WO2015037741A1 - Probe and probe card - Google Patents

Probe and probe card Download PDF

Info

Publication number
WO2015037741A1
WO2015037741A1 PCT/JP2014/074456 JP2014074456W WO2015037741A1 WO 2015037741 A1 WO2015037741 A1 WO 2015037741A1 JP 2014074456 W JP2014074456 W JP 2014074456W WO 2015037741 A1 WO2015037741 A1 WO 2015037741A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
conductor
thin film
coaxial cable
conductive thin
Prior art date
Application number
PCT/JP2014/074456
Other languages
French (fr)
Japanese (ja)
Inventor
基康 近藤
智一 庄司
雅俊 大井
雅晴 大井
Original Assignee
株式会社テクノプローブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノプローブ filed Critical 株式会社テクノプローブ
Priority to JP2015536662A priority Critical patent/JP6342406B2/en
Publication of WO2015037741A1 publication Critical patent/WO2015037741A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion

Definitions

  • the present invention relates to a probe and a probe card. More specifically, it is preferably used for inspecting electrical characteristics of electronic components such as an IC wafer and a liquid crystal substrate.
  • IC wafers, electronic parts, etc. are checked for their electrical characteristics to determine their quality. This determination is performed by bringing a probe tip into contact with a connection electrode provided on the electronic component, inputting a test signal from the test device to the probe, and comparing the output with a reference value.
  • Patent Document 1 discloses a coaxial cable and a probe connected to the coaxial cable.
  • the technique described in the above-mentioned patent document makes the probe itself plate-like and does not sufficiently cope with the deformation caused by pressing the tip of the probe against the electrode pad. In addition to affecting the contact reliability, the test reliability is reduced due to a change in impedance.
  • the tip of the probe is finely processed to be a sharp part according to the distance of the electrode pad. Since this processing is designed in accordance with the distance between the electrode pads in contact with the probe, it is necessary to redo the design of the probe itself in order to cope with the electrode pads at different distances. That is, there is a problem that it takes time to manufacture. This manufacturing will eventually be reflected in costs.
  • an object of the present invention is to provide a probe and a probe card that have higher inspection accuracy and are easier to manufacture even in higher integration, higher speed, and higher frequency.
  • a probe according to a first aspect of the present invention that solves the above problems includes an inner conductor, an insulator that covers the inner conductor, and an outer conductor that covers the insulator, and an inner conductor of the coaxial cable.
  • the first probe connected to the second probe, the second probe connected to the outer conductor, the first probe or the second probe is arranged in contact with the other probe A conductive thin film disposed in parallel.
  • the first probe and the second probe tip have a bent structure, and the conductive thin film is formed by the first probe or the second probe. It is preferable that the probe is disposed along a bent structure.
  • a conductor that is connected to the pair of second probes and surrounds the first probe.
  • the probe card includes a substrate, a coaxial cable connector fixed to the substrate, an internal conductor, an insulator covering the internal conductor, and an external conductor covering the insulator.
  • a coaxial cable connected to the coaxial cable connector; a first probe connected to the inner conductor of the coaxial cable; a second probe connected to the outer conductor; and a first probe or first A probe having a conductive thin film disposed in contact with the second probe and having a side disposed in parallel with the other probe.
  • the probe preferably includes a pair of the second probes arranged with the first probe interposed therebetween.
  • the probe has a bent structure in the vicinity of the first probe and the tip of the second probe, and the conductive thin film has the first probe or the second probe. It is preferable that the second probe is disposed along the bent structure.
  • the probe is preferably connected to a pair of second probes and includes a conductor surrounding the first probe.
  • the present probe is a schematic view of a probe according to the present embodiment (hereinafter referred to as “the present probe”). It is the schematic of the probe card 9 which concerns on an example of this embodiment. It is an image figure of the side surface of the 1st short hand concerning this embodiment. It is an image figure of the side surface of the 2nd probe 4 which concerns on this embodiment. It is an image figure about arrangement
  • the auxiliary conductor 8 that is electrically connected to the external conductor 23 via the second probe or the conductive thin film according to the present embodiment and arranged to cover the front side of the first probe 3 is provided. It is the figure of the provided probe. It is a figure which shows the "front side" of the 1st probe which concerns on this embodiment. It is a figure of the electroconductive thin film arrange
  • FIG. 1 is a schematic diagram of a probe according to the present embodiment (hereinafter referred to as “the present probe”).
  • the probe 1 includes a coaxial cable 2 having an inner conductor 21, an insulator 22 covering the inner conductor 21, and an outer conductor 23 covering the insulator 22, and an inner portion of the coaxial cable 2.
  • the first probe 3 connected to the conductor 21, the second probe 4 connected to the external conductor 23, and the second probe 4 are disposed in contact with each other, and the side is the first probe. 4 and a conductive thin film 5 disposed in parallel with a gap.
  • the probe according to the present embodiment is connected to the connector 7 fixed to the substrate 6 and becomes a part of the probe card 9.
  • An outline of a probe card 9 according to an example of this embodiment is shown in FIG.
  • One or more, preferably a plurality of connectors 7 are fixed to the probe card 9, and the probe 1 is connected to each of them. Whether the tip of this probe is in contact with an electrode of an IC or the like to be inspected, while the connector is connected to the inspection device, and whether or not the inspection subject can operate normally by inputting / outputting a signal from the inspection device Check for no.
  • the board in the probe card 9 according to the present embodiment is used for fixing the connector 7 and the probe and arranging the probe tip of the probe at a desired position, and is not limited as long as it has this function. Although various things can be employ
  • the coaxial cable 2 is used to electrically connect an inspection target and an inspection apparatus, and as described above, the inner conductor 21, the insulator 22 covering the inner conductor 21, and the insulator And an outer conductor 23 covering 22.
  • the coaxial cable 2 is a linear member that extends in one direction by concentrically arranging the inner conductor 21, the insulator 22, and the outer conductor 23 as a whole.
  • the inner conductor 21 is a linear member in which a conductive material extends in one direction.
  • the inner conductor 21 is exposed on the side where the probe is disposed (tip side) and is electrically connected to the first probe. It is connected.
  • the cross-sectional shape of the inner conductor 21 is not limited and various shapes can be adopted, a circular shape is a preferable form.
  • the diameter is not limited, but is preferably 0.05 mm or more and 0.8 mm or less, more preferably 0.05 mm or more and 0.5 mm or less.
  • the inner conductor 21 copper, gold
  • money, silver, palladium, tungsten, and an alloy (for example, beryllium copper etc.) containing at least one of these can be used preferably.
  • the inner conductor 21 may be formed integrally with the first probe, as will be described later.
  • the insulator 22 is disposed around the inner conductor 21, covers the inner conductor 21, and insulates the inner conductor 21 and the outer body 23 from each other.
  • the shape of the insulator 22 is not limited, the insulator 22 is preferably a cylindrical member having a hollow disposed around the inner conductor 21 and having a portion extending in one direction. Although it is not necessarily limited, it is preferable that it is a hollow circular thing.
  • this cross-sectional shape is a hollow circular shape, although a diameter is not necessarily limited, It is preferable that they are 0.1 mm or more and 2 mm or less, More preferably, it is the range of 0.2 mm or more and 1 mm or less.
  • the insulator 22 is also exposed on the side where the probe is disposed, like the internal conductor 21.
  • the insulator 22 is not limited as long as it has the above-mentioned effects, and a general material can be used.
  • An insulator having a low dielectric constant is preferable.
  • the external conductor 23 is used to electrically connect the probe (specifically, the second probe) and the inspection apparatus via a connector, and the insulator 22 It is also a member having conductivity to cover.
  • the shape of the outer conductor 23 is not limited, it is preferably a cylindrical member having a hollow including the insulator 22 and the inner conductor 22 therein and extending in one direction.
  • the cross-sectional shape is a hollow circular shape, the diameter is not limited, but is preferably 0.2 mm or more and 2.2 mm or less, more preferably 0.5 mm or more and 1.2 mm or less. It is.
  • the material of the outer conductor 23 is not limited.
  • gold, silver, copper, iron, aluminum, nickel, niobium, chromium, and an alloy containing at least one of these (for example, stainless steel) are preferable.
  • the first probe 3 is a conductive member for detecting a signal by contacting a connection electrode provided on an electronic component, more specifically, a signal output electrode. It is a needle-like member that becomes thinner as it goes to.
  • FIG. 3 the image figure of the side surface of a 1st short hand is shown.
  • the first probe 3 has a bent portion 31 in the vicinity of the tip.
  • the first probe 3 has a bent portion at the tip, so that the surface (xy plane) on which the connection electrodes such as the IC wafer and the electronic component are arranged is viewed from directly above (z direction).
  • the tip of the second probe is pushed against the connection electrode by moving or rotating the probe along the xy plane and then moving the probe to the substrate side (xy plane side along the z direction). It is preferable because it can be reliably brought into contact with a desired position.
  • the bending angle of the bent portion is not limited, but the inner angle is preferably 90 degrees or more, and more preferably 100 degrees or more and 120 degrees or less.
  • the cross-sectional shape of the first probe 3 is not limited as long as it can have the above function, but a circular shape is a preferred example.
  • the thickness of the first probe is not limited, and is not limited as long as stable electrical connection with the inner conductor 21 of the coaxial cable 2 can be ensured, and is connected to the inner conductor.
  • the diameter of the root side is preferably in the range of 0.05 mm to 0.8 mm, more preferably 0.05 mm to 0.00 mm. It is within the range of 5 mm or less.
  • the diameter on the tip side is preferably in the range of 0.01 mm to 0.2 mm, and more preferably in the range of 0.03 mm to 0.15 mm.
  • connection between the first probe and the internal conductor is not limited as long as the electrical connection can be maintained, and the internal conductor and the first probe are integrated. It is also preferable. By doing so, the structure can be stabilized and the electrical connection can be made more reliable. That is, “electrically connected” includes being integrally formed of the same material.
