WO2015037085A1 - Surface treatment agent for copper or copper alloy, and use thereof - Google Patents

Surface treatment agent for copper or copper alloy, and use thereof Download PDF

Info

Publication number
WO2015037085A1
WO2015037085A1 PCT/JP2013/074565 JP2013074565W WO2015037085A1 WO 2015037085 A1 WO2015037085 A1 WO 2015037085A1 JP 2013074565 W JP2013074565 W JP 2013074565W WO 2015037085 A1 WO2015037085 A1 WO 2015037085A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
surface treatment
treatment agent
copper alloy
salt
Prior art date
Application number
PCT/JP2013/074565
Other languages
French (fr)
Japanese (ja)
Inventor
宗作 飯田
淳 田阪
村井 孝行
浩彦 平尾
Original Assignee
四国化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四国化成工業株式会社 filed Critical 四国化成工業株式会社
Priority to PCT/JP2013/074565 priority Critical patent/WO2015037085A1/en
Publication of WO2015037085A1 publication Critical patent/WO2015037085A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions

Definitions

  • the present invention relates to a surface treatment agent used for protecting copper or a copper alloy from oxidation and corrosion and use thereof.
  • a touch panel is a device having an input function and a display function that enable an intuitive operation, and is therefore widely used in information communication terminals.
  • a capacitive touch panel can detect multiple points and is rapidly spreading in the field of portable terminals such as tablets.
  • a transparent electrode layer in which electrode patterns (transparent electrodes) are arranged is arranged on the image display layer, and an insulating layer such as glass or plastic is provided on the transparent electrode layer as a protective cover. ing. And the position where the finger touched is detected using the change in capacitance.
  • the transparent electrode layer has a transparent electrode composed of an ITO film (Indium Tin Oxide) formed on a film substrate or a glass substrate, and a circuit for transmitting a signal from the transparent electrode to a control IC (Integrated circuit). is doing.
  • ITO film Indium Tin Oxide
  • a control IC Integrated circuit
  • As a conductive material for forming this circuit silver paste is mainly used.
  • an anisotropic conductive film is generally used as an adhesive for bonding (adhesion) between this circuit and the flexible printed circuit board to which the control IC is connected, and fusion is performed by a heat press process at about 150 to 200 ° C. It has been broken.
  • a transparent electrode layer and an insulator layer are bonded by transparent adhesives, such as an acrylic resin type, and form the transparent electrode substrate.
  • the conductive material it is expected to use copper or a copper alloy (for example, copper foil, copper plating) which has a low resistance value comparable to silver paste and is relatively inexpensive.
  • copper that can withstand harsh use environments (for example, accelerated oxidation by heating) such as oxidation under atmospheric exposure, corrosion by adhesive components contained in transparent adhesives, and hot pressing of anisotropic conductive films, or the like.
  • harsh use environments for example, accelerated oxidation by heating
  • surface treatment technology for copper alloys There is also a need for a surface treatment technique for imparting water repellency to the surface of copper or copper alloy in order to prevent droplets such as sweat from adhering to the work process.
  • Patent Document 1 discloses a water-soluble metal anticorrosive containing 5-methyl-1H-tetrazole or an ammonium salt thereof.
  • Patent Document 2 discloses a rust inhibitor containing a tetrazole compound in which a phenyl group having a substituent at the 5-position is bonded, and by adjusting the pH of the rust inhibitor to about 7 to 10. Further, it is also disclosed that a remarkable rust prevention effect is exhibited.
  • the present invention relates to a surface treatment agent capable of forming a conversion coating excellent in oxidation resistance and corrosion resistance on the surface of copper or copper alloy, and to treat the surface of copper or copper alloy using this surface treatment agent. It aims to provide a way to do. Furthermore, a surface treatment agent that enables the formation of a conversion coating excellent in oxidation resistance and corrosion resistance on the surface of copper or a copper alloy, and can improve the stability during use and the water repellency of the conversion coating, And it aims at providing the method of processing the surface of copper or a copper alloy using this surface treating agent.
  • an object is to provide an electrode substrate and a touch panel including the transparent electrode substrate.
  • the present inventors have obtained a desired surface treatment agent containing a tetrazole compound represented by the following chemical formula (I) or a salt thereof and ammonia. It is recognized that the object can be achieved, and the present invention has been completed. That is, the present invention is achieved by the following (1) to (10).
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.
  • the content ratio of the ammonia with respect to the total amount of the first tetrazole compound and / or salt thereof and the second tetrazole compound and / or salt thereof is greater than 1 mol, copper or Copper alloy surface treatment agent.
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.
  • R 2 represents a linear, branched or cyclic alkyl group having 5 to 20 carbon atoms.
  • (6) By bringing the surface treatment agent according to any one of (1) to (4) into contact with the surface of copper or copper alloy forming the electrode, a chemical conversion coating is formed on the surface of the copper or copper alloy.
  • An electronic component characterized by forming.
  • a chemical conversion film is formed on the surface of the copper or copper alloy.
  • a printed wiring board characterized in that is formed.
  • a transparent electrode layer having a transparent electrode formed on a film substrate or a glass substrate and a circuit composed of copper or a copper alloy on which a chemical conversion film is formed (7)
  • Printed wiring board as described in 1.
  • a touch panel comprising the transparent electrode substrate according to (9).
  • the surface treatment agent and the surface treatment method of the present invention can form a chemical conversion film excellent in oxidation resistance and corrosion resistance on the surface of copper or a copper alloy constituting a circuit on a film substrate or a glass substrate.
  • a transparent adhesive corrosion of copper or a copper alloy by the adhesive component contained in the transparent adhesive can be prevented.
  • the stability at the time of use of a surface treating agent and the water repellency of a chemical conversion film can be improved.
  • inexpensive copper or a copper alloy can be used as a conductive material for forming a circuit on a film substrate or a glass substrate, and the cost of circuit formation can be reduced.
  • the copper alloy according to the present invention is not particularly limited as long as it is an alloy containing copper.
  • the alloy include Al, Cu—Zn, and Cu—Co.
  • copper and copper alloys are collectively referred to as copper for convenience.
  • the surface treatment agent of the present invention is an aqueous solution containing the first tetrazole compound represented by the following chemical formula (I) and / or a salt thereof and ammonia.
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.
  • the first tetrazole compound used in the practice of the present invention is: 5-methyl-1H-tetrazole, 5-ethyl-1H-tetrazole, 5-propyl-1H-tetrazole, 5-Isopropyl-1H-tetrazole and 5-cyclopropyl-1H-tetrazole.
  • Examples of the salt of the tetrazole compound include sodium salt, potassium salt, ammonium salt, amine salt and the like. Note that these first tetrazole compounds or salts thereof may be used in combination.
  • the surface treatment agent of the present invention is prepared by dissolving a first tetrazole compound and / or a salt thereof (hereinafter, both referred to as the first tetrazole compound) in water together with ammonia water.
  • the concentration of the first tetrazole compound in the surface treatment agent is preferably in the range of 0.003 to 0.3 mol / L, and more preferably in the range of 0.005 to 0.1 mol / L.
  • concentration of the first tetrazole compound is less than 0.003 mol / L, the film thickness of the chemical conversion film formed on the copper surface becomes too thin, and the oxidation and corrosion of the copper surface may not be sufficiently prevented. There is.
  • the concentration of the first tetrazole compound exceeds 0.3 mol / L, there is a risk of uneven processing.
  • the content ratio of ammonia with respect to the first tetrazole compound is preferably larger than an equal mole and less than 50 moles, more preferably 1.1 to 40 moles, and more preferably 1.5 to 10 times. More preferably, it is mol. If the ammonia content is less than or equal to the mole of the first tetrazole compound, there is a possibility that oxidation and corrosion of the copper surface cannot be sufficiently prevented. Further, when the ammonia content is 50 times mole or more with respect to the first tetrazole compound, there is a possibility that treatment unevenness occurs and oxidation and corrosion of the copper surface cannot be sufficiently prevented.
  • the surface treating agent of the present invention is an aqueous solution containing a first tetrazole compound, a second tetrazole compound represented by the following chemical formula (II) and / or a salt thereof, and ammonia. .
