WO2015030456A1 - Method for preparing powder, multi-injection nozzle, and apparatus for preparing powder - Google Patents

Method for preparing powder, multi-injection nozzle, and apparatus for preparing powder Download PDF

Info

Publication number
WO2015030456A1
WO2015030456A1 PCT/KR2014/007910 KR2014007910W WO2015030456A1 WO 2015030456 A1 WO2015030456 A1 WO 2015030456A1 KR 2014007910 W KR2014007910 W KR 2014007910W WO 2015030456 A1 WO2015030456 A1 WO 2015030456A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
powder
conical
cooled
cooling roller
Prior art date
Application number
PCT/KR2014/007910
Other languages
French (fr)
Korean (ko)
Inventor
송창빈
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130101245A external-priority patent/KR101372839B1/en
Priority claimed from KR1020140016180A external-priority patent/KR101426008B1/en
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Publication of WO2015030456A1 publication Critical patent/WO2015030456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/084Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid combination of methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle

Definitions

  • the present invention provides a variety of functional powders (soft and hard magnetic materials, hydrogen storage materials, thermoelectric materials, secondary batteries) used for various industries, powders for structural components (Fe, Co, Ni, Cu, Zn, Al, Ti and The present invention relates to a method for producing powders of various pure metals, alloys, cerammixes, and composites thereof, and apparatuses for use thereof.
  • the former spraying method cools the liquid metal passing through the microtubules by melting raw metal ingots into a crucible in a vacuum or inert atmosphere in a crucible for the purpose of producing various pure metals and alloy powders and melting them completely with a high frequency induction furnace or an arc furnace.
  • the spraying method is classified into gas spraying method and water spraying method according to the type of cooling medium.
  • the gas spraying method uses fluorinated gas (N 2 , Ar, He) or air as the cooling medium.
  • fluorinated gas N 2 , Ar, He
  • air air
  • fine segregation cannot be obtained, so that a homogeneous alloy powder cannot be obtained, and there is a problem of rising production cost because the price of gas used is relatively high.
  • the water spraying method uses relatively inexpensive water (H 2 O), which can reduce the production cost of powder products, and can reduce micro segregation due to its large cooling effect.
  • H 2 O relatively inexpensive water
  • iron (Fe) soft magnetic amorphous alloy powder, sendust ( SENDUST), stainless steel (Stainless steel), etc. is applied as an efficient and economical manufacturing method, and the mixed spray method is a cooling medium described above gas (N 2 , Ar, He), air and water (H 2 O) It is a manufacturing method which mixes etc. in an appropriate ratio, and takes into consideration the advantages and disadvantages of the above-mentioned gas spraying method or water spraying method.
  • FIG. 17 is a view illustrating some practical patent technologies for improving the conventional spraying method, in which all of the sprayed powders are secondarily collided with the primary spray nozzles to prepare powders
  • FIG. Japanese Patent Laid-Open No. 11-288807 (published Oct. 19, 1999), which is a method of manufacturing a powder sprayed primarily on a rotating conical cooling roll to obtain a plate-shaped alloy powder
  • FIG. Presented in Korean Patent Publication No. 10-2002-0047080 (published on June 21, 2002), a method for preparing fine metal powder and preventing aggregation, and heating hot gas to a temperature close to the melting point of the metal powder to inject hot gas again.
  • the characteristics of the alloy powder used for various functionalities and machine parts are determined by the manufacturing method or process conditions of the particle size, shape and microstructure of the powder, and not only have a great influence on the performance of the final product. It is also very important in the light and short and economic aspects of various functional parts and materials.
  • the atomizing nozzle (atomizing nozzle) is a key component used in the above-described spraying method, and has been developed and used in a wide variety of sizes and structures according to the type, size and shape of the powder to be prepared at present.
  • Patent Document 1 Republic of Korea Patent Office Announcement 91-000128 (Lüder Gerking) 1987.04.13
  • Patent Document 2 US 4787935 (Daniel Eylon etc.) 1988.11.29
  • Patent Document 3 US 4869469 (Daniel Eylon etc.) 1989.09.26
  • Patent Document 4 Korea Patent Office Registered 10-0002097 (Pohang Iron & Steel Co., Ltd.) 1997.02.22
  • Patent Document 5 Registration of Republic of Korea Patent Office 10-0174749 (Kabushi Kaisha Kubota) 1998.11.06
  • Patent Document 6 Registration of Korea Patent Office 10-0279880 (Korea Atomic Energy Research Institute) 2000.11.06
  • Patent Document 7 Registration of Korea Patent Office 10-0320156 (Dongbu Hannong Chemical Co., Ltd.) 2001.12.26
  • Patent Document 8 Registration of Korea Patent Office 10-0344010 (Human-Ilex Co., Ltd.) 2002.06.28
  • Patent Document 9 Registration of Republic of Korea Patent Office 10-0372226 (Human-Ilex Co., Ltd.) 2003.01.30
  • Patent Document 10 Registration of Korea Patent Office 10-0374363 (Duksan Hi-Metal Co., Ltd.) 2003.02.19
  • Patent Document 11 Registration of Korea Patent Office 10-0461622 (Soei Kagaku Co., Ltd.) 2004.12.03
  • Patent Document 12 Republic of Korea Patent Office 10-0542061 (Alps Denki Kabuki Kaisha) 2006.01.03
  • Patent Document 13 Registration of Korea Patent Office 10-0545849 (Amotech Co., Ltd.) 2006.01.18
  • Patent Document 14 Registration of Korea Patent Office 10-0605148 (Chung Chan Hong / Korea Institute of Industrial Technology) 2006.07.19
  • Patent Document 15 Registration of Korea Patent Office 10-0561891 (Alps Denki Kabuki Kaisha) 2006.08.10
  • Patent Document 16 Registration of Korea Patent Office 10-0650354 (Seiko Epson Co., Ltd.) 2006.11.21
  • Patent Document 17 Registration of Korea Patent Office 10-0713241 (Sea Industries, Inc.) 2007.04.24
  • Patent Document 18 Republic of Korea Patent Office Publication 10-2011-0044832 (Akihiro Makino) 2011.05.02
  • Patent Document 19 Korean Patent Office Publication 10-2012-0085645 (Amotech Co., Ltd.) 2012.08.01
  • Patent Document 20 Korea Patent Office Publication 10-1217223 (Amotech Co., Ltd.) 2012.12.24.)
  • Pure metals, alloys, cerammixes and composites powders used in various industries are basically important in homogeneous chemical composition to improve the properties of the final application, but the particle size, shape and microstructure of the powder very important.
  • the powder is dissolved at a high temperature and manufactured by a spray method or a centrifugal separation method, which is a conventional manufacturing method, it is usually difficult to control the chemical composition, particle size, shape and microstructure of the powder as well as the manufacturing process is complicated and the equipment and equipment cost
  • the present invention is to solve this problem because there is a problem that the production cost increases because of the high price.
  • the present invention in particular when cooling the liquid phase passing through the microtubules by dissolving the raw material in a solid state in a fine powder form by high pressure spraying with a cooling medium (N 2 , Ar, He, air, water or a mixture thereof), in particular cooling
  • a cooling medium N 2 , Ar, He, air, water or a mixture thereof
  • the micro-segregation is reduced by continuously hitting the outer side of the rotating conical cooling roller and the inner side of the fixed hollow cylinder for cooling.
  • An object of the present invention is to provide a powder manufacturing method and apparatus for obtaining a more homogeneous microstructure.
  • the present invention is a means for solving the above problems, first, the solid material is charged into the crucible and dissolved in a high frequency induction furnace (or arc furnace), and then the raw material solution naturally falling into the liquid phase through the orifice (orifice) installed under the crucible Sprayed medium (N 2 , Ar, He, air, water or mixtures thereof) with a ring-shaped spray nozzle (semiliquid):
  • a liquid when a liquid changes to a solid, about half is solid. And half refers to a state in which a liquid still remains, and refers to a state in which a liquid metal and a solid metal are mixed when the molten metal solidifies into a solid phase.
  • a liquid metal that naturally falls through an orifice is a high-pressure refrigerant.
  • it refers to the state before spraying into the liquid phase and cooling and becoming a complete solid powder particle.
  • the duration of the half-liquid phase may be different), and the secondary particles (primary cooling) are secondarily impacted on the outer side of the conical cooling roller which is cooled by rotating at a high speed of 2000 rpm or more, and then on the outer side of the conical cooling roller described above. It is achieved by increasing the cooling effect by hitting the inner wall of the hollow cylinder for cooling which is water cooled and fixedly.
  • a molten metal solidifies in a solid state by spraying a powder raw material melted at a high temperature with a cooling medium (N 2 , Ar, He, air, water or a mixture thereof) with a first injection nozzle which is an annular injection nozzle.
  • a cooling medium N 2 , Ar, He, air, water or a mixture thereof
  • a first injection nozzle which is an annular injection nozzle.
  • Primary cooling with half-liquid fine particles which means a state in which a metal and a solid metal are mixed, which is installed at the lower end of the first injection nozzle and hit the outer side of the conical cooling roller rotating at a high speed while cooling is secondary.
  • the characteristics of the powder obtained by the present invention may vary depending on the melt temperature, the melt spout speed, and the spray pressure of the cooling medium.
  • the particle size, shape and microstructure of the powder may vary.
  • the powders (pure metals, alloys, cerammixes and composites thereof) produced by the present invention are primarily sprayed by an annular jet nozzle with a cooling medium and cooled first, within 50 mm, preferably within 30 mm. It is installed at a short distance and rotates at high speed, and it is continuously hit by the inner side of the hollow cylindrical cylinder for cooling installed in the outer side or the third side, respectively.
  • the particle size and shape control are easy, not only can greatly contribute to the improvement of physical properties of various powder products used in various industries, but also the manufacturing process is relatively simple, which is advantageous in terms of productivity and economic effects due to equipment cost reduction.
  • FIG 1 is an assembled cross-sectional view of the powder manufacturing apparatus in the present invention.
  • Figure 2 is a front cross-sectional view of another embodiment of the hollow hollow cylinder for cooling of the present invention.
  • Figure 3 is a front cross-sectional view of another embodiment of the conical cooling roller of the present invention.
  • FIG. 4 is a cross-sectional view of the impeller of the present invention.
  • FIG. 5 is a partial cross-sectional view for explaining a powder manufacturing process according to the present invention.
  • FIG. 6 is a cross-sectional view of the first and second injection nozzles in the present invention.
  • Figure 7 is a cross-sectional view of another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of another embodiment of the present invention.
  • FIG. 9 is an exploded cross-sectional view of a multiple (double) injection nozzle of the present invention.
  • FIG. 10 is a cross-sectional view of the assembly of the multi (double) injection nozzle of the present invention.
  • FIG. 11 is a cross-sectional view of the assembly of the multiple (triple) injection nozzle of the present invention.
  • FIG. 12 is a cross-sectional view taken along the line A-A shown in FIG. 9 of the present invention.
  • Figure 13 is a state showing the injection angle and the intersection of the multi-jet nozzle of the present invention.
  • FIG. 14 is a cross-sectional view of another embodiment of the multi-jet nozzle according to the present invention.
  • 15 is a cross-sectional view of another embodiment of the multi-jet nozzle according to the present invention.
  • 16 is a cross-sectional view of another embodiment of the multi-jet nozzle according to the present invention.
  • 17 is an explanatory diagram of a conventional powder production method.
  • a solid raw material is charged into a crucible and dissolved using a high frequency induction furnace or an arc furnace, and then a liquid raw material solution is naturally dropped through an orifice installed at the bottom of the crucible, but the cooling medium ( N 2 , Ar, He, air, water or a mixture thereof) is sprayed from a ring shape spray nozzle installed up and down to mean that the liquid metal and the solid metal are mixed when the molten metal solidifies into a solid phase.
  • the cooling medium N 2 , Ar, He, air, water or a mixture thereof
  • Performing the first cooling step with the semi-liquid fine particles, and the semi-liquid fine particles are installed at the lower end of the annular injection nozzle and rotated at a high speed of 2000 rpm or more, and then hit the outside of the conical cooling roller where water is cooled.
  • the hollow particles for cooling the particulates that hit the conical cooling roller is covered with the outer side of the conical cooling roller is water-cooled.
  • the third cooling step is performed while hitting the inner wall of the, and the third cooled powder is made by performing the step of discharging to the outside by the spiral impeller installed on the lower side of the conical cooling roller.
  • the annular injection nozzle for primary injection of the dissolved raw material solution is installed on the lower side in the melting chamber, within 50mm of the upper end of the conical cooling roller from the intersection of the cooling medium injected from the annular injection nozzle Allow to be installed at close range.
  • the material of the conical cooling roller and the cooling hollow cylinder is Cu-based alloy, but the outer surface of the conical cooling roller and the inner wall of the cooling hollow cylinder are excellent in high temperature heat resistance, abrasion resistance and thermal conductivity.
  • TiN, CBN, AlN, SiC, WC is coated with a composition consisting of at least one or a mixture of two or more.
  • the present invention dissolves a solid raw material solution and then naturally cools the raw material solution by spraying the cooling medium with an annular spray nozzle, and then cools the conical cooling roller which is rotated at a high speed and cooled by a conical cooling roller. And to hit the inner wall of the cooling hollow cylinder for cooling is made to be produced as a powder, the present invention will be described a specific embodiment of the manufacturing method of the present invention in the process of explaining the structure and operation of the device do.
  • FIG. 1 shows a schematic assembly cross-sectional view of the powder manufacturing apparatus according to the present invention, the base housing 40 and the housing 8 and the dissolution chamber 1 are sequentially coupled, the dissolution chamber 1 While the crucible 23 is provided, the first injection nozzle 5 is installed below the crucible 23, and the housing 8 is provided with a cooling hollow cylinder 11 for cooling water.
  • a conical cooling roller 35 which rotates at high speed and is water-cooled
  • the base housing 40 is provided with a spiral impeller 13 which is rotated together with the conical cooling roller 35.
  • the impeller 13 and the conical cooling roller 35 are configured to rotate by a high-speed rotating motor 43, and a pressure regulating valve is provided on an inner part of the cooling hollow cylinder 11 (upper side of the spiral impeller 13). This is done by installing 86.
  • a dissolution chamber 1 capable of dissolving a solid material in a suitable atmosphere is positioned at an upper portion of the manufacturing apparatus, and a dissolution crucible 23 is disposed inside the dissolution chamber 1.
  • the melting crucible 23 may use a high frequency induction furnace in which the induction coil 27 is wound, and the melting crucible 23 is provided with a stopper 21 for intermittently discharging the dissolved liquid powder downward.
  • the melting chamber 1 is provided with a pressure gauge 19 for checking gas pressure and a gas valve 3 for intermittently adjusting gas injection to appropriately adjust the atmosphere inside.
  • the annular injection nozzle 5 for cooling the liquid powder having passed through the orifice 29 by spraying the cooling medium 31 has a cylindrical shape and crosses at the intersection point 87 formed at the lower side of the cooling medium ( 31), the separation distance 88 from the intersection point 87 of the cooling medium 31 injected from the annular injection nozzle 5 to the upper end of the conical cooling roller is within 1 to 50mm.
  • the present invention has a housing (8) fixed to the lower chamber (1) by the melting chamber (1) and the upper flange (6), the inside of the housing (8) cooling with a cooling fan attached It is provided with a hollow cylindrical cylinder 11, the outside of the cooling hollow cylinder 11 to the cooling water is circulated through the coolant circulation port 10 between the housing 8 to be cooled.
  • the inner side of the hollow cylindrical cylinder for cooling 11 is hollow, and the inner side thereof is primarily formed by the cooling medium (N 2 , Ar, He, air, water) 31 in the annular injection nozzle 5.
  • the cooling medium N 2 , Ar, He, air, water
  • a conical cooling roller 35 is rotated at high speed and water-cooled.
  • the conical cooling roller 35 is cooled by spraying the cooling medium 31 from the annular injection nozzle 5 and cooled by continuously hitting the upper outer side, and the cooling is made at the lower side of the conical cooling roller 35. It is provided with a spiral impeller 13 so that the cooling medium 31 and the cooled powder can be easily discharged to the lower discharge pipe 15, the impeller 13 is injected from the annular injection nozzle (5) It should be appropriately designed in consideration of the pressure, and the lower side of the impeller 13, the rotating bearing 39 and the base housing to rotate the conical cooling roller 35 and the impeller 13 at high speed 40 and a hollow drive shaft 51, pulleys 47 and 41, a belt 45 and a drive motor 43 for rotating the hollow drive shaft 51 at high speed are provided.
  • the conical cooling roller 35 has a pipe 49 for supplying a refrigerant. By supplying the refrigerant to the internal hollow through.
  • the pressure regulating valve 86 installed inside the cooling hollow cylinder 11 is applied to the impeller 13 rather than the pressure injected from the annular injection nozzle 5 at the initial stage of operation of the powder manufacturing apparatus of the present invention. It is preferable to install the upper side of the impeller 13 as much as possible so as to appropriately adjust the discharge pressure of the pump so as not to be excessive or excessive.
  • the cooling medium 31 sprayed at the pressure of 20 to 500 bar in the annular injection nozzle 5 is at least one or more consisting of inert gas (N 2 , Ar, He), air, water (H 2 O) or It consists of a composition mixed with two or more kinds.
  • FIG. 2 is a cross-sectional view of the hollow cylindrical cylinder for cooling 11, which is made of a funnel having an inclination angle 59 so that the powder sprayed from the annular injection nozzle 5 and the cooling medium 31 easily flow in the center thereof.
  • the inclination angle 59 and the size of the lower hole 56 are manufactured with reference to the annular injection nozzle 5 diameter size and the injection angle 87.
  • the cooling hollow cylinder 11 is thermally conductive.
  • the surface of the hollow inner wall 53 of the hollow cylindrical cylinder 11 for cooling is the cooling medium 31 and the sprayed solid powder sprayed from the annular injection nozzle (5) high temperature Since it is cooled by being hit by high pressure, it is preferable to use it by coating with a material having excellent heat resistance, abrasion resistance, and thermal conductivity (TiN, CBN, AlN, SiC, WC).
  • the outside of the hollow cylindrical cylinder for cooling 11 is preferably made of irregularities so as to increase the cooling effect, the coolant circulated from the outside of the housing 8 described above the refrigerant circulation port 10 Since the cooling is made while being circulated through, the powder hitting the inner wall 53 of the hollow cylindrical cylinder 11 for cooling can be quickly cooled.
  • the inner diameter size 55 and the various shapes 61 of the height 54 of the hollow hollow cylinder 11 for cooling and the inner wall 53 of the hollow hollow cylinder 11 for cooling are formed into powder. And because it may affect the microstructure and appropriately manufactured, in particular, the size should be designed in consideration of the injection pressure of the cooling medium 31 is injected from the annular injection nozzle (5).
  • FIG 3 is a cross-sectional view of a conical cooling roller 35 which is rotated at high speed and is water-cooled, wherein the powder sprayed in a cylindrical shape in the above-described annular injection nozzle 5 hits again to further increase the cooling effect.
  • the hollow part 63 inside the conical cooling roller 35 is cooled by a refrigerant circulated through the refrigerant supply pipe 49 from the outside, so that the particulate powder cooled by the annular injection nozzle 5 is supplied. It can be cooled more quickly, and the solid powder produced by spraying with the cooling medium 31 sprayed from the first injection nozzle 5 directly on the upper side is cooled by high temperature and high pressure, so that the material is excellent in high temperature heat resistance, abrasion resistance and thermal conductivity. It is preferable to use it by coating.
  • FIG. 4 is a cross-sectional view of the helical impeller 13 of the present invention, wherein the powder continuously cooled by hitting the annular injection nozzle 5, the conical cooling roller 35, and the hollow hollow cylinder 11 for cooling is easy.
  • a plurality of blades 70 are formed in a spiral shape, the outer diameter size 72 of the impeller 13, the number of wings 70 and the upper and lower lengths 75
  • the molten amount of the liquid powder raw material passing through the cylindrical orifice 29 and the cylindrical cooling roller It shall be designed in consideration of the rotation speed (rpm) of 35) and the size of the discharge pipe (15).
  • the liquid raw material solution dissolved in the crucible 23 is introduced into the annular injection nozzle 5 through the cylindrical orifice 29,
  • the cooling medium 31 is sprayed at a pressure of 20 to 500 bar from the first spray nozzle 5 to spray the raw material solution into fine particles to generate powder.
  • the liquid raw material solution is sprayed from the first spray nozzle 5.
  • the liquid raw material solution is first cooled and completely The solidification proceeds in the unsolidified state and the solid phase reaction is also in progress.
  • the polycrystalline alloy powder when the polycrystalline alloy powder is produced by gas spraying or centrifugation by conventional metal coagulation (RSP), it is sprayed at a significant injection pressure to produce a powder, which is primarily cooled, but is then scattered in the chamber. As it cools at a speed, segregation of the alloy component, as well as a microstructure, cannot be obtained. Furthermore, in order to manufacture an amorphous alloy powder by increasing the cooling rate in the same manner, water (with the cooling medium 31 of the annular injection nozzle 5) It is known that it is difficult to obtain an amorphous powder of 10 ⁇ m or more even when the injection pressure is injected at a very high pressure (300 bar or more) using H 2 O).
  • the present invention continuously cools the powder in the reaction state described above by hitting the upper end (secondary cooling) of the conical cooling roller 35 again rotating at a high speed of 2000 rpm or more and the inner wall 53 of the hollow cylinder 11 for cooling.
  • the cooling rate third cooling
  • the rotational speed of the conical cooling roller 35 and the shape of the top By changing, not only the size, particle size and shape of various powders can be adjusted, but also various amorphous alloy powders can be easily produced.
  • FIG. 6 shows, in the present invention, at the intersection 87 of the cooling medium 31, i.e. at the annular injection nozzle 5, determined according to the coolant material injection angle 81 of the annular injection nozzle 5 described above.
  • the intersection point 87 of the cooling medium 31 to be injected is determined by the injection angle 81 of the annular injection nozzle 5, and in particular, of the powder sprayed primarily by the annular injection nozzle 5.
  • the distance 87 of the upper end of the intersection 87 and the conical cooling roller 35 described above is designed to be as small as possible in the range of 1 to 50 mm, but preferably 1 to 20 mm.
  • FIG. 7 illustrates another embodiment of the present invention, in which the above-described crucible 23, the cylindrical orifice 29, and the annular injection nozzle 5 use the same, but the hollow portion 53f of the cooling hollow cylinder 11a.
  • the rotational direction of the conical cooling roller 35 described above is usually clockwise. Since it is easy to manufacture to rotate, in particular, the shape change of the powder to be manufactured is required, or the annular injection nozzle 5 should be appropriately designed in consideration of the cooling effect.
  • the above-described rotation of the conical cooling roller 35 as shown in Figs. 1 and 5, the electric motor for rotating the pulley 47 located below the flange 40 connected to the housing (8)
  • the rotation is made by the motor 43, and depends on the outer diameter dimension 67 of the conical cooling roller 35 and the rotational speed (rpm) of the electric motor 43, in particular the size, particle size, Appropriate rotational speeds are required for homogenization and refinement of the granules and powders.
  • the present invention dissolves powder raw materials (pure metals, alloys, cerax mixes and composites thereof), and melts the molten material passing through an orifice by cooling nozzles with a spray nozzle.
  • the cooling medium N 2 , Ar, He, air, water or mixture thereof
  • the cooling medium is used by using multiple (two or more) injection nozzles in order to enhance the cooling effect and improve the characteristics of the powder.
  • the multiple (two or more) injection nozzles of the present invention must be configured vertically, for example, when two injection nozzles are installed in duplicate, the first and second injection nozzles 5 and 7 are vertically up and down. While overlapping and installing, by multiplying the injection angles 81a of the second injection nozzles 7 located below the spray angles 81 of the first injection nozzles 5 located above, the multiple first and second injections The injection intersections 87 and 87a of the nozzles 5 and 7 are positioned up and down, but the distance 88a of the spray intersections 87 and 87a is within 30 mm.
  • the present invention sprays the molten metal to the cooling medium 31a with the spray angle 81 in the multiple first spray nozzles 5 while the cross point 87 is formed at the lower side, and the fine particles are purged at the spray angle 81.
  • Primary cooling is performed, and the fine particles having primary cooling have an injection angle 81a in the second injection nozzle 7 and are sprayed to the injection angle 81a by spraying the cooling medium 31a. This is done.
  • the above-described injection angles 81 and 81a of the multi-jet nozzles 5 and 7 are important parameters for spraying the melt 28 falling through the orifice 29 to generate fine powder. and, in particular, when making a minute rectangular (81) of said one spray nozzle (5) with at least 65 o, but may interfere with the flow of the molten metal passing through the orifice 29, whereas in the down when the melt to less than 10 o Since lowering the strength that can be injected it is preferred to manufacture a range of 15 ⁇ 65 o.
  • the multiple first and second spray nozzles 5 and 7 of the present invention are sprayed at equal intervals through the three injection holes, but the injection holes are injected at an equal angle of 120 0 from the outer circumference of the annular nozzle part. It has 103 and is installed in the form of a tangential line.
  • the triple injection nozzle 9 is provided. It is possible to configure the injection angle (81b) and the intersection point (87b) of, in this case is to cool the particulate powder over three times, through the injection nozzle (5) (7) (9) at three times Cooling is achieved.
  • FIG. 14 is a first embodiment of the present invention, in which a plurality of first and second spray nozzles 5 and 7 are easily installed up and down in a conventional spraying device to cool the molten metal 28 falling through an orifice 29.
  • the medium 31a is injected into the injection chamber 109 in order to adjust the injection pressure and the injection angles 81 and 81a.
  • 15 is a second embodiment of the present invention, in which a plurality of first and second spray nozzles 5 and 7 are installed in a melting chamber not shown above the upper flange 6 and the housing 8. Meanwhile, the molten metal 28 is discharged through the orifice 29, and a cooling medium 31a is injected into the plurality of first and second spray nozzles 5 and 7 installed below the orifice 29.
  • a cooling hollow cylinder 11 for cooling water is installed inside the housing 8, and a conical cooling roller 35 for cooling and rotating at high speed is installed in the inner space of the cooling hollow cylinder 11.
  • the upper side of the lower flange 40 is provided with a spiral impeller 13 which rotates together with the conical cooling roller 35, the spiral impeller 13 and the conical cooling roller 35 is a high-speed rotating motor 43 It is configured to rotate by, but the cooling water 50 is injected between the cooling hollow cylinder 11 and the housing (9) The cooling air must be fulfilled.
  • the cooling water 50 is circulated in the conical cooling roller 35 so that the first and second spray nozzles 5 and 7 cool the first and second particles to the upper side of the conical cooling roller 35.
  • the fourth cylinder is cooled while hitting the inner side of the hollow cylinder 11 again.
  • a melting chamber capable of dissolving a solid material in a suitable atmosphere is located, and a melting crucible is positioned inside the melting chamber, and the melting crucible is wound up.
  • a high frequency induction furnace may be used, and the liquid molten metal 28 dissolved in the melting crucible is discharged through the cylindrical orifice 29, and the cylindrical orifice 29 has two multiple first and second sides thereof.
  • the melting chamber the melting crucible, and the like are not shown.
  • a plurality of first and second injection nozzles 5 and 7 for cooling the molten metal that has passed through the cylindrical orifice 29 by spraying the cooling medium 31 form a cone and an intersection point 87 formed at the lower side thereof.
  • Cooling medium (31a) is to be injected to intersect at the (87a)
  • the multiple first, second injection nozzles (5) (7) are installed in two by overlapping up and down, but the first annular first located on the upper side
  • the distance between the intersections 87 and 87a with respect to the cooling medium 31a is within 30 mm.
  • the present invention is provided with a housing (8) in the lower portion of the melting chamber, the inside of the housing (8) is provided with a cooling hollow cylinder (11) with a cooling fan, the cooling hollow cylinder (11) Cooling water is circulated through the coolant circulation port 10 between the housing 8 and the outside, and the inside of the cooling hollow cylinder 11 is hollow, but the upper part of the Powder sprayed primarily by the cooling medium (N 2 , Ar, He, air, water) 31a in the injection nozzle 5 of 1 may be cooled by secondary spraying the cooling medium 31a described above. Powder having a plurality of second injection nozzles 7, and sprayed and cooled by the plurality of first and second injection nozzles 5 and 7 inside the cooling hollow cylinder 11. In order to further increase the cooling effect of the conical cooling roller 35 which is rotated at high speed and water cooled is installed.
  • the separation distance between the intersection point 87a of the cooling medium 31a and the upper side of the cylindrical cooling roller 35 by the plurality of second injection nozzles 7 is within 50 mm.
  • the conical cooling roller 35 is sprayed by the first and second injection nozzles 5 and 7 from the plurality of first and second injection nozzles 5 and 7, and the first and second cooling powders are continuously cooled to the outside of the upper part and the third cooling is performed.
  • the impeller (13) should be designed appropriately in consideration of the pressure injected from the multiple first and second injection nozzles (5) (7), the conical cooling roller (35) and the impeller below the impeller (13) 13 rotates at high speed by the motor 43.
  • the cooling medium 31a injected at high pressure from the plurality of first and second injection nozzles 5 and 7 is made of inert gas (N 2 , Ar, He), air, water (H 2 O), or the like.
  • the cooling hollow cylinder 11 is made of a Cu-based alloy excellent in thermal conductivity
  • the inner wall of the cooling hollow cylinder 11 is the multiple Cooling medium 31a sprayed from the 1, 2 spray nozzles 5, 7 and the solid powder sprayed at high temperature and high pressure are cooled to cool and thus have excellent heat resistance
  • abrasion resistance and thermal conductivity TiN, CBN, AlN, SiC, WC and the like
  • the conical cooling roller 35 that is rotated at high speed and cooled by water is sprayed into a conical shape from the plurality of first and second injection nozzles 5 and 7 so that the cooled powder collides again to achieve tertiary cooling.
  • Cooling water 50 is supplied from the outside to the inside of the conical cooling roller 35 to be cooled, so that the first and second injection nozzles 5 and 7 are cooled by the first and second injection nozzles 5 and 7 to see the finely divided powder.
  • the coating can be cooled quickly, and the solid powder produced by spraying with the cooling medium 31a sprayed from the multiple first and second injection nozzles 5 and 7 directly on the upper side is hit by the high temperature and high pressure to be cooled, and thus high temperature heat resistance, abrasion resistance and It is preferable to use the coating with a material having excellent thermal conductivity.
  • the process of obtaining powder from the solid powder raw material in the second embodiment of the present invention first, when the liquid raw material solution dissolved in the crucible is introduced into the multiple first injection nozzle 5 through the conical orifice 29 By spraying the cooling medium 31a at a high pressure in the plurality of first injection nozzles 5, the raw material solution is atomized into fine particles to generate semi-liquid powder by primary cooling, and thus, the multiple first injection nozzles 5.
  • the semi-liquid powder cooled primarily at) passes through multiple second injection nozzles 7 and is subsequently cooled to solidify.
  • the second cooled powder hits the upper end of the conical cooling roller 35 that rotates at a high speed of 2,000rpm or more and the third cooling is made
  • the third cooled powder hits the inner wall of the cooling hollow cylinder 11 for cooling 4 Since the differential cooling is made, unlike conventional, by increasing the cooling rate to reduce the fine segregation caused by the cooling rate decreases and obtain a fine alloy powder of fine structure, as well as the rotational speed of the conical cooling roller 35 and By changing the shape of the upper end, it is possible to adjust the size, particle size, shape and the like of various powders, and can also easily prepare various amorphous alloy powders.
  • the molten metal 28 dissolved in the crucible is discharged through the orifice 29, but the cooling medium 31a is sprayed from the multiple first and second spray furnaces 5 and 7.
  • the description thereof will be omitted, and the semi-liquid particulates cooled first and second in the first and second injection nozzles 5 and 7 are multiplied.
  • the third and fourth cooling devices will be described.
  • the present invention is to install the cooling disk 99 to the lower side of the plurality of first, second spray nozzles (5) (7), the first and second cooled half-liquid powder penetrates through the cooling disk (99)
  • the third cooling is achieved by hitting the cylindrical cooling roller 101 formed by water cooling by the cooling water 50.
  • the cooling water 10a is circulated inside the cooling disk 99 to cool the cooling disk 99. This is done.
  • the injection chamber 95 is formed below the cooling disk 99, and the cylindrical cooling roller 101 is rotatably installed by the motor 43 inside the injection chamber 95. The powder collected by cooling in the chamber 95 is recovered separately.
  • Cylindrical cooling roller 101 is installed in the injection chamber 95 of the present invention is rotated at 2,000rpm while cooling is made by the circulation of the coolant 50 therein while the upper side concave down like a dish And the bottom surface of the cooling disk 99 where the water is cooled by the circulation of the cooling water 10a to be concave to the upper side in the form of the dish upright, and the fine particles cooled by the third by hitting the cylindrical cooling roller 101.
  • the concave portion formed on the bottom surface of the cooling disk 99 allows the cooling to be performed in the fourth order.
  • the separation distance between the intersection point 87a of the cooling medium 31a by the multiple second injection nozzles 7 and the concave upper surface of the cylindrical cooling roller 101 is within 50 mm.
  • the cooling medium N 2 , Ar, He, air, water and mixtures thereof
  • the first and second cooling is performed by 31a), and the first and second cooled fine particles are injected into the injection chamber 95 to allow cooling for three or four times.
  • a cooling disk 99 is installed on the upper portion of the cylindrical cooling roller 101 installed inside the injection chamber 95, and the first and second injection nozzles 5 and 7 are cooled in the first and second times.
  • the semi-liquid particles made up hit the cylindrical cooling roller 101 rotating at 2,000 rpm, and the powder made by the third cooling is scattered upward, and the powder scattered from the cylindrical cooling roller 101 is placed on the bottom surface of the cooling disk 99.
  • Fourth cooling is achieved while being impinged, and the cooling medium 31a injected at high pressure from the plurality of first and second injection nozzles 5 and 7 is inert gas (N 2 , Ar, He), air, water (H). It consists of a composition mixed with at least 1 type (s) or 2 or more types which consist of 2O) etc.
  • the cooling disk 99 of the present invention is made of a Cu-based alloy having excellent thermal conductivity, but the upper surface concave upward of the bottom surface of the cooling disk 99 and the upper surface concave upward of the cylindrical cooling roller 101 is cylindrical cooling.
  • the solid powder produced by spraying with the cooling medium 31a sprayed from the plurality of first and second spray nozzles 5 and 7 is bumped and cooled at high temperature and high pressure, it is excellent in high temperature heat resistance, abrasion resistance and thermal conductivity. It is preferable to use it by coating with a substance.
  • the molten metal 28 in which the powder raw material is dissolved in the liquid state is introduced into the plurality of first and second injection nozzles 5 and 7 through the cylindrical orifice 29 to cool the cooling medium 31a.
  • the first and second cooling are used to spray the raw material solution into fine particles to generate powder.
  • the liquid raw materials are provided in the multiple first and second injection nozzles (5) and (7).
  • spraying the solution onto the cooling medium 31a it is possible to obtain the powder (pure metals, alloys, cerammixes and composites thereof, etc.) by cooling it first and second, but in particular amorphous which requires a cooling rate of 10 5 k / sec or more.
  • the present invention is the secondary cooling by rotating the powder in the reaction state of the above-mentioned primary cooling state at a high speed of 2,000rpm and at the same time hitting the upper end of the cylindrical cooling roller 101 through which the cooling water 50 is circulated to make water cool. This is to be made, but the upper side of the cylindrical cooling roller 101 to have a concave downward form so that the third cooling is made, the first and second powders cooled by the cooling medium 31a is the cylindrical cooling roller 101 It hits the concave part of and the 3rd cooling is performed, and it is reflected upward and scattered.
  • the powder which secondary cooling was made by hitting the upper surface of the cylindrical cooling roller 101 hits the upper concave portion formed on the bottom surface of the cooling disk 99 installed on the upper side of the cylindrical cooling roller 101, and the fourth cooling is continuously performed. Since the cooling rate is increased, the fine segregation generated due to the lowering of the cooling rate is reduced, and the microstructure is obtained with a dense alloy powder, and by adjusting the rotational speed of the cylindrical cooling roller 101. It is possible to control the size, particle size and shape of the powder, and can also easily prepare an amorphous alloy powder requiring a cooling rate of 10 5 K / sec.
  • cooling medium 35 conical cooling roller