  • the second probe 4 is arranged in parallel with the first probe 3, and, like the first probe 3, a connection electrode provided in an electronic component, more specifically, Is a conductive member for making contact with the ground electrode, and is a needle-like member made of the same structure and material as the first probe 2.
  • the second probe 4 becomes thinner as it goes to the tip.
  • An image of the side surface of the second probe 4 is shown in FIG.
  • the second probe 4 also has a bent portion in the vicinity of the tip, like the first probe 3. Since the second probe 4 has a bent portion at the tip, the surface (xy surface) on which the connection electrodes of the electronic components such as an IC wafer and a liquid crystal substrate are arranged is viewed from directly above (z direction).
  • the probe is moved or rotated along the xy plane, and then the probe is moved to the substrate side (xy plane side along the z direction) so that the second probe is moved relative to the connection electrode. It is preferable because the tip can be pressed against the desired position to ensure contact.
  • An image diagram in this case is shown in FIG.
  • the bending angle of the bent portion is not limited, but is preferably 90 degrees or more, and more preferably 100 degrees or more and 120 degrees or less.
  • the cross-sectional shape of the second probe 4 is not limited as long as it has the above function, but a circular shape is a preferred example.
  • the second probe 4 is configured as a pair so as to sandwich the first probe 3.
  • an inspection can be performed on an IC wafer, an electronic component, or the like in which two ground electrodes are arranged on both sides of one signal electrode. Since the symmetry of the arrangement relationship between the needle and the second probe is enhanced, there is an effect that the impedance can be adjusted more accurately.
  • the second probe 4 is electrically connected and fixed to the outer conductor 23 in the coaxial cable 2 as described above.
  • the means for connection is not limited, but for example, fixing with solder is preferable.
  • the conductive thin film 5 is disposed in contact with the second probe as described above, more specifically, is disposed on the second probe 5.
  • the sides are arranged in parallel with a gap provided in the first probe.
  • FIG. 6 shows an example of a schematic cross-sectional view when the first probe, the second probe, and the conductive thin film of this probe are cut along a plane perpendicular to the coaxial cable centrifugal direction.
  • the conductive thin film is disposed so as to be substantially parallel to a line passing through the center of the first probe.
  • the conductive thin films are also paired and arranged so as to form substantially the same plane.
  • the term “substantially” is used here, although it is ideal to form completely parallel or completely identical planes, but in reality, it is difficult to achieve a perfect state. This is to include the error.
  • the conductive thin film 5 according to this embodiment is in contact with the second probe, it is at the same potential as the second probe, and is mainly used for impedance adjustment with the first probe. It has become.
  • the material of the conductive thin film 5 in the present embodiment is not limited as long as it has conductivity. For example, gold, silver, copper, nickel, zinc, and an alloy containing at least one of these (for example, Western White, brass, etc.) is a preferred example.
  • the contact between the conductive thin film 5 and the second probe 4 is not limited as long as electrical connection is possible, but it is preferable to use, for example, solder.
  • the thickness of the conductive thin film 5 is not particularly limited, but is preferably in the range of 0.01 mm or more and 0.1 mm or less, more preferably 0.025 mm or more and 0.0. It is the range of 05 mm or less.
  • the conductive thin film 5 is also disposed along the bent portion of the second probe, and a portion slightly above the tip portion of the second probe (0.05 mm to 0.00 mm). About 1 mm) is exposed. In other words, only the portion of the electronic component that is necessary to contact the connection electrode is exposed, and the conductive thin film 5 is not in contact with the connection electrode. By doing in this way, it is possible to ensure the impedance even for the portion close to the tip. An enlarged image diagram of this part is shown in FIG.
  • the distance between the side line of the first probe and the side of the conductive thin film is not limited as long as the impedance can be adjusted to be constant. It is preferable that the configuration expands from the side toward the coaxial cable side. This is because the impedance between the first probe and the second probe is determined based on the diameter of the first probe and the distance between the first probe and the conductive thin film. This is because the distance between the first probe and the conductive thin film needs to be adjusted according to this in order to make the impedance uniform as the probe diameters are different. That is, since the first probe becomes thicker from the tip toward the coaxial cable, it is necessary to increase the distance between the side line of the first probe and the conductive thin film.
  • the side line of the first probe and the conductive thin film It is preferable to use the distance between the side and the side as a reference.
  • a step of arranging a first probe electrically connected to the coaxial cable and (2) a second probe is arranged to be electrically connected to the outer conductor of the coaxial cable.
  • the conductive thin film can be manufactured by a step of contacting and arranging the second probe so that the side is parallel to the first probe.
  • the probe and the probe card according to this embodiment can provide a probe and a probe card that have higher inspection accuracy and are easier to manufacture even in higher integration, higher speed, and higher frequency.
  • the probe according to the present embodiment employs the first probe and the second probe, and is structurally strong and maintaining good contact with the electrode pad and the like. There is little risk of deformation of the needle itself. Then, by arranging the conductive thin film to be electrically connected on the second probe, it is possible to stably secure the distance from the first probe and easily adjust the impedance. Become.
  • the probe according to the present embodiment is the first probe and the second probe, even when the distance between the electrode pads serving as the contact destinations is to be applied to an inspection target, Accordingly, the distance between the probes is adjusted accordingly, and only the conductive thin film is disposed on the second probe. Therefore, there is no need to redesign the electrode shape corresponding to the second probe. It hardly occurs.
  • the first probe tip of the probe is inserted with an inclination from a direction perpendicular to the direction in which the electrode pad is arranged because of the arrangement area due to the use of a large number of probes. Even in this case, it can be manufactured very easily. An image diagram in this case is shown in FIG. As a result, a probe and a probe card that have higher inspection accuracy and are easier to manufacture in higher integration, higher speed, and higher frequency.
  • this probe has an auxiliary conductor that is electrically connected to the external conductor 23 via the second probe or the conductive thin film and is disposed so as to cover the front side of the first probe 3. 8 may be provided. A diagram in this case is shown in FIG.
  • the “front side” of the first probe is coaxial with respect to the bent position of the first probe or the tip position (when there is no bent), as shown in FIG. The side farther from the cable.
  • the shape of the auxiliary conductor 4 is not limited, but a preferable example is a loop shape covering the front portion of the first probe. By doing in this way, it becomes possible to cover the front side of the first probe 3 and to maintain the isolation.
  • the auxiliary conductor 4 may be a linear member or a plate-like member.
  • the material of the auxiliary conductor 4 is not particularly limited as long as it has conductivity, and various materials can be adopted, for example, copper, gold, silver, palladium, tungsten, and these.
  • An alloy containing at least one (for example, beryllium copper) can be preferably used.
  • the conductive thin film is provided on the second probe.
  • the conductive thin film is disposed in contact with the first probe, and the side is spaced from the second probe. It may be configured to have conductive thin films arranged in parallel.
  • FIG. (a) is a schematic perspective view, and (b) is a cut of the first probe, the second probe, and the conductive thin film in a plane parallel to the surface of the probe coaxial cable viewed from the front. It is a schematic sectional drawing at the time of doing. Even with such a configuration, the same effect as described above can be obtained.
  • the same thing as the above is employable as each component in the example of this figure.
  • a probe according to an aspect of the present invention is provided with a coaxial cable including an inner conductor, an insulator covering the inner conductor, and an outer conductor covering the insulator, and electrically connected to the inner conductor of the coaxial cable.
  • a first probe to be connected; a second probe to be electrically connected to an external conductor; and the first probe or the second probe is disposed in contact with the other side It can be said that it has a conductive thin film arranged in parallel with the probe.
  • the tip portion is bent, and the first The probe was used.
  • two wires of the same material (diameter 0.2 mm) as the first probe are spaced apart by 0.5 mm so that the first probe is sandwiched between them, and the outer conductor of the coaxial cable is electrically connected with solder.
  • the tips of the first probe and the second probe were arranged in a line when viewed from above. Further, a copper thin film was attached to the second probe so that only a part of the tip was exposed, and a certain gap was secured in parallel with the first probe to complete the probe. This photograph is shown in FIG.
  • FIGS. 14 and 15 show the result of the impedance measurement of the probe according to the present example
  • FIG. 15 shows the result of the impedance of the probe according to the comparative example
  • the left graph shows the result of impedance measurement of the probe as a comparative example
  • the right graph shows the result of impedance measurement of the probe of this example.
  • the vertical axis represents impedance
  • the horizontal axis represents distance (probe position).
  • the impedance was uniformly ensured by the copper thin film.
  • the present invention has industrial applicability as a probe and a probe card.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 Provided are a probe and a probe card having higher detection accuracy and being easier to produce, even with the move to more highly integrated circuits, higher speeds and higher frequencies. A probe pertaining to a first aspect of the present invention has: a coaxial cable comprising an internal conductor, an insulator that covers the internal conductor, and an external conductor that covers the insulator; a first probe that is connected to the internal conductor of the coaxial cable; a second probe that is connected to the external conductor; and a conductive film which is positioned so as to be in contact with the first probe or the second probe, and the side edges of which are positioned in parallel with the other of the first or the second probe.

