a SEPIC, which can perform both step-up and step-down, generates a constant voltage from the power source stored in the electric double layer capacitor 14 and stores it in the capacitor 19. . In the present embodiment, the description will be made assuming that the constant voltage stored in the capacitor 19 is 1.5 V (volts).
  • a microprocessor 21 operates using the voltage stored in the capacitor 19 as a power source.
  • the oscillation circuit 22 is an oscillation circuit that generates a signal having a resonance frequency of a resonance circuit including a coil L1 and two capacitors C1 and C2.
  • the signal generated by the oscillation circuit 22 is boosted by a transformer composed of the coils L1 and L2 and supplied to the electrode 12.
  • the oscillation circuit 22 is operated by a power supply stored in the capacitor 19.
  • the oscillation circuit 22 is supplied with a control signal p from the output terminal P2 of the microprocessor 21, and the oscillation circuit 22 performs ASK (Amplitude Shift Keying) modulation according to the level of the control signal p. That is, the microprocessor 21 changes the output terminal P2 to a high level or a low level at a predetermined timing described later, and the oscillation circuit 22 oscillates when the output terminal P2 is high level, and oscillates when the output terminal P2 is low level. The circuit 22 stops oscillating.
  • ASK Amplitude Shift Keying
  • a resistor R is connected in parallel to the variable capacitor 13, and one end thereof is connected to the input / output terminal P3 of the microprocessor 21.
  • a high level is output to the input / output terminal P3, so that the variable capacitor 13 is charged to 1.5V.
  • the input / output terminal P3 is in the input state, the input / output terminal P3 is in a high impedance state, so that the electric charge stored in the variable capacitor 13 is slowly discharged through the resistor R connected in parallel. For this reason, the voltage of the input / output terminal P3 gradually decreases.
  • the microprocessor 21 When the input / output terminal P3 is in the input state, the microprocessor 21 operates with respect to the input / output terminal P3 as a comparator that compares the voltage of the input / output terminal P3 with a certain threshold value Vth.
  • the threshold value Vth is assumed to be one half of the power supply voltage, that is, 0.75V.
  • FIG. 3 shows the operation of this embodiment, and shows how the signal (p), signal (q), and signal (r) in FIG. 2 change.
  • the microprocessor 21 performs control so that the terminal P2 (signal (p)) maintains a high level for a certain period.
  • the signal (r) is continuously emitted from the electrode 12 for a certain period (continuous transmission period in FIG. 3).
  • the microprocessor 21 determines the writing pressure applied to the variable capacitor 13 by controlling the input / output terminal P3. That is, the microprocessor 21 charges the variable capacitor 13 by setting the input / output terminal P3 to the output state.
  • the microprocessor 21 switches the input / output terminal P3 to the input state.
  • the voltage (q) of the variable capacitor 13 gradually decreases.
  • a time Tp from when the terminal P3 is switched to the input state until the voltage (q) drops to 0.75 V or less is obtained.
  • the variable capacitor 13 has a capacitance according to the writing pressure applied to the pen core 11, it corresponds to the writing pressure required by this time Tp.
  • the microprocessor 21 obtains the writing pressure as a 10-bit value (binary code).
  • the microprocessor 21 When the continuous transmission period ends, the microprocessor 21 performs ASK modulation by controlling the terminal P2 (signal (p)) to a high level or a low level at a predetermined period (Td). At this time, the first time of the predetermined period (Td) is always set to the high level (start signal in FIG. 3). This is to make it possible to accurately determine the subsequent data transmission timing on the tablet side.
  • the 11-bit transmission data includes 10-bit writing pressure data obtained by the above-described operation and power remaining amount information represented by 1 bit described later.
  • the transmission data (binary code) is “0”
  • the terminal P2 is set to low level
  • the transmission data (binary code) is “1”
  • the terminal P2 is controlled to high level.
  • FIG. 3 shows a case where the pen pressure data to be transmitted is “1010111010” and the power remaining amount information data is “1”.
  • the operation of FIG. 3 is repeatedly performed.
  • the microprocessor 21 controls the output terminal P1 so that the voltage stored in the capacitor 19 becomes a constant voltage (1.5 V).
  • the microprocessor 21 periodically detects the voltage at the input terminal P0. As described above, the voltage detector 20 outputs a high level (the same voltage as the input voltage) when the voltage of the capacitor 19 is 1.5 V or higher, and outputs a low level (0 V) when the voltage does not reach 1.5 V.
  • the microprocessor 21 outputs a pulse signal from the output terminal P1 to the switch 18 if the detection result at the input terminal P0 is low level. Since the electric charge stored in the electric double layer capacitor 14 is moved to the capacitor 19 by this pulse signal, the voltage of the capacitor 19 rises. At this time, the amount of electric charge transferred by one pulse increases as the voltage of the electric double layer capacitor 14 increases. On the other hand, since the consumption from the power source stored in the capacitor 19 is substantially constant, the microprocessor 21 determines the frequency of pulses transmitted from the output terminal P1 as the remaining amount of charge stored in the electric double layer capacitor 14 decreases. Do more.
  • FIG. 4 shows the relationship between the voltage of the electric double layer capacitor and the number of pulses generated from the output terminal P1 of the microprocessor 21.
  • the microprocessor 21 sends the remaining power information (binary code) shown in FIG. 3 as “1” every time the pulse sent from the output terminal P1 reaches a certain number of times (for example, 40 times). Further, if the pulse sent from the output terminal P1 does not reach the predetermined number of times until the data of the remaining power amount information in FIG. 3 is output, the remaining power amount information is transmitted as “0”. Therefore, immediately after the electric double layer capacitor 14 is fully charged, the power remaining amount information is transmitted as “1” less frequently, and the remaining amount of power stored in the electric double layer capacitor 14 after a lapse of time. The frequency of sending out the remaining power information as “1” increases as the number decreases.
  • the remaining amount of the power stored in the electric double layer capacitor 14 corresponds to the frequency with which the remaining power amount information is transmitted as “1”, so that the remaining power amount information is “1”.
  • the remaining amount of the power stored in the position indicator can be recognized in a plurality of stages according to the detected frequency.
  • the position indicator since the remaining amount of power stored in the position indicator can of course be recognized by the microprocessor 21 of the position indicator, the position indicator itself is provided with a display device to reduce the remaining amount of power. Can be displayed. Further, in the tablet that receives the remaining power information, the remaining power of the power stored in the position indicator is detected by detecting the reception frequency of the remaining power information sent as “1” from the position indicator. Can be recognized, and the remaining power of the position indicator can be displayed on the display screen.
  • FIG. 5 shows the structure of the tablet used in this embodiment.
  • 50 is the position indicator shown in FIGS. 1 and 2
  • 51 is a tablet sensor based on transparent glass.
  • An X electrode group arranged in the X direction is provided on the front surface of the tablet sensor 51, and a Y electrode group arranged in the Y direction orthogonal to the X direction is provided on the back surface.
  • These X electrode group and Y electrode group are formed as transparent electrodes by, for example, ITO (Indium Tin Oxide).
  • the tablet sensor 51 is disposed on a display device (not shown), and the display location can be directly input by the position indicator 50.
  • Reference numeral 52 denotes a selection circuit that selects one electrode from the X electrode group and the Y electrode group.
  • the output of the amplification circuit 53 is supplied to the band pass filter circuit 54, and only the frequency component transmitted from the position indicator 50 is extracted.
  • the output signal of the bandpass filter circuit 54 is detected by the detection circuit 55, and the output signal of the detection circuit 55 is supplied to the sample hold circuit 56, sampled and held at a predetermined timing, and then an AD (Analog to Digital) conversion circuit. 57 is converted into a digital value. This digital data is read and processed by the microprocessor 58.
  • the microprocessor 58 includes a ROM (Read Only Memory) and a RAM (Random Access Memory), and operates according to a program stored in the ROM.
  • the sample hold circuit 56, the AD conversion circuit 57, and the selection circuit 52 include: Each sends out a control signal.
  • FIG. 6 shows an X-axis full scan operation for obtaining the approximate position in the X direction of the position indicator 50 on the tablet sensor 51.
  • the microprocessor 58 sends a control signal for selecting the electrode X1 to the selection circuit 52, and reads data output from the AD conversion circuit 57 at that time as a signal level. Similarly, the microprocessor 58 reads the signal level while sequentially switching the selection by the selection circuit 52 to the electrodes X2, X3, X4. At this time, if the signal levels detected by all the electrodes X1 to X40 have not reached the predetermined value, the microprocessor 58 determines that the position indicator 50 is not on the tablet sensor 51, and FIG. Repeat the operation.
  • the microprocessor 58 sets the number of the X electrode (electrode X11 in FIG. 6) where the highest signal level is detected.
  • the microprocessor 58 performs a shift operation to a partial scan as shown in FIG.
  • the operation for shifting to the partial scan is performed by detecting the start time of the continuous transmission period from the position indicator 50 when the position indicator 50 repeats the operation shown in FIG. This is an operation for adjusting the timing of the operation of the indicator 50 and obtaining an approximate position for the Y electrodes (Y1 to Y30).
  • the microprocessor 58 sends a control signal to the selection circuit 52 so as to select the electrode X11 obtained in the above-described X-axis full scan operation. At this time, a signal corresponding to the signal transmitted from the position indicator 50 is guided to the electrode X11, and a voltage corresponding to the signal level is generated in the detection circuit 55.
  • the microprocessor 58 operates the sample hold circuit 56 and the AD conversion circuit 57 at a constant cycle, and reads the signal level.
  • the cycle in which the sample hold circuit 56 and the AD conversion circuit 57 are operated is sufficiently shorter than the cycle (Td) in which the position indicator 50 transmits in the data transmission period.
  • the microprocessor 58 determines that the continuous transmission period of the position indicator 50 has started when the signal level output from the AD conversion circuit 57 is continuously greater than or equal to a predetermined value (Ts) for a predetermined time (Ts). Shift to the full axis scan operation (FIG. 7). This time (Ts) is sufficiently longer than the period (Td) in which the position indicator 50 transmits in the data transmission period.
  • the microprocessor 58 controls the selection circuit 52, sequentially selects the electrodes Y1 to Y30, and reads the signal level from the AD conversion circuit 57. At this time, the microprocessor 58 stores the electrode where the highest signal level is detected. In the present embodiment, description will be made assuming that the highest signal level is detected from the electrode Y20.