Abstract

The present invention relates to an apparatus and a method for preparing powders of pure metals, alloys, ceramics, and composites thereof for industrial applications. The method according to the present invention comprises: a first cooling process for cooling high-temperature dissolved powder materials to be particles of a semi-liquid state in which liquid metals and solid metals are mixed when molten metals are solidified by injecting a cooling medium (N2, Ar, He, air, water, or mixtures thereof) using a ring-shaped injection nozzle; a second cooling process for cooling the particles by collision with the outer side of a conical cooling roller that is installed at the lower end of the ring-shaped spray nozzle and rotates at high speed in the cooling process; a third cooling process for cooling the cooled particles by collision with the inner side of a hollow cooling cylinder that is installed and fixed on the outer side of the conical cooling roller and performs the cooling process; and a process for recovering solid fine powder cooled by an impeller that is installed on the lower side of the conical cooling roller, thereby preparing alloy powder having a homogeneous microstructure and easily adjusting the size and shape of the powder.

Description

분말 제조방법, 다중 분사노즐 및 분말 제조장치Powder manufacturing method, multi spray nozzle and powder manufacturing device
본 발명은 각종 산업용으로 사용되는 각종 기능성 분말(연·경자성재료, 수소저장재료, 열전재료, 2차전지)이나, 구조 부품용 분말(Fe,Co,Ni,Cu,Zn,Al,Ti 및 그 합금)로 사용되는 각종 순금속, 합금, 세락믹스 및 그 복합소재의 분말 제조방법 및 그 장치에 관한 것이다.The present invention provides a variety of functional powders (soft and hard magnetic materials, hydrogen storage materials, thermoelectric materials, secondary batteries) used for various industries, powders for structural components (Fe, Co, Ni, Cu, Zn, Al, Ti and The present invention relates to a method for producing powders of various pure metals, alloys, cerammixes, and composites thereof, and apparatuses for use thereof.
각종 산업용으로 사용되는 순금속(Fe,Co,Ni,Cu,Zn,Al,Ti), 합금(철(Fe)계-비철(Al,Cu,Ni,Co,Ti)계, 비교적 저융점 세라믹 분말(CuO,SnO,PbO,B2O3) 및 그들 복합체의 원료를 고온 용해하여 고상분말로 제조하기 위해서는, 보통 전통적으로 알려진 분무법(atomization process)과 원심분리법(centrifugal process)이 사용된다. Pure metals (Fe, Co, Ni, Cu, Zn, Al, Ti), alloys (iron (Fe) -non-ferrous (Al, Cu, Ni, Co, Ti) -based, relatively low melting point ceramic powders) In order to prepare the raw materials of CuO, SnO, PbO, B 2 O 3 ) and their composites at high temperature to produce a solid powder, a conventionally known atomization process and centrifugal process are used.
전자의 분무법은, 각종 순금속 및 합금분말을 제조할 목적으로 진공 혹은 불활성 분위기에서 원료금속 잉곳(ingot)을 도가니에 장입하여 고주파 유도로나 아크로로 완전하게 용융하여 미세관을 통과하는 액상의 금속을 냉각매체(N2,Ar,He,공기,물 또는 그 혼합물)로 고압 분무시켜 미세한 분말형태로 제조하는 방법으로서, 이러한 방법으로 얻어지는 분말에 산화가 문제될 경우에는 주로 불활성 가스(N2,Ar,He)를 사용하지만, 산화문제가 없을 때는 공기, 고압 수(H2O) 또는 물과 가스(공기,N2 )를 사용하여 제조하며, 용탕온도, 가스압력, 환상노즐의 사이즈의 공정변수에 따라 합금분말의 사이즈, 형상 및 입도분포가 다른 분말이 얻어진다.The former spraying method cools the liquid metal passing through the microtubules by melting raw metal ingots into a crucible in a vacuum or inert atmosphere in a crucible for the purpose of producing various pure metals and alloy powders and melting them completely with a high frequency induction furnace or an arc furnace. A method of producing a fine powder by spraying with a medium (N 2 , Ar, He, air, water or a mixture thereof) under high pressure. When oxidation is a problem in the powder obtained by this method, mainly an inert gas (N 2 , Ar, He) is used, but when there is no oxidation problem, it is manufactured using air, high pressure water (H 2 O) or water and gas (air, N 2 ), and the process parameters of melt temperature, gas pressure and size of annular nozzle are used. As a result, powders having different sizes, shapes, and particle size distributions of the alloy powder are obtained.
이러한 분무법은 냉각매체의 종류에 따라 가스분무법과 수분사법으로 구분되며, 우선 가스분무법은 냉각매체로 불화성 가스(N2,Ar,He)나 공기(air)를 사용하므로 냉각효과가 낮기 때문에 합금분말의 경우 미세편석이 발생하여 균질한 합금분말을 얻을 수 없으며, 사용하는 가스의 가격이 비교적 고가이기 때문에 생산코스트 상승의 문제점이 있다.The spraying method is classified into gas spraying method and water spraying method according to the type of cooling medium. First, the gas spraying method uses fluorinated gas (N 2 , Ar, He) or air as the cooling medium. In case of powder, fine segregation cannot be obtained, so that a homogeneous alloy powder cannot be obtained, and there is a problem of rising production cost because the price of gas used is relatively high.
한편 수분사법은 비교적 저렴한 물(H2O)을 사용하므로 분말제품의 생산 코스트를 절감할 수 있으며, 냉각효과가 크기 때문에 미세편석을 줄일 수 있지만, 특히 제조된 분말의 표면산화 및 고압 수 발생장치의 설비비가 고가인 것이 단점이다.On the other hand, the water spraying method uses relatively inexpensive water (H 2 O), which can reduce the production cost of powder products, and can reduce micro segregation due to its large cooling effect. The disadvantage is the high cost of equipment.
그러나 산화문제가 적거나 후처리 공정으로 산화문제를 해결할 수 있는 경우에는 수분사접이 경제적으로 매우 유리할 뿐만 아니라, 냉각효과가 매우 크다는 장점 때문에 최근 철(Fe)계 연자성 비정질 합금분말, 센더스트(SENDUST), 스테인레스강(Stainless steel) 등 분말제조에 효율적이며 경제적인 제조법으로 적용되고 있으며, 또한 혼합 분무법은 냉각 매체로 상기한 가스(N2,Ar,He), 공기 및 물(H2O) 등을 적절한 비율로 혼합하여 사용하는 제조방법으로 상기한 가스 분무법이나 수분사법의 장단점을 고려한 제조방법이다.However, if the oxidation problem is small or the post-treatment process can solve the oxidation problem, it is not only economically advantageous but also has a great cooling effect. Therefore, iron (Fe) soft magnetic amorphous alloy powder, sendust ( SENDUST), stainless steel (Stainless steel), etc. is applied as an efficient and economical manufacturing method, and the mixed spray method is a cooling medium described above gas (N 2 , Ar, He), air and water (H 2 O) It is a manufacturing method which mixes etc. in an appropriate ratio, and takes into consideration the advantages and disadvantages of the above-mentioned gas spraying method or water spraying method.
도 17은 종래 분무법을 개선한 실용 특허기술에 관한 일부 도면을 나타낸 것으로, 모두 1차 분사노즐을 사용하여 분사되어 냉각된 분말을 2차적으로 부딪혀 분말을 제조하는 것이며, 도 17의 (a)는 일본특개평11-288807호(1999.10.19 공개)에 제시된 것으로, 판상형 합금분말을 얻기 위해 1차적으로 분무된 분말을 회전하는 원추형 냉각롤에 부딪혀 제조하는 방법이고, 도 17의 (b)는 대한민국 특허공개 10-2002-0047080호(2002.06.21 공개)에 제시된 것으로, 미세한 금속분말을 제조하고 응집을 방하하기 위한 수단으로 금속분말의 융점에 근접한 온도로 가열하여 고온가스를 분사하며, 재차 고온가스노즐 하단에 2, 3차적으로 회전원반을 설치하여 부딪히게 하는 기술이며, 도 17의 (c)는 대한민국특허 특허공개 10-2004-0023534호(2004.03.18 공개)에 제시된 것으로, 고압수 분사법에 의해 제조한 나노결정질 합금분말을 사용하여 자성분말 코어 제조 시, 합금분말이 부정형이면 성형밀도가 낮고, 특히 결합제와 혼합하여 압축성형하면 분말 간 절연이 어려워 자성코어의 특성이 저하하므로, 구형 및 구형에 가깝고 4∼45㎛범위의 사이즈가 코어 제조특성 및 연자기적 특성이 우수함을 제안하고 있다.FIG. 17 is a view illustrating some practical patent technologies for improving the conventional spraying method, in which all of the sprayed powders are secondarily collided with the primary spray nozzles to prepare powders, and FIG. Japanese Patent Laid-Open No. 11-288807 (published Oct. 19, 1999), which is a method of manufacturing a powder sprayed primarily on a rotating conical cooling roll to obtain a plate-shaped alloy powder, and FIG. Presented in Korean Patent Publication No. 10-2002-0047080 (published on June 21, 2002), a method for preparing fine metal powder and preventing aggregation, and heating hot gas to a temperature close to the melting point of the metal powder to inject hot gas again. It is a technology for hitting by installing a rotary disk at the bottom of the nozzle second and third, and Fig. 17 (c) is presented in Korea Patent Publication No. 10-2004-0023534 (published on March 18, 2004), high pressure water injection method on In the preparation of magnetic powder core using nanocrystalline alloy powder prepared by the present invention, if the alloy powder is amorphous, the molding density is low. Especially, when compression molding with a binder, it is difficult to insulate between powders. It is proposed that the size of 4 ~ 45㎛ range is close to, and excellent in core manufacturing characteristics and soft magnetic properties.
이상과 같이 각종 다양한 기능성 및 기계부품용으로 사용되는 합금분말의 특성은 분말의 입도, 형상 및 미세조직은 제조방법이나 공정조건에 의해 결정되며, 이러한 최종 제품의 성능에도 큰 영향을 줄 뿐만 아니라, 각종 기능성 부품소재의 경박 단소 및 경제적 측면에서도 매우 중요하다. As described above, the characteristics of the alloy powder used for various functionalities and machine parts are determined by the manufacturing method or process conditions of the particle size, shape and microstructure of the powder, and not only have a great influence on the performance of the final product. It is also very important in the light and short and economic aspects of various functional parts and materials.
한편 분무노즐(atomizing nozzle)은 전술한 분무법에 사용되는 핵심적인 부품이며, 현재 제조하고자 하는 분말의 종류, 크기 및 형상 등에 따라 매우 다양한 크기 및 구조로 개발되어 사용되고 있다.On the other hand, the atomizing nozzle (atomizing nozzle) is a key component used in the above-described spraying method, and has been developed and used in a wide variety of sizes and structures according to the type, size and shape of the powder to be prepared at present.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 특허청 공고 91-000128 (뤼데르 게르킹) 1987.04.13(Patent Document 1) Republic of Korea Patent Office Announcement 91-000128 (Lüder Gerking) 1987.04.13
(특허문헌 2) US 4787935 (Daniel Eylon etc.) 1988.11.29(Patent Document 2) US 4787935 (Daniel Eylon etc.) 1988.11.29
(특허문헌 3) US 4869469 (Daniel Eylon etc.) 1989.09.26(Patent Document 3) US 4869469 (Daniel Eylon etc.) 1989.09.26
(특허문헌 4) 대한민국 특허청 등록 10-0002097 (포항종합제철주식회사) 1997.02.22(Patent Document 4) Korea Patent Office Registered 10-0002097 (Pohang Iron & Steel Co., Ltd.) 1997.02.22
(특허문헌 5) 대한민국 특허청 등록 10-0174749 (가부시끼 가이샤 구보다) 1998.11.06(Patent Document 5) Registration of Republic of Korea Patent Office 10-0174749 (Kabushi Kaisha Kubota) 1998.11.06
(특허문헌 6) 대한민국 특허청 등록 10-0279880 (한국원자력연구소) 2000.11.06(Patent Document 6) Registration of Korea Patent Office 10-0279880 (Korea Atomic Energy Research Institute) 2000.11.06
(특허문헌 7) 대한민국 특허청 등록 10-0320156 (동부한농화학 주식회사) 2001.12.26(Patent Document 7) Registration of Korea Patent Office 10-0320156 (Dongbu Hannong Chemical Co., Ltd.) 2001.12.26
(특허문헌 8) 대한민국 특허청 등록 10-0344010 (휴먼일렉스(주)) 2002.06.28(Patent Document 8) Registration of Korea Patent Office 10-0344010 (Human-Ilex Co., Ltd.) 2002.06.28
(특허문헌 9) 대한민국 특허청 등록 10-0372226 (휴먼일렉스(주)) 2003.01.30(Patent Document 9) Registration of Republic of Korea Patent Office 10-0372226 (Human-Ilex Co., Ltd.) 2003.01.30
(특허문헌 10) 대한민국 특허청 등록 10-0374363 (덕산하이메탈(주)) 2003.02.19(Patent Document 10) Registration of Korea Patent Office 10-0374363 (Duksan Hi-Metal Co., Ltd.) 2003.02.19
(특허문헌 11) 대한민국 특허청 등록 10-0461622 (소에이 가가쿠 가부시키가이샤) 2004.12.03(Patent Document 11) Registration of Korea Patent Office 10-0461622 (Soei Kagaku Co., Ltd.) 2004.12.03
(특허문헌 12) 대한민국 특허청 10-0542061 (알프스 덴키 가부시키가이샤) 2006.01.03(Patent Document 12) Republic of Korea Patent Office 10-0542061 (Alps Denki Kabuki Kaisha) 2006.01.03
(특허문헌 13) 대한민국 특허청 등록 10-0545849 ((주)아모텍)) 2006.01.18(Patent Document 13) Registration of Korea Patent Office 10-0545849 (Amotech Co., Ltd.) 2006.01.18
(특허문헌 14) 대한민국 특허청 등록 10-0605148 (정찬홍/한국생산기술연구원) 2006.07.19(Patent Document 14) Registration of Korea Patent Office 10-0605148 (Chung Chan Hong / Korea Institute of Industrial Technology) 2006.07.19
(특허문헌 15) 대한민국 특허청 등록 10-0561891 (알프스 덴키 가부시키가이샤) 2006.08.10(Patent Document 15) Registration of Korea Patent Office 10-0561891 (Alps Denki Kabuki Kaisha) 2006.08.10
(특허문헌 16) 대한민국 특허청 등록 10-0650354 (세이코 엡슨 가부시키가이샤) 2006.11.21(Patent Document 16) Registration of Korea Patent Office 10-0650354 (Seiko Epson Co., Ltd.) 2006.11.21
(특허문헌 17) 대한민국 특허청 등록 10-0713241 (주식회사 씨에라인더스트리) 2007.04.24(Patent Document 17) Registration of Korea Patent Office 10-0713241 (Sea Industries, Inc.) 2007.04.24
(특허문헌 18) 대한민국 특허청 공개 10-2011-0044832(마키노 아키히로) 2011.05.02(Patent Document 18) Republic of Korea Patent Office Publication 10-2011-0044832 (Akihiro Makino) 2011.05.02
(특허문헌 19) 대한민국 특허청 공개 10-2012-0085645((주)아모텍) 2012.08.01(Patent Document 19) Korean Patent Office Publication 10-2012-0085645 (Amotech Co., Ltd.) 2012.08.01
(특허문헌 20) 대한민국 특허청 공개 10-1217223((주)아모텍) 2012.12.24.)(Patent Document 20) Korea Patent Office Publication 10-1217223 (Amotech Co., Ltd.) 2012.12.24.)
각종 산업용으로 사용되는 순금속, 합금, 세락믹스 및 그 복합소재의 분말은, 기본적으로 최종 적용 제품의 특성 향상을 위해 균질한 화학적 조성이 중요하지만, 적용 제품에 따라 분말의 입도, 형상 및 미세조직이 매우 중요하다. Pure metals, alloys, cerammixes and composites powders used in various industries are basically important in homogeneous chemical composition to improve the properties of the final application, but the particle size, shape and microstructure of the powder very important.
그러나 이러한 분말을 고온으로 용해하여 종래 제조방법인 분무법이나 원심분리법으로 제조할 경우에는, 보통 상기한 분말의 화학적 조성, 입도, 형상 및 미세조직 제어가 어려울 뿐만 아니라, 제조공정이 복잡하여 장치 및 설비비가 고가이기 때문에 생산 비용이 상승하는 문제점이 있기 때문에 본 발명은 이러한 문제를 해결하고자 하는 것이다.However, when the powder is dissolved at a high temperature and manufactured by a spray method or a centrifugal separation method, which is a conventional manufacturing method, it is usually difficult to control the chemical composition, particle size, shape and microstructure of the powder as well as the manufacturing process is complicated and the equipment and equipment cost The present invention is to solve this problem because there is a problem that the production cost increases because of the high price.
따라서 본 발명은, 고체상태의 원료를 용해하여 미세관을 통과하는 액상을 냉각 매체(N2,Ar,He,공기,물 또는 그 혼합물)로 고압 분무시켜 미세한 분말형태로 제조할 때, 특히 냉각속도가 느릴 때 발생하는 미세편석을 줄이기 위하여 환상의 분사노즐을 사용하는 한편 회전하는 원추형 냉각롤러의 외측과 고정된 냉각용 중공형 원통의 내측에 연속적으로 부딪혀 냉각효과를 높임으로써 미세편석을 줄이는 동시에 보다 균질한 미세조직을 얻을 수 있도록 하는 분말 제조방법 및 그 장치를 제공하는 것을 목적으로 한다.Accordingly, the present invention, in particular when cooling the liquid phase passing through the microtubules by dissolving the raw material in a solid state in a fine powder form by high pressure spraying with a cooling medium (N 2 , Ar, He, air, water or a mixture thereof), in particular cooling In order to reduce the micro segregation caused by the slow speed, while using an annular jet nozzle, the micro-segregation is reduced by continuously hitting the outer side of the rotating conical cooling roller and the inner side of the fixed hollow cylinder for cooling. An object of the present invention is to provide a powder manufacturing method and apparatus for obtaining a more homogeneous microstructure.