Description

プローブ及びプローブカードProbes and probe cards
 本発明は、プローブ及びプローブカードに関する。より具体的には、ICウエハーや液晶基板等の電子部品の電気的特性の検査を行うために好ましく用いられるものである。 The present invention relates to a probe and a probe card. More specifically, it is preferably used for inspecting electrical characteristics of electronic components such as an IC wafer and a liquid crystal substrate.
 ICウエハー及び電子部品等は電気的特性を調べてその良否の判別をする。この判別は、電子部品に設けられる接続用電極にプローブの探針を接触させ、このプローブに検査装置から検査用信号を入力してその出力を基準値と比較することによって行う。 IC wafers, electronic parts, etc. are checked for their electrical characteristics to determine their quality. This determination is performed by bringing a probe tip into contact with a connection electrode provided on the electronic component, inputting a test signal from the test device to the probe, and comparing the output with a reference value.
 ところで近年、電子部品の更なる高集積化・高速化・高周波化に伴い、コンタクトプローブの性能においても高集積化・高速化・高周波化が求められてきている。この結果、プローブの探針におけるインピーダンスについても高い精度が求められてきている。 Incidentally, in recent years, with the further increase in integration, speed, and frequency of electronic components, there has been a demand for higher integration, speed, and frequency in contact probe performance. As a result, high accuracy is also required for the impedance of the probe tip.
 プローブの公知の技術としては、例えば下記特許文献1に記載の技術がある。下記特許文献1には同軸ケーブルと、同軸ケーブルに接続された探針が開示されている。 As a known technique of the probe, for example, there is a technique described in Patent Document 1 below. The following Patent Document 1 discloses a coaxial cable and a probe connected to the coaxial cable.
米国特許第5373231号明細書US Pat. No. 5,373,231
 しかしながら、上記特許文献に記載の技術は、探針そのものを板状にするものであって、探針の先端を電極パッドに押し付けることによる変形に十分対応できておらず、この変形は、プローブの接触信頼性に影響を与えるだけでなく、インピーダンスの変化による検査の信頼性の低下をもたらしてしまう。 However, the technique described in the above-mentioned patent document makes the probe itself plate-like and does not sufficiently cope with the deformation caused by pressing the tip of the probe against the electrode pad. In addition to affecting the contact reliability, the test reliability is reduced due to a change in impedance.
 また探針の先端部分は、電極パッドの距離にあわせ、鋭利な部分となるよう微細な加工が施されたものとなっている。この加工はプローブが接触する電極パッドの距離にあわせて設計されているため、異なる距離の電極パッドに対応させようとするためには、探針の形状そのものに対して設計からやり直す必要が生ずる。すなわち、製造に手間がかかるといった課題がある。この製造は結局コストにも反映されてしまう。 Also, the tip of the probe is finely processed to be a sharp part according to the distance of the electrode pad. Since this processing is designed in accordance with the distance between the electrode pads in contact with the probe, it is necessary to redo the design of the probe itself in order to cope with the electrode pads at different distances. That is, there is a problem that it takes time to manufacture. This manufacturing will eventually be reflected in costs.
 そこで、本発明は、上記課題を鑑み、高集積化・高速化・高周波化においても、より検査精度が高く、より製造しやすいプローブ及びプローブカードを提供することを目的とする。 Therefore, in view of the above problems, an object of the present invention is to provide a probe and a probe card that have higher inspection accuracy and are easier to manufacture even in higher integration, higher speed, and higher frequency.
 上記課題を解決する、本発明の第一の観点にかかるプローブは、内部導体と、内部導体を覆う絶縁体と、絶縁体を覆う外部導体と、を備えた同軸ケーブルと、同軸ケーブルの内部導体に接続される第一の探針と、外部導体に接続される第二の探針と、第一の探針又は第二の探針に接触して配置され、側辺が他方の探針に並行して配置される導電性薄膜と、を有する。 A probe according to a first aspect of the present invention that solves the above problems includes an inner conductor, an insulator that covers the inner conductor, and an outer conductor that covers the insulator, and an inner conductor of the coaxial cable. The first probe connected to the second probe, the second probe connected to the outer conductor, the first probe or the second probe is arranged in contact with the other probe A conductive thin film disposed in parallel.
 なお、本観点において、限定されるわけではないが、第一の探針を挟んで配置される一対の第二の探針を備えることが好ましい。 In addition, although not necessarily limited in this viewpoint, it is preferable to include a pair of second probes arranged with the first probe interposed therebetween.
 また、本観点において、限定されるわけではないが、第一の探針及び前記第二の探針先端近傍において折れ曲がった構造を有し、導電性薄膜は、第一の探針又は第二の探針の折れ曲がった構造に沿って配置されていることが好ましい。 Further, although not limited in this aspect, the first probe and the second probe tip have a bent structure, and the conductive thin film is formed by the first probe or the second probe. It is preferable that the probe is disposed along a bent structure.
 また、本観点において、限定されるわけではないが、一対の第二の探針に接続され、第一の探針を取り囲む導体を備えることが好ましい。 Also, although not limited in this aspect, it is preferable to include a conductor that is connected to the pair of second probes and surrounds the first probe.
 また、本発明の第二の観点に係るプローブカードは、基板と、基板に固定される同軸ケーブル用コネクタと、内部導体と、内部導体を覆う絶縁体と、絶縁体を覆う外部導体と、を備え、同軸ケーブル用コネクタに接続される同軸ケーブルと、同軸ケーブルの内部導体に接続される第一の探針と、外部導体に接続される第二の探針と、第一の探針又は第二の探針に接触して配置され、側辺が他方の探針に並行して配置される導電性薄膜と、を有するプローブと、を備える。 The probe card according to the second aspect of the present invention includes a substrate, a coaxial cable connector fixed to the substrate, an internal conductor, an insulator covering the internal conductor, and an external conductor covering the insulator. A coaxial cable connected to the coaxial cable connector; a first probe connected to the inner conductor of the coaxial cable; a second probe connected to the outer conductor; and a first probe or first A probe having a conductive thin film disposed in contact with the second probe and having a side disposed in parallel with the other probe.
 なお、本観点において、限定されるわけではないが、プローブは、第一の探針を挟んで配置される一対の前記第二の探針を備えていることが好ましい。 In this respect, although not limited, the probe preferably includes a pair of the second probes arranged with the first probe interposed therebetween.
 また、本観点において、限定されるわけではないが、プローブにおいて、第一の探針及び第二の探針先端近傍において折れ曲がった構造を有し、導電性薄膜は、第一の探針又は第二の探針の折れ曲がった構造に沿って配置されていることが好ましい。 Further, although not limited in this aspect, the probe has a bent structure in the vicinity of the first probe and the tip of the second probe, and the conductive thin film has the first probe or the second probe. It is preferable that the second probe is disposed along the bent structure.
 また、本観点において、限定されるわけではないが、プローブは、一対の第二の探針に接続され、前記第一の探針を取り囲む導体を備えていることが好ましい。 In this aspect, the probe is preferably connected to a pair of second probes and includes a conductor surrounding the first probe.
 以上、本発明により、高集積化・高速化・高周波化においても、より検査精度が高く、より製造しやすいプローブ及びプローブカードを提供することができる。 As described above, according to the present invention, it is possible to provide a probe and a probe card that have higher inspection accuracy and are easier to manufacture even in higher integration, higher speed, and higher frequency.
本実施形態に係るプローブ(以下「本プローブ」という。)の概略図である。1 is a schematic view of a probe according to the present embodiment (hereinafter referred to as “the present probe”). 本実施形態の一例に係るプローブカード9の概略図である。It is the schematic of the probe card 9 which concerns on an example of this embodiment. 本実施形態に係る第一の短針の側面のイメージ図である。It is an image figure of the side surface of the 1st short hand concerning this embodiment. 本実施形態に係る第二の探針4の側面のイメージ図である。It is an image figure of the side surface of the 2nd probe 4 which concerns on this embodiment. 本実施形態に係る第一および第二の探針の配置についてのイメージ図である。It is an image figure about arrangement | positioning of the 1st and 2nd probe which concerns on this embodiment. 本実施形態に係るプローブの第一の探針、第二の探針、導電性薄膜の同軸ケーブル遠心方向に対して垂直な面で切断した場合の概略断面図の一例である。It is an example of the schematic sectional drawing at the time of cut | disconnecting in the surface perpendicular | vertical with respect to the coaxial cable centrifugal direction of the 1st probe of the probe which concerns on this embodiment, a 2nd probe, and a conductive thin film. 本実施形態に係る第二の探針の先端部分近傍の拡大イメージ図である。It is an enlarged image figure of the front-end | tip part vicinity of the 2nd probe which concerns on this embodiment. 本実施形態に係る多数のプローブと電極パッドのイメージ図である。It is an image figure of many probes and electrode pads concerning this embodiment. 本実施形態に係る第二の探針又は導電性薄膜を介して外部導体23に電気的に接続され、かつ、第一の探針3の前面側を覆うよう配置されている補助導電体8を設けたプローブの図である。The auxiliary conductor 8 that is electrically connected to the external conductor 23 via the second probe or the conductive thin film according to the present embodiment and arranged to cover the front side of the first probe 3 is provided. It is the figure of the provided probe. 本実施形態に係る第一の探針の「前面側」を示す図である。It is a figure which shows the "front side" of the 1st probe which concerns on this embodiment. 第一の探針に接触して配置され、側辺が第二の探針に間隙をおいて並行して配置される導電性薄膜の図である。It is a figure of the electroconductive thin film arrange | positioned in contact with the 1st probe, and the side is arrange | positioned in parallel with the 2nd probe in the gap. 本実施例に係る銅薄膜を貼り付けたプローブの写真図である。It is a photograph figure of the probe which affixed the copper thin film which concerns on a present Example. 本実施例に係る銅薄膜を貼り付けなかったプローブの写真図である。It is a photograph figure of the probe which did not affix the copper thin film concerning a present Example. 本実施例に係るプローブのインピーダンス測定の結果を示す図である。It is a figure which shows the result of the impedance measurement of the probe which concerns on a present Example. 比較例に係るプローブのインピーダンス測定の結果を示す図である。It is a figure which shows the result of the impedance measurement of the probe which concerns on a comparative example.
 以下、本発明を実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited only to the embodiments and examples described below.
 図1は、本実施形態に係るプローブ(以下「本プローブ」という。)の概略図を示す。本図で示すように、本プローブ1は、内部導体21と、内部導体21を覆う絶縁体22と、絶縁体22を覆う外部導体23と、を備えた同軸ケーブル2と、同軸ケーブル2の内部導体21に接続される第一の探針3と、外部導体23に接続される第二の探針4と、第二の探針4に接触して配置され、側辺が第一の探針4に間隙を設けて並行して配置される導電性薄膜5と、を有する。 FIG. 1 is a schematic diagram of a probe according to the present embodiment (hereinafter referred to as “the present probe”). As shown in the figure, the probe 1 includes a coaxial cable 2 having an inner conductor 21, an insulator 22 covering the inner conductor 21, and an outer conductor 23 covering the insulator 22, and an inner portion of the coaxial cable 2. The first probe 3 connected to the conductor 21, the second probe 4 connected to the external conductor 23, and the second probe 4 are disposed in contact with each other, and the side is the first probe. 4 and a conductive thin film 5 disposed in parallel with a gap.
