WO2015035531A1 - 瑞格非尼盐晶型及其制备方法和用途 - Google Patents

瑞格非尼盐晶型及其制备方法和用途 Download PDF

Info

Publication number
WO2015035531A1
WO2015035531A1 PCT/CN2013/001056 CN2013001056W WO2015035531A1 WO 2015035531 A1 WO2015035531 A1 WO 2015035531A1 CN 2013001056 W CN2013001056 W CN 2013001056W WO 2015035531 A1 WO2015035531 A1 WO 2015035531A1
Authority
WO
WIPO (PCT)
Prior art keywords
regorafenib
crystal form
soluble solvent
acid
hours
Prior art date
Application number
PCT/CN2013/001056
Other languages
English (en)
French (fr)
Inventor
宋小叶
劳海萍
盛晓霞
盛晓红
Original Assignee
杭州普晒医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州普晒医药科技有限公司 filed Critical 杭州普晒医药科技有限公司
Priority to PCT/CN2013/001056 priority Critical patent/WO2015035531A1/zh
Priority to CN201380052962.5A priority patent/CN104736521B/zh
Publication of WO2015035531A1 publication Critical patent/WO2015035531A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • This application relates to the field of medicinal chemical crystallization technology.
  • it relates to a rifafenib salt and a crystalline form thereof, and to a process for the preparation of the regorafenib salt and a crystalline form thereof, a pharmaceutical composition thereof and use thereof.
  • Regfinini is an anti-cancer drug approved by the FDA on September 27, 2012. Regfinib is a multi-targeted tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer.
  • the developer is Bayer Healthcare Pharmaceuticals.
  • the trade name is Stivarga, which is marketed as a monohydrate of regorafenib free base.
  • Patent document WO2008/043446 discloses resveripin monohydrate and its preparation method, and discloses its X-ray diffraction pattern (XRD), thermogravimetric analysis/difference scanning analysis (TGA/DSC), Raman spectroscopy, Characterization data of infrared optical (IR), near-infrared (NIR), far-infrared (FI) and 13C-solid-state nuclear magnetic resonance ( 13 C-NMR), the compound has a water content of 3.6% (weight) ).
  • XRD X-ray diffraction pattern
  • TGA/DSC thermogravimetric analysis/difference scanning analysis
  • Raman spectroscopy Raman spectroscopy
  • IR infrared optical
  • NIR near-infrared
  • FI far-infrared
  • Patent document WO2008/058644 discloses crystal form II of regorafenib and a preparation method thereof, the melting point of which is 181 ° C, TGA shows weight loss ⁇ 0.4%, and the advantage of crystal form II is that it is regia in water and organic solvent.
  • Non-Nickel Form I which has a melting point of 186 to 206 ° C, and TGA shows a weight loss of ⁇ 0.4%.
  • the document is also open Characterization data of XRD, TGA/DSC, Raman spectroscopy, IR, NIR, FIR and 13 C-NMR of Regefenib Form II and Form I.
  • Patent document WO2008/055629 discloses crystal form III of regorafenib and a preparation method thereof, which has a melting point of 141 ° C, TGA shows a weight loss of ⁇ 0.4%, and discloses XRD, TGA/DSC, Raman spectroscopy of Form III. Characterization data of IR, NIR, FIR and 13 C-NMR. The advantage of crystalline germanium is high solubility in water and organic solvents. In addition, this patent document also discloses the manner in which rifafenib monohydrate is converted to Form III.
  • Patent document WO 2013/000917 discloses the use of regorafenib and its hydrates, solvates and pharmaceutically acceptable salts or crystal forms thereof for the preparation of a medicament for the treatment of ophthalmic diseases, but does not disclose its pharmaceutically acceptable Preparation of salts or crystal forms or their characterization data.
  • the present inventors have found that the crystal forms of crystal form I, crystal form II, crystal form III and regorafenil monohydrate of rifafenib free base are both hydrophobic and have very poor solubility in water; Nitrobenzene sulfonate has poor solubilization effect in water; Reigefinoxime sulfonate has a weight change of about 7.2% in the range of 20% ⁇ 80% relative humidity, and is easy to absorb water; Regafinil hydrochloride does not absorb at high temperature Stable, after desolvation at 140 ° C, it will be converted to rifafenib free base.
  • the present application provides a rifafenib salt and a crystal form thereof, including regorafenib p-nonylbenzenesulfonate, regorafenib p-chlorobenzenesulfonate, regorafenib 1,5-naphthalene disulfonate , Regafinibethane disulfonate, regorafenib hydrobromide, regorafenibethane, regorafenil 2-naphthalene sulfonate and crystalline forms of these salts.
  • novel regorafenib salt and its crystalline form provided by the present application have one or more superior properties compared to known rifafenib salts and their crystalline forms.
  • Specific improved properties include, for example, higher crystallinity, solubility, dissolution rate, lower hygroscopicity, and better storage stability; in particular, the crystalline form of the regorafenib salt of the present application has favorable non-hygroscopicity. , solubility, good thermal stability and good storage stability.
  • one of the contents of the present application is to provide rifafenib p-nonylbenzenesulfonate and its crystal form, and a process for the preparation thereof.
  • the rifafenib-p-nonylbenzenesulfonate provided by the present application is a compound formed by a 1:1 molar ratio of regorafenib and p-nonylbenzenesulfonic acid, and has the following structural formula: o
  • the present application provides a method for preparing rifafenib-p-nonylbenzenesulfonate, the method comprising: respectively forming a solution system of regorafenib and p-nonylbenzenesulfonic acid in a soluble solvent, regorafenib and The molar ratio of p-nonylbenzenesulfonic acid is 1:1 ⁇ 1:2, and the two systems are mixed to form a suspension, and the solvent is removed to obtain the reggfenibene p-nonylbenzenesulfonate;
  • the solvent is an alcohol, an ester, a ketone, an ether or an alkane; preferably, the soluble NH solvent is removed by filtration.
  • the present application provides a crystalline form T of rifafenib-p-nonylbenzenesulfonate having an X-ray powder diffraction pattern of 4.5 ⁇ 0.2 at 2 Torr. 13.4 ⁇ 0.2. 18.1 ⁇ 0.2. 20.8 ⁇ 0.2. 21.9 ⁇ 0.2. And 23.0 ⁇ 0.2. There is a characteristic peak; further, its X-ray powder diffraction pattern is 4.5 ⁇ 0.2 at 2 ⁇ . , 11.0 ⁇ 0.2. , 11.5 ⁇ 0.2. 13.4 ⁇ 0.2°, 14.8 ⁇ 0.2°, 16.6 ⁇ 0.2°, 18.1 ⁇ 0.2°, 2N0 '.
  • the present application also provides a method for preparing the crystal form T of rifignin, p-nonylbenzenesulfonate, the method package Included: a solution system of rifignin and p-nonylbenzenesulfonic acid in a soluble solvent, respectively, the molar ratio of regorafenib to p-nonylbenzenesulfonic acid is 1: 1 ⁇ 1:2, mixing two The system forms a suspension which is crystallized at a temperature of from -10 ° C to 50 ° C to obtain the crystal form T.
  • the soluble solvent is preferably CH alcohol, C 4 -C 5 ester, C 3 -C 4 ketone, decyl tert-butyl ether or n-heptane; the concentration of the solution in the soluble solvent of regorafenib is preferably The solubility in the soluble solvent is 0.1 to 1 times, more preferably 0.5 to 1 times at the crystallization temperature; the concentration of the soluble solvent solution of the nonylbenzenesulfonic acid is preferably such that it is soluble at the crystallization temperature.
  • the solubility in the solvent is 0.5 to 1 times; the molar ratio of regorafenib to p-nonylbenzenesulfonic acid is preferably 1:1 to 1:1.5; preferably, the crystallization temperature is room temperature, and the crystallization time is 1 to 48 hours. More preferably, it is 1 to 10 hours.
  • one or more improved properties such as: better solubility, dissolution rate, lower Hygroscopicity, higher decomposition temperature and better storage stability.
  • the crystal form T weighs 0.04% in the range of 20% to 80% relative humidity, and the weight change is about 0.11 with respect to the regorafenib monohydrate and its crystal form (in the range of 20% to 80% relative humidity) %) is less hygroscopic;
  • the crystal form T is a flaky particle, which is larger than the regagirine monohydrate and its crystalline particles, and has good fluidity;
  • a second aspect of the present application is to provide rifafenib p-chlorobenzenesulfonate and its crystal form, and a process for the preparation thereof.
  • the rifafenib p-chlorobenzene sulfonate provided by the present application is regumble and p-chlorobenzene sulfonic acid.
  • a compound formed by a molar ratio of 1 : 1 has the following structural formula:
  • the present application provides a method for preparing rifafenib p-chlorobenzenesulfonate, the method comprising: separately forming a solution system of regorafenib and p-chlorobenzenesulfonic acid in a soluble solvent, regorafenib and p-chloro Benzenesulfonic acid
  • the molar ratio is 1:1 ⁇ 1:2, the two systems are mixed to form a suspension, and the solvent is removed to obtain the reggfene-p-chlorobenzenesulfonate;
  • the soluble solvent is an alcohol or an ester. , ketones, ethers and alkanes; preferably, the soluble solvent is removed by filtration.
  • the present application provides a crystalline form C of rifafenib p-chlorobenzenesulfonate having an X-ray powder diffraction pattern of 9.0 ⁇ 0.2 at 2 Torr. 9.9 ⁇ 0.2. 18.2 ⁇ 0.2. , 19.9 ⁇ 0.2. , 23. 1 ⁇ 0.2. And 27.4 ⁇ 0.2. There is a characteristic peak; further, the X-ray powder diffraction pattern is 9.0 ⁇ 0.2° and 9.9 ⁇ 0.2 at 2 ⁇ . 12.4 ⁇ 0.2.
  • the present application also provides a method for preparing the crystal form C of the rifafenib p-chlorobenzenesulfonate, the method comprising: respectively forming a solution system of regorafenib and p-chlorobenzenesulfonic acid in a soluble solvent, The molar ratio of gefenib and p-chlorobenzenesulfonic acid is 1:1 ⁇ 1:2, and the two systems are mixed to form a suspension, which is crystallized at a temperature of from -10 ° C to 50 ° C to obtain the crystal form C. .
  • the soluble solvent is preferably a C ⁇ CA alcohols, C 4 ⁇ C 5 esters, C 3 ⁇ C 4-one, Yue tert-butyl ether or n-heptane; concentration of soluble solvent solution is preferably regorafenib
  • concentration of soluble solvent solution is preferably regorafenib
  • the solubility in the soluble solvent is 0.1 to 1 times, more preferably 0.5 to 1 time at the crystallization temperature; the concentration of the soluble solvent solution of p-chlorobenzenesulfonic acid is preferably the soluble solvent at the crystallization temperature
  • the medium solubility is 0.5 to 1 times; the molar ratio of regorafenib to p-chlorobenzenesulfonic acid is preferably 1: 1 to 1: 1.5; preferably, the crystallization temperature is room temperature, and the crystallization time is 1 to 48 hours, It is preferably 1 to 10 hours.
  • the reggfenfenib p-chlorobenzene sulfonate and its crystal form C of the present application have one or more improvements. Characteristics such as higher solubility, dissolution rate, higher decomposition temperature and better storage stability.
  • a third aspect of the present application is to provide rifafenib 1,5-naphthalene disulfonate and a crystalline form thereof, and a process for the preparation thereof.
  • the regorafenib 1,5-naphthalenedisulfonate provided by the present application is a compound formed by a 2:1 molar ratio of regorafenib and 1,5-naphthalenedisulfonate, and has the following structural formula:
  • the present application provides a method for preparing the regorafenib 1,5-naphthalene disulfonate, comprising the steps of: respectively forming a solution system of regorafenib and 1,5-naphthalenedisulfonic acid in a soluble solvent;
  • the molar ratio of reguginib to 1,5-naphthalenedisulfonic acid is 1:1 to 2:1.
  • the two systems are mixed to form a suspension, and the solvent is removed to obtain the regorafenib 1,5-naphthalene disulfide.
  • the soluble solvent is an alcohol, an ester, a ketone, an ether or an alkane; preferably, the soluble solvent is removed by filtration.
  • the present application provides a crystalline form N of rifafenib 1,5-naphthalene disulfonate having an X-ray powder diffraction pattern of 7.3 ⁇ 0.2 °, 10.3 ⁇ 0.2 °, 12.8 ⁇ 0.2 °, 15.1 ⁇ 0.2 °, 18.8 at 2 Torr. Characteristic peaks at 0.2° and 26.1 ⁇ 0.2°; further, the X-ray powder diffraction pattern is 7.3 ⁇ 0.2 at 2 Torr. , 8.3 ⁇ 0.2. , 9.6 ⁇ 0.2.
  • the present application also provides a method for preparing the crystal form N of the rifafenib 1,5-naphthalene disulfonate, the method comprising: respectively forming a regent solvent of regorafenib and 1,5-naphthalenedisulfonic acid
  • the molar ratio of regorafenib to 1,5-naphthalenedisulfonic acid is 1: 1 ⁇ 2: 1, mixing two systems to form a suspension, at a temperature of -10 ° C to 50 ° C Crystallization is carried out to obtain the crystal form N.
  • the soluble solvent is preferably CH ⁇ alcohol, C 4 ⁇ C 5 ester, C K 4 ketone, decyl tert-butyl ether or n-heptane; the concentration of the soluble solvent solution of regorafenib is preferably The concentration of the soluble solvent solution in the soluble solvent at a crystallization temperature of 0.1 to 1 times, more preferably 0.5 to 1 times, of the 1,5-naphthalenedisulfonic acid is preferably at a crystallization temperature in a soluble solvent.
  • the molar ratio of regorafenib to 1,5-naphthalene disulfonic acid is preferably 2: 1.5 to 2: 1; preferably, the crystallization temperature is room temperature, and the crystallization time is 1 to 48. Hour, more preferably 1 to 10 hours.
  • the reggfenfenil 1,5-naphthalene disulfonate and its crystal form N of the present application have one or A variety of improved properties such as: higher solubility, dissolution rate, higher decomposition temperature and better storage stability.
  • the crystal form N of the Rifafenib 1,5-naphthalene disulfonate has the following beneficial effects:
  • the fourth content of the present application is to provide rifafenib ethanedisulfonate and its crystal form, and a preparation method thereof.
  • the retic ethanedisulfonate provided by the present application is a compound formed by a 2:1 molar ratio of regorafenib and ethanedisulfonate, and its structural formula
  • the present application provides a method for preparing the regorafenib sulphonate, comprising the steps of: respectively forming a solution system of regorafenib and ethanedisulfonic acid in a soluble solvent, regorafenib and ethanedisulfonate
  • the molar ratio of the acid is 1:1 to 2:1, and the two systems are mixed to form a suspension, and the solvent is removed to obtain the reggfenibene ethanedisulfonate;
  • the soluble solvent is an alcohol or an ester. , ketones, ethers or alkanes; preferably, the soluble solvent is removed by filtration.
  • the present application provides crystal form E of rifafenibethane disulfonate having an X-ray powder diffraction pattern of 10.6 ⁇ 0.2 at 2 Torr. 12.1 ⁇ 0.2. , 17.0 ⁇ 0.2. 18.1 ⁇ 0.2. 22.7 ⁇ 0.2. And 23.6. ⁇ 0.2.
  • X-ray powder diffraction pattern is 10.6 ⁇ 0.2 at 2 ⁇ . 12.1 ⁇ 0.2. 14.1 ⁇ 0.2. 15.8 ⁇ 0.2. 17.0 ⁇ 0.2. 18.1 ⁇ 0.2 °, 20.1 ⁇ 0.2 °, 21.3 ⁇ 0.2 °, 22.7 ⁇ 0.2 °, 23.6 ⁇ 0.2. 24.3 ⁇ 0.2. And 27.8 ⁇ 0.2.
  • the X-ray powder diffraction pattern is basically 2 ⁇ characteristic peaks and their relative intensities are as follows:
  • the present application also provides a method for preparing the crystal form E of regorafenib sulphonate, the method comprising: respectively forming a solution system of regorafenib and ethanedisulfonic acid in a soluble solvent, Regigo The molar ratio of nitrite to ethanedisulfonic acid is 1:1 to 2:1, and the two systems are mixed to form a suspension, which is crystallized at a temperature of -10 ° C to 50 ° C to obtain the crystal form E.
  • the soluble solvent is preferably a C ⁇ CA alcohols, C 4 ⁇ C 5 esters, C 3 ⁇ C 4-one, Yue tert-butyl ether or n-heptane; concentration of soluble solvent solution is preferably regorafenib
  • concentration of soluble solvent solution is preferably regorafenib
  • the solubility in the soluble solvent is 0.1 to 1 times, more preferably 0.5 to 1 time at the crystallization temperature; the concentration of the soluble solvent solution of ethanedisulfonic acid is preferably in the soluble solvent at the crystallization temperature 0.5 to 1 times the solubility, the molar ratio of regorafenib to ethanedisulfonic acid is preferably 2: 1.5 to 2: 1; preferably, the crystallization temperature is room temperature, and the crystallization time is 1 to 48 hours, more preferably 1 ⁇ 10 hours.
  • the regefefenil disulfonate and its crystal form E of the present application have one or more improvements. Properties such as: higher solubility, dissolution rate, higher decomposition temperature and better storage stability.
  • a fifth aspect of the present application is to provide a reggfinib hydrobromide salt and a crystal form thereof, and a process for the preparation thereof.
  • the regorafenib hydrobromide provided by the present application is a compound formed by the ratio of regorafenib and hydrobromide in a molar ratio of 1:1, and the structural formula is as follows:
  • the present application provides a preparation method of the reggfenfen hydrobromide, comprising the following steps: respectively forming a solution system of regorafenib and hydrobromic acid in a soluble solvent, and a molar ratio of regorafenib and hydrobromic acid The ratio is 1:1 to 1:2, and the two systems are mixed to form a suspension, and the solvent is removed to obtain the reggfenibine hydrobromide; preferably, the soluble solvent is an alcohol, a ketone or an alkane; The soluble solvent is removed by filtration.
  • the present application provides rifafenib hydrobromide crystal form HI having an X-ray powder diffraction pattern of 5.1 ⁇ 0.2 °, 10.1 ⁇ 0.2 °, 15.1 ⁇ 0.2 °, 18.2 ⁇ 0.2 °, 19.5 ⁇ 0.2 ° and 24.8.
  • the present application also provides a method for preparing the regentifene hydrobromide crystal form HI, the method comprising: respectively forming a solution system of regorafenib and hydrobromic acid in a soluble solvent, regorafenib and The molar ratio of hydrobromic acid is 1:1 to 1:2, and the two systems are mixed to form a suspension, which is crystallized at a temperature of -10 ° C to 50 ° C to obtain the crystal form H1.
  • the soluble solvent is preferably a Cr ⁇ C alcohol, a C 3 -C 4 ketone or n-heptane; a degree of 0.1 to 1 times, more preferably 0.5 to 1 times; a concentration of a soluble solvent solution of hydrobromic acid is preferably It has a solubility of 0.5 to 1 times in a soluble solvent at a crystallization temperature; a molar ratio of regorafenib to hydrobromide is preferred The ratio is 1:1 to 1:1.5; preferably, the crystallization temperature is room temperature, and the crystallization time is 1 to 48 hours, more preferably 1 to 10 hours.
  • the reggfenfen hydrobromide and its crystalline form m of the present application have one or more improved properties compared to the known regorafenib monohydrate and its crystalline form. For example: higher solubility, dissolution rate and better storage stability.
  • the present application provides a regent feneride hydrobromide crystal form H2 having an X-ray powder diffraction pattern of 20.6 ⁇ 0.2°, 12.0 ⁇ 0.2°, 16.8 ⁇ 0.2°, 19.2 ⁇ 0.2°, 21.3 ⁇ 0.2° and 24.4.
  • the characteristic peak at 0.2°; further, the X-ray powder diffraction pattern is 10.6 ⁇ 0.2 at 2 ⁇ . , 12.0 ⁇ 0.2. , 16.8 ⁇ 0.2. 17.0 ⁇ 0.2. , 18.9 ⁇ 0.2. 19.2 ⁇ 0.2. 20.2 ⁇ 0.2°, 20.5 ⁇ 0.2. 21.3 ⁇ 0.2°, 24.1 ⁇ 0.2. 24.4 ⁇ 0.2. , 25.7 ⁇ 0.2. And 26.5 ⁇ 0.2.
  • the present application provides a method for preparing the reggaefenic acid hydrobromide crystal form H2, the method comprising: forming a suspension of the ragefibrin hydrobromide crystal form m in a solvent, the suspension Crystallization was carried out at a temperature of -io °c ⁇ 50 °c to obtain the crystal form H2.
  • the solvent is selected from the group consisting of ethyl acetate, mercapto tert-butyl ether or a mixture thereof;
  • the amount of the rigafibrin hydrobromide crystal form HI is preferably 1.1 of its solubility in the solvent system at the crystallization temperature. It is preferably 20 times, more preferably 1.5 to 10 times; preferably, the crystallization temperature is room temperature, and the crystallization time is 1 to 72 hours, more preferably 1 to 10 hours.
  • the reggfenfen hydrobromide and its crystalline form H2 of the present application have one or more improved properties compared to the known regorafenib monohydrate and its crystalline form. For example: higher solubility, dissolution rate and better storage stability.
  • the Reggfenibine ethyl sulfonate form H2 has the following beneficial effects:
  • the sigroginib hydrobromide crystal form H2 is a homomorphic crystal of the sigroginib hydrobromide crystal form HI, the properties of which are substantially the same, have a higher decomposition temperature, in the dodecyl group In the presence of sodium sulphate (SDS), it has a better solubilizing effect relative to rifafinib monohydrate and its crystal form.
  • SDS sodium sulphate
  • a sixth aspect of the present application is to provide rifafenibethane sulfonate and a crystalline form thereof, and a process for the preparation thereof.
  • the rifafenibethane sulfonate provided by the present application is a compound formed by a 1:1 molar ratio of regorafenib and ethanesulfonate.
  • the present application provides a method for preparing the regorafenic acid ethyl sulfonate, comprising the steps of: respectively forming a solution system of regorafenib and ethanesulfonic acid in a soluble solvent, and a molar ratio of regorafenib and ethanesulfonic acid The ratio is 1:1 ⁇ 1:2, the two systems are mixed to form a suspension, and the solvent is removed to obtain the reggfenibine sulfonate; preferably, the soluble solvent is an ester, an alcohol or a ketone; Preferably, the soluble solvent is removed by filtration.
  • the present application provides a crystalline form of rifafenibethane sulfonate Etl having an X-ray powder diffraction pattern of 8.2 ⁇ 0.2 at 2 Torr. , 8.9 ⁇ 0.2. , 13.0 ⁇ 0.2. 18.8 ⁇ 0.2. 23.6 ⁇ 0.2. And 24.6 ⁇ 0.2.
  • the X-ray powder diffraction pattern is 8.2 ⁇ 0.2 °, 8.9 ⁇ 0.2 °, 12.2 ⁇ 0.2 °, 13.0 ⁇ 0.2 °, 14.4 ⁇ 0.2 °, 16.2 ⁇ 0.2 °, 17.9 ⁇ 0.2 °, 18.8 ⁇ 0.2 °, 20.1 ⁇ 0.2 °, 22.0 ⁇ 0.2. 23.6 ⁇ 0.2. And 24.6 ⁇ 0.2.
  • There are characteristic peaks; further, the 2 ⁇ characteristic peaks of the X-ray powder diffraction pattern and their relative intensities are as follows:
  • the present application also provides a method for preparing the regentinilethane sulfonate crystal form Etl, the method comprising: respectively forming a solution system of regorafenib and ethanesulfonic acid in a soluble solvent, regorafenib and The molar ratio of ethanesulfonic acid was 1:1 to 1:2, and the two systems were mixed to form a suspension, which was subjected to crystallization at a temperature of -10 ° C to 50 ° C to obtain the crystal form Etl.
  • the soluble solvent is preferably a Cr ⁇ C alcohol, a C 3 ⁇ C 4 ketone or a C 4 ⁇ C 5 ester; the concentration of the soluble solvent solution of regorafenib is preferably at a crystallization temperature in a soluble solvent.
  • the solubility is 0.1 to 1 times, more preferably 0.5 to 1 time; the concentration of the soluble solvent solution of ethanesulfonic acid is preferably 0.5 to 1 times the solubility in a soluble solvent at the crystallization temperature;
  • the molar ratio of ethanesulfonic acid is preferably 1:1 to 1:1.5; preferably, the crystallization temperature is room temperature, and the crystallization time is from 1 to 48 hours, more preferably from 1 to 10 hours.
  • the reggfenfenate salt of the present application and its crystal form Etl have one or more improved properties. For example, higher solubility, dissolution rate, higher decomposition temperature and better storage stability.
  • the present application provides a method for preparing the Riegfried Ethylsulfonate crystal form Et2, the method comprising: forming a suspension of the Reggfenibine ethyl sulfonate form Etl in a solvent, the suspension Crystallization was carried out at -10 ° C to 50 ° C to obtain the crystal form Et 2 .
  • the solvent is selected from the group consisting of mercapto tert-butyl ether, n-heptane or a mixture thereof; the amount of the reggfenibene ethyl sulfonate crystal form Etl is preferably 1.1 of the solubility in the solvent system at the crystallization temperature.
  • the crystallization temperature is room temperature
  • the crystallization time is 1 to 72 hours, more preferably 1 to 10 hours.
  • the reggfenfen hydrobromide and its crystal Et2 of the present application have one or more improved properties, For example: higher solubility, dissolution rate and better storage stability.
  • the reggfene ethanesulfonate crystal form Et2 has the following beneficial effects:
  • the sigroginib hydrobromide crystal form Et2 is a homomorphic crystal of the Reggfenib hydrobromide crystal form Etl, and the properties of the two are substantially the same, and have a higher decomposition temperature in the dodecyl group. In the presence of sodium sulphate (SDS), it has a better solubilizing effect relative to rifafinib monohydrate and its crystal form.
  • SDS sodium sulphate
  • the present application provides Regafinil 2-naphthalenesulfonate, which is formed by a ratio of 1 : 1 of regorafenib and 2-naphthalenesulfonic acid.
  • the crystal form of the Regfini-N-naphthalene sulfonate salt Na has an X-ray powder diffraction pattern of 4.7 ⁇ 0.2 at 2 Torr. , 13.7 ⁇ 0.2. , 16.4 ⁇ 0.2. , 18.0 ⁇ 0.2. 20.2 ⁇ 0.2. And 21.9 ⁇ 0.2.
  • the characteristic peak is further characterized by an X-ray powder diffraction pattern of 4.7 ⁇ 0.2 at 2 Torr. , 10.5 ⁇ 0.2.
  • the present application provides a method for preparing the Rifafinib 2-naphthalene sulfonate crystalline form Na, the method comprising: respectively forming a solution system of regorafenib and 2-naphthalenesulfonic acid in a soluble solvent, Regal The molar ratio of fenidazole to 2-naphthalenesulfonic acid is 1:1 ⁇ 1:2, the two systems are mixed, and the mixture is stirred at -10 ° C to 50 ° C to remove the soluble solvent, and the positive glucan is added. The alkane forms a suspension, and the suspension is crystallized at -10 ° C to 50 ° C to obtain the crystalline form Na.
  • the soluble solvent is preferably CH ⁇ alcohol, C 4 ⁇ C 5 ester, C 3 ⁇ C 4 ketone or decyl tert-butyl ether; the amount of regorafenib is preferably in a soluble solvent at the crystallization temperature Solubility
  • n-heptane is preferably used in an amount of 0.1 to 0.5 times that of the Regginib soluble solvent
  • 2-naphthalenesulfonic acid is preferably used in the crystallization temperature.
  • the solubility in the solvent is 0.5 to 1 times; the molar ratio of regorafenib to 2-naphthalenesulfonic acid is preferably 1:1 to 1:1.5; and the mixture is preferably stirred at room temperature for 1 minute to 48 hours, more preferably 1 to 10 hours; the suspension is preferably stirred at room temperature for 1 to 48 hours, more preferably 1 to 10 hours.
  • the Riegfried 2-naphthalene sulfonate crystalline form Na of the present application has one or more improved properties compared to the known regorafenib monohydrate and its crystalline form. For example: higher solubility, dissolution rate, higher decomposition temperature and better storage stability.
  • the crystal form Na of the Regfinene 2-naphthalene sulfonate has the following beneficial effects:
  • room temperature means a temperature of about 10 to 30 °C.
  • the stirring can be carried out by a conventional method in the art, such as magnetic stirring, mechanical stirring, etc., and the stirring speed is 50 to 1800 rpm, preferably 300 to 900 rpm.
  • the removal of the solvent can be accomplished by conventional techniques in the art, such as filtration, centrifugation or evaporation.
  • the filtration is generally carried out at room temperature under a pressure of less than atmospheric pressure, preferably at a pressure of less than 0.09 MPa.
  • the specific operation of the centrifugation is as follows: The sample to be separated is placed in a centrifuge tube and centrifuged at a rate of 6000 rpm until the solids all sink to the bottom of the centrifuge tube.
  • the evaporation can be carried out at about 20 to 40 ° C under atmospheric pressure or under vacuum, or by evaporation with an inert gas stream.
  • the solvent removal step is carried out for suspension agitation, the solvent is preferably removed by filtration.
  • the various crystal forms obtained in the above methods can be further dried.
  • the drying can be carried out by conventional techniques in the art, such as drying at room temperature, drying by air or drying under reduced pressure, in a fume hood, a blast oven or a vacuum oven; it can be carried out under reduced pressure or without decompression, Preferably the pressure is less than
  • drying temperature is about 30 to 50 ° C; drying time is 10 to 72 hours, preferably 10 to 48 hours, more preferably 10 to 24 hours.
  • the volatilization is a crystallization mode used in the present application, and a solid is obtained by removing the solvent.
  • the evaporation apparatus used is, for example, a rotary evaporator, an evacuated evaporation system, a nitrogen-blowing type evaporation system, or a vortex vacuum evaporation system.
  • the ultrasound can promote dissolution of the sample by: placing the container containing the sample suspension in an ultrasonic cleaner, sonicating at a power of 20 Khz to 40 Khz for 1 to 30 minutes, preferably at 40 Khz for 5 minutes.
  • the starting material, regorafenide free base in the present application can be prepared by the method described in Example 1 of the patent document WO2005/009961, which is incorporated herein by reference.
  • the present application provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically and/or prophylactically effective amount of one or more of the Regafinil salts and crystalline forms thereof, and at least one pharmaceutically acceptable Accepted carrier.
  • the regorafenib salt and its crystal form are selected from the group consisting of rifafenib-p-nonylbenzenesulfonate, rifafenib-p-nonylbenzenesulfonate crystal form T, regorafenib p-chlorobenzenesulfonate Acid salt, rifafenib p-chlorobenzene sulfonate crystal form (, regorafenib 1,5-naphthalene disulfonate, regorafenib 1,5-naphthalene disulfonate crystal form N, Regal Non-niobetic acid disulfonate, rifafenib ethy
  • the carrier in the pharmaceutical composition includes sugars, cellulose and derivatives thereof, starch or modified starch, solid inorganic substances such as calcium phosphate, dicalcium phosphate, hydroxyl tracheite, calcium sulfate, calcium carbonate, semi-solid Such as lipid or paraffin, binders such as microcrystalline cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl decyl cellulose, hydroxyethyl cellulose, glidants such as colloidal silica, Light anhydrous silicic acid, crystalline cellulose, talc or magnesium stearate, disintegrating agents such as sodium starch glycolate, crospovidone, croscarmellose, sodium carboxymethyl cellulose, dried corn Starch, lubricants such as stearic acid, magnesium stearate, sodium stearyl fumarate, polyethylene glycol.