본 발명은 상기한 문제점을 해결하기 위한 수단으로써, 우선 고체 원료를 도가니에 장입하여 고주파 유도로(혹은 아크로)로 용해한 후 도가니 하부에 설치된 오리피스(orifice)를 통해 액상으로 자연 낙하하는 원료용액을 냉각매체(N2,Ar,He,공기,물 또는 그 혼합물)을 환상(ring shape)의 분사노즐로 분사하여 분무된 반액상(semiliquid : 일반적으로 액체가 고체로 변화할 때, 반정도는 고체가 되고 반은 아직 액체로 남아 있는 상태를 뜻하며, 용융금속이 고상으로 응고할 때 액체금속과 고체금속이 혼재되어 있는 상태를 의미하는 것으로, 본 발명에서는 오리피스를 통해 자연낙하 하는 액체금속을 고압의 냉매로 분무시키면, 처음에는 액상으로 분무되어 냉각되어 완전한 고상의 분말입자로 되기 전의 상태를 의미하며, 고압으로 분무된 액상금속의 원소 및 크기에 따라 반액상의 지속시간이 다를 수 있다)의 미립자(1차 냉각)를 2000rpm이상의 고속으로 회전하며 수냉되는 원추형 냉각롤러의 외측에 2차적으로 부딪히게 한 후, 또한 상기한 원추형 냉각롤러의 외측에 수냉되며 고정 설치한 냉각용 중공형 원통의 내벽에 3차적으로 부딪히게 하여 냉각효과를 상승시킴으로서 이루어진다. The present invention is a means for solving the above problems, first, the solid material is charged into the crucible and dissolved in a high frequency induction furnace (or arc furnace), and then the raw material solution naturally falling into the liquid phase through the orifice (orifice) installed under the crucible Sprayed medium (N 2 , Ar, He, air, water or mixtures thereof) with a ring-shaped spray nozzle (semiliquid): Generally, when a liquid changes to a solid, about half is solid. And half refers to a state in which a liquid still remains, and refers to a state in which a liquid metal and a solid metal are mixed when the molten metal solidifies into a solid phase. In the present invention, a liquid metal that naturally falls through an orifice is a high-pressure refrigerant. When sprayed with, it refers to the state before spraying into the liquid phase and cooling and becoming a complete solid powder particle. The duration of the half-liquid phase may be different), and the secondary particles (primary cooling) are secondarily impacted on the outer side of the conical cooling roller which is cooled by rotating at a high speed of 2000 rpm or more, and then on the outer side of the conical cooling roller described above. It is achieved by increasing the cooling effect by hitting the inner wall of the hollow cylinder for cooling which is water cooled and fixedly.
즉, 본 발명은 고온으로 용해한 분말원료를 냉각매체(N2,Ar,He,공기,물 또는 그 혼합물)를 환상의 분사노즐인 제 1 분사노즐로 분사하여 용융금속이 고상으로 응고할 때 액체금속과 고체금속이 혼재되어 있는 상태를 의미하는 반액상의 미립자로 1차 냉각하는 단계, 상기 제 1 분사노즐의 하단에 설치되고 냉각이 이루어지는 상태에서 고속으로 회전하는 원추형 냉각롤러의 외측에 부딪혀 2차적으로 냉각하는 단계, 상기 원추형 냉각롤러의 외측에 고정되어 설치되고 냉각이 이루어지는 상태의 냉각용 중공형 원통의 내측에 부딪혀 3차적으로 냉각하는 단계, 상기 원추형 냉각롤러의 하측에 설치된 임펠러에 의해 고체 상태의 미세한 분말을 배출시켜 회수하는 단계를 수행함으로써 분말의 제조가 이루어진다.That is, according to the present invention, when a molten metal solidifies in a solid state by spraying a powder raw material melted at a high temperature with a cooling medium (N 2 , Ar, He, air, water or a mixture thereof) with a first injection nozzle which is an annular injection nozzle. Primary cooling with half-liquid fine particles, which means a state in which a metal and a solid metal are mixed, which is installed at the lower end of the first injection nozzle and hit the outer side of the conical cooling roller rotating at a high speed while cooling is secondary. Cooling by a step, hitting the inner side of the hollow cylindrical cylinder for cooling in a state that is fixed and installed on the outer side of the conical cooling roller, the third cooling step, the solid state by the impeller installed below the conical cooling roller Preparation of the powder is made by performing a step of discharging and recovering the fine powder of.
이러한 본 발명에 의해 얻어진 분말의 특성은, 보통 용탕온도, 용탕출구 속도, 냉각 매체의 분사압력에 따라 다를 수 있지만, 특히 상기한 2차적으로 부딪히게 하는 원추형 냉각롤러의 외형 및 회전속도에 따라 제조된 분말의 입도, 형상 및 미세조직이 다를 수 있다.The characteristics of the powder obtained by the present invention may vary depending on the melt temperature, the melt spout speed, and the spray pressure of the cooling medium. The particle size, shape and microstructure of the powder may vary.
본 발명에 의해 제조한 분말(순금속, 합금, 세락믹스 및 그 복합소재)은 1차적으로 냉각매체에 의해 환상의 분사노즐에 의해 분무되어 1차적으로 냉각된 직후, 50mm이내, 바람직하게는 30mm 이내의 근거리에 설치되어 고속으로 회전하는 원추형 냉각롤러와 그 외측에 설치한 냉각용 중공형 원통의 내측에 연속적으로 부딪히거나 각각 3차적으로 부딪혀 연속적으로 냉각되기 때문에 냉각속도 저하에 의한 미세편석이 적고, 입도 및 형상 제어가 용이하므로, 각종 산업용으로 사용하는 각종 분말제품의 물성 향상에 크게 기여할 수 있을 뿐만 아니라, 제조공정이 비교적 단순하여 생산성 향상은 물론, 설비비 절감에 따른 경제적 효과에도 유리하다.The powders (pure metals, alloys, cerammixes and composites thereof) produced by the present invention are primarily sprayed by an annular jet nozzle with a cooling medium and cooled first, within 50 mm, preferably within 30 mm. It is installed at a short distance and rotates at high speed, and it is continuously hit by the inner side of the hollow cylindrical cylinder for cooling installed in the outer side or the third side, respectively. In addition, since the particle size and shape control are easy, not only can greatly contribute to the improvement of physical properties of various powder products used in various industries, but also the manufacturing process is relatively simple, which is advantageous in terms of productivity and economic effects due to equipment cost reduction.
도 1은 본 발명에서 분말 제조장치의 조립단면도.1 is an assembled cross-sectional view of the powder manufacturing apparatus in the present invention.
도 2는 본 발명의 냉각용 중공형 원통의 전 단면도 및 다른 예의 실시예 단면도.Figure 2 is a front cross-sectional view of another embodiment of the hollow hollow cylinder for cooling of the present invention.
도 3은 본 발명의 원추형 냉각롤러의 전 단면도 및 다른 예의 실시예 단면도.Figure 3 is a front cross-sectional view of another embodiment of the conical cooling roller of the present invention.
도 4는 본 발명의 임펠러 단면도.4 is a cross-sectional view of the impeller of the present invention.
도 5는 본 발명에 의해 분말 제조과정을 설명하기 위한 부분 단면도.5 is a partial cross-sectional view for explaining a powder manufacturing process according to the present invention.
도 6은 본 발명에서 제 1,2 분사노즐의 단면도.6 is a cross-sectional view of the first and second injection nozzles in the present invention.
도 7은 본 발명의 다른 실시예 단면도.Figure 7 is a cross-sectional view of another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예 단면도.8 is a cross-sectional view of another embodiment of the present invention.
도 9는 본 발명의 다중(2중) 분사노즐 분해 단면도.9 is an exploded cross-sectional view of a multiple (double) injection nozzle of the present invention.
도 10은 본 발명의 다중(2중) 분사노즐 조립 단면도.10 is a cross-sectional view of the assembly of the multi (double) injection nozzle of the present invention.
도 11은 본 발명의 다중(3중) 분사노즐 조립 단면도.11 is a cross-sectional view of the assembly of the multiple (triple) injection nozzle of the present invention.
도 12는 본 발명의 도 9에 도시된 A-A 선 단면도.12 is a cross-sectional view taken along the line A-A shown in FIG. 9 of the present invention.
도 13은 본 발명 다중 분사노즐의 분사각 및 교차점을 보인 상태.Figure 13 is a state showing the injection angle and the intersection of the multi-jet nozzle of the present invention.
도 14는 본 발명의 다중(2중) 분사노즐에 의한 또 다른 실시 예 단면도.14 is a cross-sectional view of another embodiment of the multi-jet nozzle according to the present invention.
도 15는 본 발명의 다중(2중) 분사노즐에 의한 또 다른 실시 예 단면도.15 is a cross-sectional view of another embodiment of the multi-jet nozzle according to the present invention.
도 16은 본 발명의 다중(2중) 분사노즐에 의한 또 다른 실시 예 단면도.16 is a cross-sectional view of another embodiment of the multi-jet nozzle according to the present invention.
도 17은 기존의 분말제조 방법 설명도.17 is an explanatory diagram of a conventional powder production method.
본 발명에서의 분말 제조방법은 우선 고체 원료를 도가니에 장입하여 고주파 유도로 또는 아크로를 사용하여 용해를 한 후 도가니의 하부에 설치된 오리피스(orifice)를 통하여 액상의 원료용액을 자연 낙하시키되 냉각매체(N2,Ar,He,공기,물 또는 그 혼합물)를 상하로 설치된 환상(ring shape)의 분사노즐에서 분사되어 용융금속이 고상으로 응고할 때 액체금속과 고체금속이 혼재되어 있는 상태를 의미하는 반액상의 미립자로 1차 냉각하는 단계를 수행하고, 상기 반액상의 미립자는 환상의 분사노즐 하단에 설치되고 2000rpm이상의 고속으로 회전하면서 수냉이 이루어지는 원추형 냉각롤러의 외측에 부딪혀 2차로 냉각시키는 단계를 수행하며, 상기 원추형 냉각롤러에 부딪힌 미립자는 원추형 냉각롤러의 외측에 씌워져 수냉이 이루어지는 냉각용 중공형 원통의 내벽에 부딪히면서 3차로 냉각이 이루어지는 단계를 수행하고, 상기 3차 냉각된 분말은 원추형 냉각롤러의 하측에 설치된 나선형 임펠러에 의해 외부로 배출시켜 회수하는 단계를 수행함으로써 이루어지게 된다.In the powder manufacturing method of the present invention, first, a solid raw material is charged into a crucible and dissolved using a high frequency induction furnace or an arc furnace, and then a liquid raw material solution is naturally dropped through an orifice installed at the bottom of the crucible, but the cooling medium ( N 2 , Ar, He, air, water or a mixture thereof) is sprayed from a ring shape spray nozzle installed up and down to mean that the liquid metal and the solid metal are mixed when the molten metal solidifies into a solid phase. Performing the first cooling step with the semi-liquid fine particles, and the semi-liquid fine particles are installed at the lower end of the annular injection nozzle and rotated at a high speed of 2000 rpm or more, and then hit the outside of the conical cooling roller where water is cooled. , The hollow particles for cooling the particulates that hit the conical cooling roller is covered with the outer side of the conical cooling roller is water-cooled The third cooling step is performed while hitting the inner wall of the, and the third cooled powder is made by performing the step of discharging to the outside by the spiral impeller installed on the lower side of the conical cooling roller.
본 발명에서, 용해된 원료용액을 1차 분사시키는 환상의 분사노즐은 용해용 챔버내의 하측에 설치하되, 상기 환상의 분사노즐로부터 분사되는 냉각매체의 교차점으로부터 상기 원추형 냉각롤러의 상단부와 50mm이내의 근거리에 설치되게 한다. In the present invention, the annular injection nozzle for primary injection of the dissolved raw material solution is installed on the lower side in the melting chamber, within 50mm of the upper end of the conical cooling roller from the intersection of the cooling medium injected from the annular injection nozzle Allow to be installed at close range.
본 발명에서 원추형 냉각롤러와 냉각용 중공형 원통의 재질은 Cu계 합금을 사용하되, 상기한 원추형 냉각롤러의 외측 표면과 상기한 냉각용 중공형 원통의 내벽은 고온내열성, 내마모성 및 열전도성이 우수한 TiN, CBN, AlN, SiC, WC로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 코팅된다.In the present invention, the material of the conical cooling roller and the cooling hollow cylinder is Cu-based alloy, but the outer surface of the conical cooling roller and the inner wall of the cooling hollow cylinder are excellent in high temperature heat resistance, abrasion resistance and thermal conductivity. TiN, CBN, AlN, SiC, WC is coated with a composition consisting of at least one or a mixture of two or more.
이와 같이 본 발명은 고체 원료를 용해한 후 액상으로 자연 낙하하는 원료용액을 냉각매체를 환상의 분사노즐로 분사하여 냉각시키고, 다시 고속회전하며 수냉되는 원추형 냉각롤러에 부딪혀 냉각된 후 원추형 냉각롤러를 씌워주고 냉각이 이루어지는 냉각용 중공형 원통의 내벽에 부딪혀 분말로 생성되게 하는 것으로, 이러한 본 발명은 장치에 대한 구조와 작용을 설명하는 과정에서 본 발명의 제조방법에 대한 구체화된 실시 예를 설명하기로 한다.As described above, the present invention dissolves a solid raw material solution and then naturally cools the raw material solution by spraying the cooling medium with an annular spray nozzle, and then cools the conical cooling roller which is rotated at a high speed and cooled by a conical cooling roller. And to hit the inner wall of the cooling hollow cylinder for cooling is made to be produced as a powder, the present invention will be described a specific embodiment of the manufacturing method of the present invention in the process of explaining the structure and operation of the device do.
도 1은 본 발명에 따른 분말 제조장치의 개략적인 조립단면도를 나타낸 것으로, 베이스 하우징(40)과 하우징(8) 및 용해용 챔버(1)가 순차적으로 결합되어 있으며, 용해용 챔버(1)에는 도가니(23)가 구비되는 한편 도가니(23)의 하측으로 제 1 분사노즐(5)이 설치되고, 하우징(8)에는 수냉되는 냉각용 중공형 원통(11)이 설치되는 한편 상기 냉각용 중공형 원통(11)의 내측에는 고속으로 회전하며 수냉되는 원추형 냉각롤러(35)가 설치되고, 베이스 하우징(40)에는 원추형 냉각롤러(35)와 함께 회전되는 나선형 임펠러(13)가 설치되며, 상기 나선형 임펠러(13)와 원추형 냉각롤러(35)는 고속회전 모터(43)에 의해 회전하도록 구성하되, 상기 냉각용 중공형 원통(11)의 내측 일부(나선형 임펠러(13)의 상측)에는 압력 조절용 밸브(86)를 설치함으로써 이루어진다. Figure 1 shows a schematic assembly cross-sectional view of the powder manufacturing apparatus according to the present invention, the base housing 40 and the housing 8 and the dissolution chamber 1 are sequentially coupled, the dissolution chamber 1 While the crucible 23 is provided, the first injection nozzle 5 is installed below the crucible 23, and the housing 8 is provided with a cooling hollow cylinder 11 for cooling water. Inside the cylinder 11 is installed a conical cooling roller 35 which rotates at high speed and is water-cooled, and the base housing 40 is provided with a spiral impeller 13 which is rotated together with the conical cooling roller 35. The impeller 13 and the conical cooling roller 35 are configured to rotate by a high-speed rotating motor 43, and a pressure regulating valve is provided on an inner part of the cooling hollow cylinder 11 (upper side of the spiral impeller 13). This is done by installing 86.
우선 제조장치의 상부에는 고체상태의 원료를 적합한 분위기에서 용해할 수 있는 용해용 챔버(1)가 위치되고, 상기 용해용 챔버(1)의 내측에는 용해용 도가니(23)가 위치하게 되며, 상기 용해용 도가니(23)는 유도 코일(27)이 권회되는 고주파 유도로를 사용할 수 있고, 상기 용해용 도가니(23)에는 용해된 액상의 분말이 하부로 배출되는 것을 단속하는 스톱퍼(21)가 구비되는 한편 하측으로 액상의 분말을 배출시키는 단속하는 원통형 오리피스(29)를 구비하게 되며, 그 하측으로 환상의 분사노즐(5)을 설치함으로써 상기 용해용 도가니(23)에서 용해된 후 하측에 설치된 원통형 오리피스(29)를 통과해 낙하하는 액상의 분말원료가 환상의 분사노즐(5)에서 20~500bar의 압력으로 분사되는 냉각매체(N2,Ar,He,공기,물 및 그 혼합물)(31)에 의해 냉각되게 한다.First, a dissolution chamber 1 capable of dissolving a solid material in a suitable atmosphere is positioned at an upper portion of the manufacturing apparatus, and a dissolution crucible 23 is disposed inside the dissolution chamber 1. The melting crucible 23 may use a high frequency induction furnace in which the induction coil 27 is wound, and the melting crucible 23 is provided with a stopper 21 for intermittently discharging the dissolved liquid powder downward. On the other hand it is provided with a cylindrical orifice intermittent to discharge the liquid powder to the lower side, by dissolving in the melting crucible (23) by installing an annular injection nozzle (5) below Cooling medium (N 2 , Ar, He, air, water and mixtures thereof) in which the liquid powder raw material falling through the orifice 29 is injected at a pressure of 20 to 500 bar in the annular injection nozzle 5. To cool.
여기서, 용해용 챔버(1)에는 가스 주입을 단속하여 내부의 분위기를 적절하게 조절하기 위한 가스밸브(3) 및 가스 압력을 체크하는 압력계(19)가 외측에 구비된다. Here, the melting chamber 1 is provided with a pressure gauge 19 for checking gas pressure and a gas valve 3 for intermittently adjusting gas injection to appropriately adjust the atmosphere inside.
그리고 본 발명에서 오리피스(29)를 통과한 액상의 분말을 냉각매체(31)를 분사시켜 냉각시키는 환상의 분사노즐(5)은 원통형을 이루고 하측에 형성되는 교차점(87)에서 교차되게 냉각매체(31)를 분사시키게 되는 것으로, 상기 환상의 분사노즐(5)로부터 분사되는 냉각매체(31)의 교차점(87)으로부터 상기 원추형 냉각롤러의 상단부와의 이격거리(88)는 1~50mm이내의 근거리에 설치되게 하되 바람직하게는 1~20mm의 거리가 되게 한다. In the present invention, the annular injection nozzle 5 for cooling the liquid powder having passed through the orifice 29 by spraying the cooling medium 31 has a cylindrical shape and crosses at the intersection point 87 formed at the lower side of the cooling medium ( 31), the separation distance 88 from the intersection point 87 of the cooling medium 31 injected from the annular injection nozzle 5 to the upper end of the conical cooling roller is within 1 to 50mm. To be installed in the but preferably to be a distance of 1 ~ 20mm.
본 발명은 용해용 챔버(1)의 하부에는 용해용 챔버(1)와 상부 플랜지(6)에 의해 고정되는 하우징(8)을 구비하고, 상기 하우징(8)의 내측에는 냉각팬이 부착된 냉각용 중공형 원통(11)을 구비하되, 상기 냉각용 중공형 원통(11)의 외측에는 하우징(8)과의 사이에 냉매순환구(10)를 통하여 냉각수가 순환되어 냉각되도록 한다.The present invention has a housing (8) fixed to the lower chamber (1) by the melting chamber (1) and the upper flange (6), the inside of the housing (8) cooling with a cooling fan attached It is provided with a hollow cylindrical cylinder 11, the outside of the cooling hollow cylinder 11 to the cooling water is circulated through the coolant circulation port 10 between the housing 8 to be cooled.
상기 냉각용 중공형 원통(11)의 내측은 중공형으로 하되, 그 내측에는 상기 환상의 분사노즐(5)에서 냉각매체(N2,Ar,He,공기,물)(31)에 의해 1차적으로 냉각되어 분무된 분말의 냉각효과를 더욱 높이기 위해 고속으로 회전하며 수냉되는 원추형 냉각롤러(35)를 설치한다.The inner side of the hollow cylindrical cylinder for cooling 11 is hollow, and the inner side thereof is primarily formed by the cooling medium (N 2 , Ar, He, air, water) 31 in the annular injection nozzle 5. In order to further increase the cooling effect of the powder sprayed by the cooling is installed a conical cooling roller 35 is rotated at high speed and water-cooled.