 また、本実施形態に係るプローブは、基板6に固定されたコネクタ7に接続され、プローブカード9の一部となる。本実施形態の一例に係るプローブカード9の概略について図2に示しておく。プローブカード9には一つ以上、好ましくは複数のコネクタ7が固定され、そのそれぞれにはプローブ1が接続されている。そして、このプローブの先端を検査対象となるIC等の電極に接触させる一方、コネクタを検査装置に接続し、検査装置からの信号の入出力によって検査対象が正常な動作を行うことができているか否かを検査する。 Further, the probe according to the present embodiment is connected to the connector 7 fixed to the substrate 6 and becomes a part of the probe card 9. An outline of a probe card 9 according to an example of this embodiment is shown in FIG. One or more, preferably a plurality of connectors 7 are fixed to the probe card 9, and the probe 1 is connected to each of them. Whether the tip of this probe is in contact with an electrode of an IC or the like to be inspected, while the connector is connected to the inspection device, and whether or not the inspection subject can operate normally by inputting / outputting a signal from the inspection device Check for no.
 本実施形態に係るプローブカード9における基板は、コネクタ7及びプローブを固定し、所望の位置にプローブの探針の先端を配置するために用いられるものであり、この機能を有する限りにおいて限定されず様々な物を採用することができるが、いわゆるプリント基板を用いることは好ましい一例である。 The board in the probe card 9 according to the present embodiment is used for fixing the connector 7 and the probe and arranging the probe tip of the probe at a desired position, and is not limited as long as it has this function. Although various things can be employ | adopted, using what is called a printed circuit board is a preferable example.
 本実施形態において、同軸ケーブル2は、検査対象と検査装置とを電気的に接続するために用いられるものであり、上記のとおり内部導体21と、内部導体21を覆う絶縁体22と、絶縁体22を覆う外部導体23と、を備えている。同軸ケーブル2は、全体として、内部導体21、絶縁体22、外部導体23を同心状に配置して一方向に延伸する線状の部材となっている。 In the present embodiment, the coaxial cable 2 is used to electrically connect an inspection target and an inspection apparatus, and as described above, the inner conductor 21, the insulator 22 covering the inner conductor 21, and the insulator And an outer conductor 23 covering 22. The coaxial cable 2 is a linear member that extends in one direction by concentrically arranging the inner conductor 21, the insulator 22, and the outer conductor 23 as a whole.
 また本実施形態において内部導体21は、導電性の材料が一方向に延びる線状の部材であり、探針が配置される側(先端側)において露出され、第一の探針と電気的に接続されている。内部導体21の断面形状は限定されることなく様々な形状を採用することができるが、円であることは好ましい一形態である。円の場合、直径は限定されるわけではないが、0.05mm以上0.8mm以下であることが好ましく、より好ましくは0.05mm以上0.5mm以下の範囲である。また、内部導体21の材質としても限定されるわけではないが、例えば銅、金、銀、パラジウム、タングステン及びこれらの少なくともいずれかを含む合金(例えばベリリウム銅等)を好ましく用いることができる。 In the present embodiment, the inner conductor 21 is a linear member in which a conductive material extends in one direction. The inner conductor 21 is exposed on the side where the probe is disposed (tip side) and is electrically connected to the first probe. It is connected. Although the cross-sectional shape of the inner conductor 21 is not limited and various shapes can be adopted, a circular shape is a preferable form. In the case of a circle, the diameter is not limited, but is preferably 0.05 mm or more and 0.8 mm or less, more preferably 0.05 mm or more and 0.5 mm or less. Moreover, although it does not necessarily limit as a material of the inner conductor 21, For example, copper, gold | metal | money, silver, palladium, tungsten, and an alloy (for example, beryllium copper etc.) containing at least one of these can be used preferably.
 なお、内部導体21は、後述するように、第一の探針と一体に形成されていてもよい。 Note that the inner conductor 21 may be formed integrally with the first probe, as will be described later.
 また、本実施形態において絶縁体22は、内部導体21の周囲に配置され、内部導体21を覆うとともに、内部導体21と外部胴体23を絶縁するためのものである。絶縁体22の形状は、限定されるわけではないが、内部導体21を中心に配置する中空を備え、一方向に延伸された部分を有する円筒状の部材であることが好ましく、その断面形状は限定されるわけではないが中空の円形状のものであることが好ましい。またこの断面形状が中空の円形状である場合、直径は限定されるわけではないが、0.1mm以上2mm以下であることが好ましく、より好ましくは0.2mm以上1mm以下の範囲である。 In the present embodiment, the insulator 22 is disposed around the inner conductor 21, covers the inner conductor 21, and insulates the inner conductor 21 and the outer body 23 from each other. Although the shape of the insulator 22 is not limited, the insulator 22 is preferably a cylindrical member having a hollow disposed around the inner conductor 21 and having a portion extending in one direction. Although it is not necessarily limited, it is preferable that it is a hollow circular thing. Moreover, when this cross-sectional shape is a hollow circular shape, although a diameter is not necessarily limited, It is preferable that they are 0.1 mm or more and 2 mm or less, More preferably, it is the range of 0.2 mm or more and 1 mm or less.
 また、本実施形態において絶縁体22も、上記内部導体21と同様、探針が配置される側において露出されている。絶縁体22の材質としては、上記の効果を有する限りにおいて限定されず一般的なものを用いることができ、誘電率の低い絶縁体であることが好ましく、例えばポリエチレン、ポリイミド、ポリエチレンテレフタラート(PET)、ポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシフッ素樹脂(PFA)等を例示できる。 In the present embodiment, the insulator 22 is also exposed on the side where the probe is disposed, like the internal conductor 21. The insulator 22 is not limited as long as it has the above-mentioned effects, and a general material can be used. An insulator having a low dielectric constant is preferable. For example, polyethylene, polyimide, polyethylene terephthalate (PET) ), Polytetrafluoroethylene (PTFE), perfluoroalkoxy fluororesin (PFA), and the like.
 また、本実施形態において外部導体23は、探針(具体的には第二の探針)と検査装置とをコネクタを介して電気的に接続するために用いられるものであり、絶縁体22を覆う導電性を有する部材でもある。外部導体23の形状は限定されるわけではないが、上記絶縁体22、内部導体22を内部に含む中空を備え、一方向に延伸された円筒状の部材であることが好ましい。またこの断面形状が中空の円形状である場合、直径は限定されるわけではないが、0.2mm以上2.2mm以下であることが好ましく、より好ましくは0.5mm以上1.2mm以下の範囲である。 In the present embodiment, the external conductor 23 is used to electrically connect the probe (specifically, the second probe) and the inspection apparatus via a connector, and the insulator 22 It is also a member having conductivity to cover. Although the shape of the outer conductor 23 is not limited, it is preferably a cylindrical member having a hollow including the insulator 22 and the inner conductor 22 therein and extending in one direction. When the cross-sectional shape is a hollow circular shape, the diameter is not limited, but is preferably 0.2 mm or more and 2.2 mm or less, more preferably 0.5 mm or more and 1.2 mm or less. It is.
 また、外部導体23の材質としても限定されるわけではないが、例えば金、銀、銅、鉄、アルミニウム、ニッケル、ニオブ、クロム、及びこれらの少なくともいずれかを含む合金(例えばステンレス等)を好ましく用いることができる。 Further, the material of the outer conductor 23 is not limited. For example, gold, silver, copper, iron, aluminum, nickel, niobium, chromium, and an alloy containing at least one of these (for example, stainless steel) are preferable. Can be used.
 また、本実施形態において第一の探針3は、電子部品に設けられる接続用電極、より具体的には信号出力用電極に接触させ、信号を検出するための導電性の部材であり、先端に行くに従い細くなっている針状の部材である。図3に、第一の短針の側面のイメージ図を示しておく。また本実施形態において、第一の探針3は、先端近傍において折れ曲った部分31を有する。第一の探針3は、先端において折れ曲った部分を有することで、ICウエハー及び電子部品等の接続用電極の配置された面(xy面)を真上(z方向)から見た場合に、探針をxy面に沿って移動又は回転させ、その後探針を基板側(z方向に沿ってxy面側)に移動させることで接続用電極に対して第二の探針の先端を押し当て、所望の位置に確実に接触させることができるようになるため好ましい。また、本実施形態では折れ曲った針状となっているため、探針の先端を押す力を多少強くしても、針の弾性力によりこの力を緩和させることができ、構造の安定化、接触の安定化に寄与する。なおこの場合において、折れ曲がった部分の折れ曲り角度としては、限定されるわけではないが内角が90度以上であることが好ましく、より好ましくは100度以上120度以下の範囲である。この範囲とすることで、探針の先端位置を確実に認識することができる一方、探針の先端を押す力を安定して確保することができる。なお、第一の探針3の断面形状は、上記の機能を有することができる限りにおいて限定されるわけではないが円形状であることは好ましい一例である。 Further, in the present embodiment, the first probe 3 is a conductive member for detecting a signal by contacting a connection electrode provided on an electronic component, more specifically, a signal output electrode. It is a needle-like member that becomes thinner as it goes to. In FIG. 3, the image figure of the side surface of a 1st short hand is shown. In the present embodiment, the first probe 3 has a bent portion 31 in the vicinity of the tip. The first probe 3 has a bent portion at the tip, so that the surface (xy plane) on which the connection electrodes such as the IC wafer and the electronic component are arranged is viewed from directly above (z direction). The tip of the second probe is pushed against the connection electrode by moving or rotating the probe along the xy plane and then moving the probe to the substrate side (xy plane side along the z direction). It is preferable because it can be reliably brought into contact with a desired position. In addition, in this embodiment, since it has a bent needle shape, even if the force pushing the tip of the probe is made somewhat strong, this force can be relaxed by the elastic force of the needle, and the structure is stabilized. Contributes to contact stabilization. In this case, the bending angle of the bent portion is not limited, but the inner angle is preferably 90 degrees or more, and more preferably 100 degrees or more and 120 degrees or less. By setting this range, the tip position of the probe can be reliably recognized, while the force for pushing the tip of the probe can be stably secured. The cross-sectional shape of the first probe 3 is not limited as long as it can have the above function, but a circular shape is a preferred example.
 第一の探針の太さとしては限定されるわけではなく、同軸ケーブル2の内部導体21と安定的に電気的な接続が確保できる限りにおいて限定されるわけではなく、内部導体と接続される側(奥側)は、断面が円形状である場合、根元側(同軸ケーブル側)の直径が0.05mm以上0.8mm以下の範囲であることが好ましく、より好ましくは0.05mm以上0.5mm以下の範囲内である。先端側の直径は0.01mm以上0.2mm以下の範囲内であることが好ましく、より好ましくは0.03mm以上0.15mm以下の範囲内である。 The thickness of the first probe is not limited, and is not limited as long as stable electrical connection with the inner conductor 21 of the coaxial cable 2 can be ensured, and is connected to the inner conductor. When the cross section of the side (back side) is circular, the diameter of the root side (coaxial cable side) is preferably in the range of 0.05 mm to 0.8 mm, more preferably 0.05 mm to 0.00 mm. It is within the range of 5 mm or less. The diameter on the tip side is preferably in the range of 0.01 mm to 0.2 mm, and more preferably in the range of 0.03 mm to 0.15 mm.