  • the microprocessor 58 When the selection circuit 52 selects the last electrode Y30 and completes the signal level detection, the microprocessor 58 performs an operation for waiting for the end of the continuous transmission period from the position indicator 50. The microprocessor 58 performs control so that the selection circuit 52 selects the electrode X11. At this time, if transmission from the position indicator 50 continues, the microprocessor 58 detects a signal having a level equal to or higher than the predetermined value described above. The time when the reception signal level does not reach the predetermined value is the end time of continuous transmission from the position indicator 50. Subsequently, the position indicator 50 enters a data transmission period. At this time, since the detailed position of the position indicator 50 in the tablet sensor 51 is not obtained, the data is not read here, and the partial scan operation shown in FIG. 8 is started. Transition.
  • the microprocessor 58 sets the continuous transmission period of the position indicator 50 to It is determined that the operation has started, and the process proceeds to a coordinate detection operation (step 1 in FIG. 8).
  • This time (Ts) is the same as that described with reference to FIG. 7, and is sufficiently longer than the cycle (Td) in which the position indicator 50 transmits in the data transmission period.
  • the microprocessor 58 operates the AD conversion circuit 57 by sequentially selecting five electrodes (X9 to X13) centered on the electrode X11 in order to obtain the X coordinate of the signal from the position indicator 50. To read the signal level (step 1). At this time, the microprocessor 58 stores the number of the electrode where the highest signal level is detected (here, X11), the signal level (VPX), and the levels VAX and VBX detected by the adjacent electrodes (see FIG. Step 1).
  • the microprocessor 58 sequentially selects the five electrodes (Y18 to Y22) centering on the electrode Y20 and reads the signal level. (Step 1). At this time, the microprocessor 58 stores the number of the electrode where the highest signal level is detected (here, Y20), the signal level (VPY), and the levels VAY and VBY detected by the adjacent electrodes (see FIG. Step 1). The signal levels VPX, VAX, VBX, VPY, VAY, and VBY obtained here are used for calculation of coordinate values by a calculation formula described later.
  • the microprocessor 58 performs an operation for waiting for the end of the continuous transmission period from the position indicator 50.
  • the microprocessor 58 performs control so that the selection circuit 52 selects the electrode X11 in which the peak is detected in the coordinate detection operation described above.
  • the time when the received signal level does not reach the predetermined value is the end time of the continuous transmission from the position indicator 50 (step 1).
  • the microprocessor 58 When the microprocessor 58 detects the end of continuous transmission from the position indicator 50, the microprocessor 58 enters an operation of detecting the timing of the start signal transmitted prior to the pen pressure data (step 2).
  • the microprocessor 58 controls to repeatedly start the sample hold circuit 56 and the AD conversion circuit 57 with the electrode X11 selected, and stores the time when the signal level becomes equal to or higher than the predetermined value as t1.
  • the microprocessor 58 starts the operation of receiving data from the position indicator from the time waiting for a certain time Tw from the time t1 (step 2). This time Tw is a time obtained in advance after the transmission of the start signal from the position indicator 50 is completed until the signal level received by the tablet is almost lost.
  • the microprocessor 58 starts a timer (not shown) at the same time as the above-described waiting time reaches Tw. This timer repeatedly counts from zero to a value that coincides with the time Td described above (data transmission cycle from the position indicator) (step 2). During an operation period of one cycle of the timer, the microprocessor 58 repeatedly activates the sample hold circuit 56 and the AD conversion circuit 57 to read the signal level. If the signal level does not reach the above-mentioned predetermined value, the microprocessor 58 determines that there is no transmission from the position indicator 50 and stores the data at that time as “0”. If a signal level equal to or higher than a predetermined value is detected, it is determined that there has been a transmission from the position indicator, and the data at that time is stored as “1” (step 2).
  • the microprocessor 58 performs the above-described timer count 11 times and stores 11-bit data.
  • the 11-bit data corresponds to the 11-bit data shown in FIG. 3.
  • the first 10 bits are writing pressure data, and the last 1 bit is remaining power information.
  • FIG. 8 shows a case where the pen pressure data is “1010111010” and the remaining power information is “1”.
  • the microprocessor 58 recognizes the remaining power of the electric double layer capacitor of the position indicator from the last data of the stored 11-bit data, that is, the past data of the battery remaining amount information and the data received this time. . That is, the microprocessor 58 determines whether or not the remaining battery level information of the last data of the stored 11-bit data is “1”. If the remaining battery level information is “1”, the microprocessor 58 determines “1”. The time interval between the past time point when the remaining battery level information is received and the current reception time point is detected, and the frequency at which the remaining power level information is transmitted as “1” is detected from the time interval. . Then, the number of pulses shown in FIG.
  • the microprocessor 58 displays a correspondence table between the past time point when the remaining battery level information of “1” is received, the time interval between the current reception time point and the remaining power level of the electric double layer capacitor. You may make it memorize
  • the microprocessor 58 based on the result of the recognition of the remaining amount of power, for example, as shown in FIG. 9, the position indicator provided at the upper part of the display screen DSP of the display device of the tablet of this embodiment.
  • the remaining amount of power of the position indicator is displayed on the remaining amount display unit BT in a plurality of steps or continuously.
  • the microprocessor 58 sends out the remaining electric power information sending means 581 for sending the detected remaining electric power of the position indicator to the host computer. You may make it provide.
  • the host computer can display the remaining amount of electricity of the position indicator on the screen of the display device based on the received amount of remaining electricity of the position indicator.
  • the microprocessor 21 of the position indicator can grasp the number of pulses supplied to the switch 18, so that the voltage of the electric double layer capacitor 14 can be recognized from the characteristic diagram of FIG. . Therefore, a display unit composed of an LCD or an organic EL display element is provided at an appropriate position on the side peripheral surface of the position indicator itself, and the remaining power of the electric double layer capacitor 14 is displayed on the display screen of the display unit. It can also be displayed.
  • step 2 the electrode (X11) in which the maximum level is detected is selected from the X electrodes and data is received, but the electrode (Y20) in which the maximum level is detected is selected from the Y electrodes. Data may be received.
  • step 2 the microprocessor 58 proceeds to the operation (step 1) for detecting the start of the continuous transmission period from the position indicator, and repeats the operation of FIG.
  • the coordinate values (X, Y) of the position indicator 50 are calculated from the reception levels VPX, VAX, VBX, VPY, VAY, VBY obtained in step 1 by the following equations.
  • X Px + (Dx / 2) ⁇ ((VBX ⁇ VAX) / (2 ⁇ VPX ⁇ VAX ⁇ VBX)) (Formula 1)
  • Px is the coordinate position of the X electrode (here, X11) where the maximum level is detected on the X axis
  • Dx is the arrangement pitch between the X electrodes.
  • Y Py + (Dy / 2) ⁇ ((VBY ⁇ VAY) / (2 ⁇ VPY ⁇ VAY ⁇ VBY)) (Formula 2)
  • Py is the coordinate position of the Y electrode (Y20 here) where the maximum level is detected on the Y axis
  • Dy is the arrangement pitch between the Y electrodes.
  • the circuit configuration can be simplified and consumed. There is an advantage that current can be suppressed to a low level.
  • the position indicator according to the present embodiment repeats the operation of FIG. 3. However, when the operation of one time is finished, transmission is stopped for a while, and another operation is performed with the tablet during this period. An operation, for example, a touch position detected by a finger may be detected.
  • the information transmitted from the position indicator is only the pen pressure and the remaining power information.
  • the number of bits to be transmitted is increased to transmit other information, for example, operation information such as a switch. You may do it.
  • the pen pressure information of the position indicator is represented by a binary code and transmitted by ASK modulation.
  • the frequency to be transmitted may be changed according to the pen pressure. .
  • the position indicator is controlled by the microprocessor 21, but may be performed by using a logic circuit instead of the microprocessor.
  • an amplifier circuit In addition to selecting each of the X electrode group and the Y electrode group, an amplifier circuit, a band pass filter circuit, a detection circuit, a sample hold circuit, and an AD conversion circuit are provided on the X electrode side and the Y electrode side, respectively, so as to detect simultaneously.
  • an amplifier circuit In addition to selecting each of the X electrode group and the Y electrode group, an amplifier circuit, a band pass filter circuit, a detection circuit, a sample hold circuit, and an AD conversion circuit are provided on the X electrode side and the Y electrode side, respectively, so as to detect simultaneously.
  • the electrode 12 is provided in the position indicator and the coordinate position is obtained by electrostatic coupling with the tablet.
  • a coil is provided, and the coil is AC. You may make it perform the position detection by electromagnetic induction with a tablet by sending an electric current.
  • the arrangement of the tablet is not the electrodes arranged in the tablet sensor 51, except that the loop coils are arranged in the X direction and the Y direction, and the other operations are exactly the same.
  • the coil provided instead of the electrode 12 may be the same as the charging coil 15 or may be different.
  • FIG. 11 shows a circuit configuration of a position indicator according to the second embodiment of the present invention.
  • the internal structure of the position indicator of this embodiment is the same as that shown in FIG.
  • the same components as those of the position indicator according to the first embodiment are denoted by the same reference numerals as those in FIG. That is, 12 is an electrode, 13 is a variable capacitor, 14 is an electric double layer capacitor, 15 is a coil, and 19 is a capacitor.
  • Reference numeral 31 denotes a charging circuit, which is a circuit that charges the electric double layer capacitor 14 by an electromotive force induced in the coil 15.
  • the voltage conversion circuit 23 is a voltage conversion circuit, which generates a constant voltage from the power source stored in the electric double layer capacitor 14 and stores it in the capacitor 19. Also in this embodiment, the constant voltage stored in the capacitor 19 is assumed to be 1.5V.
  • the voltage conversion circuit 23 may have the same configuration as that of the voltage conversion circuit 17 in FIG. 2 or may have another configuration.
  • 24 is an oscillation circuit
  • 25 is an ASK modulation circuit, and these may have the same circuit configuration as the oscillation circuit 22 in FIG. 2 or other configurations.
  • This embodiment is different from the configuration of the first embodiment in that the voltage of the electric double layer capacitor 14 is detected by the AD conversion circuit 26 and the microprocessor 27 reads the voltage.
  • the timing of the signal transmitted from the electrode 12 and the writing pressure detection operation by the variable capacitor 13 are performed in exactly the same manner as shown in FIG.
  • the electric double layer capacitor is used as the power source of the position indicator, but a rechargeable battery may be used.
  • the position indicator is controlled by the microprocessor 27.