상기 원추형 냉각롤러(35)에는 환상의 분사노즐(5)에서 냉각매체(31)를 분사시켜 냉각시킨 분말이 상부 외측으로 연속되어 부딪히면서 냉각이 이루어지게 되고, 상기 원추형 냉각롤러(35)의 하측에는 상기한 냉각매체(31)와 냉각된 분말이 하측의 배출관(15)으로 용이하게 배출될 수 있도록 나선형 임펠러(13)를 구비하되, 상기한 임펠러(13)는 환상의 분사노즐(5)에서 분사되는 압력을 고려하여 적절하게 설계되어야 하며, 또한 상기한 임펠러(13)의 하측에는 상기한 원추형 냉각롤러(35)와 임펠러(13)를 고속으로 회전할 수 있도록 하는 회전베어링(39), 베이스 하우징(40) 및 중공형 구동축(51)이 구비되며, 상기한 중공형 구동축(51)을 고속으로 회전시키기 위한 풀리(47)(41), 벨트(45) 및 구동모터(43)가 구비되고, 상기 원추형 냉각롤러(35)에는 냉매 공급용 파이프(49)를 통하여 내부 중공으로 냉매를 공급함으로써 이루어진다. The conical cooling roller 35 is cooled by spraying the cooling medium 31 from the annular injection nozzle 5 and cooled by continuously hitting the upper outer side, and the cooling is made at the lower side of the conical cooling roller 35. It is provided with a spiral impeller 13 so that the cooling medium 31 and the cooled powder can be easily discharged to the lower discharge pipe 15, the impeller 13 is injected from the annular injection nozzle (5) It should be appropriately designed in consideration of the pressure, and the lower side of the impeller 13, the rotating bearing 39 and the base housing to rotate the conical cooling roller 35 and the impeller 13 at high speed 40 and a hollow drive shaft 51, pulleys 47 and 41, a belt 45 and a drive motor 43 for rotating the hollow drive shaft 51 at high speed are provided. The conical cooling roller 35 has a pipe 49 for supplying a refrigerant. By supplying the refrigerant to the internal hollow through.
또한 상기한 냉각용 중공형 원통(11)의 내측에 설치되는 압력 조절용 밸브(86)는 본 발명의 분말 제조장치의 운전 초기에 환상의 분사노즐(5)에서 분사되는 압력보다 임펠러(13)에 의한 배출압력이 과대하거나 과소하지 않도록 적절하게 조절하기 위한 것으로 가능한 상기한 임펠러(13)의 상측에 설치하는 것이 바람직하다.In addition, the pressure regulating valve 86 installed inside the cooling hollow cylinder 11 is applied to the impeller 13 rather than the pressure injected from the annular injection nozzle 5 at the initial stage of operation of the powder manufacturing apparatus of the present invention. It is preferable to install the upper side of the impeller 13 as much as possible so as to appropriately adjust the discharge pressure of the pump so as not to be excessive or excessive.
여기서 상기한 환상의 분사노즐(5)에서 20~500bar의 압력으로 분사되는 냉각매체(31)는 불활성 가스(N2,Ar,He), 공기, 물(H2O)로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 이루어진다.Here, the cooling medium 31 sprayed at the pressure of 20 to 500 bar in the annular injection nozzle 5 is at least one or more consisting of inert gas (N 2 , Ar, He), air, water (H 2 O) or It consists of a composition mixed with two or more kinds.
도 2는 냉각용 중공형 원통(11)의 단면도로서, 중앙에는 환상의 분사노즐(5)에서 분무되는 분말과 냉각매체(31)가 용이하게 유입되도록 경사각(59)을 갖는 깔대기형으로 제작하고, 상기 경사각(59)과 하측 구멍의 크기(56)는 상기한 환상의 분사노즐(5) 직경 사이즈 및 분사각(87)을 참고하여 제작하며, 상기 냉각용 중공형 원통(11)은 열전도성이 우수한 Cu계 합금으로 제작하되, 상기 냉각용 중공형 원통(11)의 중공 내벽(53)의 표면은 상기 환상의 분사노즐(5)에서 분사되는 냉각매체(31)와 분무된 고체분말이 고온 고압으로 부딪혀 냉각되므로 고내열성, 내마모성 및 열전도성이 우수한 물질(TiN, CBN, AlN, SiC, WC)로 코팅하여 사용하는 것이 바람직하다.2 is a cross-sectional view of the hollow cylindrical cylinder for cooling 11, which is made of a funnel having an inclination angle 59 so that the powder sprayed from the annular injection nozzle 5 and the cooling medium 31 easily flow in the center thereof. The inclination angle 59 and the size of the lower hole 56 are manufactured with reference to the annular injection nozzle 5 diameter size and the injection angle 87. The cooling hollow cylinder 11 is thermally conductive. It is made of this excellent Cu-based alloy, the surface of the hollow inner wall 53 of the hollow cylindrical cylinder 11 for cooling is the cooling medium 31 and the sprayed solid powder sprayed from the annular injection nozzle (5) high temperature Since it is cooled by being hit by high pressure, it is preferable to use it by coating with a material having excellent heat resistance, abrasion resistance, and thermal conductivity (TiN, CBN, AlN, SiC, WC).
그리고 상기 냉각용 중공형 원통(11)의 외측은 냉각효과를 높일 수 있도록 요철(凹凸)로 이루어지도록 하는 것이 바람직하며, 전술한 하우징(8)의 외부로부터 순환되는 냉각수가 냉매순환구(10)를 통하여 순환되면서 냉각이 이루어지게 되므로, 냉각용 중공형 원통(11)의 내벽(53)에 부딪히는 분말을 빠르게 냉각시킬 수 있다.In addition, the outside of the hollow cylindrical cylinder for cooling 11 is preferably made of irregularities so as to increase the cooling effect, the coolant circulated from the outside of the housing 8 described above the refrigerant circulation port 10 Since the cooling is made while being circulated through, the powder hitting the inner wall 53 of the hollow cylindrical cylinder 11 for cooling can be quickly cooled.
또한 상기 냉각용 중공형 원통(11)의 높이(54)와 상기 냉각용 중공형 원통(11) 중공부의 내벽(53)에 대한 내경 사이즈(55) 및 다양한 형상(61)은 제조하는 분말의 입형과 미세조직에 영향을 줄 수 있기 때문에 적절하게 제작하되, 특히 환상의 분사노즐(5)에서 분사되는 냉각매체(31)의 분사압을 고려하여 사이즈를 설계하여야 한다. In addition, the inner diameter size 55 and the various shapes 61 of the height 54 of the hollow hollow cylinder 11 for cooling and the inner wall 53 of the hollow hollow cylinder 11 for cooling are formed into powder. And because it may affect the microstructure and appropriately manufactured, in particular, the size should be designed in consideration of the injection pressure of the cooling medium 31 is injected from the annular injection nozzle (5).
도 3은 고속으로 회전하며 수냉되는 원추형 냉각롤러(35)의 단면도로서, 전술한 환상 의 분사노즐(5)에서 원통형으로 분무되어 냉각된 분말이 재차 부딪혀 냉각효과를 더욱 높일 수 있을 뿐만 아니라, 상기 원추형 냉각롤러(35)의 회전속도 조절과 상측의 모양을 다양한 형상(69)으로 함으로써 제조되는 분말의 크기와 형상이 달라질 수 있다. 3 is a cross-sectional view of a conical cooling roller 35 which is rotated at high speed and is water-cooled, wherein the powder sprayed in a cylindrical shape in the above-described annular injection nozzle 5 hits again to further increase the cooling effect. By adjusting the rotational speed of the conical cooling roller 35 and the shape of the upper side to various shapes 69, the size and shape of the powder produced can be varied.
상기 원추형 냉각롤러(35) 내측의 중공부(63)에는 외부로부터 냉매 공급용 파이프(49)를 타고 순환되는 냉매에 의해 냉각이 이루어지게 되므로 환상의 분사노즐(5)에 의해 냉각된 미립자 분말을 보다 빠르게 냉각시킬 수 있으며, 바로 상측의 제 1 분사노즐(5)에서 분사되는 냉각매체(31)와 분무되어 생성된 고체분말이 고온 고압으로 부딪혀 냉각되므로 고온내열성, 내마모성 및 열전도성이 우수한 물질로 코팅하여 사용하는 것이 바람직하다.The hollow part 63 inside the conical cooling roller 35 is cooled by a refrigerant circulated through the refrigerant supply pipe 49 from the outside, so that the particulate powder cooled by the annular injection nozzle 5 is supplied. It can be cooled more quickly, and the solid powder produced by spraying with the cooling medium 31 sprayed from the first injection nozzle 5 directly on the upper side is cooled by high temperature and high pressure, so that the material is excellent in high temperature heat resistance, abrasion resistance and thermal conductivity. It is preferable to use it by coating.
도 4는 본 발명의 나선형 임펠러(13)의 단면도를 나타낸 것으로, 상기 환상의 분사노즐(5), 원추형 냉각롤러(35) 및 냉각용 중공형 원통(11)에 부딪혀 연속적으로 냉각된 분말이 용이하게 하측의 분말 배출관(15)으로 용이하게 배출될 수 있도록 나선형으로 여러 개의 날개(70)가 구성되고, 이러한 임펠러(13)의 외경 사이즈(72), 날개(70)의 수 및 상하 길이(75)는 상기한 환상의 분사노즐(5)로부터 분사되는 냉각매체(31)의 분사압 및 유량뿐만 아니라, 전술한 원통형 오리피스(29)를 통과하는 액상의 분말원료의 용탕 량과 상기 원통형 냉각 롤러(35)의 회전수(rpm), 배출관(15) 사이즈를 고려하여 설계하여야 한다. 4 is a cross-sectional view of the helical impeller 13 of the present invention, wherein the powder continuously cooled by hitting the annular injection nozzle 5, the conical cooling roller 35, and the hollow hollow cylinder 11 for cooling is easy. In order to be easily discharged into the lower powder discharge pipe 15, a plurality of blades 70 are formed in a spiral shape, the outer diameter size 72 of the impeller 13, the number of wings 70 and the upper and lower lengths 75 In addition to the injection pressure and flow rate of the cooling medium 31 injected from the annular injection nozzle (5), the molten amount of the liquid powder raw material passing through the cylindrical orifice 29 and the cylindrical cooling roller ( It shall be designed in consideration of the rotation speed (rpm) of 35) and the size of the discharge pipe (15).
예를 들면, 분말 제조장치의 운전 시 임펠러(13)의 배출 용량이 상기한 용탕 량과 환상의 분사노즐(5)로부터 분사되는 냉각매체(31)보다 적을 때는 용탕 흐름량의 조절이 필요하며, 조절에 실패하는 경우 역류가 발생할 수 있기 때문에 적절한 설계가 이루어져야 한다.For example, when the discharge capacity of the impeller 13 is smaller than the melt amount and the cooling medium 31 sprayed from the annular injection nozzle 5 during the operation of the powder manufacturing apparatus, it is necessary to adjust the melt flow rate. In case of failure, proper design must be made because backflow can occur.
도 5는 본 발명에 있어서, 도 1에 도시한 상측의 도가니(23), 원통형 오리피스(29), 환상의 분사노즐(5), 냉각용 중공형 원통(11), 원추형 냉각롤러(35), 임펠러(13), 분말 배출관(15), 상기 원추형 냉각롤러(35)의 회전용 모터(43)의 주요 구성 부품과 상기 냉각용 중공형 원통(11)의 회전 방향(37) 및 냉매의 순환방향을 나타낸 것으로, 특히 고체상태의 분말원료로부터 분말이 얻어지는 과정을 살펴보면, 우선 도가니(23)에서 용해된 액상의 원료용액은 원통형 오리피스(29)를 통해 환상의 분사노즐(5)에 유입되면, 상기 제 1 분사노즐(5)에서 냉각매체(31)를 20~500bar의 압력으로 분사하여 원료용액을 미립으로 분무시켜 분말이 생성되게 하며, 이 같이 제 1 분사노즐(5)에서 액상의 원료용액을 냉각매체(31)로 분사하는 과정은 액상의 원료용액이 1차적으로 냉각되어 완전하게 응고되지 않은 상태로 계속하여 응고가 진행됨과 동시에 고상반응도 진행되는 상태가 된다. 5 is a top crucible 23, a cylindrical orifice 29, an annular jet nozzle 5, a hollow cylindrical cylinder 11 for cooling, a conical cooling roller 35, and the like shown in FIG. Main components of the impeller 13, the powder discharge pipe 15, the rotating motor 43 of the conical cooling roller 35, the rotational direction 37 of the cooling hollow cylinder 11, and the circulation direction of the refrigerant In particular, when looking at the process of obtaining powder from a solid powder raw material, first, the liquid raw material solution dissolved in the crucible 23 is introduced into the annular injection nozzle 5 through the cylindrical orifice 29, The cooling medium 31 is sprayed at a pressure of 20 to 500 bar from the first spray nozzle 5 to spray the raw material solution into fine particles to generate powder. Thus, the liquid raw material solution is sprayed from the first spray nozzle 5. In the process of spraying onto the cooling medium 31, the liquid raw material solution is first cooled and completely The solidification proceeds in the unsolidified state and the solid phase reaction is also in progress.
예를 들면, 종래 금속응고(RSP)에 의한 가스분무법이나 원심분리법으로 다결정 합금분말을 제조할 경우에도 상당한 분사압으로 분무되어 분말이 생성되면서 1차적으로 냉각되지만, 그 후 챔버 내에서 비산되면서 낮은 속도로 냉각되므로 합금성분의 편석은 물론, 미세조직을 얻을 수가 없으며, 더욱이 동일한 방법으로 냉각속도를 높여 비정질 합금분말을 제조하기 위해 상기 환상의 분사노즐(5)의 냉각매체(31)로 물(H2O)을 사용하여 분사압을 초고압(300bar이상)으로 분사하여도 10㎛이상의 비정질 분말을 얻기 어려운 것으로 알려져 있다. For example, when the polycrystalline alloy powder is produced by gas spraying or centrifugation by conventional metal coagulation (RSP), it is sprayed at a significant injection pressure to produce a powder, which is primarily cooled, but is then scattered in the chamber. As it cools at a speed, segregation of the alloy component, as well as a microstructure, cannot be obtained. Furthermore, in order to manufacture an amorphous alloy powder by increasing the cooling rate in the same manner, water (with the cooling medium 31 of the annular injection nozzle 5) It is known that it is difficult to obtain an amorphous powder of 10 μm or more even when the injection pressure is injected at a very high pressure (300 bar or more) using H 2 O).
본 발명은 전술한 반응고 상태의 분말을 재차 2000rpm이상의 고속으로 회전하는 원추형 냉각롤러(35)의 상단(2차 냉각)과 냉각용 중공형 원통(11)의 내벽(53)에 부딪혀 연속적으로 냉각시켜(3차 냉각) 냉각속도를 증가시킴으로서 냉각속도 저하로 인해 발생하는 미세편석을 줄이고 미세조직이 치밀한 합금분말을 얻을 수 있을 뿐만 아니라, 상기 원추형 냉각롤러(35)의 회전속도 및 상단의 형상을 변화시킴으로써, 다양한 분말의 사이즈, 입도 및 형상을 조절할 수 있을 뿐만 아니라, 각종 비정질 합금분말도 용이하게 제조할 수 있다. The present invention continuously cools the powder in the reaction state described above by hitting the upper end (secondary cooling) of the conical cooling roller 35 again rotating at a high speed of 2000 rpm or more and the inner wall 53 of the hollow cylinder 11 for cooling. By increasing the cooling rate (third cooling) to reduce the fine segregation caused by the lowering of the cooling rate, and obtain a fine alloy powder of fine structure, the rotational speed of the conical cooling roller 35 and the shape of the top By changing, not only the size, particle size and shape of various powders can be adjusted, but also various amorphous alloy powders can be easily produced.
도 6은 본 발명에 있어서, 전술한 환상의 분사노즐(5)의 냉매물질 분사각(81)에 따라 결정되는 냉각매체(31)의 교차점(87), 즉, 환상의 분사노즐(5)에서 분사되는 냉각매체(31)의 교차점(87)은 상기 환상의 분사노즐(5)의 분사각(81)에 의해 결정되는 것으로서, 특히 상기 환상의 분사노즐(5)에서 1차적으로 분무된 분말의 냉각속도를 상승하기 위해서는 상기한 교차점(87)과 전술한 원추형 냉각롤러(35)의 상단부의 이격거리(88)를 1~50mm범위로 가능한 적게 설계하되 바람직하게는 1~20mm가 적합하다. FIG. 6 shows, in the present invention, at the intersection 87 of the cooling medium 31, i.e. at the annular injection nozzle 5, determined according to the coolant material injection angle 81 of the annular injection nozzle 5 described above. The intersection point 87 of the cooling medium 31 to be injected is determined by the injection angle 81 of the annular injection nozzle 5, and in particular, of the powder sprayed primarily by the annular injection nozzle 5. In order to increase the cooling rate, the distance 87 of the upper end of the intersection 87 and the conical cooling roller 35 described above is designed to be as small as possible in the range of 1 to 50 mm, but preferably 1 to 20 mm.
도 7은 본 발명의 다른 실시 예로, 전술한 도가니(23), 원통형 오리피스(29) 및 환상의 분사노즐(5)은 동일한 것을 사용하되, 냉각용 중공형 원통(11a)의 중공부(53f)를 좁게 하며, 상기 중공부(53f)의 내측에 설치되어 고속으로 회전하는 원추형 냉각롤러(35g) 또한 가는 것을 사용함으로써, 도 5에 나타낸 것과 동일한 분사압으로 분무되어도 더욱 미세한 분말을 얻을 수 있다. FIG. 7 illustrates another embodiment of the present invention, in which the above-described crucible 23, the cylindrical orifice 29, and the annular injection nozzle 5 use the same, but the hollow portion 53f of the cooling hollow cylinder 11a. By narrowing the conical cooling roller 35g which is installed inside the hollow portion 53f and rotates at high speed, the fine powder can be obtained even when sprayed at the same injection pressure as shown in FIG.
도 8은 본 발명의 또 다른 실시 예로서, 도 7에 나타낸 것과는 달리, 전술한 환상의 제 분사노즐(5)에서 20~500bar의 압력으로 분사하는 냉각매체(31)과 냉각용 중공형 원통(11b)의 내벽(53f) 부딪혀 냉각된 후, 단지 고속으로 회전하는 임펠러(13)에 의해 분말 배출관(15) 쪽으로 배출시켜 분말을 제조할 수 있도록 한 것이다. 8 is another embodiment of the present invention, unlike shown in FIG. 7, the cooling medium 31 and the hollow hollow cylinder for cooling at a pressure of 20 to 500 bar in the above-mentioned annular injection nozzle 5 After hitting and cooling the inner wall 53f of 11b), it is discharged toward the powder discharge pipe 15 only by the impeller 13 which rotates at a high speed so that the powder can be produced.
본 발명에 있어서, 환상의 분사노즐(5)에서 분사되는 냉각매체(31)을 시계방향 혹은 반시계 방향으로 회전시켜 분사할 경우, 전술한 원추형 냉각롤러(35)의 회전방향은 보통 시계방향으로 회전하도록 제작하는 것이 용이하므로, 특히 제조하는 분말의 형상 변화가 요구되거나 냉각효과를 고려하여 상기 환상의 분사노즐(5)을 적절하게 설계하여야 한다.In the present invention, in the case of spraying by rotating the cooling medium 31 injected from the annular injection nozzle 5 clockwise or counterclockwise, the rotational direction of the conical cooling roller 35 described above is usually clockwise. Since it is easy to manufacture to rotate, in particular, the shape change of the powder to be manufactured is required, or the annular injection nozzle 5 should be appropriately designed in consideration of the cooling effect.