  • solid inorganic substances such as calcium phosphate, dicalcium phosphate, hydroxyl tracheite, calcium s
  • the pharmaceutically acceptable carrier in the pharmaceutical composition includes, but is not limited to, a diluent such as starch, modified starch, lactose, powdered cellulose, microcrystalline cellulose, anhydrous calcium hydrogen phosphate, tricalcium phosphate, Mannitol, sorbitol, sugar, etc.; binders such as acacia, guar gum, gelatin, polyvinylpyrrolidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene glycol, copolyvidone, etc.
  • a diluent such as starch, modified starch, lactose, powdered cellulose, microcrystalline cellulose, anhydrous calcium hydrogen phosphate, tricalcium phosphate, Mannitol, sorbitol, sugar, etc.
  • binders such as acacia, guar gum, gelatin, polyvinylpyrrolidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene glycol, copo
  • a disintegrating agent such as starch, sodium carboxymethyl starch, sodium starch glycolate, pregelatinized starch, crospovidone, croscarmellose sodium, colloidal silica, etc.
  • lubricant such as hard a fatty acid, magnesium stearate, zinc stearate, sodium benzoate, sodium acetate, etc.
  • a glidant such as colloidal silica
  • a complex forming agent such as various grades of cyclodextrin and a resin
  • a speed controlling agent such as hydroxypropylcellulose, hydroxydecylcellulose, hydroxypropylmethylcellulose, ethylcellulose, decylcellulose, decyl decyl acrylate, wax, and the like.
  • Other pharmaceutically acceptable carriers that may be used include, but are not limited to, film formers, plasticizers, colorants, flavoring agents, viscosity modifiers, preservatives, antioxidants, and the like.
  • the pharmaceutical composition may be in a solid or liquid form, such as a solid oral dosage form, including tablets, granules, powders, pills, and capsules; liquid oral dosage forms, including solutions, syrups, suspensions, dispersions, and emulsions. Injectable preparations, including solutions, dispersions, and lyophilizates.
  • the formulation may be adapted for rapid release, delayed release or modified release of the active ingredient. It may be a conventional, dispersible, chewable, orally dissolved or rapidly melted formulation.
  • the administration route includes oral, intravenous, subcutaneous injection, transdermal administration, rectal administration, intranasal administration, sublingual administration and the like. Ready.
  • one or more of the Regfininines salts or crystalline forms thereof of the present application are mixed with one or more pharmaceutically acceptable carriers, optionally with one or more
  • the other pharmaceutically active ingredients are mixed.
  • the solid preparation can be prepared by a process such as direct mixing, granulation, or the like.
  • the present application provides a reggfenibine salt of the present application or a crystalline form thereof, or a pharmaceutical composition comprising the above-described regorafenib salt or a crystalline form thereof, for the preparation of a medicament for the treatment and/or prevention of a hyperproliferative disorder Use, wherein the hyperproliferative disorder is selected from the group consisting of a solid tumor, a lymphoma, a sarcoma, a leukemia, a breast cancer, a respiratory cancer, a brain cancer, a genital cancer, a digestive tract cancer, a urinary tract cancer, an eye cancer, a liver cancer, a skin cancer, Head and neck cancer, squamous adenocarcinoma and/or parasitic adenocarcinoma, especially metastatic colorectal cancer.
  • the hyperproliferative disorder is selected from the group consisting of a solid tumor, a lymphoma, a sarcoma, a leukemia,
  • regorafenib salt and its crystal form are regorafenib-p-nonylbenzenesulfonate, regorafenib-p-nonylbenzenesulfonate crystal form T, regorafenib p-chlorobenzenesulfonate , regium fentanyl p-chlorobenzene sulfonate crystal form C, regorafenib 1,5-naphthalene disulfonate, regorafenib 1,5-naphthalene disulfonate N, regorafenib Sulfonate, regorafenib ethanesulfonate E, regorafenib hydrobromide, rigaginib hydrobromide Hl, reguginib hydrobromide H2, reguginib hydrobromide Acid salt, reguginibethane sulfonate, rifafeni
  • the present application provides a method of treating a hyperproliferative disorder comprising administering to a patient a therapeutically and/or prophylactically effective amount of one or more of the Regafinil salts of the present application or a crystalline form thereof or the foregoing comprising the present application a pharmaceutical composition of the gefini salt or a crystalline form thereof, wherein the reggfenibine salt and its crystalline form include, but are not limited to, regorafenib p-nonylbenzenesulfonate, regorafenib p-nonylbenzenesulfonate Acid crystal form T, regorafenib p-chlorobenzene sulfonate, regorafenib p-chlorobenzene sulfonate crystal form C, regorafenib 1,5-naphthalene disulfonate, regorafenil 1 , 5-naphthalenedisulfonate N, regor
  • Figure 1 is an XRPD pattern of regorafenib prepared according to Example 1 of WO2005/009961.
  • Figure 2 is an XRPD pattern of the crystalline form of regorafenib monohydrate.
  • Figure 3 is a PLM diagram of the crystalline form of regorafenib monohydrate.
  • Figure 4 is a TGA diagram of the crystalline form of regorafenib monohydrate.
  • Figure 5 is a DSC chart of the crystalline form of regorafenib monohydrate.
  • Figure 6 is an isothermal adsorption curve of the crystalline form of regorafenib monohydrate.
  • Figure 7 is an XRPD pattern of rifafenib versus mercaptobenzenesulfonate Form T.
  • Figure 8 is a PLM diagram of the crystal form T of rifigninib versus mercaptobenzenesulfonate.
  • Figure 9 is a TGA diagram of the crystal form T of rifigninib versus mercaptobenzenesulfonate.
  • Figure 10 is a DSC chart of the crystal form T of rifigninib versus mercaptobenzenesulfonate.
  • Figure 11 is an isotherm adsorption curve of rifafenib for the mercaptobenzene sulfonate form T.
  • Figure 12 is an XRPD pattern of rifafenib p-chlorobenzenesulfonate Form C.
  • Figure 13 is a PLM diagram of the crystal form C of rifafenib p-chlorobenzenesulfonate.
  • Figure 14 is a TGA diagram of the crystal form C of rifafenib p-chlorobenzenesulfonate.
  • Figure 15 is a DSC chart of the crystal form C of rifafenib p-chlorobenzenesulfonate.
  • Figure 16 is an isotherm adsorption curve of rifafenib p-chlorobenzenesulfonate crystal form C.
  • Figure 17 is an XRPD pattern of crystalline form N of 1,5-naphthalene disulfonate of regorafenib.
  • Figure 18 is a PLM diagram of the crystalline form N of 1,5-naphthalene disulfonate of regorafenib.
  • Figure 19 is a TGA diagram of crystal form N of 1,5-naphthalene disulfonate of regorafenib.
  • Figure 20 is a DSC chart of the crystalline form N of 1,5-naphthalene disulfonate of regorafenib.
  • Figure 21 is an isotherm adsorption curve of the crystalline form N of 1,5-naphthalene disulfonate of regorafenib.
  • Figure 22 is an XRPD pattern of the crystal form E of rifafenib ethylene disulfonate.
  • Figure 23 is a PLM diagram of crystal form E of regorafenibethane disulfonate.
  • Figure 24 is a TGA diagram of crystal form E of regorafenibethane disulfonate.
  • Figure 25 is a DSC chart of crystal form E of regorafenibethane disulfonate.
  • Figure 26 is an isotherm adsorption curve of crystal form E of regorafenibethane disulfonate.
  • Figure 27 is an XRPD pattern of the ergfinib hydrobromide crystal form HI.
  • Figure 28 is a PLM diagram of rifafenib hydrobromide crystal form HI.
  • Figure 29 is a TGA diagram of the geigerfinil hydrobromide crystal form HI.
  • Figure 30 is a DSC chart of the ergfinib hydrobromide crystal form HI.
  • Figure 31 is an isotherm adsorption curve for the HI of the rifafenib hydrobromide crystal form.
  • Figure 32 is an XRPD pattern of the Reggfenib Hydrobromide Form H2.
  • Figure 33 is an XRPD pattern of the rifafenibine salt form Etl.
  • Figure 34 is a PLM diagram of the rifafenibine salt form Etl.
  • Figure 35 is a TGA diagram of the rifafenibine salt form Etl.
  • Figure 36 is a DSC chart of the crystal form Erl of the rifafenibine sulfonate.
  • Figure 37 is an isotherm adsorption curve of the crystal form Etl of the rifafenibine sulfonate.
  • Figure 38 is an XRPD pattern of the rifafenibine salt form Et2.
  • Figure 39 is an XRPD pattern of the crystalline form Na of 2-naphthylsulfonate of regorafenib.
  • Figure 40 is a PLM diagram of the crystalline form Na of 2-naphthylsulfonate of regorafenib.
  • Figure 41 is a TGA diagram of the crystalline form Na of 2-naphthylsulfonate of regorafenib.
  • Figure 42 is a DSC chart of the crystalline form Na of 2-naphthylsulfonate of regorafenib.
  • Figure 43 is an isotherm adsorption curve of the crystalline form Na of 2-naphthylsulfonate of regorafenib. detailed description
  • X-ray powder diffraction ( XPRD )
  • the instrument used was a Bruker D8 Advance diffractometer with a Ka X-ray with a copper target wavelength of 1.54 nm, a 40 kV and 40 mA operating condition, a ⁇ -2 ⁇ goniometer, Mo single. Colorimeter, Lynxeye detector.
  • the instrument was tested with diamond sand before use.
  • the collection software is a Diffrac Plus XRD Commanded sample that is tested at room temperature and the sample to be tested is placed on a non-reflective sheet.
  • Detailed test conditions are as follows, angle range: 3-40 ° 2 ⁇ , step size: 0.02 ° 2 ⁇ , speed: 0.2 sec / step. Samples were not ground prior to testing unless otherwise stated.
  • the Polarized Light Microscope (PLM) spectrum is derived from a ⁇ -500 ⁇ polarized light microscope (Shanghai Changfang Optical Instrument Co., Ltd.). Take a small amount of powder sample on the glass slide, add a small amount of mineral oil to better disperse the powder sample, cover the cover glass, and then place the sample on a ⁇ -500 ⁇ polarized light microscope (Shanghai Changfang Optical Instrument Co., Ltd.) On the stage, select the appropriate magnification to observe the shape of the sample and take a picture.
  • PLM Polarized Light Microscope
  • the differential thermal analysis (DSC) data is from the TA Instruments Q200 MDSC, the instrument control software is Thermal Advantage, and the analysis software is Universal Analysis. Usually take 1 - 10 mg of the sample and place it in an aluminum crucible with a punched hole (unless otherwise specified). The sample is raised from room temperature to a temperature of 10 ° C / min under the protection of 50 ml / min dry N 2 . At 200 °C or 300 °C, the TA software records the change in heat during the temperature rise of the sample. In the present invention, the melting point is reported as the starting temperature.
  • thermogravimetric analysis (TGA) data is from the TA Instruments Q500 TGA, the instrument control software is Thermal Advantage, and the analysis software is Universal Analysis. Usually 5-15 mg of the sample is placed in a platinum crucible, and the sample is lifted from room temperature to a temperature of 10 ° C / min under the protection of 50 ml / min dry N 2 at a temperature increase rate of 10 ° C / min. At 300 °C, the TA software records the change in weight of the sample during the heating process.
  • the dynamic moisture adsorption analysis (DVS) data is from the TA Instruments Q5000 TGA, the instrument control software is Thermal Advantage, and the analysis software is Universal Analysis.
  • the TA software records the sample.
  • the isothermal adsorption curve is plotted for the change in weight during the change in relative humidity from 0% to 80% to 0%. Depending on the sample, different adsorption and desorption steps are applied to the sample.
  • Nuclear magnetic analysis (ifiNMR) data was obtained from Bruker Ascend Tm 500. Usually use full frequency excitation, 30PPM, single pulse, 30. Angle excitation, scanning 16 times, digital orthogonal detection, temperature control 298K:.
  • the HPLC analysis data is from the Agilent 1260, the instrument control software is Agilent ChemStation B.04 online, and the analysis software is Agilent ChemStation B.04 offline. ⁇ C18 column, 150mm*4.6mm, column temperature 25 °C, wavelength 220nm, flow rate 1.3ml/min, injection volume 5ul, running time 15min.
  • Mobile phase A is water with 0.05% TFA and mobile phase B is acetonitrile.
  • the gradient is as follows:
  • the temperature in the examples is room temperature unless otherwise specified.
  • Example 1 The prepared sample was substantially identical to the X-ray powder diffraction pattern of Reggfenib Form I disclosed in WO2008/058644.
  • the X-ray powder diffraction pattern is shown in Figure 2.
  • the X-ray powder diffraction pattern of the regorafenib monohydrate disclosed in WO 2008/043446 is substantially the same.
  • the PLM map is shown in Figure 3. Display: Small rod crystals.
  • the TGA map is shown in Figure 4. Display: 4.3% weight loss before 150 °C, decomposition temperature is 211 °C.
  • the X-ray powder diffraction pattern is shown in Fig. 7.
  • the PLM map is shown in Figure 8.
  • the TGA map is shown in Figure 9. Display: Form T decomposition temperature is 238 °C.
  • the isothermal adsorption curve is shown in Figure 11. Display: 20% RH ⁇ 80% RH weight change is 0.04%.
  • the crystal form T is very stable at high temperature, is not easy to absorb moisture, and has a good morphology.
  • the regorafenide prepared in Example 1 was placed in a 50 ml glass bottle, and 28 ml of hydrazine was added. Ultrasonic dissolution after alcohol; weigh 0.45g p-nonylbenzenesulfonic acid in another 20ml glass bottle, add 6ml sterol and ultrasonically dissolve; add decyl benzenesulfonic acid sterol solution to the mixture under stirring After stirring at room temperature for 1 hour, a white solid was precipitated and filtered, decyl alcohol was washed three times, and vacuum dried at 50 ° C for 10 hours to obtain a crystal form of rifafenib-nonylbenzenesulfonate. T. The yield was 1.24 g and the yield was 90.5%.
  • Example 1 1. OOg of the rifafinib prepared in Example 1 was placed in a 250 ml round bottom flask, and 120 ml of ethyl acetate was added thereto, followed by ultrasonic dissolution; 0.54 g of p-nonylbenzenesulfonic acid was weighed into another 20 ml glass vial, After adding 10 ml of ethyl acetate, the solution was sonicated; under stirring, the ethyl acetate solution of p-nonylbenzenesulfonic acid was added to the solution of rigaginib in ethyl acetate, and after stirring at room temperature for 5 hours, a white solid precipitated.
  • Example 14 1.70 g of the Riegfried prepared in Example 1 was weighed into a 100 ml round bottom flask, and dissolved by adding 60 ml of sec-butanol at 50 ° C; 0.68 g of p-chlorobenzenesulfonic acid was weighed into another 100 ml flask, and added. 2 ml of sec-butanol was sonicated; after stirring, a solution of sigroginib in sec-butanol was added dropwise to a solution of p-chlorobenzenesulfonic acid in sec-butanol, and after stirring at 50 ° C for 1 hour, a white solid precipitated.
  • the X-ray powder diffraction pattern is shown in Fig. 12.
  • the PLM map is shown in Figure 13.
  • the TGA map is shown in Figure 14.
  • the isothermal adsorption curve is shown in Figure 16. Display: 20% RH ⁇ 80% RH weight change is 0.38%. HPLC characterization showed that regorafenib and p-chlorobenzenesulfonic acid were salted at a molar ratio of 1:1.
  • the ethyl acetate was washed three times and dried under vacuum at 40 ° C for 10 hours to obtain the crystal form C of the sigroginib p-chlorobenzenesulfonate.
  • the yield was 1.21 g, and the yield was 85.6%.
  • Example 22 Weighed 1.OOg of the rifafinib prepared in Example 1 in a 150 ml round bottom flask, and dissolved in 75 ml of butanone; weighed 0.40 g of p-chlorobenzenesulfonic acid in another 150 ml flask, and added 6 ml of methyl ethyl ketone. Ultrasonic solution; Under stirring, the solution of rifafenib in methyl ethyl ketone was added dropwise to the solution of p-chlorobenzenesulfonic acid in methyl ethyl ketone. After stirring at -10 ° C for 7 hours, a white solid precipitated and stirring was continued for 41 hours.
  • the X-ray powder diffraction pattern is shown in Fig. 17.
  • Display Regentinol 1,5-naphthalene disulfonate crystal form ⁇ PLM map shown in Figure 18.
  • the TGA map is shown in Figure 19.
  • the isothermal adsorption curve is shown in Figure 21. Display: 20% RH ⁇ 80% RH weight change is 3.77%. HPLC characterization showed that regorafenib and 1,5-naphthalenedisulfonic acid were salted in a 2:1 molar ratio.
  • the decyl alcohol was washed three times and dried under vacuum at 40 ° C for 16 hours to obtain a crystal form N of repaginib 1,5-naphthalene disulfonate.
  • the yield was 1.09 g, and the yield was 83.1%.
  • HPLC characterization showed that regorafenib and ethanedisulfonic acid were salted at a molar ratio of 2:1.
  • the PLM map is shown in Figure 23. Display: Small particle crystals.
  • the TGA map is shown in Figure 24. Display: Form E loses 1.12% before 150 °C and decomposes at 234 °C.
  • the isothermal adsorption curve is shown in Fig. 26. Display: 20% RH ⁇ 80% RH weight change is 0.89%.
  • HPLC characterization showed that regorafenib and ethanedisulfonic acid were salted at a molar ratio of 2:1.
  • the regorafenide prepared in Example 1 was dissolved in a 150 ml round bottom flask and dissolved in 60 ml of acetone; 0.26 g of ethanedisulfonic acid was weighed into another 20 ml glass vial, and 8 ml of acetone was added for ultrasonic dissolution. Under stirring, the acetone solution of ethanedisulfonic acid was added to the acetone solution of rifafenib. After stirring at room temperature for 1 hour, a white solid was precipitated. After stirring for 1 hour, it was filtered, washed three times with acetone, and dried at 40 ° C under vacuum. After 16 hours, the form E of rifafenibethane disulfonate was obtained. The yield was 1.15 g, and the yield was 95.1%.
  • the regorafenide prepared in Example 1 was dissolved in a 1 L round bottom flask, and 450 ml of decyl tert-butyl ether was added to dissolve; 0.20 g of ethanedisulfonic acid was weighed into another 20 ml glass vial, and added. 6ml of decyl-tert-butyl ether was sonicated; after stirring, the solution of decyl-tert-butyl ether of ethanedisulfonic acid was added to the solution of sagel tert-butyl ether of regorafenib, and stirred at -10 °C.
  • Fig. 27 The X-ray powder diffraction pattern is shown in Fig. 27. Display: Regafinib hydrobromide crystal form Hl.
  • the PLM map is shown in Figure 28. Display: Small particle crystals.
  • the TGA graphic is shown in Figure 29. Display: Crystal form HI loses 10.47% before 150 °C, and the decomposition temperature is 216 °C.
  • the DSC spectrum is shown in Figure 30. Display: Form HI begins to melt and decompose at 172 °C.
  • the isothermal adsorption curve is shown in Figure 31. Display: 20% RH ⁇ 80% RH weight change is 1.57%. HPLC characterization showed that regorafenib and hydrobromic acid were salted at a molar ratio of 1:1.
  • Example 50 Weighed 1.OOg Example 1 prepared rifafinib in a 250 ml round bottom flask, added 180 ml of isopropanol and sonicated; weighed 0.42 g of hydrobromic acid (concentration of 40% by weight) to another In a 250 ml flask, 8 ml of isopropanol was added and ultrasonically dissolved; under stirring, a solution of regorafenib in isopropanol was added dropwise to a solution of hydrobromic acid in isopropanol, and stirred at 50 ° C for 1 hour to precipitate white. The solid was filtered, washed with isopropyl alcohol three times, and dried under vacuum at 30 ° C for 72 hours to obtain 1.07 g of sig-fibene hydrogen bromide crystal form HI with a yield of 91.6%.
  • the solid was precipitated, and after stirring for further 38 hours, it was filtered, washed three times with n-heptane, and dried under vacuum at 50 ° C for 10 hours to obtain a sig-fibene hydrogen bromide crystal form H1.
  • the yield was 0.80 g, and the yield was 67.2%.
  • rigaginib hydrobromide crystal form HI prepared in Example 49 was placed in a 50 ml glass vial, and 20 ml of ethyl acetate was added. After stirring at room temperature for 72 hours, filtration and vacuum drying at 40 ° C for 10 hours, 0.30 g of a white solid was obtained with a yield of 96.8%.
  • Fig. 32 The X-ray powder diffraction pattern is shown in Fig. 32. Display: Regafinil hydrobromide crystal form H2.
  • Example 56 The ethyl acetate in Example 56 was replaced with mercapto tert-butyl ether, and the other operation was the same as in Example 56 to obtain the crystals of the sig-fibene hydrogen bromide, H2, yield 0.29 g, yield 93.5%.
  • HPLC characterization showed that regorafenib and ethanesulfonic acid were salted at a molar ratio of 1:1.
  • the mixture was further stirred for 1 hour, filtered, and washed with decyl-tert-butyl ether three times, and vacuum-dried at 40 ° C for 10 hours to obtain a yield of 1.12 g of repellamide, and a yield of 70.2%.
  • the X-ray powder diffraction pattern is shown in Fig. 33.
  • the PLM map is shown in Figure 34.
  • the TGA graphic is shown in Figure 35. Display: Form Etl loses 0.45% before 150 °C and decomposes at 224 °C.
  • the isothermal adsorption curve is shown in Figure 37. Display: 20% RH ⁇ 80% RH weight change is 0.54%. HPLC characterization showed that regorafenib and ethanesulfonic acid were salted at a molar ratio of 1:1.
  • the regorafenide free base prepared in Example 1 was placed in a 250 ml round bottom flask, and dissolved in 120 ml of ethyl acetate, and sonicated; 0.23 g of ethanesulfonic acid was weighed into another 250 ml flask.
  • the regorafenide free base prepared in Example 1 was placed in a 50 ml round bottom flask, and ultrasonically dissolved after adding 25 ml of ethanol; 0.46 g of ethanesulfonic acid was weighed into another 5 ml glass vial, and added. 2ml ethanol was sonicated; under stirring, the ethanol solution of ethanesulfonic acid was added dropwise to the ethanol solution of rifafenib. After stirring at room temperature for 5 hours, a white solid precipitated. After stirring for 1 hour, it was filtered and washed three times with ethanol. Drying at 40 ° C for 72 hours under vacuum gave a regentinil ethyl sulfonate crystal form Etl. The yield was 1.19 g, and the yield was 95.9%.
  • the regorafenide free base prepared in Example 1 was placed in a 500 ml round bottom flask, and ultrasonically dissolved after adding 215 ml of n-butanol; 0.35 g of ethanesulfonic acid was weighed into another 5 ml glass vial. Add 3 ml of n-butanol to dissolve ultrasonically; add n-butanol solution of ethanesulfonic acid to the n-butanol solution of rifafenib under stirring, and stir at 50 ° C for 15 hours to precipitate a white solid.
  • the regorafenide free base prepared in Example 1 was placed in a 250 ml round bottom flask, and dissolved in 120 ml of acetone, and sonicated; 0.24 g of ethanesulfonic acid was weighed into another 5 ml glass vial, and added. 4ml acetone was sonicated; under stirring, the acetone solution of ethanesulfonic acid was added dropwise to the acetone solution of rifafenib, and stirred at -10 °C for 2 hours, and a white solid was precipitated. After stirring for 46 hours, the mixture was filtered. The mixture was washed three times and dried under vacuum at 40 ° C for 10 hours to obtain a crystal form of reggfene ethanesulfonate. The yield was 1.15 g, and the yield was 92.7%.
  • Example 69 The mercapto tert-butyl ether of Example 67 was replaced with n-heptane, and the other operation was the same as that of Example 67 to obtain the crystals of the sig-fibene dimethanesulfonate form Et2, yield 0.31 g, yield 93.9%.
  • Example 69 The mercapto tert-butyl ether of Example 67 was replaced with n-heptane, and the other operation was the same as that of Example 67 to obtain the crystals of the sig-fibene dimethanesulfonate form Et2, yield 0.31 g, yield 93.9%.
  • Example 69 The mercapto tert-butyl ether of Example 67 was replaced with n-heptane, and the other operation was the same as that of Example 67 to obtain the crystals of the sig-fibene dimethanesulfonate form Et2, yield 0.31 g, yield 93.9%.
  • the X-ray powder diffraction pattern is shown in Figure 39.
  • the PLM map is shown in Figure 40.
  • the TGA map is shown in Figure 41. Display: Form Na is at a decomposition temperature of 235 °C.
  • the isothermal adsorption curve is shown in Figure 43. Display: 20% RH ⁇ 80% RH weight change is 0.26%. HPLC characterization showed that regorafenib and 2-naphthalenesulfonic acid were salted at a molar ratio of 1:1.
  • the regorafenide free base prepared in Example 1 was placed in a 250 ml round bottom flask and dissolved in 120 ml of ethyl acetate; 0.44 g of 2-naphthalenesulfonic acid was weighed into another 5 ml glass vial. Add 4ml of ethyl acetate to dissolve in the ultrasonic solution; add 2-ethyl naphthalenesulfonic acid in ethyl acetate solution to the ethyl acetate solution of regorafenib, stir at -10 ° C for 1 hour, and quickly evaporate and remove the solvent.
  • the white solid was immediately precipitated by adding 24 ml of n-heptane, and the mixture was stirred at room temperature for 1 hour, filtered, washed three times with ethyl acetate, and dried under vacuum at 40 ° C for 72 hours to obtain the Na-naphthalenesulfonate salt Na of rifafinib.
  • the yield was 1.28 g, and the yield was 88.5%.
  • the regorafenide free base prepared in Example 1 was placed in a 1 L round bottom flask and dissolved in 450 ml of decyl tert-butyl ether; 0.44 g of 2-naphthalenesulfonic acid was weighed into another 5 ml of glass.
  • 4 ml of decyl tert-butyl ether was added to dissolve ultrasonically; a solution of 2-naphthylsulfonic acid in decyl tert-butyl ether was added dropwise to the solution of sagel tert-butyl ether in rifafenib, and stirred at room temperature.
  • T-form of the invention the T-form of rifafenib-p-toluenesulfonate
  • Pluronic F-68 and adjust the pH as needed (H is adjusted to a small dose between 4-9, the large dose is as close as possible to the pH of normal human blood).
  • Dosage of sterile IV solution Dilute the above sterile IV solution to 2 mg with 5 % sterile dextrose
  • lyophilized powder Preparation of lyophilized powder: (i) 135-1350 mg of the lyophilized powder form of the T crystal form of the regium fentanyl p-nonylbenzene sulfonate, dissolved in an appropriate amount of water for injection, sterile filtration, Packed in amps, sealed after lyophilization, and checked for leaks.
  • Intravenous administration of lyophilized powder The lyophilized powder of the above-mentioned T-formed regorafenib-nonylbenzenesulfonate is reconstituted with sterile water for injection or 5% dextrose to a concentration of 21 mg/ml. Further, it was diluted with physiological saline or 5% dextrose into a 0.5 mg/ml solution, and administered by intravenous bolus or intravenous infusion for 15-60 minutes.
  • Rigginib 1,5-naphthalene disulfonate E crystal form regorafenib disulfonate, HI crystal form regorafenib hydrobromide, H2 crystal form regorafenib hydrobromide Salt, Etl crystal form of regorafenibine, Et2 crystal form of regorafenibine crystal form and Na crystal form of regorafenib 2-naphthalene sulfonate, in various salt forms in the formulation
  • the molar amount of the free base and the free base in the p-nonylbenzenesulfonate was the same, and the total amount of the filler and the salt form in the various salt formulations was the same as in Example 96, and the same operation as in Example 96.
  • the capsule particles were prepared by filling a conventional two-piece hard capsule. 100 mg of the powdered active ingredient regorafenib (ie 135 mg of the T-form of the invention, reguginib-nonylbenzenesulfonate) is mixed with 150 mg of lactose and 50 mg of cellulose, and then 6 mg of hard is added. Magnesium citrate, mixed and filled with capsules, that is. Examples 107-114
  • Rigginib 1,5-naphthalene disulfonate E crystal form regorafenib disulfonate, HI crystal form regorafenib hydrobromide, H2 crystal form regorafenib hydrobromide Salt, Etl crystal form of regorafenibine, Et2 crystal form of regorafenibine crystal form and Na crystal form of regorafenib 2-naphthalene sulfonate, in various salt forms in the formulation
  • the molar amount of the free base and the free base in the p-nonylbenzenesulfonate was the same, and the total amount of the filler and the salt form in the various salt formulations was the same as in Example 106, and the same operation as in Example 106.
  • Preparation of soft gelatin capsule Add gelatin, glycerin, preservative to water, stir and heat to about 80 °C to form a transparent glue. Add a light-proofing agent, coloring agent, etc. to the glue. The glue is kept at 60 ° C, and is ready for use; the T-form of the invention is prepared by adding the T-form of sigroginib to the terpene benzene sulfonate in vegetable oil such as soybean oil, cottonseed oil or olive oil, and uniformly forming the mixture.
  • the content of the suspension active soft gelatin of gramage active ingredient regorafenib (ie 135mgT crystal form reguginib p-nonylbenzene sulfonate); also can be used to convert T crystal form regomafenib to decyl benzene sulfonic acid
  • the salt is dissolved in a water-soluble liquid diluent such as polyethylene glycol to form a transparent water-soluble soft capsule content; the glue and the soft capsule content are input into the soft capsule by a pump to press the soft capsule. After the plastic bottle is dried and cleaned, it can meet the required soft plastic bottle.
  • a water-soluble liquid diluent such as polyethylene glycol
  • Preparation of tablets A large number of tablets were prepared by a conventional process. 100 mg of the active ingredient regorafenib (ie 135 mg of the T-form of the invention, reguginib p-nonylbenzenesulfonate), 98.8 mg of lactose, 11 mg of starch, 2 mg of sodium carboxymethyl starch and 275 mg
  • the microcrystalline cellulose is mixed in a mixer, granulated with water as a wetting agent, the wet granules are dried in an oven to a moisture content below 3%, and 2 mg of sodium carboxymethyl starch and 5 mg of stearin are added to the back dry granules.
  • Magnesium acid evenly mixed, determine the main drug component in the granules, determine the tablet weight, and compress. Examples 125-132
  • the molar amount of the free base in the free base and the p-nonylbenzenesulfonate was the same, and the total amount of the filler and the salt form in the various salt formulations was the same as in Example 133, and the same operation as in Example 133.
  • the weight change in the relative humidity range of 20%-80% RH is obtained by DVS detection.
  • Decomposition temperature comparison Obtained by TGA detection.
  • Morphology comparison Obtained by PLM detection.
  • Solubility comparison ⁇ was solubilized with sodium dodecylbenzene sulfonate in combination with HPLC detection. Take lOmg sample and 50mg sodium dodecylbenzene sulfonate in 20ml glass bottle, add 15ml deionized water, 40K z ultrasonic working power ultrasonic for 60min, sample and filter and dilute to 5ml volumetric flask, remove water, use The volume of acetonitrile was adjusted and the concentration was determined by HPLC. The results are shown in Table 1. Table 1 Comparison of performance of different grades of regorafenib