  • a logic circuit may be used instead of the microprocessor.
  • FIG. 12 shows a circuit configuration of a position indicator according to the third embodiment of the present invention.
  • the same components as those of the position indicator according to the second embodiment are denoted by the same reference numerals as those in FIG. That is, 12 is an electrode, 13 is a variable capacitor, 14 is an electric double layer capacitor, 15 is a coil, 19 is a capacitor, 23 is a voltage conversion circuit, 25 is an ASK modulation circuit, 26 is an AD conversion circuit, and 27 is a microprocessor. is there.
  • Reference numeral 31 denotes a charging circuit, which is a circuit that charges the electric double layer capacitor 14 by an electromotive force induced in the coil 15.
  • variable capacitor 28 is an oscillation circuit that oscillates at a resonance frequency by the coil 29, the capacitor 30, and the variable capacitor 13.
  • the variable capacitor 13 is the same as that used in the first embodiment and the second embodiment, and the capacitance changes depending on the writing pressure.
  • the variable capacitor 13 since the variable capacitor 13 is provided in the resonance circuit in the oscillation circuit 28, the frequency of the signal transmitted from the electrode 12 changes according to the applied writing pressure.
  • the internal structure of the position indicator is the same as that shown in FIG.
  • FIG. 13 shows the operation of the position indicator in this embodiment, and shows how the signal (p) and signal (r) in FIG. 12 change.
  • the microprocessor 27 controls the signal (p) to alternately repeat a transmission period (for example, 2 msec) and a transmission stop period (for example, 8 msec). At the end of each transmission period, after the transmission is temporarily stopped, the remaining power amount information represented by 1 bit is transmitted.
  • the remaining power information is transmitted by the microprocessor 27 in the same manner as in the second embodiment. That is, the microprocessor 27 changes the frequency of setting the remaining power amount information to “1” according to the voltage of the electric double layer capacitor 14 detected by the AD conversion circuit 26.
  • the feature of this embodiment is that the frequency of the signal transmitted during the transmission period changes according to the writing pressure applied to the variable capacitor 13.
  • FIG. 14 is a configuration diagram of a tablet used in the present embodiment.
  • the coordinates and writing pressure of the position indicator are obtained during the transmission period from the position indicator, and during the transmission stop period. Detects the touch position with a finger.
  • 60 is a position indicator having the same configuration as that shown in FIG. 12, and the frequency of the signal transmitted from the position indicator 60 is f1.
  • Reference numeral 51 denotes the same tablet sensor as used in the first embodiment.
  • 61 is an X selection circuit for selecting one electrode from the X electrode group, and 62 is a Y selection circuit for selecting one electrode from the Y electrode group.
  • Reference numeral 63 denotes an oscillator for supplying a transmission signal to the Y electrode when the tablet of this embodiment is operated as touch detection, and the oscillation frequency is f2.
  • Reference numeral 64 denotes a switching circuit, which switches whether the Y electrode selected by the Y selection circuit 62 is connected to the oscillator 63 or the amplifier circuit side described later.
  • the control signal e from the microprocessor 70 to the switching circuit 64 is set to the high level (1) to select the oscillator 63 side.
  • the microprocessor 70 sets the control signal e to the low level (0) and selects the amplification circuit side.
  • the microprocessor 70 sets the control signal f to the switching circuit 65 to the low level (0) and selects the X selection circuit 61 side.
  • the microprocessor 70 sets the control signal f to the low level (0) and sets the X selection circuit. Select the 61 side.
  • the microprocessor 70 sets the control signal f to the high level (1) and selects Y. The circuit 62 side is selected.
  • the output of the amplifier circuit 66 is connected to a band pass filter circuit 67 having a predetermined bandwidth centered on the frequency f1 or the frequency f2.
  • the center frequency of the band-pass filter circuit 67 is switched by a control signal g from the microprocessor 70.
  • the tablet of this embodiment performs an operation of detecting the position indicator 60, the center frequency becomes the frequency f1, and the touch detection operation is performed.
  • the center frequency is switched to the frequency f2.
  • the bandwidth when the bandpass filter circuit 67 operates with the center frequency as the frequency f ⁇ b> 1 is sufficiently larger than the change width of the transmission frequency due to the change in writing pressure of the position indicator 60.
  • the output signal of the bandpass filter circuit 67 is detected by the detection circuit 68 and converted into a digital value by the AD conversion circuit 69 based on the control signal h from the microprocessor 70.
  • the digital data j from the AD conversion circuit 69 is read and processed by the microprocessor 70.
  • the output signal of the band pass filter circuit 67 is also supplied to the frequency measurement circuit 71.
  • the frequency measurement circuit 71 measures the frequency of the signal supplied thereto in detail, and supplies the measured frequency information to the microprocessor 70.
  • a counter circuit may be provided to count the wave number of the signal input within a certain time, or a comparator may be provided to count the rising or falling of the input signal a predetermined number of times. You may make it measure the time in between.
  • the microprocessor 70 obtains the writing pressure information of the position indicator 60 based on the frequency information from the frequency measuring circuit 71.
  • FIG. 15 shows an operation for obtaining the coordinate position and the power remaining amount of the electric double layer capacitor 14 by the position indicator 60 of the present embodiment.
  • the approximate position on the tablet sensor 51 of the position indicator 60 can be detected in the same manner as in the first embodiment. That is, the microprocessor 70 sets the control signal e for the switching circuit 64 to the low level (0) and sends the control signal g so that the center frequency of the bandpass filter circuit 67 becomes the frequency f1. 7, the approximate position on the tablet sensor 51 of the position indicator 60 can be obtained.
  • description will be made assuming that the position indicator 60 is near the intersection of the electrode X11 and the electrode Y20.
  • the microprocessor 70 sets the control signal f to the switching circuit 65 to the low level (0) and the signal level output from the AD conversion circuit 69 continues for a predetermined time (Ts) or more while the electrode X11 is selected. If it is, it is determined that the continuous transmission period of the position indicator 60 has started, and the process proceeds to the coordinate detection operation (step 1 in FIG. 15). In order to obtain the X coordinate of the signal from the position indicator 60, the microprocessor 70 sequentially selects the five electrodes (X9 to X13) centered on the electrode X11, and the AD conversion circuit 69 is selected. The signal level is read by operating (step 1). At this time, the microprocessor 70 stores the number of the electrode where the highest signal level is detected (here, X11), the signal level (VPX), and the levels VAX and VBX detected by the adjacent electrodes (see FIG. Step 1).
  • the microprocessor 70 sets the control signal f to the switching circuit 65 to the high level (1) and selects the Y selection circuit 62 side.
  • the Y selection circuit 62 sequentially selects five electrodes (Y18 to Y22) centering on Y20, and reads the signal level (step 1).
  • the microprocessor 70 stores, as VAY and VBY, the number of the electrode where the highest signal level is detected (here, Y20), its signal level (VPY), and the levels detected by the adjacent electrodes. (Step 1). From the signal levels VPX, VAX, VBX, VPY, VAY, VBY obtained here, the microprocessor 70 calculates the coordinate position of the position indicator 60 using the above-described (Expression 1) and Expression (2). .
  • the microprocessor 70 performs an operation for waiting for the end of the continuous transmission period from the position indicator 60.
  • the microprocessor 70 sets the control signal f to the switching circuit 65 to the low level (0), and controls the X selection circuit 61 to select the electrode X11 in which the peak is detected in the coordinate detection operation described above. .
  • the time when the received signal level does not reach the predetermined value is the end time of the continuous transmission from the position indicator 60 (step 1).
  • the microprocessor 70 When detecting the end of the continuous transmission period from the position indicator 60, the microprocessor 70 selects the electrode X11 for a predetermined time (in FIG. 13, after the continuous transmission period ends, the remaining power amount information is transmitted). (Time to finish) Receive signal. If a signal having a level of a predetermined value or more is detected during this period, the microprocessor 70 stores the remaining power amount information from the position indicator 60 as “1”, and if a signal having a level of a predetermined value or more is not detected. The remaining power information is stored as “0”. FIG. 15 shows the case where the remaining power information is “1” (step 2).
  • the position indicator 60 When the reception of the remaining power amount information is completed, the position indicator 60 enters a transmission stop period (FIG. 13), so the tablet of this embodiment performs a touch detection operation during this period.
  • this touch detection operation ends before the next transmission from the position indicator 60 starts, and the operation shown in FIG. 15 is performed again.
  • the detection operation of the position indicator 60 and the touch detection are performed.
  • the operation is repeated alternately.
  • the microprocessor 70 can determine the remaining amount of power stored in the electric double layer capacitor 14 from the frequency at which the remaining power information from the position indicator is detected as “1”.
  • the microprocessor 70 sets the control signal e for the switching circuit 64 to the high level (1), sets the control signal f to the switching circuit 65 to the low level (0), and controls the control signal so that the center frequency of the bandpass filter circuit 67 becomes the frequency f2.
  • Send g. the transmission signal from the oscillator 63 is received by the capacitive coupling at the intersection of the X electrode and the Y electrode, and the signal level is obtained by the AD conversion circuit 69 (step 3).
  • the microprocessor 70 controls the X selection circuit 61 and the Y selection circuit 62, and obtains a signal level by capacitive coupling at all intersections of the X electrode and the Y electrode.
  • the signal level (reference level) at each intersection when there is no finger is obtained in advance, the reception level when each intersection of the X electrode and the Y electrode is selected is compared with the reference level. By doing so, it is possible to determine whether or not there is a finger near the selected intersection (step 3).
  • the touch detection operation described above needs to be performed during the transmission stop period of the position indicator 60 (in this example, 8 msec), but the intersection of the X electrode and the Y electrode may be selected in a plurality of times.
  • the electric double layer capacitor is used as the power source of the position indicator, but a rechargeable battery may be used.
  • the frequency of the signal to be transmitted is changed by the variable capacitor 13, but may be changed by changing the inductance of the coil 29.
  • the position indicator transmits the remaining amount information to the tablet as a part of the position indicator information.
  • the remaining amount information is displayed on the tablet separately from the position indicator information. You may make it transmit to.
  • the remaining amount information is 1-bit information, it may be changed to a change frequency according to the detected remaining amount of the power supply (electrical remaining amount). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