또한 본 발명에 있어서, 전술한 원추형 냉각롤러(35)의 회전은 도 1 및 도 5에 나타낸 바와 같이, 하우징(8)에 연결된 플랜지(40)의 하측에 위치하는 풀리(47)를 회전시키는 전동 모터(43)에 의해 회전이 이루어지게 되며, 상기 원추형 냉각롤러(35)의 외경 치수(67) 및 전동 모터(43)의 회전속도(rpm)에 의존하므로, 특히 제조하는 분말의 사이즈, 입도, 입형, 분말의 균질화, 미세화를 위해서는 각각 적절한 회전속도가 필요하다.In addition, in the present invention, the above-described rotation of the conical cooling roller 35, as shown in Figs. 1 and 5, the electric motor for rotating the pulley 47 located below the flange 40 connected to the housing (8) The rotation is made by the motor 43, and depends on the outer diameter dimension 67 of the conical cooling roller 35 and the rotational speed (rpm) of the electric motor 43, in particular the size, particle size, Appropriate rotational speeds are required for homogenization and refinement of the granules and powders.
또한, 본 발명은 종래의 가스분무법이나 고압수분사법과는 달리, 분말원료(순금속, 합금, 세락믹스 및 그 복합소재 등)를 용해하여 오리피스(orifice)를 통과하는 용탕을 분사노즐로 냉각매체를 분사시켜 분말을 제조할 때, 특히 냉각효과를 높여 분말의 특성을 향상시키기 위해 다중(2개 이상)의 분사노즐을 사용하여 냉각매체(N2,Ar,He,공기,물 또는 그 혼합물)를 10~1,000bar범위의 압력으로 1차적으로 냉각시킨 후, 분사된 분말의 냉각효과를 더욱 높이기 위해 재차 2,000rpm이상의 고속으로 회전하며 수냉되는 원추형 냉각롤러 및 중공형 원통의 내벽 등에 연속적으로 부딪히게 하여 냉각효과를 상승시킴으로서 이루어진다. In addition, unlike the conventional gas spraying method or high pressure water spraying method, the present invention dissolves powder raw materials (pure metals, alloys, cerax mixes and composites thereof), and melts the molten material passing through an orifice by cooling nozzles with a spray nozzle. When preparing the powder by spraying, in particular, the cooling medium (N 2 , Ar, He, air, water or mixture thereof) is used by using multiple (two or more) injection nozzles in order to enhance the cooling effect and improve the characteristics of the powder. After the first cooling to a pressure in the range of 10 ~ 1,000bar, in order to further increase the cooling effect of the sprayed powder to make a continuous impact on the inner wall of the conical cooling roller and the water-cooled conical cooling roller rotating at a high speed of more than 2,000rpm again By increasing the cooling effect.
이러한 본 발명에 있어서, 우선 다중(2개 이상)의 분사노즐에 대하여 도 9 내지 도 13에 대하여 살펴본다.In the present invention, first, a plurality of (two or more) injection nozzles will be described with reference to FIGS. 9 to 13.
본 발명의 다중(2개 이상)의 분사노즐은 반드시 수직으로 구성하되, 예를 들면, 2개의 분사노즐을 2중으로 설치할 경우, 상하로 제1,2분사노즐(5)(7)은 상하로 겹치게 하여 설치하되, 상측에 위치하는 제1분사노즐(5)의 분무각(81)보다 하측에 위치하는 제2분사노즐(7)의 분사각(81a)을 크게 함으로써, 다중 제1,2분사노즐(5)(7)의 분사 교차점(87)(87a)이 상하로 위치하게 하되 상기 분무 교차점(87)(87a)의 거리(88a)는 30mm 이내가 되게 한다.The multiple (two or more) injection nozzles of the present invention must be configured vertically, for example, when two injection nozzles are installed in duplicate, the first and second injection nozzles 5 and 7 are vertically up and down. While overlapping and installing, by multiplying the injection angles 81a of the second injection nozzles 7 located below the spray angles 81 of the first injection nozzles 5 located above, the multiple first and second injections The injection intersections 87 and 87a of the nozzles 5 and 7 are positioned up and down, but the distance 88a of the spray intersections 87 and 87a is within 30 mm.
즉, 본 발명은 다중의 제1분사노즐(5)에서 분사각(81)을 갖고 냉각매체(31a)로 용탕을 분사시키되 하측으로 교차점(87)이 형성되면서 미립자가 분사각(81)으로 퍼지면서 1차 냉각이 이루어지게 하고, 1차 냉각이 이루어진 미립자는 제2분사노즐(7)에서 분사각(81a)을 갖고 냉각매체(31a)를 분사시킴으로써 분사각(81a)으로 퍼지면서 2차 냉각이 이루어지게 된다.That is, the present invention sprays the molten metal to the cooling medium 31a with the spray angle 81 in the multiple first spray nozzles 5 while the cross point 87 is formed at the lower side, and the fine particles are purged at the spray angle 81. Primary cooling is performed, and the fine particles having primary cooling have an injection angle 81a in the second injection nozzle 7 and are sprayed to the injection angle 81a by spraying the cooling medium 31a. This is done.
또한 본 발명에 있어서, 상기한 다중 분사노즐(5)(7)의 분사각(81)(81a)은 오리피스(29)를 통과하여 낙하하는 용탕(28)을 분사하여 미립분말을 생성시키는 중요한 파라미터이며, 특히 상기한 분사노즐(5)의 분사각(81)을 65o이상으로 제작하면 상기 오리피스(29)를 통과하는 용탕의 흐름을 방해할 수 있지만, 반면에 10o이하로 적어지면 용탕을 분사할 수 있는 힘이 저하하므로 15∼65o범위로 제작하는 것이 바람직하다.Further, in the present invention, the above-described injection angles 81 and 81a of the multi-jet nozzles 5 and 7 are important parameters for spraying the melt 28 falling through the orifice 29 to generate fine powder. and, in particular, when making a minute rectangular (81) of said one spray nozzle (5) with at least 65 o, but may interfere with the flow of the molten metal passing through the orifice 29, whereas in the down when the melt to less than 10 o Since lowering the strength that can be injected it is preferred to manufacture a range of 15~65 o.
본 발명의 다중의 제1,2분사노즐(5)(7)에는 냉각매체(31a)가 3개의 주입구를 통하여 등 간격으로 주입되어 분사되게 하되 3개의 주입구는 환상 노즐부 외주로부터 1200의 각도(103)를 갖고 접선의 형태로 설치된다.The multiple first and second spray nozzles 5 and 7 of the present invention are sprayed at equal intervals through the three injection holes, but the injection holes are injected at an equal angle of 120 0 from the outer circumference of the annular nozzle part. It has 103 and is installed in the form of a tangential line.
한편, 본 발명은 도 11에 도시된 바와 같이 다른 실시예로써 제1,2분사노즐(5)(7)의 하측에 또 다른 분사노즐(9)을 설치하는 경우, 3중의 분사노즐(9)의 분사각(81b) 및 교차점(87b)을 구성할 수 있으며, 이러한 경우 3차에 걸친 미립자 분말의 냉각이 이루어지게 되는 것으로, 분사노즐(5)(7)(9)을 거치면서 3번에 걸친 냉각이 이루어지게 된다.On the other hand, according to the present invention, when another injection nozzle 9 is installed below the first and second injection nozzles 5 and 7 as another embodiment, the triple injection nozzle 9 is provided. It is possible to configure the injection angle (81b) and the intersection point (87b) of, in this case is to cool the particulate powder over three times, through the injection nozzle (5) (7) (9) at three times Cooling is achieved.
이러한 본 발명의 다중의 제1,2분사노즐(5)(7)을 이용하여 분말을 제조하는 3가지 실시예를 도 14 내지 도 16에 의거 살펴본다.14 to 16 will be described with reference to the three embodiments for producing a powder using the multiple first, second spray nozzles (5) (7) of the present invention.
도 14는 본 발명의 제 1실시예로서, 종래 분무장치에 다중의 제1,2분사노즐(5)(7)을 상하로 손쉽게 설치하여 오리피스(29)를 통해 낙하하는 용탕(28)을 냉각매체(31a)를 분사용 챔버(109)내에 상기한 다중의 제1,2분사노즐(5)(7)을 이용하여 1,2차로 분사압과 분사각(81)(81a) 등을 조정하여 효과적으로 냉각속도를 조절함으로써, 합금분말을 얻을 수 있도록 하고 있으며, 특히 합금분말을 제조할 경우, 비교적 저렴한 설비비로 조성편석이 적고 미세한 조직의 합금분말을 얻을 수 있다. FIG. 14 is a first embodiment of the present invention, in which a plurality of first and second spray nozzles 5 and 7 are easily installed up and down in a conventional spraying device to cool the molten metal 28 falling through an orifice 29. Using the multiple first and second injection nozzles 5 and 7 described above, the medium 31a is injected into the injection chamber 109 in order to adjust the injection pressure and the injection angles 81 and 81a. By effectively controlling the cooling rate, it is possible to obtain the alloy powder, especially when manufacturing the alloy powder, it is possible to obtain an alloy powder having a small composition segregation and a fine structure at a relatively low equipment cost.
또한 도 15는 본 발명의 제 2실시예로서, 상부 플랜지(6)과 하우징(8)의 상측으로 도시되지 아니한 용해용 챔버에 다중의 제1,2분사노즐(5)(7)이 설치되는 한편, 오리피스(29)를 통하여 용탕(28)이 배출되게 구성되고, 상기 오리피스(29)의 하측으로 설치되는 다중의 제1,2분사노즐(5)(7)에는 냉각매체(31a)가 주입되게 하며, 상기 하우징(8) 내측에는 수냉되는 냉각용 중공형 원통(11)이 설치되고, 상기 냉각용 중공형 원통(11)의 내측 공간에는 고속으로 회전하며 수냉되는 원추형 냉각롤러(35)가 설치되고, 하부 플랜지(40)의 상측에는 원추형 냉각롤러(35)와 함께 회전되는 나선형 임펠러(13)가 설치되며, 상기 나선형 임펠러(13)와 원추형 냉각롤러(35)는 고속회전 모터(43)에 의해 회전하도록 구성하되, 상기 냉각용 중공형 원통(11)과 하우징(9) 사이에는 냉각수(50)가 주입되어 냉각이 이루어지게 한다.15 is a second embodiment of the present invention, in which a plurality of first and second spray nozzles 5 and 7 are installed in a melting chamber not shown above the upper flange 6 and the housing 8. Meanwhile, the molten metal 28 is discharged through the orifice 29, and a cooling medium 31a is injected into the plurality of first and second spray nozzles 5 and 7 installed below the orifice 29. A cooling hollow cylinder 11 for cooling water is installed inside the housing 8, and a conical cooling roller 35 for cooling and rotating at high speed is installed in the inner space of the cooling hollow cylinder 11. It is installed, the upper side of the lower flange 40 is provided with a spiral impeller 13 which rotates together with the conical cooling roller 35, the spiral impeller 13 and the conical cooling roller 35 is a high-speed rotating motor 43 It is configured to rotate by, but the cooling water 50 is injected between the cooling hollow cylinder 11 and the housing (9) The cooling air must be fulfilled.
그리고 원추형 냉각롤러(35)의 내부에는 냉각수(50)가 순환되게 하여 다중 제1,2분사노즐(5)(7)에서 1,2차 냉각된 미립자가 원추형 냉각롤러(35)의 상측에 부딪히면서 3차 냉각된 후 다시 중공형 원통(11)의 내측에 부딪히면서 4차 냉각이 이루어지게 된다.In addition, the cooling water 50 is circulated in the conical cooling roller 35 so that the first and second spray nozzles 5 and 7 cool the first and second particles to the upper side of the conical cooling roller 35. After the third cooling, the fourth cylinder is cooled while hitting the inner side of the hollow cylinder 11 again.
이러한 본 발명의 제조장치의 상부에는 고체상태의 원료를 적합한 분위기에서 용해할 수 있는 용해용 챔버가 위치되고, 상기 용해용 챔버의 내측에는 용해용 도가니가 위치하게 되며, 상기 용해용 도가니는 권회되는 고주파 유도로를 사용할 수 있고, 상기 용해용 도가니에서 용해된 액상의 용탕(28)은 원통형 오리피스(29)를 통하여 배출하게 되며, 상기 원통형 오리피스(29)는 그 하측으로 2개의 다중 제1,2분사노즐(5)(7)을 상하로 설치함으로써 상기 용해용 도가니에서 용해된 후 하측에 설치된 원추형 오리피스(29)를 통과해 낙하하는 액상의 분말원료가 다중의 제1,2분사노즐(5)(7)에서 분사되는 냉각매체(N2,Ar,He,공기,물 및 그 혼합물)(31a)에 의해 1,2차 냉각되게 한다.In the upper part of the manufacturing apparatus of the present invention, a melting chamber capable of dissolving a solid material in a suitable atmosphere is located, and a melting crucible is positioned inside the melting chamber, and the melting crucible is wound up. A high frequency induction furnace may be used, and the liquid molten metal 28 dissolved in the melting crucible is discharged through the cylindrical orifice 29, and the cylindrical orifice 29 has two multiple first and second sides thereof. By installing the spray nozzles (5) and (7) up and down, a plurality of first and second spray nozzles (5) are formed of a liquid powder raw material which is dissolved in the melting crucible and then passes through a conical orifice (29) installed on the lower side. Cooling medium (N 2 , Ar, He, air, water and mixtures thereof) 31a injected in (7) is allowed to cool first and second.
여기서, 용해용 챔버와 용해용 도가니 등은 도시되지 않았다.Here, the melting chamber, the melting crucible, and the like are not shown.
그리고, 본 발명에서 원통형 오리피스(29)를 통과한 용탕을 냉각매체(31)를 분사시켜 냉각시키는 다중의 제 1,2 분사노즐(5)(7)은 원추형을 이루고 하측에 형성되는 교차점(87)(87a)에서 교차되게 냉각매체(31a)를 분사시키게 되는 것으로, 상기 다중의 제1,2 분사노즐(5)(7)은 상하로 겹치게 하여 2중으로 설치하되, 상측에 위치한 환상의 제 1분사노즐(5)의 분사각(81)보다 하측에 위치한 다중 제 2 분사노즐(5)의 분사각(81a)을 크게 함으로써 환상의 제 1,2 분사노즐(5)(7)로부터 분사되는 각각 냉각매체(31a)에 대한 교차점(87)(87a)의 이격거리는 30mm이내가 되게 한다.In the present invention, a plurality of first and second injection nozzles 5 and 7 for cooling the molten metal that has passed through the cylindrical orifice 29 by spraying the cooling medium 31 form a cone and an intersection point 87 formed at the lower side thereof. Cooling medium (31a) is to be injected to intersect at the (87a), the multiple first, second injection nozzles (5) (7) are installed in two by overlapping up and down, but the first annular first located on the upper side Each sprayed from the annular first and second spray nozzles 5 and 7 by increasing the spray angle 81a of the multiple second spray nozzles 5 located below the spray angle 81 of the spray nozzle 5 The distance between the intersections 87 and 87a with respect to the cooling medium 31a is within 30 mm.
본 발명은 용해용 챔버의 하부에는 하우징(8)을 구비하고, 상기 하우징(8)의 내측에는 냉각팬이 부착된 냉각용 중공형 원통(11)을 구비하되, 상기 냉각용 중공형 원통(11)의 외측에는 하우징(8)과의 사이에 냉매순환구(10)를 통하여 냉각수가 순환되어 냉각되도록 하고, 상기 냉각용 중공형 원통(11)의 내측은 중공형으로 하되, 그 상부에는 상기 제 1의 분사노즐(5)에서 냉각매체(N2,Ar,He,공기,물)(31a)에 의해 1차적으로 분무된 분말을 상기한 냉각매체(31a)를 2차적으로 분무시켜 냉각할 수 있는 다중의 제 2 분사노즐(7)을 구비하며, 또한 상기 냉각용 중공형 원통(11)의 내측에는 상기한 다중의 제1,2의 분사노즐(5)(7)에서 분무되어 냉각된 분말의 냉각효과를 더욱 높이기 위해 고속으로 회전하며 수냉되는 원추형 냉각롤러(35)를 설치한다.The present invention is provided with a housing (8) in the lower portion of the melting chamber, the inside of the housing (8) is provided with a cooling hollow cylinder (11) with a cooling fan, the cooling hollow cylinder (11) Cooling water is circulated through the coolant circulation port 10 between the housing 8 and the outside, and the inside of the cooling hollow cylinder 11 is hollow, but the upper part of the Powder sprayed primarily by the cooling medium (N 2 , Ar, He, air, water) 31a in the injection nozzle 5 of 1 may be cooled by secondary spraying the cooling medium 31a described above. Powder having a plurality of second injection nozzles 7, and sprayed and cooled by the plurality of first and second injection nozzles 5 and 7 inside the cooling hollow cylinder 11. In order to further increase the cooling effect of the conical cooling roller 35 which is rotated at high speed and water cooled is installed.
여기서, 다중의 제 2 분사노즐(7)에 의한 냉각매체(31a)의 교차점(87a)과 원통형 냉각롤러(35)의 상측까지의 이격거리는 50mm 이내가 되도록 한다.Here, the separation distance between the intersection point 87a of the cooling medium 31a and the upper side of the cylindrical cooling roller 35 by the plurality of second injection nozzles 7 is within 50 mm.
상기 원추형 냉각롤러(35)에는 다중의 제1,2 분사노즐(5)(7)에서 냉각매체(31a)를 분사시켜 1,2차로 냉각시킨 분말이 상부 외측으로 연속되어 부딪히면서 3차로 냉각이 이루어지게 되고, 상기 원추형 냉각롤러(35)의 하측에는 상기한 냉각매체(31a)와 냉각된 분말이 하측의 배출관(15)으로 용이하게 배출될 수 있도록 나선형 임펠러(13)를 구비하되, 상기한 임펠러(13)는 다중의 제1,2 분사노즐(5)(7)에서 분사되는 압력을 고려하여 적절하게 설계되어야 하며, 상기한 임펠러(13)의 하측에는 상기한 원추형 냉각롤러(35)와 임펠러(13)는 모터(43)에 의해 고속으로 회전한다.The conical cooling roller 35 is sprayed by the first and second injection nozzles 5 and 7 from the plurality of first and second injection nozzles 5 and 7, and the first and second cooling powders are continuously cooled to the outside of the upper part and the third cooling is performed. In the lower side of the conical cooling roller 35 is provided with a spiral impeller 13 so that the cooling medium 31a and the cooled powder can be easily discharged to the lower discharge pipe 15, the impeller (13) should be designed appropriately in consideration of the pressure injected from the multiple first and second injection nozzles (5) (7), the conical cooling roller (35) and the impeller below the impeller (13) 13 rotates at high speed by the motor 43.
여기서 상기한 다중의 제1,2 분사노즐(5)(7)에서 고압으로 분사되는 냉각매체(31a)는 불활성 가스(N2,Ar,He), 공기, 물(H2O) 등으로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 이루어지며, 상기 냉각용 중공형 원통(11)은 열전도성이 우수한 Cu계 합금으로 제작하되, 상기 냉각용 중공형 원통(11)의 내벽은 상기 다중의 1, 2 분사노즐(5)(7)에서 분사되는 냉각매체(31a)와 분무된 고체분말이 고온 고압으로 부딪혀 냉각되므로 고내열성, 내마모성 및 열전도성 등이 우수한 물질(TiN, CBN, AlN, SiC, WC 등)로 코팅하여 사용하는 것이 바람직하다.Here, the cooling medium 31a injected at high pressure from the plurality of first and second injection nozzles 5 and 7 is made of inert gas (N 2 , Ar, He), air, water (H 2 O), or the like. Comprising at least one kind or a mixture of two or more kinds, the cooling hollow cylinder 11 is made of a Cu-based alloy excellent in thermal conductivity, the inner wall of the cooling hollow cylinder 11 is the multiple Cooling medium 31a sprayed from the 1, 2 spray nozzles 5, 7 and the solid powder sprayed at high temperature and high pressure are cooled to cool and thus have excellent heat resistance, abrasion resistance and thermal conductivity (TiN, CBN, AlN, SiC, WC and the like) is preferably used.