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及新型的瑞格非尼盐及其晶型,与已知的瑞格非尼一水合物及其晶型相比,本申请的瑞格非尼盐及其晶型具有一种或多种改进的特性。本申请还涉及所述瑞格非尼盐及其晶型的制备方法、其药物组合物、及其用于制备治疗转移性结肠直肠癌的药物中的用途。

Description

瑞格非尼盐晶型及其制备方法和用途 技术领域
本申请涉及药物化学结晶技术领域。 具体地, 涉及瑞格非尼盐及其晶型, 还涉及所述瑞格非尼盐及其晶型的制备方法、 其药物组合物和用途。 背景技术
瑞格非尼是 2012年 9月 27日 FDA批准的抗癌新药。 瑞格非尼是一个多 靶点的酪氨酸激酶抑制剂, 用于治疗转移性结肠直肠癌 (metastatic colorectal cancer)。 开发商是拜耳医药保健制药公司(Bayer Healthcare Pharmaceuticals)。 商品名为 Stivarga, 上市形式为瑞格非尼游离碱的一水合物。
瑞格非尼的英文名称为 Regorafenib, 又称为 BAY73-4506; 化学名称为 4-{4-[3-(4-氯 -3-三氟曱基苯基)-脲基] -3-氟苯氧基} -吡啶 -2-羧酸曱酰胺,分子式 为 C21H15C1F4N403; 分子量为 482.8; 化学结构式如下所示:
Figure imgf000002_0001
专利文献 WO2005/009961公开了瑞格非尼及其盐、 其制备方法和用途。 具体地, 实施例 1 公开了瑞格非尼及其制备方法, 并公开了其 iHNMR和 MS(HPLC/ES)数据。 实施例 2〜4公开了瑞格非尼的盐酸盐、 曱磺酸盐和苯磺 酸盐及其制备方法, 并公开了三种盐的熔点。
专利文献 WO2008/043446公开了瑞格非尼一水合物及其制备方法, 并公 开了其 X射线衍射图 (XRD )、 热重分析 /差热扫描分析图 (TGA/DSC )、 拉 曼光谱、 红外光语(IR ) 、 近红外光语 ( NIR ) 、 远红外光语 ( FIR )和 13C- 固态核磁共振波语 ( 13C-NMR ) 的表征数据, 该化合物的含水量为 3.6% (重 量) 。 瑞格非尼一水合物在制备药用组合物中显示高稳定性。
专利文献 WO2008/058644公开了瑞格非尼的晶型 II及其制备方法, 其熔 点为 181 °C , TGA显示失重 < 0.4%, 晶型 II的优点是在水中和有机溶剂中具 是瑞格非尼晶型 I, 其熔点 186〜206°C , TGA显示失重 < 0.4%。 该文献还公开 了瑞格非尼晶型 II及晶型 I的 XRD、 TGA/DSC、 拉曼光谱、 IR、 NIR、 FIR 和 13C-NMR的表征数据。
专利文献 WO2008/055629公开了瑞格非尼的晶型 III及其制备方法, 其 熔点为 141 °C , TGA显示失重 < 0.4%, 并公开了晶型 III的 XRD、 TGA/DSC、 拉曼光谱、 IR、 NIR、 FIR和 13C-NMR的表征数据, 晶型 ΠΙ的优点是在水中 和有机溶剂中具有高溶解性。 此外, 该专利文献还公开了瑞格非尼一水合物 转化为晶型 III的方式。
专利文献 WO2013/000917公开了瑞格非尼及其水合物、 溶剂化物及其医 药上可接受的盐或晶型, 制备用于治疗眼科疾病药物的应用, 但并没有公开 其医药上可接受的盐或晶型的制备或其表征数据。
本发明人研究发现: 瑞格非尼游离碱的晶型 I、 晶型 II、 晶型 III和瑞格 非尼一水合物的晶型均为疏水性的, 在水中溶解度极差; 瑞格非尼苯磺酸盐 在水中增溶效果差; 瑞格非尼曱磺酸盐在 20%〜80%相对湿度范围内重量变化 约 7.2%, 易吸水; 瑞格非尼盐酸盐在高温下不稳定, 140°C脱溶剂后, 会转变 为瑞格非尼游离碱。
因此, 本领域仍需要开发新的瑞格非尼盐及其晶型。 发明内容
本申请提供瑞格非尼盐及其晶型, 包括瑞格非尼对曱基苯磺酸盐、 瑞格 非尼对氯苯磺酸盐、 瑞格非尼 1,5-萘二磺酸盐、 瑞格非尼乙二磺酸盐、 瑞格非 尼氢溴酸盐、 瑞格非尼乙磺酸盐、 瑞格非尼 2-萘磺酸盐以及这些盐的晶型。
与已知的瑞格非尼盐及其晶型相比, 本申请提供的新型的瑞格非尼盐及 其晶型具有一种或多种更优越的性能。 具体的改进特性例如, 具有较高的结 晶度、 溶解度、 溶解速度, 较低的吸湿性, 较好的贮存稳定性; 特别是本申 请的结晶形式的瑞格非尼盐具有有利的非吸湿性、 溶解度、 较好的热稳定性 和较好的贮存稳定性。
因此, 本申请的内容之一是提供瑞格非尼对曱基苯磺酸盐及其晶型、 以 及其制备方法。
本申请提供的瑞格非尼对曱基苯磺酸盐, 是瑞格非尼和对曱基苯磺酸以 1:1摩尔比形成的化合物, 其结构式如下: o
Cl、 F、 'CL 义
本申请提供瑞格非尼对曱基苯磺酸盐的制备方法, 所述方法包括: 分别 形成瑞格非尼和对曱基苯磺酸在可溶溶剂中的溶液体系, 瑞格非尼和对曱基 苯磺酸的摩尔比为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 除去溶剂, 得到所述 瑞格非尼对曱基苯磺酸盐; NH优选所述可溶溶剂为醇类、 酯类、 酮类、 醚类和 烷烃; 优选釆用过滤法除去可溶 NH溶剂。
本申请提供瑞格非尼对曱基苯磺酸盐晶型 T, 其 X射线粉末衍射图在 2Θ 为 4.5士 0.2。、 13.4士 0.2。、 18.1士 0.2。、 20.8士 0.2。、 21.9士 0.2。和 23.0士 0.2。处具有特 征峰;进一步地,其 X射线粉末衍射图在 2Θ为 4.5士 0.2。、 11.0士 0.2。、 11.5±0.2。、 13.4士 0.2°、 14.8士 0.2°、 16.6士 0.2°、 18.1士 0.2°、 2N0 ' .4士 0.2°、 20.8士 0.2°、 21.9士 0.2°、 23.0±0.2。和 25.0±0.2。处具有特征峰; 进一步地, NH其 X射线粉末衍射图的 2Θ 特征峰及其相对强度为:
衍射角 2Θ 相对强
4.5士 0.2。 38.0
11.0士 0.2° 13.6
11.5±0.2° 15.9
13.4士 0.2° 42.2
14.8±0.2° 29.8
16.6士 0.2° 29.9
18.1士 0.2° 50.6
19.3±0.2° 11.3
20.4士 0.2° 42.1
20.8士 0.2° 71.4
21.9士 0.2° 100.0
23.0士 0.2° 77.7
24.0±0.2° 11.5
25.0士 0.2° 23.2
26.1士 0.2° 18.5
27.1±0.2° 19.5
28.8士 0.2° 11.4
29.0士 0.2° 14.3
29.6士 0.2° 12.8
33.7±0.2° 10.4
本申请还提供瑞格非尼对曱基苯磺酸盐晶型 T的制备方法, 所述方法包 括: 分别形成瑞格非尼和对曱基苯磺酸在可溶溶剂中的溶液体系, 瑞格非尼 和对曱基苯磺酸的摩尔比为 1 : 1〜 1 :2,混合两个体系形成悬浊液,在 - 10°C〜50 °C 的温度下析晶, 得到所述晶型 T。 所述可溶溶剂优选为 CH^醇、 C4〜C5酯、 C3〜C4酮、 曱基叔丁基醚或正庚烷; 瑞格非尼的可溶溶剂中溶液的浓度优选为 其在析晶温度下在可溶溶剂中溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 对曱基 苯磺酸的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1倍; 瑞格非尼和对曱基苯磺酸的摩尔比优选为 1 : 1〜1: 1.5; 优选所述析晶 温度为室温, 析晶时间为 1〜48小时, 更优选 1〜10小时。
与现有技术比较, 尤其是与 本 申请的瑞格非尼对曱基苯磺酸盐及其晶型 T具有一种或多种改进的特性, 例 如: 较好的溶解度、 溶解速度, 较低的吸湿性, 较高的分解温度和较好的贮 存稳定性。
所述瑞格非尼对曱基苯磺酸盐晶型 T具有以下有益效果:
①所述晶型 T在 20%〜80%相对湿度范围内重 0.04% ,相 对于瑞格非尼一水合物及其晶型(其在 20%〜80%相对湿度范围内重量变化 为约 0.11% ) 更不易吸湿;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度;
③在十二烷基硫酸钠 (SDS ) 存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。
④所述晶型 T为片状颗粒,相对于瑞格非尼一水合物及其晶型颗粒大, 流动性好;
⑤室温下稳定, 室温下放置 6个月, 晶型和熔点不变。
本申请的内容之二是提供瑞格非尼对氯基苯磺酸盐及其晶型、 以及其制 备方法。
本申请提供的瑞格非尼对氯基苯磺酸盐, 是瑞格非尼和对氯基苯磺酸以
1 : 1摩尔比形成的化合物, 其结构式如下:
Figure imgf000005_0001
本申请提供瑞格非尼对氯苯磺酸盐的制备方法, 所述方法包括: 分别形 成瑞格非尼和对氯苯磺酸在可溶溶剂中的溶液体系, 瑞格非尼和对氯苯磺酸 的摩尔比为 1 : 1〜1 :2 , 混合两个体系形成悬浊液, 除去溶剂, 得到所述瑞格非 尼对氯苯磺酸盐; 优选所述可溶溶剂为醇类、 酯类、 酮类、 醚类和烷烃; 优 选釆用过滤法除去可溶溶剂。
本申请提供瑞格非尼对氯苯磺酸盐晶型 C , 其 X射线粉末衍射图在 2Θ为 9.0士 0.2。、 9.9士 0.2。、 18.2士 0.2。、 19.9士 0.2。、 23. 1士 0.2。和 27.4士 0.2。处具有特征 峰; 进一步地, 其 X射线粉末衍射图在 2Θ为 9.0士 0.2°、 9.9士 0.2。、 12.4士 0.2。、 15.7士 0.2°、 18.2°士 0.2、 19.9士 0.2°、 21 .9士 0.2°、 23.1士 0.2°、 24.1士 0.2°、 25.2士 0.2°、 25.5±0.2。和 27.4士 0.2。处具有特征峰; 进一步地, 其 X射线粉末衍射图的 2Θ 特征峰及其相对强度为:
衍射角 2Θ 相对强度%
9.0士 0.2° 53.0
9.9士 0.2° 37.9
12.4±0.2° 17.3
15.7士 0.2° 35.8
18.2士 0.2° 82.4
18.7士 0.2° 1 1.7
19.9士 0.2° 60.1
20.5士 0.2° 13.6
21.9士 0.2° 14.6
23. 1士 0.2° 63.3
24. 1士 0.2° 27.6
25.2士 0.2° 39.9
25.5士 0.2° 34.2
27.4士 0.2° 100.0
28.5士 0.2° 17.9
29.0士 0.2° 12.0
29.8士 0.2° 15.9
30. 1士 0.2° 12.3
本申请还提供所述瑞格非尼对氯苯磺酸盐晶型 C的制备方法, 所述方法 包括: 分别形成瑞格非尼和对氯苯磺酸在可溶溶剂中的溶液体系, 瑞格非尼 和对氯苯磺酸的摩尔比 1 : 1〜1 :2 , 混合两个体系形成悬浊液, 在 - 10°C〜50°C的 温度下析晶,得到所述晶型 C。所述可溶溶剂优选为 C^CA醇、 C4〜C5酯、 C3〜C4 酮、 曱基叔丁基醚或正庚烷; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析 晶温度下在可溶溶剂中溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 对氯苯磺酸的 可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1 倍; 瑞格非尼和对氯苯磺酸的摩尔比优选为 1 : 1〜1 : 1.5; 优选所述析晶温度为 室温, 析晶时间为 1 -48小时, 更优选 1〜10小时。 与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼对氯苯磺酸盐及其晶型 C具有一种或多种改进的特性, 例如 较高的溶解度、 溶解速度、 较高的分解温度和较好的贮存稳定性。
所述瑞格非尼对氯苯磺酸盐晶型 C具有以下有益效果:
①室温下稳定, 室温下放置 6个月, 晶型和熔点不变;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度;
③在十二烷基硫酸钠 (SDS )存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。
本申请的内容之三是提供瑞格非尼 1,5-萘二磺酸盐及其晶型、以及其制备 方法。
本申请提供的瑞格非尼 1,5-萘二磺酸盐,是瑞格非尼和 1,5-萘二磺酸盐以 2: 1摩尔比形成的化合物, 其结构式如下:
Figure imgf000007_0001
本申请提供所述瑞格非尼 1,5-萘二磺酸盐的制备方法, 包括以下步骤: 分 别形成瑞格非尼和 1,5-萘二磺酸在可溶溶剂中的溶液体系, 瑞格非尼和 1,5- 萘二磺酸的摩尔比为 1 : 1〜2: 1混合两个体系形成悬浊液, 除去溶剂, 得到所述 瑞格非尼 1,5-萘二磺酸盐; 优选所述可溶溶剂为醇类、 酯类、 酮类、 醚类或烷 烃; 优选釆用过滤法除去可溶溶剂。
本申请提供瑞格非尼 1,5-萘二磺酸盐晶型 N, 其 X射线粉末衍射图在 2Θ 为 7.3士 0.2°、 10.3士 0.2°、 12.8士 0.2°、 15.1士 0.2°、 18.8士 0.2°和 26.1士 0.2°处具有特 征峰; 进一步地, 其 X射线粉末衍射图在 2Θ为 7.3士 0.2。、 8.3±0.2。、 9.6士 0.2。、 10.3士 0.2°、 11.6士 0.2°、 12.8士 0.2°、 13.7士 0.2°、 15.1士 0.2°、 16.5士 0.2°、 18.8士 0.2°、 19.8士 0.2。、 21.1士 0.2。和 26.1士 0.2。处具有特征峰; 进一步地, 其 X射线粉末衍 射图基本上 2Θ特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
7.3士 0.2° 99.5
8.3±0.2° 19.3
9.6士 0.2° 14.8
10.3士 0.2° 27.3
11.6士 0.2° 21.8
12.8±0.2° 46.0
13.7士 0.2° 16.3
15.1士 0.2° 37.8
15.9士 0.2° 11.7
16.5士 0.2° 28.1
17.8士 0.2° 12.6
18.8士 0.2° 39.9
19.8士 0.2。 35.2
21.1±0.2° 23.4
21.5±0.2° 10.2
23.2士 0.2° 12.7
24.8士 0.2。 18.0
26.1士 0.2° 100.0
26.6士 0.2° 11.0
本申请还提供所述瑞格非尼 1,5-萘二磺酸盐晶型 N的制备方法, 所述方 法包括: 分别形成瑞格非尼和 1,5-萘二磺酸在可溶溶剂中的溶液体系, 瑞格非 尼和 1,5-萘二磺酸的摩尔比为 1 : 1〜2: 1 , 混合两个体系形成悬浊液, 在 -10°C〜50°C的温度下析晶, 得到所述晶型 N。 所述可溶溶剂优选为 CH^醇、 C4〜C5酯、 C广 C4酮、 曱基叔丁基醚或正庚烷; 瑞格非尼的可溶溶剂溶液的浓 度优选为其在析晶温度下在可溶溶剂中溶解度的 0.1〜1 倍, 更优选为 0.5〜1 倍 1,5〜萘二磺酸的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中 溶解度的 0.5〜1倍; 瑞格非尼和 1,5-萘二磺酸的摩尔比优选为 2: 1.5〜2: 1; 优选 所述析晶温度为室温, 析晶时间为 1〜48小时, 更优选 1〜 10小时。
与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼 1,5-萘二磺酸盐及其晶型 N具有一种或多种改进的特性, 例 如: 较高的溶解度、 溶解速度, 较高的分解温度和较好的贮存稳定性。
所述瑞格非尼 1,5-萘二磺酸盐晶型 N具有以下有益效果:
①室温下稳定, 室温下放置 6个月, 晶型和熔点不变;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度; ③在十二烷基硫酸钠 (SDS )存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。
本申请的内容之四是提供瑞格非尼乙二磺酸盐及其晶型、 以及其制备方法。 本申请提供的瑞格乙二磺酸盐,是瑞格非尼和乙二磺酸盐以 2: 1摩尔比形 成的化合物, 其结构式
Figure imgf000009_0001
本申请提供所述瑞格非尼乙二磺酸盐的制备方法, 包括以下步骤: 分别 形成瑞格非尼和乙二磺酸在可溶溶剂中的溶液体系, 瑞格非尼和乙二磺酸的 摩尔比为 1 : 1〜2: 1 , 混合两个体系形成悬浊液, 除去溶剂, 得到所述瑞格非尼 乙二磺酸盐; 优选所述可溶溶剂为醇类、 酯类、 酮类、 醚类或烷烃; 优选釆 用过滤法除去可溶溶剂。
本申请提供瑞格非尼乙二磺酸盐晶型 E, 其 X射线粉末衍射图在 2Θ为 10.6士 0.2。、 12.1士 0.2。、 17.0士 0.2。、 18.1士 0.2。、 22.7士 0.2。和 23.6。士 0.2。处具有特 征峰;进一步地,其 X射线粉末衍射图在 2Θ为 10.6士 0.2。、 12.1士 0.2。、 14.1士 0.2。、 15.8士 0.2。、 17.0士 0.2。、 18.1士 0.2°、 20.1士 0.2°、 21.3士 0.2°、 22.7士 0.2°、 23.6士 0.2。、 24.3士 0.2。和 27.8士 0.2。处具有特征峰; 进一步地, 其 X射线粉末衍射图基本 上 2Θ特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
10.6士 0.2 34.8
12.1士 0.2 47.7
14.1士 0.2 18.4
15.8士 0.2 23.2
17.0士 0.2 43.5
17.4士 0.2 1 1.3
17.9士 0.2 37.3
18.1±0.2 58.4
20.1士 0.2 30.4
20.5士 0.2 14.7 21.0士 0.2° 26.6
21.3±0.2° 44.0
21.7士 0.2° 16.0
22.7±0.2° 100.0
23.6士 0.2° 86.9
24.3±0.2° 44.7
24.5±0.2° 18.4
25.1士 0.2° 1 1.6
26.2士 0.2° 15.3
27.2士 0.2° 15.0
27.8士 0.2° 33.3
28.5士 0.2° 10.5
28.9士 0.2° 18.3
本申请还提供所述瑞格非尼乙二磺酸盐晶型 E的制备方法, 所述方法包 括: 分别形成瑞格非尼和乙二磺酸在可溶溶剂中的溶液体系, 瑞格非尼和乙 二磺酸的摩尔比为 1 : 1〜2: 1 , 混合两个体系形成悬浊液, 在 -10°C ~ 50°C的温度 下析晶, 得到所述晶型 E。 所述可溶溶剂优选为 C^CA醇、 C4〜C5酯、 C3〜C4 酮、 曱基叔丁基醚或正庚烷; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析 晶温度下在可溶溶剂中溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 乙二磺酸的可 溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1倍, 瑞 格非尼和乙二磺酸的摩尔比优选为 2: 1.5〜2: 1; 优选所述析晶温度为室温, 析 晶时间为 1〜48小时 , 更优选 1〜10小时。
与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼乙二磺酸盐及其晶型 E具有一种或多种改进的特性, 例如: 较高的溶解度、 溶解速度, 较高的分解温度和较好的贮存稳定性。
所述瑞格非尼乙二磺酸盐晶型 N具有以下有益效果:
①室温下稳定, 室温下放置 6个月, 晶型和熔点不变;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度;
③在十二烷基硫酸钠 (SDS )存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。
本申请的内容之五是提供瑞格非尼氢溴酸盐及其晶型、 以及其制备方法。 本申请提供的瑞格非尼氢溴酸盐,是瑞格非尼和氢溴酸盐以 1 : 1摩尔比形 成的化合物, 其结构式如下:
Figure imgf000011_0001
本申请提供所述瑞格非尼氢溴酸盐的制备方法, 包括以下步骤: 分别形 成瑞格非尼和氢溴酸在可溶溶剂中的溶液体系, 瑞格非尼和氢溴酸的摩尔比 为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 除去溶剂, 得到所述瑞格非尼氢溴酸 盐; 优选所述可溶溶剂为醇类、 酮类或烷烃; 优选釆用过滤法除去可溶溶剂。
本申请提供瑞格非尼氢溴酸盐晶型 HI , 其 X射线粉末衍射图在 2Θ 为 5.1士 0.2°、 10.1士 0.2°、 15.1士 0.2°、 18.2士 0.2°、 19.5士 0.2°和 24.8士 0.2°处具有特征 峰; 进一步地, 其 X射线粉末衍射图在 2Θ为 5.1士 0.2。、 10.1。士 0.2、 15.1士 0.2。、 18.2士 0.2°、 19.5士 0.2°、 20.3士 0.2°、 23.2士 0.2°、 24.8士 0.2°、 25.2士 0.2°、 和 30.0士 0.2° 处具有特征峰; 进一步地, 其 X射线粉末衍射图基本上 2Θ特征峰及其相对强 度如下:
衍射角 2Θ 相对强度%
5.1士 0.2° 100.0
10.1±0.2° 60.0
15.1士 0.2° 24.1
18.2士 0.2° 13.6
19.5±0.2° 10.8
20.3士 0.2。 8.6
23.2士 0.2。 14.5
24.8±0.2° 20.3
25.2±0.2° 12.2
30.0±0.2° 18.5
35.0士 0.2° 12.4