 位置指示器に蓄えられた電源の残量を複数段階で認識することができる位置検出装置を提供する。 位置指示器には、電池または電気二重層キャパシタより構成される蓄電器と、タブレットに向けて送信するための交流信号を発生させる交流信号発生回路と、2進コードで表される位置指示器情報に応じて前記交流信号を変調する変調回路と、蓄電器の電気残量を検出する電気残量検出回路とを設けて、検出した電気残量に応じて位置指示器情報の特定のビットを0または1とする頻度を変化させるようにする。タブレットには、位置指示器からの位置指示器情報を受信する情報受信手段を設けて、受信した位置指示器情報の特定のビットが0または1となる頻度より蓄電器の電気残量を検出するようにする。

Description

位置検出装置及びその位置指示器
 本発明は、位置指示器の指示位置を検出する位置検出装置に関する。
 この出願に先立ち、本出願人は、先に、位置指示器に電気二重層キャパシタを電源として用いる位置検出装置およびその位置指示器について提案している(特許文献1(特開2007-164356号公報参照))。この特許文献1の位置検出装置によれば、位置指示器の電気二重層キャパシタを数秒~数十秒という高速に充電ができる反面、位置指示器を小型にするためには搭載できる電気二重層キャパシタの容量に限りがあるため、比較的頻繁に充電操作を行う必要がある。
 特許文献1の発明では、作業途中で位置指示器の動作が停止したりすることを防ぐため、電気二重層キャパシタの電圧が一定以下に低下した際に、そのことを示す情報を送信するようにして、作業者がそのことを認識できるようにしている。
特開2007-164356号公報
 これに対して、作業の途中で効率よく充電を行うためには、位置指示器に蓄えられた電源の残量(電気残量)がどの程度なのかということを複数段階で知りたいという要望がある。
 本発明は、この問題点に対して、位置指示器に蓄えられた電源の残量を複数段階で認識することができる位置検出装置を提供することを目的とする。
 本発明では前記目的を達成するため、位置指示器に、電池または電気二重層キャパシタによる蓄電器と、交流信号発生回路と、前記蓄電器の電気残量を検出する電気残量検出回路と、前記検出した前記電気残量に応じた変化頻度を有する残量情報を前記タブレットに送信する情報送信手段とを設けて、タブレットでは、前記位置指示器からの前記残量情報を受信する情報受信手段を設けて、受信した前記残量情報の変化頻度により前記蓄電器の電気残量を検出するようにした位置検出装置を提案する(請求項1)。
 また、位置指示器に、電気二重層キャパシタと、前記電気二重層キャパシタを充電する充電回路と、前記電気二重層キャパシタに蓄えられた電圧を所定の電圧に変換する回路であって少なくとも一つのスイッチを用いて所定の電圧を生成する電圧変換回路と、前記電圧変換回路により出力される電圧が前記所定値に達しているかどうかを検出する電圧検出回路と、前記電圧検出回路による検出結果が前記所定値に達していないときに前記スイッチにパルス信号を供給する電圧制御回路と、タブレットに向けて送信するための交流信号を発生させる交流信号発生回路と、前記電圧制御回路が出力するパルス信号の送出回数をカウントするカウンタ回路と、2進コードで表される位置指示器情報に応じて前記交流信号を変調する変調回路とを設けて、前記カウンタ回路によりカウントされたパルス送出回数が所定回数に達する毎に前記位置指示器情報の特定のビットを0または1として前記変調回路を制御するようにして、タブレットでは前記位置指示器情報の特定のビットが0または1となる頻度により電気二重層キャパシタの電気残量を検出するようにした位置検出装置を提案する(請求項13)。
 本発明によれば、位置指示器から送信する電源の残量情報を複数段階で表すようにしたので、あとどのくらい充電をせずに使用できるかを推測することができ、作業の途中で効率よく充電を行うことができる。
 また、位置指示器から送信する情報として1ビットを追加するだけで良く、座標や筆圧のサンプリング速度を落とすことがない。
本発明の第1の実施形態による位置指示器の内部構造を示した図である。 本発明の第1の実施形態による位置指示器の回路構成を示した図である。 本発明の第1の実施形態による位置指示器の動作を示した図である。 電気二重層キャパシタの電圧とパルス発生回数との関係を示した図である。 本発明の第1の実施形態によるタブレットの構成を示した図である。 本発明の第1の実施形態の位置検出装置におけるX軸全面スキャン動作を示した図である。 本発明の第1の実施形態の位置検出装置における部分スキャンへの移行動作を示した図である。 本発明の第1の実施形態の位置検出装置における部分スキャン動作を示した図である。 本発明の第1の実施形態の位置検出装置における電源の残量の表示例を示した図である。 本発明の第1の実施形態の位置検出装置における電源の残量の情報をホストコンピュータに供給する構成を示した図である。 本発明の第2の実施形態による位置指示器の回路構成を示した図である。 本発明の第3の実施形態による位置指示器の回路構成を示した図である。 本発明の第3の実施形態による位置指示器の動作を示した図である。 本発明の第3の実施形態によるタブレットの構成を示した図である。 本発明の第3の実施形態による位置指示器の検出動作を示した図である。
 [第1の実施形態]
 図1は、本発明の第1の実施形態における位置指示器の内部構造を示したものである。本実施形態では、タブレットとの静電結合により座標位置を求めるペン形状の位置指示器について示す。なお、この明細書において、位置検出装置とは、タブレットと位置指示器とからなる装置であり、また、タブレットとは、専用の電子ペンないし、その他のペン形状の物体(指を含む)の位置を、タブレットに内蔵したセンサにより読み取るようにする装置(ポインティングデバイス)である。
 図1において、11はペン芯、12はペン芯11の内部に組み込まれた電極、13はペン芯11と物理的に接続されてペン芯11に加えられる筆圧に応じて容量が変化する可変容量コンデンサ、14は電気二重層キャパシタ、15は電気二重層キャパシタ14を非接触で充電するためのコイル、16はプリント基板である。
 図2は本発明の第1の実施形態による位置指示器の回路構成を示したもので、図1と同一なものは同一符号にて示す。即ち、12は電極、13は可変容量コンデンサ、14は電気二重層キャパシタ、15はコイルである。17は電圧変換回路で、コイル171,172、コンデンサ173、ダイオード174、およびスイッチ18により構成されている。電圧変換回路17は、SEPICと呼ばれる周知の電圧変換回路であり、昇圧および降圧の両方を行うことができ、電気二重層キャパシタ14に蓄えられた電源より一定の電圧を生成してコンデンサ19に蓄える。本実施形態ではコンデンサ19に蓄えられる一定電圧が1.5V(ボルト)であるものとして説明を行う。
 20は電圧検出器で、入力電圧が1.5V以上の時にはハイレベル(入力電圧と同じ電圧)を出力し、入力電圧が1.5Vに達しない時にはロウレベル(0V)を出力する。21はマイクロプロセッサで、コンデンサ19に蓄えられた電圧を電源として動作する。
 22は発振回路で、コイルL1と2つのコンデンサC1およびC2からなる共振回路の共振周波数の信号を発生する。発振回路22により生成された信号はコイルL1とコイルL2からなるトランスによって昇圧されて電極12に供給される。発振回路22はコンデンサ19に蓄えられた電源によって動作する。
 発振回路22にはマイクロプロセッサ21の出力端子P2から制御信号pが供給され、発振回路22では、この制御信号pのレベルに応じてASK(Amplitude Shift Keying)変調が行われる。即ち、マイクロプロセッサ21は、後述する所定のタイミングで出力端子P2をハイレベルまたはロウレベルに変化させて、出力端子P2がハイレベルの時には発振回路22は発振を行い、出力端子P2がロウレベルの時には発振回路22は発振を停止する。
 可変容量コンデンサ13には抵抗Rが並列に接続され、その一端はマイクロプロセッサ21の入出力端子P3に接続されている。入出力端子P3が出力状態の時には、入出力端子P3にはハイレベルが出力されるため、可変容量コンデンサ13は1.5Vに充電される。入出力端子P3が入力状態の時には、入出力端子P3はハイインピーダンス状態となるため、可変容量コンデンサ13に蓄えられた電荷は、並列に接続した抵抗Rを介してゆっくり放電される。このため、入出力端子P3の電圧は徐々に低下してゆく。入出力端子P3が入力状態の時には、マイクロプロセッサ21は、入出力端子P3に関し、入出力端子P3の電圧と一定のしきい値Vthとを比較するコンパレータとして動作する。このしきい値Vthを本実施形態では電源電圧の2分の1、即ち0.75Vとして説明する。
 図3は本実施形態の動作を示したもので、図2における信号(p)、信号(q)、信号(r)の変化の様子を示している。マイクロプロセッサ21は、端子P2(信号(p))が一定期間ハイレベルを維持するように制御する。これによって電極12からは一定期間連続して信号(r)を放射する(図3の、連続送信期間)。この連続送信期間中に、マイクロプロセッサ21は、入出力端子P3を制御して可変容量コンデンサ13に加えられた筆圧を求める。即ち、マイクロプロセッサ21は、入出力端子P3を出力状態とすることにより可変容量コンデンサ13を充電する。
 次いで、マイクロプロセッサ21は、入出力端子P3を入力状態に切替える。このとき、可変容量コンデンサ13に蓄えられた電荷はこれと並列に接続した抵抗Rによって放電されるため、可変容量コンデンサ13の電圧(q)は徐々に低下する。端子P3を入力状態に切替えてから電圧(q)が0.75V以下に低下するまでの時間Tpを求める。可変容量コンデンサ13は、ペン芯11に加えられる筆圧に応じた静電容量となっているので、この時間Tpが求める筆圧に相当するものである。本実施形態では、マイクロプロセッサ21は筆圧を10ビットの値(2進コード)として求める。
 この連続送信期間を終了すると、マイクロプロセッサ21は、所定の周期(Td)で端子P2(信号(p))をハイレベルまたはロウレベルに制御することによりASK変調を行う。このとき、所定の周期(Td)の初回は必ずハイレベルとする(図3の、スタート信号)。これは、以降のデータ送出タイミングをタブレット側で正確に判定することができるようにするためである。
 スタート信号に続いて、11ビットの送信データを順次送信する。この11ビットの送信データには、前述した動作により求めた10ビットの筆圧データと、後述する1ビットで表される電源残量情報とが含まれる。送信データ(2進コード)が「0」のときは端子P2をロウレベルとして、送信データ(2進コード)が「1」のときは端子P2をハイレベルとして制御する。図3では、送信する筆圧のデータが「1010111010」、電源残量情報のデータが「1」の場合について示している。
 本実施形態では図3の動作が繰り返し行われるが、マイクロプロセッサ21は前述した動作と同時に、コンデンサ19に蓄えられる電圧が一定電圧(1.5V)となるように出力端子P1の制御を行う。
 すなわち、マイクロプロセッサ21は定期的に入力端子P0の電圧を検出する。前述したように電圧検出器20は、コンデンサ19の電圧が1.5V以上の時にはハイレベル(入力電圧と同じ電圧)を出力し、1.5Vに達しない時にはロウレベル(0V)を出力するので、マイクロプロセッサ21は、入力端子P0による検出結果がロウレベルであれば、出力端子P1からスイッチ18に対してパルス信号を出力する。このパルス信号により電気二重層キャパシタ14に蓄えられた電荷がコンデンサ19に移動されるため、コンデンサ19の電圧が上昇する。この時に1回のパルスによって移動する電荷の量は電気二重層キャパシタ14の電圧が高いほど多くなる。一方、コンデンサ19に蓄えられる電源からの消費はほぼ一定であるから、マイクロプロセッサ21は、電気二重層キャパシタ14に蓄えられた電荷の残量が少なくなるにつれて出力端子P1から送出するパルスの頻度を多くする。
 図4は電気二重層キャパシタの電圧と、マイクロプロセッサ21の出力端子P1から送出するパルスのパルス発生回数との関係を示したものである。マイクロプロセッサ21は、出力端子P1から送出するパルスが一定回数(たとえば40回)に達する毎に、図3に示した電源残量情報(2進コード)を「1」として送出する。また、図3の電源残量情報のデータを出力するまでに、出力端子P1から送出するパルスが前記一定回数に達しなければ電源残量情報を「0」として送出を行う。そのため、電気二重層キャパシタ14が満杯に充電された直後では電源残量情報が「1」として送出される頻度は低く、時間が経過して電気二重層キャパシタ14に蓄えられている電源の残量が少なくなるほど電源残量情報が「1」として送出される頻度が高くなる。
 すなわち、電気二重層キャパシタ14に蓄えられている電源の残量は、電源残量情報が「1」として送出される頻度に応じたものとなっているので、当該電源残量情報が「1」として送出される頻度を検出することで、位置指示器に蓄えられた電源の残量を、検出した頻度に応じた複数段階で認識することができる。この場合に、この位置指示器に蓄えられた電源の残量は、位置指示器のマイクロプロセッサ21において認識できることは勿論であるので、位置指示器自身において、表示装置を設けて電源の残量を表示することができる。また、電源残量情報を受信するタブレットにおいては、位置指示器から、「1」として送出された電源残量情報の受信頻度を検出することで、当該位置指示器に蓄えられた電源の残量を認識できるので、表示画面に、位置指示器の電源の残量を表示することができる。
 図5は本実施形態に用いるタブレットの構成を示したものである。図5において、50は図1および図2に示した位置指示器、51は透明なガラスを基材とするタブレットセンサーである。タブレットセンサー51の表面にはX方向に配列したX電極群が、裏面にはX方向と直交するY方向に配列したY電極群がそれぞれ設けられている。これらのX電極群およびY電極群は、例えばITO(Indium Tin Oxide)により透明な電極として形成されている。また、タブレットセンサー51は図示しない表示装置の上に配置されており、その表示箇所を位置指示器50で直接入力することができるようになっている。52はX電極群およびY電極群の中から1本の電極を選択する選択回路である。本実施形態ではX電極が40本(X1~X40)、Y電極が30本(Y1~Y30)として説明する。選択回路52により選択された電極は増幅回路53に接続され、位置指示器50からの信号が、選択された電極により検出されて増幅回路53により増幅される。