 また、第一の探針と内部導体との接続は、電気的な接続を維持することができる限りにおいて限定されるわけではなく、内部導体と第一の探針とを一体にした構成としておくことも好ましい。このようにしておくことで構造の安定化、電気的な接続をより確実にすることができる。すなわち、「電気的に接続」には、同一の材料で一体に形成されていることも含まれる。 Further, the connection between the first probe and the internal conductor is not limited as long as the electrical connection can be maintained, and the internal conductor and the first probe are integrated. It is also preferable. By doing so, the structure can be stabilized and the electrical connection can be made more reliable. That is, “electrically connected” includes being integrally formed of the same material.
 また、本実施形態において第二の探針4は、第一の探針3に並行して配置され、上記第一の探針3と同様、電子部品に設けられる接続用電極、より具体的にはグラウンド用電極に接触させるための導電性の部材であり、上記第一の探針2と同様の構成、材質で構成される針状の部材である。また第二の探針4は、先端に行くに従い細くなっている。第二の探針4の側面のイメージ図を図4に示しておく。また本実施形態において、第二の探針4も上記第一の探針3と同様、先端近傍において折れ曲った部分を有する。第二の探針4は、先端において折れ曲った部分を有することで、ICウエハーや液晶基板等の電子部品の接続用電極の配置された面(xy面)を真上(z方向)から見た場合に、探針をxy面に沿って移動又は回転させ、その後探針を基板側(z方向に沿ってxy面側)に移動させることで接続用電極に対して第二の探針の先端を押し当て、所望の位置に確実に接触させることができるようになるため好ましい。この場合のイメージ図を図5に示しておく。また、本実施形態では折れ曲った針状となっているため、探針の先端を押す力を多少強くしても、針の弾性力によりこの力を緩和させることができ、構造の安定化、接触の安定化に寄与する。なおこの場合において、折れ曲がった部分の折れ曲り角度としては、限定されるわけではないが90度以上であることが好ましく、より好ましくは100度以上120度以下の範囲である。この範囲とすることで、探針の先端位置を確実に認識することができる一方、探針の先端を押す力を安定して確保することができる。なお、第二の探針4の断面形状は、上記の機能を有することができる限りにおいて限定されるわけではないが円形状であることは好ましい一例である。 In the present embodiment, the second probe 4 is arranged in parallel with the first probe 3, and, like the first probe 3, a connection electrode provided in an electronic component, more specifically, Is a conductive member for making contact with the ground electrode, and is a needle-like member made of the same structure and material as the first probe 2. The second probe 4 becomes thinner as it goes to the tip. An image of the side surface of the second probe 4 is shown in FIG. In the present embodiment, the second probe 4 also has a bent portion in the vicinity of the tip, like the first probe 3. Since the second probe 4 has a bent portion at the tip, the surface (xy surface) on which the connection electrodes of the electronic components such as an IC wafer and a liquid crystal substrate are arranged is viewed from directly above (z direction). In this case, the probe is moved or rotated along the xy plane, and then the probe is moved to the substrate side (xy plane side along the z direction) so that the second probe is moved relative to the connection electrode. It is preferable because the tip can be pressed against the desired position to ensure contact. An image diagram in this case is shown in FIG. In addition, in this embodiment, since it has a bent needle shape, even if the force pushing the tip of the probe is made somewhat strong, this force can be relaxed by the elastic force of the needle, and the structure is stabilized. Contributes to contact stabilization. In this case, the bending angle of the bent portion is not limited, but is preferably 90 degrees or more, and more preferably 100 degrees or more and 120 degrees or less. By setting this range, the tip position of the probe can be reliably recognized, while the force for pushing the tip of the probe can be stably secured. The cross-sectional shape of the second probe 4 is not limited as long as it has the above function, but a circular shape is a preferred example.
 また、本実施形態において、第二の探針4は、第一の探針3を挟むよう一対で構成されていることが好ましい。この構成は、信号用電極1つに対し、その両脇に2つのグラウンド用電極が配置されているICウエハーや電子部品等に対して検査を行うことができる構成であるとともに、第一の探針と第二の探針の配置関係の対称性を高めるため、インピーダンス調整がより正確にできるといった効果がある。 Further, in the present embodiment, it is preferable that the second probe 4 is configured as a pair so as to sandwich the first probe 3. In this configuration, an inspection can be performed on an IC wafer, an electronic component, or the like in which two ground electrodes are arranged on both sides of one signal electrode. Since the symmetry of the arrangement relationship between the needle and the second probe is enhanced, there is an effect that the impedance can be adjusted more accurately.
 また、本実施形態において、第二の探針4は上記のとおり同軸ケーブル2における外部導体23に電気的に接続されているとともに、固定されている。この限りにおいて、接続する手段は限定されるわけではないが、例えばハンダによる固定が好ましい。 In the present embodiment, the second probe 4 is electrically connected and fixed to the outer conductor 23 in the coaxial cable 2 as described above. As long as this is the case, the means for connection is not limited, but for example, fixing with solder is preferable.
 また、本実施形態において導電性薄膜5は、上記のとおり、第二の探針に接触して配置されるもの、より具体的には、第二の探針5の上に配置されるものであって、しかも側辺が前記第一の探針に間隙を設けつつ並行して配置されている。図6に、本プローブの第一の探針、第二の探針、導電性薄膜の同軸ケーブル遠心方向に対して垂直な面で切断した場合の概略断面図の一例を示しておく。本プローブでは限定されるわけではないが、導電性薄膜は第一の探針の中心を通る線に略平行となるよう配置されていることが好ましく、また、一対の第二の探針5を採用する場合、導電性薄膜も一対であってこれらが略同一の平面を形成するよう配置しておくことが好ましい。ここで「略」を用いているのは、完全に平行又は完全に同一の平面を形成することが理想的ではあるが、実際上は完全な状態を実現するのは困難であるため、製造上の誤差を含ませるためである。 In the present embodiment, the conductive thin film 5 is disposed in contact with the second probe as described above, more specifically, is disposed on the second probe 5. In addition, the sides are arranged in parallel with a gap provided in the first probe. FIG. 6 shows an example of a schematic cross-sectional view when the first probe, the second probe, and the conductive thin film of this probe are cut along a plane perpendicular to the coaxial cable centrifugal direction. Although not limited in this probe, it is preferable that the conductive thin film is disposed so as to be substantially parallel to a line passing through the center of the first probe. When employed, it is preferable that the conductive thin films are also paired and arranged so as to form substantially the same plane. The term “substantially” is used here, although it is ideal to form completely parallel or completely identical planes, but in reality, it is difficult to achieve a perfect state. This is to include the error.
 本形態に係る導電性薄膜5は第二の探針に接触しているため第二の探針と同電位になっており、主として第一の探針とのインピーダンス調整のために用いられる部材となっている。本実施形態における導電性薄膜5の材質としては、導電性を有する限りにおいて限定されるわけではないが、例えば金、銀、銅、ニッケル、亜鉛、及びこれらの少なくともいずれかを含む合金(例えば洋白、真鍮等)であることは好ましい一例である。 Since the conductive thin film 5 according to this embodiment is in contact with the second probe, it is at the same potential as the second probe, and is mainly used for impedance adjustment with the first probe. It has become. The material of the conductive thin film 5 in the present embodiment is not limited as long as it has conductivity. For example, gold, silver, copper, nickel, zinc, and an alloy containing at least one of these (for example, Western White, brass, etc.) is a preferred example.
 本実施形態において、導電性薄膜5と第二の探針4の接触は、電気的な接続が可能である限りにおいて限定されるわけではないが、例えばハンダで接続させることが好ましい。 In the present embodiment, the contact between the conductive thin film 5 and the second probe 4 is not limited as long as electrical connection is possible, but it is preferable to use, for example, solder.
 また本実施形態において、導電性薄膜5の厚さとしては、特に限定されるわけではないが、0.01mm以上0.1mm以下の範囲であることが好ましく、より好ましくは0.025mm以上0.05mm以下の範囲である。 In the present embodiment, the thickness of the conductive thin film 5 is not particularly limited, but is preferably in the range of 0.01 mm or more and 0.1 mm or less, more preferably 0.025 mm or more and 0.0. It is the range of 05 mm or less.
 また本実施形態において、導電性薄膜5は、第二の探針の折れ曲り部分にも沿って配置されており、第二の探針の先端部分から少し上の部分(0.05mm~0.1mm程度)が露出している。すなわち、電子部品における接続用電極と接触するのに必要な部分だけを露出させ、導電性薄膜5は接続用電極と接触しないようになっている。このようにすることで、先端に近い部分についてもインピーダンスの確保が可能となる。この部分の拡大イメージ図を図7に示しておく。 In the present embodiment, the conductive thin film 5 is also disposed along the bent portion of the second probe, and a portion slightly above the tip portion of the second probe (0.05 mm to 0.00 mm). About 1 mm) is exposed. In other words, only the portion of the electronic component that is necessary to contact the connection electrode is exposed, and the conductive thin film 5 is not in contact with the connection electrode. By doing in this way, it is possible to ensure the impedance even for the portion close to the tip. An enlarged image diagram of this part is shown in FIG.
 また、本実施形態において、第一の探針の側線と導電性薄膜の側辺の間隔は、インピーダンスを一定に調整することができる限りにおいて限定されるわけではないが、本実施形態では、先端側から同軸ケーブル側に行くに従い広がっている構成となっていることが好ましい。これは、第一の探針と第二の探針の間におけるインピーダンスは、第一の探針の直径、第一の探針と導電性薄膜の距離に基づき定められるものであり、第一の探針の直径が異なっていく以上、インピーダンスを均一にするためには第一の探針と導電性薄膜の距離をこれに合わせて調整する必要があるためである。すなわち第一の探針が先端から同軸ケーブルに行くに従い太くなっているため、この第一の探針の側線と導電性薄膜の距離を広くする必要があるのである。ここで、第一の探針と導電性薄膜の距離とは、第一の探針と導電性薄膜の最短の距離を用いて定めることが好ましいため、第一の探針の側線と導電性薄膜の側辺との距離の間隔を基準とすることが好ましい。 Further, in the present embodiment, the distance between the side line of the first probe and the side of the conductive thin film is not limited as long as the impedance can be adjusted to be constant. It is preferable that the configuration expands from the side toward the coaxial cable side. This is because the impedance between the first probe and the second probe is determined based on the diameter of the first probe and the distance between the first probe and the conductive thin film. This is because the distance between the first probe and the conductive thin film needs to be adjusted according to this in order to make the impedance uniform as the probe diameters are different. That is, since the first probe becomes thicker from the tip toward the coaxial cable, it is necessary to increase the distance between the side line of the first probe and the conductive thin film. Here, since it is preferable to determine the distance between the first probe and the conductive thin film using the shortest distance between the first probe and the conductive thin film, the side line of the first probe and the conductive thin film It is preferable to use the distance between the side and the side as a reference.
 なお、本プローブは、(1)同軸ケーブルに電気的に接続した第一の探針を配置する工程、(2)第二の探針を同軸ケーブルの外部導体に電気的に接続するよう配置する工程、(3)導電性薄膜を、側辺が第一の探針に並行するよう第二の探針に接触配置する工程、によって製造することができる。 In this probe, (1) a step of arranging a first probe electrically connected to the coaxial cable, and (2) a second probe is arranged to be electrically connected to the outer conductor of the coaxial cable. Step (3) The conductive thin film can be manufactured by a step of contacting and arranging the second probe so that the side is parallel to the first probe.