  • a first tetrazole compound a second tetrazole compound represented by the following chemical formula (II) and / or a salt thereof, and ammonia.
  • water repellency can be imparted to the treated copper surface.
  • R 2 represents a linear, branched or cyclic alkyl group having 5 to 20 carbon atoms.
  • this second tetrazole compound for example, 5-pentyl-1H-tetrazole, 5-hexyl-1H-tetrazole, 5-cyclohexyl-1H-tetrazole, 5-heptyl-1H-tetrazole, 5-octyl-1H-tetrazole, 5-nonyl-1H-tetrazole, Examples include 5-decyl-1H-tetrazole and 5-undecyl-1H-tetrazole.
  • the salt of the tetrazole compound include sodium salt, potassium salt, ammonium salt, amine salt and the like. In addition, you may use combining these 2nd tetrazole compounds or its salt (henceforth a 2nd tetrazole compound collectively).
  • the surface treatment agent of the present invention is prepared by dissolving the first tetrazole compound and the second tetrazole compound in water together with ammonia water. .
  • the concentration of the second tetrazole compound in the surface treatment agent of the present invention is preferably set in the range of 0.0001 to 0.01 mol / L.
  • concentration of the second tetrazole compound is less than 0.0001 mol / L, there is a possibility that the water repellency of the chemical conversion film formed on the surface of copper cannot be sufficiently obtained.
  • concentration of a 2nd tetrazole compound exceeds 0.01 mol / L, there exists a possibility that the oxidation resistance of the chemical conversion film formed in the surface of copper may fall.
  • the ratio of the second tetrazole compound to the first tetrazole compound in the treatment agent of the present invention is preferably in the range of 0.01 to 1 mole.
  • the content rate of ammonia with respect to the total amount of a 1st tetrazole compound and a 2nd tetrazole compound is more than 1 time mole. It is preferably increased to less than 50 times mol, more preferably 1.1 to 40 times mol, and still more preferably 1.5 to 10 times mol. If the ammonia content is less than or equal to the total amount of the first tetrazole compound and the second tetrazole compound, oxidation and corrosion of the copper surface may not be sufficiently prevented.
  • the pH buffering agent preferably has a buffering action in the range of pH 8 to 11 in order to suppress fluctuations in the pH of the surface treating agent accompanying use, and is stable as a surface treating agent. Can be improved.
  • medical agent which functions as a pH buffer A well-known thing can be used.
  • As the pH buffering agent for example, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, ammonium hydrogen carbonate, ammonium carbonate, sodium sesquicarbonate and the like can be used. These pH buffering agents may be used in combination.
  • the amount of the pH buffer used in the practice of the present invention is preferably in the range of 0.001 to 1 mol / L.
  • a surfactant can be added to the surface treatment agent of the present invention within a range not impairing the effects of the present invention.
  • a nonionic surfactant can be used preferably.
  • examples of such surfactants include ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol mono (2-ethylhexyl) ether, diethylene glycol mono (2-ethylhexyl) ether, and the like.
  • the concentration of the surfactant in the surface treatment agent is preferably in the range of 0.001 to 1% by weight, more preferably in the range of 0.01 to 0.1% by weight.
  • the conditions for treating the copper surface with the surface treatment agent of the present invention are as follows.
  • the liquid temperature of the surface treatment agent is set in the range of 15 to 35 ° C.
  • the contact time is set in the range of 10 seconds to 1 minute. It is preferable to do.
  • Examples of the method for contacting copper with the surface treatment agent for treating the surface of copper include dipping, spraying, coating, and the like. After contacting the copper with the surface treatment agent, the copper is washed with water and dried. That's fine. By the above surface treatment, a chemical conversion film can be formed on the copper surface.
  • Examples of the printed wiring board used in the practice of the present invention include a hard printed board, a flexible printed board, a film board, and a glass board.
  • a film made of polyethylene terephthalate, polycarbonate, acrylic resin, polyethylene naphthalate, polyimide, or the like can be used as the transparent film substrate used in the practice of the present invention.
  • the glass substrate used in the practice of the present invention may be any glass substrate that is normally used for touch panels.
  • any transparent adhesive usually used for touch panels may be used. That is, as the transparent adhesive, a transparent and electrically insulating material is used, such as acrylic resin, polyvinyl alcohol resin, polyvinyl chloride resin, epoxy resin, polyester resin, etc. An adhesive is mentioned.
  • [Azole compounds] ⁇ 5-Methyl-1H-tetrazole (Masuda Chemical Industries) ⁇ 5-propyl-1H-tetrazole (same as above) ⁇ 5-Cyclopropyl-1H-tetrazole (same as above) ⁇ Benzotriazole (Wako Pure Chemical Industries) ⁇ 2-Mercaptobenzothiazole (same as above) ⁇ 5-Amino-1H-tetrazole (Masuda Chemical Industries) ⁇ 1-Phenyl-5-mercapto-1H-tetrazole (same as above) ⁇ 5-Phenyl-1H-tetrazole (same as above) ⁇ 1H-tetrazole (same as above) 5-butyl-1H-tetrazole (synthesized according to the method described in “Synthesis, 2009 (13), 2175”) ⁇ 5-hexyl-1H-tetrazole (s
  • Test pieces A 40 mm ⁇ 40 mm copper-clad laminate (base: FR4, electrolytic copper foil thickness: 18 ⁇ m) was soft etched, washed with water, drained by air blow, and then immersed in a surface treatment agent at a liquid temperature of 25 ° C. for 30 seconds. Subsequently, it washed with water and dried and produced the test piece in which the chemical conversion film was formed in the copper surface.
  • Example 1 A surface treating agent was prepared by dissolving 25% aqueous ammonia and 5-methyl-1H-tetrazole in ion-exchanged water so as to have the composition shown in Table 1, and the pH was measured. Subsequently, a humidification test, a corrosion test, a heating test, an aeration test, and a water repellency test were performed using this surface treatment agent. The pH of the surface treatment agent and the test results were as shown in Table 1.
  • Examples 2 to 22 In the same manner as in Example 1, surface treatment agents having the compositions described in Tables 1 to 3 were prepared, and the pH was measured. Subsequently, a humidification test, a corrosion test, a heating test, an aeration test, and a water repellency test were performed using this surface treatment agent. The pH of the surface treatment agent and the test results were as shown in Tables 1 to 3.
  • the copper surface has excellent oxidation resistance and corrosion resistance. It is observed that a conversion coating is formed. Further, by using a surface treatment agent containing the first tetrazole compound, ammonia, and the second tetrazole compound at appropriate concentrations, a chemical conversion coating excellent in oxidation resistance, corrosion resistance, and water repellency on the copper surface. Is observed to form.
  • a surface treatment agent containing the first tetrazole compound and ammonia and a pH buffer at appropriate concentrations, a chemical conversion film excellent in oxidation resistance and corrosion resistance can be formed on the surface of copper.
  • the pH change is small and the stability of the surface treatment agent is improved. Furthermore, it is recognized that the stability of the surface treatment agent and the water repellency of the chemical conversion film are improved by adding the second tetrazole compound and the pH buffering agent to the surface treatment agent.
  • Example 23 As a test piece, a printed wiring board made of glass epoxy resin of 120 mm (vertical) ⁇ 150 mm (horizontal) ⁇ 1.6 mm (thickness) having 300 copper through holes with an inner diameter of 0.80 mm was used. This test piece was degreased, soft-etched, washed with water, and drained by air blow, and then immersed in the surface treatment agent prepared in Example 14 at a liquid temperature of 25 ° C. for 30 seconds, then washed with water and dried to form a copper surface. A film was formed. When a commercially available post flux was applied onto this and a normal soldering operation was performed using a flow soldering apparatus, it was possible to perform soldering without problems.
  • Example 24 As a test piece, two 40 mm (vertical) ⁇ 40 mm (horizontal) ⁇ 125 ⁇ m (thickness) films made of PET resin formed by sputtering a 0.2 ⁇ m thick copper film were used. These test pieces were immersed in the surface treatment agent used in Example 14 at a liquid temperature of 25 ° C. for 30 seconds, then washed with water and dried to form a chemical conversion film on the copper surface. Subsequently, when these two sheets are stacked so that the copper surfaces face each other, and a normal pressure-bonding operation is performed with a commercially available anisotropic conductive film (ACF) sandwiched therebetween, it is possible to join them without problems and ensure conduction. did it.
  • ACF anisotropic conductive film
  • the surface treatment agent and the surface treatment method of the present invention it is possible to form a rust preventive film excellent in oxidation resistance and corrosion resistance on the surface of copper, and not only a touch panel member but also other prints. It is expected to be used in various fields such as wiring boards, electronic parts, copper foils, electric wires, etc. that require protection from oxidation and corrosion of the copper surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