이와 같이, 고속으로 회전하며 수냉되는 원추형 냉각롤러(35)는 다중의 제1,2 분사노즐(5)(7)에서 원추형으로 분무되어 냉각된 분말이 재차 부딪혀 3차 냉각이 이루어지게 하는 것으로, 상기 원추형 냉각롤러(35)의 내측에는 외부로부터 냉각수(50)가 공급되어 냉각이 이루어지게 되어 다중의 제1,2 분사노즐(5)(7)에 의해 1,2차로 냉각된 미립자 분말을 보다 빠르게 냉각시킬 수 있으며, 바로 상측의 다중의 제1, 2 분사노즐(5)(7)에서 분사되는 냉각매체(31a)와 분무되어 생성된 고체분말이 고온 고압으로 부딪혀 냉각되므로 고온내열성, 내마모성 및 열전도성 등이 우수한 물질로 코팅하여 사용하는 것이 바람직하다.As such, the conical cooling roller 35 that is rotated at high speed and cooled by water is sprayed into a conical shape from the plurality of first and second injection nozzles 5 and 7 so that the cooled powder collides again to achieve tertiary cooling. Cooling water 50 is supplied from the outside to the inside of the conical cooling roller 35 to be cooled, so that the first and second injection nozzles 5 and 7 are cooled by the first and second injection nozzles 5 and 7 to see the finely divided powder. It can be cooled quickly, and the solid powder produced by spraying with the cooling medium 31a sprayed from the multiple first and second injection nozzles 5 and 7 directly on the upper side is hit by the high temperature and high pressure to be cooled, and thus high temperature heat resistance, abrasion resistance and It is preferable to use the coating with a material having excellent thermal conductivity.
이러한 본 발명의 제 2실시예에서 고체상태의 분말원료로부터 분말이 얻어지는 과정을 살펴보면, 우선 도가니에서 용해된 액상의 원료용액은 원추형 오리피스(29)를 통해 다중 제 1 분사노즐(5)에 유입되면, 상기 다중의 제 1 분사노즐(5)에서 냉각매체(31a)를 고압으로 분사하여 원료용액을 미립으로 분무시켜 1차 냉각으로 반액상의 분말이 생성되게 하며, 이 같이 다중 제1 분사노즐(5)에서 1차 냉각된 반액상의 분말은 다중 제2 분사노즐(7)을 거치면서 2차 냉각되어 응고가 진행된다. Looking at the process of obtaining powder from the solid powder raw material in the second embodiment of the present invention, first, when the liquid raw material solution dissolved in the crucible is introduced into the multiple first injection nozzle 5 through the conical orifice 29 By spraying the cooling medium 31a at a high pressure in the plurality of first injection nozzles 5, the raw material solution is atomized into fine particles to generate semi-liquid powder by primary cooling, and thus, the multiple first injection nozzles 5. The semi-liquid powder cooled primarily at) passes through multiple second injection nozzles 7 and is subsequently cooled to solidify.
그리고 2차 냉각된 분말은 2,000rpm이상의 고속으로 회전하는 원추형 냉각롤러(35)의 상단에 부딪히면서 3차 냉각이 이루어지고, 3차 냉각된 분말은 냉각용 중공형 원통(11)의 내벽에 부딪히면서 4차 냉각이 이루어지게 되므로, 기존과 달리 냉각속도를 증가시킴으로서 냉각속도 저하로 인해 발생하는 미세편석을 줄이고 미세조직이 치밀한 합금분말을 얻을 수 있을 뿐만 아니라, 상기 원추형 냉각롤러(35)의 회전속도 및 상단의 형상을 변화시킴으로써, 다양한 분말의 사이즈, 입도 및 형상 등을 조절할 수 있는 한편 각종 비정질 합금분말도 용이하게 제조할 수 있다. And the second cooled powder hits the upper end of the conical cooling roller 35 that rotates at a high speed of 2,000rpm or more and the third cooling is made, and the third cooled powder hits the inner wall of the cooling hollow cylinder 11 for cooling 4 Since the differential cooling is made, unlike conventional, by increasing the cooling rate to reduce the fine segregation caused by the cooling rate decreases and obtain a fine alloy powder of fine structure, as well as the rotational speed of the conical cooling roller 35 and By changing the shape of the upper end, it is possible to adjust the size, particle size, shape and the like of various powders, and can also easily prepare various amorphous alloy powders.
또한 본 발명에 있어서 제 3실시 예는, 도가니에서 용해된 용탕(28)을 오리피스(29)를 통하여 배출시키되 다중의 제1,2분사노들(5)(7)에서 냉각매체(31a)를 분사시켜 1,2차 냉각이 이루어지게 하는 것은 또 다른 실시예와 동일하므로, 이에 대한 설명은 생략하며, 다중 제1,2분사노즐(5)(7)에서 1,2차 냉각된 반액상의 미립자를 3,4차로 냉각시키는 장치에 대하여 살펴보기로 한다.In addition, according to the third embodiment of the present invention, the molten metal 28 dissolved in the crucible is discharged through the orifice 29, but the cooling medium 31a is sprayed from the multiple first and second spray furnaces 5 and 7. To make the first and second cooling is the same as in another embodiment, the description thereof will be omitted, and the semi-liquid particulates cooled first and second in the first and second injection nozzles 5 and 7 are multiplied. The third and fourth cooling devices will be described.
본 발명은 다중의 제1,2분사노즐(5)(7)의 하측으로 냉각용 디스크(99)를 설치하되 상기 1,2차 냉각된 반액상의 분말은 상기 냉각용 디스크(99)를 관통하여 냉각수(50)에 의한 수냉이 이루어지는 원통형 냉각롤러(101)에서 부딪혀 3차 냉각이 이루어지게 하며, 상기 냉각용 디스크(99)의 내측으로 냉각수(10a)를 순환시켜 냉각용 디스크(99)에서도 냉각이 이루어지게 한다.The present invention is to install the cooling disk 99 to the lower side of the plurality of first, second spray nozzles (5) (7), the first and second cooled half-liquid powder penetrates through the cooling disk (99) The third cooling is achieved by hitting the cylindrical cooling roller 101 formed by water cooling by the cooling water 50. The cooling water 10a is circulated inside the cooling disk 99 to cool the cooling disk 99. This is done.
냉각용 디스크(99)의 하측으로 분사용 챔버(95)가 구성되며, 분사용 챔버(95)의 내측으로 원통형 냉각롤러(101)가 모터(43)에 의해 회전가능하게 설치되고, 상기 분사용 챔버(95)에서 냉각되어 수집된 분말은 별도로 회수된다.The injection chamber 95 is formed below the cooling disk 99, and the cylindrical cooling roller 101 is rotatably installed by the motor 43 inside the injection chamber 95. The powder collected by cooling in the chamber 95 is recovered separately.
본 발명의 분사용 챔버(95)에 설치되는 원통형 냉각롤러(101)은 2,000rpm으로 회전하는 한편 내부에 냉각수(50)의 순환으로 냉각이 이루어지게 하는 한편 상측에는 접시와 같이 아래로 오목한 형태가 되게 하고, 냉각수(10a)의 순환으로 수냉이 이루어지는 냉각용 디스크(99)의 저면에는 접시를 엎어놓은 형태의 상측으로 오목한 형태가 되게 하며, 상기 원통형 냉각롤러(101)에 부딪혀 3차로 냉각된 미립자는 냉각용 디스크(99)의 저면에 형성된 오목한 부분에 부딪혀 4차로 냉각이 이루어지게 한다. Cylindrical cooling roller 101 is installed in the injection chamber 95 of the present invention is rotated at 2,000rpm while cooling is made by the circulation of the coolant 50 therein while the upper side concave down like a dish And the bottom surface of the cooling disk 99 where the water is cooled by the circulation of the cooling water 10a to be concave to the upper side in the form of the dish upright, and the fine particles cooled by the third by hitting the cylindrical cooling roller 101. The concave portion formed on the bottom surface of the cooling disk 99 allows the cooling to be performed in the fourth order.
여기서, 다중의 제 2 분사노즐(7)에 의한 냉각매체(31a)의 교차점(87a)과 원통형 냉각롤러(101)의 오목한 상면까지의 이격거리는 50mm 이내가 되게 한다.Here, the separation distance between the intersection point 87a of the cooling medium 31a by the multiple second injection nozzles 7 and the concave upper surface of the cylindrical cooling roller 101 is within 50 mm.
이러한 본 발명의 제 3실시 예에 따른 제조장치의 상부에는 고체상태의 분말원료(순금속, 합금, 세락믹스 및 그 복합소재 등)를 적합한 분위기에서 용해할 수 있는 용해용 챔버의 도가니에서 원통형 오리피스(29)를 통과해 낙하하는 용탕(28)이 다중의 제1,2차 분사노즐(5)(7)에서 고압으로 분사되는 냉각매체(N2,Ar,He,공기,물 및 그 혼합물)(31a)에 의해 1,2차 냉각이 이루어지게 하며, 1,2차 냉각된 미립자는 분사용 챔버(95)에 분사하여 3,4차에 걸친 냉각이 이루어지게 한다.In the upper part of the manufacturing apparatus according to the third embodiment of the present invention, a cylindrical orifice in a crucible of a melting chamber capable of dissolving solid powder raw materials (pure metals, alloys, cerax mixes, and composites thereof) in a suitable atmosphere. 29, the cooling medium (N 2 , Ar, He, air, water and mixtures thereof) in which the molten metal 28 falling through the high pressure is injected from the multiple primary and secondary injection nozzles 5 and 7 ( The first and second cooling is performed by 31a), and the first and second cooled fine particles are injected into the injection chamber 95 to allow cooling for three or four times.
분사용 챔버(95)의 내측에 설치된 원통형 냉각롤러(101)의 상부에는 냉각용 디스크(99)가 설치되어, 다중의 제1,2차 분사노즐(5)(7)에서 1,2차 냉각이 이루어진 반액상의 미립자는 2,000rpm으로 회전하는 원통형 냉각롤러(101)에 부딪혀 3차 냉각이 이루어진 분말이 위로 비산되며, 원통형 냉각롤러(101)에서 비산된 분말은 냉각용 디스크(99)의 저면에 부딪히면서 4차 냉각이 이루어지는 것으로, 상기 다중의 제1,2분사노즐(5)(7)에서 고압으로 분사되는 냉각매체(31a)는 불활성 가스(N2,Ar,He), 공기, 물(H2O) 등으로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 이루어진다.A cooling disk 99 is installed on the upper portion of the cylindrical cooling roller 101 installed inside the injection chamber 95, and the first and second injection nozzles 5 and 7 are cooled in the first and second times. The semi-liquid particles made up hit the cylindrical cooling roller 101 rotating at 2,000 rpm, and the powder made by the third cooling is scattered upward, and the powder scattered from the cylindrical cooling roller 101 is placed on the bottom surface of the cooling disk 99. Fourth cooling is achieved while being impinged, and the cooling medium 31a injected at high pressure from the plurality of first and second injection nozzles 5 and 7 is inert gas (N 2 , Ar, He), air, water (H). It consists of a composition mixed with at least 1 type (s) or 2 or more types which consist of 2O) etc.
본 발명의 냉각용 디스크(99)는 열전도성이 우수한 Cu계 합금으로 제작하되, 상기 냉각용 디스크(99) 저면의 상측으로 오목한 면과 원통형 냉각롤러(101)의 상측으로 오목한 상부면은 원통형 냉각롤러(101)의 회전력에 의해 비산되는 냉각매체(31a)와 분무된 고체분말이 고온 고압으로 부딪혀 냉각되므로 고내열성, 내마모성 및 열전도성 등이 우수한 물질(TiN, CBN, AlN, SiC, WC 등)로 코팅하여 사용하는 것이 바람직하며. 원통형 냉각롤러(101) 내측에는 냉각수(50)의 순환에 의해 냉각이 이루어지게 되므로 다중 제1,2분사노즐(5)(7)에 의해 1,2차 냉각된 미립자 분말을 보다 빠르게 3차로 냉각시킬 수 있으며, 다중의 제1,2분사노즐(5)(7)에서 분사되는 냉각매체(31a)와 분무되어 생성된 고체분말이 고온 고압으로 부딪혀 냉각되므로 고온내열성, 내마모성 및 열전도성 등이 우수한 물질로 코팅하여 사용하는 것이 바람직하다.The cooling disk 99 of the present invention is made of a Cu-based alloy having excellent thermal conductivity, but the upper surface concave upward of the bottom surface of the cooling disk 99 and the upper surface concave upward of the cylindrical cooling roller 101 is cylindrical cooling. Cooling medium 31a scattered by the rotational force of the roller 101 and the sprayed solid powder collide at high temperature and high pressure to cool, and thus have excellent heat resistance, abrasion resistance, and thermal conductivity (TiN, CBN, AlN, SiC, WC, etc.). It is preferable to use with coating. Since the cooling is performed by the circulation of the cooling water 50 inside the cylindrical cooling roller 101, the first and second spray nozzles 5 and 7 rapidly cool the finely divided particle powder three times. Since the solid powder produced by spraying with the cooling medium 31a sprayed from the plurality of first and second spray nozzles 5 and 7 is bumped and cooled at high temperature and high pressure, it is excellent in high temperature heat resistance, abrasion resistance and thermal conductivity. It is preferable to use it by coating with a substance.
이러한 구성의 본 발명은 기본적으로 분말원료를 액상으로 용해한 용탕(28)은 원통형 오리피스(29)를 통해 다중의 제1,2차 분사노즐(5)(7)로 유입되면 냉각매체(31a)를 10~1,000bar범위의 압력으로 분사하여 1,2차 냉각시킴으로써 원료용액을 미립으로 분무시켜 분말이 생성되게 하며, 이 같이 다중의 제1,2차 분사노즐(5)(7)에서 액상의 원료용액을 냉각매체(31a)로 분사함으로써 1,2차적으로 냉각시켜 분말(순금속, 합금, 세락믹스 및 그 복합소재 등)을 얻을 수 있지만, 특히 105k/sec이상의 냉각속도를 필요로 하는 비정질 합금분말을 제조하기 위해서는 냉각매체(31a)가 불활성 가스(N2,Ar,He)나 공기의 경우는 20bar이상, 그리고 물(H2O)을 사용할 경우에는 200bar 이상의 고압을 사용하는 것이 바람직하다.In the present invention having the above configuration, the molten metal 28 in which the powder raw material is dissolved in the liquid state is introduced into the plurality of first and second injection nozzles 5 and 7 through the cylindrical orifice 29 to cool the cooling medium 31a. By spraying at a pressure in the range of 10 to 1,000 bar, the first and second cooling are used to spray the raw material solution into fine particles to generate powder. Thus, the liquid raw materials are provided in the multiple first and second injection nozzles (5) and (7). By spraying the solution onto the cooling medium 31a, it is possible to obtain the powder (pure metals, alloys, cerammixes and composites thereof, etc.) by cooling it first and second, but in particular amorphous which requires a cooling rate of 10 5 k / sec or more. In order to manufacture the alloy powder, it is preferable to use a high pressure of 20 bar or more for the cooling medium 31a using inert gas (N 2 , Ar, He) or air, and 200 bar or more when water (H 2 O) is used. .
본 발명은 전술한 1차 냉각되어 반응고 상태의 분말을 2,000rpm의 고속으로 회전하는 동시에 내부에 냉각수(50)가 순환되어 수냉이 이루어지는 원통형 냉각롤러(101)의 상단에 부딪히게 함으로써 2차 냉각이 이루어지게 하되 원통형 냉각롤러(101)의 상측에는 아래쪽으로 오목한 형태를 갖도록 하여 3차 냉각이 이루어지게 하는 것으로, 냉각매체(31a)에 의해 1,2차 냉각된 분말은 원통형 냉각롤러(101)의 오목한 부분에 부딪혀 3차 냉각이 이루어지는 동시에 상측으로 반사되어 흩어지게 된다.The present invention is the secondary cooling by rotating the powder in the reaction state of the above-mentioned primary cooling state at a high speed of 2,000rpm and at the same time hitting the upper end of the cylindrical cooling roller 101 through which the cooling water 50 is circulated to make water cool. This is to be made, but the upper side of the cylindrical cooling roller 101 to have a concave downward form so that the third cooling is made, the first and second powders cooled by the cooling medium 31a is the cylindrical cooling roller 101 It hits the concave part of and the 3rd cooling is performed, and it is reflected upward and scattered.
상기 원통형 냉각롤러(101)의 상면에 부딪혀 2차 냉각이 이루어진 분말은 원통형 냉각롤러(101)의 상측에서 설치된 냉각용 디스크(99)의 저면에 형성된 상측으로 오목한 부분에 부딪히면서 연속적으로 4차 냉각이 이루어지게 함으로써 냉각속도를 증가시키게 되므로, 기존과 같이 냉각속도 저하로 인해 발생하는 미세편석을 줄이고 미세조직이 치밀한 합금분말을 얻을 수 있을 뿐만 아니라, 상기 원통형 냉각롤러(101)의 회전속도를 조절함으로써, 분말의 사이즈, 입도 및 형상 등을 조절이 가능하며, 냉각속도 105K/sec정도가 요구되는 비정질 합금분말도 용이하게 제조할 수 있다. The powder which secondary cooling was made by hitting the upper surface of the cylindrical cooling roller 101 hits the upper concave portion formed on the bottom surface of the cooling disk 99 installed on the upper side of the cylindrical cooling roller 101, and the fourth cooling is continuously performed. Since the cooling rate is increased, the fine segregation generated due to the lowering of the cooling rate is reduced, and the microstructure is obtained with a dense alloy powder, and by adjusting the rotational speed of the cylindrical cooling roller 101. It is possible to control the size, particle size and shape of the powder, and can also easily prepare an amorphous alloy powder requiring a cooling rate of 10 5 K / sec.
[부호의 설명][Description of the code]
1 : 용해용 챔버 3 : 가스 밸브 1: melting chamber 3: gas valve
5, 7, 9 : 분사노즐 6 : 플랜지5, 7, 9: injection nozzle 6: flange
8 : 하우징 10 : 냉매 순환구8 housing 10 coolant circulation port
11 : 냉각용 중공형 원통 13 : 나선형 임펠러 11: hollow cylinder for cooling 13: spiral impeller
15 : 분말 배출관 21 : 스톱퍼15: powder discharge pipe 21: stopper
23 : 도가니 27 : 고주파 유도코일23: crucible 27: high frequency induction coil
28 : 분말원료 용탕 29 : 오리피스28: molten powder raw material 29: orifice
31, 31a : 냉각매체 35 : 원추형 냉각롤러31, 31a: cooling medium 35: conical cooling roller
37 : 원추형 냉각롤러의 회전방향 39 : 구동 베어링 37: rotational direction of the conical cooling roller 39: drive bearing
43 : 모터 47 : 풀리 43: motor 47: pulley
49 : 냉매 공급용 파이프 51: 원추형 냉각롤러 회전 중공 축49: pipe for refrigerant supply 51: hollow hollow shaft rotating conical roller
52 : 회수된 분말 81 : 제 1 분사노즐 분사각 52 recovered powder 81 first injection nozzle injection angle
81a : 제 2 분사노즐의 분사각 86 : 압력 조절용 밸브 81a: injection angle of the second injection nozzle 86: pressure regulating valve
87, 87a, 87b : 분사노즐에서 분사하는 냉각매체의 교차점 87, 87a, 87b: intersection point of cooling medium sprayed from spray nozzle
88, 88a : 이격거리 99 : 냉각용 디스크88, 88a: separation distance 99: cooling disc
101: 원통형 냉각롤러101: cylindrical cooling roller

Claims (25)

  1. 고체 원료를 도가니(23)에 장입하여 용해를 한 후 도가니(23)의 하부에 설치된 오리피스(29)를 통하여 액상의 원료용액을 자연 낙하시키되 냉각매체(31)를 환상의 분사노즐(5)에서 20~500bar의 압력으로 분사하여 액체금속과 고체금속이 혼재되어 있는 상태인 반액상의 미립자로 1차 냉각하는 단계를 수행하고, After charging the solid raw material into the crucible (23) and dissolving it, the liquid raw material solution is naturally dropped through the orifice (29) installed in the lower part of the crucible (23), but the cooling medium (31) is discharged from the annular spray nozzle (5). Spraying at a pressure of 20 to 500 bar to perform the first cooling step with the semi-liquid fine particles having a mixture of a liquid metal and a solid metal,
    상기 1차 냉각된 반액상의 미립자는 환상의 분사노즐(5)의 하단에 설치되고 2000rpm이상의 고속으로 회전하면서 수냉이 이루어지는 원추형 냉각롤러(35)의 외측에 부딪혀 2차로 냉각시키는 단계를 수행하며, The first cooled half-liquid fine particles are installed at the lower end of the annular injection nozzle (5) and rotates at a high speed of 2000rpm or more while hitting the outer side of the conical cooling roller (35) where water is cooled, and performing a second cooling step.
    상기 원추형 냉각롤러(35)에 부딪혀 냉각된 미립자는 원추형 냉각롤러(35)의 외측에 씌워져 수냉이 이루어지는 냉각용 중공형 원통(11)의 내벽에 부딪히면서 3차로 냉각이 이루어지는 단계를 수행하고, The fine particles cooled by hitting the conical cooling roller 35 is covered with the outer side of the conical cooling roller 35 to impinge on the inner wall of the cooling hollow cylinder 11 for water cooling to perform the third cooling step,
    상기 3차 냉각된 분말은 원추형 냉각롤러(35)의 하측에 설치된 나선형 임펠러(13)에 의해 외부로 배출시켜 회수하는 단계를 수행하여 이루어지는 것을 특징으로 하는 분말 제조방법.The tertiary cooled powder is produced by performing a step of discharging to the outside by a spiral impeller (13) installed on the lower side of the conical cooling roller (35).
  2. 제 1항에 있어서, 냉각매체(31)는 불활성 가스(N2,He,Ne,Ar), 공기, 물(H2O)로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 이루진 것을 특징으로 하는 분말 제조방법.The method of claim 1, wherein the cooling medium 31 is composed of a composition consisting of at least one or two or more kinds of inert gases (N 2 , He, Ne, Ar), air, water (H 2 O). Powder production method characterized by.
  3. 제 1항에 있어서, 환상의 분사노즐(5)에서 분사되는 냉각매체(31)의 교차점(87)과 원추형 냉각롤러(35)의 상단부의 이격거리(88)를 1~20mm 이내가 되도록 하는 것을 특징으로 하는 분말 제조방법. The method of claim 1, wherein the separation distance 88 of the upper end of the intersection 87 of the cooling medium 31 injected from the annular injection nozzle 5 and the conical cooling roller 35 is within 1 to 20 mm. Powder production method characterized by.
  4. 제 1항에 있어서, 환상의 분사노즐(5)의 하측에 설치되어 고속으로 회전하는 원추형 냉각롤러(35)는 전동 모터(43)에 의해 시계방향으로 회전하도록 설치하고, 상기한 원추형 냉각롤러(35)의 내측으로 냉각수를 순환시켜 냉각이 이루어지게 하는 것을 특징으로 하는 분말 제조방법.The conical cooling roller (35) according to claim 1, which is installed below the annular injection nozzle (5) and rotates at a high speed, is installed to rotate clockwise by the electric motor (43). 35) A powder manufacturing method characterized in that the cooling is made by circulating the cooling water inside.
  5. 제 1항에 있어서, 고속으로 회전하는 원추형 냉각롤러(35)의 외측에 고정되어 설치되는 냉각용 중공형 원통(11)은 중공부(53)가 다양한 내경 사이즈(55)를 갖도록 하는 한편 다양한 형상(61)을 갖도록 제작하여 사용하는 것을 특징으로 하는 분말 제조방법.The method of claim 1, wherein the cooling hollow cylinder 11 is fixed to the outer side of the conical cooling roller 35 that rotates at a high speed such that the hollow portion 53 has a variety of inner diameter size (55) while various shapes Powder production method characterized in that it is produced and used to have (61).
  6. 제 4항 또는 제 5항에 있어서, 원추형 냉각롤러(35)와 냉각용 중공형 원통(11)의 재질은 Cu계 합금을 사용하되, 상기한 원추형 냉각롤러(35)의 외측 표면과 상기한 냉각용 중공형 원통(11)의 내벽은 고온내열성, 내마모성 및 열전도성이 우수한 TiN, CBN, AlN, SiC, WC로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 코팅되는 것을 특징으로 하는 분말 제조방법. The material of the conical cooling roller (35) and the hollow hollow cylinder (11) for cooling is made of Cu-based alloy, and the outer surface of the conical cooling roller (35) and the cooling described above. The inner wall of the hollow cylindrical cylinder 11 for the production of powder, characterized in that coated with a composition consisting of at least one or two or more of TiN, CBN, AlN, SiC, WC excellent in high temperature heat resistance, wear resistance and thermal conductivity Way.
  7. 분말원료를 용해용 챔버(1)에 설치된 도가니(23)에 넣고 고온으로 용해한 용탕을 원통형의 오리피스(29)를 통과시키되 상기 오리피스(29)의 하측으로 환상의 분사노즐(5)을 설치하여 자연 낙하되는 액상의 원료용액을 냉각매체(31)로 1차 냉각되게 구성하고,The powdered raw material was placed in the crucible 23 installed in the melting chamber 1, and the molten metal melted at a high temperature was passed through a cylindrical orifice 29, but an annular spray nozzle 5 was installed below the orifice 29 to naturally The liquid raw material solution to be dropped is configured to be first cooled by the cooling medium 31,
    상기 환상의 분사노즐(5)을 거치면서 1차 냉각된 액체금속과 고체금속이 혼재되어 있는 상태인 반액상의 미립자는 환상의 분사노즐(5)의 하단에 설치되고 2000rpm이상의 고속으로 회전하면서 내부로 냉각수가 순환되어 수냉이 이루어지는 원추형 냉각롤러(35)의 외측에 부딪혀 2차로 냉각되게 구성하며,The semi-liquid fine particles in the state where the liquid metal and the solid metal which are primary cooled while the annular injection nozzle 5 are mixed are installed at the lower end of the annular injection nozzle 5 and rotated at a high speed of 2000 rpm or more to the inside. Cooling water is circulated to hit the outside of the conical cooling roller (35) where the water cooling is configured to be cooled secondly,
    상기 원추형 냉각롤러(35)에 부딪혀 냉각된 미립자는 원추형 냉각롤러(35)의 외측에 씌워진 냉각용 중공형 원통(11)의 내벽에 부딪히게 하되 상기 냉각용 중공형 원통(11)과 상기 냉각용 중공형 원통(11)의 외측을 감싸는 하우징(8) 사이로 냉각수를 순환시켜 냉각용 중공형 원통(11)의 내벽에 부딪힌 미립자가 3차로 냉각되게 구성하고,Particles cooled by hitting the conical cooling roller (35) hit the inner wall of the cooling hollow cylinder (11) covered on the outside of the conical cooling roller (35), but the cooling hollow cylinder (11) and the cooling By circulating the cooling water between the housing (8) surrounding the outer side of the hollow cylinder (11), the particles hit the inner wall of the cooling hollow cylinder (11) is configured to cool third
    상기 냉각용 중공형 원통(11)의 내벽에 부딪혀 3차 냉각된 분말은 베이스 하우징(40)의 내부에 설치되는 한편 원추형 냉각롤러(35)의 하측에 설치되어 원추형 냉각롤러(35)와 함께 회전되는 나선형 임펠러(13)에 의해 분말 배출관(15)으로 배출이 이루어지게 구성하는 것을 특징으로 하는 분말 제조장치.Powder cooled by hitting the inner wall of the cooling hollow cylinder (11) is installed inside the base housing (40) while being installed under the conical cooling roller (35) to rotate together with the conical cooling roller (35). Powder manufacturing apparatus, characterized in that configured to be discharged to the powder discharge pipe 15 by the spiral impeller (13).
  8. 제 7항에 있어서, 냉각매체(31)는 불활성 가스(N2,He,Ne,Ar), 공기, 물(H2O)로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 이루진 것을 특징으로 하는 분말 제조장치. The method of claim 7, wherein the cooling medium 31 is composed of at least one composition consisting of inert gas (N 2 , He, Ne, Ar), air, water (H 2 O) or a mixture of two or more. Powder manufacturing apparatus characterized by.
  9. 제 7항에 있어서, 환상의 분사노즐(5)에서 분사되는 냉각매체(31)의 교차점(87)과 원추형 냉각롤러(35)의 상단부의 이격거리(88)를 1~20mm 이내가 되도록 하는 것을 특징으로 하는 분말 제조장치. The distance 87 between the intersection point 87 of the cooling medium 31 injected from the annular injection nozzle 5 and the upper end of the conical cooling roller 35 is within 1 to 20 mm. Powder manufacturing apparatus characterized by.
  10. 제 7항에 있어서, 환상의 분사노즐(5)의 하측에 설치되어 고속으로 회전하는 원추형 냉각롤러(35)는 전동 모터(43)에 의해 시계방향으로 회전하도록 설치하고, 상기한 원추형 냉각롤러(35)의 상측은 다양한 형상으로 제작하여 사용하는 것을 특징으로 하는 분말 제조장치. 8. The conical cooling roller (35) according to claim 7, wherein the conical cooling roller (35) installed below the annular injection nozzle (5) and rotating at a high speed is installed to rotate clockwise by the electric motor (43). The upper side of the 35) powder manufacturing apparatus, characterized in that used to produce a variety of shapes.
  11. 제 7항에 있어서, 고속으로 회전하는 원추형 냉각롤러(35)의 외측에 고정되어 설치되는 냉각용 중공형 원통(11)의 중공부(53)는 다양한 내경 사이즈(55) 및 다양한 형상(61)으로 제작하여 사용하는 것을 특징으로 하는 분말 제조장치. 8. The hollow portion 53 of the hollow hollow cylinder 11 for cooling fixedly installed on the outer side of the conical cooling roller 35 rotating at a high speed has various inner diameter sizes 55 and various shapes 61. Powder manufacturing apparatus, characterized in that used to produce.
  12. 제 10항 또는 제 11항에 있어서, 원추형 냉각롤러(35)와 냉각용 중공형 원통(11)의 재질은 Cu계 합금을 사용하되, 상기한 원추형 냉각롤러(35)의 외측 표면과 상기한 냉각용 중공형 원통(11)의 내벽은 고온내열성, 내마모성 및 열전도성이 우수한 TiN, CBN, AlN, SiC, WC로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 코팅하는 것을 특징으로 하는 분말 제조장치.According to claim 10 or 11, wherein the material of the conical cooling roller 35 and the hollow hollow cylinder for cooling 11 uses a Cu-based alloy, the outer surface of the conical cooling roller 35 and said cooling The inner wall of the hollow cylindrical cylinder 11 for powder manufacture, characterized in that the coating with a composition mixed with at least one or two or more kinds consisting of TiN, CBN, AlN, SiC, WC excellent in high temperature heat resistance, wear resistance and thermal conductivity Device.
  13. 분말원료(순금속, 합금, 세락믹스 및 그 복합소재 등)를 액상으로 용해한 후 오리피스(29)를 거쳐 자유 낙하하는 용탕(28)을 냉각매체(31a)를 분사시켜 1,2차 냉각이 이루어지게 하는 다중의 제1,2분사노즐(5)(7)은 상하로 겹치게 하여 2중으로 설치하고, After dissolving powder raw materials (pure metals, alloys, ceramics, and composites thereof) in the liquid phase, the cooling medium 31a is sprayed onto the molten metal 28 freely falling through the orifice 29 so that the first and second cooling is performed. Multiple first and second spray nozzles (5) (7) are installed in duplicate, overlapping up and down,
    상측에 위치하는 다중 제1분사노즐(5)의 분사각(81)보다 하측에 위치하는 다중의 제2분사노즐(7)의 분사각(81a)을 크게 하여 다중의 제1,2분사노즐(5)(7)의 분사 교차점(87)(87a)이 상하로 위치하게 하되, 상기 분사 교차점(87)(87a)의 이격거리(88a)는 30mm 이내가 되게 하는 것을 특징으로 하는 다중 분사노즐.The first and second injection nozzles of the plurality of first injection nozzles 5 located above the injection angle 81 of the multiple second injection nozzles 7 located below the injection angle 81 are made larger and 5) The injection cross point (87) (87a) of the (7) is to be positioned up and down, the separation distance 88a of the injection cross point (87) (87a) is characterized in that within 30mm.
  14. 제13항에 있어서, 다중의 제1,2분사노즐(5)(7)의 하측으로 또 하나의 분사노즐(9)을 설치하여 용탕이 다중 분사노즐(5)(7)(9)을 통과하면서 3번에 걸친 냉각이 이루어지게 하는 것을 특징으로 하는 다중 분사노즐.14. The molten metal passes through the multiple spray nozzles (5), (7) by installing another spray nozzle (9) below the multiple first and second spray nozzles (5) (7). Multiple injection nozzles characterized in that three times of cooling is achieved.
  15. 제13항에 있어서, 다중의 제1,2분사노즐(5)(7)의 분사각(81)(81a)이 15∼65o를 갖게 되는 것을 특징으로 하는 다중 분사노즐.14. The multi-jet nozzle according to claim 13, wherein the jet angles (81) (81a) of the multiple first and second jet nozzles (5) (7) have 15 to 65 o .
  16. 분말원료(순금속, 합금, 세락믹스 및 그 복합소재 등)를 도가니에 장입하여 용해를 한 후 도가니의 하부에 설치된 오리피스(29)를 통해 용탕(28)을 자연 낙하시키되, 냉각매체(31a)를 상하로 설치된 다중의 제1, 2 분사노즐(5)(7)에서 1, 2차로 분사하여 반액상의 미립자로 1, 2차로 냉각되도록 구성하고,After charging powder raw materials (pure metals, alloys, ceramics, composite materials, etc.) into the crucible and dissolving them, the molten metal 28 is naturally dropped through the orifice 29 installed at the bottom of the crucible, and the cooling medium 31a is dropped. The first and second injection nozzles (5) (7) installed up and down are sprayed first and second, and configured to cool first and second with semi-liquid fine particles,
    상기 1, 2차 냉각된 반액상의 미립자는 다중의 제1, 2 분사노즐(5)(7)의 하단에 설치되고 2,000rpm의 고속으로 회전하면서 수냉되는 원추형 냉각롤러(35)의 외측에 부딪혀 3차로 냉각되게 구성하며, The first and second cooled semi-liquid particulates are installed at the lower ends of the plurality of first and second injection nozzles 5 and 7 and hit the outside of the conical cooling roller 35 that is cooled by water while rotating at a high speed of 2,000 rpm. Configured to cool by car,
    상기 원추형 냉각롤러(35)에 부딪혀 3차 냉각된 미립자는 원추형 냉각롤러(35)의 외측에 씌워져 수냉이 이루어지는 냉각용 중공형 원통(11)의 내벽에 부딪히면서 4차로 냉각이 이루어지게 구성하고, The fine particles cooled by the third hit by the conical cooling roller 35 is covered on the outer side of the conical cooling roller 35 to hit the inner wall of the cooling hollow cylinder 11 for water cooling is configured to be cooled four times,
    상기 4차 냉각된 분말은 원추형 냉각롤러(35)의 하측에 설치된 나선형 임펠러(13)에 의해 외부로 배출시켜 회수되게 구성한 것을 특징으로 하는 분말 제조장치.The fourth cooled powder is a powder manufacturing apparatus, characterized in that configured to be discharged to the outside recovered by the spiral impeller (13) installed on the lower side of the conical cooling roller (35).
  17. 분말원료(순금속, 합금, 세락믹스 및 그 복합소재 등)를 도가니에 장입하여 용해를 한 후 도가니의 하부에 설치된 오리피스(29)를 통하여 용탕(28)을 자유 낙하시키되 냉각매체(31a)를 상하로 설치된 다중의 제1, 2 분사노즐(5)(7)에서 1, 2차로 분사하여 반액상의 미립자로 1, 2차 냉각되게 구성하고,After charging powder raw materials (pure metals, alloys, ceramics, composite materials, etc.) in the crucible and dissolving them, the molten metal 28 is freely dropped through the orifice 29 installed in the lower part of the crucible, but the cooling medium 31a is vertically lowered. The first and second injection nozzles (5) (7) installed in the first and second injection nozzles are composed of semi-liquid fine particles to be cooled first and second,
    상기 1, 2차 냉각된 반액상의 미립자는 다중의 제1, 2 분사노즐(5)(7)의 하단에 설치되고 2000rpm의 고속으로 회전하면서 수냉이 이루어지는 원통형 냉각롤러(101)의 상측에서 하측 방향으로 오목한 상면에 부딪혀 3차로 냉각되게 구성하며, The first and second cooled semi-liquid fine particles are installed at the lower ends of the plurality of first and second injection nozzles 5 and 7 and are rotated at a high speed of 2000 rpm and are cooled downwards from the upper side of the cylindrical cooling roller 101. Concave with the concave upper surface to be configured to cool third
    상기 원통형 냉각롤러(101)에 부딪혀 3차 냉각된 미립자는 원통형 냉각롤러(101)의 상측에 고정 설치되고 수냉이 이루어지는 냉각용 디스크(99)의 저면에서 상측 방향으로 오목한 부분에 부딪혀 4차로 냉각이 이루어지게 구성한 것을 특징으로 하는 분말 제조장치.The fine particles cooled by the third time by hitting the cylindrical cooling roller 101 is fixed to the upper side of the cylindrical cooling roller 101 and hit the concave portion in the upward direction at the bottom of the cooling disk 99 for water cooling to cool the fourth time. Powder manufacturing apparatus, characterized in that configured to be made.
  18. 제 17항에 있어서, 원통형 냉각롤러(35)의 상면은 하측으로 오목한 형태를 갖도록 하고, 냉각용 디스크(99)의 저면에는 상측으로 오목한 형태를 갖도록 하여 냉각되는 분말이 원통형 냉각롤러(35)와 냉각용 디스크(99)의 오목한 부분에 부딪히면서 냉각이 이루어지게 하는 것을 특징으로 하는 분말 제조장치.18. The method of claim 17, wherein the upper surface of the cylindrical cooling roller 35 has a concave downward shape, and the lower surface of the cooling disk 99 has a concave upward shape, the powder is cooled and the cylindrical cooling roller 35 and Powder manufacturing apparatus, characterized in that the cooling is made while hitting the concave portion of the cooling disk (99).
  19. 제 16항 또는 제 17항에 있어서, 냉각매체(31a)는 불활성 가스(N2,He,Ne,Ar), 공기, 물(H2O) 등으로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 이루진 것을 특징으로 하는 분말 제조장치. The method of claim 16 or 17, wherein the cooling medium (31a) is at least one or a mixture of at least one consisting of inert gas (N 2 , He, Ne, Ar), air, water (H 2 O) and the like. Powder manufacturing apparatus comprising a composition.
  20. 제 16항 또는 제 17항에 있어서, 다중의 제 2 분사노즐(7)에 의한 냉각매체(31a)의 교차점(87a)과 원통형 냉각롤러(35)의 상측 또는 원통형 냉각롤러(101)의 오목한 상면까지의 이격거리는 50mm 이내가 되도록 하는 것을 특징으로 하는 분말 제조장치. 18. A concave upper surface according to claim 16 or 17, wherein the intersection point 87a of the cooling medium 31a by the multiple second injection nozzles 7 and the upper side of the cylindrical cooling rollers or the concave upper surface of the cylindrical cooling rollers 101 are formed. Powder manufacturing apparatus, characterized in that the separation distance up to 50mm.
  21. 제 16항에 있어서, 원추형 냉각롤러(35)와 냉각용 중공형 원통(11)의 재질은 Cu계 합금을 사용하되, 상기한 원추형 냉각롤러(35)의 외측 표면과 상기한 냉각용 중공형 원통(11)의 내벽은 고온내열성, 내마모성 및 열전도성 등이 우수한 TiN, CBN, AlN, SiC, WC 등으로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 코팅하는 것을 특징으로 하는 분말 제조장치. The material of the conical cooling roller (35) and the cooling hollow cylinder (11) is made of Cu-based alloy, the outer surface of the conical cooling roller (35) and the cooling hollow cylinder described above. The inner wall of (11) is powder manufacturing apparatus, characterized in that the coating with a composition mixed with at least one or two or more consisting of TiN, CBN, AlN, SiC, WC and the like excellent in high temperature heat resistance, wear resistance and thermal conductivity.
  22. 제 16항 또는 제 17항에 있어서, 다중의 분사노즐(5)(7)에 의한 냉각매체(31a)의 교차점(87)(87a)의 이격거리(88a)는 30mm 이내가 되도록 하는 것을 특징으로 하는 분말 제조장치. 18. The distance 88a of the intersections 87 and 87a of the cooling medium 31a by the multiple injection nozzles 5 and 7 is to be within 30 mm. Powder making machine.
  23. 제 16항 또는 제 17항 있어서, 다중 제 1,2 분사노즐(5)(7)은 상하로 겹치게 2중으로 설치하되, 상기 환상의 제 1분사노즐(5)의 분사각(81)보다 다중 제 2 분사노즐(7)의 분사각(81a)을 크게 하여 상기한 다중의 제 1,2 분사노즐(5)(7)로부터 분사되는 각각 냉각매체(31a)의 교차점(87)(87a)의 거리(88a)가 30mm 이내가 되도록 하는 것을 특징으로 하는 분말 제조장치. The multiple first and second injection nozzles (5) and (7) of claim 16 or 17 are provided in double, overlapping up and down, and are multiplied by the injection angle (81) of the annular first injection nozzle (5). The distance between the intersection points 87 and 87a of the cooling medium 31a respectively, which is injected from the plurality of first and second injection nozzles 5 and 7, by increasing the injection angle 81a of the two injection nozzles 7. Powder manufacturing apparatus, characterized in that (88a) is within 30mm.
  24. 제 16항에 있어서, 원통형 냉각롤러(101)의 상면과 냉각용 디스크(99)의 저면은 고온내열성, 내마모성 및 열전도성 등이 우수한 TiN, CBN, AlN, SiC, WC 등으로 이루어진 적어도 1종 혹은 2종 이상으로 혼합된 조성물로 코팅하는 것을 특징으로 하는 분말 제조장치. The upper surface of the cylindrical cooling roller 101 and the bottom surface of the cooling disk 99 are at least one of TiN, CBN, AlN, SiC, WC, etc. having excellent high temperature resistance, abrasion resistance, and thermal conductivity. Powder manufacturing apparatus, characterized in that the coating with a mixture of two or more kinds.
  25. 제 13항, 제 16항, 제 17항 중 어느 한 항에 기재된 다중의 분사노즐(5)(7)을 이용하는 냉각매체(31a)의 분사압은 10∼1000bar 범위의 압력을 사용하는 것을 특징으로 하는 분말 제조장치.The injection pressure of the cooling medium 31a using the multiple injection nozzles 5, 7 according to any one of claims 13, 16 and 17 is characterized by using a pressure in the range of 10 to 1000 bar. Powder making machine.
PCT/KR2014/007910 2013-08-26 2014-08-26 Method for preparing powder, multi-injection nozzle, and apparatus for preparing powder WO2015030456A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0101245 2013-08-26
KR1020130101245A KR101372839B1 (en) 2013-08-26 2013-08-26 Method and apparatus for manufacturing powders
KR10-2014-0016180 2014-02-12
KR1020140016180A KR101426008B1 (en) 2014-02-12 2014-02-12 Multiplex atomization nozzle and manufacturing apparatus of powder for the same

Publications (1)

Publication Number Publication Date
WO2015030456A1 true WO2015030456A1 (en) 2015-03-05

Family

ID=52586930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007910 WO2015030456A1 (en) 2013-08-26 2014-08-26 Method for preparing powder, multi-injection nozzle, and apparatus for preparing powder

Country Status (1)

Country Link
WO (1) WO2015030456A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195754A (en) * 2015-10-30 2015-12-30 西北有色金属研究院 Device and method for improving atomized metal powder cooling efficiency
EP3689512A1 (en) * 2019-02-04 2020-08-05 Mitsubishi Hitachi Power Systems, Ltd. Metal powder producing apparatus and gas jet device for same
CN111574024A (en) * 2019-12-24 2020-08-25 湖北新华光信息材料有限公司 Dry-type glass slag preparation device and preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672041B2 (en) * 1991-05-13 1997-11-05 株式会社クボタ Metal powder manufacturing equipment
JP2004269956A (en) * 2003-03-07 2004-09-30 Fukuda Metal Foil & Powder Co Ltd Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
JP2012111993A (en) * 2010-11-24 2012-06-14 Kobe Steel Ltd Atomization device
KR20120097807A (en) * 2011-02-25 2012-09-05 공주대학교 산학협력단 Spherical magnet alloy powder and producing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672041B2 (en) * 1991-05-13 1997-11-05 株式会社クボタ Metal powder manufacturing equipment
JP2004269956A (en) * 2003-03-07 2004-09-30 Fukuda Metal Foil & Powder Co Ltd Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
JP2012111993A (en) * 2010-11-24 2012-06-14 Kobe Steel Ltd Atomization device
KR20120097807A (en) * 2011-02-25 2012-09-05 공주대학교 산학협력단 Spherical magnet alloy powder and producing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195754A (en) * 2015-10-30 2015-12-30 西北有色金属研究院 Device and method for improving atomized metal powder cooling efficiency
EP3689512A1 (en) * 2019-02-04 2020-08-05 Mitsubishi Hitachi Power Systems, Ltd. Metal powder producing apparatus and gas jet device for same
KR20200096403A (en) * 2019-02-04 2020-08-12 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Metal powder producing apparatus and gas jet device for same
KR102266202B1 (en) 2019-02-04 2021-06-17 미츠비시 파워 가부시키가이샤 Metal powder producing apparatus and gas jet device for same
US11298746B2 (en) 2019-02-04 2022-04-12 Mitsubishi Power, Ltd. Metal powder producing apparatus and gas jet device for same
CN111574024A (en) * 2019-12-24 2020-08-25 湖北新华光信息材料有限公司 Dry-type glass slag preparation device and preparation method
CN111574024B (en) * 2019-12-24 2022-09-13 湖北新华光信息材料有限公司 Dry-type glass slag preparation device and preparation method

Similar Documents

Publication Publication Date Title
KR101426008B1 (en) Multiplex atomization nozzle and manufacturing apparatus of powder for the same
JP4488651B2 (en) Method and apparatus for producing ceramic or metal spherical powder by thermal plasma
KR102021374B1 (en) Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
KR101426021B1 (en) Manufacturing method of amorphous alloy powder and apparatus for the same
WO2015030456A1 (en) Method for preparing powder, multi-injection nozzle, and apparatus for preparing powder
KR101372839B1 (en) Method and apparatus for manufacturing powders
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
US5332198A (en) Method for producing rapidly-solidified flake-like metal powder and apparatus for producing the same
JP2022191273A (en) Refractory metal or alloy powder atomization manufacturing process
JP2004183049A (en) Method and apparatus for producing fine metal powder by gas atomization method
KR101096734B1 (en) Spherical alloy powder and producing method of the same
KR101257326B1 (en) Method for continuous casting of a metal with improved mechanical strength and product obtained by said method
AU2020356227A1 (en) Device for atomizing a melt stream by means of a gas
CN102211187B (en) Method for manufacturing or repairing steel-based roller core composite roller through injection molding
CN103769596A (en) Method for preparing high-stacking-density oblate powder material
CN101444755A (en) Method for preparing spherical catalyst and special device thereof
WO2016163643A1 (en) Fine-powder production device and method
CA1236711A (en) Method for making ultrafine metal powder
KR101517584B1 (en) Apparatus and Method for Manufacturing Minute Powder
JPH07102307A (en) Production of flaky powder material
JPH0321603B2 (en)
US9004150B2 (en) Method for continuous casting of a metal with improved mechanical strength and product obtained by said method
JP4960551B2 (en) A method for producing fine spherical metal particles.
RU2058853C1 (en) Block-sprayer for centrifugal spraying of metal molten bath
CN118045988A (en) Method and equipment for preparing powder by combining centrifugal atomization and gas atomization and secondary atomization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841204

Country of ref document: EP

Kind code of ref document: A1