本申请还提供所述瑞格非尼氢溴酸盐晶型 HI 的制备方法, 所述方法包 括: 分别形成瑞格非尼和氢溴酸在可溶溶剂中的溶液体系, 瑞格非尼和氢溴 酸的摩尔比为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 在 -10°C ~ 50°C的温度下析 晶, 得到所述晶型 Hl。 所述可溶溶剂优选为 Cr^C 醇、 C3〜C4酮或正庚烷; 度的 0.1〜1倍, 更优选为 0.5〜1倍; 氢溴酸的可溶溶剂溶液的浓度优选为其在 析晶温度下在可溶溶剂中溶解度的 0.5〜1倍;瑞格非尼和氢溴酸的摩尔比优选 为 1 : 1〜1 : 1.5;优选所述析晶温度为室温,析晶时间为 1〜48小时,更优选 1〜10 小时。
与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼氢溴酸盐及其晶型 m具有一种或多种改进的特性, 例如: 较 高的溶解度、 溶解速度和较好的贮存稳定性。
所述瑞格非尼氢溴酸盐晶型 HI具有以下有益效果:
①室温下稳定, 室温下放置 6个月, 晶型和熔点不变;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度;
③在十二烷基硫酸钠 (SDS )存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。
本申请提供瑞格非尼氢溴酸盐晶型 H2, 其 X射线粉末衍射图在 2Θ 为 10.6士 0.2°、 12.0士 0.2°、 16.8士 0.2°、 19.2士 0.2°、 21.3士 0.2°和 24.4士 0.2°处具有特 征峰;进一步地,其 X射线粉末衍射图在 2Θ为 10.6士 0.2。、 12.0士 0.2。、 16.8士 0.2。、 17.0士 0.2。、 18.9士 0.2。、 19.2士 0.2。、 20.2士 0.2°、 20.5士 0.2。、 21.3士 0.2°、 24.1士 0.2。、 24.4士 0.2。、 25.7±0.2。和 26.5士 0.2。处具有特征峰; 进一步地, 其 X射线粉末衍 射图基本上 2Θ特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
7.4±0.2° 15.6
10.3±0.2° 14.3
10.6±0.2。 29.2
12.0±0.2° 25.8
16.8士 0.2° 50.8
17.0±0.2° 27.1
18.9士 0.2° 35.7
19.2±0.2° 66.4
19.6±0.2° 18.2
20.2士 0.2。 32.6
20.5士 0.2。 33.1
21.3±0.2° 52.9
24.2±0.2° 43.8
24.4±0.2° 100.0
24.7±0.2° 32.3
25.7±0.2° 48.2
26.5±0.2° 51.0
27.5士 0.2。 15.9
28.2±0.2° 30.5
29.5士 0.2。 14.6
30.8±0.2° 17.7 31.9±0.2 14.1
32.7±0.2 20.8
34.3±0.2 15.6
本申请提供所述瑞格非尼氢溴酸盐晶型 H2的制备方法, 所述方法包括: 将瑞格非尼氢溴酸盐晶型 m在溶剂中形成悬浊液,所述悬浊液在 -io°c ~ 50°c 的温度下析晶, 得到所述晶型 H2。 其中所述溶剂选自乙酸乙酯、 曱基叔丁基 醚或其混合物;瑞格非尼氢溴酸盐晶型 HI的用量优选为其在析晶温度下在所 述溶剂体系中溶解度的 1.1〜20倍, 更优选为 1.5〜10倍; 优选所述析晶温度为 室温, 析晶时间为 1〜72小时 , 更优选 1〜10小时。
与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼氢溴酸盐及其晶型 H2具有一种或多种改进的特性, 例如: 较 高的溶解度、 溶解速度和较好的贮存稳定性。
所述瑞格非尼乙磺酸盐晶型 H2具有以下有益效果:
所述瑞格非尼氢溴酸盐晶型 H2是瑞格非尼氢溴酸盐晶型 HI 的同质异 晶, 两者的性质基本一致, 有较高的分解温度, 在十二烷基硫酸钠 (SDS ) 存在下, 相对于瑞格非尼一水合物及其晶型, 其具有较好的增溶效果。
本申请的内容之六是提供瑞格非尼乙磺酸盐及其晶型、 以及其制备方法。 本申请提供的瑞格非尼乙磺酸盐,是瑞格非尼和乙磺酸盐以 1 : 1摩尔比形 成的化合物,
Figure imgf000013_0001
本申请提供所述瑞格非尼乙磺酸盐的制备方法, 包括以下步骤: 分别形 成瑞格非尼和乙磺酸在可溶溶剂中的溶液体系, 瑞格非尼和乙磺酸的摩尔比 为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 除去溶剂, 得到所述瑞格非尼乙磺酸 盐; 优选所述可溶溶剂为酯类、 醇类或酮类; 优选釆用过滤法除去可溶溶剂。
本申请提供瑞格非尼乙磺酸盐晶型 Etl , 其 X射线粉末衍射图在 2Θ为 8.2士 0.2。、 8.9士 0.2。、 13.0士 0.2。、 18.8士 0.2。、 23.6士 0.2。和 24.6士 0.2。处具有特征 峰; 进一步地, 其 X射线粉末衍射图在 2Θ为 8.2士 0.2°、 8.9士 0.2°、 12.2士 0.2°、 13.0士 0.2°、 14.4士 0.2°、 16.2士 0.2°、 17.9士 0.2°、 18.8士 0.2°、 20.1士 0.2°、 22.0士 0.2。、 23.6士 0.2。和 24.6士 0.2。处具有特征峰; 进一步地, 其 X射线粉末衍射图的 2Θ 特征峰及其相对强度如下:
衍射角 2Θ 相对强度% 8.2士 0.2° 18.3
8.9士 0.2° 22.9
12.2士 0.2。 19.0
13.0±0.2° 22.7
14.4±0.2° 20.3
16.2±0.2° 14.1
17.9±0.2° 24.9
18.8±0.2° 33.8
20.1士 0.2。 21.2
20.4士 0.2。 19.9
22.0±0.2° 28.3
23.4士 0.2。 47.9
23.6士 0.2。 73.5
24.6±0.2° 100.0
25.9±0.2° 13.3
26.2±0.2° 11.6
28.3±0.2° 15.0
30.6士 0.2。 12.0
32.3±0.2° 11.0
本申请还提供所述瑞格非尼乙磺酸盐晶型 Etl 的制备方法, 所述方法包 括: 分别形成瑞格非尼和乙磺酸在可溶溶剂中的溶液体系, 瑞格非尼和乙磺 酸的摩尔比为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 在 -10°C ~ 50°C的温度下析 晶, 得到所述晶型 Etl。 所述可溶溶剂优选为 Cr^C 醇、 C3〜C4酮或 C4〜C5酯; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中溶解度 的 0.1〜1倍, 更优选为 0.5〜1倍; 乙磺酸的可溶溶剂溶液的浓度优选为其在析 晶温度下在可溶溶剂中溶解度的 0.5〜1倍;瑞格非尼和乙磺酸的摩尔比优选为 1 : 1〜1 : 1.5; 优选所述析晶温度为室温, 析晶时间为 1〜48 小时, 更优选 1-10 小时。
与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼乙磺酸盐及其晶型 Etl具有一种或多种改进的特性,例如较高 的溶解度、 溶解速度, 较高的分解温度和较好的贮存稳定性。
所述瑞格非尼乙磺酸盐晶型 Etl具有以下有益效果:
①室温下稳定, 室温下放置 6个月, 晶型和熔点不变;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度;
③在十二烷基硫酸钠 (SDS ) 存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。 本申请还提供瑞格非尼乙磺酸盐晶型 Et2, 其 X射线粉末衍射图在 2Θ为 12.3士 0.2°、 13.6士 0.2°、 16.0士 0.2°、 20.5士 0.2°、 24.3士 0.2°和 24.5士 0.2°处具有特 征峰;进一步地,其 X射线粉末衍射图在 2Θ为 7.4士 0.2。、 8.2士 0.2。、 12.3士 0.2。、 13.6士 0.2°、 16.0士 0.2°、 16.9士 0.2°、 18.5士 0.2°、 20.5士 0.2°、 20.9士 0.2°、 22.1士 0.2。、 24.3±0.2。和 24.5士 0.2。处具有特征峰; 进一步地, 其 X射线粉末衍射图的特征 峰及其相对强度如下:
衍射角 2Θ 相对
7.4±0.2° 20.7
8.2士 0.2° 23.9
8.4士 0.2° 23.1
12.3±0.2° 100.0
13.6±0.2° 35. .9
16.0士 0.2。 32. .3
16.9士 0.2。 22. .3
18.2±0.2° 23. .9
18.5士 0.2° 28. .3
18.9士 0.2。 24. .3
19.2±0.2° 12. .7
20.1士 0.2。 30. .7
20.5士 0.2。 46. .6
20.9士 0.2。 29. .9
21.8±0.2° 28. .3
22.1±0.2° 31. .5
23.4士 0.2。 19. .5
23.7士 0.2。 19. .5
24.3±0.2° 77. .7
24.5±0.2° 73. .3
26.4±0.2° 16. .3
27.3士 0.2。 23. .1
28.5±0.2° 27. .5
28.7±0.2° 31. .5
29.3士 0.2。 19. .5
本申请提供所述瑞格非尼乙磺酸盐晶型 Et2的制备方法, 所述方法包括: 将瑞格非尼乙磺酸盐晶型 Etl 在溶剂中形成悬浊液, 所述悬浊液在 -10°C ~ 50°C下析晶, 得到所述晶型 Et2。 其中所述溶剂选自曱基叔丁基醚、 正庚烷或 其混合物; 瑞格非尼乙磺酸盐晶型 Etl 的用量优选为其析晶温度下在所述溶 剂体系中的溶解度的 1.1〜20倍, 更优选为 1.5〜10倍; 优选所述析晶温度为室 温, 析晶时间为 1〜72小时, 更优选 1〜10小时。 与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼氢溴酸盐及其晶 Et2具有一种或多种改进的特性,例如:较高 的溶解度、 溶解速度和较好的贮存稳定性。
所述瑞格非尼乙磺酸盐晶型 Et2具有以下有益效果:
所述瑞格非尼氢溴酸盐晶型 Et2是瑞格非尼氢溴酸盐晶型 Etl 的同质异 晶, 两者的性质基本一致, 有较高的分解温度, 在十二烷基硫酸钠 (SDS ) 存在下, 相对于瑞格非尼一水合物及其晶型, 其具有较好的增溶效果。
本申请的内容之七是提供瑞格非尼 2-萘磺酸盐及其晶型、 以及其制备方法。 本申请提供瑞格非尼 2-萘磺酸盐, 其是瑞格非尼和 2-萘磺酸以 1 : 1摩尔 比形成的
Figure imgf000016_0001
所述瑞格非尼 2-萘磺酸盐晶型 Na , 其 X 射线粉末衍射图在 2Θ 为 4.7士 0.2。、 13.7士 0.2。、 16.4士 0.2。、 18.0士 0.2。、 20.2士 0.2。和 21.9士 0.2。处具有特 征峰进一步地其 X射线粉末衍射图在 2Θ为 4.7±0.2。、 10.5±0.2。、 1 1.1士 0.2° 13.7±0.2°、 14.3±0.2°、 16.4士 0.2°、 18.0士 0.2°、 20.2士 0.2°、 21.5±0.2°、 21.9士 0.2°、 22.5±0.2。和 24.0±0.2。处具有特征峰; 进一步地, 其 X射线粉末衍射图的特征 峰及其相对强度如下:
衍射角 2Θ 相对强度%
4.7士 0.2° 100.0
10.5±0.2。 13.7
1 1.1±0.2° 1 1.0
13.7±0.2° 48.4
14.3±0.2° 25.9
16.4士 0.2° 37.4
18.0士 0.2° 69.6
18.4士 0.2° 13.5
20.2士 0.2。 88.3
21.5±0.2° 23.1
21.9±0.2° 45.7
22.5±0.2° 19.5
23.4士 0.2。 13.1
24.0±0.2° 28.3
25.3±0.2° 22.5
26.0士 0.2。 17.8 26.6±0.2° 19.9
29.9士 0.2° 12.8。
本申请提供所述瑞格非尼 2-萘磺酸盐晶型 Na的制备方法,所述方法包括: 分别形成瑞格非尼和 2-萘磺酸在可溶溶剂中的溶液体系, 瑞格非尼和 2-萘磺 酸的摩尔比为 1 : 1〜1 :2, 将两个体系混合, 所述混合液在 -10°C ~ 50°C下搅拌, 除去可溶溶剂, 添加正庚烷形成悬浊液, 所述悬浊液在 -10°C ~ 50°C下析晶, 得到所述晶型 Na。 所述可溶溶剂优选为 CH^醇、 C4〜C5酯、 C3〜C4酮或曱基 叔丁基醚; 瑞格非尼的用量优选为其在析晶温度下可溶溶剂中的溶解度的
0.1〜1倍,更优选为 0.5〜1倍;正庚烷的用量优选为瑞格非尼可溶溶剂的 0.1〜0.5 倍; 2-萘磺酸的用量优选为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1倍; 瑞格非尼和 2-萘磺酸的摩尔比优选为 1 : 1〜1 : 1.5; 所述混合液优选在室温下搅 拌 1分钟至 48小时, 更优选 1〜10小时; 所述悬浊液优选在室温下搅拌 1〜48 小时, 更优选 1〜10小时。
与现有技术比较, 尤其是与已知的瑞格非尼一水合物及其晶型比较, 本 申请的瑞格非尼 2-萘磺酸盐晶型 Na具有一种或多种改进的特性, 例如: 较高 的溶解度、 溶解速度, 较高的分解温度和和较好的贮存稳定性。
所述瑞格非尼 2-萘磺酸盐晶型 Na具有以下有益效果:
①室温下稳定, 室温下放置 6个月, 晶型和熔点不变;
②相对于瑞格非尼一水合物及其晶型, 其具有较高的分解温度;
③在十二烷基硫酸钠 (SDS ) 存在下, 相对于瑞格非尼一水合物及其 晶型, 其具有较好的增溶效果。
本申请上述任何制备方法中:
除非特殊注明, "室温" 指约 10〜30°C的温度。
所述搅拌, 可以釆用本领域的常规方法完成, 搅拌方式例如磁力搅拌、 机械搅拌等, 搅拌速度为 50〜1800转 /分, 优选为 300〜900转 /分。
所述去除溶剂, 可以釆用本领域的常规技术完成, 例如过滤、 离心或蒸 发。 所述过滤一般是在室温条件下以小于大气压的压力进行抽滤, 优选压力 小于 0.09MPa。 所述离心的具体操作为: 将欲分离的样品置于离心管中, 以 6000转 /分的速率进行离心, 直至固体全部沉至离心管底部。 所述蒸发可以在 大气压下或在真空下于约 20〜40°C进行, 或者利用惰性气流蒸发。 当去除溶 剂步骤是用于悬浊液搅拌进行时, 优选利用过滤去除溶剂。 上述方法中所得到的各种晶型可进一步干燥。 所述干燥, 可以釆用本领 域的常规技术完成, 例如常温干燥、 鼓风干燥或减压干燥, 在通风橱、 鼓风 烘箱或真空烘箱里进行; 可以在减压或不减压下进行, 优选为压力小于
0.09Mpa; 干燥温度约 30〜50°C ; 干燥时间为 10〜72 小时, 优选为 10〜48 小 时 , 更优选为 10〜24小时。
所述挥发是本申请釆用的一种结晶方式, 通过去除溶剂获得固体。 使用 的蒸发设备例如是旋转蒸发仪、 抽真空型蒸发***、 氮吹型蒸发***或涡流 真空蒸发***。
所述超声, 可以促进样品溶解, 具体操作为: 将装有样品悬浊液的容器 置于超声波清洗器中, 以 20Khz〜40Khz 的功率超声 1〜30 分钟, 优选以 40Khz功率超声 5分钟。
本申请中的起始原料瑞格非尼游离碱可参照专利文献 WO2005/009961 实施例 1描述的方法制备得到, 该文献通过引用的方式并入本申请中。
本申请提供一种药物组合物, 所述药物组合物包含治疗和 /或预防有效量 的一种或多种本申请所述的瑞格非尼盐及其晶型, 以及至少一种药学上可接 受的载体。 其中, 所述瑞格非尼盐及其晶型选自瑞格非尼对曱基苯磺酸盐、 瑞格非尼对曱基苯磺酸盐晶型 T、瑞格非尼对氯苯磺酸盐、瑞格非尼对氯苯磺 酸盐晶型( 、 瑞格非尼 1,5-萘二磺酸盐、 瑞格非尼 1,5-萘二磺酸盐晶型N、 瑞 格非尼乙二磺酸盐、 瑞格非尼乙二磺酸盐晶型 Ε、 瑞格非尼氢溴酸盐、 瑞格非 尼氢溴酸盐晶型 Η1、 瑞格非尼氢溴酸盐晶型 H2、 瑞格非尼乙磺酸盐、 瑞格 非尼乙磺酸盐晶型 Etl、 瑞格非尼乙磺酸盐晶型 Et2、 瑞格非尼 2-萘磺酸盐或 瑞格非尼 2-萘磺酸盐晶型 Na。 此外, 所述药物组合物还可以包含其它可药用 的瑞格非尼或其盐的晶型或无定形; 任选地, 所述药物组合物还可以包含一 种或多种其它可药用的药物活性组分。
所述药物组合物中的载体包括糖类, 纤维素及其衍生物, 淀粉或改性淀 粉, 固体无机物如磷酸鈣、 磷酸氢二钙、 羟基碑灰石、 硫酸鈣、 碳酸鈣, 半 固体如脂质或石蜡, 粘合剂如微晶纤维素、 乙基纤维素、 羟曱基纤维素、 羟 丙基曱基纤维素、 羟乙基纤维素, 助流剂如胶态二氧化硅、 轻质无水硅酸、 结晶纤维素、 滑石粉或硬脂酸镁, 崩解剂如乙醇酸淀粉钠、 交聚维酮、 交联 羧曱基纤维素、 羧曱基纤维素钠、 干玉米淀粉, 润滑剂如硬脂酸、 硬脂酸镁、 硬脂酰富马酸钠、 聚乙二醇。 所述药物组合物中药学上可接受的载体包括但不限于: 稀释剂, 例如淀 粉、 改性淀粉、 乳糖、 粉状纤维素、 微晶纤维素、 无水碑酸氢钙、 磷酸三钙、 甘露醇、 山梨醇、 糖等; 粘合剂, 例如***胶、 瓜尔胶、 明胶、 聚乙烯吡 咯烷酮、 羟丙基纤维素、 羟丙基曱基纤维素、 聚乙二醇、 共聚维酮等; 崩解 剂, 例如淀粉、 羧曱基淀粉钠、 羟基乙酸淀粉钠、 预胶化淀粉、 交联聚维酮、 交联羧曱基纤维素钠、 胶体二氧化硅等; 润滑剂, 例如硬脂酸、 硬脂酸镁、 硬脂酸锌、 苯曱酸钠、 乙酸钠等; 助流剂, 例如胶体二氧化硅等; 复合物形 成剂, 例如各种级别的环糊精和树脂; 释放速度控制剂, 例如羟丙基纤维素、 羟曱基纤维素、 羟丙基曱基纤维素、 乙基纤维素、 曱基纤维素、 曱基丙烯酸 曱酯、 蜡等。 可用的其他药学上可接受的载体包括但不限于成膜剂、 增塑剂、 着色剂、 调味剂、 粘度调节剂、 防腐剂、 抗氧化剂等。
所述药物组合物可为固态或液态, 例如固体口服剂型, 包括片剂、 颗粒 剂、 散剂、 丸剂和胶嚢剂; 液体口服剂型, 包括溶液剂、 糖浆剂、 混悬剂、 分散剂和乳剂; 可注射制剂, 包括溶液剂、 分散剂和冻干剂。 配方可适于活 性成分的快速释放、 延迟释放或调节释放。 可以是常规的、 可分散的、 可咀 嚼的、 口腔溶解的或快速熔化的制剂。 给药途径包括口服、 静脉注射、 皮下 注射、 透皮给药、 直肠给药、 滴鼻给药、 舌下给药等。 备。 在制备药物组合物时, 本申请的一种或多种的瑞格非尼盐或其晶型与一 种或多种药学上可接受的载体相混合, 任选地, 与一种或多种的其他药物活 性成分相混合。 固体制剂可以通过直接混合、 制粒等工艺来制备。
本申请提供本申请的瑞格非尼盐或其晶型或者前述的包含本申请瑞格非 尼盐或其晶型的药物组合物在制备用于治疗和 /或预防高增殖性病症的药物中 的用途, 其中所述高增殖性病症选自实体瘤、 淋巴瘤、 肉瘤、 白血病、 乳腺 癌、 呼吸道癌、 脑癌、 生殖器官癌、 消化道癌、 尿道癌、 眼癌、 肝癌、 皮肤 癌、 头颈癌、 曱状腺癌和 /或曱状旁腺癌, 特别是转移性结肠直肠癌。 其中所 述瑞格非尼盐及其晶型为瑞格非尼对曱基苯磺酸盐、 瑞格非尼对曱基苯磺酸 盐晶型 T、 瑞格非尼对氯苯磺酸盐、 瑞格非尼对氯苯磺酸盐晶型 C、 瑞格非尼 1,5-萘二磺酸盐、 瑞格非尼 1,5-萘二磺酸盐 N、 瑞格非尼乙二磺酸盐、 瑞格非 尼乙二磺酸盐 E、 瑞格非尼氢溴酸盐、 瑞格非尼氢溴酸盐 Hl、 瑞格非尼氢溴 酸盐 H2、瑞格非尼氢溴酸盐、瑞格非尼乙磺酸盐、瑞格非尼乙磺酸盐晶型 Etl、 瑞格非尼乙磺酸盐晶型 Et2、瑞格非尼 2-萘磺酸盐或瑞格非尼 2-萘磺酸盐晶型 Na。
进一步地, 本申请提供治疗高增殖性病症的方法, 包括给予患者治疗和 / 或预防有效量的一种或多种的本申请的瑞格非尼盐或其晶型或者前述的包含 本申请瑞格非尼盐或其晶型的药物组合物, 其中所述瑞格非尼盐及其晶型包 括但不限于瑞格非尼对曱基苯磺酸盐、 瑞格非尼对曱基苯磺酸盐晶型 T、 瑞 格非尼对氯苯磺酸盐、瑞格非尼对氯苯磺酸盐晶型 C、瑞格非尼 1,5-萘二磺酸 盐、 瑞格非尼 1,5-萘二磺酸盐 N、 瑞格非尼乙二磺酸盐、 瑞格非尼乙二磺酸盐 E、 瑞格非尼氢溴酸盐、 瑞格非尼氢溴酸盐 HI、 瑞格非尼氢溴酸盐 H2、 瑞格 非尼氢溴酸盐、 瑞格非尼乙磺酸盐、 瑞格非尼乙磺酸盐晶型 Etl、 瑞格非尼乙 磺酸盐晶型 Et2、 瑞格非尼 2-萘磺酸盐、 瑞格非尼 2-萘磺酸盐晶型 Na, 其中 所述的高增殖性病症包括但不限于实体瘤、 淋巴瘤、 肉瘤、 白血病、 乳腺癌、 呼吸道癌、 脑癌、 生殖器官癌、 消化道癌、 尿道癌、 眼癌、 肝癌、 皮肤癌、 头颈癌、 曱状腺癌和 /或曱状旁腺癌, 特别是转移性结肠直肠癌, 其中所述患 者为包括人在内的哺乳动物。 附图说明
图 1是按 WO2005/009961实施例 1制备的瑞格非尼的 XRPD图。
图 2是瑞格非尼一水合物晶态形式的 XRPD图。
图 3是瑞格非尼一水合物晶态形式的 PLM图。
图 4是瑞格非尼一水合物晶态形式的 TGA图。
图 5是瑞格非尼一水合物晶态形式的 DSC图。
图 6是瑞格非尼一水合物晶态形式的等温吸附曲线。
图 7是瑞格非尼对曱基苯磺酸盐晶型 T的 XRPD图。
图 8是瑞格非尼对曱基苯磺酸盐晶型 T的 PLM图。
图 9是瑞格非尼对曱基苯磺酸盐晶型 T的 TGA图。
图 10是瑞格非尼对曱基苯磺酸盐晶型 T的 DSC图。
图 11是瑞格非尼对曱基苯磺酸盐晶型 T的等温吸附曲线。
图 12是瑞格非尼对氯苯磺酸盐晶型 C的 XRPD图。
图 13是瑞格非尼对氯苯磺酸盐晶型 C的 PLM图。
图 14是瑞格非尼对氯苯磺酸盐晶型 C的 TGA图。
图 15是瑞格非尼对氯苯磺酸盐晶型 C的 DSC图。