The present invention provides the following: a surface treatment agent and surface treatment method by which it is possible to form, on the surface of copper or a copper alloy, a chemical coating film having excellent oxidation resistance and corrosion resistance; an electronic component and printed wiring board having a chemical coating film formed on the surface of copper or a copper alloy by using the surface treatment agent; a transparent electrode substrate provided with the printed wiring board; and a touch panel provided with the transparent electrode substrate. The present invention uses a surface treatment agent for copper or a copper alloy, which contains ammonia and a tetrazole compound represented by chemical formula (I) and/or a salt thereof. (In the formula, R1 denotes a straight chain, branched chain or cyclic alkyl group having 1-3 carbon atoms.)

Description

銅または銅合金の表面処理剤およびその利用Surface treatment agent for copper or copper alloy and use thereof
 本発明は、銅または銅合金を、酸化および腐食から保護するために使用される表面処理剤ならびにその利用に関するものである。 The present invention relates to a surface treatment agent used for protecting copper or a copper alloy from oxidation and corrosion and use thereof.
 タッチパネルは、直感的な操作を可能とする入力機能と表示機能を備えたデバイスであるところから、情報通信用端末に多く採用されている。特に、静電容量方式のタッチパネルは多点検出が可能であり、タブレット等携帯端末の分野で急速に普及している。
 この方式のタッチパネルにおいては、画像表示層の上に電極パターン(透明電極)が並んだ透明電極層が配置され、透明電極層の上には保護カバーとしてガラスやプラスチック等の絶縁体層が設けられている。そして、静電容量の変化を利用して指が触れた位置を検出している。
 透明電極層は、フィルム基板またはガラス基板上に形成されたITO膜(Indium Tin Oxide)で構成される透明電極と、この透明電極からの信号を制御IC(Integrated circuit)へ伝えるための回路を有している。この回路を形成するための導電性材料としては、銀ペーストが主に用いられている。また、この回路と、制御ICを接続するフレキシブルプリント基板との接合(接着)には、接着剤として一般に異方導電性フィルムが用いられ、150~200℃程度の加熱プレス処理による融着が行われている。そして、透明電極層と絶縁体層は、アクリル樹脂系等の透明粘着剤によって貼合されて透明電極基板を形成している。
A touch panel is a device having an input function and a display function that enable an intuitive operation, and is therefore widely used in information communication terminals. In particular, a capacitive touch panel can detect multiple points and is rapidly spreading in the field of portable terminals such as tablets.
In this type of touch panel, a transparent electrode layer in which electrode patterns (transparent electrodes) are arranged is arranged on the image display layer, and an insulating layer such as glass or plastic is provided on the transparent electrode layer as a protective cover. ing. And the position where the finger touched is detected using the change in capacitance.
The transparent electrode layer has a transparent electrode composed of an ITO film (Indium Tin Oxide) formed on a film substrate or a glass substrate, and a circuit for transmitting a signal from the transparent electrode to a control IC (Integrated circuit). is doing. As a conductive material for forming this circuit, silver paste is mainly used. In addition, an anisotropic conductive film is generally used as an adhesive for bonding (adhesion) between this circuit and the flexible printed circuit board to which the control IC is connected, and fusion is performed by a heat press process at about 150 to 200 ° C. It has been broken. And a transparent electrode layer and an insulator layer are bonded by transparent adhesives, such as an acrylic resin type, and form the transparent electrode substrate.
 ところで、前記の導電性材料としては、銀ペーストに匹敵する低い抵抗値を持ち、比較的安価である銅または銅合金(例えば、銅箔、銅メッキ)の利用が期待される。しかしながら、大気暴露下での酸化、透明粘着剤に含まれる粘着剤成分による腐食、そして、異方導電性フィルムの加熱プレス時等の過酷な使用環境(例えば、加熱による酸化促進)に耐える銅または銅合金の表面処理技術が求められている。また、作業工程内における汗等の液滴付着を防ぐため、銅または銅合金の表面に撥水性を付与する表面処理技術も求められている。 By the way, as the conductive material, it is expected to use copper or a copper alloy (for example, copper foil, copper plating) which has a low resistance value comparable to silver paste and is relatively inexpensive. However, copper that can withstand harsh use environments (for example, accelerated oxidation by heating) such as oxidation under atmospheric exposure, corrosion by adhesive components contained in transparent adhesives, and hot pressing of anisotropic conductive films, or the like There is a need for surface treatment technology for copper alloys. There is also a need for a surface treatment technique for imparting water repellency to the surface of copper or copper alloy in order to prevent droplets such as sweat from adhering to the work process.
 一方、アゾール化合物を有効成分とする表面処理剤を使用して、銅または銅合金の表面に化成被膜を形成させて、銅または銅合金の表面を保護する技術が知られている。
 例えば、特許文献1には、5-メチル-1H-テトラゾールまたはこのアンモニウム塩を含有する水溶性金属防食剤が開示されている。
 また、特許文献2には、5位に置換基を有するフェニル基が結合したテトラゾール化合物を含有する防錆剤が開示され、この防錆剤のpHを7~10程度に調整しておくことにより、顕著な防錆効果が発現される点も開示されている。
On the other hand, a technique is known in which a surface treatment agent containing an azole compound as an active ingredient is used to form a chemical conversion film on the surface of copper or copper alloy to protect the surface of copper or copper alloy.
For example, Patent Document 1 discloses a water-soluble metal anticorrosive containing 5-methyl-1H-tetrazole or an ammonium salt thereof.
Patent Document 2 discloses a rust inhibitor containing a tetrazole compound in which a phenyl group having a substituent at the 5-position is bonded, and by adjusting the pH of the rust inhibitor to about 7 to 10. Further, it is also disclosed that a remarkable rust prevention effect is exhibited.
日本国特開平7-145491号公報Japanese Unexamined Patent Publication No. 7-145491 日本国特開平6-184771号公報Japanese Laid-Open Patent Publication No. 6-184771
 本発明は、銅または銅合金の表面に、耐酸化性および耐腐食性に優れた化成被膜の形成を可能とする表面処理剤、およびこの表面処理剤を用いて銅または銅合金の表面を処理する方法を提供することを目的とする。
 さらに、銅または銅合金の表面に、耐酸化性および耐腐食性に優れた化成被膜の形成を可能とするとともに、使用時の安定性や化成被膜の撥水性を高めることができる表面処理剤、およびこの表面処理剤を用いて銅または銅合金の表面を処理する方法を提供することを目的とする。
 また、それらの表面処理剤を接触させることにより、銅または銅合金の表面に化成被膜を形成した電子部品とプリント配線板および、このプリント配線板と絶縁体層を透明粘着剤で貼合した透明電極基板、そして、この透明電極基板を備えるタッチパネルを提供することを目的とする。
The present invention relates to a surface treatment agent capable of forming a conversion coating excellent in oxidation resistance and corrosion resistance on the surface of copper or copper alloy, and to treat the surface of copper or copper alloy using this surface treatment agent. It aims to provide a way to do.
Furthermore, a surface treatment agent that enables the formation of a conversion coating excellent in oxidation resistance and corrosion resistance on the surface of copper or a copper alloy, and can improve the stability during use and the water repellency of the conversion coating, And it aims at providing the method of processing the surface of copper or a copper alloy using this surface treating agent.
Moreover, the electronic component and printed wiring board which formed the chemical conversion film on the surface of copper or a copper alloy by making those surface treatment agents contact, and the transparent which bonded this printed wiring board and the insulator layer with the transparent adhesive An object is to provide an electrode substrate and a touch panel including the transparent electrode substrate.
 本発明者等は、前記の課題を解決するために鋭意研究を重ねた結果、下記化学式(I)で示されるテトラゾール化合物またはその塩とアンモニアを含有する表面処理剤とすることにより、所期の目的を達成し得ることを認め、本発明を完成するに至ったものである。
 即ち、本発明は以下の(1)~(10)によって達成される。
(1)下記化学式(I)で示される第1のテトラゾール化合物および/またはその塩と、アンモニアを含有する水溶液であって、前記第1のテトラゾール化合物および/またはその塩に対する前記アンモニアの含有割合が、等倍モルよりも大きいことを特徴とする銅または銅合金の表面処理剤。
As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have obtained a desired surface treatment agent containing a tetrazole compound represented by the following chemical formula (I) or a salt thereof and ammonia. It is recognized that the object can be achieved, and the present invention has been completed.
That is, the present invention is achieved by the following (1) to (10).