 増幅回路53の出力はバンドパスフィルター回路54に供給されて、位置指示器50から送信される周波数の成分のみが抽出される。バンドパスフィルター回路54の出力信号は検波回路55によって検波され、検波回路55の出力信号はサンプルホールド回路56に供給されて、所定のタイミングでサンプルホールドされた後、AD(Analog to Digital)変換回路57によってデジタル値に変換される。このデジタルデータはマイクロプロセッサ58によって読み取られ処理される。
 マイクロプロセッサ58は、内部にROM(Read Only Memory)およびRAM(Random Access Memory)を備えるとともに、ROMに格納されたプログラムによって動作し、サンプルホールド回路56、AD変換回路57、および選択回路52に、それぞれ制御信号を送出する。
 図6は、タブレットセンサー51上において、位置指示器50のおよそのX方向位置を求めるためのX軸全面スキャン動作について示したものである。マイクロプロセッサ58は、選択回路52に対して電極X1を選択するような制御信号を送出して、そのときにAD変換回路57から出力されるデータを信号レベルとして読み取る。同様にして、マイクロプロセッサ58は、選択回路52による選択を、電極X2、X3、X4・・と順次切り替えながら信号レベルを読み取る。このとき、電極X1~X40の全ての電極で検出される信号レベルが所定値に達していなければ、マイクロプロセッサ58は、位置指示器50はタブレットセンサー51上に無いものと判断して、図6の動作を繰り返す。電極X1~X40のいずれかの電極から所定値以上のレベルの信号が検出された場合には、マイクロプロセッサ58は、最も高い信号レベルが検出されたX電極の番号(図6では電極X11)を記憶する。
 位置指示器50が電極X11付近にあることが判ったら、マイクロプロセッサ58は、図7に示すような部分スキャンへの移行動作を行う。この部分スキャンへの移行動作は、位置指示器50が図3に示すような動作を繰り返すときに、マイクロプロセッサ58が、位置指示器50からの連続送信期間の開始時刻を検出することにより、位置指示器50の動作とタイミングを合わせるとともに、Y電極(Y1~Y30)についておよその位置を求めるための動作である。
 図7において、マイクロプロセッサ58は選択回路52に対して、前述したX軸全面スキャン動作において求まった電極X11を選択するように制御信号を送出する。このとき、位置指示器50から送信される信号に対応した信号が電極X11に誘導され、検波回路55にはその信号レベルに対応した電圧が発生する。マイクロプロセッサ58は、一定の周期でサンプルホールド回路56およびAD変換回路57を動作させて、その信号レベルを読み取る。この、サンプルホールド回路56およびAD変換回路57を動作させる周期は、位置指示器50がデータ送信期間に送信する周期(Td)よりも十分に短い時間とする。
 マイクロプロセッサ58は、AD変換回路57により出力される信号レベルが一定時間(Ts)継続して所定値以上であったときに、位置指示器50の連続送信期間が開始されたと判断して、Y軸全面スキャン動作へ移行する(図7)。この時間(Ts)は、位置指示器50がデータ送信期間に送信する周期(Td)よりも十分に長い時間とする。
 マイクロプロセッサ58は、選択回路52を制御して、電極Y1からY30までを順次選択して、AD変換回路57からの信号レベルを読み取る。このときマイクロプロセッサ58は、最も大きい信号レベルが検出された電極を記憶しておく。本実施形態では、電極Y20から最も大きい信号レベルが検出されたものとして説明を行う。
 選択回路52が最後の電極Y30を選択して信号レベルの検出を終了したら、マイクロプロセッサ58は位置指示器50からの連続送信期間の終了を待つための動作を行う。マイクロプロセッサ58は、選択回路52が電極X11を選択するように制御を行う。このとき、位置指示器50からの送信が継続していれば、マイクロプロセッサ58では、前述した所定値以上のレベルの信号が検出される。受信信号レベルが所定値に達しなくなった時刻が位置指示器50からの連続送信の終了時刻となる。続いて、位置指示器50はデータ送信期間となるが、このとき位置指示器50のタブレットセンサー51における詳細な位置が求まっていないため、ここではデータは読まずに図8に示す部分スキャン動作へ移行する。
 マイクロプロセッサ58は、電極X11を選択した状態で、AD変換回路57から出力される信号レベルが一定時間(Ts)継続して所定値以上であったときに、位置指示器50の連続送信期間が開始されたと判断して、座標検出動作へ移行する(図8のステップ1)。この時間(Ts)は、図7で説明したのと同様で、位置指示器50がデータ送信期間に送信する周期(Td)よりも十分に長い時間とする。
 マイクロプロセッサ58は、位置指示器50からの信号のX座標を求めるため、選択回路52が電極X11を中心とする5本の電極(X9~X13)を順次選択して、AD変換回路57を動作させて信号レベルを読み取る(ステップ1)。このとき、マイクロプロセッサ58は、最も高い信号レベルが検出された電極の番号(ここではX11)、およびその信号レベル(VPX)、またその両隣の電極により検出されたレベルVAX、VBXを保存する(ステップ1)。
 次にマイクロプロセッサ58は、位置指示器50からの信号のY座標を求めるため、選択回路52が電極Y20を中心とする5本の電極(Y18~Y22)を順次選択して、信号レベルを読み取る(ステップ1)。このとき、マイクロプロセッサ58は、最も高い信号レベルが検出された電極の番号(ここではY20)、およびその信号レベル(VPY)、またその両隣の電極により検出されたレベルVAY、VBYを保存する(ステップ1)。ここで求まった信号レベルVPX、VAX、VBX、VPY、VAY、VBY、は後述する計算式による座標値の計算に用いられる。
 次いで、マイクロプロセッサ58は、位置指示器50からの連続送信期間の終了を待つための動作を行う。マイクロプロセッサ58は、選択回路52が前述した座標検出動作においてピークが検出された電極X11を選択するように制御を行う。このとき、受信される信号レベルが所定値に達しなくなった時刻が位置指示器50からの連続送信の終了時刻となる(ステップ1)。
 マイクロプロセッサ58は、位置指示器50からの連続送信の終了を検出すると、筆圧データに先立って送信されるスタート信号のタイミングを検出する動作に入る(ステップ2)。マイクロプロセッサ58は、電極X11を選択した状態でサンプルホールド回路56およびAD変換回路57を繰り返し起動するように制御して、信号レベルが前述した所定値以上となった時刻をt1として記憶する。マイクロプロセッサ58は、時刻t1から一定時間Twだけ待った時刻より位置指示器からのデータ受信動作を開始する(ステップ2)。この時間Twは、位置指示器50からのスタート信号の送信を終了した後、タブレットで受信される信号レベルがほぼ無くなるまでとし、予め求めておいた時間とする。
 マイクロプロセッサ58は、前述した待ち時間がTwに達すると同時に、図示しないタイマーを起動する。このタイマーはゼロから前述したTdの時間(位置指示器からのデータ送信周期)に一致する値までを繰り返しカウントする(ステップ2)。タイマーの1周期の動作期間中、マイクロプロセッサ58はサンプルホールド回路56およびAD変換回路57を繰り返し起動して信号レベルを読み取る。マイクロプロセッサ58は、この間の信号レベルが一度も前述した所定値に達しなければ、位置指示器50からの送信が無かったものと判断してその回のデータを「0」として保存し、その間に所定値以上の信号レベルが検出された場合には位置指示器からの送信が有ったものと判断してその回のデータを「1」として保存する(ステップ2)。
 マイクロプロセッサ58は、前述したタイマーのカウントを11回行い、11ビットのデータを保存する。この11ビットのデータは図3において示した11ビットのデータに対応するもので、最初の10ビットは筆圧データであり、最後の1ビットが電源残量情報である。図8では、筆圧データが「1010111010」、電源残量情報が「1」の場合について示している。
 マイクロプロセッサ58は、保存した11ビットのデータの最後のデータ、すなわち、電池残量情報の過去のデータ及び今回受信したデータとから、位置指示器の電気二重層キャパシタの電源の残量を認識する。すなわち、マイクロプロセッサ58は、保存した11ビットのデータの最後のデータの電池残量情報が「1」となっているか否か判別し、電池残量情報が「1」であれば、「1」となっている電池残量情報を受信した過去の時点と、今回の受信時点との時間間隔を検出して、その時間間隔から、電源残量情報が「1」として送出される頻度を検出する。そして、検出した頻度に対応した図4に示したパルス回数を推定し、推定したパルス回数に対応する電気二重層キャパシタの電圧を判定することで、位置指示器の電気二重層キャパシタ14の電源の残量を認定する。なお、マイクロプロセッサ58は、「1」となっている電池残量情報を受信した過去の時点と、今回の受信時点との時間間隔と、電気二重層キャパシタの電源の残量との対応テーブルを予め記憶しておき、その対応テーブルから電気二重層キャパシタ14の電源の残量を認定するようにしてもよい。
 そして、マイクロプロセッサ58は、その電源の残量の認定結果に基づいて、例えば図9に示すように、本実施形態のタブレットの表示装置の表示画面DSPの上部に設けられた、位置指示器の電源の残量表示部BTに、当該位置指示器の電源の残量を複数段階または連続的に変化させて表示するようにする。
 また、タブレットがホストコンピュータに接続されている場合には、図10に示すように、マイクロプロセッサ58は、検出した位置指示器の電気残量を、ホストコンピュータに送出する電気残量情報送出手段581を備えるようにしてもよい。その場合には、ホストコンピュータは、受信した位置指示器の電気残量に基づいて、その表示装置の画面に、位置指示器の電気残量を表示させることができる。
 なお、図示は省略したが、位置指示器のマイクロプロセッサ21は、スイッチ18に供給するパルス回数を把握することができるので、図4の特性図から電気二重層キャパシタ14の電圧を認定することできる。そこで、位置指示器自身の筐体の側周面の適切な位置にLCDや有機EL表示素子からなる表示部を設け、その表示部の表示画面に、電気二重層キャパシタ14の電源の残量を表示するようにすることもできる。
 なお、ステップ2ではX電極の中から最大レベルが検出された電極(X11)を選択してデータの受信を行ったが、Y電極の中で最大レベルが検出された電極(Y20)を選択してデータの受信を行っても良い。
 マイクロプロセッサ58は、ステップ2において11ビットのデータ受信を終了すると、位置指示器からの連続送信期間の開始を検出する動作(ステップ1)へ移行して、図8の動作を繰り返し行う。
 次に、前述したステップ1において求められた受信レベルより位置指示器50の座標位置を求める方法について説明する。
 ステップ1で求められた受信レベルVPX、VAX、VBX、VPY、VAY、VBY、より位置指示器50の座標値(X、Y)は次式によりそれぞれ計算される。
  X=Px+(Dx/2)×((VBX-VAX)/(2×VPX-VAX-VBX))・・・(式1)
但し、PxはX軸で最大レベルが検出されたX電極(ここではX11)の座標位置とし、DxはX電極間の配列ピッチ、とする。
  Y=Py+(Dy/2)×((VBY-VAY)/(2×VPY-VAY-VBY))・・・(式2)
但し、PyはY軸で最大レベルが検出されたY電極(ここではY20)の座標位置とし、DyはY電極間の配列ピッチ、とする。
 本実施形態による位置指示器によれば、電気二重層キャパシタ14に蓄えられている電源の残量計測と電源の電圧変換とを共通に行うことができるので、回路の構成が簡略化できるとともに消費電流を少なく抑えることができるという利点がある。
 また、位置指示器からタブレットに送信する情報として1ビットを追加するだけで、タブレットにおいて複数段階の電池残量を表すことができ、位置指示器からのデータの転送レートを落とすことがない。
 本実施形態では、電圧変換回路17のコイル171,172やコンデンサ173の定数を調整するとともにスイッチ18を制御するパルス幅を調整して、コンデンサ19の電圧変動を少なくすることが好ましい。
 なお、上述の実施形態の説明では、本実施形態による位置指示器は、図3の動作を繰り返すこととしたが、1回の動作を終えるとしばらく送信を停止して、この間にタブレットで他の動作、たとえば指によるタッチ位置の検出を行うようにしても良い。
 また、上述の実施形態の説明では、位置指示器から送信する情報を筆圧と電源残量情報のみとしたが、送信するビット数を増やして他の情報、たとえばスイッチ等の操作情報を送信するようにしても良い。
 また、上述の実施形態の説明では、位置指示器の筆圧情報を2進コードで表してASK変調により送信するようにしたが、筆圧に応じて送信する周波数を変化させるようにしても良い。
 また、上述の実施形態の説明では、位置指示器の制御をマイクロプロセッサ21により行ったが、マイクロプロセッサの代わりにロジック回路を用いて行っても良い。
 また、上述の実施形態の説明では、選択回路52により選択する電極を1本のみとしたが、隣接する複数本を同時に選択するようにしても良い。また、X電極群とY電極群についてそれぞれを選択するとともに、増幅回路、バンドパスフィルター回路、検波回路、サンプルホールド回路およびAD変換回路をX電極側とY電極側にそれぞれ設けて同時に検出するようにしても良い。
 また、上述の実施形態の説明では、位置指示器に電極12を設けて、タブレットとの静電結合により座標位置を求めるようにしているが、電極12の代わりにコイルを設けて、コイルに交流電流を流すことによりタブレットとの電磁誘導による位置検出を行うようにしても良い。その場合、タブレットの構成としてはタブレットセンサー51に配列するのは電極ではなく、X方向およびY方向にループコイルを配列する点が異なるのみで、他の動作は全く同じである。この場合、電極12の代わりに設けるコイルは充電用のコイル15と共通にしても良いし、異なるものであっても良い。