图 16是瑞格非尼对氯苯磺酸盐晶型 C的等温吸附曲线。 图 17是瑞格非尼的 1,5-萘二磺酸盐晶型 N的 XRPD图。
图 18是瑞格非尼的 1,5-萘二磺酸盐晶型 N的 PLM图。
图 19是瑞格非尼的 1,5-萘二磺酸盐晶型 N的 TGA图。
图 20是瑞格非尼的 1,5-萘二磺酸盐晶型 N的 DSC图。
图 21是瑞格非尼的 1,5-萘二磺酸盐晶型 N的等温吸附曲线。
图 22是瑞格非尼乙二磺酸盐晶型 E的 XRPD图。
图 23是瑞格非尼乙二磺酸盐晶型 E的 PLM图。
图 24是瑞格非尼乙二磺酸盐晶型 E的 TGA图。
图 25是瑞格非尼乙二磺酸盐晶型 E的 DSC图。
图 26是瑞格非尼乙二磺酸盐晶型 E的等温吸附曲线。
图 27是瑞格非尼氢溴酸盐晶型 HI的 XRPD图。
图 28是瑞格非尼氢溴酸盐晶型 HI的 PLM图。
图 29是瑞格非尼氢溴酸盐晶型 HI的 TGA图。
图 30是瑞格非尼氢溴酸盐晶型 HI的 DSC图。
图 31是瑞格非尼氢溴酸盐晶型 HI的等温吸附曲线。
图 32是瑞格非尼氢溴酸盐晶型 H2的 XRPD图。
图 33是瑞格非尼乙磺酸盐晶型 Etl的 XRPD图。
图 34是瑞格非尼乙磺酸盐晶型 Etl的 PLM图。
图 35是瑞格非尼乙磺酸盐晶型 Etl的 TGA图。
图 36是瑞格非尼乙磺酸盐晶型 Etl的 DSC图。
图 37是瑞格非尼乙磺酸盐晶型 Etl的等温吸附曲线。
图 38是瑞格非尼乙磺酸盐晶型 Et2的 XRPD图。
图 39是瑞格非尼的 2-萘磺酸盐晶型 Na的 XRPD图。
图 40是瑞格非尼的 2-萘磺酸盐晶型 Na的 PLM图。
图 41是瑞格非尼的 2-萘磺酸盐晶型 Na的 TGA图。
图 42是瑞格非尼的 2-萘磺酸盐晶型 Na的 DSC图。
图 43是瑞格非尼的 2-萘磺酸盐晶型 Na的等温吸附曲线。 具体实施方式
Figure imgf000021_0001
所述实施例详细描述本申请的晶型、 其 制备方法和应用。 对本领域技术人员显而易见的是, 对于材料和方法两者的 许多改变可在不脱离本发明构思的情况下实施。 釆集数据所用的仪器及方法:
X-射线粉末衍射 ( XPRD ) 所使用的仪器为 Bruker D8 Advance diffractometer, 釆用铜靶波长为 1.54nm的 Ka X-射线, 在 40kV和 40mA的操 作条件下、 Θ-2Θ测角仪、 Mo单色仪、 Lynxeye探测器。 仪器在使用前用金刚 砂检测过。釆集软件是 Diffrac Plus XRD Commanded样品在室温条件下测试 , 把需要检测的样品放在无反射板片上。详细检测条件如下,角度范围: 3-40°2θ, 步长: 0.02° 2Θ, 速度: 0.2秒 /步。 除非特别说明, 样品在检测前未经研磨。
偏正光显微镜 ( PLM ) 图谱釆自于 ΧΡ-500Ε偏振光显微镜 (上海长方光 学仪器有限公司) 。 取少量粉末样品置于载玻片上, 滴加少量矿物油以更好 地分散粉末样品,盖上盖玻片,然后将样品放置在 ΧΡ-500Ε偏振光显微镜 (上 海长方光学仪器有限公司) 的载物台上, 选择合适的放大倍数观测样品的形 貌并拍照。
差热分析 ( DSC )数据釆自于 TA Instruments Q200 MDSC , 仪器控制软 件是 Thermal Advantage , 分析软件是 Universal Analysis。 通常取 1 - 10毫克的 样品放置于加盖打孔(除非特别说明) 的铝坩埚内, 以 10°C/min的升温速度 在 50ml/min干燥 N2的保护下将样品从室温升至 200 °C或 300 °C , 同时 TA软 件记录样品在升温过程中的热量变化。 在本发明中, 熔点是按起始温度来报 告的。
热重分析 ( TGA )数据釆自于 TA Instruments Q500 TGA, 仪器控制软件 是 Thermal Advantage, 分析软件是 Universal Analysis。 通常取 5-15 mg的样 品放置于白金坩埚内, 釆用分段高分辨检测的方式, 以 10°C/min的升温速度 在 50ml/min干燥 N2的保护下将样品从室温升至 300 °C , 同时 TA软件记录样 品在升温过程中的重量变化。
动态水份吸附分析( DVS )数据釆自于 TA Instruments Q5000 TGA, 仪器 控制软件是 Thermal Advantage,分析软件是 Universal Analysis„通常取 1-10 mg 的样品放置于白金坩埚内, 通常 TA软件记录样品在相对湿度从 0%到 80%到 0%变化过程中的重量变化, 绘制等温吸附曲线。 根据样品的具体情况, 也会 对样品釆用不同的吸附和脱吸附步骤。
核磁分析 ( ifiNMR )数据釆自于 Bruker Ascend Tm 500。 通常使用全频 激发, 语宽 30PPM, 单脉冲, 30。角激发, 扫描 16次, 数字化正交检测, 控 温 298K:。 高效液相分析 ( HPLC )数据釆自于 Agilent 1260,仪器控制软件是 Agilent 化学工作站 B.04版 online, 分析软件是 Agilent化学工作站 B.04版 offline。 釆用 C18色谱柱, 150mm*4.6mm, 柱温 25 °C , 波长 220nm, 流速 1.3ml/min, 进样量 5ul, 运行时间 15min。 流动相 A为含 0.05%TFA的水, 流动相 B为乙 腈, 梯度如下表:
Figure imgf000023_0001
实施例中所用的各种试剂如无特别说明均为市售购买。
实施例中的温度如无特别说明均为室温。
实施例中的超声操作在 40kHz功率下进行 5分钟。 实施例 1
瑞格非尼游离碱的制备, 参照 WO2005/009961实施例 1所描述的方法。 具体为:
向 4-(4-氨 -3-氟苯氧基)吡啶 -2-羧酸曱酰胺 (1.42克, 5.46毫摩尔)的曱苯 (3 毫升)溶液中添加 4-氯 -3- (三氟曱基)苯基异氰酸酯 (1.2克, 5.46毫摩尔)。 所述 混合物室温搅拌 48小时。 所获固体减压过滤, 室温真空干燥 4小时得到所述 化合物(1.14克, 2.35毫摩尔; 得率 43 % :)。
X 射线粉末衍射图如图 1 所示。 显示: 实施例 1 制备的样品与 WO2008/058644公开的瑞格非尼晶型 I的 X射线粉末衍射图基本相同。
ifi-NMR (DMSO- 6) 2.80 (d, J=4.5, 3H),7.07-7.10 (m, 1H),7.19 (dd, J=3.0, 6.0, 1H),7.35 (dd, J=2.5, 1 1.5, 1H),7.43 (d, J=2.5, 1H),7.64 (s, 2H),8.13-8.19 (m, 2H),8.50 (d, J=5.5, 1H),8.75 (s, lH),8.79-8.81 (m, 1H),9.54 (s, 1H); MS (HPLC/ES) 483.06 m/z =(M+1)。 显示: 实施例 1制备的样品与 WO2005/009961实施例 1制备的瑞格非尼游离碱一致。
实施例 2
称取 l .Olg实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中, 加入 24ml 丙酮后超声使溶清; 搅拌条件下, 将 120ml水滴加至瑞格非尼的丙酮溶液中, 滴加过程中有白色固体析出, 减压过滤, 40°C真空干燥过夜, 得到 0.92g瑞格 非尼一水合物白色固体, 产率 87.8%。
X射线粉末衍射图如图 2所示。 与 WO2008/043446中公开的瑞格非尼一 水合物的 X射线粉末衍射图基本相同。
PLM图谱如图 3所示。 显示: 较小棒状晶体。
TGA图谱如图 4所示。 显示: 150°C之前失重 4.3%, 分解温度为 211 °C。
DSC图谱如图 5所示。 显示: 182 °C开始熔融分解。
等温吸附曲线如图 6所示。 显示: 20%RH〜80%RH重量变化为 0.11%。 实施例 3
称取 l.OOg实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 180ml 异丙醇后超声溶解; 称取 0.36g对曱基苯磺酸于另一 5ml的玻璃小瓶中,加入 4ml异丙醇后超声溶解; 搅拌条件下,将对曱基苯磺酸的异丙醇溶液滴加至瑞 格非尼的异丙醇溶液中, 室温下搅拌 7小时后, 有白色固体析出, 继续搅拌 1 小时后过滤, 异丙醇洗涤三次, 40°C真空干燥 10小时, 得到 1.21g白色固体, 产率 89.2%。
X射线粉末衍射图如图 7所示。 显示: 瑞格非尼对曱基苯磺酸盐晶型 T。 PLM图谱如图 8所示。 显示: 片状晶体。
TGA图谱如图 9所示。 显示: 晶型 T分解温度为 238°C。
DSC图谱如图 10所示。 显示: 晶型 T在 237°C开始熔融分解。
等温吸附曲线如图 11所示。 显示: 20%RH〜80%RH重量变化为 0.04%。
HPLC表征显示, 瑞格非尼和对曱基苯磺酸以摩尔比为 1:1成盐。
上述检测结果表明: 所述晶型 T在高温下非常稳定、 不易吸湿、 具有较 好形貌。
实施例 4
称取 l.OOg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 180ml 异丙醇后超声溶解; 称取 0.36g对曱基苯磺酸于 500 ml的烧瓶中, 加入 8ml 异丙醇后超声溶解; 搅拌条件下, 将瑞格非尼的异丙醇溶液滴加至对曱基苯 磺酸的异丙醇溶液中, 室温下搅拌 6 小时后, 有白色固体析出, 继续搅拌 1 小时后过滤, 异丙醇洗涤三次, 50°C真空干燥 10小时, 得 1.20g瑞格非尼对 曱基苯磺酸盐晶型 T, 产率 88.5%。
实施例 5
称取 l.Olg 实施例 1制备的瑞格非尼于 50ml的玻璃瓶中, 加入 28ml曱 醇后超声溶解; 称取 0.45g对曱基苯磺酸于另一 20ml的玻璃瓶中, 加入 6ml 曱醇后超声溶解; 搅拌条件下, 将对曱基苯磺酸的曱醇溶液滴加至瑞格非尼 的曱醇溶液中, 室温下搅拌 1小时后, 有白色固体析出过滤, 曱醇洗涤三次, 50°C真空干燥 10小时, 得到瑞格非尼对曱基苯磺酸盐晶型 T。 产量为 1.24g, 产率 90.5%。
实施例 6
称取 1.03g 实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 215ml 正丁醇后超声溶解; 称取 0.48g对曱基苯磺酸于另一 20ml的玻璃小瓶中, 加 入 10ml正丁醇后超声溶解; 搅拌条件下, 将对曱基苯磺酸的正丁醇溶液滴加 至瑞格非尼的正丁醇溶液中, 50°C搅拌 10小时后, 有白色固体析出, 过滤, 正丁醇洗涤三次, 40°C真空干燥 10小时, 得到瑞格非尼对曱基苯磺酸盐晶型 T。 产量 1.22g, 产率 87.3%。
实施例 7
称取 l.OOg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 120ml 乙酸乙酯后超声溶解; 称取 0.54g对曱基苯磺酸于另一 20ml的玻璃小瓶中, 加入 10ml乙酸乙酯后超声溶解; 搅拌条件下, 将对曱基苯磺酸的乙酸乙酯溶 液緩加至瑞格非尼的乙酸乙酯溶液中, 室温下搅拌 5 小时后, 有白色固体析 出, 继续搅拌 1小时后过滤, 乙酸乙酯洗涤三次, 40°C真空干燥 10小时, 得 到瑞格非尼对曱基苯磺酸盐晶型 T。 产量 1.23g, 产率 90.7%。
实施例 8
称取 l.Olg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 162ml 乙酸异丙酯后超声溶解;称取 0.72g对曱基苯磺酸于另一 20ml的玻璃小瓶中, 加入 8ml 乙酸异丙酯后超声溶解; 搅拌条件下, 将对曱基苯磺酸的乙酸异丙 酯溶液滴加至瑞格非尼的乙酸异丙酯溶液中, -10°C下搅拌 16小时后,有白色 固体析出, 继续搅拌 32小时后过滤, 乙酸异丙酯洗涤三次, 40°C真空干燥 15 小时, 得到瑞格非尼对曱基苯磺酸盐晶型 T。 产量 1.20g, 产率 87.6%。
实施例 9
称取 1.02g 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 600ml丙 酮后超声溶解;称取 0.37g对曱基苯磺酸于另一 20ml的玻璃小瓶中,加入 8ml 丙酮后超声溶解; 搅拌条件下, 将对曱基苯磺酸的丙酮溶液滴加至瑞格非尼 的丙酮溶液中, 室温下搅拌 1 小时后, 有白色固体析出, 过滤, 丙酮洗涤三 次, 30°C真空干燥 10小时,得到瑞格非尼对曱基苯磺酸盐晶型 T。产量 0.98g, 产率 70.8%。
实施例 10
称取 l.Olg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 150ml 丁酮后超声溶解; 称取 0.36g对曱基苯磺酸于另一 20ml的玻璃小瓶中, 加入 9ml丁酮后超声溶解; 搅拌条件下,将对曱基苯磺酸的丁酮溶液滴加至瑞格非 尼的丁酮溶液中, -10°C搅拌 13小时后, 有白色固体析出, 继续搅拌 35小时 后过滤, 丁酮洗涤三次, 30°C真空干燥 24小时, 得到瑞格非尼对曱基苯磺酸 盐晶型 T。 产量 l.l lg, 产率 81.0%。
实施例 11
称取 1.02g 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 450ml曱 基叔丁基酸后超声溶解;称取 0.37g对曱基苯磺酸于另一 20ml的玻璃小瓶中, 加入 7ml 曱基叔丁基醚后超声溶解; 搅拌条件下, 将对曱基苯磺酸的曱基叔 丁基醚溶液滴加至瑞格非尼的曱基叔丁基醚溶液中, -10°C搅拌 1小时后, 有 白色固体析出, 过滤, 曱基叔丁基醚洗涤三次, 30°C真空干燥 48小时, 得到 瑞格非尼对曱基苯磺酸盐晶型 T。 产量 0.99g, 产率 71.6%。
实施例 12
称取 l.OOg 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 600ml正 庚烷后超声溶解; 称取 0.36g对曱基苯磺酸于另一 20ml的玻璃小瓶中, 加入 10ml正庚烷后超声溶解; 搅拌条件下, 将对曱基苯磺酸的正庚烷溶液滴加至 瑞格非尼的正庚烷溶液中, 室温搅拌 3小时后过滤, 正庚烷洗涤三次, 50°C 真空干燥 10小时, 得到瑞格非尼对曱基苯磺酸盐晶型 T。 产量 0.87g, 产率 64.1%。
实施例 13
称取 1.50g实施例 1制备的瑞格非尼于 50ml的玻璃瓶中,加入 15ml乙醇, 40 °C搅拌溶解; 称取 0.60g对氯苯磺酸于另一 50ml的玻璃瓶中, 加入 1ml乙 醇后超声溶解; 搅拌条件下, 将瑞格非尼的乙醇溶液滴加至对氯苯磺酸的乙 醇溶液中, 40 °C搅拌 11 小时后, 有白色固体析出, 继续室温搅拌 37小时后 过滤, 乙醇洗涤三次, 40°C真空干燥 72小时, 得到 2.0g对氯苯磺酸盐产率 95.3%。
HPLC表征显示, 瑞格非尼和对氯苯磺酸以摩尔比为 1: 1成盐。
实施例 14 称取 1.70g实施例 1制备的瑞格非尼于 100ml的圓底烧瓶中, 加入 60ml 仲丁醇 50°C搅拌溶解; 称取 0.68g对氯苯磺酸于另一 100ml的烧瓶中, 加入 2ml仲丁醇后超声溶解; 搅拌条件下,将瑞格非尼的仲丁醇溶液滴加至对氯苯 磺酸的仲丁醇溶液中, 50°C搅拌 1小时后, 有白色固体析出, 继续室温搅拌 4 小时后过滤, 仲丁醇洗涤三次, 50°C真空干燥 16小时, 得到 1.96g对氯苯磺 酸盐产率 82.4%。
HPLC表征显示 , 瑞格非尼和对氯苯磺酸以摩尔比为 1:1成盐。
实施例 15
称取 l.Olg实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 180ml 异丙醇溶解; 称取 0.41g对氯苯磺酸于另一 250ml的烧瓶中,加入 4ml异丙醇 后超声溶解; 搅拌条件下, 将瑞格非尼的异丙醇溶液滴加至对氯苯磺酸的异 丙醇溶液中, 50°C搅拌 1小时后,有白色固体析出, 继续搅拌 16小时后过滤, 异丙醇洗涤三次, 40°C真空干燥 10小时, 得到 1.29g白色固体, 产率 91.3%。
X射线粉末衍射图如图 12所示。 显示: 瑞格非尼对氯苯磺酸盐晶型 C。 PLM图谱如图 13所示。 显示: 小颗粒晶体。
TGA图谱如图 14所示。 显示: 晶型 C在 150°C之前失重 7.98%, 分解温 度为 230°C。
DSC图谱如图 15所示。 显示: 晶型 C在 186°C开始熔融分解。
等温吸附曲线如图 16所示。 显示: 20%RH〜80%RH重量变化为 0.38%。 HPLC表征显示 , 瑞格非尼和对氯苯磺酸以摩尔比为 1:1成盐。
上述检测结果表明: 所述晶型 C在高温下稳定、 不易吸湿。
实施例 16
称取 l.Olg实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 180ml 异丙醇溶解; 称取 0.41g对氯苯磺酸于另一 250ml的烧瓶中, 加入 8ml异丙 醇后超声溶解; 搅拌条件下, 将瑞格非尼的异丙醇溶液滴加至对氯苯磺酸的 异丙醇溶液中, 50°C搅拌 5小时后, 有白色固体析出, 继续搅拌 16小时后过 滤, 异丙醇洗涤三次, 50°C真空干燥 10小时, 得到 1.22g瑞格非尼对氯苯磺 酸盐晶型 C, 产率 86.3%。
实施例 17
称取 1.03g实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 220ml 曱醇溶解; 称取 0.83g对氯苯磺酸于另一 500ml的烧中, 加入 2ml曱醇后超 声溶解; 搅拌条件下, 将瑞格非尼的曱醇溶液滴加至对氯苯磺酸的曱醇溶液 中, 室温下搅拌 5小时后, 有白色固体析出, 继续搅拌 4小时后过滤, 曱醇 洗涤三次, 40°C真空干燥 16小时, 得到瑞格非尼对氯苯磺酸盐晶型 C。 产量 1.20g, 产率 83.3%。
实施例 18
称取 l.OOg实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 215ml 正丁醇溶解; 称取 0.60g对氯苯磺酸于另一 500ml的烧瓶中, 加入 4ml正丁 醇后超声溶解; 搅拌条件下, 将瑞格非尼的正丁醇溶液滴加至对氯苯磺酸的 正丁醇溶液中, -10°C搅拌 10小时后, 有白色固体析出, 继续搅拌 38小时后 过滤, 正丁醇洗涤三次, 30°C真空干燥 10小时, 得到瑞格非尼对氯苯磺酸盐 晶型 C。 产量 1.27g, 产率 90.8%。
实施例 19
称取 l.Olg实施例 1制备的瑞格非尼于 1L的圓底烧瓶中, 加入 600ml乙 酸乙酯溶解; 称取 0.53g对氯苯磺酸于另一 1L的烧瓶中, 加入 8ml乙酸乙酯 后超声溶解; 搅拌条件下, 将瑞格非尼的乙酸乙酯溶液滴加至对氯苯磺酸的 乙酸乙酯溶液中, -10°C搅拌 1小时后, 有白色固体析出, 过滤, 乙酸乙酯洗 涤三次, 40°C真空干燥 10 小时, 得到瑞格非尼对氯苯磺酸盐晶型 C。 产量 1.21g, 产率 85.6%。
实施例 20
称取 1.02g实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 203ml 乙酸异丙酯溶解; 称取 0.41g对氯苯磺酸于另一 250ml的烧瓶中, 加入 9ml 乙酸异丙酯后超声溶解; 搅拌条件下, 将瑞格非尼的乙酸异丙酯溶液滴加至 对氯苯磺酸的乙酸异丙酯溶液中, 室温下搅拌 6 小时后, 有白色固体析出, 继续搅拌 4小时后过滤, 乙酸异丙酯洗涤三次, 40°C真空干燥 48小时, 得到 瑞格非尼对氯苯磺酸盐晶型 C。 产量 1.17g, 产率 82.0%。
实施例 21
称取 1.02g实施例 1制备的瑞格非尼于 150ml的圓底烧瓶中, 加入 60ml 丙酮溶解; 称取 0.62g对氯苯磺酸于另一 150ml的烧瓶中, 加入 15ml丙酮后 超声溶解; 搅拌条件下, 将瑞格非尼的丙酮溶液滴加至对氯苯磺酸的丙酮溶 液中, 室温下搅拌 1 小时后, 有白色固体析出, 继续搅拌 6小时后过滤, 丙 酮洗涤三次, 30°C真空干燥 72小时, 得到瑞格非尼对氯苯磺酸盐晶型 C。 产 量 1.29g, 产率 90.4%。
实施例 22 称取 l.OOg实施例 1制备的瑞格非尼于 150ml的圓底烧瓶中, 加入 75ml 丁酮溶解; 称取 0.40g对氯苯磺酸于另一 150ml的烧瓶中, 加入 6ml丁酮后 超声溶解; 搅拌条件下, 将瑞格非尼的丁酮溶液滴加至对氯苯磺酸的丁酮溶 液中, -10°C搅拌 7小时后, 有白色固体析出, 继续搅拌 41小时后过滤, 丁酮 洗涤三次, 30°C真空干燥 24小时, 得到瑞格非尼对氯苯磺酸盐晶型 C。 产量 1.30g, 产率 92.9%。
实施例 23
称取 l.Olg实施例 1制备的瑞格非尼于 1L的圓底烧瓶中, 加入 450ml曱 基叔丁基醚溶解; 称取 0.41g对氯苯磺酸于另一 1L的烧瓶中, 加入 10ml曱 基叔丁基醚后超声溶解; 搅拌条件下, 将瑞格非尼的曱基叔丁基醚溶液滴加 至对氯苯磺酸的曱基叔丁基醚溶液中, 室温搅拌 4 小时后体系澄清, 继续搅 拌 5小时后, 有白色固体析出, 继续搅拌 16小时后过滤, 曱基叔丁基醚洗涤 三次, 30°C真空干燥 10小时,得到瑞格非尼对氯苯磺酸盐晶型 C。产量 1.09g, 产率 77.1%。
实施例 24
称取 l.Olg实施例 1制备的瑞格非尼于 1L的圓底烧瓶中, 加入 600ml正 庚烷溶解; 称取 0.41g对氯苯磺酸于另一 1L的玻璃小瓶中, 加入 10ml正庚 烷后超声溶解; 搅拌条件下, 将瑞格非尼的正庚烷溶液滴加至对氯苯磺酸的 正庚烷溶液中, 室温搅拌 10小时后,有白色固体析出过滤,正庚烷洗涤三次, 30°C真空干燥 10小时, 得到瑞格非尼对氯苯磺酸盐晶型 C。 产量 0.95g, 产 率 67.2%。
实施例 25