(1) An aqueous solution containing a first tetrazole compound represented by the following chemical formula (I) and / or a salt thereof and ammonia, wherein the content ratio of the ammonia to the first tetrazole compound and / or the salt thereof is A surface treatment agent for copper or copper alloy, wherein the surface treatment agent is larger than 1 mol.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(I)中、Rは、炭素数1~3の直鎖、分岐鎖、または環状のアルキル基を表す。)
(2)下記化学式(I)で示される第1のテトラゾール化合物および/またはその塩と、下記化学式(II)で示される第2のテトラゾール化合物および/またはその塩と、アンモニアとを含有する水溶液であって、前記第1のテトラゾール化合物および/またはその塩と前記第2のテトラゾール化合物および/またはその塩の合計量に対する前記アンモニアの含有割合が、等倍モルよりも大きいことを特徴とする銅または銅合金の表面処理剤。
(In formula (I), R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.)
(2) An aqueous solution containing the first tetrazole compound and / or salt thereof represented by the following chemical formula (I), the second tetrazole compound and / or salt thereof represented by the following chemical formula (II), and ammonia. The content ratio of the ammonia with respect to the total amount of the first tetrazole compound and / or salt thereof and the second tetrazole compound and / or salt thereof is greater than 1 mol, copper or Copper alloy surface treatment agent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Rは、炭素数1~3の直鎖、分岐鎖、または環状のアルキル基を表す。) (In formula (I), R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(II)中、Rは、炭素数5~20の直鎖、分岐鎖、または環状のアルキル基を表す。)
(3)pH緩衝剤を含有することを特徴とする前記(1)または(2)に記載の銅または銅合金の表面処理剤。
(4)界面活性剤を含有することを特徴とする前記(1)~(3)のいずれか一つに記載の銅または銅合金の表面処理剤。
(5)銅または銅合金の表面に、前記(1)~(4)のいずれか一つに記載の表面処理剤を接触させることを特徴とする銅または銅合金の表面処理方法。
(6)電極を形成する銅または銅合金の表面に、前記(1)~(4)のいずれか一つに記載の表面処理剤を接触させることにより、当該銅または銅合金の表面に化成被膜を形成したことを特徴とする電子部品。
(7)回路を形成する銅または銅合金の表面に、前記(1)~(4)のいずれか一つに記載の表面処理剤を接触させることにより、当該銅または銅合金の表面に化成被膜を形成したことを特徴とするプリント配線板。
(8)フィルム基板またはガラス基板上に形成された透明電極と、化成被膜が形成された銅または銅合金から構成される回路とを有する透明電極層を備えたことを特徴とする前記(7)に記載のプリント配線板。
(9)前記(7)または(8)に記載のプリント配線板と絶縁体層を透明粘着剤で貼合したことを特徴とする透明電極基板。
(10)前記(9)に記載の透明電極基板を備えることを特徴とするタッチパネル。
(In the formula (II), R 2 represents a linear, branched or cyclic alkyl group having 5 to 20 carbon atoms.)
(3) The surface treatment agent for copper or copper alloy according to (1) or (2) above, which contains a pH buffer.
(4) The surface treatment agent for copper or copper alloy according to any one of (1) to (3) above, which contains a surfactant.
(5) A surface treatment method for copper or copper alloy, wherein the surface treatment agent according to any one of (1) to (4) is brought into contact with the surface of copper or copper alloy.
(6) By bringing the surface treatment agent according to any one of (1) to (4) into contact with the surface of copper or copper alloy forming the electrode, a chemical conversion coating is formed on the surface of the copper or copper alloy. An electronic component characterized by forming.
(7) By bringing the surface treatment agent according to any one of (1) to (4) above into contact with the surface of copper or copper alloy forming a circuit, a chemical conversion film is formed on the surface of the copper or copper alloy. A printed wiring board characterized in that is formed.
(8) A transparent electrode layer having a transparent electrode formed on a film substrate or a glass substrate and a circuit composed of copper or a copper alloy on which a chemical conversion film is formed (7) Printed wiring board as described in 1.
(9) A transparent electrode substrate, wherein the printed wiring board according to (7) or (8) and an insulating layer are bonded with a transparent adhesive.
(10) A touch panel comprising the transparent electrode substrate according to (9).
 本発明の表面処理剤および表面処理方法は、フィルム基板またはガラス基板上に回路を構成する銅または銅合金の表面に、耐酸化性および耐腐食性に優れた化成被膜を形成させることができる。
 この結果、本発明のプリント配線板と絶縁体層を透明粘着剤で貼合した場合でも、透明粘着剤に含まれる粘着剤成分による銅または銅合金の腐食を防止することができる。さらに、表面処理剤の使用時の安定性や化成被膜の撥水性を高めることができる。
 本発明によれば、フィルム基板またはガラス基板上に回路を形成するための導電性材料として、安価な銅または銅合金が使用可能となり、回路形成のコストを低減することができる。
The surface treatment agent and the surface treatment method of the present invention can form a chemical conversion film excellent in oxidation resistance and corrosion resistance on the surface of copper or a copper alloy constituting a circuit on a film substrate or a glass substrate.
As a result, even when the printed wiring board of the present invention and the insulator layer are bonded with a transparent adhesive, corrosion of copper or a copper alloy by the adhesive component contained in the transparent adhesive can be prevented. Furthermore, the stability at the time of use of a surface treating agent and the water repellency of a chemical conversion film can be improved.
According to the present invention, inexpensive copper or a copper alloy can be used as a conductive material for forming a circuit on a film substrate or a glass substrate, and the cost of circuit formation can be reduced.
 以下、本発明を詳細に説明するが、本発明に係る銅合金としては、銅を含む合金であれば特に制限されず、例えば、Cu-Ag系、Cu-Te系、Cu-Mg系、Cu-Sn系、Cu-Si系、Cu-Mn系、Cu-Be-Co系、Cu-Ti系、Cu-Ni-Si系、Cu-Cr系、Cu-Zr系、Cu-Fe系、Cu-Al系、Cu-Zn系、Cu-Co系等の合金を挙げることができる。本発明の説明においては、便宜上銅および銅合金を総称して銅と云う。 Hereinafter, the present invention will be described in detail. The copper alloy according to the present invention is not particularly limited as long as it is an alloy containing copper. For example, Cu—Ag, Cu—Te, Cu—Mg, Cu -Sn, Cu-Si, Cu-Mn, Cu-Be-Co, Cu-Ti, Cu-Ni-Si, Cu-Cr, Cu-Zr, Cu-Fe, Cu- Examples of the alloy include Al, Cu—Zn, and Cu—Co. In the description of the present invention, copper and copper alloys are collectively referred to as copper for convenience.
 本発明の表面処理剤は、下記化学式(I)で示される第1のテトラゾール化合物および/またはその塩とアンモニアを含有する水溶液であることを特徴とする。 The surface treatment agent of the present invention is an aqueous solution containing the first tetrazole compound represented by the following chemical formula (I) and / or a salt thereof and ammonia.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(I)中、Rは、炭素数1~3の直鎖、分岐鎖、または環状のアルキル基を表す。) (In formula (I), R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.)
 本発明の実施において使用する第1のテトラゾール化合物は、
5-メチル-1H-テトラゾール、
5-エチル-1H-テトラゾール、
5-プロピル-1H-テトラゾール、
5-イソプロピル-1H-テトラゾールおよび
5-シクロプロピル-1H-テトラゾールである。
 また、該テトラゾール化合物の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩、アミン塩等が挙げられる。
 なお、これらの第1のテトラゾール化合物またはその塩を、組み合わせて使用してもよい。
The first tetrazole compound used in the practice of the present invention is:
5-methyl-1H-tetrazole,
5-ethyl-1H-tetrazole,
5-propyl-1H-tetrazole,
5-Isopropyl-1H-tetrazole and 5-cyclopropyl-1H-tetrazole.
Examples of the salt of the tetrazole compound include sodium salt, potassium salt, ammonium salt, amine salt and the like.
Note that these first tetrazole compounds or salts thereof may be used in combination.
 本発明の表面処理剤は、第1のテトラゾール化合物および/またはその塩(以下、両者を合わせて第1のテトラゾール化合物と云う)を、アンモニア水と共に、水に溶解させることにより調製される。
 表面処理剤中における第1のテトラゾール化合物の濃度は、0.003~0.3mol/Lの範囲が好ましく、0.005~0.1mol/Lの範囲がより好ましい。
 第1のテトラゾール化合物の濃度が0.003mol/L未満の場合、銅の表面に形成される化成被膜の膜厚が薄くなり過ぎ、銅の表面の酸化および腐食を十分に防止することができない虞がある。また、第1のテトラゾール化合物の濃度が0.3mol/Lを超える場合には、処理ムラが生じる虞がある。
The surface treatment agent of the present invention is prepared by dissolving a first tetrazole compound and / or a salt thereof (hereinafter, both referred to as the first tetrazole compound) in water together with ammonia water.
The concentration of the first tetrazole compound in the surface treatment agent is preferably in the range of 0.003 to 0.3 mol / L, and more preferably in the range of 0.005 to 0.1 mol / L.
When the concentration of the first tetrazole compound is less than 0.003 mol / L, the film thickness of the chemical conversion film formed on the copper surface becomes too thin, and the oxidation and corrosion of the copper surface may not be sufficiently prevented. There is. In addition, when the concentration of the first tetrazole compound exceeds 0.3 mol / L, there is a risk of uneven processing.
 第1のテトラゾール化合物に対するアンモニアの含有割合は、等倍モルよりも大きくし、50倍モル未満とすることが好ましく、1.1~40倍モルとすることがより好ましく、1.5~10倍モルとすることが更に好ましい。