 [第2の実施形態]
 図11は本発明の第2の実施形態による位置指示器の回路構成を示したものである。本実施形態の位置指示器の内部構造は図1と同様である。図11において、第1の実施形態による位置指示器と同一構成のものは図2と同一符号で示す。即ち、12は電極、13は可変容量コンデンサ、14は電気二重層キャパシタ、15はコイル、19はコンデンサである。また、31は充電回路で、コイル15に誘導される起電力により電気二重層キャパシタ14を充電する回路である。
 23は電圧変換回路で、電気二重層キャパシタ14に蓄えられた電源より一定の電圧を生成してコンデンサ19に蓄える。本実施形態でもコンデンサ19に蓄えられる一定電圧は1.5Vであるものとする。この電圧変換回路23は図2における電圧変換回路17と同様な構成としても良いし、他の構成としても良い。
 24は発振回路、25はASK変調回路で、これらは図2における発振回路22と同じ回路構成であっても良いし、他の構成であっても良い。
 本実施形態が第1の実施形態の構成と異なるのは、電気二重層キャパシタ14の電圧をAD変換回路26によって検出して、マイクロプロセッサ27がその電圧を読み取っている点である。本実施形態において、電極12から送信する信号のタイミング、および可変容量コンデンサ13による筆圧検出動作は図3に示したものと全く同様に行われる。
 本実施形態では、マイクロプロセッサ27は、AD変換回路26によって求めた電圧に応じて図3に示した電源残量情報を「1」とする頻度を変えるようにする。例えば、電気二重層キャパシタ14の電圧範囲が10段階(n=1~10)で表される場合、検出された値がnであれば、マイクロプロセッサ27は、図3の動作をn回行う毎に1回だけ電源残量情報を「1」として送信する。
 本実施形態では、位置指示器の電源として電気二重層キャパシタを用いたが、充電可能な電池を用いても良い。
 本実施形態では位置指示器の制御をマイクロプロセッサ27により行ったが、マイクロプロセッサの代わりにロジック回路を用いて行っても良い。
 [第3の実施形態]
 図12は本発明の第3の実施形態による位置指示器の回路構成を示したものである。本実施形態では、筆圧によって送信する信号の周波数を変えるようにした例について示す。図12において第2の実施形態による位置指示器と同一構成のものは図11と同一符号で示す。即ち、12は電極、13は可変容量コンデンサ、14は電気二重層キャパシタ、15はコイル、19はコンデンサ、23は電圧変換回路、25はASK変調回路、26はAD変換回路、27はマイクロプロセッサである。また、31は充電回路で、コイル15に誘導される起電力により電気二重層キャパシタ14を充電する回路である。
 28は発振回路で、コイル29とコンデンサ30および可変容量コンデンサ13による共振周波数で発振を行う。可変容量コンデンサ13は、第1の実施形態および第2の実施形態で用いたものと同じもので、筆圧によって容量が変化する。本実施形態では可変容量コンデンサ13を発振回路28における共振回路中に設けているので、加えられる筆圧に応じて電極12から送信される信号の周波数が変化する。なお、本実施形態でも位置指示器の内部構造は図1と同じである。
 図13は本実施形態における位置指示器の動作を示したもので、図12における信号(p)、信号(r)の変化の様子を示している。マイクロプロセッサ27は、信号(p)を制御して、送信期間(例えば2msec)と、送信停止期間(例えば8msec)を交互に繰り返す。各送信期間の最後には、一旦送信を停止した後、1ビットで表される電源残量情報を送信する。
 この場合の電源残量情報は、マイクロプロセッサ27によって、第2の実施形態と全く同様に送信される。即ち、マイクロプロセッサ27は、AD変換回路26によって検出された電気二重層キャパシタ14の電圧に応じて電源残量情報を「1」とする頻度を変えるようにしている。
 送信期間に送信される信号の周波数が可変容量コンデンサ13に加えられる筆圧に応じて変化する点が本実施形態の特徴である。
 図14は本実施形態で用いるタブレットの構成図である。本実施形態のタブレットでは、位置指示器からの間欠的な信号送信の周期が判っているものとして、位置指示器からの送信期間には位置指示器の座標および筆圧を求め、送信停止期間には指によるタッチ位置の検出を行う。
 図14において、60は図12に示したものと同一の構成の位置指示器で、この位置指示器60から送信する信号の周波数をf1とする。51は第1の実施形態で用いたのと同じタブレットセンサーである。61はX電極群の中から1本の電極を選択するX選択回路、62はY電極群の中から1本の電極を選択するY選択回路である。63は、本実施形態のタブレットをタッチ検出として動作させる際にY電極に送信信号を供給するための発振器で、発振周波数をf2とする。64は切替回路で、Y選択回路62により選択されたY電極を、発振器63または後述する増幅回路側のどちらに接続するかを切り替える。即ち、本実施形態のタブレットをタッチ検出用として動作させるときはマイクロプロセッサ70から切替回路64への制御信号eをハイレベル(1)として発振器63側を選択する。また、本実施形態のタブレットが位置指示器60を検出するときは、マイクロプロセッサ70は、制御信号eをロウレベル(0)として増幅回路側を選択する。
 65は切替回路で、X選択回路61により選択されたX電極、または切替回路64を経由してY選択回路62により選択されたY電極、のどちらかを選択して増幅回路66に接続する。即ち、本実施形態のタブレットをタッチ検出用として動作させるときは、マイクロプロセッサ70は、切替回路65への制御信号fをロウレベル(0)として、X選択回路61側を選択する。また、本実施形態のタブレットが位置指示器60を検出する動作をし、位置指示器60のX軸座標を求めるときは、マイクロプロセッサ70は、制御信号fをロウレベル(0)として、X選択回路61側を選択する。また、本実施形態のタブレットが位置指示器60を検出する動作をし、位置指示器60のY軸座標を求めるときは、マイクロプロセッサ70は、制御信号fをハイレベル(1)として、Y選択回路62側を選択する。
 増幅回路66の出力は、周波数f1または周波数f2を中心とした所定の帯域幅を有するバンドパスフィルター回路67に接続される。このバンドパスフィルター回路67の中心周波数はマイクロプロセッサ70からの制御信号gによって切り替えられ、本実施形態のタブレットが位置指示器60を検出する動作を行うときには中心周波数が周波数f1となり、タッチ検出動作を行うときは中心周波数が周波数f2となるように切り替える。なお、バンドパスフィルター回路67が、中心周波数が周波数f1として動作するときの帯域幅は、位置指示器60の筆圧変化による送信周波数の変化幅と比べて十分に大きいものとする。
 バンドパスフィルター回路67の出力信号は検波回路68によって検波され、マイクロプロセッサ70からの制御信号hに基づきAD変換回路69によってデジタル値に変換される。AD変換回路69からのデジタルデータjはマイクロプロセッサ70によって読み取られ処理される。
 バンドパスフィルター回路67の出力信号は周波数測定回路71にも供給される。周波数測定回路71は、これに供給される信号の周波数を詳細に測定し、その測定した周波数情報をマイクロプロセッサ70に供給する。この周波数測定回路71の構成としては、カウンター回路を設けて一定の時間内に入力される信号の波数をカウントしても良いし、コンパレータを設けて所定回数の入力信号の立ち上りまたは立下りがカウントされる間の時間を測定するようにしても良い。マイクロプロセッサ70では周波数測定回路71からの周波数情報に基づき位置指示器60の筆圧情報を求める。
 図15は、本実施形態の位置指示器60による座標位置および電気二重層キャパシタ14の電源残量を求める動作について示したものである。なお、位置指示器60のタブレットセンサー51上のおよその位置の検出は、第1の実施形態と同様にして行うことができる。即ち、マイクロプロセッサ70は、切替回路64に対する制御信号eをロウレベル(0)とすると共に、バンドパスフィルター回路67の中心周波数が周波数f1となるように制御信号gを送出して、図6および図7と同じようにして、位置指示器60のタブレットセンサー51上のおよその位置を求めることができる。本実施形態では、位置指示器60が電極X11および電極Y20の交点付近にあるものとして説明を行う。
 マイクロプロセッサ70は、切替回路65への制御信号fをロウレベル(0)として、電極X11を選択した状態で、AD変換回路69から出力される信号レベルが一定時間(Ts)継続して所定値以上であったときに、位置指示器60の連続送信期間が開始されたと判断して、座標検出動作へ移行する(図15のステップ1)。マイクロプロセッサ70は、位置指示器60からの信号のX座標を求めるため、X選択回路61が電極X11を中心とする5本の電極(X9~X13)を順次選択して、AD変換回路69を動作させて信号レベルを読み取る(ステップ1)。このとき、マイクロプロセッサ70は、最も高い信号レベルが検出された電極の番号(ここではX11)、およびその信号レベル(VPX)、またその両隣の電極により検出されたレベルVAX、VBXを保存する(ステップ1)。
 次にマイクロプロセッサ70は、位置指示器60からの信号のY座標を求めるため、切替回路65への制御信号fをハイレベル(1)として、Y選択回路62側を選択する。マイクロプロセッサ70は、Y選択回路62がY20を中心とする5本の電極(Y18~Y22)を順次選択して、信号レベルを読み取る(ステップ1)。このとき、マイクロプロセッサ70は、最も高い信号レベルが検出された電極の番号(ここではY20)、およびその信号レベル(VPY)、またその両隣の電極により検出されたレベルをVAY、VBYとして保存する(ステップ1)。ここで求まった信号レベルVPX、VAX、VBX、VPY、VAY、VBY、より、前述した(式1)および式(2)を用いて、マイクロプロセッサ70は、位置指示器60の座標位置を計算する。
 次いで、マイクロプロセッサ70は位置指示器60からの連続送信期間の終了を待つための動作を行う。マイクロプロセッサ70は、切替回路65への制御信号fをロウレベル(0)とするとともに、X選択回路61に対して前述した座標検出動作においてピークが検出された電極X11を選択するように制御を行う。このとき、受信される信号レベルが所定値に達しなくなった時刻が位置指示器60からの連続送信の終了時刻となる(ステップ1)。
 マイクロプロセッサ70は、位置指示器60からの連続送信期間の終了を検出すると、電極X11を選択した状態で、所定時間(図13において、連続送信期間が終了してから電源残量情報の送信が終了するまでの時間)信号を受信する。この間に所定値以上のレベルの信号が検出されれば、マイクロプロセッサ70は、位置指示器60からの電源残量情報を「1」として保存し、所定値以上のレベルの信号が検出されなければ電源残量情報を「0」として保存する。図15は電源残量情報が「1」であった場合について示している(ステップ2)。
 電源残量情報の受信が終了すると、位置指示器60は送信停止期間となる(図13)ので、本実施形態のタブレットでは、この間にタッチ検出動作を行う。本実施形態のタブレットでは、このタッチ検出動作は位置指示器60からの次の送信が開始する前に終了して、再び図15に示した動作を行い、位置指示器60の検出動作とタッチ検出動作とを交互に繰り返す。このとき、マイクロプロセッサ70は、位置指示器からの電源残量情報が「1」として検出される頻度より電気二重層キャパシタ14に蓄えられている電源の残量を求めることができる。
 なお、本実施形態のタブレットでのタッチ検出動作は次のように行われる。マイクロプロセッサ70は、切替回路64に対する制御信号eをハイレベル(1)、切替回路65に対する制御信号fをロウレベル(0)とし、バンドパスフィルター回路67の中心周波数が周波数f2となるように制御信号gを送出する。この状態では、発振器63からの送信信号がX電極とY電極の交点の容量結合により受信されてAD変換回路69によりその信号レベルが求められる(ステップ3)。マイクロプロセッサ70は、X選択回路61およびY選択回路62に対する制御を行い、X電極とY電極の全ての交点の容量結合による信号レベルを求める。本実施形態のタブレットでは、指が無いときの各交点での信号レベル(基準レベル)が予め求められているので、X電極とY電極の各交点を選択したときの受信レベルを基準レベルと比較することにより、選択した交点付近に指が有るか、無いかを判定することができる(ステップ3)。
 前述したタッチ検出動作は、位置指示器60の送信停止期間(この例では8msec)中に行う必要があるが、X電極とY電極の交点の選択を複数回に分けて行っても良い。
 本実施形態では、位置指示器の電源として電気二重層キャパシタを用いたが、充電可能な電池を用いても良い。
 本実施形態では、送信する信号の周波数を可変容量コンデンサ13によって変えるようにしたが、コイル29のインダクタンスを変えることにより行っても良い。
 [他の実施形態または変形例]
 なお、上述の実施形態では、位置指示器は、位置指示器情報の一部のビットとして残量情報をタブレットに送信するようにしたが、位置指示器情報とは別途独立に残量情報をタブレットに送信するようにしてもよい。
 また、残量情報は1ビットの情報としたが、検出された電源の残量(電気残量)に応じた変化頻度で変化をさせることができればよいので、2ビット以上であっても勿論よい。
 11…ペン芯
 12…電極
 13…可変容量コンデンサ
 14…電気二重層キャパシタ
 15、29…コイル
 16…プリント基板
 17、23…電圧変換回路
 18…スイッチ
 19、30…コンデンサ
 20…電圧検出器
 21、27、58、70…マイクロプロセッサ
 22、24、28…発振回路
 25…ASK変調回路
 26、57、69…AD変換回路
 50、60…位置指示器
 51…タブレットセンサー
 52…選択回路
 53、66…増幅回路
 54、67…バンドパスフィルター回路
 55、68…検波回路
 56…サンプルホールド回路
 61…X選択回路
 62…Y選択回路
 63…発振器
 64、65…切替回路
 71…周波数測定回路
 