称取 1.50g 实施例 1制备的瑞格非尼于 50ml的玻璃瓶中, 加入 15ml乙 醇, 40°C搅拌溶解; 称取 0.45gl,5-萘二磺酸于另一 5ml的玻璃小瓶中, 加入 4ml乙醇后超声溶解; 搅拌条件下, 将 1,5-萘二磺酸的乙醇溶液滴加至瑞格非 尼的乙醇溶液中, 40°C搅拌 1 小时后, 有白色固体析出, 转室温搅拌 4小时 后过滤, 乙醇洗涤三次, 40°C真空干燥 16小时, 得 1.86gl,5-萘二磺酸盐产率 95.5%。
HPLC表征显示, 瑞格非尼和 1,5-萘二磺酸以摩尔比为 2:1成盐。
实施例 26
称取 1.80g 实施例 1制备的瑞格非尼于 100ml的玻璃瓶中,加入 64ml仲 丁醇, 50°C搅拌溶解; 称取 0.54gl,5-萘二磺酸于另一 5ml的玻璃小瓶中, 加 入 4ml仲丁醇后超声溶解;搅拌条件下,将 1,5-萘二磺酸的仲丁醇溶液滴加至 瑞格非尼的仲丁醇溶液中, 40°C搅拌 1 小时后, 有白色固体析出, 转室温搅 拌 4小时后过滤, 仲丁醇洗涤三次, 40°C真空干燥 48小时, 得 2.09gl,5-萘二 磺酸盐产率 89.4%。
HPLC表征显示, 瑞格非尼和 1,5-萘二磺酸以摩尔比为 2:1成盐。
实施例 27
称取 l.OOg实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 120ml 乙酸乙酯溶解;称取 0.60 g 1,5-萘二磺酸于另一 20ml的玻璃小瓶中,加入 5ml 乙酸乙酯后超声溶解; 搅拌条件下,将 1,5-萘二磺酸的乙酸乙酯溶液滴加至瑞 格非尼的乙酸乙酯溶液中, 室温搅拌 5小时后, 有白色固体析出, 继续搅拌 1 小时后过滤, 乙酸乙酯洗涤三次, 40°C真空干燥 10小时, 得 1.19g白色固体, 产率 91.6%。
X射线粉末衍射图如图 17所示。显示: 瑞格非尼 1,5-萘二磺酸盐晶型^ PLM图谱如图 18所示。 显示: 小颗粒晶体。
TGA图谱如图 19所示。 显示: 晶型 N在 150°C之前失重 2.0%, 分解温 度为 240°C。
DSC图谱如图 20所示。 显示: 晶型 N在 238°C开始熔融分解。
等温吸附曲线如图 21所示。 显示: 20%RH〜80%RH重量变化为 3.77%。 HPLC表征显示, 瑞格非尼和 1,5-萘二磺酸以摩尔比为 2:1成盐。
上述检测结果表明: 所述晶型 N在高温下稳定。
实施例 28
称取 l.OOg实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 150ml 乙酸乙酯溶解; 称取 0.30 g 1,5-萘二磺酸于另一 250ml的烧瓶中, 加入 10ml 乙酸乙酯后超声溶解; 搅拌条件下, 将瑞格非尼的乙酸乙酯溶液滴加至 1,5- 萘二磺酸的乙酸乙酯溶液中, 室温搅拌 6 小时后, 有白色固体析出, 继续搅 拌 1小时后过滤, 乙酸乙酯洗涤三次, 30°C真空干燥 10小时, 得到 1.16g瑞 格非尼 1,5-萘二磺酸盐晶型 N, 产率 89.3%。
实施例 29
称取 l.Olg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 220ml 曱醇溶解; 称取 0.45 g 1,5-萘二磺酸于另一 5ml的玻璃小瓶中, 加入 4ml曱醇 后超声溶解;搅拌条件下,将 1,5-萘二磺酸的曱醇溶液滴加至瑞格非尼的曱醇 溶液中, 50°C搅拌 10小时后, 有白色固体析出, 继续搅拌 38小时后过滤, 曱醇洗涤三次, 40°C真空干燥 16小时, 得瑞格非尼 1,5-萘二磺酸盐晶型N。 产量 1.09 g, 产率 83.1%。
实施例 30
称取 1.03g 实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 360ml 异丙醇溶解; 称取 0.34g 1,5-萘二磺酸于另一 5ml的玻璃小瓶中, 加入 4ml异 丙醇后超声溶解;搅拌条件下,将 1,5-萘二磺酸的异丙醇溶液滴加至瑞格非尼 的异丙醇溶液中, 50°C搅拌 10小时后, 有白色固体析出, 继续搅拌 1小时后 过滤, 异丙醇洗涤三次, 50°C真空干燥 10小时, 得瑞格非尼 1,5-萘二磺酸盐 晶型 N。 产量 1.18g, 产率 88.2%。
实施例 31
称取 1.02g 实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 215ml 正丁醇溶解; 称取 0.34gl,5-萘二磺酸于另一 20ml 的玻璃小瓶中, 加入 6ml 正丁醇后超声溶解;搅拌条件下,将 1,5-萘二磺酸的正丁醇溶液滴加至瑞格非 尼的正丁醇溶液中, 室温搅拌 1 小时后, 有白色固体析出, 过滤, 正丁醇洗 涤三次,40°C真空干燥 24小时,得瑞格非尼 1,5-萘二磺酸盐晶型 N。产量 1.20g, 产率 90.6%。
实施例 32
称取 1.02g 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 180ml 乙酸异丙酯溶解; 称取 0.40g 1,5-萘二磺酸于另一 20ml的玻璃小瓶中, 加入 8ml乙酸异丙酯后超声溶解; 搅拌条件下, 将 1,5-萘二磺酸的乙酸异丙酯溶液 滴加至瑞格非尼的乙酸异丙酯溶液中, 室温搅拌 5小时后, 有白色固体析出, 继续搅拌 5小时后过滤, 乙酸异丙酯洗涤三次, 40°C真空干燥 72小时, 得瑞 格非尼 1,5-萘二磺酸盐晶型N。 产量 1.15g, 产率 86.8%。
实施例 33
称取 l.OOg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中, 加入 60ml 丙酮溶解; 称取 0.30 g 1,5-萘二磺酸于另一 20ml的玻璃小瓶中, 加入 6ml丙 酮后超声溶解;搅拌条件下,将 1,5-萘二磺酸的丙酮溶液滴加至瑞格非尼的丙 酮溶液中, 室温搅拌 10小时后,有白色固体析出,过滤, 丙酮洗涤三次, 40 °C 真空干燥 48小时,得瑞格非尼 1,5-萘二磺酸盐晶型 N。产量 1.21g,产率 93.2%。 实施例 34
称取 l.OOg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中, 加入 75ml 丁酮溶解; 称取 0.30 g 1,5-萘二磺酸于另一 20ml的玻璃小瓶中, 加入 7ml丁 酮后超声溶解;搅拌条件下,将 1,5-萘二磺酸的丁酮溶液滴加至瑞格非尼的丁 酮溶液中, -10°C搅拌 10小时后, 有白色固体析出, 继续搅拌 38小时后过滤, 丁酮洗涤三次, 40°C真空干燥 16小时, 得瑞格非尼 1,5-萘二磺酸盐晶型 N。 产量 1.19g, 产率 91.6%。
实施例 35
称取 1.02g 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 450ml曱 基叔丁基醚溶解; 称取 0.31gl,5-萘二磺酸于另一 20ml 的玻璃小瓶中, 加入 10ml 曱基叔丁基醚后超声溶解; 搅拌条件下, 将 1,5-萘二磺酸的曱基叔丁基 醚溶液滴加至瑞格非尼的曱基叔丁基醚溶液中, -10°C搅拌 10小时后,有白色 固体析出, 继续搅拌 1 小时后过滤, 曱基叔丁基醚洗涤三次, 30°C真空干燥 10小时, 得瑞格非尼 1,5-萘二磺酸盐晶型N。 产量 0.95g, 产率 71.7%。
实施例 36
称取 l.OOg 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 600ml正 庚烷溶解; 称取 0.60g 1,5-萘二磺酸于另一 5ml的玻璃小瓶中, 加入 4ml正庚 烷后超声溶解;搅拌条件下,将 1,5-萘二磺酸的正庚烷溶液滴加至瑞格非尼的 正庚烷溶液中, 室温搅拌 1 小时后, 有白色固体析出, 过滤, 正庚烷洗涤三 次, 40°C真空干燥 72小时, 得瑞格非尼 1,5-萘二磺酸盐晶型N。 产量 0.88g, 产率 67.8%。
实施例 37
称取 1.30g 实施例 1制备的瑞格非尼于 50ml的玻璃瓶中, 加入 13ml乙 醇, 40 °C搅拌溶解; 称取 0.26g乙二磺酸于另一 5ml的玻璃小瓶中, 加入 2ml 乙醇后超声溶解; 搅拌条件下, 将乙二磺酸的乙醇溶液滴加至瑞格非尼的乙 醇溶液中, 40°C搅拌 1小时后, 有白色固体析出, 转室温搅拌 4小时后过滤, 乙醇洗涤三次, 40°C真空干燥 16小时, 得 1.51g乙二磺酸盐产率 97.0%。
HPLC表征显示, 瑞格非尼和乙二磺酸以摩尔比为 2:1成盐。
实施例 38
称取 1.50g 实施例 1制备的瑞格非尼于 100ml的圓底烧瓶中, 加入 64ml 仲丁醇, 50°C搅拌溶解; 称取 0.30g乙二磺酸于另一 5ml的玻璃小瓶中, 加入 3ml仲丁醇后超声溶解; 搅拌条件下,将乙二磺酸的仲丁醇溶液滴加至瑞格非 尼的仲丁醇溶液中, 50°C搅拌 1 小时后, 有白色固体析出, 过滤, 仲丁醇洗 涤三次, 30°C真空干燥 10小时, 得 1.48g乙二磺酸盐产率 82.4%。
HPLC表征显示, 瑞格非尼和乙二磺酸以摩尔比为 2:1成盐。 实施例 39
称取 l.OOg实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 225ml 异丙醇溶解; 称取 0.40g乙二磺酸于另一 5ml的玻璃小瓶中,加入 3ml异丙醇 后超声溶解; 搅拌条件下, 将乙二磺酸的异丙醇溶液加至瑞格非尼的异丙醇 溶液中, 室温下搅拌 1 小时后析出白色固体, 过滤, 异丙醇洗涤三次, 40°C 真空干燥 10小时, 得到 1.12g白色固体, 产率 93.6%。
X射线粉末衍射图如图 22所示。 显示: 瑞格非尼乙二磺酸盐晶型 E。
PLM图谱如图 23所示。 显示: 小颗粒晶体。
TGA图谱如图 24所示。 显示: 晶型 E在 150°C之前失重 1.12%, 分解温 度为 234°C。
DSC图谱如图 25所示。 显示: 晶型 E在 235°C开始熔融分解。
等温吸附曲线如图 26所示。 显示: 20%RH〜80%RH重量变化为 0.89%。
HPLC表征显示, 瑞格非尼和乙二磺酸以摩尔比为 2:1成盐。
上述检测结果表明: 所述晶型 E在高温下稳定、 不易吸湿。
实施例 40
称取 l.OOg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 180ml 异丙醇溶解; 称取 0.20g乙二磺酸于另一 250ml的烧瓶中,加入 6ml异丙醇后 超声溶解; 搅拌条件下, 将瑞格非尼的异丙醇溶液滴加至乙二磺酸的异丙醇 溶液中, 室温下搅拌 1 小时后析出白色固体, 继续搅拌 3小时后过滤, 异丙 醇洗涤三次, 40°C真空干燥 24小时, 得到 1.10g瑞格非尼乙二磺酸盐晶型 E, 产率 91.9%。
实施例 41
称取 l.OOg 实施例 1制备的瑞格非尼于 100ml的圓底烧瓶中, 加入 44ml 曱醇溶解; 称取 0.24g乙二磺酸于另一 5ml的玻璃小瓶中,加入 4ml曱醇后超 声溶解; 搅拌条件下, 将乙二磺酸的曱醇溶液加至瑞格非尼的曱醇溶液中, 50°C搅拌 1小时后析出白色固体, 继续搅拌 1小时后过滤, 曱醇洗涤三次, 40°C真空干燥 48小时, 得到瑞格非尼乙二磺酸盐晶型 E。 产量 1.13g, 产率 94.4%。
实施例 42
称取 1.04g 实施例 1制备的瑞格非尼于 500ml的圓底烧瓶中,加入 215ml 正丁醇溶解; 称取 0.21g乙二磺酸于另一 5ml的玻璃小瓶中,加入 4ml正丁醇 后超声溶解; 搅拌条件下, 将乙二磺酸的正丁醇溶液加至瑞格非尼的正丁醇 溶液中, 室温下搅拌 3小时后析出白色固体, 继续搅拌 45小时后过滤, 正丁 醇洗涤三次, 50°C真空干燥 10小时, 得到瑞格非尼乙二磺酸盐晶型 E。 产量 1.17g, 产率 94.0%。
实施例 43
称取 1.03g 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 134ml 乙酸乙酯溶解; 称取 0.31g乙二磺酸于另一 5ml的玻璃小瓶中,加入 4ml乙酸 乙酯后超声溶解; 搅拌条件下, 将乙二磺酸的乙酸乙酯溶液加至瑞格非尼的 乙酸乙酯溶液中, 室温下搅拌 10小时后析出白色固体, 过滤, 乙酸乙酯洗涤 三次, 40°C真空干燥 72小时, 得到瑞格非尼乙二磺酸盐晶型 E。 产量 1.15g, 产率 93.3%。
实施例 44
称取 l.Olg 实施例 1制备的瑞格非尼于 250ml的圓底烧瓶中,加入 162ml 乙酸异丙酯溶解; 称取 0.20g乙二磺酸于另一 20ml的玻璃小瓶中, 加入 5ml 乙酸异丙酯后超声溶解; 搅拌条件下, 将乙二磺酸的乙酸异丙酯溶液加至瑞 格非尼的乙酸异丙酯溶液中, -10°C搅拌 1小时后析出白色固体, 继续搅拌 38 小时后过滤, 乙酸异丙酯洗涤三次, 30°C真空干燥 10小时, 得到瑞格非尼乙 二磺酸盐晶型 E。 产量 1.10g, 产率 91.0%。
实施例 45
称取 l.Olg 实施例 1制备的瑞格非尼于 150ml的圓底烧瓶中, 加入 60ml 丙酮溶解; 称取 0.26g乙二磺酸于另一 20ml的玻小瓶中 , 加入 8ml丙酮后超 声溶解; 搅拌条件下, 将乙二磺酸的丙酮溶液加至瑞格非尼的丙酮溶液中, 室温下搅拌 1小时后析出白色固体, 继续搅拌 1小时后过滤, 丙酮洗涤三次, 40°C真空干燥 16小时, 得到瑞格非尼乙二磺酸盐晶型 E。 产量 1.15g, 产率 95.1%。
实施例 46
称取 1.02g 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 750ml丁 酮溶解; 称取 0.2g乙二磺酸于另一 20ml的玻璃小瓶中,加入 7ml丁酮后超声 溶解; 搅拌条件下, 将乙二磺酸的丁酮溶液加至瑞格非尼的丁酮溶液中, -10 °C搅拌 8小时后析出白色固体,继续搅拌 40小时后过滤,丁酮洗涤三次, 40 °C 真空干燥 10小时, 得到瑞格非尼乙二磺酸盐晶型 E。 产量 l.OOg白色固体, 产率 81.9%。
实施例 47
称取 l.Olg 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 450ml曱 基叔丁基醚溶解; 称取 0.20g乙二磺酸于另一 20ml的玻璃小瓶中, 加入 6ml 曱基叔丁基醚后超声溶解; 搅拌条件下, 将乙二磺酸的曱基叔丁基醚溶液加 至瑞格非尼的曱基叔丁基醚溶液中, -10°C搅拌 1小时后析出白色固体,过滤, 曱基叔丁基醚洗涤三次, 40°C真空干燥 24小时, 得到瑞格非尼乙二磺酸盐晶 型 。 产量 0.91g, 产率 75.3%
实施例 48
称取 1.02g 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 600ml正 庚烷溶解; 称取 0.20g乙二磺酸于另一 20ml的玻璃小瓶中,加入 10ml正庚烷 后超声溶解; 搅拌条件下, 将乙二磺酸的正庚烷溶液加至瑞格非尼的正庚烷 溶液中, 室温下搅拌 3小时后析出白色固体继续搅拌 5小时后过滤, 正庚烷 洗涤三次, 40°C真空干燥 10小时,得到瑞格非尼乙二磺酸盐晶型 E。产量 0.83g, 产率 68.0%。
实施例 49
称取 l.OOg实施例 1制备的瑞格非尼置于 250ml的圓底烧瓶中,加入 200ml 异丙醇后超声溶解; 称取 0.42g (浓度为 40%重量比) 氢溴酸于另一 5ml的 玻璃小瓶中, 加入 4ml异丙醇后超声溶解; 搅拌条件下, 将氢溴酸的异丙醇 溶液滴加至瑞格非尼的异丙醇溶液中, 50°C搅拌 1 小时后析出白色固体, 室 温下搅拌 10小时,过滤,异丙醇洗涤三次, 40°C真空干燥 16小时,得到 1.08g 白色固体, 产率 92.5%。
X射线粉末衍射图如图 27所示。 显示: 瑞格非尼氢溴酸盐晶型 Hl。
PLM图谱如图 28所示。 显示: 小颗粒晶体。
TGA图语如图 29所示。 显示: 晶型 HI在 150°C之前失重 10.47%, 分解 温度为 216°C。
DSC图谱如图 30所示。 显示: 晶型 HI在 172°C开始熔融分解。
等温吸附曲线如图 31所示。 显示: 20%RH〜80%RH重量变化为 1.57%。 HPLC表征显示, 瑞格非尼和氢溴酸以摩尔比为 1:1成盐。
上述检测结果表明: 所述晶型 HI在高温下稳定。
实施例 50 称取 l.OOg 实施例 1 制备的瑞格非尼置于 250ml 的圓底烧瓶中, 加入 180ml异丙醇后超声溶解; 称取 0.42g氢溴酸(浓度为 40%重量比) 于另一 250ml的烧瓶中, 加入 8ml异丙醇后超声溶解; 搅拌条件下, 将瑞格非尼的异 丙醇溶液滴加至氢溴酸的异丙醇溶液中, 50°C搅拌 1 小时后析出白色固体, 过滤, 异丙醇洗涤三次, 30°C真空干燥 72小时, 得到 1.07g瑞格非尼氢溴酸 盐晶型 HI , 产率 91.6%。
实施例 51
称取 1.02g 实施例 1制备的瑞格非尼置于 50ml的玻璃瓶中, 加入 22ml 曱醇后超声溶解; 称取 0.42g氢溴酸(浓度为 40%重量比) 于另一 5ml的玻 璃小瓶中, 加入 3ml 曱醇后超声溶解; 搅拌条件下, 将氢溴酸的曱醇溶液滴 加至瑞格非尼的曱醇溶液中, -10°C搅拌 1小时后析出白色固体, 过滤, 曱醇 洗涤三次, 40 °C真空干燥 10小时,得到瑞格非尼氢溴酸盐晶型 Hl。产量 1.04g 白色固体, 产率 87.3%。
实施例 52
称取 1.02g 实施例 1 制备的瑞格非尼置于 500ml 的圓底烧瓶中, 加入
269ml正丁醇后超声溶解; 称取 0.64g (浓度为 40%重量比) 氢溴酸于另一 5ml的玻璃小瓶中, 加入 4ml正丁醇后超声溶解; 搅拌条件下, 将氢溴酸的正 丁醇溶液滴加至瑞格非尼的正丁醇溶液中, 室温下搅拌 10小时后析出白色固 体, 过滤, 正丁醇洗涤三次, 50°C真空干燥 10小时, 得到瑞格非尼氢溴酸盐 晶型 Hl。 产量 1.07g, 产率 89.8%。
实施例 53
称取 1.03g 实施例 1 制备的瑞格非尼置于 250ml 的圓底烧瓶中, 加入 120ml丙酮后超声溶解; 称取 0.55g (浓度为 40%重量比)氢溴酸于另一 20ml 的玻璃小瓶中, 加入 7ml 丙酮后超声溶解; 搅拌条件下, 将氢溴酸的丙酮溶 液滴加至瑞格非尼的丙酮溶液中, -10°C搅拌 1小时后析出白色固体, 过滤, 丙酮洗涤三次, 40°C真空干燥 24小时, 得到瑞格非尼氢溴酸盐晶型 Hl。 产 量 1.08g, 产率 89.8%。
实施例 54
称取 1.04g 实施例 1制备的瑞格非尼置于 1L的圓底烧瓶中, 加入 750ml 丁酮后超声溶解; 称取 0.44g氢溴酸(浓度为 40%重量比)于另一 20ml的玻 璃小瓶中, 加入 8ml丁酮后超声溶解; 搅拌条件下, 将氢溴酸的丁酮溶液滴 加至瑞格非尼的丁酮溶液中, 室温下搅拌 1 小时后析出白色固体, 过滤, 丁 酮洗涤三次, 40°C真空干燥 48小时, 得到瑞格非尼氢溴酸盐晶型 Hl。 产量 0.97g, 产率 79.9%。
实施例 55
称取 1.02g 实施例 1制备的瑞格非尼置于 1L的圓底烧瓶中, 加入 600ml 正庚烷后超声溶解; 称取 0.42g氢溴酸(浓度为 40%重量比) 于另一 20ml 的玻璃小瓶中, 加入 10ml正庚烷后超声溶解; 搅拌条件下, 将氢溴酸的正庚 烷溶液滴加至瑞格非尼的正庚烷溶液中, 50°C搅拌 10小时后有白色固体析出, 继续搅拌 38小时后, 过滤, 正庚烷洗涤三次, 50°C真空干燥 10小时, 得到 瑞格非尼氢溴酸盐晶型 Hl。 产量 0.80g, 产率 67.2%。
实施例 56
取实施例 49制备的 0.3 lg瑞格非尼氢溴酸盐晶型 HI , 置于 50ml玻璃瓶 中, 加入 20ml乙酸乙酯。 室温下搅拌 72小时, 过滤, 40°C真空干燥 10小时, 得到 0.30g白色固体, 收率为 96.8%。
X射线粉末衍射图如图 32所示。 显示: 瑞格非尼氢溴酸盐晶型 H2。
实施例 57
将实施例 56中的乙酸乙酯替换为曱基叔丁基醚, 其他操作同实施例 56, 得到瑞格非尼氢溴酸盐晶型 H2, 产量 0.29g, 收率 93.5%。
实施例 58
称取 1.60g 实施例 1制备的瑞格非尼于 50ml的玻璃瓶中, 加入 13ml乙 醇, 40 °C搅拌溶解; 称取 0.37g 乙磺酸于另一 5ml的玻璃小瓶中, 加入 2ml 乙醇后超声溶解; 搅拌条件下, 将乙磺酸的乙醇溶液滴加至瑞格非尼的乙醇 溶液中, 40°C搅拌 1 小时后, 有白色固体析出, 转室温搅拌 4小时后过滤, 乙醇洗涤三次, 30°C真空干燥 24小时, 得 1.9g乙磺酸盐产率 96.7%。
HPLC表征显示 , 瑞格非尼和乙磺酸以摩尔比为 1: 1成盐。
实施例 59
取 1.30g 实施例 1制备的瑞格非尼于 1L的圓底烧瓶中,加入 450ml曱基 叔丁基醚溶解; 称取 0.30g乙磺酸于另一 20ml的玻璃小瓶中,加入 10ml曱基 叔丁基醚后超声溶解; 搅拌条件下, 将乙磺酸的曱基叔丁基醚溶液滴加至瑞 格非尼的曱基叔丁基醚溶液中, 室温搅拌 10小时后, 有白色固体析出, 继续 搅拌 1小时后过滤, 曱基叔丁基醚洗涤三次, 40°C真空干燥 10小时, 得瑞格 非尼乙磺酸盐产量 1.12g, 产率 70.2%。
HPLC表征显示, 瑞格非尼和乙磺酸以摩尔比为 1:1成盐。 实施例 60
称取 l.OOg实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中,加 入 134ml乙酸乙酯后超声溶解;称取 0.23g乙磺酸置于另一 5ml的玻璃小瓶中, 加入 3ml 乙酸乙酯超声溶解; 搅拌条件下, 将乙磺酸的乙酸乙酯溶液滴加至 瑞格非尼的乙酸乙酯溶清液中, 50°C搅拌 5 小时有白色固体析出, 继续搅拌 43小时后过滤, 乙酸乙酯洗涤三次, 50°C真空干燥 16小时, 得 1.18g白色固 体, 产率 96.1%。