 アンモニアの含有割合が第1のテトラゾール化合物に対して等倍モル以下であると、銅の表面の酸化および腐食を十分に防止することができない虞がある。また、アンモニアの含有割合が第1のテトラゾール化合物に対して50倍モル以上の場合には、処理ムラが生じて銅表面の酸化および腐食を十分に防止することができない虞がある。
The content ratio of ammonia with respect to the first tetrazole compound is preferably larger than an equal mole and less than 50 moles, more preferably 1.1 to 40 moles, and more preferably 1.5 to 10 times. More preferably, it is mol.
If the ammonia content is less than or equal to the mole of the first tetrazole compound, there is a possibility that oxidation and corrosion of the copper surface cannot be sufficiently prevented. Further, when the ammonia content is 50 times mole or more with respect to the first tetrazole compound, there is a possibility that treatment unevenness occurs and oxidation and corrosion of the copper surface cannot be sufficiently prevented.
 また、本発明の表面処理剤は、第1のテトラゾール化合物と、下記化学式(II)で示される第2のテトラゾール化合物および/またはその塩と、アンモニアとを含有する水溶液であることを特徴とする。第2のテトラゾール化合物および/またはその塩を含有することにより、処理後の銅表面に撥水性を付与することができる。 The surface treating agent of the present invention is an aqueous solution containing a first tetrazole compound, a second tetrazole compound represented by the following chemical formula (II) and / or a salt thereof, and ammonia. . By containing the second tetrazole compound and / or a salt thereof, water repellency can be imparted to the treated copper surface.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(II)中、Rは、炭素数5~20の直鎖、分岐鎖、または環状のアルキル基を表す。) (In the formula (II), R 2 represents a linear, branched or cyclic alkyl group having 5 to 20 carbon atoms.)
 この第2のテトラゾール化合物としては、例えば、
5-ペンチル-1H-テトラゾール、
5-ヘキシル-1H-テトラゾール、
5-シクロヘキシル-1H-テトラゾール、
5-ヘプチル-1H-テトラゾール、
5-オクチル-1H-テトラゾール、
5-ノニル-1H-テトラゾール、
5-デシル-1H-テトラゾールおよび
5-ウンデシル-1H-テトラゾール等が挙げられる。
 また、該テトラゾール化合物の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩、アミン塩等が挙げられる。
 なお、これらの第2のテトラゾール化合物またはその塩(以下、両者を合わせて第2のテトラゾール化合物と云う)を、組み合わせて使用してもよい。
As this second tetrazole compound, for example,
5-pentyl-1H-tetrazole,
5-hexyl-1H-tetrazole,
5-cyclohexyl-1H-tetrazole,
5-heptyl-1H-tetrazole,
5-octyl-1H-tetrazole,
5-nonyl-1H-tetrazole,
Examples include 5-decyl-1H-tetrazole and 5-undecyl-1H-tetrazole.
Examples of the salt of the tetrazole compound include sodium salt, potassium salt, ammonium salt, amine salt and the like.
In addition, you may use combining these 2nd tetrazole compounds or its salt (henceforth a 2nd tetrazole compound collectively).
 第1のテトラゾール化合物と第2のテトラゾール化合物を用いる場合、本発明の表面処理剤は、第1のテトラゾール化合物と第2のテトラゾール化合物とを、アンモニア水と共に、水に溶解させることにより調製される。 When the first tetrazole compound and the second tetrazole compound are used, the surface treatment agent of the present invention is prepared by dissolving the first tetrazole compound and the second tetrazole compound in water together with ammonia water. .
 本発明の表面処理剤中における第2のテトラゾール化合物の濃度は、0.0001~0.01mol/Lの範囲に設定することが好ましい。
 第2のテトラゾール化合物の濃度が0.0001mol/L未満の場合、銅の表面に形成される化成被膜の撥水性が十分に得られない虞がある。また、第2のテトラゾール化合物の濃度が0.01mol/Lを超える場合、銅の表面に形成される化成被膜の耐酸化性が低下する虞がある。
The concentration of the second tetrazole compound in the surface treatment agent of the present invention is preferably set in the range of 0.0001 to 0.01 mol / L.
When the concentration of the second tetrazole compound is less than 0.0001 mol / L, there is a possibility that the water repellency of the chemical conversion film formed on the surface of copper cannot be sufficiently obtained. Moreover, when the density | concentration of a 2nd tetrazole compound exceeds 0.01 mol / L, there exists a possibility that the oxidation resistance of the chemical conversion film formed in the surface of copper may fall.
 本発明の処理剤中における第1のテトラゾール化合物に対する第2のテトラゾール化合物の割合は、0.01~1倍モルの範囲が好ましい。 The ratio of the second tetrazole compound to the first tetrazole compound in the treatment agent of the present invention is preferably in the range of 0.01 to 1 mole.
 また、第1のテトラゾール化合物と第2のテトラゾール化合物を表面処理剤に使用する場合には、第1のテトラゾール化合物と第2のテトラゾール化合物の合計量に対するアンモニアの含有割合を、等倍モルよりも大きくし、50倍モル未満とすることが好ましく、1.1~40倍モルとすることがより好ましく、1.5~10倍モルとすることが更に好ましい。
 アンモニアの含有割合が第1のテトラゾール化合物と第2のテトラゾール化合物の合計量に対して等倍モル以下であると、銅の表面の酸化および腐食を十分に防止することができない虞がある。また、アンモニアの含有割合が第1のテトラゾール化合物と第2のテトラゾール化合物の合計量に対して50倍モル以上の場合には、処理ムラが生じて銅表面の酸化および腐食を十分に防止することができない虞がある。
Moreover, when using a 1st tetrazole compound and a 2nd tetrazole compound for a surface treating agent, the content rate of ammonia with respect to the total amount of a 1st tetrazole compound and a 2nd tetrazole compound is more than 1 time mole. It is preferably increased to less than 50 times mol, more preferably 1.1 to 40 times mol, and still more preferably 1.5 to 10 times mol.
If the ammonia content is less than or equal to the total amount of the first tetrazole compound and the second tetrazole compound, oxidation and corrosion of the copper surface may not be sufficiently prevented. In addition, when the ammonia content is 50 times mole or more with respect to the total amount of the first tetrazole compound and the second tetrazole compound, treatment unevenness is caused to sufficiently prevent oxidation and corrosion of the copper surface. There is a possibility of not being able to.
 本発明の実施において、pH緩衝剤は、使用に伴う表面処理剤のpHの変動を抑制するために、pH8~11の範囲で緩衝作用を有するものが好ましく用いられ、表面処理剤としての安定性を向上させることができる。pH緩衝剤として機能する薬剤の種類には特に制限はなく、公知のものを使用することができる。pH緩衝剤としては、例えば炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素アンモニウム、炭酸アンモニウム、セスキ炭酸ナトリウム等を使用することができる。
 これらのpH緩衝剤を、組み合わせて使用してもよい。
 本発明の実施において使用されるpH緩衝剤の添加量は、0.001~1mol/Lの範囲が好ましい。
In the practice of the present invention, the pH buffering agent preferably has a buffering action in the range of pH 8 to 11 in order to suppress fluctuations in the pH of the surface treating agent accompanying use, and is stable as a surface treating agent. Can be improved. There is no restriction | limiting in particular in the kind of chemical | medical agent which functions as a pH buffer, A well-known thing can be used. As the pH buffering agent, for example, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, ammonium hydrogen carbonate, ammonium carbonate, sodium sesquicarbonate and the like can be used.
These pH buffering agents may be used in combination.
The amount of the pH buffer used in the practice of the present invention is preferably in the range of 0.001 to 1 mol / L.
 本発明の表面処理剤には、銅表面を均一に処理するために、本発明の効果を損なわない範囲において界面活性剤を添加することができる。界面活性剤の種類には特に制限はなく、公知のものを使用することができるが、非イオン性の界面活性剤を好ましく使用することができる。このような界面活性剤としてはエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノ(2-エチルヘキシル)エーテル、ジエチレングリコールモノ(2-エチルヘキシル)エーテル等が挙げられる。
 表面処理剤中における界面活性剤の濃度は0.001~1重量%の範囲が好ましく、0.01~0.1重量%の範囲がより好ましい。
In order to treat the copper surface uniformly, a surfactant can be added to the surface treatment agent of the present invention within a range not impairing the effects of the present invention. There is no restriction | limiting in particular in the kind of surfactant, Although a well-known thing can be used, A nonionic surfactant can be used preferably. Examples of such surfactants include ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol mono (2-ethylhexyl) ether, diethylene glycol mono (2-ethylhexyl) ether, and the like.
The concentration of the surfactant in the surface treatment agent is preferably in the range of 0.001 to 1% by weight, more preferably in the range of 0.01 to 0.1% by weight.
 本発明の表面処理剤には、本発明の効果を損なわない限り、必要に応じて公知の添加剤、助剤等を加えてもよい。 As long as the effects of the present invention are not impaired, known additives and auxiliaries may be added to the surface treatment agent of the present invention as necessary.
 本発明の表面処理剤を用いて銅の表面を処理する際の条件としては、表面処理剤の液温を15~35℃の範囲に設定し、接触時間を10秒~1分の範囲に設定することが好ましい。銅の表面を処理するための、銅と表面処理剤の接触方法としては、浸漬、噴霧、塗布等の手段が挙げられ、銅と表面処理剤を接触させた後、銅を水洗して乾燥すればよい。
 上記の表面処理により、銅の表面に化成被膜を形成することができる。