 以上、本実施形態に係るプローブ及びプローブカードによって、高集積化・高速化・高周波化においても、より検査精度が高く、より製造しやすいプローブ及びプローブカードを提供することができる。この点を具体的に説明すると、本実施形態に係るプローブは、第一の探針と第二の探針を採用することで、構造的に強固で電極パッド等との接触を良好に保ちつつ、針自体の変形の虞が少ない。そして、第二の探針の上に導電性薄膜を電気的に接続するよう配置することで、第一の探針との距離を安定的に確保しインピーダンス調整を簡便に行うことができるようになる。加えて、本実施形態に係るプローブは、第一の探針及び第二の探針としているため、接触先となる電極パッドの距離が異なる検査対象に適用させようとする場合でも、この距離に応じて探針同士の距離を調整し、第二の探針の上に導電性薄膜を配置するだけであるため、別途第二の探針に対応する電極の形状を設計しなおす等の手間が殆ど発生しない。特に、本実施形態に係るプローブは、多数のプローブを用いることによる配置面積の関係から、電極パッドの配置される方向に対してプローブの第一の探針が垂直な方向から傾いて挿入される場合であっても、非常に簡便に製造することができるようになる。この場合のイメージ図を図8に示しておく。この結果、高集積化・高速化・高周波化においても、より検査精度が高く、より製造しやすいプローブ及びプローブカードとなる。 As described above, the probe and the probe card according to this embodiment can provide a probe and a probe card that have higher inspection accuracy and are easier to manufacture even in higher integration, higher speed, and higher frequency. Specifically, the probe according to the present embodiment employs the first probe and the second probe, and is structurally strong and maintaining good contact with the electrode pad and the like. There is little risk of deformation of the needle itself. Then, by arranging the conductive thin film to be electrically connected on the second probe, it is possible to stably secure the distance from the first probe and easily adjust the impedance. Become. In addition, since the probe according to the present embodiment is the first probe and the second probe, even when the distance between the electrode pads serving as the contact destinations is to be applied to an inspection target, Accordingly, the distance between the probes is adjusted accordingly, and only the conductive thin film is disposed on the second probe. Therefore, there is no need to redesign the electrode shape corresponding to the second probe. It hardly occurs. Particularly, in the probe according to the present embodiment, the first probe tip of the probe is inserted with an inclination from a direction perpendicular to the direction in which the electrode pad is arranged because of the arrangement area due to the use of a large number of probes. Even in this case, it can be manufactured very easily. An image diagram in this case is shown in FIG. As a result, a probe and a probe card that have higher inspection accuracy and are easier to manufacture in higher integration, higher speed, and higher frequency.
 また、本プローブには、第二の探針又は導電性薄膜を介して外部導体23に電気的に接続され、かつ、第一の探針3の前面側を覆うよう配置されている補助導電体8を設けていてもよい。この場合の図を図9に示す。 In addition, this probe has an auxiliary conductor that is electrically connected to the external conductor 23 via the second probe or the conductive thin film and is disposed so as to cover the front side of the first probe 3. 8 may be provided. A diagram in this case is shown in FIG.
 本実施形態において、第一の探針の「前面側」とは、例えば図10で示すように、第一の探針の折れ曲り位置又は(折れ曲がりがない場合は)先端位置を基準に、同軸ケーブルからより遠い側をいう。このように補助導電体を配置することで、電磁シールドとして他のプローブとの電気的なアイソレーションを確保することができるだけでなく、他の導電体から漏れ出るノイズも防ぐことができるようになるとともに、インピーダンス整合を取ることができるようになる。 In the present embodiment, the “front side” of the first probe is coaxial with respect to the bent position of the first probe or the tip position (when there is no bent), as shown in FIG. The side farther from the cable. By arranging the auxiliary conductor in this way, it is possible not only to ensure electrical isolation from other probes as an electromagnetic shield, but also to prevent noise leaking from other conductors. At the same time, impedance matching can be achieved.
 また本実施形態において補助導電体4の形状は、限定されるわけではないが、第一の探針の前面部を覆うループ状であることが好ましい一例である。このようにすることで、第一の探針3前面側を覆うことが可能となり、アイソレーションを維持することができるようになる。また本実施形態において、補助導電体4は、線状の部材であってもよく、また、板状の部材であってもよい。 In the present embodiment, the shape of the auxiliary conductor 4 is not limited, but a preferable example is a loop shape covering the front portion of the first probe. By doing in this way, it becomes possible to cover the front side of the first probe 3 and to maintain the isolation. In the present embodiment, the auxiliary conductor 4 may be a linear member or a plate-like member.
 また、本実施形態において、補助導電体4の材質としては、導電性を有する限りにおいて特に限定されず様々なものを採用することができるが、例えば銅、金、銀、パラジウム、タングステン及びこれらの少なくともいずれかを含む合金(例えばベリリウム銅等)を好ましく用いることができる。 Further, in the present embodiment, the material of the auxiliary conductor 4 is not particularly limited as long as it has conductivity, and various materials can be adopted, for example, copper, gold, silver, palladium, tungsten, and these. An alloy containing at least one (for example, beryllium copper) can be preferably used.
 また、本実施形態では、第二の探針の上に導電性薄膜を備える例としているが、反対に第一の探針に接触して配置され、側辺が第二の探針に間隙をおいて並行して配置される導電性薄膜を有するよう構成してもよい。この場合の図を図11に示しておく。なお本図中(a)は斜視概略図であり、(b)はプローブの同軸ケーブルを正面から見た面に平行な面で第一の探針、第二の探針及び導電性薄膜を切断した場合の概略断面図である。このような構成によっても、上記と同様の効果を得ることができる。なお本図の例における各構成要素は上記と同様のものを採用することができる。この結果、本発明の一観点に係るプローブは、内部導体と、内部導体を覆う絶縁体と、絶縁体を覆う外部導体と、を備えた同軸ケーブルと、同軸ケーブルの前記内部導体に電気的に接続される第一の探針と、外部導体に電気的に接続される第二の探針と、第一の探針又は前記第二の探針に接触して配置され、側辺が他方の探針に並行して配置される導電性薄膜と、を有するものといえる。 Further, in this embodiment, the conductive thin film is provided on the second probe. On the contrary, the conductive thin film is disposed in contact with the first probe, and the side is spaced from the second probe. It may be configured to have conductive thin films arranged in parallel. The figure in this case is shown in FIG. In this figure, (a) is a schematic perspective view, and (b) is a cut of the first probe, the second probe, and the conductive thin film in a plane parallel to the surface of the probe coaxial cable viewed from the front. It is a schematic sectional drawing at the time of doing. Even with such a configuration, the same effect as described above can be obtained. In addition, the same thing as the above is employable as each component in the example of this figure. As a result, a probe according to an aspect of the present invention is provided with a coaxial cable including an inner conductor, an insulator covering the inner conductor, and an outer conductor covering the insulator, and electrically connected to the inner conductor of the coaxial cable. A first probe to be connected; a second probe to be electrically connected to an external conductor; and the first probe or the second probe is disposed in contact with the other side It can be said that it has a conductive thin film arranged in parallel with the probe.
 ここで、上記実施形態に係るプローブを用い、実際に測定を行い本発明の効果を確認した。以下具体的に説明する。  Here, using the probe according to the above embodiment, the measurement was actually performed to confirm the effect of the present invention. This will be specifically described below. *
 まず、直径0.8mmの同軸ケーブルの内部導体(直径0.2mm)にベリリウム銅の第一の探針(0.2mm)を電気的に接続したものを採用し、先端部分を折り曲げ、第一の探針とした。ついで、第一の探針と同じ材質(直径0.2mm)の線を2本、第一の探針を挟むようにそれぞれ0.5mm距離をあけ、同軸ケーブルの外部導体にハンダにて電気的に接続し、第二の探針とした。なお、第一の探針と第二の探針の先端は上から見た場合に一列に並ぶようにした。さらに、この第二の探針に、先端の一部のみ露出させ、かつ、第一の探針と一定の空隙を確保して並行となるよう銅薄膜を貼り付け、プローブとして完成させた。この写真図を図12に示しておく。 First, the one in which the first probe (0.2 mm) of beryllium copper is electrically connected to the inner conductor (diameter 0.2 mm) of the coaxial cable with a diameter of 0.8 mm is adopted, the tip portion is bent, and the first The probe was used. Next, two wires of the same material (diameter 0.2 mm) as the first probe are spaced apart by 0.5 mm so that the first probe is sandwiched between them, and the outer conductor of the coaxial cable is electrically connected with solder. Connected to the second probe. The tips of the first probe and the second probe were arranged in a line when viewed from above. Further, a copper thin film was attached to the second probe so that only a part of the tip was exposed, and a certain gap was secured in parallel with the first probe to complete the probe. This photograph is shown in FIG.
 一方、上記銅薄膜を貼り付けなかった以外は上記と同様の構成の比較例としてのプローブを作製した。この写真図を図13に示しておく。 On the other hand, a probe as a comparative example having the same configuration as described above was prepared except that the copper thin film was not attached. This photograph is shown in FIG.
 そして、上記二つのプローブに対しインピーダンス測定を行った。この結果を図14、図15に示しておく。図14は、本実施例に係るプローブのインピーダンス測定の結果を示し、図15は比較例に係るプローブのインピーダンスの結果を示す。これらの図において、左のグラフが比較例としてのプローブのインピーダンス測定の結果であり、右のグラフが本実施例のプローブのインピーダンス測定の結果である。各グラフにおいて縦軸はインピーダンスを、横軸は距離(プローブの位置)を表す。この結果によると、本実施例のプローブではプローブの位置にかかわらず常時一定の50Ωを確保することができている一方、比較例としてのプローブでは110Ω以上のピークが観測されてしまっていることがわかる。この結果、銅薄膜によってインピーダンスを均一に確保できていることを確認した。本実施例によると、接触導体にいずれも針を採用しているため、この針の間の距離を調整するのは非常に容易である一方、これに導電性薄膜を採用するだけでもあるため、距離や針の挿入方向に応じて設計を変更する手間が殆どなく、非常に簡便に製造することができるといった利点がある。 And impedance measurement was performed on the above two probes. The results are shown in FIGS. 14 and 15. FIG. 14 shows the result of the impedance measurement of the probe according to the present example, and FIG. 15 shows the result of the impedance of the probe according to the comparative example. In these figures, the left graph shows the result of impedance measurement of the probe as a comparative example, and the right graph shows the result of impedance measurement of the probe of this example. In each graph, the vertical axis represents impedance, and the horizontal axis represents distance (probe position). According to this result, the probe of this example can always secure a constant 50Ω regardless of the position of the probe, while the probe as a comparative example has a peak of 110Ω or more observed. Recognize. As a result, it was confirmed that the impedance was uniformly ensured by the copper thin film. According to the present embodiment, since needles are employed for the contact conductors, it is very easy to adjust the distance between the needles, while only a conductive thin film is employed for this. There is an advantage that it is possible to manufacture very easily because there is almost no trouble of changing the design according to the distance and the insertion direction of the needle.
 以上、本実施例によって本発明の効果を確認することができた。 As described above, the effect of the present invention could be confirmed by this example.
 本発明は、プローブ及びプローブカードとして産業上の利用可能性がある。 The present invention has industrial applicability as a probe and a probe card.