X射线粉末衍射图如图 33所示。 显示: 瑞格非尼乙磺酸盐晶型 Etl。 PLM图谱如图 34所示。 显示: 小颗粒晶体。
TGA图语如图 35所示。 显示: 晶型 Etl在 150°C之前失重 0.45%, 分解 温度为 224 °C。
DSC图谱如图 36所示。 显示: 晶型 Etl在 201 °C开始熔融分解。
等温吸附曲线如图 37所示。 显示: 20%RH〜80%RH重量变化为 0.54%。 HPLC表征显示 , 瑞格非尼和乙磺酸以摩尔比为 1:1成盐。
上述检测结果表明: 所述晶型 Etl在高温下稳定, 不易吸湿。
实施例 61
称取 l.OOg 实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中, 加入 120ml乙酸乙酯后超声溶解;称取 0.23g乙磺酸置于另一 250ml的烧瓶中, 加入 6ml 乙酸乙酯超声溶解; 搅拌条件下, 将瑞格非尼的乙酸乙酯溶液添加 至乙磺酸的乙酸乙酯溶清液中, 50°C搅拌 5小时有白色固体析出, 继续搅拌 5 小时后过滤, 乙酸乙酯洗涤三次, 40°C真空干燥 24小时, 得到 1.04g瑞格非 尼乙磺酸盐晶型 Etl , 产率 84.7%。
实施例 62
称取 l.Olg 实施例 1制备的瑞格非尼游离碱置于 50ml的圓底烧瓶中, 加 入 25ml乙醇后超声溶解; 称取 0.46g乙磺酸置于另一 5ml的玻璃小瓶中, 加 入 2ml 乙醇超声溶解; 搅拌条件下, 将乙磺酸的乙醇溶液滴加至瑞格非尼的 乙醇溶清液中, 室温搅拌 5小时有白色固体析出, 继续搅拌 1小时后过滤, 乙醇洗涤三次, 40°C真空干燥 72小时, 得到瑞格非尼乙磺酸盐晶型 Etl。 产 量 1.19g, 产率 95.9%。
实施例 63
称取 1.02g 实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中, 加入 180ml异丙醇后超声溶解;称取 0.28g乙磺酸置于另一 5ml的玻璃小瓶中, 加入 3ml异丙醇超声溶解; 搅拌条件下, 将乙磺酸的异丙醇溶液滴加至瑞格 非尼的异丙醇溶清液中, 室温搅拌 1 小时有白色固体析出, 过滤, 异丙醇洗 涤三次, 40°C真空干燥 10小时,得到瑞格非尼乙磺酸盐晶型 Etl。产量 1.18g, 产率 94.2%。
实施例 64
称取 l.OOg 实施例 1制备的瑞格非尼游离碱置于 500ml的圓底烧瓶中, 加入 215ml正丁醇后超声溶解;称取 0.35g乙磺酸置于另一 5ml的玻璃小瓶中, 加入 3ml正丁醇超声溶解; 搅拌条件下, 将乙磺酸的正丁醇溶液滴加至瑞格 非尼的正丁醇溶清液中, 50°C搅拌 15小时有白色固体析出, 继续搅拌 33 小 时后过滤, 正丁醇洗涤三次, 40°C真空干燥 48小时, 得到瑞格非尼乙磺酸盐 晶型 Etl。 产量 1.13g, 产率 92.0%。
实施例 65
称取 l.Olg 实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中, 加入 120ml丙酮后超声溶解; 称取 0.24g乙磺酸置于另一 5ml的玻璃小瓶中, 加入 4ml 丙酮超声溶解; 搅拌条件下, 将乙磺酸的丙酮溶液滴加至瑞格非尼 的丙酮溶清液中, -10°C搅拌 2小时有白色固体析出,继续搅拌 46小时后过滤, 丙酮洗涤三次, 40°C真空干燥 10小时, 得到瑞格非尼乙磺酸盐晶型 Etl。 产 量 1.15g, 产率 92.7%。
实施例 66
称取 l.OOg 实施例 1制备的瑞格非尼游离碱置于 1L的圓底烧瓶中,加入
750ml丁酮后超声溶解; 称取 0.46g乙磺酸置于另一 5ml的玻璃小瓶中, 加入 4ml丁酮超声溶解; 搅拌条件下,将乙磺酸的丁酮溶液滴加至瑞格非尼的丁酮 溶清液中, 室温搅拌 10小时有白色固体析出, 过滤, 丁酮洗涤三次, 40°C真 空干燥 24小时, 得到瑞格非尼乙磺酸盐晶型 Etl。 产量 0.98g, 产率 79.8%。 实施例 67
取实施例 60制备的 0.33g瑞格非尼乙磺酸盐晶型 Etl ,置于 50ml小瓶中, 加入 20ml曱基叔丁基酸。 室温下搅拌 72小时,过滤, 40°C真空干燥 10小时, 得到 0.32g白色固体, 收率为 97.0%„
X射线粉末衍射图如图 38所示。 显示: 瑞格非尼乙磺酸盐晶型 Et2。 实施例 68
将实施例 67中的曱基叔丁基醚替换为正庚烷, 其他操作同实施例 67,得 到瑞格非尼乙磺酸盐晶型 Et2, 产量 0.31g, 收率 93.9%。 实施例 69
称取 l.OOg实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中,加 入 180ml异丙醇溶解; 称取 0.44 g 2-萘磺酸置于另一 5ml的玻璃小瓶中, 加 入 4ml异丙醇超声溶解; 将 2-萘磺酸的异丙醇溶液滴加至瑞格非尼的异丙醇 溶清液中, 室温搅拌保持 2小时, 挥发除尽溶剂, 加 50ml正庚烷超声立刻析 出白色固体, 室温下搅拌 1小时后过滤, 异丙醇洗涤三次, 30°C真空干燥 24 小时, 得 1.30g白色固体, 产率 90.8%。
X射线粉末衍射图如图 39所示。 显示: 瑞格非尼的 2-萘磺酸盐晶型 Na。 PLM图谱如图 40所示。 显示: 小颗粒晶体。
TGA图谱如图 41所示。 显示: 晶型 Na在分解温度为 235°C。
DSC图谱如图 42所示。 显示: 晶型 Na在 193 °C开始熔融分解。
等温吸附曲线如图 43所示。 显示: 20%RH〜80%RH重量变化为 0.26%。 HPLC表征显示, 瑞格非尼和 2-萘磺酸以摩尔比为 1: 1成盐。
上述检测结果表明: 所述晶型 Na在高温下稳定, 不易吸湿。
实施例 70
称取 l.OOg 实施例 1制备的瑞格非尼游离碱置于 500ml的圓底烧瓶中, 加入 225ml异丙醇; 称取 0.44 g 2-萘磺酸置于另一 500ml的烧瓶中, 加入 8ml 异丙醇超声溶解; 将瑞格非尼的异丙醇溶液添加至 2-萘磺酸的异丙醇溶清液 中, 50°C搅拌保持 2小时, 挥发除尽溶剂, 加 25ml正庚烷超声立刻析出白色 固体, 室温下搅拌 10小时后过滤, 异丙醇洗涤三次, 40°C真空干燥 10小时, 得到 1.36g瑞格非尼的 2-萘磺酸盐晶型 Na, 产率 95.0%。
实施例 71
称取 l.Olg 实施例 1制备的瑞格非尼游离碱置于 500ml的圓底烧瓶中, 加入 220ml曱醇溶解; 称取 0.88 g 2-萘磺酸置于另一 5ml的玻璃小瓶中, 加 入 4ml曱醇超声溶解; 将 2-萘磺酸的曱醇溶液滴加至瑞格非尼的曱醇溶清液 中, 室温搅拌保持 2小时, 挥发除尽溶剂, 加 110ml正庚烷超声立刻析出白 色固体, -10°C搅拌 1小时后过滤, 曱醇洗涤三次, 50°C真空干燥 10小时, 得 到瑞格非尼的 2-萘磺酸盐晶型 Na , 产量 1.23g, 收率 85.1%。
实施例 72
称取 l.OOg 实施例 1制备的瑞格非尼游离碱置于 500ml的圓底烧瓶中, 加入 215ml正丁醇溶解; 称取 0.53 g 2-萘磺酸置于另一 5ml的玻璃小瓶中, 加入 4ml正丁醇超声溶解; 将 2-萘磺酸的正丁醇溶液滴加至瑞格非尼的正丁 醇溶清液中, 室温搅拌保持 1小时, 快速挥发除尽溶剂, 加 50ml正庚烷超声 立刻析出白色固体, 50°C搅拌 1 小时后过滤, 正丁醇洗涤三次, 40°C真空干 燥 48小时, 得到瑞格非尼的 2-萘磺酸盐晶型 Na, 产量 1.28g, 收率 89.4%。 实施例 73
称取 1.02g 实施例 1制备的瑞格非尼游离碱置于 mllOOml的圓底烧瓶中, 加入 67ml丙酮溶解; 称取 0.66 g 2-萘磺酸置于另一 5ml的玻璃小瓶中, 加入 4ml丙酮超声溶解; 将 2-萘磺酸的丙酮溶液滴加至瑞格非尼的丙酮溶清液中, 室温搅拌保持 2小时,挥发除尽溶剂,加 34ml正庚烷超声立刻析出白色固体, -10°C搅拌 48小时后过滤, 丙酮洗涤三次, 40°C真空干燥 16小时, 得到瑞格 非尼的 2-萘磺酸盐晶型 Na , 得到 1.27g, 收率 87.0%。
实施例 74
称取 l.Olg 实施例 1制备的瑞格非尼游离碱置于 500ml的圓底烧瓶中, 加入 360ml丁酮溶解; 称取 0.44 g 2-萘磺酸置于另一 5ml的玻璃小瓶中, 加 入 4ml丁酮超声溶解; 将 2-萘磺酸的丁酮溶液滴加至瑞格非尼的丁酮溶清液 中, 50°C搅拌保持 48小时, 快速挥发除尽溶剂, 加 180ml正庚烷超声立刻析 出白色固体, -10°C搅拌 4小时后过滤,丁酮洗涤三次, 30°C真空干燥 10小时, 得到瑞格非尼的 2-萘磺酸盐晶型 Na , 得到 1.24g, 收率 85.8%。
实施例 75
称取 l.Olg 实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中, 加入 120ml乙酸乙酯溶解; 称取 0.44 g 2-萘磺酸置于另一 5ml的玻璃小瓶中, 加入 4ml 乙酸乙酯超声溶解; 将 2-萘磺酸的乙酸乙酯溶液滴加至瑞格非尼的 乙酸乙酯溶清液中, -10°C搅拌保持 1小时, 快速挥发除尽溶剂, 加 24ml正庚 烷超声立刻析出白色固体, 室温下搅拌 1 小时后过滤, 乙酸乙酯洗涤三次, 40°C真空干燥 72小时, 得到瑞格非尼的 2-萘磺酸盐晶型 Na , 产量 1.28g, 收率 88.5%。
实施例 76
称取 1.02g 实施例 1制备的瑞格非尼游离碱置于 250ml的圓底烧瓶中, 加入 162ml乙酸异丙酯溶解; 称取 0.44 g 2-萘磺酸置于另一 5ml的玻璃小瓶 中, 加入 4ml乙酸异丙酯超声溶解; 将 2-萘磺酸的乙酸异丙酯溶液滴加至瑞 格非尼的乙酸异丙酯溶清液中, 室温搅拌保持 2 小时, 快速挥发除尽溶剂, 加 17ml正庚烷超声立刻析出白色固体, 室温下搅拌 10小时后过滤, 乙酸异 丙酯洗涤三次, 50°C真空干燥 10小时,得到瑞格非尼的 2-萘磺酸盐晶型 Na , 产量 1.29g, 收率 88.4%。
实施例 77
称取 l.Olg 实施例 1制备的瑞格非尼游离碱置于 1L的圓底烧瓶中,加入 450ml曱基叔丁基醚溶解; 称取 0.44g2-萘磺酸置于另一 5ml的玻璃小瓶中, 加入 4ml曱基叔丁基醚超声溶解; 将 2-萘磺酸的曱基叔丁基醚溶液滴加至瑞 格非尼的曱基叔丁基醚溶清液中, 室温搅拌保持 4小时, 快速挥发除尽溶剂, 加 90ml正庚烷超声立刻析出白色固体, 40°C搅拌 1小时后过滤, 曱基叔丁基 醚洗涤三次, 40°C真空干燥 10小时, 得到瑞格非尼的 2-萘磺酸盐晶型 Na , 产量 0.96g, 收率 66.4%。
实施例 78
无菌 IV溶液的配制: 将本发明制备的 T晶型瑞格非尼对曱基苯磺酸盐, 用无菌的注射用水配制成 7毫克 /毫升溶液,同时添加 2%重量百分比的增溶剂 普朗尼克 (Pluronic) F-68, 并按需要调节 pH ( H调到小剂量 4-9之间, 大剂 量尽可能接近正常人血液的 pH ) 。
无菌 IV溶液的给药:将上述无菌 IV溶液用 5 %无菌右旋糖稀释至 2毫克
/ 毫升, 并用 60 分钟静脉输液给药。
实施例 79-86
无菌溶液的配制: 将实施例 78中的 T晶型瑞格非尼对曱基苯磺酸盐分别 替换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型瑞格非尼 1,5-萘 二磺酸盐、 E晶型瑞格非尼乙二磺酸盐、 HI晶型瑞格非尼氢溴酸盐、 H2晶型 瑞格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞格非尼乙磺酸盐 晶型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游离碱和对曱基苯 磺酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂和盐型的总量和 实施例 78中的相同, 其他操作同实施例 78。
实施例 87
冻干粉末的制备: 用(i)135-1350 毫克冻干粉末形式的本发明制备的 T晶 型瑞格非尼对曱基苯磺酸盐, 用适量注射用水溶解后, 无菌过滤, 分装于安 培中, 冷冻干燥后封口, 漏气检查即得。
冻干粉末的静脉给药: 将上述 T晶型瑞格非尼对曱基苯磺酸盐的冻干粉 末, 用无菌注射用水或 5 %右旋糖再造成浓度为 21 毫克 / 毫升的溶液, 进一 步用生理盐水或 5 %右旋糖稀释成 0.5毫克 / 毫升的溶液, 并用 15-60 分钟通 过静脉集合药团或静脉灌注给药。 实施例 88-95
用于静脉给药的冻干粉末的制备: 将实施例 87中的 T晶型瑞格非尼对曱 基苯磺酸盐分别替换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型 瑞格非尼 1,5-萘二磺酸盐、 E晶型瑞格非尼乙二磺酸盐、 HI晶型瑞格非尼氢 溴酸盐、 H2晶型瑞格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞 格非尼乙磺酸盐晶型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游 离碱和对曱基苯磺酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂 和盐型的总量和实施例 87中的相同, 其他操作同实施例 87。
实施例 96
肌内悬浮液的制备:
50 毫克 / 毫升本发明制备的 T晶型瑞格非尼对曱基苯磺酸盐
5 毫克 / 毫升歡曱基纤维素钠
4 毫克 / 毫升 Tween80
9 毫克 / 毫升氯化钠
9 毫克 / 毫升苯曱基醇
(如下)
将羧曱基纤维素钠先用适量水溶解, 备用; 将 Tween80、 氯化钠、 苯曱 基醇用适量水溶解后加入羧曱基纤维素钠水溶液中混合均匀; 将 T晶型瑞格 非尼对曱基苯磺酸盐加入混合溶液中搅拌分散均匀, 即得。
实施例 97-105
肌内悬浮液的制备: 将实施例 96中的 T晶型瑞格非尼对曱基苯磺酸盐分 别替换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型瑞格非尼 1,5- 萘二磺酸盐、 E 晶型瑞格非尼乙二磺酸盐、 HI 晶型瑞格非尼氢溴酸盐、 H2 晶型瑞格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞格非尼乙磺 酸盐晶型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游离碱和对曱 基苯磺酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂和盐型的总 量和实施例 96中的相同, 其他操作同实施例 96。
实施例 106
硬壳胶嚢的制备: 通过填充传统的两片式硬胶嚢, 制备胶嚢颗粒。 将 100 毫克粉末状活性成分瑞格非尼 (即 135mg本发明制备的 T晶型瑞格非尼对曱 基苯磺酸盐)与 150毫克乳糖、 50 毫克纤维素混合均匀, 再加入 6 毫克硬脂 酸镁, 混匀后填充胶嚢, 即得。 实施例 107-114
硬壳胶嚢的制备: 将实施例 106中的 T晶型瑞格非尼对曱基苯磺酸盐分 别替换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型瑞格非尼 1,5- 萘二磺酸盐、 E 晶型瑞格非尼乙二磺酸盐、 HI 晶型瑞格非尼氢溴酸盐、 H2 晶型瑞格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞格非尼乙磺 酸盐晶型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游离碱和对曱 基苯磺酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂和盐型的总 量和实施例 106中的相同, 其他操作同实施例 106。
实施例 115
软明胶胶嚢的制备: 在水中加入明胶,甘油, 防腐剂,搅拌并加热至 80°C 左右使形成透明胶液, 在胶液中加入避光剂、 着色剂等搅拌均勾, 将配置好 的胶液保温在 60°C , 备用; 将本发明制备的 T晶型瑞格非尼对曱基苯磺酸盐 加入大豆油、 棉籽油或橄榄油等植物油中搅拌均匀, 使之形成含 100 毫克活 性成分瑞格非尼(即 135mgT晶型瑞格非尼对曱基苯磺酸盐)的混悬型软胶嚢 内容物; 也可将 T晶型瑞格非尼对曱基苯磺酸盐溶解在聚乙二醇等水溶性液 体稀释剂中形成透明的可溶于水的软胶嚢内容物; 通过泵将胶液与软胶嚢内 容物输入软胶嚢机中压制软胶嚢, 胶嚢经干燥清洗后即得符合要求的软胶嚢。 实施例 116-123
软明胶胶嚢的制备: 将实施例 115中的 T晶型瑞格非尼对曱基苯磺酸盐 分别替换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型瑞格非尼 1,5- 萘二磺酸盐、 E 晶型瑞格非尼乙二磺酸盐、 HI 晶型瑞格非尼氢溴酸盐、 H2 晶型瑞格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞格非尼乙磺 酸盐晶型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游离碱和对曱 基苯磺酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂和盐型的总 量和实施例 115中的相同, 其他操作同实施例 115。
实施例 124
药片的制备: 通过常规工艺制备大量片剂。 将 100 毫克活性成分瑞格非 尼 (即 135mg本发明制备的 T晶型瑞格非尼对曱基苯磺酸盐), 98.8 毫克乳 糖、 11 毫克淀粉、 2 毫克羧曱基淀粉钠和 275毫克微晶纤维素在混合机中混 匀, 用水作润湿剂制粒, 湿颗粒在烘箱中干燥至水分在 3%以下, 后向干颗粒 中加入 2 毫克羧曱基淀粉钠和 5 毫克硬脂酸镁, 混合均匀, 测定颗粒中主药 成分, 确定片重, 压片。 实施例 125-132
药片的制备: 将实施例 124中的 T晶型瑞格非尼对曱基苯磺酸盐分别替 换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型瑞格非尼 1,5-萘二 磺酸盐、 E晶型瑞格非尼乙二磺酸盐、 HI晶型瑞格非尼氢溴酸盐、 H2晶型瑞 格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞格非尼乙磺酸盐晶 型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游离碱和对曱基苯磺 酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂和盐型的总量和实 施例 124中的相同, 其他操作同实施例 124。
实施例 133
速释药片 /胶嚢的制备: 将 100 毫克活性成分瑞格非尼 (即 135mg本发明 制备的 T晶型瑞格非尼对曱基苯磺酸盐)与 162mg乳糖、 lOOmg微晶纤维素 混合均匀, 将 3mg硬脂酸镁加入上述混合粉中混匀后加入压片机中压片即得 速释药片; 将 100 毫克活性成分瑞格非尼(即 135mgT晶型瑞格非尼对曱基 苯磺酸盐) 与 115mg预胶化淀粉混合均匀后加入胶嚢灌装机中进行胶嚢灌装 速释胶嚢。
实施例 134
速释药片 /胶嚢的制备: 将实施例 133中的 T晶型瑞格非尼对曱基苯磺酸 盐分别替换为本发明制备的 C晶型瑞格非尼对氯苯磺酸盐、 N晶型瑞格非尼 1,5-萘二磺酸盐、 E 晶型瑞格非尼乙二磺酸盐、 HI 晶型瑞格非尼氢溴酸盐、 H2晶型瑞格非尼氢溴酸盐、 Etl晶型瑞格非尼乙磺酸盐、 Et2晶型瑞格非尼乙 磺酸盐晶型和 Na晶型瑞格非尼 2-萘磺酸盐,配方中各种盐型中的游离碱和对 曱基苯磺酸盐中游离碱的摩尔用量相同, 各种盐型配方中的填充剂和盐型的 总量和实施例 133中的相同, 其他操作同实施例 133。
实施例 135
分别取本发明制备的瑞格非尼的对曱基苯磺酸盐晶型 T、对氯苯磺酸盐晶 型( 、 1,5-萘二磺酸盐晶型N、 乙二磺酸盐晶型 、 氢溴酸盐晶型 Hl、 氢溴酸 盐晶型 H2、 乙磺酸晶型 Etl、 乙磺酸晶型 Et2、 2-萘磺酸盐晶型 Na与瑞格非 尼的一水合物进行溶解度、 20%-80%RH重量变化、 熔点、 分解温度和形貌的 比较。
20%-80%RH相对湿度范围内重量变化是通过 DVS检测获得。
熔点比较: 通过 DSC检测获得。
分解温度比较: 通过 TGA检测获得。 形貌比较: 通过 PLM检测获得。
溶解度比较:釆用十二烷基苯磺酸钠增溶结合 HPLC检测法。分别取 lOmg 样品和 50mg十二烷基苯磺酸钠于 20ml玻璃瓶中,加入 15ml去离子水, 40K z 超声工作功率超声 60min, 取样过滤并定容至 5ml容量瓶中, 除去水后, 用乙 腈定容, HPLC检测浓度。 结果见表 1。 表 1 不同盐型的瑞格非尼的性能比较结果
Figure imgf000046_0001
由表 1可看出,本发明制备的瑞格非尼对曱基苯磺酸盐晶型 τ、对氯苯磺 酸盐晶型 、 1 ,5-萘二磺酸盐晶型N、 乙二磺酸盐晶型 、 氢溴酸盐晶型 Hl、 乙磺酸晶型 Etl、 2-萘磺酸盐晶型 Na与瑞格非尼的一水合物比较, 具有分解 温度高和增溶效果好等优势, 其增溶效果是一水合物的 10 ~ 95倍。
本说明书中所引用的所有专利、 专利申请公开、 专利申请及非专利出版 物, 均通过引用以其全文并入本申请中。
上述对本申请中涉及的发明的一般性描述和对其具体实施方式的描述不 应理解为是对该发明技术方案构成的限制。 本领域所属技术人员根据本申请 的公开, 可以在不违背所涉及的发明构成要素的前提下, 对上述一般性描述 或 /和具体实施方式 (包括实施例)中的公开技术特征进行增加、 减少或组合, 形成属于所述发明的其它的技术方案。 本发明的保护范围应该以权利要求书 所限定的保护范围为准。