The conditions for treating the copper surface with the surface treatment agent of the present invention are as follows. The liquid temperature of the surface treatment agent is set in the range of 15 to 35 ° C., and the contact time is set in the range of 10 seconds to 1 minute. It is preferable to do. Examples of the method for contacting copper with the surface treatment agent for treating the surface of copper include dipping, spraying, coating, and the like. After contacting the copper with the surface treatment agent, the copper is washed with water and dried. That's fine.
By the above surface treatment, a chemical conversion film can be formed on the copper surface.
 本発明の実施において使用するプリント配線板としては、硬質プリント基板、フレキシブルプリント基板、フィルム基板、ガラス基板等が挙げられる。 Examples of the printed wiring board used in the practice of the present invention include a hard printed board, a flexible printed board, a film board, and a glass board.
 本発明の実施において使用する透明なフィルム基板としては、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、ポリエチレンナフタレート、ポリイミド等の材質のフィルムを用いることができる。 As the transparent film substrate used in the practice of the present invention, a film made of polyethylene terephthalate, polycarbonate, acrylic resin, polyethylene naphthalate, polyimide, or the like can be used.
 本発明の実施において使用するガラス基板としては、タッチパネルに通常使用されるものであればよい。 The glass substrate used in the practice of the present invention may be any glass substrate that is normally used for touch panels.
 本発明の実施において使用する透明粘着剤としては、タッチパネルに通常使用されるものであればよい。すなわち、透明粘着剤としては透明性を有し、かつ電気的に絶縁性を有するものが使用され、アクリル樹脂系、ポリビニルアルコール樹脂系、ポリ塩化ビニル樹脂系、エポキシ樹脂系、ポリエステル樹脂系等の粘着剤が挙げられる。 As the transparent adhesive used in the practice of the present invention, any transparent adhesive usually used for touch panels may be used. That is, as the transparent adhesive, a transparent and electrically insulating material is used, such as acrylic resin, polyvinyl alcohol resin, polyvinyl chloride resin, epoxy resin, polyester resin, etc. An adhesive is mentioned.
 以下、本発明を実施例および比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例で使用したアゾール化合物は、以下のとおりである。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these. The azole compounds used in the examples and comparative examples are as follows.
[アゾール化合物]
・5-メチル-1H-テトラゾール(増田化学工業社製)
・5-プロピル-1H-テトラゾール(同上)
・5-シクロプロピル-1H-テトラゾール(同上)
・ベンゾトリアゾール(和光純薬工業社製)
・2-メルカプトベンゾチアゾール(同上)
・5-アミノ-1H-テトラゾール(増田化学工業社製)
・1-フェニル-5-メルカプト-1H-テトラゾール(同上)
・5-フェニル-1H-テトラゾール(同上)
・1H-テトラゾール(同上)
・5-ブチル-1H-テトラゾール(「Synthesis,2009(13),2175」に記載された方法に準拠して合成した。)
・5-ヘキシル-1H-テトラゾール(同上)
・5-ヘプチル-1H-テトラゾール(同上)
・5-オクチル-1H-テトラゾール(同上)
・5-ノニル-1H-テトラゾール(同上)
・5-ベンジル-1H-テトラゾール(同上)
・1H-テトラゾール-5-酢酸エチル(増田化学工業社製)
・5-(2-アミノエチル)-1H-テトラゾール(同上)
・5-(2-ヒドロキシエチル)-1H-テトラゾール(同上)
・5-クロロメチル-1H-テトラゾール(同上)
・5-メルカプト-1H-テトラゾール(同上)
・1H-テトラゾール-5-酢酸(同上)
[Azole compounds]
・ 5-Methyl-1H-tetrazole (Masuda Chemical Industries)
・ 5-propyl-1H-tetrazole (same as above)
・ 5-Cyclopropyl-1H-tetrazole (same as above)
・ Benzotriazole (Wako Pure Chemical Industries)
・ 2-Mercaptobenzothiazole (same as above)
・ 5-Amino-1H-tetrazole (Masuda Chemical Industries)
・ 1-Phenyl-5-mercapto-1H-tetrazole (same as above)
・ 5-Phenyl-1H-tetrazole (same as above)
・ 1H-tetrazole (same as above)
5-butyl-1H-tetrazole (synthesized according to the method described in “Synthesis, 2009 (13), 2175”)
・ 5-hexyl-1H-tetrazole (same as above)
・ 5-Heptyl-1H-tetrazole (same as above)
・ 5-octyl-1H-tetrazole (same as above)
・ 5-nonyl-1H-tetrazole (same as above)
・ 5-Benzyl-1H-tetrazole (same as above)
・ 1H-tetrazole-5-ethyl acetate (manufactured by Masuda Chemical Industries)
・ 5- (2-Aminoethyl) -1H-tetrazole (same as above)
・ 5- (2-hydroxyethyl) -1H-tetrazole (same as above)
・ 5-Chloromethyl-1H-tetrazole (same as above)
・ 5-mercapto-1H-tetrazole (same as above)
・ 1H-tetrazol-5-acetic acid (same as above)
 また、実施例および比較例で採用した評価試験方法は、以下のとおりである。 Also, the evaluation test methods employed in the examples and comparative examples are as follows.
[試験片]
 40mm×40mmの銅張積層板(基材:FR4、電解銅箔厚み:18μm)をソフトエッチング、水洗、エアーブローによる水切りを行った後、液温25℃の表面処理剤に30秒間浸漬し、次いで水洗、乾燥して、銅表面に化成被膜が形成された試験片を作製した。
[Test pieces]
A 40 mm × 40 mm copper-clad laminate (base: FR4, electrolytic copper foil thickness: 18 μm) was soft etched, washed with water, drained by air blow, and then immersed in a surface treatment agent at a liquid temperature of 25 ° C. for 30 seconds. Subsequently, it washed with water and dried and produced the test piece in which the chemical conversion film was formed in the copper surface.
[加湿試験]
 試験片を温度85℃、相対湿度85%の雰囲気中に144時間放置した後、銅表面の外観の変色度合を目視観察した。
 銅表面の耐湿性を下記評価基準で評価した。変色の度合が低い程、化成被膜の耐湿性、即ち、銅表面の耐湿性が優れていると判定される。
 <評価基準>
 ○:変色がない
 △:少し変色している
 ×:変色している
[Humidification test]
After leaving the test piece in an atmosphere of 85 ° C. and 85% relative humidity for 144 hours, the degree of discoloration of the appearance of the copper surface was visually observed.
The moisture resistance of the copper surface was evaluated according to the following evaluation criteria. It is determined that the lower the degree of discoloration, the better the moisture resistance of the chemical conversion film, that is, the moisture resistance of the copper surface.
<Evaluation criteria>
○: No discoloration △: Some discoloration ×: Discoloration
[腐食試験]
 試験片に、アクリル系の透明粘着テープ(住友スリーエム社製、製品名「Scotch313」)を貼合し、温度85℃、相対湿度85%の雰囲気中に144時間放置した後、透明粘着テープ貼合部(銅表面)の外観の変色度合を目視観察した。
 銅表面の耐腐食性を下記評価基準で評価した。変色の度合が低い程、化成被膜の耐腐食性、即ち、銅表面の耐腐食性が優れていると判定される。
 <評価基準>
 ○:変色がない
 △:少し変色している
 ×:変色している
[Corrosion test]
Acrylic transparent adhesive tape (manufactured by Sumitomo 3M, product name “Scotch 313”) is bonded to the test piece and left in an atmosphere at a temperature of 85 ° C. and a relative humidity of 85% for 144 hours, and then the transparent adhesive tape is bonded. The degree of discoloration of the appearance of the part (copper surface) was visually observed.
The corrosion resistance of the copper surface was evaluated according to the following evaluation criteria. It is determined that the lower the degree of discoloration, the better the corrosion resistance of the chemical conversion film, that is, the corrosion resistance of the copper surface.
<Evaluation criteria>
○: No discoloration △: Some discoloration ×: Discoloration
[加熱試験]
 試験片を温度150℃の循環オーブンで1時間加熱した後、酸化銅の発生量を測定した。酸化銅の発生量は、赤外線吸収スペクトルにおける640cm-1付近の酸化銅(I)に由来するピークの吸光度を指標とした。赤外線吸収スペクトル測定は、フーリエ変換赤外分光光度計(パーキンエルマージャパン社製、製品名「Spectrum One」)を用い、RAS法により、測定面積13mmφ、入射角80度、積算回数32回の条件で行った。
 銅表面の耐熱性を下記評価基準で評価した。吸光度が低い程、化成被膜の耐熱性、即ち、銅表面の耐熱性が優れていると判定される。
 <評価基準>
 A:吸光度が1.5×10-3未満
 B:吸光度が1.5×10-3以上、3.0×10-3未満
 C:吸光度が3.0×10-3以上、4.5×10-3未満
 D:吸光度が4.5×10-3以上
[Heating test]
After the test piece was heated in a circulating oven at a temperature of 150 ° C. for 1 hour, the amount of copper oxide generated was measured. The amount of copper oxide generated was based on the absorbance of a peak derived from copper oxide (I) near 640 cm −1 in the infrared absorption spectrum. Infrared absorption spectrum measurement is carried out using a Fourier transform infrared spectrophotometer (manufactured by PerkinElmer Japan, product name “Spectrum One”) under the conditions of a measurement area of 13 mmφ, an incident angle of 80 degrees, and an integration count of 32 by the RAS method. went.
The heat resistance of the copper surface was evaluated according to the following evaluation criteria. The lower the absorbance, the better the heat resistance of the chemical conversion film, that is, the heat resistance of the copper surface.
<Evaluation criteria>
A: Absorbance is less than 1.5 × 10 −3 B: Absorbance is 1.5 × 10 −3 or more and less than 3.0 × 10 −3 C: Absorbance is 3.0 × 10 −3 or more, 4.5 × Less than 10 −3 D: Absorbance is 4.5 × 10 −3 or more
[エアレーション試験]
 表面処理剤にガラスフィルター付きのガラス管を挿入し、エアーポンプを用いて空気を送り込み、25℃で3時間曝気を行った。曝気後に表面処理剤のpHを測定し、初期pHに対する変動幅を確認した。