Claims (8)

  1.  内部導体と、前記内部導体を覆う絶縁体と、前記絶縁体を覆う外部導体と、を備えた同軸ケーブルと、
     前記同軸ケーブルの前記内部導体に電気的に接続される第一の探針と、
     前記外部導体に電気的に接続される第二の探針と、
     前記第一の探針又は前記第二の探針に接触して配置され、側辺が他方の探針に並行して配置される導電性薄膜と、を有するプローブ。
    A coaxial cable comprising an inner conductor, an insulator covering the inner conductor, and an outer conductor covering the insulator;
    A first probe electrically connected to the inner conductor of the coaxial cable;
    A second probe electrically connected to the outer conductor;
    And a conductive thin film disposed in contact with the first probe or the second probe and having a side disposed in parallel with the other probe.
  2.  前記第一の探針を挟んで配置される一対の前記第二の探針を備える請求項1記載のプローブ。 The probe according to claim 1, further comprising a pair of the second probes arranged with the first probe interposed therebetween.
  3.  前記第一の探針及び前記第二の探針の先端近傍において折れ曲がった構造を有し、
     前記導電性薄膜は、前記第一の探針又は第二の探針の折れ曲がった構造に沿って前記第一又は前記第二の探針に配置されている請求項1記載のプローブ。
    Having a bent structure in the vicinity of the tip of the first probe and the second probe;
    The probe according to claim 1, wherein the conductive thin film is arranged on the first or second probe along a bent structure of the first probe or the second probe.
  4.  前記一対の第二の探針に接続され、前記第一の探針を取り囲む導体を備える請求項2記載のプローブ。 The probe according to claim 2, further comprising a conductor connected to the pair of second probes and surrounding the first probe.
  5.  基板と、
     前記基板に固定される同軸ケーブル用コネクタと、
     内部導体と、前記内部導体を覆う絶縁体と、前記絶縁体を覆う外部導体と、を備え、前記同軸ケーブル用コネクタに接続される同軸ケーブルと、前記同軸ケーブルの前記内部導体に電気的に接続される第一の探針と、前記外部導体に電気的に接続される第二の探針と、前記第一の探針又は第二の探針に接触して配置され、側辺が他方の探針に並行して配置される導電性薄膜と、を有するプローブと、を備えるプローブカード。
    A substrate,
    A coaxial cable connector fixed to the substrate;
    An inner conductor, an insulator covering the inner conductor, and an outer conductor covering the insulator; a coaxial cable connected to the coaxial cable connector; and electrically connected to the inner conductor of the coaxial cable The first probe is arranged in contact with the second probe electrically connected to the outer conductor, the first probe or the second probe, and the side is the other side. A probe card comprising: a probe having a conductive thin film arranged in parallel with a probe.
  6.  前記プローブは、第一の探針を挟んで配置される一対の前記第二の探針を備える請求項5記載のプローブカード。 6. The probe card according to claim 5, wherein the probe includes a pair of the second probes arranged with the first probe interposed therebetween.
  7.  前記プローブにおいて、前記第一の探針及び前記第二の探針先端近傍において折れ曲がった構造を有し、前記導電性薄膜は、前記第一の探針又は第二の探針の折れ曲がった構造に沿って前記第一の探針又は第二の探針に配置されている請求項5記載のプローブ。 The probe has a bent structure in the vicinity of the first probe and the tip of the second probe, and the conductive thin film has a bent structure of the first probe or the second probe. The probe according to claim 5, wherein the probe is disposed along the first probe or the second probe.
  8.  前記プローブは、前記一対の第二の探針に接続され、前記第一の探針を取り囲む導体を備える請求項6記載のプローブカード。 The probe card according to claim 6, further comprising a conductor connected to the pair of second probes and surrounding the first probe.
PCT/JP2014/074456 2013-09-13 2014-09-16 Probe and probe card WO2015037741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015536662A JP6342406B2 (en) 2013-09-13 2014-09-16 Probes and probe cards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190248 2013-09-13
JP2013190248 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037741A1 true WO2015037741A1 (en) 2015-03-19

Family

ID=52665835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074456 WO2015037741A1 (en) 2013-09-13 2014-09-16 Probe and probe card

Country Status (2)

Country Link
JP (1) JP6342406B2 (en)
WO (1) WO2015037741A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124668U (en) * 1987-02-06 1988-08-15
JPH08510553A (en) * 1993-06-10 1996-11-05 ジージービー インダストリーズ,インク. Integrated circuit probe device having capacitor bypass structure
JPH1048256A (en) * 1996-08-06 1998-02-20 Nippon Maikuronikusu:Kk Inspection head
JP2001343406A (en) * 2000-05-31 2001-12-14 Hioki Ee Corp Coaxial probe
JP2004340585A (en) * 2003-05-13 2004-12-02 Jst Mfg Co Ltd High-frequency probe and electric contact used for the same
JP2007502429A (en) * 2003-05-23 2007-02-08 カスケード マイクロテック インコーポレイテッド Probe for device testing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894612A (en) * 1987-08-13 1990-01-16 Hypres, Incorporated Soft probe for providing high speed on-wafer connections to a circuit
JPH07104361B2 (en) * 1989-02-07 1995-11-13 日本電気株式会社 High frequency probe
JPH08233860A (en) * 1995-02-28 1996-09-13 Nec Corp Coaxial high-frequency probe and evaluating method for board using the probe
US6118287A (en) * 1997-12-09 2000-09-12 Boll; Gregory George Probe tip structure
DE102005053146A1 (en) * 2005-11-04 2007-05-10 Suss Microtec Test Systems Gmbh Test prod for e.g. electrical characteristics measurement, during electrical circuitry testing, has support unit with U-shaped section, where all or part of contact units of support unit overlap on sides facing high frequency wave guides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124668U (en) * 1987-02-06 1988-08-15
JPH08510553A (en) * 1993-06-10 1996-11-05 ジージービー インダストリーズ,インク. Integrated circuit probe device having capacitor bypass structure
JPH1048256A (en) * 1996-08-06 1998-02-20 Nippon Maikuronikusu:Kk Inspection head
JP2001343406A (en) * 2000-05-31 2001-12-14 Hioki Ee Corp Coaxial probe
JP2004340585A (en) * 2003-05-13 2004-12-02 Jst Mfg Co Ltd High-frequency probe and electric contact used for the same
JP2007502429A (en) * 2003-05-23 2007-02-08 カスケード マイクロテック インコーポレイテッド Probe for device testing

Also Published As

Publication number Publication date
JPWO2015037741A1 (en) 2017-03-02
JP6342406B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP4757531B2 (en) Conductive contact holder and conductive contact unit
WO2007058037A1 (en) Jig for inspecting substrate, and inspection probe
US7332923B2 (en) Test probe for high-frequency measurement
JP2004325306A (en) Coaxial probe for inspection, and inspection unit using the same
CN107894521B (en) Coaxial probe card device
JP2006098376A (en) Inspection unit
JP2019138768A (en) probe
US9234915B2 (en) Signal sensing device and circuit boards
EP3712622A1 (en) Probe head
JP2007178163A (en) Inspection unit and outer sheath tube assembly for inspection probe used for it
JP2015075370A (en) Inspection tool, electrode part, probe, and method for manufacturing inspection tool
US8928137B2 (en) Flow meter with ultrasound transducer directly connected to and fixed to measurement circuit board
WO2015037740A1 (en) Probe and probe card
JP6342406B2 (en) Probes and probe cards
JP7302117B2 (en) Inspection jig for semiconductor devices
US20180335449A1 (en) Probe card
TWI722680B (en) Probe unit
JP2006214943A (en) Probe device
JP2018189458A (en) Electric connection device and method for manufacturing the same
JP3965634B2 (en) Contact for board inspection
JP2016186484A (en) Contact unit and inspection jig
TW201522974A (en) Detection fixture
TWI764262B (en) Measuring device
JP4449955B2 (en) Impedance measurement method for surface mount electronic components
JP6118710B2 (en) Probe card

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015536662

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14844319

Country of ref document: EP

Kind code of ref document: A1