Claims

权利要求书
1、 瑞格非尼对曱基苯磺酸盐晶型 T, 其结构式如下:
Figure imgf000048_0001
其特征在于, 使用 Cu-Κα辐射, 其 X射线粉末衍射图在 2Θ为 4.5±0.2。、 13.4士 0.2。、 18.1士 0.2。、 20.8士 0.2。、 21.9士 0.2。和 23.0士 0.2。处具有特征峰。
2、 根据权利要求 1所述瑞格非尼对曱基苯磺酸盐晶型 T, 其特征在于, 其 X射线粉末衍射图在 2Θ 为 4.5士 0.2。、 11.0士 0.2。、 11.5士 0.2。、 13.4士 0.2。、 14.8士 0.2°、 16.6士 0.2°、 18.1士 0.2°、 20.4士 0.2°、 20.8士 0.2°、 21.9士 0.2°、 23.0士 0.2 和 25.0±0.2。处具有特征峰。
3、 根据权利要求 2所述瑞格非尼对曱基苯磺酸盐晶型 T, 其特征在于, 其 X射线粉末衍射图的特征峰及其相对强度如下:
衍射角 2Θ 相对强
4.5士 0.2。 38.0
1 1.0士 0.2° 13.6
1 1.5±0.2° 15.9
13.4士 0.2° 42.2
14.8±0.2° 29.8
16.6士 0.2° 29.9
18.1士 0.2° 50.6
19.3士 0.2° 1 1.3
20.4士 0.2° 42.1
20.8士 0.2° 71.4
21.9士 0.2° 100.0
23.0士 0.2° 77.7
24.0±0.2° 1 1.5
25.0士 0.2° 23.2
26.1士 0.2° 18.5
27.1士 0.2° 19.5
28.8士 0.2° 1 1.4
29.0士 0.2° 14.3
29.6士 0.2° 12.8
33.7士 0.2° 10.4
4、权利要求 1〜3中任一项所述瑞格非尼对曱基苯磺酸盐晶型 T的制备方 法, 所述方法包括: 分别形成瑞格非尼和对曱基苯磺酸在可溶溶剂中的溶液 体系, 瑞格非尼和对曱基苯磺酸的摩尔比为 1 : 1〜1 :2, 混合两个体系形成悬浊 液, 在 -10°C〜50°C的温度下析晶, 得到所述晶型 T;
所述可溶溶剂优选为 CH^醇、 C4〜C5酯、 C3〜C4酮、 曱基叔丁基醚或正 庚烷; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中 溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 对曱基苯磺酸的可溶溶剂溶液的浓度 优选为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1倍;瑞格非尼和对曱基苯 磺酸的摩尔比优选为 1 : 1〜1 : 1.5; 优选所述析晶温度为室温, 析晶时间为 1〜48 小时, 更优选 1〜10小时。
5、 瑞格非
Figure imgf000049_0001
H 其特征在于,使用 Cu-Κα辐射,其 X射线粉末衍射图在 2Θ为 9.0±0.2。、 9.9士 0.2°、 18.2士 0.2°、 19.9士 0.2°、 23.1士 0.2°和 27.4士 0.2°处具有特征峰。
6、 根据权利要求 5所述瑞格非尼对氯苯磺酸盐晶型 C , 其特征在于, 其 X射线粉末衍射图在 2Θ为 9.0士 0.2。、 9.9士 0.2。、 12.4士 0.2。、 15.7士 0.2。、 18.2士 0.2。、 19.9士 0.2°、 21.9士 0.2°、 23.1士 0.2°、 24.1°士 0.2°、 25.2士 0.2°、 25.5士 0.2°和 27.4士 0.2° 处具有特征峰。
7、 根据权利要求 6所述瑞格非尼对氯苯磺酸盐晶型 C , 其特征在于, 其 X射线粉末衍射图的特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
9.0士 0.2° 53.0
9.9士 0.2° 37.9
12.4士 0.2° 17.3
15.7士 0.2° 35.8
18.2士 0.2° 82.4
18.7士 0.2° 1 1.7
19.9士 0.2° 60.1
20.5士 0.2° 13.6
21.9士 0.2° 14.6
23.1士 0.2° 63.3
24.1士 0.2° 27.6
25.2士 0.2° 39.9
25.5士 0.2° 34.2
27.4士 0.2° 100.0
28.5士 0.2° 17.9
29.0士 0.2° 12.0
29.8士 0.2° 15.9
30.1±0.2° 12.3
8、权利要求 5 7中任一项所述瑞格非尼对氯苯磺酸盐晶型 C的制备方法, 所述方法包括: 分别形成瑞格非尼和对氯苯磺酸在可溶溶剂中的溶液体系, 瑞格非尼和对氯苯磺酸的摩尔比 1:1 1:2, 混合两个体系形成悬浊液, 在 -10°C 50°C的温度下析晶, 得到所述晶型 C;
所述可溶溶剂优选为 Cr^C 醇、 C4 C5酯、 C3 C4酮、 曱基叔丁基醚或正 庚烷; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中 溶解度的 0.1 1倍, 更优选为 0.5 1倍; 对氯苯磺酸的可溶溶剂溶液的浓度优 选为其在析晶温度下在可溶溶剂中溶解度的 0.5 1倍;瑞格非尼和对氯苯磺酸 的摩尔比优选为 1:1 1:1.5;优选所述析晶温度为室温,析晶时间为 1 48小时, 更优选 1 10小时。
9、 瑞格非尼 1,5-萘二磺酸盐晶型 N, 其结构式如下:
Figure imgf000050_0001
其特征在于,使用 Cu-Κα辐射,其 X射线粉末衍射图在 2Θ为 7.3±0.2。、 10.3士 0.2。、 12.8士 0.2。、 15.1士 0.2。、 18.8士 0.2。和 26.1士 0.2。处具有特征峰。
10、根据权利要求 9所述瑞格非尼 1,5-萘二磺酸盐晶型 N, 其特征在于, 其 X 射线粉末衍射图在 2Θ 为 7.3士 0.2。、 8.3士 0.2。、 9.6士 0.2。、 10.3士 0.2。、 11.6士 0.2° 12.8士 0.2° 13.7士 0.2° 15.1士 0.2° 16.5士 0.2° 18.8士 0.2° 19.8士 0.2° 21.1±0.2。和 26.1±0.2。处具有特征峰。
11、根据权利要求 10所述瑞格非尼 1,5-萘二磺酸盐晶型 N,其特征在于, 其 X射线粉末衍射图的特征峰及其相对强度如下: 衍射角 2Θ 相对强度%
7.3士 0.2° 99.5
8.3±0.2° 19.3
9.6士 0.2° 14.8
10.3士 0.2° 27.3
11.6士 0.2° 21.8
12.8±0.2° 46.0
13.7士 0.2° 16.3
15.1士 0.2° 37.8
15.9士 0.2° 11.7
16.5士 0.2° 28.1
17.8士 0.2° 12.6
18.8士 0.2° 39.9
19.8士 0.2。 35.2
21.1±0.2° 23.4
21.5±0.2° 10.2
23.2士 0.2° 12.7
24.8士 0.2。 18.0
26.1士 0.2° 100.0
26.6士 0.2° 11.0
12、 权利要求 9〜11中任一项所述瑞格非尼 1,5-萘二磺酸盐晶型 Ν的制 备方法, 所述方法包括: 分别形成瑞格非尼和 1,5-萘二磺酸在可溶溶剂中的溶 液体系, 瑞格非尼和 1,5-萘二磺酸的摩尔比为 1 : 1〜2: 1 , 混合两个体系形成悬 浊液, 在 -10°C〜50°C的温度下析晶, 得到所述晶型 N;
所述可溶溶剂优选为 C^C 醇、 C4〜C5酯、 C3〜C4酮、 曱基叔丁基醚或正 庚烷; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中 溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 1,5-萘二磺酸的可溶溶剂溶液的浓度 优选为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1倍; 瑞格非尼和 1,5-萘二 磺酸的摩尔比优选为 2: 1.5〜2: 1; 优选所述析晶温度为室温, 析晶时间为 1〜48 小时, 更优选 1〜10小时。
13、 瑞格非尼乙二磺酸盐晶型 E, 其结构式如下:
Figure imgf000052_0001
其特征在于, 使用 Cu-Κα 辐射, 其 X 射线粉末衍射图在 2Θ 为 10.6士 0.2°、 12.1士 0.2°、 17.0士 0.2°、 18.1士 0.2°、 22.7士 0.2°和 23.6士 0.2°处具有 特征峰。
14、 根据权利要求 13所述瑞格非尼乙二磺酸盐晶型 E, 其特征在于, 其 X 射线粉末衍射图在 2Θ 为 10.6士 0.2°、 12.1士 0.2°、 14.1士 0.2°、 15.8士 0.2°、 17.0士 0.2°、 18.1士 0.2°、 20.1士 0.2°、 21.3士 0.2°、 22.7士 0.2°、 23.6士 0.2°、 24.3士 0.2° 和 27.8±0.2。处具有特征峰。
15、 根据权利要求 14所述瑞格非尼乙二磺酸盐晶型 E, 其特征在于, 其 X射线粉末衍射图的特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
10.6士 0.2° 34.8
12.1士 0.2° 47.7
14.1士 0.2° 18.4
15.8士 0.2° 23.2
17.0士 0.2° 43.5
17.4士 0.2° 1 1.3
17.9士 0.2° 37.3
18.1士 0.2° 58.4
20.1士 0.2° 30.4
20.5士 0.2° 14.7
21.0士 0.2° 26.6
21.3±0.2° 44.0
21.7士 0.2° 16.0
22.7±0.2° 100.0
23.6士 0.2° 86.9
24.3±0.2° 44.7
24.5±0.2° 18.4
25.1士 0.2° 1 1.6
26.2士 0.2° 15.3
27.2士 0.2 15.0
27.8士 0.2 33.3
28.5士 0.2 10.5
28.9士 0.2 18.3
16、 权利要求 13〜15中任一项所述瑞格非尼乙二磺酸盐晶型 E的制备方 法, 所述方法包括: 分别形成瑞格非尼和乙二磺酸在可溶溶剂中的溶液体系, 瑞格非尼和乙二磺酸的摩尔比为 1 : 1〜2: 1 , 混合两个体系形成悬浊液, 在 -10°C ~ 50°C的温度下析晶, 得到所述晶型 E;
所述可溶溶剂优选为 CH^醇、 C4〜C5酯、 C3〜C4酮、 曱基叔丁基醚或正 庚烷; 瑞格非尼的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂中 溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 乙二磺酸的可溶溶剂溶液的浓度优选 为其在析晶温度下在可溶溶剂中溶解度的 0.5〜1倍;瑞格非尼和乙二磺酸的摩 尔比优选为 2: 1.5〜2: 1; 优选所述析晶温度为室温, 析晶时间为 1〜48小时, 更 优选 1〜10小时。
17、 瑞格非尼氢溴酸盐晶型 HI , 其结构式如下:
Figure imgf000053_0001
其特征在于,使用 Cu-Κα辐射,其 X射线粉末衍射图在 2Θ为 5.1±0.2。、 10.1士 0.2。、 15.1士 0.2。、 18.2士 0.2。、 19.5士 0.2。和 24.8士 0.2。处具有特征峰。
18、 根据权利要求 17所述瑞格非尼氢溴酸盐晶型 HI, 其特征在于, 其 X 射线粉末衍射图在 2Θ为 5.1士 0.2。、 10.1士 0.2。、 15.1士 0.2。、 18.2士 0.2。、 19.5士 0.2。、 20.3士 0.2。、 23.2士 0.2。、 24.8士 0.2。、 25.2士 0.2。和 30.0士 0.2。处具有特征峰。
19、 根据权利要求 18所述瑞格非尼氢溴酸盐晶型 HI, 其特征在于, 其 X 射线粉末衍射图的特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
5.1±0.2° 100.0
10.1±0.2° 60.0
15.1±0.2° 24.1
18.2士 0.2° 13.6
19.5±0.2° 10.8
20.3士 0.2。 8.6
23.2士 0.2。 14.5
24.8±0.2 20.3
25.2±0.2 12.2
30.0士 0.2 18.5
35.0士 0.2 12.4ο
20、权利要求 17〜19中任一项所述瑞格非尼氢溴酸盐晶型 m的制备方法, 所述方法包括: 分别形成瑞格非尼和氢溴酸在可溶溶剂中的溶液体系, 瑞格 非尼和氢溴酸的摩尔比为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 在 -10°C ~ 50°C 的温度下析晶, 得到所述晶型 HI ;
所述可溶溶剂优选为 C^C 醇、 C3〜C4酮或正庚烷; 瑞格非尼在可溶溶剂 中溶液的浓度优选为其在析晶温度下在可溶溶剂中溶解度的 0.1〜1倍, 更优选 为 0.5〜1倍 氢溴酸的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂 中溶解度的 0.5〜1倍; 瑞格非尼和氢溴酸的摩尔比优选为 1 : 1〜1 : 1.5; 优选所述 析晶温度为室温, 析晶时间为 1〜48小时, 更优选 1〜10小时。
21、 瑞格非尼氢溴酸盐晶型 H2, 其特征在于, 使用 Cu-Κα辐射, 其 X 射线粉末衍射图在 2Θ为 10.6士 0.2。、 12.0士 0.2。、 16.8士 0.2。、 19.2士 0.2。、 21.3士 0.2。 和 24.4士 0.2。处具有特征峰。
22、 根据权利要求 21所述瑞格非尼氢溴酸盐晶型 H2, 其特征在于, 其 X 射线粉末衍射图在 2Θ为 10.6士 0.2°、 12.0士 0.2°、 16.8士 0.2°、 17.0士 0.2°、 18.9士 0.2°、 19.2士 0.2°、 20.2士 0.2°、 20.5士 0.2°、 21.3士 0.2°、 24.1士 0.2°、 24.4士 0.2°、 25.7士 0.2° 和 26.5±0.2。处具有特征峰。
23、 根据权利要求 22所述瑞格非尼氢溴酸盐晶型 H2, 其特征在于, 其 X 射线粉末衍射图的特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
7.4±0.2° 15.6
10.3±0.2° 14.3
10.6±0.2。 29.2
12.0±0.2° 25.8
16.8士 0.2° 50.8
17.0±0.2° 27.1
18.9士 0.2° 35.7
19.2±0.2° 66.4
19.6±0.2° 18.2
20.2士 0.2。 32.6
20.5士 0.2。 33.1
21.3±0.2° 52.9
24.2±0.2° 43.8
24.4±0.2 100.0
24.7±0.2 32.3
25.7±0.2 48.2
26.5±0.2 51.0
27.5士 0.2 15.9
28.2士 0.2 30.5
29.5士 0.2 14.6
30.8士 0.2 17.7
3 1.9±0.2 14.1
32.7±0.2 20.8
34.3±0.2 15.6
24、 权利要求 21〜23 中任一项所述瑞格非尼氢溴酸盐晶型 H2的制备方 法, 所述方法包括: 将瑞格非尼氢溴酸盐晶型 HI在溶剂中形成悬浊液, 所述 悬浊液在 -10°C ~ 50°C的温度下析晶, 得到所述晶型 H2, 其中所述溶剂选自乙 酸乙酯、 曱基叔丁基醚或其混合物;
瑞格非尼氢溴酸盐晶型 HI 的用量优选为其在析晶温度下在所述溶剂体 系中溶解度的 1.1〜20倍, 更优选为 1.5〜10倍; 优选所述析晶温度为室温, 析 晶时间为 1〜72小时, 更优选 1〜10小时。
25、 瑞格非尼乙磺酸盐晶型 Etl , 其结构式如下:
Figure imgf000055_0001
其特征在于, 使用 Cu-Κα辐射, 其 X射线粉末衍射图在 2Θ为 8.2±0.2。、 8.9士 0.2。、 13.0士 0.2。、 18.8士 0.2。、 23.6士 0.2。和 24.6士 0.2。处具有特征峰。
26、 根据权利要求 25所述瑞格非尼乙磺酸盐晶型 Etl , 其特征在于, 其 X射线粉末衍射图在 2Θ为 8.2士 0.2。、 8.9士 0.2。、 12.2士 0.2。、 13.0士 0.2。、 14.4士 0.2。、 16.2士 0.2°、 17.9士 0.2°、 18.8士 0.2°、 20.1士 0.2°、 22.0士 0.2°、 23.6士 0.2°和 24.6士 0.2。 处具有特征峰。
27、 根据权利要求 26所述瑞格非尼乙磺酸盐晶型 Etl , 其特征在于, 其
X射线粉末衍射图基本上 2Θ特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
8.2士 0.2° 18.3
8.9士 0.2° 22.9
12.2士 0.2。 19.0
13.0士 0.2。 22.7
14.4士 0.2。 20.3
16.2士 0.2 14.1
17.9±0.2 24.9
18.8±0.2 33.8
20.1士 0.2 21.2
20.4士 0.2 19.9
22.0士 0.2 28.3
23.4士 0.2 47.9
23.6士 0.2 73.5
24.6±0.2 100.0
25.9士 0.2 13.3
26.2士 0.2 1 1.6
28.3±0.2 15.0
30.6士 0.2 12.0
32.3±0.2 1 1.0
28、 权利要求 25〜27中任一项所述瑞格非尼乙磺酸盐晶型 Etl的制备方 法, 所述方法包括: 分别形成瑞格非尼和乙磺酸在可溶溶剂中的溶液体系, 瑞格非尼和乙磺酸的摩尔比为 1 : 1〜1 :2, 混合两个体系形成悬浊液, 在 -10°C ~ 50°C的温度下析晶, 得到所述晶型 Etl ;
所述可溶溶剂优选为 Cr^C 醇、 C3〜C4酮或 C4〜C5酯; 瑞格非尼的可溶溶 剂溶液的浓度优选为其在析晶温度下在可溶溶剂中溶解度的 0.1〜1倍, 更优选 为 0.5〜1倍; 乙磺酸的可溶溶剂溶液的浓度优选为其在析晶温度下在可溶溶剂 中溶解度的 0.5〜1倍;瑞格非尼和乙磺酸的摩尔比优选为 1 : 1〜1 : 1.5; 优选所述 析晶温度为室温, 析晶时间为 1〜48小时, 更优选 1〜10小时。
29、 瑞格非尼乙磺酸盐晶型 Et2, 其特征在于, 使用 Cu-Κα辐射, 其 X 射线粉末衍射图在 2Θ为 12.3士 0.2。、 13.6士 0.2。、 16.0士 0.2。、 20.5士 0.2。、 24.3士 0.2。 和 24.5士 0.2。处具有特征峰。
30、 根据权利要求 29所述瑞格非尼乙磺酸盐晶型 Et2, 其特征在于, 其 X射线粉末衍射图在 2Θ为 7.4士 0.2。、 8.2士 0.2。、 12.3士 0.2。、 13.6士 0.2。、 16.0士 0.2。、 16.9士 0.2°、 18.5士 0.2°、 20.5士 0.2°、 20.9士 0.2°、 22.1°士 0.2、 24.3士 0.2°和 24.5士 0.2° 处具有特征峰。
31、 根据权利要求 30所述瑞格非尼乙磺酸盐晶型 Et2, 其特征在于, 其 X射线粉末衍射图基本上 2Θ特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
7.4士 0.2° 20.7
8.2士 0.2° 23.9
8.4士 0.2° 23.1
12.3士 0.2。 100.0
13.6±0.2° 35.9
16.0士 0.2。 32.3
16.9士 0.2。 22.3
18.2±0.2° 23.9
18.5士 0.2° 28.3
18.9士 0.2。 24.3
19.2±0.2° 12.7
20.1士 0.2。 30.7
20.5士 0.2。 46.6
20.9士 0.2。 29.9
21.8±0.2° 28.3
22.1±0.2° 31.5
23.4士 0.2。 19.5
23.7士 0.2。 19.5
24.3±0.2° 77.7
24.5±0.2° 73.3
26.4±0.2° 16.3
27.3士 0.2。 23.1
28.5±0.2° 27.5
28.7±0.2° 31.5
29.3士 0.2。 19.5
32、 权利要求 29〜31 中任一项所述瑞格非尼乙磺酸盐晶型 Et2的制备方 法, 所述方法包括: 将瑞格非尼乙磺酸盐晶型 Etl在溶剂中形成悬浊液, 所述 悬浊液在 -10°C ~ 50°C下析晶, 得到所述晶型 Et2, 其中所述溶剂选自曱基叔 丁基醚、 正庚烷或其混合物;
瑞格非尼乙磺酸盐晶型 Etl 的用量优选为其析晶温度下在所述溶剂体系 中的溶解度的 1.1〜20倍, 更优选为 1.5〜10倍; 优选所述析晶温度为室温, 析 晶时间为 1〜72小时, 更优选 1〜10小时。
33、
Figure imgf000057_0001
其特征在于, 使用 Cu-Κα辐射, 其 X射线粉末衍射图在 2Θ为 4.7±0.2。、 13.7士 0.2。、 16.4士 0.2。、 18.0士 0.2。、 20.2士 0.2。和 21.9士 0.2。处具有特征峰。
34、 根据权利要求 33所述的瑞格非尼 2-萘磺酸盐晶型 Na, 其特征在于, 其 X 射线粉末衍图在 2Θ 为 4.7士 0.2。、 10.5士 0.2。、 11.1士 0.2。、 13.7士 0.2。、 14.3士 0.2°、 16.4士 0.2°、 18.0士 0.2°、 20.2士 0.2°、 21.5士 0.2°、 21.9士 0.2°、 22.5士 0.2 和 24.0士 0.2。处具有特征峰。
35、 根据权利要求 34所述的瑞格非尼 2-萘磺酸盐晶型 Na, 其特征在于, 其 X射线粉末衍射图基本上 2Θ特征峰及其相对强度如下:
衍射角 2Θ 相对强度%
4.7士 0.2° 100.0
10.5±0.2。 13.7
1 1.1士 0.2° 11.0
13.7±0.2° 48.4
14.3±0.2° 25.9
16.4±0.2° 37.4
18.0士 0.2。 69.6
18.4±0.2° 13.5
20.2士 0.2。 88.3
21.5±0.2° 23.1
21.9±0.2° 45.7
22.5±0.2° 19.5
23.4士 0.2。 13.1
24.0士 0.2° 28.3
25.3±0.2° 22.5
26.0士 0.2。 17.8
26.6±0.2° 19.9
29.9士 0.2。 12.8
36、 权利要求 33〜35中任一项所述瑞格非尼 2-萘磺酸盐晶型 Na的制备 方法, 所述方法包括: 分别形成瑞格非尼和 2-萘磺酸在可溶溶剂中的溶液体 系, 瑞格非尼和 2-萘磺酸的摩尔比为 1 : 1〜1 :2, 将两个体系混合, 所得混合液 在 -10°C ~ 50°C下搅拌, 除去可溶溶剂, 添加正庚烷形成悬浊液, 所述悬浊液 在 -10°C ~ 50°C下析晶, 得到所述晶型 Na; 所述可溶溶剂优选为 Cr^^醇、 C4〜C5酯、 C3〜C4酮或曱基叔丁基醚; 瑞格非尼的用量优选为其在析晶温度下 可溶溶剂中的溶解度的 0.1〜1倍, 更优选为 0.5〜1倍; 正庚烷的用量优选为瑞 格非尼可溶溶剂的 0.1〜0.5倍; 2-萘磺酸的用量优选为其在析晶温度下在可溶 溶剂中溶解度的 0.5〜1倍; 瑞格非尼和 2-萘磺酸的摩尔比优选为 1 : 1〜1 : 1.5; 所述混合液优选在室温下搅拌 1分钟至 48小时, 更优选 1〜10小时; 所述悬 浊液优选在室温下搅拌 1〜48小时, 更优选 1〜 10小时。
37、 一种药物组合物, 包含治疗和 /或预防有效量的一种或多种选自权利 要求 1-3中任一项所述瑞格非尼对曱基苯磺酸盐晶型 T、权利要求 5〜7中任一 项所述瑞格非尼对氯苯磺酸盐晶型 C、 权利要求 9〜11中任一项所述瑞格非尼 1,5-萘二磺酸盐晶型 N、 权利要求 13〜15中任一项所述瑞格非尼乙二磺酸盐晶 型 E、 权利要求 17〜19 中任一项所述瑞格非尼氢溴酸盐晶型 Hl、 权利要求 21-23中任一项所述瑞格非尼氢溴酸盐晶型 H2、 权利要求 25〜27中任一项所 述瑞格非尼乙磺酸盐晶型 Etl、权利要求 29〜31中任一项所述瑞格非尼乙磺酸 盐晶型 Et2、 权利要求 33〜35中任一项所述瑞格非尼 2-萘磺酸盐晶型 Na, 以 及至少一种可药用的载体。
38、权利要求 1〜3中任一项所述的瑞格非尼对曱基苯磺酸盐晶型 T、权利 要求 5〜7中任一项所述瑞格非尼对氯苯磺酸盐晶型 C、 权利要求 9〜11中任一 项所述瑞格非尼 1,5-萘二磺酸盐晶型 N、权利要求 13〜15中任一项所述瑞格非 尼乙二磺酸盐晶型 E、 权利要求 17〜19 中任一项所述瑞格非尼氢溴酸盐晶型 HI、权利要求 21〜23中任一项所述瑞格非尼氢溴酸盐晶型 H2、权利要求 25〜27 中任一项所述瑞格非尼乙磺酸盐晶型 Etl、权利要求 29〜31中任一项所述瑞格 非尼乙磺酸盐晶型 Et2、权利要求 33〜35中任一项所述瑞格非尼 2-萘磺酸盐晶 型 Na或权利要求 37所述药物组合物在制备用于治疗和 /或预防高增殖性病症 的药物中的用途, 其中所述高增殖性病症选自实体瘤、 淋巴瘤、 肉瘤、 白血 病、 乳腺癌、 呼吸道癌、 脑癌、 生殖器官癌、 消化道癌、 尿道癌、 眼癌、 肝 癌、 皮肤癌、 头颈癌、 曱状腺癌和 /或曱状旁腺癌, 特别是转移性结肠直肠癌。
PCT/CN2013/001056 2013-09-12 2013-09-12 瑞格非尼盐晶型及其制备方法和用途 WO2015035531A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/001056 WO2015035531A1 (zh) 2013-09-12 2013-09-12 瑞格非尼盐晶型及其制备方法和用途
CN201380052962.5A CN104736521B (zh) 2013-09-12 2013-09-12 瑞格非尼盐晶型及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001056 WO2015035531A1 (zh) 2013-09-12 2013-09-12 瑞格非尼盐晶型及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2015035531A1 true WO2015035531A1 (zh) 2015-03-19

Family

ID=52664894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001056 WO2015035531A1 (zh) 2013-09-12 2013-09-12 瑞格非尼盐晶型及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN104736521B (zh)
WO (1) WO2015035531A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856469A (zh) * 2003-07-23 2006-11-01 拜尔医药品股份有限公司 用于治疗和预防疾病和疾病症状的氟代ω-羧芳基二苯基脲
EP2548867A1 (en) * 2010-03-18 2013-01-23 Suzhou Zelgen Biopharmaceutical Co., Ltd. Method for preparing deuterated diphenylurea

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130728A1 (en) * 2010-04-17 2011-10-20 Bayer Healthcare Llc Synthetic metabolites of fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention diseases and conditions
WO2012012404A1 (en) * 2010-07-19 2012-01-26 Bayer Healthcare Llc Drug combinations with fluoro-substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856469A (zh) * 2003-07-23 2006-11-01 拜尔医药品股份有限公司 用于治疗和预防疾病和疾病症状的氟代ω-羧芳基二苯基脲
EP2548867A1 (en) * 2010-03-18 2013-01-23 Suzhou Zelgen Biopharmaceutical Co., Ltd. Method for preparing deuterated diphenylurea

Also Published As

Publication number Publication date
CN104736521A (zh) 2015-06-24
CN104736521B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP2022176961A (ja) {[5-(3-クロロフェニル)-3-ヒドロキシピリジン-2-カルボニル]アミノ}酢酸の固体形態、組成物、及びその使用
JP6998969B2 (ja) (s)-2-((2-((s)-4-(ジフルオロメチル)-2-オキソオキサゾリジン-3-イル)-5,6-ジヒドロベンゾ[f]イミダゾ[1,2-d][1,4]オキサゼピン-9-イル)アミノ)プロパンアミドの多形体及び固体形態と、生産方法
WO2018108101A1 (zh) {[5-(3-氯苯基)-3-羟基吡啶-2-羰基]氨基}乙酸的新晶型及其制备方法
US10174010B2 (en) Canagliflozin monohydrate and its crystalline forms, preparation methods and uses thereof
CN111164085B (zh) 瑞博西林的共晶和瑞博西林单琥珀酸盐的共晶、其制备方法、组合物和用途
JP2018502882A (ja) 2−(5−(3−フルオロフェニル)−3−ヒドロキシピコリンアミド)酢酸の固体形態、その組成物及び使用
AU2015385707A1 (en) Stable apremilast crystal form II free of solvates, and preparation method therefor
WO2015054804A1 (zh) 恩杂鲁胺的固态形式及其制备方法和用途
WO2014166337A1 (zh) 替卡格雷晶型及其制备方法和用途
JP7168447B2 (ja) ビラスチンの結晶形態及びそれらの調製方法
WO2011023146A1 (en) Imatinib mesylate polymorphs generated by crystallization in aqueous inorganic salt solutions
US9884856B2 (en) Crystal form of Dabrafenib mesylate and preparation method thereof
WO2015007206A1 (zh) 阿法替尼酸加成盐及其晶型、其制备方法及药物组合物
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
ES2928706T3 (es) Formas sólidas de un compuesto farmacéuticamente activo
BR112021008732A2 (pt) ingredientes farmacêuticos amorfos ativos compreendendo carbonato de magnésio mesoporoso substancialmente amorfo
WO2015035531A1 (zh) 瑞格非尼盐晶型及其制备方法和用途
TWI662031B (zh) 1-{2-氟-4-[5-(4-異丁基苯基)-1,2,4-噁二唑-3-基]-苄基}-3-吖丁啶羧酸的晶型
WO2015074605A1 (zh) 一种紫杉烷类化合物、其制备方法和用途
WO2014169770A1 (zh) 达拉菲尼的晶型及其制备方法和用途
JP2019089822A (ja) トピロキソスタットの新規結晶形及びその製造方法
WO2022144042A1 (zh) Tas-116的晶型及其制备方法、药物组合物和用途
WO2020151672A1 (zh) 一种达格列净晶型及其制备方法和用途
KR20110115607A (ko) 6-옥소-6,7,8,9,10,11-헥사히드로시클로헵타(c)크로멘-3-일 술파메이트 및 그의 다형체를 함유하는 고체 제약 조성물
BR112018001225B1 (pt) Forma cristalina eta de bilastina hidratada, métodos de preparação da mesma, composição farmacêutica compreendendo dita forma cristalina e uso desta para tratar processos de doença mediados por histamina e reações alérgicas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893272

Country of ref document: EP

Kind code of ref document: A1