 表面処理剤の安定性を下記評価基準で評価した。pH変動が小さいほど、表面処理剤の安定性が優れていると判定される。
 <評価基準>
 ○:pH変動が±0.1未満
 ×:pH変動が±0.1以上
[Aeration test]
A glass tube with a glass filter was inserted into the surface treatment agent, air was fed using an air pump, and aeration was performed at 25 ° C. for 3 hours. The pH of the surface treatment agent was measured after aeration, and the fluctuation range with respect to the initial pH was confirmed.
The stability of the surface treatment agent was evaluated according to the following evaluation criteria. It is determined that the smaller the pH variation, the better the stability of the surface treatment agent.
<Evaluation criteria>
○: pH fluctuation is less than ± 0.1 ×: pH fluctuation is ± 0.1 or more
[撥水性試験]
 水平に置いた試験片表面に一滴のイオン交換水を滴下したのち試験片を垂直に立て、試験片表面の濡れ具合を確認した。
 撥水性の良否を下記評価基準で評価した。水滴が早く流れ落ちる程、化成被膜の撥水性が優れていると判定される。
 <評価基準>
 ○:5秒未満で水滴が流れ落ちる
 ×:5秒以上経過しても、滴下した部分に水滴が残る
[Water repellency test]
A drop of ion-exchanged water was dropped on the surface of the test piece placed horizontally, and then the test piece was set up vertically to check the wetness of the test piece surface.
The quality of water repellency was evaluated according to the following evaluation criteria. It is determined that the water repellency of the chemical conversion film is improved as the water droplets flow down faster.
<Evaluation criteria>
○: Water droplets flow down in less than 5 seconds ×: Water droplets remain in the dripped portion even after 5 seconds or more
〔実施例1〕
 イオン交換水に、25%アンモニア水と5-メチル-1H-テトラゾールを表1記載の組成となるように溶解させて表面処理剤を調製し、pHを測定した。次いで、この表面処理剤を用いて、加湿試験、腐食試験、加熱試験、エアレーション試験および撥水性試験を行った。表面処理剤のpHとこれらの試験結果は表1に示したとおりであった。
[Example 1]
A surface treating agent was prepared by dissolving 25% aqueous ammonia and 5-methyl-1H-tetrazole in ion-exchanged water so as to have the composition shown in Table 1, and the pH was measured. Subsequently, a humidification test, a corrosion test, a heating test, an aeration test, and a water repellency test were performed using this surface treatment agent. The pH of the surface treatment agent and the test results were as shown in Table 1.
〔実施例2~22〕
 実施例1と同様にして、表1~3記載の組成を有する表面処理剤を調製し、pHを測定した。次いで、この表面処理剤を用いて、加湿試験、腐食試験、加熱試験、エアレーション試験および撥水性試験を行った。表面処理剤のpHとこれらの試験結果は表1~3に示したとおりであった。
[Examples 2 to 22]
In the same manner as in Example 1, surface treatment agents having the compositions described in Tables 1 to 3 were prepared, and the pH was measured. Subsequently, a humidification test, a corrosion test, a heating test, an aeration test, and a water repellency test were performed using this surface treatment agent. The pH of the surface treatment agent and the test results were as shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
〔比較例1~24〕
 実施例1と同様にして、表4~8記載の組成を有する表面処理剤を調製し、pHを測定した。次いで、この表面処理剤を用いて、加湿試験、腐食試験、加熱試験、エアレーション試験および撥水性試験を行った。
 なお、比較例4および5において調製した表面処理剤については、0.1M水酸化ナトリウム水溶液を使用して、pH調整を行った。
 表面処理剤のpHと、これらの試験結果は表4~8に示したとおりであった。
[Comparative Examples 1 to 24]
In the same manner as in Example 1, surface treatment agents having the compositions shown in Tables 4 to 8 were prepared, and the pH was measured. Subsequently, a humidification test, a corrosion test, a heating test, an aeration test, and a water repellency test were performed using this surface treatment agent.
In addition, about the surface treatment agent prepared in Comparative Examples 4 and 5, pH adjustment was performed using 0.1M sodium hydroxide aqueous solution.
The pH of the surface treatment agent and the test results were as shown in Tables 4-8.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表1~8に示した試験結果によれば、第1のテトラゾール化合物とアンモニアを適正な濃度で含有する表面処理剤を用いることにより、銅の表面に、耐酸化性および耐腐食性に優れた化成被膜を形成することが認められる。
 また、第1のテトラゾール化合物とアンモニアおよび第2のテトラゾール化合物を適正な濃度で含有する表面処理剤を用いることにより、銅の表面に、耐酸化性と耐腐食性および撥水性に優れた化成被膜を形成することが認められる。
 第1のテトラゾール化合物とアンモニアおよびpH緩衝剤を適正な濃度で含有する表面処理剤を用いることにより、銅の表面に、耐酸化性と耐腐食性に優れた化成被膜を形成することができ、pH変動が小さく表面処理剤の安定性が向上することが認められる。
 さらに、当該表面処理剤に第2のテトラゾール化合物とpH緩衝剤を添加することにより、表面処理剤の安定性と化成被膜の撥水性が向上することが認められる。
According to the test results shown in Tables 1 to 8, by using a surface treatment agent containing the first tetrazole compound and ammonia at appropriate concentrations, the copper surface has excellent oxidation resistance and corrosion resistance. It is observed that a conversion coating is formed.
Further, by using a surface treatment agent containing the first tetrazole compound, ammonia, and the second tetrazole compound at appropriate concentrations, a chemical conversion coating excellent in oxidation resistance, corrosion resistance, and water repellency on the copper surface. Is observed to form.
By using a surface treatment agent containing the first tetrazole compound and ammonia and a pH buffer at appropriate concentrations, a chemical conversion film excellent in oxidation resistance and corrosion resistance can be formed on the surface of copper. It is recognized that the pH change is small and the stability of the surface treatment agent is improved.
Furthermore, it is recognized that the stability of the surface treatment agent and the water repellency of the chemical conversion film are improved by adding the second tetrazole compound and the pH buffering agent to the surface treatment agent.
〔実施例23〕
 試験片として、内径0.80mmの銅スルホールを300穴有する120mm(縦)×150mm(横)×1.6mm(厚み)のガラスエポキシ樹脂製のプリント配線板を使用した。この試験片を脱脂、ソフトエッチング、水洗およびエアーブローによる水切りを行った後、実施例14において調製した表面処理剤に液温25℃で30秒間浸漬し、次いで水洗、乾燥して銅表面に化成被膜を形成させた。この上に市販のポストフラックスを塗布し、フローはんだ付け装置を用いて通常のはんだ付け操作を行ったところ、問題なくはんだ付けすることができた。
Example 23
As a test piece, a printed wiring board made of glass epoxy resin of 120 mm (vertical) × 150 mm (horizontal) × 1.6 mm (thickness) having 300 copper through holes with an inner diameter of 0.80 mm was used. This test piece was degreased, soft-etched, washed with water, and drained by air blow, and then immersed in the surface treatment agent prepared in Example 14 at a liquid temperature of 25 ° C. for 30 seconds, then washed with water and dried to form a copper surface. A film was formed. When a commercially available post flux was applied onto this and a normal soldering operation was performed using a flow soldering apparatus, it was possible to perform soldering without problems.
〔実施例24〕
 試験片として、厚さ0.2μmの銅膜をスパッタリングにより形成した40mm(縦)×40mm(横)×125μm(厚み)のPET樹脂製のフィルムを2枚使用した。これらの試験片を実施例14で使用した表面処理剤に液温25℃で30秒間浸漬し、次いで水洗、乾燥して銅表面に化成被膜を形成させた。続いて、この2枚を銅表面が向かい合うように重ね、間に市販の異方性導電フィルム(ACF)を挟んで通常の圧着操作を行ったところ、問題無く接合され、導通を確保することができた。
Example 24
As a test piece, two 40 mm (vertical) × 40 mm (horizontal) × 125 μm (thickness) films made of PET resin formed by sputtering a 0.2 μm thick copper film were used. These test pieces were immersed in the surface treatment agent used in Example 14 at a liquid temperature of 25 ° C. for 30 seconds, then washed with water and dried to form a chemical conversion film on the copper surface. Subsequently, when these two sheets are stacked so that the copper surfaces face each other, and a normal pressure-bonding operation is performed with a commercially available anisotropic conductive film (ACF) sandwiched therebetween, it is possible to join them without problems and ensure conduction. did it.
 本発明の表面処理剤および表面処理方法によれば、銅の表面に耐酸化性と耐腐食性に優れた防錆被膜を形成することが可能であり、タッチパネル用部材だけでなく、その他のプリント配線板や電子部品、銅箔、電線など、銅表面の酸化および腐食からの保護が必要とされる様々な分野への利用が期待される。 According to the surface treatment agent and the surface treatment method of the present invention, it is possible to form a rust preventive film excellent in oxidation resistance and corrosion resistance on the surface of copper, and not only a touch panel member but also other prints. It is expected to be used in various fields such as wiring boards, electronic parts, copper foils, electric wires, etc. that require protection from oxidation and corrosion of the copper surface.