Claims (28)

  1.  位置指示器から送信される信号をタブレットで受信することにより前記位置指示器の前記タブレット上での指示位置を求める位置検出装置において、
     前記位置指示器は、蓄電器と、前記タブレットに向けて送信するための交流信号を発生させる交流信号発生回路と、前記蓄電器の電気残量を検出する電気残量検出回路と、前記検出した前記電気残量に応じた頻度で変化する情報からなる残量情報を前記タブレットに送信する情報送信手段とを備え、
     前記タブレットは、前記位置指示器からの前記残量情報を受信する情報受信手段を備え、受信した前記残量情報の変化の頻度により前記蓄電器の電気残量を検出する
     ことを特徴とする位置検出装置。
  2.  前記情報送信手段は、2進コードで表される位置指示器情報の一部に前記残量情報を含めて、前記タブレットに送信するものであり、前記電気残量検出回路によって検出される前記電気残量に応じて前記位置指示器情報の特定のビットを予め定めた値とする頻度を変化させることにより、前記残量情報を前記位置指示器情報に含めるようにし、
     前記タブレットの前記情報受信手段は、前記位置指示器からの前記位置指示器情報を受信するものであり、受信した前記位置指示器情報の前記特定のビットが前記予め定めた値となる頻度より前記蓄電器の電気残量を検出するようにした、
     ことを特徴とする請求項1に記載の位置検出装置。
  3.  前記情報送信手段が、2進コードで表される位置指示器情報に応じて前記交流信号を変調する変調回路によって構成される
     ことを特徴とする請求項2に記載の位置検出装置。
  4.  前記変調回路が、ASK変調により前記位置指示器情報を表すことを特徴とする、請求項3に記載の位置検出装置。
  5.  前記変調回路が、前記位置指示器情報によりASK変調を行うデータ送信期間と、ASK変調を行わず連続した送信を行う連続送信期間とを交互に繰り返すようにした、ことを特徴とする請求項4記載の位置検出装置。
  6.  前記位置指示器に、筆圧を検出して所定ビット数の筆圧情報に変換する筆圧検出回路を設けて、少なくとも前記筆圧情報が前記位置指示器情報に含まれることを特徴とする請求項2~5のいずれかに記載の位置検出装置。
  7.  前記位置指示器に、筆圧を検出する筆圧検出回路を設けて、前記交流信号発生回路が発生する信号の周波数を前記検出した筆圧に応じて変化させるようにした、ことを特徴とする請求項1~5のいずれかに記載の位置検出装置。
  8.  前記タブレットに、検出した前記位置指示器の前記電気残量を表示する電気残量表示手段を設けた、ことを特徴とする請求項1~7のいずれかに記載の位置検出装置。
  9.  前記タブレットに、検出した前記位置指示器の前記電気残量をホストコンピュータに送出する電気残量情報送出手段を設けたことを特徴とする請求項1~8のいずれかに記載の位置検出装置。
  10.  信号をタブレットに対して送信することによりタブレット上での指示位置を求めるために用いる位置指示器において、
     蓄電器と、前記タブレットに向けて送信するための交流信号を発生させる交流信号発生回路と、前記蓄電器の電気残量を検出する電気残量検出回路と、前記検出した前記電気残量に応じた頻度で変化する情報からなる残量情報を前記タブレットに送信する情報送信手段とを備えることを特徴とする位置指示器。
  11.  前記情報送信手段は、2進コードで表される位置指示器情報の一部に前記残量情報を含めて、前記タブレットに送信するものであり、
     前記電気残量検出回路によって検出される前記電気残量に応じて前記位置指示器情報の特定のビットを予め定めた値とする頻度を変化させることにより、前記残量情報を前記位置指示器情報に含めるようにした、ことを特徴とする請求項10に記載の位置指示器。
  12.  前記情報送信手段が、2進コードで表される位置指示器情報に応じて前記交流信号を変調する変調回路によって構成される
     ことを特徴とする請求項11に記載の位置指示器。
  13.  前記変調回路が、ASK変調により前記位置指示器情報を表すことを特徴とする、請求項12に記載の位置指示器。
  14.  前記変調回路が、前記位置指示器情報によりASK変調を行うデータ送信期間と、ASK変調を行わず連続した送信を行う連続送信期間とを交互に繰り返すようにした、ことを特徴とする請求項13に記載の位置指示器。
  15.  筆圧を検出して所定ビット数の筆圧情報に変換する筆圧検出回路を設けて、少なくとも前記筆圧情報が前記位置指示器情報に含まれることを特徴とする請求項11~14のいずれかに記載の位置指示器。
  16.  筆圧を検出する筆圧検出回路を設けて、前記交流信号発生回路が発生する信号の周波数を前記検出した筆圧に応じて変化させるようにした、ことを特徴とする請求項10~14のいずれかに記載の位置指示器。
  17.  位置指示器から送信される信号をタブレットで受信することにより前記位置指示器の前記タブレット上での指示位置を求める位置検出装置において、
     位置指示器には、電気二重層キャパシタと、前記電気二重層キャパシタを充電する充電回路と、前記電気二重層キャパシタに蓄えられた電圧を所定の電圧に変換する回路であって少なくとも一つのスイッチを用いて所定の電圧を生成する電圧変換回路と、前記電圧変換回路により出力される電圧が前記所定値に達しているかどうかを検出する電圧検出回路と、前記電圧検出回路による検出結果が前記所定値に達していないときに前記スイッチにパルス信号を供給する電圧制御回路と、前記タブレットに向けて送信するための交流信号を発生させる交流信号発生回路と、前記電圧制御回路が出力するパルス信号の送出回数をカウントするカウンタ回路と、2進コードで表される位置指示器情報に応じて前記交流信号を変調する変調回路とを設けて、前記カウンタ回路によりカウントされたパルス送出回数が所定回数に達する毎に前記位置指示器情報の特定のビットを予め定めた値として前記変調回路を制御するようにし、
     前記タブレットには、前記位置指示器からの前記位置指示器情報を受信する情報受信手段を設けて、受信した前記位置指示器情報の前記特定のビットが予め定めた値となる頻度より前記電気二重層キャパシタの電気残量を検出するようにした、
     ことを特徴とする位置検出装置。
  18.  前記変調回路が、ASK変調により前記位置指示器情報を表すことを特徴とする、請求項17記載の位置検出装置。
  19.  前記変調回路が、前記位置指示器情報によりASK変調を行うデータ送信期間と、ASK変調を行わず連続した送信を行う連続送信期間とを交互に繰り返すようにした、ことを特徴とする請求項18記載の位置検出装置。
  20.  前記位置指示器に、筆圧を検出して所定ビット数の筆圧情報に変換する筆圧検出回路を設けて、少なくとも前記筆圧情報が前記位置指示器情報に含まれることを特徴とする請求項17~19のいずれかに記載の位置検出装置。
  21.  前記位置指示器に、筆圧を検出する筆圧検出回路を設けて、前記交流信号発生回路が発生する信号の周波数を前記検出した筆圧に応じて変化させるようにした、ことを特徴とする請求項17~19のいずれかに記載の位置検出装置。
  22.  前記タブレットに、検出した前記電気二重層キャパシタの前記電気残量を表示する電気残量表示手段を設けた、ことを特徴とする請求項17~21のいずれかに記載の位置検出装置。
  23.  前記タブレットに、検出した前記電気二重層キャパシタの前記電気残量をホストコンピュータに送出する電気残量情報送出手段を設けたことを特徴とする請求項17~21のいずれかに記載の位置検出装置。
  24.  信号をタブレットに対して送信することによりタブレット上での指示位置を求めるために用いる位置指示器において、
     電気二重層キャパシタと、前記電気二重層キャパシタを充電する充電回路と、前記電気二重層キャパシタに蓄えられた電圧を所定の電圧に変換する回路であって少なくとも一つのスイッチを用いて所定の電圧を生成する電圧変換回路と、前記電圧変換回路により出力される電圧が前記所定値に達しているかどうかを検出する電圧検出回路と、前記電圧検出回路による検出結果が前記所定値に達していないときに前記スイッチにパルス信号を供給する電圧制御回路と、前記タブレットに向けて送信するための交流信号を発生させる交流信号発生回路と、前記電圧制御回路が出力するパルス信号の送出回数をカウントするカウンタ回路と、2進コードで表される位置指示器情報に応じて前記交流信号を変調する変調回路とを設けて、前記カウンタ回路によりカウントされたパルス送出回数が所定回数に達する毎に前記位置指示器情報の特定のビットを予め定めた値として前記変調回路を制御するようにした、ことを特徴とする位置指示器。
  25.  前記変調回路が、ASK変調により前記位置指示器情報を表すことを特徴とする、請求項24に記載の位置指示器。
  26.  前記変調回路が、前記位置指示器情報によりASK変調を行うデータ送信期間と、ASK変調を行わず連続した送信を行う連続送信期間とを交互に繰り返すようにした、ことを特徴とする請求項25に記載の位置指示器。
  27.  筆圧を検出して所定ビット数の筆圧情報に変換する筆圧検出回路を設けて、少なくとも前記筆圧情報が前記位置指示器情報に含まれることを特徴とする請求項24~26のいずれかに記載の位置指示器。
  28.  筆圧を検出する筆圧検出回路を設けて、前記交流信号発生回路が発生する信号の周波数を前記検出した筆圧に応じて変化させるようにした、ことを特徴とする請求項24~26のいずれかに記載の位置指示器。
     
PCT/JP2014/073898 2013-09-27 2014-09-10 位置検出装置及びその位置指示器 WO2015045866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480045609.9A CN105474137B (zh) 2013-09-27 2014-09-10 位置检测装置以及其位置指示器
EP14848861.2A EP3051389B1 (en) 2013-09-27 2014-09-10 Position detection device and position indicator therefor
JP2015539088A JP5984279B2 (ja) 2013-09-27 2014-09-10 位置検出装置及びその位置指示器
US15/063,388 US10055035B2 (en) 2013-09-27 2016-03-07 Position detecting device and position indicator thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013200910 2013-09-27
JP2013-200910 2013-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/063,388 Continuation US10055035B2 (en) 2013-09-27 2016-03-07 Position detecting device and position indicator thereof

Publications (1)

Publication Number Publication Date
WO2015045866A1 true WO2015045866A1 (ja) 2015-04-02

Family

ID=52743010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073898 WO2015045866A1 (ja) 2013-09-27 2014-09-10 位置検出装置及びその位置指示器

Country Status (6)

Country Link
US (1) US10055035B2 (ja)
EP (1) EP3051389B1 (ja)
JP (1) JP5984279B2 (ja)
CN (1) CN105474137B (ja)
TW (1) TWI643100B (ja)
WO (1) WO2015045866A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024559A (ko) * 2016-04-28 2019-03-08 광동 종후아 터치 컨트롤 테크놀로지 씨오. 엘티디. Rf 송수신 기능을 가지는 실제 필기 스타일러스와 터치 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867711B (zh) * 2016-04-28 2019-04-09 深圳市华鼎星科技有限公司 一种真笔迹触控笔和触控装置
TWI612446B (zh) * 2016-05-10 2018-01-21 義隆電子股份有限公司 觸控系統、觸控筆及其偵測方法
TWI828570B (zh) * 2016-07-22 2024-01-01 日商和冠股份有限公司 電子筆及座標輸入裝置
CN111344653A (zh) * 2017-09-13 2020-06-26 深圳传音制造有限公司 一种应用于智能终端的主动式电容笔及触控装置
TWI774265B (zh) * 2021-03-12 2022-08-11 元太科技工業股份有限公司 顯示器的驅動電路及時序控制器的操作方法
CN113701616A (zh) * 2021-08-30 2021-11-26 江苏鲁汶仪器有限公司 一种用于静电吸盘上晶圆位置偏移的检测装置和检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540568A (ja) * 1991-08-02 1993-02-19 Seiko Epson Corp タツチ式入力装置及びこれを用いた情報処理装置
JPH07182090A (ja) * 1993-12-24 1995-07-21 Canon Inc 情報処理装置
JP2007164356A (ja) 2005-12-12 2007-06-28 Wacom Co Ltd 位置入力装置、及び、コンピュータシステム
JP2009070004A (ja) * 2007-09-11 2009-04-02 Wacom Co Ltd 位置指示器
JP2011204173A (ja) * 2010-03-26 2011-10-13 Seiko Epson Corp 筆跡データ生成システム、筆跡データ生成方法、およびプログラム
JP2013191168A (ja) * 2012-03-15 2013-09-26 Wacom Co Ltd ペン型座標指示器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100501815C (zh) * 2004-04-28 2009-06-17 株式会社爱发科 电场发射型显示装置及其控制方法
US20070146351A1 (en) 2005-12-12 2007-06-28 Yuji Katsurahira Position input device and computer system
JP4709674B2 (ja) * 2006-03-23 2011-06-22 株式会社ワコム 位置検出装置及びコンピュータ
TW201039113A (en) * 2009-04-29 2010-11-01 Prime View Int Co Ltd Digital electronic apparatus
JP5669263B2 (ja) * 2011-04-11 2015-02-12 株式会社ワコム 位置指示器
JP5459795B2 (ja) * 2011-06-06 2014-04-02 株式会社ワコム 電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540568A (ja) * 1991-08-02 1993-02-19 Seiko Epson Corp タツチ式入力装置及びこれを用いた情報処理装置
JPH07182090A (ja) * 1993-12-24 1995-07-21 Canon Inc 情報処理装置
JP2007164356A (ja) 2005-12-12 2007-06-28 Wacom Co Ltd 位置入力装置、及び、コンピュータシステム
JP2009070004A (ja) * 2007-09-11 2009-04-02 Wacom Co Ltd 位置指示器
JP2011204173A (ja) * 2010-03-26 2011-10-13 Seiko Epson Corp 筆跡データ生成システム、筆跡データ生成方法、およびプログラム
JP2013191168A (ja) * 2012-03-15 2013-09-26 Wacom Co Ltd ペン型座標指示器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051389A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024559A (ko) * 2016-04-28 2019-03-08 광동 종후아 터치 컨트롤 테크놀로지 씨오. 엘티디. Rf 송수신 기능을 가지는 실제 필기 스타일러스와 터치 장치
EP3451131A4 (en) * 2016-04-28 2019-12-25 Guangdong Zonghua Touch Control Technology Co. Ltd. REAL HANDWRITING PEN AND TOUCH DEVICE HAVING RADIO FREQUENCY TRANSMISSION AND RECEPTION FUNCTION
KR102394877B1 (ko) * 2016-04-28 2022-05-09 장시 화추앙 터치 컨트롤 트크놀로지 씨오., 엘티디. Rf 송수신 기능을 가지는 실제 필기 스타일러스와 터치 장치

Also Published As

Publication number Publication date
CN105474137B (zh) 2019-01-04
US20160188009A1 (en) 2016-06-30
EP3051389B1 (en) 2018-08-01
EP3051389A1 (en) 2016-08-03
US10055035B2 (en) 2018-08-21
CN105474137A (zh) 2016-04-06
TW201528064A (zh) 2015-07-16
EP3051389A4 (en) 2017-04-05
JPWO2015045866A1 (ja) 2017-03-09
TWI643100B (zh) 2018-12-01
JP5984279B2 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5984279B2 (ja) 位置検出装置及びその位置指示器
US11768554B2 (en) Position indicator, position detecting device, position detecting circuit, and position detecting method
JP6021174B2 (ja) 位置検出装置およびその位置指示器
JP4773315B2 (ja) 位置検出装置及び位置指示器
JP5430339B2 (ja) 位置検出装置及び位置指示器
KR102270404B1 (ko) 정전 방식 스타일러스 펜
JP5852631B2 (ja) 位置指示器
JP5782576B2 (ja) 位置指示方法及び位置検出方法
JP6069469B2 (ja) 位置指示器及び位置検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045609.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014848861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014848861

Country of ref document: EP