Claims (10)

  1.  下記化学式(I)で示される第1のテトラゾール化合物および/またはその塩と、アンモニアを含有する水溶液であって、前記第1のテトラゾール化合物および/またはその塩に対する前記アンモニアの含有割合が、等倍モルよりも大きいことを特徴とする銅または銅合金の表面処理剤。
    Figure JPOXMLDOC01-appb-C000001

    (式(I)中、Rは、炭素数1~3の直鎖、分岐鎖、または環状のアルキル基を表す。)
    An aqueous solution containing the first tetrazole compound and / or salt thereof represented by the following chemical formula (I) and ammonia, wherein the content ratio of the ammonia to the first tetrazole compound and / or salt thereof is equal A surface treatment agent for copper or copper alloy characterized by being larger than a mole.
    Figure JPOXMLDOC01-appb-C000001

    (In formula (I), R 1 represents a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms.)
  2.  下記化学式(I)で示される第1のテトラゾール化合物および/またはその塩と、下記化学式(II)で示される第2のテトラゾール化合物および/またはその塩と、アンモニアとを含有する水溶液であって、前記第1のテトラゾール化合物および/またはその塩と前記第2のテトラゾール化合物および/またはその塩の合計量に対する前記アンモニアの含有割合が、等倍モルよりも大きいことを特徴とする銅または銅合金の表面処理剤。
    Figure JPOXMLDOC01-appb-C000002

    (式(I)中、Rは、炭素数1~3の直鎖、分岐鎖、または環状のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (式(II)中、Rは、炭素数5~20の直鎖、分岐鎖、または環状のアルキル基を表す。)
    An aqueous solution containing a first tetrazole compound represented by the following chemical formula (I) and / or a salt thereof, a second tetrazole compound represented by the following chemical formula (II) and / or a salt thereof, and ammonia, The content ratio of the ammonia with respect to the total amount of the first tetrazole compound and / or salt thereof and the second tetrazole compound and / or salt thereof is larger than 1 mol, copper or a copper alloy Surface treatment agent.
    Figure JPOXMLDOC01-appb-C000002

    (Formula (in I), R 1 is. Representing a linear, branched or cyclic alkyl group, having 1 to 3 carbon atoms)
    Figure JPOXMLDOC01-appb-C000003

    (In the formula (II), R 2 represents a linear, branched or cyclic alkyl group having 5 to 20 carbon atoms.)
  3.  pH緩衝剤を含有することを特徴とする請求項1または請求項2に記載の銅または銅合金の表面処理剤。 3. A surface treatment agent for copper or copper alloy according to claim 1 or 2, which contains a pH buffering agent.
  4.  界面活性剤を含有することを特徴とする請求項1~請求項3のいずれか一項に記載の銅または銅合金の表面処理剤。 The surface treatment agent for copper or copper alloy according to any one of claims 1 to 3, further comprising a surfactant.
  5.  銅または銅合金の表面に、請求項1~請求項4のいずれか一項に記載の表面処理剤を接触させることを特徴とする銅または銅合金の表面処理方法。 A surface treatment method for copper or copper alloy, comprising bringing the surface treatment agent according to any one of claims 1 to 4 into contact with a surface of copper or copper alloy.
  6.  電極を形成する銅または銅合金の表面に、請求項1~請求項4のいずれか一項に記載の表面処理剤を接触させることにより、当該銅または銅合金の表面に化成被膜を形成したことを特徴とする電子部品。 The chemical conversion film is formed on the surface of the copper or copper alloy by bringing the surface treatment agent according to any one of claims 1 to 4 into contact with the surface of the copper or copper alloy forming the electrode. Electronic parts characterized by
  7.  回路を形成する銅または銅合金の表面に、請求項1~請求項4のいずれか一項に記載の表面処理剤を接触させることにより、当該銅または銅合金の表面に化成被膜を形成したことを特徴とするプリント配線板。 The chemical conversion film is formed on the surface of the copper or copper alloy by bringing the surface treatment agent according to any one of claims 1 to 4 into contact with the surface of the copper or copper alloy forming the circuit. Printed wiring board characterized by
  8.  フィルム基板またはガラス基板上に形成された透明電極と、化成被膜が形成された銅または銅合金から構成される回路とを有する透明電極層を備えたことを特徴とする請求項7に記載のプリント配線板。 8. The print according to claim 7, further comprising a transparent electrode layer having a transparent electrode formed on a film substrate or a glass substrate and a circuit made of copper or a copper alloy on which a chemical conversion film is formed. Wiring board.
  9.  請求項7または請求項8に記載のプリント配線板と絶縁体層を透明粘着剤で貼合したことを特徴とする透明電極基板。 A transparent electrode substrate, wherein the printed wiring board according to claim 7 or 8 and an insulator layer are bonded with a transparent adhesive.
  10.  請求項9に記載の透明電極基板を備えることを特徴とするタッチパネル。 A touch panel comprising the transparent electrode substrate according to claim 9.
PCT/JP2013/074565 2013-09-11 2013-09-11 Surface treatment agent for copper or copper alloy, and use thereof WO2015037085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074565 WO2015037085A1 (en) 2013-09-11 2013-09-11 Surface treatment agent for copper or copper alloy, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074565 WO2015037085A1 (en) 2013-09-11 2013-09-11 Surface treatment agent for copper or copper alloy, and use thereof

Publications (1)

Publication Number Publication Date
WO2015037085A1 true WO2015037085A1 (en) 2015-03-19

Family

ID=52665227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074565 WO2015037085A1 (en) 2013-09-11 2013-09-11 Surface treatment agent for copper or copper alloy, and use thereof

Country Status (1)

Country Link
WO (1) WO2015037085A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145491A (en) * 1993-11-24 1995-06-06 Chiyoda Chem Kk Water-soluble anti-corrosive agent for metal
JPH1143778A (en) * 1997-07-24 1999-02-16 Mec Kk Surface treatment of copper and copper alloy
JP2005060754A (en) * 2003-08-08 2005-03-10 Nikko Materials Co Ltd Surface treatment agent for copper and copper alloy
JP2008274311A (en) * 2007-04-02 2008-11-13 Mec Kk Substrate manufacturing method, and copper surface treatment agent used therefor
JP2013149213A (en) * 2012-01-23 2013-08-01 Dainippon Printing Co Ltd Touch panel module and display device with touch panel
JP2013189683A (en) * 2012-03-14 2013-09-26 Shikoku Chem Corp Surface treating agent of copper or copper alloy and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145491A (en) * 1993-11-24 1995-06-06 Chiyoda Chem Kk Water-soluble anti-corrosive agent for metal
JPH1143778A (en) * 1997-07-24 1999-02-16 Mec Kk Surface treatment of copper and copper alloy
JP2005060754A (en) * 2003-08-08 2005-03-10 Nikko Materials Co Ltd Surface treatment agent for copper and copper alloy
JP2008274311A (en) * 2007-04-02 2008-11-13 Mec Kk Substrate manufacturing method, and copper surface treatment agent used therefor
JP2013149213A (en) * 2012-01-23 2013-08-01 Dainippon Printing Co Ltd Touch panel module and display device with touch panel
JP2013189683A (en) * 2012-03-14 2013-09-26 Shikoku Chem Corp Surface treating agent of copper or copper alloy and use thereof

Similar Documents

Publication Publication Date Title
JP4278705B1 (en) Etching solution
JP4881916B2 (en) Surface roughening agent
TW591120B (en) Etchant for copper or copper alloys
WO2011077896A1 (en) Metal nanowires, method for producing same, transparent conductor and touch panel
TWI553155B (en) Etchant and etching method using the same
TWI434956B (en) Copper or copper alloy surface treatment agent and treatment methods
KR101462286B1 (en) Etching Solution
JP6062418B2 (en) Etching solution composition and etching method
JP2015054987A (en) Surface preparation agent for copper and copper alloy, and use thereof
WO2015037085A1 (en) Surface treatment agent for copper or copper alloy, and use thereof
JP5940843B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP4368161B2 (en) Copper, copper alloy surface treatment agent
TW201509921A (en) Surface treating agent for copper or copper alloy and its applications
KR20090009734A (en) Surface treating agent
KR101776055B1 (en) Etching composition for touch panel and etching method of touch panel
JP4065110B2 (en) Copper or copper alloy surface treatment method and printed wiring board manufacturing method
US20170327702A1 (en) Water-based organic solderability preservative, and electronic board and surface treatment method using the same
KR101494618B1 (en) Conversion coating composition for flexible print circuit board and surface treating method using the same
KR20090046513A (en) Pre-flux performing selective coating for pwb
JP6662671B2 (en) Etching solution composition and etching method
JP5382892B2 (en) Etching method
WO2020079977A1 (en) Surface treatment solution, and method for treating surface of nickel-containing material
JPH10245684A (en) Surface treating agent for copper and copper alloy
TW200540296A (en) Surface protecting agent of printed circuit board
JP2014129557A (en) Etchant composition and etching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP