WO2015030141A1 - 光学部材貼合体の製造方法 - Google Patents

光学部材貼合体の製造方法 Download PDF

Info

Publication number
WO2015030141A1
WO2015030141A1 PCT/JP2014/072648 JP2014072648W WO2015030141A1 WO 2015030141 A1 WO2015030141 A1 WO 2015030141A1 JP 2014072648 W JP2014072648 W JP 2014072648W WO 2015030141 A1 WO2015030141 A1 WO 2015030141A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
bonding
sheet
liquid crystal
autoclave
Prior art date
Application number
PCT/JP2014/072648
Other languages
English (en)
French (fr)
Inventor
力也 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2015030141A1 publication Critical patent/WO2015030141A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1825Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
    • B32B38/1833Positioning, e.g. registration or centering
    • B32B38/1841Positioning, e.g. registration or centering during laying up
    • B32B38/185Positioning, e.g. registration or centering during laying up combined with the cutting of one or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • B32B2041/04Detecting wrong registration, misalignment, deviation, failure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1009Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using vacuum and fluid pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Definitions

  • the present invention relates to a method for producing an optical member bonded body.
  • a bonding method called an RTP (Roll-to-Panel) method is known (for example, see Patent Document 1).
  • RTP Roll-to-Panel
  • a long polarizing plate unwound from a raw roll is cut into a predetermined size and directly bonded to a liquid crystal panel conveyed on the line.
  • an automatic optical inspection device (Automatic Optical Inspection) is installed on the production line to sequentially automatically inspect defects in the bonded body conveyed on the line.
  • Various defect inspection apparatuses such as a transmission type and a reflection type are known as such defect inspection apparatuses, and these defect inspection apparatuses are appropriately selected and used according to the type of defect.
  • the defect inspection apparatus since the defect inspection apparatus is installed on the production line, the time lag as described above does not occur, and the production yield is improved.
  • the present invention provides a method for producing an optical member bonded body capable of detecting a defect with sufficient accuracy in actual use and capable of stable production without impairing the production yield.
  • One aspect of the present invention is a method for producing an optical member bonded body in which an optical member is bonded to an optical display component, wherein a belt-shaped optical member sheet is unwound from a raw roll, and the optical member sheet is cut.
  • the obtained optical member is bonded to a plurality of the optical display components to form a plurality of optical member bonded bodies, and the plurality of optical member bonded bodies are heated and pressurized.
  • a first autoclave treatment step to be processed and a plurality of the optical member bonded bodies that have undergone the first autoclave treatment step, an inspection step for inspecting defects, and a heat and pressure treatment for defective products detected in the inspection step A second autoclave treatment step, wherein the optical member bonding body forming step and the first autoclave treatment step are performed in a continuous production line, and the second autoclave treatment step is performed.
  • the slave processing step wherein the production line to provide a method of manufacturing an optical member bonded body separately performed.
  • Another embodiment of the present invention is a method for manufacturing an optical member bonded body in which an optical member is bonded to an optical display component, the belt-shaped optical member sheet is unwound from a raw roll, and the optical member sheet is cut.
  • a plurality of sheet pieces obtained by bonding to a plurality of the optical display components to form a plurality of bonded bodies, and in the bonded body, the sheet pieces and the optical display components
  • the optical member bonding body formation process which forms the said optical member bonding body including the said optical member of the magnitude
  • the first autoclave process An inspection step for optically inspecting a defect for each of the plurality of optical member bonded bodies that has undergone the step
  • the detection step may be a manufacturing method for detecting an outer peripheral edge of a bonding surface of the sheet piece and the optical display component for each of the plurality of optical display components.
  • the plurality of optical member bonding bodies sequentially conveyed through the optical member bonding body forming step are distributed to a plurality of processing lines, and each processing line is provided. It is good also as a manufacturing method which heat-presses.
  • the 1st visual inspection process which carries out a visual inspection of a defect
  • the 1st visual inspection process detected by the said 1st visual inspection process about 1 visual inspection defective article, according to the state of the defect which said 1st visual inspection defective article has, said optical member was peeled from said 1st visual inspection defective article, said optical display component was exposed, and said exposed
  • the treatment process may be performed separately from the production line.
  • the 2nd visual inspection process which visually inspects a defect about each of the said some optical member bonding body which passed through the said rework process process
  • the said 2nd visual inspection process is said manufacturing line. It is good also as a manufacturing method performed separately.
  • the second autoclave treatment step may be performed again on the second visual inspection defective product detected in the second visual inspection step.
  • the inspection step may be a manufacturing method in which the defect is optically automatically inspected using an automatic inspection device arranged in the manufacturing line.
  • the inspection step may be a manufacturing method in which defects are visually inspected.
  • 1 aspect of this invention has the bonding apparatus which bonds the sheet piece obtained by cut
  • the first autoclave device, the inspection device that optically inspects each of the plurality of bonded bodies from the first autoclave device, and the manufacturing line are separately arranged and determined using the inspection device.
  • a second autoclave device that autoclaves the defective product.
  • An optical member bonded body production system is provided.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a fragmentary sectional view of an optical member sheet. It is a figure which shows the experimental result which confirmed the effect about the AC process implemented twice. It is a figure which shows the experimental result which confirmed the effect with respect to the time between two AC processes. It is explanatory drawing about the manufacturing method of the optical member bonding body in 1st Embodiment. It is a schematic block diagram about the film bonding system used by 2nd Embodiment.
  • FIGS. 1 and 2 are explanatory views showing an optical member bonded body production system used for carrying out the method for manufacturing an optical member bonded body according to the present embodiment.
  • Drawing 1 is a schematic structure figure about film pasting system 1 which constitutes a part of production system of an optical member pasting object.
  • FIG. 1 for convenience of illustration, the film bonding system 1 is illustrated in two upper and lower stages.
  • FIG. 2 is an explanatory diagram of the first reversing device 15 included in the film bonding system 1.
  • the film bonding system 1 manufactures an optical member bonding body by bonding a film-shaped optical member such as a polarizing film, an antireflection film, or a light diffusion film to a panel-shaped optical display component such as a liquid crystal panel or an organic EL panel. System.
  • the film bonding system 1 is configured as a part of a production system that produces an optical display device including an optical display component and an optical member.
  • the liquid crystal panel P is used as an optical display component.
  • liquid crystal panel P used in the film bonding system 1 is described, and then the film bonding system 1 is described in detail.
  • FIG. 3 is a plan view of the liquid crystal panel P.
  • the liquid crystal panel P includes a first substrate P1 having a rectangular shape in plan view, a second substrate P2 having a relatively small rectangular shape disposed to face the first substrate P1, a first substrate P1, and a second substrate. And a liquid crystal layer P3 sealed between the substrate P2.
  • the liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in plan view, and has a display region P4 that is an area that fits inside the outer periphery of the liquid crystal layer P3 in plan view.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • a first optical member F11 and a second optical member F12 cut out from the long strip-shaped first optical member sheet F1 and the long strip-shaped second optical member sheet F2 (see FIG. 1). Is appropriately bonded.
  • the first optical member sheet F1 and the second optical member sheet F2 may be collectively referred to as “optical member sheet FX”.
  • the first optical member F11 and the second optical member F12 may be collectively referred to as “optical member F1X”.
  • the first optical member F11 and the second optical member F12 as polarizing films are bonded to both surfaces (the backlight side surface and the display surface side surface) of the liquid crystal panel P, respectively.
  • the 3rd optical member as a brightness improvement film may be further bonded on the surface by the side of the backlight of liquid crystal panel P so that it may overlap with the 1st optical member F11.
  • FIG. 5 is a partial cross-sectional view of the optical member sheet FX.
  • the optical member sheet FX includes a film-shaped optical member main body F1a, an adhesive layer F2a provided on the first surface (upper surface in FIG. 5) of the optical member main body F1a, and the optical member main body F1a.
  • seat FX is called the bonding sheet
  • hatching of each layer in FIG. 5 is omitted.
  • the optical member body F1a is bonded to the sheet-like polarizer F6, the first film F7 bonded to the first surface of the polarizer F6 with an adhesive or the like, and the second surface of the polarizer F6 with an adhesive or the like.
  • the first film F7 and the second film F8 are protective films that protect the polarizer F6, for example.
  • the optical member body F1a may have a single-layer structure having a single optical layer, or may have a stacked structure in which a plurality of optical layers are stacked together.
  • the optical layer may be a retardation film, a brightness enhancement film, or the like.
  • At least one of the first film F7 and the second film F8 may be subjected to a surface treatment capable of obtaining an effect such as a hard coat treatment for protecting the outermost surface of the liquid crystal display element or an antiglare treatment.
  • the optical member body F1a may not include at least one of the first film F7 and the second film F8.
  • the 1st film F7 is abbreviate
  • the optical member body F1a is cut out to a predetermined length, and then pasted over the entire display area P4 of the liquid crystal panel P and the peripheral area of the display area P4. At that time, the sheet piece obtained by cutting the adhesive layer F2a into the same predetermined length is left in the sheet piece cut out from the optical member body F1a, and the sheet piece of the optical member body F1a is the sheet piece of the adhesive layer F2a. It is bonded to the liquid crystal panel P.
  • the separator sheet F3a protects the adhesive layer F2a and the optical member body F1a until the separator sheet F3a is separated from the adhesive layer F2a.
  • the surface protective film F4a is cut out together with the optical member main body F1a and bonded to the liquid crystal panel P.
  • the surface protective film F4a is disposed on the side opposite to the liquid crystal panel P with respect to the optical member body F1a to protect the optical member body F1a.
  • the surface protective film F4a is separated from the optical member main body F1a at a predetermined timing.
  • the structure which does not contain the surface protection film F4a may be sufficient as the optical member sheet
  • separated from the optical member main body F1a may be sufficient as the surface protection film F4a.
  • the optical member F1X is formed by cutting the bonding sheet F5 in the production line as will be described later.
  • the right side of the drawing shows the upstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport upstream side).
  • the left side in the figure shows the downstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the panel transport downstream side).
  • the film bonding system 1 sequentially performs a predetermined process on the liquid crystal panel P while transporting the liquid crystal panel P from the start position to the final position of the bonding process using, for example, a driving roller conveyor 5.
  • the liquid crystal panel P is conveyed on the roller conveyor 5 with its front and back surfaces being horizontal.
  • the entire process performed by the flow operation on the liquid crystal panel P from the start position to the end position of the bonding process may be referred to as a “production line”.
  • the production line mainly refers to a flow operation performed on the roller conveyor 5, and the operation performed on the production line is referred to as “operation in the production line”.
  • the production line includes a cleaning process (not shown) of the liquid crystal panel P provided on the upstream side of the bonding process.
  • the liquid crystal panel P conveyed on the roller conveyor 5 is taken out from the start position to the end position of the bonding process, and the liquid crystal panel P is processed at a position different from the roller conveyor 5, and then the processed liquid crystal Even when the panel P is returned to the roller conveyor 5, the panel P is handled as a part of the production line if no stagnation occurs in the flow operation.
  • the work performed separately from the flow work on the roller conveyor 5 is referred to as “outside the production line”. Outside the production line, the work can be performed over the necessary time regardless of the conveying speed of the roller conveyor 5.
  • the roller conveyor 5 is divided into an upstream conveyor 6 and a downstream conveyor 7 with a first reversing device 15 described in detail later as a boundary.
  • the liquid crystal panel P is transported in the direction in which the short side of the display area P4 is along the transport direction in the upstream conveyor 6, and is transported in the direction in which the long side of the display area P4 is along the transport direction in the downstream conveyor 7. Is done.
  • An optical member obtained by cutting the belt-shaped optical member sheet FX is bonded to the front and back surfaces of the liquid crystal panel P.
  • Each part of the film bonding system 1 is comprehensively controlled by the control part 20 as an electronic control apparatus.
  • the film bonding system 1 includes a first suction device 11 that sucks the liquid crystal panel P transported to the end position of the upstream process and transports the liquid crystal panel P to the start position of the upstream conveyor 6 and aligns the liquid crystal panel P.
  • the first dust collector 12 provided on the downstream side of the panel transport, the first bonding device 13 provided on the downstream side of the panel transport with respect to the first dust collector 12, and the panel transport with respect to the first pasting device 13.
  • the first deviation inspection device 14 provided on the downstream side, and the liquid crystal panel P provided on the downstream side of the panel conveyance with respect to the first deviation inspection device 14 and reaching the end position of the upstream conveyor 6, the initial position of the downstream conveyor 7
  • a first reversing device 15 that conveys the
  • the film bonding system 1 includes a second dust collector 16 provided on the downstream side of the panel transport from the initial position of the downstream conveyor 7 and a second dust collector provided on the downstream side of the panel transport from the second dust collector 16.
  • the first suction device 11 holds the liquid crystal panel P and freely conveys it in the vertical and horizontal directions and aligns the liquid crystal panel P.
  • the first suction device 11 is provided in the panel holding portion 11a.
  • an alignment camera 11b for detecting the alignment reference is provided in the panel holding portion 11a.
  • the panel holding part 11a holds the upper surface of the liquid crystal panel P transported to the end position of the upstream process by vacuum suction and keeps the liquid crystal panel P in a horizontal state at the starting position of the bonding process (upstream conveyor 6). At this position, the suction is released and the liquid crystal panel P is transferred to the upstream conveyor 6.
  • Alignment camera 11b images the alignment mark, tip shape, and the like of liquid crystal panel P when, for example, liquid crystal panel P held by panel holding portion 11a is placed on upstream conveyor 6.
  • the imaging data of the alignment camera 11b is transmitted to the control unit 20, and the control unit 20 operates the panel holding unit 11a based on the imaging data.
  • alignment of liquid crystal panel P with respect to the upstream conveyor 6 is performed.
  • the liquid crystal panel P is positioned with respect to the upstream conveyor 6 in the horizontal direction (conveyor width direction) orthogonal to the transport direction and in the rotational direction around the vertical axis.
  • the 1st dust collector 12 is provided in the panel conveyance upstream in the vicinity of the bonding position of the 1st bonding apparatus 13. As shown in FIG. The first dust collector 12 removes static electricity and collects dust on the lower surface side of the liquid crystal panel P immediately before being introduced into the bonding position.
  • the 1st bonding apparatus 13 is a 1st optical member along the longitudinal direction of the 1st optical member sheet
  • the first optical member sheet F1 is configured to have a width corresponding to the width of the liquid crystal panel P. “Having a width corresponding to the width of the liquid crystal panel P” means that the sheet piece of the bonding sheet obtained by half-cutting the first optical member sheet F1 in the sheet width direction is the size of the display area P4 of the liquid crystal panel P. That is, the size of the substrate of the liquid crystal panel P to which the sheet piece is bonded (the size excluding the functional part such as the electronic component mounting portion on the substrate).
  • the width (length in the short direction) of the first optical member sheet F1 is the same as or wider than the long side of the display area P4 of the liquid crystal panel P, and the liquid crystal on which the sheet piece is bonded. In the substrate of the panel P, it is the same as or narrower than the side corresponding to the long side of the display area P4.
  • the 1st bonding apparatus 13 is the liquid crystal panel P by which the bonding sheet F5 of the 1st optical member sheet
  • seat F1 is the same as or longer than the short side of the display area P4 of liquid crystal panel P, and a sheet piece is bonded.
  • a sheet piece of the bonding sheet F5 is formed by cutting with a length equal to or shorter than the side corresponding to the short side of the display region P4 in the substrate of the substrate, and on the lower surface of the liquid crystal panel P introduced into the bonding position. On the other hand, the sheet piece of the bonding sheet F5 cut into a predetermined size is bonded.
  • the “sheet piece of the bonding sheet F5” produced in the first bonding apparatus 13 corresponds to the optical member bonded to the liquid crystal panel P.
  • the optical member produced as described above has such a size that the peripheral edge can be accommodated in the frame G when the liquid crystal panel P is overlapped.
  • the conveying device 22 is configured to convey the bonding sheet F5 using the separator sheet F3a as a carrier.
  • the conveying device 22 holds a raw fabric roll R1a around which the belt-shaped first optical member sheet F1 is wound, and rolls out the first optical member sheet F1 along the longitudinal direction of the first optical member sheet F1.
  • a cutting device 22c for half-cutting the member sheet F1 and a first optical member sheet F1 that has been half-cut are wound at an acute angle to separate the optical member from the separator sheet F3a, and this optical member is supplied to the bonding position.
  • a knife edge 22d to be held, and a separator roll R2 to wind up the separator sheet F3a that has become independent through the knife edge 22d is held. Having, and the up part 22e can.
  • half cut is opposite to the separator sheet F3a so that the separator sheet F3a does not break due to the tension acting during the conveyance of the first optical member sheet F1, and the separator sheet F3a remains with a predetermined thickness. It refers to cutting the first optical member sheet F1 from the side to the vicinity of the boundary surface between the adhesive layer F2a and the separator sheet F3a. A cutting blade or a laser device can be used to form the cut.
  • the roll holding unit 22a positioned at the start point of the transport device 22 and the winding unit 22e positioned at the end point of the transport device 22 are driven in synchronization with each other, for example.
  • the winding part 22e winds up the separator sheet F3a having passed through the knife edge 22d while the roll holding part 22a feeds the first optical member sheet F1 in the transport direction of the first optical member sheet F1.
  • the upstream side in the transport direction of the first optical member sheet F1 (separator sheet F3a) in the transport device 22 is referred to as a sheet transport upstream side
  • the downstream side in the transport direction is referred to as a sheet transport downstream side.
  • Each guide roller 22b changes the traveling direction of the first optical member sheet F1 being conveyed along the conveyance path. At least some of the plurality of guide rollers 22b are movable in order to adjust the tension of the first optical member sheet F1 being conveyed.
  • the cutting device 22c When the first optical member sheet F1 is fed out by a predetermined length, the cutting device 22c has one thickness direction of the first optical member sheet F1 over the entire width in the width direction orthogonal to the longitudinal direction of the first optical member sheet F1. Cut the part (half cut).
  • the cutting device 22c performs cutting so that the first optical member sheet F1 (separator sheet F3a) is not broken by a tension acting during conveyance of the first optical member sheet F1 (so that a predetermined thickness remains on the separator sheet F3a).
  • the advancing / retreating position of the blade is adjusted, and half cutting is performed to the vicinity of the interface between the adhesive layer F2a and the separator sheet F3a.
  • the first optical member sheet F1 after the half cut is cut along the entire width in the width direction of the first optical member sheet F1 by cutting the bonding sheet F5 in the thickness direction of the first optical member sheet F1. Is formed.
  • a plurality of score lines are formed so as to be aligned in the longitudinal direction of the belt-shaped first optical member sheet F1. For example, in the case of the bonding process which conveys liquid crystal panel P of the same size, a plurality of score lines are formed at equal intervals in the longitudinal direction of the first optical member sheet F1.
  • the first optical member sheet F1 is divided into a plurality of sections in the longitudinal direction by a plurality of cut lines. Each section sandwiched between a pair of cut lines adjacent in the longitudinal direction in the first optical member sheet F1 is a sheet piece in the bonding sheet F5.
  • the knife edge 22d is disposed below the upstream conveyor 6 and extends at least over the entire width of the first optical member sheet F1 in the width direction of the first optical member sheet F1.
  • the knife edge 22d winds the first optical member sheet F1 so as to be in sliding contact with the separator sheet F3a of the first optical member sheet F1 after the half cut.
  • the knife edge 22d is in an inclined position as viewed from the width direction of the first optical member sheet F1 (the width direction of the upstream conveyor 6) (that is, has a predetermined angle with respect to the transport direction of the liquid crystal panel P).
  • a first surface disposed; a second surface disposed at an acute angle with respect to the first surface when viewed from the width direction of the first optical member sheet F1 above the first surface; and the first surface and the second surface.
  • the knife edge 22d winds the first optical member sheet F1 at an acute angle around the tip of the knife edge 22d.
  • the first optical member sheet F1 separates the sheet piece (optical member) of the bonding sheet F5 from the separator sheet F3a when turning back at an acute angle at the tip of the knife edge 22d.
  • the tip end of the knife edge 22d is arranged close to the panel conveyance upstream side of the pinching roll 23.
  • the optical member separated from the separator sheet F3a by the knife edge 22d is introduced between the pair of bonding rollers 23a of the pinching roll 23 while overlapping with the lower surface of the liquid crystal panel P conveyed by the upstream conveyor 6.
  • the pinching roll 23 has a pair of laminating rollers 23a arranged in parallel with each other in the axial direction.
  • a predetermined gap is formed between the pair of bonding rollers 23 a, and the inside of this gap is the bonding position of the first bonding device 13.
  • the liquid crystal panel P and the optical member are overlapped and introduced.
  • the liquid crystal panel P and the optical member are sent out to the downstream side of the panel conveyance while being pressed between the pair of bonding rollers 23a. Thereby, an optical member is integrally bonded to the lower surface of the liquid crystal panel P.
  • the panel after this bonding is called single-sided bonding panel (optical member bonding body) P11.
  • inspection apparatus 14 is whether the position with respect to liquid crystal panel P of the optical member bonded by the 1st bonding apparatus 13 in the single-sided bonding panel P11 is appropriate (whether a position shift exists in a tolerance range). Inspect.
  • the first misalignment inspection apparatus 14 includes, for example, a pair of cameras 14a that capture images of the edge of the optical member on the upstream side of the panel conveyance of the single-sided bonded panel P11 and the edge of the optical member on the downstream side of the panel conveyance. Imaging data from each camera 14a is transmitted to the control unit 20, and it is determined based on this imaging data whether or not the relative positions of the optical member and the liquid crystal panel P are appropriate.
  • the single-sided bonding panel P11 whose relative position is determined to be inappropriate is discharged out of the system (outside the production line) by a not-shown dispensing means.
  • the first reversing device 15 shown in FIG. 2 includes, for example, a rotation shaft 15a inclined at 45 ° in a plan view with respect to the transport direction of the liquid crystal panel P, and the end position of the upstream conveyor 6 via the rotation shaft 15a. And a reversing arm 15b supported between the initial positions of the downstream conveyor 7. The reversing arm 15b holds the single-sided bonding panel P11 that has reached the end position of the upstream conveyor 6 via the first deviation inspection device 14 by suction or pinching, and rotates 180 ° around the rotation shaft 15a.
  • the reversing arm 15b reverses the front and back of the single-sided bonding panel P11 and, for example, transfers the single-sided bonding panel P11 that has been transferred in parallel with the short side of the display area P4 in parallel with the long side of the display area P4. Turn around as you do.
  • the inversion is such that the polarization axis direction of the optical member FIX bonded to the surface of the liquid crystal panel P and the polarization axis direction of each optical member F1X bonded to the back surface of the liquid crystal panel P are arranged at right angles to each other.
  • the upstream conveyor 6 and the downstream conveyor 7 both have the direction from the right side to the left side of the drawing as the transport direction of the liquid crystal panel P.
  • the upstream conveyor 6 and the downstream conveyor pass through the first reversing device 15. 7 is offset by a predetermined amount in plan view.
  • a reversing device having a reversing arm having a rotation axis parallel to the transport direction may be used.
  • the polarization axis directions are mutually set on the front and back surfaces of the liquid crystal panel P.
  • the optical member F1X having a right angle can be bonded.
  • the reversing arm 15b has the same alignment function as the panel holding part 11a of the first suction device 11.
  • the first reversing device 15 is provided with an alignment camera 15 c similar to the alignment camera 11 b of the first suction device 11.
  • the second dust collecting device 16 is provided in the vicinity of the bonding position of the second bonding device 17 on the panel conveyance upstream side of the second bonding device 17.
  • the second dust collector 16 removes static electricity and collects dust on the lower surface side of the single-sided bonding panel P11 immediately before being introduced into the bonding position.
  • the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13.
  • the second optical member sheet F2 is configured to have a width corresponding to the width of the liquid crystal panel P.
  • the width (length in the short direction) of the second optical member sheet F2 is the same as or wider than the short side of the display region P4 of the liquid crystal panel P, and the liquid crystal on which the sheet piece is bonded.
  • the side corresponding to the short side of the display region P4 is the same as or narrower than the side.
  • the 2nd bonding apparatus 17 is the liquid crystal panel P by which the bonding sheet F5 of the 2nd optical member sheet
  • seat F2 is the same as or longer than the long side of the display area P4 of liquid crystal panel P, and a sheet piece is bonded.
  • a sheet piece of the bonding sheet F5 is formed by cutting with a length equal to or shorter than the side corresponding to the long side of the display region P4 on the substrate of the liquid crystal panel P introduced into the bonding position. On the other hand, the sheet piece of the bonding sheet F5 cut into a predetermined size is bonded.
  • the “sheet piece of the bonding sheet F5” produced in the second bonding apparatus 17 corresponds to the optical member bonded to the liquid crystal panel P.
  • the optical member produced as described above has such a size that the peripheral edge can be accommodated in the frame G when the liquid crystal panel P is overlapped.
  • the single-sided bonding panel P11 and the optical member are introduced in an overlapping state, and the single-sided bonding panel An optical member is integrally bonded to the lower surface of P11.
  • the panel after this bonding is called double-sided bonding panel (optical member bonding body) P12.
  • the second misalignment inspection apparatus 18 includes a pair of cameras 18a that capture an image of the edge of the optical member on the upstream side of the double-sided bonding panel P12 and the edge of the optical member on the downstream side. Imaging data from each camera 18a is transmitted to the control unit 20, and based on this imaging data, it is determined whether or not the relative positions of the optical member and the liquid crystal panel P are appropriate.
  • the double-sided bonding panel P12 determined to have an inappropriate relative position is discharged out of the system by a not-shown payout means.
  • the autoclave apparatus 100 performs a heating and pressurizing process (autoclave process, first autoclave process) on the double-sided bonding panel P12 that has passed through the second misalignment inspection apparatus 18.
  • the autoclave apparatus 100 has a chamber 101. A plurality of double-sided bonding panels P12 stacked together are carried into the chamber 101 at once. The heating and pressurizing process is performed in the chamber 101 with respect to the plurality of double-sided bonded panels P12.
  • autoclave treatment refers to exposing a defective product to be treated to a temperature higher than room temperature in a pressurized environment higher than atmospheric pressure and holding it for a certain period of time.
  • the processing condition is a pressure condition of 0.294 MPa or more and 0.785 MPa or less (3 kgf / cm 2 or more and 8 kgf / cm 2 or less), and holding at a temperature condition of 40 ° C. or more and 80 ° C. or less for 30 seconds or more and 25 minutes or less. Time is mentioned.
  • the pressure conditions can, for example more than 0.392MPa (4kgf / cm 2 or higher) and 0.588MPa or less (6 kgf / cm 2 or less).
  • the temperature condition can be, for example, 50 ° C. or more and 70 ° C. or less.
  • the holding time can be, for example, 1 minute or more and 5 minutes or less.
  • the upper limit value and the lower limit value of the processing conditions can be arbitrarily combined. In addition, said numerical value is an example and is not limited to this.
  • holding time refers to the time from when the pressure in the chamber 101 becomes equal to or higher than the set values for pressure and temperature until either one of the pressure or temperature falls below the set value. Therefore, even if one or both of the pressure and temperature fluctuate, if the pressure and temperature are equal to or higher than a set value, the processing time under that condition is included in the holding time.
  • a predetermined number of double-sided bonding panels P ⁇ b> 12 that are sequentially conveyed are stacked at a stacking unit (not shown) disposed at a position 102 on the upstream side of the chamber 101.
  • a stacking unit a predetermined number of sheets are stacked while the autoclave process is performed in the chamber 101 on the double-sided bonding panel P12 already carried into the chamber 101. Therefore, the stacking unit functions as a buffer for preventing the double-sided bonding panel P12 from being delayed during the autoclave process.
  • a plurality of stacked double-sided bonding panels P12 are collectively brought into the chamber 101 and subjected to autoclaving.
  • the maximum time during which autoclave treatment can be performed is defined by the conveyance speed of the double-sided bonding panel P12 in the production line and the number of sheets stacked in the stacking unit. For example, when the double-sided bonding panel P12 is carried into the stacking unit every 10 seconds and 20 double-sided bonding panels P12 are stacked in the stacking unit, 20 double-sided bondings are performed every 200 seconds from the stacking unit toward the chamber 101. Panel P12 is carried in. In such a case, in the chamber 101, the autoclave process can be performed for a maximum of 200 seconds including the time of temperature increase / decrease and temperature decrease / decrease.
  • said numerical value is an example and is not limited to this.
  • a plurality of double-sided bonding panels P12 unloaded from the chamber 101 are unloaded one by one at a loading / unloading section (not shown) disposed at a position 103 on the downstream side of the chamber 101, and conveyed downstream.
  • the double-sided bonding panel P12 is unloaded at a speed equal to or higher than the double-sided bonding panel P12 stacked in the stacking part so that the conveyance of the double-sided bonding panel P12 is not delayed.
  • the downstream conveyor 7 is branched into a plurality of processing lines, and the autoclave device 100 is arranged for each branched downstream conveyor 7 (each processing line). You may comprise so that an autoclave process may be processed in parallel. When autoclave processing is performed in parallel, the processable time in each autoclave device can be extended.
  • the “defect” that is the inspection object in the inspection process is a defect that can be optically inspected in the display area of the double-sided bonding panel P12. In the display device manufactured using the double-sided bonding panel P12, the display defect is caused.
  • defects examples include (1) defects that the liquid crystal panel P itself has, (2) defects that the optical member itself has, and (3) defects that occur on the bonding surface between the liquid crystal panel P and the optical member.
  • Defects of the liquid crystal panel P itself include, for example, that the liquid crystal of the liquid crystal panel P is not aligned as designed due to disturbance of the liquid crystal alignment film of the liquid crystal panel P.
  • the liquid crystal panel P has such a defect, for example, even if a pair of polarizing plates are accurately bonded to crossed Nicols and the liquid crystal panel P is designed to be normally black, from one side of the double-sided bonded panel P12 When light is irradiated, light leakage occurs, so that defects can be confirmed as bright spots.
  • the liquid crystal panel P is damaged during conveyance, it is mentioned as a defect which (1) liquid crystal panel P itself has.
  • Defects of the optical member itself can include deformations such as scratches and dents formed on the surface of the optical member F1X. If there is such a defect, the light emitted through the liquid crystal panel P will be refracted and scattered at the deformed part, so the brightness will be different from other parts that are not deformed. It becomes possible.
  • a bonding surface is a bonding surface of liquid crystal panel P and the 1st optical member F11 shown in FIG. 4, and a bonding surface of liquid crystal panel P and the 2nd optical member F12. If there is such a defect, the light emitted through the liquid crystal panel P will be refracted and scattered at the defective part, so the brightness will be different from other parts without the defect. It becomes possible.
  • the defect that the double-sided bonding panel P12 has is a small deformation of the optical member itself among “(2) Defects of the optical member itself” or “(3) Among the “defects that occur on the bonding surface of the liquid crystal panel P and the optical member”, the defects disappear when the air bubbles are sandwiched between the bonding surfaces of the liquid crystal panel P and the optical member and are minute objects. Can be expected to do.
  • the defect is a small deformation of the optical member itself
  • the optical member when the autoclave process is performed, the optical member is softened and easily deformed by heat. Thereby, it can be expected that a small deformation causing the defect disappears.
  • the defect that the double-sided bonded panel P12 has is the damage of the liquid crystal panel P such as damage of the liquid crystal panel P, and the optical member itself among “(1) defects that the liquid crystal panel P itself has” and “(2) defects that the optical member itself has”.
  • the defect is at least one of the defects caused by the foreign matter sandwiched between the bonding surfaces, it is expected that the defect will not disappear by autoclaving.
  • the 2nd inversion apparatus 19 inverts the front and back of the double-sided bonding panel P12 carried out from the autoclave apparatus 100.
  • FIG. As for the double-sided bonding panel P12 conveyed to the 2nd inversion apparatus 19, although the backlight side has turned upward by passing through the 1st inversion apparatus 15, by the 2nd inversion apparatus 19, to the film bonding system 1
  • the display surface side of the liquid crystal panel P faces upward as in the carry-in.
  • the double-sided bonding panel P12 that has passed through the second reversing device 19 is conveyed to the downstream side by the downstream conveyor 7 and is carried out of the production line of the film bonding system 1.
  • the double-sided bonding panel P12 carried out from the production line is inspected for the presence or absence of defects by visual observation offline.
  • the visual inspection can be performed by a plurality of inspectors.
  • the double-sided bonding panel P12 of the finished product is carried out to the next step.
  • the autoclave process (second autoclave process) is performed again using the autoclave apparatus (second autoclave apparatus) 110 outside the production line. . Since the number of defective products is reduced by the first autoclave treatment, the second autoclave treatment can be carried out with sufficient time.
  • the 1st autoclave process has already been performed with the autoclave apparatus 100 in a manufacturing line. Therefore, when the processing conditions of the second autoclave process are gentler than the processing conditions of the first autoclave process, it is considered that the defect is difficult to disappear.
  • the second autoclave treatment can be performed under conditions stricter than the treatment conditions of the first autoclave treatment.
  • the set values of temperature and pressure can be set higher than the set values in the first autoclave process, but such settings may cause damage to the liquid crystal panel P. Therefore, for example, in the second autoclave process, the holding time in the autoclave process is set longer than that in the first autoclave process. Thereby, a 2nd autoclave process can be performed on conditions severer than the process conditions of a 1st autoclave process.
  • the processing conditions of the second autoclave treatment are, for example, 30 seconds or more under a temperature condition of 40 ° C. or more and 80 ° C. or less in a pressure condition of 0.294 MPa or more and 0.785 MPa or less (3 kgf / cm 2 or more and 8 kgf / cm 2 or less).
  • the holding time is 25 minutes or less.
  • pressure conditions may be, for example, more than 0.392MPa (4kgf / cm 2 or higher) and 0.588MPa or less (6 kgf / cm 2 or less).
  • the temperature condition can be, for example, 50 ° C. or more and 70 ° C. or less.
  • the holding time can be, for example, 1 minute or more and 5 minutes or less.
  • the upper limit value and the lower limit value of the processing conditions can be arbitrarily combined.
  • the pressure of the first autoclave treatment and the pressure of the second autoclave treatment are set to 0.5 MPa
  • the temperature of the first autoclave treatment and the temperature of the second autoclave treatment are set to 60 ° C.
  • the first autoclave treatment Can be set to 30 seconds
  • the second autoclave process can be set to 1 minute.
  • the pressure set value is the same in the first autoclave process and the second autoclave process
  • the temperature set value is the same in the first autoclave process and the second autoclave process
  • the second autoclave process is maintained.
  • the time is longer than the holding time of the first autoclave process. Therefore, damage to the liquid crystal panel P can be avoided and defects can be effectively eliminated.
  • said numerical value is an example and is not limited to this.
  • FIG. 6 is a scatter diagram showing the experimental results confirming the effect of performing autoclave treatment twice.
  • the change of the bubble size when the autoclave treatment is performed on the double-sided bonded panel P12 having defects due to bubbles is shown.
  • the sample number is shown on the horizontal axis
  • the size (unit: ⁇ m) of bubbles in each sample is shown on the vertical axis.
  • the conditions of the first autoclave treatment (described as 1st AC treatment in the figure) are heating and pressurizing for 2 minutes at a temperature of 50 ° C. and a pressure of 5 kgf / cm 2 (490.35 kPa).
  • the processing time of 2 minutes is set as a time corresponding to the in-line autoclave processing time.
  • the conditions for the second autoclave treatment are heating and pressurization for 20 minutes at a temperature of 50 ° C. and a pressure of 5 kgf / cm 2 (490.35 kPa).
  • the processing time of 20 minutes is set as a time corresponding to the off-line autoclave processing time.
  • the size of the bubbles was 0 ⁇ m after the first autoclave treatment, that is, the bubbles disappeared by the first autoclave treatment.
  • the double-sided bonding panel P12 before being introduced into the autoclave apparatus 100 accounts for 89% of the defects up to about 2500 ⁇ m, and about 3000 ⁇ m.
  • FIG. 7 is a diagram showing experimental results for confirming the effect of the autoclave treatment when the time between the first autoclave treatment and the second autoclave treatment is changed.
  • FIG. 7A shows the experimental results when the interval between the first autoclave treatment and the second autoclave treatment is 18 hours.
  • FIG. 7B shows the experimental results when the time between the first autoclave treatment and the second autoclave treatment is 36 hours.
  • the number of samples is described in the column labeled “OK” for the samples in which the defects disappeared after each autoclave treatment, and the column labeled “NG” for the samples in which the defects did not disappear after each autoclave treatment.
  • the number of samples is indicated.
  • the defect removal rate (%) indicates the ratio of the number of “OK” samples after each autoclave treatment to the total number of samples.
  • the second autoclave treatment is performed with as little time as possible from the first autoclave treatment.
  • the number of defective products that are subject to the second autoclave process is small. Therefore, if the second autoclave process is held until the upper limit number that can be processed by the autoclave apparatus is accumulated, the effect of the second autoclave process may be reduced.
  • the defect that the double-sided bonded panel P12 has is the damage of the liquid crystal panel P such as damage of the liquid crystal panel P, and the optical member itself among “(1) defects that the liquid crystal panel P itself has” and “(2) defects that the optical member itself has”.
  • defect inspection In this embodiment, about the double-sided bonding panel P12 which performed the 2nd autoclave process, the presence or absence of a defect is test
  • the double-sided bonding panel P12 (defective product) in which the defect was found in the visual inspection, it is determined whether or not the defect can be eliminated by confirming the type and state of the defect and performing subsequent processing. Made.
  • the optical member is peeled from the defective products to expose the liquid crystal panel P, and a new sheet piece is bonded to the exposed liquid crystal panel P to create a new one.
  • the rework process which forms the double-sided bonding panel P12 is given.
  • the rework treatment can be performed with a margin.
  • the defect that the defective product has is “(1) the defect that the liquid crystal panel P itself has” such as damage to the liquid crystal panel P, and if it is determined that it cannot be regenerated by the autoclave process or the rework process, the defective product is discarded. To do.
  • Such a rework process is performed separately from the above-described production line (offline process). Therefore, sufficient time can be taken for the rework process, and a reduction in waste can be expected.
  • FIG. 8 is an explanatory diagram of the method for manufacturing the optical member bonded body according to the present embodiment, and is a flowchart showing the manufacturing process described above. Hereinafter, the manufacturing flow will be described using the reference numerals shown in FIG. 1 as appropriate.
  • the process indicated by reference sign S1 indicates a process performed within the manufacturing line
  • the process indicated by reference sign S2 indicates a process performed outside the manufacturing line.
  • step S11 First, in the manufacture of the double-sided bonded panel P12, the liquid crystal panel P is carried into the production line (step S11), and dirt such as dust and dust adhering to the surface of the liquid crystal panel P is washed (step S12).
  • the first optical member sheet F1 and the second optical member sheet F1 and the second optical member sheet F2 are unwound from the raw rolls R1a and R1b, respectively.
  • the first optical member F11 and the second optical member F12 are formed by cutting F2 into a length corresponding to the long side or the short side of the display area P4.
  • “cut to the length corresponding to the long side or the short side of the display region P4” means that the size of the sheet piece obtained by cutting is equal to or larger than the size of the display region P4 of the liquid crystal panel P.
  • the long side of the display area P4 is not larger than the size of the substrate of the optical display component to which the sheet piece is bonded (the size excluding the functional part such as the electronic component mounting portion on the substrate). It means cutting with a length equal to or longer than the length or the length of the short side and equal to or shorter than the length corresponding to the side of the substrate of the liquid crystal panel P to which the sheet piece is bonded.
  • the first optical member F11 is bonded to the first surface of the liquid crystal panel P
  • the second optical member F12 is bonded to the second surface of the liquid crystal panel P to form a double-sided bonding panel P12 (step S13).
  • Visual inspection process About the double-sided bonding panel P12 carried out from the manufacturing line, visual inspection of a defect is performed outside a manufacturing line (offline) (step S21).
  • step S22 the double-sided bonded panel P12 determined as a defective product having a defect is subjected to autoclave processing outside the production line (offline) (step S22).
  • a rework process is performed (step S25). Defects that the defective product that undergoes rework processing has are small deformations of the optical member itself, or bubbles that are generated by sandwiching air between the bonding surfaces of the liquid crystal panel P and the optical member (defects / small), Or the large deformation
  • the double-sided bonded panel P12 Since the autoclave process has already been performed twice, the rework process is performed together with the “defect / medium” without performing the autoclave process again (indicated as “defect / small / medium” in the flow diagram).
  • the defect of the defective product is one that cannot be reproduced by the above-mentioned rework process, such as damage to the liquid crystal panel P (denoted as “defect / large” in the flow diagram), it is discarded.
  • step S26 the double-sided bonding panel P12 that has been subjected to autoclave processing or rework processing is visually inspected for defects.
  • step S22 If a defect is not found, it will be carried out to the next process as a finished product double-sided bonding panel P12. If a defect is found and determined as a defective product, the process returns to step S22 again, and reproduction is attempted through offline processing.
  • the manufacturing method of the optical member bonding body of this embodiment is performed as mentioned above.
  • the manufacturing method of the optical member bonding body as described above all the optical member bonding bodies conveyed on the line are first autoclaved. Therefore, about the optical member bonding body which is a fine defect which is hard to be noticed by humans and has a defect that disappears by autoclaving, the defect disappears and can be made a good product, and the yield is improved.
  • the optical member bonding body determined to be defective in the inspection after the first autoclave treatment is subjected to the second autoclave treatment offline. Therefore, even a defect that has not disappeared in the first autoclave process can be eliminated by the second autoclave process, and the yield is improved.
  • the deformation of the optical member itself can be eliminated by the autoclave treatment, and the defect of the optical member bonded body can be eliminated. Even when the optical member itself has a deformed portion that causes a defect, it is possible to obtain a bonded optical member having no defect. Therefore, an optical member yield improves and, as a result, the yield of an optical member bonding body can be improved.
  • the bonding apparatus (the 1st bonding apparatus 13 and / or the 2nd bonding apparatus 17) and the autoclave apparatus (1st autoclave apparatus) 100 are distribute
  • the autoclave apparatus (second autoclave apparatus) 110 arranged separately from the production line performs autoclave processing on defective products determined using the inspection apparatus (visual defect inspection, automatic inspection apparatus) 120. That is, the optical member bonding body forming step and the first autoclave treatment step are performed on a continuous production line, and the second autoclave treatment step is performed in a state separated from the production line.
  • the processing object is transferred to the bonding apparatus 13/17 and the autoclave apparatus 100 using at least a part of the conveying system of the production line, and is substantially different from the conveying system of the manufacturing line.
  • the processing object is transported to the autoclave apparatus 110 using this transport system. Therefore, according to the manufacturing method of the optical member bonding body of the present embodiment, the optical member bonding that enables defect detection with accuracy with no excess or deficiency in actual use and that can be stably manufactured without impairing the manufacturing yield.
  • a method for producing a coalescence is provided.
  • the present invention is not limited to the above embodiment.
  • the case where the polarizing film is bonded to the liquid crystal panel has been described.
  • the optical display component to which the optical member is bonded is not limited to the liquid crystal panel, and can be applied to an organic EL panel.
  • the optical member to be bonded is not limited to a polarizing film, and can be applied to an antireflection film, a light diffusion film, and the like.
  • the defective product detected in the second visual inspection process is again subjected to the offline processing after the second autoclave processing step, but when the autoclave processing step in the offline processing is performed a plurality of times, The heat history increases, and the quality of the optical member bonded body tends to deteriorate. Therefore, the defective product detected in the second visual inspection process may be discarded.
  • an upper limit number of times that can be applied to the second autoclave treatment step is set in advance, and the second autoclave treatment step is passed by the set number of times. It is recommended that the defective product be discarded.
  • the defect inspection after the first autoclave process is an offline visual defect inspection.
  • the present invention is not limited to this.
  • an optical automatic inspection device is installed on the downstream side of the second reversing device 19 to automatically sequentially inspect the defects of the bonded body conveyed on the line. Good. That is, automatic defect inspection may be performed on the production line.
  • an optical automatic inspection apparatus for example, while shining light from the lower surface side (backlight side) of the double-sided bonding panel P12, an image is taken with a camera from the upper surface side (display surface side).
  • inspects the presence or absence of the defect of the double-sided bonding panel P12 is employable.
  • any optical automatic inspection apparatus can be used as long as it can optically automatically inspect defects.
  • FIG. 9 is a schematic block diagram about the film bonding system 2 which comprises a part of production system of an optical member bonding body, and is a figure corresponding to FIG.
  • the film bonding system 2 is described in two upper and lower stages. In the following description, detailed description of contents common to the above description is omitted.
  • seat F1 is wider than the long side of the display area P4 of liquid crystal panel P.
  • the width (length in the short direction) of the band-shaped second optical member sheet F2 is wider than the short side of the display region P4 of the liquid crystal panel P.
  • the bonding sheet F5 of the belt-shaped first optical member sheet F1 is cut out with a length longer than the short side of the display region P4 of the liquid crystal panel P to produce the first sheet piece F1m. Then, the liquid crystal panel P is bonded to the liquid crystal panel P during the conveyance of the liquid crystal panel P using the roller conveyor 5. Similarly, the bonding sheet F5 of the band-shaped second optical member sheet F2 is cut out with a length longer than the long side of the display area P4 of the liquid crystal panel P to produce a second sheet piece F2m, and the roller conveyor 5 is used. The liquid crystal panel P is bonded to the liquid crystal panel P while it is being transported. In the following description, the first sheet piece F1m and the second sheet piece F2m may be collectively referred to as “sheet piece FXm”.
  • the first optical member F11 is formed by separating the excess portion of the first sheet piece F1m located outside the display area P4 of the liquid crystal panel P when being bonded to the liquid crystal panel P from the first sheet piece F1m.
  • the 2nd optical member F12 is formed by cut
  • Each part of the film bonding system 2 is comprehensively controlled by a control unit (not shown).
  • the film bonding system 2 includes a first suction device 11 that sucks the liquid crystal panel P transported to the carry-out end of the preceding step and transports it to the carry-in end of the upstream conveyor 6 and performs alignment (positioning) of the liquid crystal panel P.
  • the 1st dust collector 12 provided in the panel conveyance downstream of the 1st adsorption
  • the first reversing device 31A disposed on the panel transport downstream side with respect to 13, the first cutting device 32A disposed on the panel transport downstream side with respect to the first reversing device 31A, and the panel transport downstream with respect to the first cutting device 32A.
  • a recovery device (not shown) disposed at the first recovery position 33A on the side, and a first swivel device 34 disposed on the downstream side of the panel transport with respect to the recovery device.
  • the film bonding system 2 is arrange
  • a collection device (not shown) disposed at the second collection position 33B on the downstream side of the panel conveyance with respect to the second cutting device 32B, an autoclave device 100 disposed on the downstream side of the conveyance of the panel with respect to the collection device, and an autoclave And a second turning device 35 disposed on the downstream side of the panel transport with respect to the device 100.
  • a detection device used for setting a cut position in the first cutting device 32A is provided on the upstream side of the panel conveyance of the first cutting device 32A.
  • a detection device used for setting a cut position in the second cutting device 32B is provided on the upstream side of the second cutting device 32B on the panel conveyance.
  • the 1st bonding apparatus 13 bonds the sheet piece (1st sheet piece F1m) of the bonding sheet
  • the 1st bonding apparatus 13 conveys the 1st optical member sheet
  • the apparatus 22 and the pinching roll 23 which bonds the 1st sheet piece F1m separated from the 1st optical member sheet
  • the conveying device 22 is configured to convey the bonding sheet F5 using the separator sheet F3a as a carrier.
  • the transport device 22 includes a roll holding unit 22a, a plurality of guide rollers 22b, a cutting device 22c that performs a half cut on the first optical member sheet F1 on the transport path, and a first optical member sheet F1 that has been subjected to a half cut. It has a knife edge 22d that feeds the first sheet piece F1m to the bonding position while peeling off the first sheet piece F1m from the separator sheet F3a by winding at an acute angle, and a winding part 22e.
  • seat F1 has a width
  • the cutting device 22c is configured such that the first optical member sheet F1 has a length direction orthogonal to the sheet width direction and the length of the display area P4 (the length of either the long side or the short side of the display area P4, in this embodiment). Each time a length longer than the short side length of the display area P4 is extended, the first optical member sheet F1 is half-cut across the entire width in the sheet width direction. Thereby, the 1st sheet piece F1m larger than the display area P4 of liquid crystal panel P is formed from the bonding sheet
  • the first optical member sheet F1 after the half cut is formed with a cut line in which at least the optical member main body F1a and the surface protection film F4a are cut in the thickness direction over the entire width in the width direction of the first optical member sheet F1.
  • the cut lines are formed at intervals having a length corresponding to the short side length of the display region P4 in the longitudinal direction of the belt-shaped first optical member sheet F1.
  • the first optical member sheet F1 is divided into a plurality of sections in the longitudinal direction by the plurality of score lines. In the 1st optical member sheet
  • the size of the first sheet piece F1m can be larger than the liquid crystal panel P, for example.
  • the size of the portion that protrudes outside the liquid crystal panel P (the size of the surplus portion of the first sheet piece F1m) is appropriately set according to the size of the liquid crystal panel P.
  • the first sheet piece F1m is applied to a medium to small size liquid crystal panel P of 5 to 10 inches
  • one side of the first sheet piece F1m and one side of the liquid crystal panel P at each side of the first sheet piece F1m Is set to a length in the range of 2 mm to 5 mm.
  • said numerical value is an example and is not limited to this.
  • the knife edge 22d is disposed below the upstream conveyor 6 and extends over at least the entire width in the width direction of the first optical member sheet F1.
  • the first optical member sheet F1 is wound around the knife edge 22d so that the separator sheet F3a side of the first optical member sheet F1 after the half cut is in sliding contact with the knife edge 22d.
  • the first optical member sheet F1 peels the separator sheet F3a from the first sheet piece F1m when the traveling direction changes so as to be bent at an acute angle at the tip of the knife edge 22d.
  • the front end portion of the knife edge 22d is disposed close to the upstream side of the sandwiching roll 23 in the panel conveyance, and the first sheet piece F1m peeled from the separator sheet F3a by the knife edge 22d is transferred to the upstream conveyor 6 by the liquid crystal panel P. It is introduced between the pair of laminating rollers 23 a of the pinching roll 23 while overlapping with the lower surface of.
  • the pinching roll 23 has a pair of laminating rollers 23a arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers 23 a, and the position of this gap becomes the bonding position of the first bonding device 13.
  • the liquid crystal panel P and the first sheet piece F1m are introduced into the gap between the pair of bonding rollers 23a so that the liquid crystal panel P and the first sheet piece F1m are sandwiched between the pair of bonding rollers 23a. It is sent out downstream. Thereby, the 1st sheet piece F1m is integrally bonded by the lower surface of liquid crystal panel P, and it becomes 1st optical member bonding body (bonding body) PA1.
  • (First reversing device) 31 A of 1st inversion apparatuses convey the 1st optical member bonding body PA1 to the cutting position of the 1st cutting device 32A, reverse the front and back of 1st optical member bonding body PA1 at the time of this conveyance, and 1st of liquid crystal panel P
  • the sheet piece F1m is transferred to the first cutting device 32A in a state where the upper surface is the bonded surface.
  • (First cutting device) 32 A of 1st cutting devices cut off the surplus part arranged outside the part corresponding to the pasting surface of liquid crystal panel P and the 1st sheet piece F1m from the 1st sheet piece F1m pasted on liquid crystal panel P,
  • the 1st optical member F11 (refer FIG. 4) of the magnitude
  • the configuration of the first cutting device 32A will be described in detail later.
  • a collection device (not shown) disposed at the first collection position 33A holds, for example, an excess portion cut by the first cutting device 32A and peels off from the first optical member F11 formed by the first cutting device 32A. Then, the unnecessary surplus part is collected. After the recovery process of the surplus portion, the second optical member bonding body PA2 moves in the direction of the first turning device 34. Note that the recovery device may not be used as long as the cut surplus portion is removed by free fall during cutting by the first cutting device 32A.
  • the first swivel device 34 holds the second optical member bonding body PA2 that has reached the carry-out end of the upstream conveyor 6 via the first cutting device 32A by suction or pinching, and the second optical member bonding body PA2 is displayed.
  • the second optical member bonding body PA2 is turned so as to be conveyed in the direction along the long side of the region P4. Thereby, in 2nd optical member bonding body PA2, the polarizing axis of the polarizing film bonded by the surface of liquid crystal panel P and the polarizing axis of the polarizing film bonded by the back surface become mutually orthogonal.
  • the 1st turning apparatus 34 is provided with the alignment camera 34c similar to the alignment camera 11b of the 1st adsorption
  • the 2nd bonding apparatus 17 is the bonding of the sheet piece (2nd sheet piece F2m) of the bonding sheet
  • the 2nd bonding apparatus 17 is provided with the conveying apparatus 22 and the pinching roll 23 similar to the 1st bonding apparatus 13. FIG.
  • the cutting device 22c of the 2nd bonding apparatus 17 is the length of the display area P4 (length of the display area P4) in the length direction in which the 2nd optical member sheet
  • the second optical element extends over the entire width along the sheet width direction. A half cut is applied to the member sheet F2.
  • the 2nd sheet piece F2m larger than the display area P4 of liquid crystal panel P is formed from the bonding sheet
  • Cut lines are formed in the second optical member sheet F2 after the half cut at intervals having a length corresponding to the long side length of the display region P4 in the longitudinal direction of the band-shaped second optical member sheet F2.
  • the second optical member sheet F2 is divided into a plurality of sections in the longitudinal direction by the plurality of score lines.
  • interposed into a pair of cutting line adjacent in a longitudinal direction turns into 2nd sheet piece F2m.
  • the size of the second sheet piece F2m can be made larger than the liquid crystal panel P, for example.
  • the size of the portion that protrudes outside the liquid crystal panel P (the size of the surplus portion of the second sheet piece F2m) is appropriately set according to the size of the liquid crystal panel P.
  • the second sheet piece F2m is applied to a medium-to-small size liquid crystal panel P of 5 inches to 10 inches, one side of the second sheet piece F2m and one side of the liquid crystal panel P at each side of the second sheet piece F2m Is set to a length in the range of 2 mm to 5 mm.
  • said numerical value is an example and is not limited to this.
  • the pinching roll 23 has a pair of bonding rollers 23a arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers 23a. It becomes the bonding position of the combination device 17. In the gap, the second optical member bonding body PA2 and the second sheet piece F2m are introduced in an overlapping state, and the second optical member bonding body PA2 and the second sheet piece F2m are sandwiched between the pair of bonding rollers 23a. It is sent out to the panel conveyance downstream side while being pressed.
  • 2nd sheet piece F2m is integrally bonded by the surface (surface on the opposite side to the surface where 1st optical member F11 of 2nd optical member bonding body PA2 was bonded) of 2nd optical member bonding body PA2. It becomes a 3rd optical member bonding body (bonding body) PA3.
  • the second reversing device 31B conveys the third optical member bonding body PA3 to the cutting position of the second cutting device 32B, reverses the front and back of the third optical member bonding body PA3 during the conveyance, and the second of the liquid crystal panel P.
  • the sheet piece F2m is transferred to the second cutting device 32B in a state where the surface on which the sheet piece F2m is bonded is used as the upper surface.
  • the 2nd cutting device 32B is the surplus arrange
  • a part is cut
  • the second optical member F12 is bonded to the second surface (front surface or back surface) of the liquid crystal panel P by cutting off the excess portion of the second sheet piece F2m from the third optical member bonding body PA3 by the second cutting device 32B.
  • the first cutting device 32A and the second cutting device 32B are, for example, CO 2 laser cutters.
  • the first cutting device 32A separates the surplus portion arranged outside the portion corresponding to the bonding surface of the liquid crystal panel P and the first sheet piece F1m from the first sheet piece F1m, and the liquid crystal panel P and the first sheet
  • size corresponding to the bonding surface with piece F1m is formed.
  • the second cutting device 32B separates the surplus portion arranged outside the portion corresponding to the bonding surface of the liquid crystal panel P and the second sheet piece F2m from the second sheet piece F2m, and the liquid crystal panel P and the second sheet
  • size corresponding to the bonding surface with piece F2m is formed.
  • the cutting device 32 (the first cutting device 32A and the second cutting device 32B may be collectively referred to as “cutting device 32”) is bonded to the liquid crystal panel P and the liquid crystal panel P detected by the detection device described later.
  • the sheet piece FXm bonded to the liquid crystal panel P is cut endlessly along the outer peripheral edge of the bonded surface of the sheet piece FXm.
  • a frame portion G (see FIG. 4) having a predetermined width for arranging a sealant or the like for bonding the first and second substrates P1 and P2 of the liquid crystal panel P is provided.
  • the sheet piece FXm is cut by the cutting device 32 within the width of.
  • FIG. 10 is a schematic diagram of the first detection device 61 that detects the outer peripheral edge of the bonding surface.
  • the 1st detection apparatus 61 with which the film bonding system 2 of this embodiment is provided is the bonding surface (henceforth, 1st bonding surface (below) of liquid crystal panel P and 1st sheet piece F1m in 1st optical member bonding body PA1.
  • An imaging device 63 that captures an image of the outer peripheral edge ED (at least a part of the outer peripheral edge of the region where the liquid crystal panel P and the sheet piece FXm are bonded); It has the illumination light source 64 which illuminates the periphery ED, and the control part 65 which performs the calculation for the memory
  • Such a first detection device 61 is provided on the upstream side of the panel conveyance of the first cutting device 32A in FIG. 9, and is provided between the first reversing device 31A and the first cutting device 32A.
  • the imaging device 63 is fixed and arranged inside the first bonding surface SA1 with respect to the outer peripheral edge ED, and the normal line of the first bonding surface SA1 and the normal line of the imaging surface 63a of the imaging device 63 are arranged.
  • the posture is inclined so as to form an angle ⁇ (hereinafter referred to as an inclination angle ⁇ of the imaging device 63).
  • the imaging device 63 directs the imaging surface 63a to the outer peripheral edge ED, and captures an image of the outer peripheral edge ED from the side on which the first sheet piece F1m is bonded in the first optical member bonding body PA1.
  • the inclination angle ⁇ of the imaging device 63 can be set so that the outer peripheral edge of the first substrate P1 constituting the first bonding surface SA1 can be reliably imaged.
  • the liquid crystal panel P is formed by so-called multiple chamfering, in which the mother panel is divided into a plurality of liquid crystal panels, the liquid crystal panel P is shifted to the outer peripheral edge of the first substrate P1 and the second substrate P2 constituting the liquid crystal panel P. May occur, and the end surface of the second substrate P2 may be displaced outward from the end surface of the first substrate P1.
  • the inclination angle ⁇ of the imaging device 63 can be set so that the outer peripheral edge of the second substrate P2 does not enter the imaging field of the imaging device 63.
  • the inclination angle ⁇ of the imaging device 63 is adapted to the distance between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as the height H of the imaging device 63).
  • the height H of the imaging device 63 can be set to.
  • the inclination angle ⁇ of the imaging device 63 can be set to an angle in the range of 5 ° or more and 20 ° or less.
  • the height H of the imaging device 63 and the inclination angle ⁇ of the imaging device 63 can be obtained based on the deviation amount.
  • the height H of the imaging device 63 is set to 78 mm
  • the inclination angle ⁇ of the imaging device 63 is set to 10 °.
  • said numerical value is an example and is not limited to this.
  • the inclination angle ⁇ of the imaging device 63 may be 0 °.
  • FIG. 11 is a schematic diagram showing a modification of the first detection device 61, and is an example in the case where the inclination angle ⁇ of the imaging device 63 is 0 °.
  • each of the imaging device 63 and the illumination light source 64 may be disposed at a position overlapping the outer peripheral edge ED along the normal direction of the first bonding surface SA1.
  • the distance between the first bonding surface SA1 and the center of the imaging surface 63a of the imaging device 63 (hereinafter referred to as the height H1 of the imaging device 63) is easy to detect the outer peripheral edge ED of the first bonding surface SA1.
  • the height H1 of the imaging device 63 can be set in the range of 50 mm or more and 320 mm or less.
  • said numerical value is an example and is not limited to this.
  • the illumination light source 64 is fixed and arranged on the side opposite to the side on which the first sheet piece F1m is bonded in the first optical member bonded body PA1.
  • the illumination light source 64 is arrange
  • the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 are parallel.
  • the illumination light source 64 may be arrange
  • the optical axis of the illumination light source 64 and the normal line of the imaging surface 63a of the imaging device 63 intersect. It may be.
  • FIG. 12 is a plan view showing a position where the outer peripheral edge of the bonding surface is detected.
  • region CA is set on the conveyance path
  • region CA is set in the position corresponding to the outer periphery ED of 1st bonding surface SA1 in the liquid crystal panel P conveyed.
  • the inspection area CA is set at four locations corresponding to the four corners of the first bonding surface SA1 having a rectangular shape in plan view, and the corners of the first bonding surface SA1 are detected as the outer peripheral edge ED. It has a configuration.
  • among the outer peripheral edges of the first bonding surface SA1, the hook-shaped part corresponding to the corner is shown as the outer peripheral edge ED.
  • the first detection device 61 in FIG. 10 detects the outer peripheral edge ED in the four inspection areas CA. Specifically, the imaging device 63 and the illumination light source 64 are arranged in each inspection area CA, and the first detection device 61 has a corner portion of the first bonding surface SA1 for each liquid crystal panel P to be transported. And the outer peripheral edge ED is detected based on the imaging data. Data of the detected outer peripheral edge ED is stored in the control unit 65 shown in FIG.
  • region CA may be arrange
  • the imaging device 63 and the illumination light source 64 are not limited to the configuration arranged in each inspection area CA, and are configured to be able to move along a movement path set along the outer peripheral edge ED of the first bonding surface SA1. It may be.
  • the imaging device 63 and the illumination light source 64 are configured to detect the outer peripheral edge ED when the imaging device 63 and the illumination light source 64 are positioned in each inspection area CA, so that one imaging device 63 and one illumination light source 64 are provided. In this case, the outer periphery ED can be detected.
  • the cutting position for the first sheet piece F1m by the first cutting device 32A is set based on the detection result of the outer peripheral edge ED of the first bonding surface SA1.
  • the control unit 65 shown in FIG. 10 is configured so that the first optical member F11 is outside the liquid crystal panel P (the outside of the first bonding surface SA1) based on the stored data of the outer peripheral edge ED of the first bonding surface SA1. ),
  • the cut position of the first sheet piece F1m can be set so as not to protrude. Further, the setting of the cut position is not necessarily performed by the control unit 65 of the first detection device 61, and may be performed by using a calculation unit separately using the data of the outer peripheral edge ED detected by the first detection device 61. I do not care.
  • the first cutting device 32A cuts the first sheet piece F1m at the cutting position set by the control unit 65.
  • the first cutting device 32 ⁇ / b> A has detected a portion corresponding to the first bonding surface SA ⁇ b> 1 and a surplus portion outside the first sheet piece F ⁇ b> 1 m bonded to the liquid crystal panel P.
  • the first optical member F11 (see FIG. 4) having a size corresponding to the first bonding surface SA1 is cut out along the cutting position set based on the outer peripheral edge ED.
  • 2nd optical member bonding body (secondary bonding body) PA2 by which the 1st optical member F11 was piled up and bonded on the upper surface of liquid crystal panel P is formed.
  • the “part corresponding to the first bonding surface SA1” means that the outer shape of the liquid crystal panel P (contour shape in plan view) is not less than the size of the display area of the liquid crystal panel P facing the first sheet piece F1m. ) And a region that avoids a functional part such as an electric component mounting portion in the liquid crystal panel P.
  • the surplus portion is laser-cut along the outer peripheral edge of the liquid crystal panel P at three sides excluding the functional portion in the liquid crystal panel P having a rectangular shape in plan view, and the liquid crystal panel P at one side corresponding to the functional portion. It is possible to adopt a configuration in which the surplus portion is laser-cut at a position that appropriately enters the display region P4 side from the outer peripheral edge.
  • the first substrate P1 is a TFT substrate
  • FIG. 13 is a schematic diagram of the second detection device 62 that detects the outer peripheral edge of the bonding surface.
  • the 2nd detection apparatus 62 with which the film bonding system 2 of this embodiment is provided is the bonding surface (henceforth the 2nd bonding surface (below) of liquid crystal panel P and 2nd sheet piece F2m in 3rd optical member bonding body PA3.
  • the image pickup device 63 that picks up the image of the outer peripheral edge ED of the bonding surface) SA2), the illumination light source 64 that illuminates the outer peripheral edge ED, and the image picked up by the image pickup device 63 are stored in the image.
  • a control unit 65 that performs calculation for detecting the outer peripheral edge ED.
  • the second detection device 62 has the same configuration as the first detection device 61 described above.
  • Such a second detection device 62 is provided between the second reversing device 31B and the second cutting device 32B on the panel transport upstream side of the second cutting device 32B in FIG.
  • the 2nd detection apparatus 62 detects the outer periphery ED of 2nd bonding surface SA2 similarly to the above-mentioned 1st detection apparatus 61 in the test
  • the cutting position of the second sheet piece F2m by the second cutting device 32B is set based on the detection result of the outer peripheral edge ED of the second bonding surface SA2.
  • control unit 65 shown in FIG. 13 is configured such that the second optical member F12 is outside the liquid crystal panel P (the outside of the second bonding surface SA2) based on the stored data of the outer peripheral edge ED of the second bonding surface SA2. ),
  • the cut position of the second sheet piece F2m can be set so as not to protrude. Further, the setting of the cut position is not necessarily performed by the control unit 65 of the second detection device 62, and may be performed by using a calculation unit separately using the data of the outer peripheral edge ED detected by the second detection device 62. I do not care.
  • the second cutting device 32B cuts the second sheet piece F2m at the cutting position set by the control unit 65.
  • the 2nd cutting device 32B is based on the outer periphery ED by which the part corresponding to 2nd bonding surface SA2 among the 2nd sheet pieces F2m bonded by liquid crystal panel P and the excess part of the outer side were detected. Are cut along the set cutting position, and the second optical member F12 (see FIG. 4) having a size corresponding to the second bonding surface SA2 is cut out. Thereby, 4th optical member bonding body PA4 by which the 2nd optical member F12 was bonded on the upper surface of 3rd optical member bonding body PA3 is formed.
  • the “part corresponding to the second bonding surface SA2” means that the outer shape of the liquid crystal panel P (contour shape in plan view) is not less than the size of the display area of the liquid crystal panel P facing the second sheet piece F2m. ) And a region that avoids a functional part such as an electric component mounting portion in the liquid crystal panel P.
  • the outer periphery of the bonding surface is detected for each of the plurality of liquid crystal panels P using the detection device, and the sheets bonded to the individual liquid crystal panels P based on the detected outer periphery.
  • the cutting position of the piece FXm is set.
  • the CO 2 laser is used as an example of the cutting device 32, but the cutting device 32 is not limited to this. It is also possible to use other cutting means such as a cutting blade as the cutting device 32.
  • a collection device (not shown) disposed at the second collection position 33B holds, for example, an excess portion cut by the second cutting device 32B and peels off from the second optical member F12 formed by the second cutting device 32B. Then, the unnecessary surplus part is collected. 4th optical member bonding body PA4 moves to the direction of the 2nd turning apparatus 35 after the collection process of a surplus part. Note that the recovery device may not be used as long as the cut surplus portion is removed by free fall at the time of cutting by the second cutting device 32B.
  • the 2nd turning apparatus 35 turns 4th optical member bonding body PA4 so that 4th optical member bonding body PA4 carried out from the autoclave apparatus 100 may be conveyed in the direction along the short side of the display area P4.
  • the liquid crystal panel P is carried into the production line (step S11), and dirt such as dust and dust adhering to the surface of the liquid crystal panel P is washed (step S12).
  • the first optical member sheet F1 is cut while being unwound from the original roll R1a, and is larger than the display region P4 (for example, larger than the liquid crystal panel P), the first sheet piece F1m. Form. Then, the 1st sheet piece F1m is bonded together to liquid crystal panel P, and 1st optical member bonding body (primary bonding body) PA1 is formed.
  • 1st optical member bonding body PA1 the outer periphery of the bonding surface of 1st sheet piece F1m and liquid crystal panel P is detected, and the excess part of 1st sheet piece F1m is cut along the detected outer periphery.
  • the 2nd optical member bonding body PA2 is formed.
  • the second optical member sheet F2 is cut while being unwound from the original roll R1b to form a second sheet piece F2m larger than the display region P4 (for example, larger than the liquid crystal panel P), and the second optical member affixed.
  • the third optical member bonded body PA3 is formed by bonding to the combined PA2.
  • 3rd optical member bonding body PA3 the outer periphery of the bonding surface of 2nd sheet piece F2m and liquid crystal panel P is detected, The excess part of 2nd sheet piece F2m is cut along the detected outer periphery. And 4th optical member bonding body PA4 is formed (step S13).
  • steps S14, S15, and S21 to S26 are performed on the obtained fourth optical member bonding body PA4 in the same manner as in the first embodiment.
  • the manufacturing method of the optical member bonding body of this embodiment is performed as mentioned above.
  • the manufacturing method of the optical member bonding body as described above as in the first embodiment, it is possible to detect defects with accuracy without excess or deficiency on actual use, and stable manufacturing without impairing the manufacturing yield.
  • a manufacturing method of a possible optical member pasting object is provided.
  • liquid crystal panel P and 2nd optical making the produced 1st sheet piece F1m and 2nd sheet piece F2m peel from the separator sheet F3a.
  • the bonding apparatus the produced first sheet piece F1m and the second sheet piece F2m are attached and held, and have a bonding head that is transported and bonded onto the liquid crystal panel P or the second optical member bonding body PA2. It doesn't matter.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Textile Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Polarising Elements (AREA)

Abstract

 光学部材貼合体の製造方法は、帯状の光学部材シートを原反ロールから巻き出し、光学部材シートを切断して得られる複数の光学部材を、複数の光学表示部品に貼合して、複数の光学部材貼合体を形成する光学部材貼合体形成工程(S13)と、複数の光学部材貼合体を加熱加圧処理する第1オートクレーブ処理工程(S14)と、第1オートクレーブ処理工程(S14)を経た複数の光学部材貼合体のそれぞれについて、欠陥を検査する検査工程(S21)と、検査工程(S21)で検出された不良品について加熱加圧処理する第2オートクレーブ処理工程(S22)と、を有し、光学部材貼合体形成工程(S13)と第1オートクレーブ処理工程(S14)とを、連続した製造ラインにおいて行い、第2オートクレーブ処理工程(S22)を、製造ラインとは分離して行う。

Description

光学部材貼合体の製造方法
 本発明は、光学部材貼合体の製造方法に関する。
 本願は、2013年8月30日に、日本に出願された特願2013-180591号に基づき優先権を主張し、その内容をここに援用する。
 液晶パネル(光学表示部品)に偏光板(光学部材)を貼合する方式として、RTP(Roll to Panel)方式と呼ばれる貼合方式が知られている(例えば、特許文献1参照)。この貼合方式は、原反ロールから巻き出された長尺状の偏光板を所定サイズにカットし、ライン上を搬送される液晶パネルに直接貼合するものである。
 液晶パネルに偏光板を貼合する際には、稼動設備からの発塵や作業者に起因して発生する塵埃等が、液晶パネルと偏光板との間に貼合異物として入り込む等の不良が発生することがある。このような不良品は、製造ライン外に搬出された製造物を検査することにより検出することができるが、この方法では、不良品の検査位置が製造ラインと分離しており、不良品の発生から不良品の検出までにタイムラグを生じる。そのため、不良品の発生後、ライン停止や原因除去などの対策が遅れる結果、不良品を検出するまでに不良品を発生させ続けることとなり、相当数の不良品を発生させ、製造ラインの歩留りを低下させるという課題がある。
 そのため、特許文献1の生産システムでは、製造ライン上に光学式自動検査装置(Automatic Optical Inspection)を設置し、ライン上を搬送されてくる貼合体の欠陥を順次自動検査するようにしている。このような欠陥検査装置としては、透過型や反射型などの種々の欠陥検査装置が知られており、欠陥の種類に応じてこれらの欠陥検査装置が適宜選択して使用される。特許文献1の生産システムにおいては、製造ライン上に欠陥検査装置を設置しているので、上述のようなタイムラグは発生せず、製造歩留りが改善される。
日本国特許第4669070号公報
 現在市販されている欠陥検査装置を用いた自動検査では、目視検査と比較して、不良品を良品と判定する「見逃し」が発生しやすい。通常は、欠陥検査装置において良否判定の閾値を厳しく設定し、見逃しの発生を抑制している。しかし、それでも欠陥検査装置を用いた自動検査においては、見逃しが発生する場合がある。そのため、欠陥検出の精度を高めるための抜本的な改善策が求められている。
 本発明は、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法を提供する。
 本発明の一態様は、光学表示部品に光学部材が貼合された光学部材貼合体の製造方法であって、帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数の前記光学部材を、複数の前記光学表示部品に貼合して、複数の前記光学部材貼合体を形成する光学部材貼合体形成工程と、複数の前記光学部材貼合体を加熱加圧処理する第1オートクレーブ処理工程と、前記第1オートクレーブ処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を検査する検査工程と、前記検査工程で検出された不良品について加熱加圧処理する第2オートクレーブ処理工程と、を有し、前記光学部材貼合体形成工程と前記第1オートクレーブ処理工程とを、連続した製造ラインにおいて行い、前記第2オートクレーブ処理工程を、前記製造ラインとは分離して行う光学部材貼合体の製造方法を提供する。
 また、本発明の一態様は、光学表示部品に光学部材が貼合された光学部材貼合体の製造方法であって、帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数のシート片を、複数の前記光学表示部品に貼合して、複数の貼合体を形成する貼合体形成工程と、前記貼合体において、前記シート片と前記光学表示部品との貼合面の外周縁を検出する検出工程と、前記貼合体において、前記光学表示部品に貼合された前記シート片から前記貼合面に対応する部分の外側に配置された余剰部分を、前記外周縁に沿って切り離し、前記貼合面に対応する大きさの前記光学部材を含む前記光学部材貼合体を形成する光学部材貼合体形成工程と、複数の前記光学部材貼合体を加熱加圧処理する第1オートクレーブ処理工程と、前記第1オートクレーブ処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を光学的に検査する検査工程と、前記検査工程で検出された不良品について加熱加圧処理する第2オートクレーブ処理工程と、を有し、前記光学部材貼合体形成工程と前記第1オートクレーブ処理工程とを、連続した製造ラインにおいて行い、前記第2オートクレーブ処理工程を、前記製造ラインとは分離して行う光学部材貼合体の製造方法を提供する。
 本発明の一態様においては、前記検出工程では、複数の前記光学表示部品ごとに、前記シート片と前記光学表示部品との貼合面の外周縁を検出する製造方法としてもよい。
 本発明の一態様においては、前記第1オートクレーブ処理工程においては、前記光学部材貼合体形成工程を経て順次搬送される複数の前記光学部材貼合体を複数の処理ラインに分配し、前記処理ライン毎に加熱加圧処理を行う製造方法としてもよい。
 本発明の一態様においては、前記第2オートクレーブ処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を目視検査する第1目視検査工程と、前記第1目視検査工程で検出された第1目視検査不良品について、前記第1目視検査不良品が有する欠陥の状態に応じて、前記第1目視検査不良品から前記光学部材を剥離して前記光学表示部品を露出させ、露出させた前記光学表示部品の面に、あらかじめ用意された新たな前記光学部材を貼合して、新たな前記光学部材貼合体を形成するリワーク処理工程と、を有し、前記第1目視検査工程と前記リワーク処理工程とを、前記製造ラインとは分離して行う製造方法としてもよい。
 本発明の一態様においては、前記リワーク処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を目視検査する第2目視検査工程を有し、前記第2目視検査工程を、前記製造ラインとは分離して行う製造方法としてもよい。
 本発明の一態様においては、前記第2目視検査工程で検出された第2目視検査不良品について、再び前記第2オートクレーブ処理工程を施す製造方法としてもよい。
 本発明の一態様においては、前記検査工程では、前記製造ラインに配置された自動検査装置を用いて、前記欠陥を光学的に自動検査する製造方法としてもよい。
 本発明の一態様においては、前記検査工程では、欠陥を目視検査する製造方法としてもよい。
 また、本発明の一態様は、原反ロールからの帯状の光学部材シートを切断して得られるシート片を光学表示部品に貼合する貼合装置を有し、複数の貼合体を形成する貼合体形成装置と、前記貼合体形成装置からの前記複数の貼合体をオートクレーブ処理する第1オートクレーブ装置であり、前記貼合装置と前記第1オートクレーブ装置とが連続した製造ライン上に配される、前記第1オートクレーブ装置と、前記第1オートクレーブ装置からの前記複数の貼合体のそれぞれについて欠陥を光学的に検査する検査装置と、前記製造ラインから分けて配され、前記検査装置を用いて判定された不良品をオートクレーブ処理する第2オートクレーブ装置と、を備える、光学部材貼合体の生産システムを提供する。
 本発明によれば、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法を提供することができる。
第1実施形態で用いるフィルム貼合システムについての概略構成図である。 フィルム貼合システムが有する第1反転装置についての説明図である。 液晶パネルの平面図である。 図3におけるIV-IV断面図である。 光学部材シートの部分断面図である。 2回実施するAC処理について効果を確認した実験結果を示す図である。 2回のAC処理間の時間に対する効果を確認した実験結果を示す図である。 第1実施形態における光学部材貼合体の製造方法についての説明図である。 第2実施形態で用いるフィルム貼合システムについての概略構成図である。 貼合面の外周縁を検出する第1検出装置の模式図である。 第1検出装置の変形例を示す模式図である。 貼合面の外周縁を検出する位置を示す平面図である。 貼合面の外周縁を検出する第2検出装置の模式図である。
 以下、本発明の実施形態に係る光学部材貼合体の製造方法について説明する。図1,2は、本実施形態に係る光学部材貼合体の製造方法の実施に用いられる光学部材貼合体の生産システムを示す説明図である。図1は、光学部材貼合体の生産システムの一部を構成するフィルム貼合システム1についての概略構成図である。図1では、図示都合上、フィルム貼合システム1を上下二段に分けて記載している。図2は、フィルム貼合システム1が有する第1反転装置15についての説明図である。
 フィルム貼合システム1は、例えば液晶パネルや有機ELパネルといったパネル状の光学表示部品に、偏光フィルムや反射防止フィルム、光拡散フィルムといったフィルム状の光学部材を貼合し、光学部材貼合体を製造するシステムである。フィルム貼合システム1は、光学表示部品及び光学部材を含んだ光学表示デバイスを生産する生産システムの一部として構成される。フィルム貼合システム1では、光学表示部品として液晶パネルPを用いている。
 以下の説明においては、まず、フィルム貼合システム1において用いられる液晶パネルPについて説明した上で、フィルム貼合システム1について詳細に説明する。
(液晶パネル)
 図3は、液晶パネルPの平面図である。液晶パネルPは、平面視で長方形状を有する第1基板P1と、第1基板P1に対向して配置される比較的小型の長方形状を有する第2基板P2と、第1基板P1と第2基板P2との間に封入された液晶層P3と、を備える。液晶パネルPは、平面視で第1基板P1の外形状に沿う長方形状を有し、平面視で液晶層P3の外周の内側に収まる領域である表示領域P4を有する。
 図4は図3のIV-IV断面図である。液晶パネルPの表面及び裏面には、長尺帯状の第1光学部材シートF1及び長尺帯状の第2光学部材シートF2(図1参照)から切り出した第1光学部材F11及び第2光学部材F12が適宜貼合される。以下の説明においては、第1光学部材シートF1及び第2光学部材シートF2を「光学部材シートFX」と総称することがある。また、第1光学部材F11及び第2光学部材F12を「光学部材F1X」と総称することがある。
 本実施形態では、液晶パネルPの両面(バックライト側の面及び表示面側の面)には、偏光フィルムとしての第1光学部材F11及び第2光学部材F12がそれぞれ貼合される。なお、液晶パネルPのバックライト側の面に、第1光学部材F11に重ねて輝度向上フィルムとしての第3光学部材がさらに貼合されていてもよい。
 図5は、光学部材シートFXの部分断面図である。光学部材シートFXは、フィルム状の光学部材本体F1aと、光学部材本体F1aの第1面(図5では上面)に設けられた粘着層F2aと、粘着層F2aを介して光学部材本体F1aの第1面に分離可能に積層されたセパレータシートF3aと、光学部材本体F1aの第2面(図5では下面)に積層された表面保護フィルムF4aと、を有する。以下、光学部材シートFXからセパレータシートF3aを除いた部分を貼合シートF5という。なお、図示都合上、図5の各層のハッチングは省略する。
 光学部材本体F1aは、シート状の偏光子F6と、偏光子F6の第1面に接着剤等で接合される第1フィルムF7と、偏光子F6の第2面に接着剤等で接合される第2フィルムF8と、を有する。第1フィルムF7及び第2フィルムF8は、例えば偏光子F6を保護する保護フィルムである。
 光学部材本体F1aは、一層の光学層を有する単層構造でもよく、複数の光学層が互いに積層された積層構造でもよい。光学層は、偏光子F6の他に、位相差フィルムや輝度向上フィルム等でもよい。第1フィルムF7と第2フィルムF8の少なくとも一方は、液晶表示素子の最外面を保護するハードコート処理やアンチグレア処理を含む防眩などの効果が得られる表面処理が施されてもよい。光学部材本体F1aは、第1フィルムF7と第2フィルムF8の少なくとも一方を含まなくてもよい。例えば第1フィルムF7を省略した場合、セパレータシートF3aを偏光子F6の第1面に粘着層F2aを介して分離可能に積層することとしてもよい。
 光学部材本体F1aは、所定長さに切出された後に、液晶パネルPの表示領域P4の全域と表示領域P4の周辺領域とにわたって貼合される。その際、光学部材本体F1aから切り出されるシート片には、粘着層F2aを同じ所定長さに切り出して得られるシート片が残され、光学部材本体F1aのシート片は、粘着層F2aのシート片を介して液晶パネルPに貼合される。
 セパレータシートF3aは、セパレータシートF3aが粘着層F2aから分離されるまでの間に粘着層F2a及び光学部材本体F1aを保護する。
 表面保護フィルムF4aは、光学部材本体F1aと共に切出され液晶パネルPに貼合される。表面保護フィルムF4aは、光学部材本体F1aに対して液晶パネルPと反対側に配置されて光学部材本体F1aを保護する。表面保護フィルムF4aは、所定のタイミングで光学部材本体F1aから分離される。なお、光学部材シートFXが表面保護フィルムF4aを含まない構成であってもよい。表面保護フィルムF4aが光学部材本体F1aから分離されない構成であってもよい。
 このような光学部材シートFXからは、後述するように製造ライン内で貼合シートF5を切断することで、光学部材F1Xが形成される。
(フィルム貼合システム)
 以下、図1,2を参照してフィルム貼合システム1について説明する。図中右側は液晶パネルPの搬送方向上流側(以下、パネル搬送上流側という)を示す。図中左側は液晶パネルPの搬送方向下流側(以下、パネル搬送下流側という)を示す。
 フィルム貼合システム1は、貼合工程の始発位置から終着位置まで、例えば駆動式のローラコンベヤ5を用いて液晶パネルPを搬送しつつ、液晶パネルPに順次所定の処理を施す。液晶パネルPは、その表裏面を水平にした状態でローラコンベヤ5上を搬送される。
 以下の説明においては、貼合工程の始発位置から終着位置まで、液晶パネルPに対し流れ作業で行う処理全体を「製造ライン」と称することがある。製造ラインは、主としてローラコンベヤ5上で行われる流れ作業のことを指し、製造ラインで行われる作業を「製造ライン内」の作業と称する。本実施形態においては、製造ラインには、貼合工程の上流側に設けられた液晶パネルPの洗浄処理(不図示)を含む。
 また、貼合工程の始発位置から終着位置までに、ローラコンベヤ5上を搬送される液晶パネルPを取り出し、ローラコンベヤ5とは異なる位置において液晶パネルPに対する処理を行った後に、処理された液晶パネルPをローラコンベヤ5に戻すような場合も、流れ作業によどみを生じさせないならば、製造ラインの一部として扱う。
 また、ローラコンベヤ5上での流れ作業とは分離して行われる作業を「製造ライン外」の作業と称する。製造ライン外では、ローラコンベヤ5の搬送速度に関わらず、必要な時間をかけて作業を行うことができる。
 ローラコンベヤ5は、後に詳述する第1反転装置15を境に、上流側コンベヤ6と下流側コンベヤ7とに分かれる。液晶パネルPは、例えば上流側コンベヤ6では表示領域P4の短辺を搬送方向に沿わせた向きで搬送され、下流側コンベヤ7では表示領域P4の長辺を搬送方向に沿わせた向きで搬送される。この液晶パネルPの表面及び裏面に対して、帯状の光学部材シートFXを切断して得られる光学部材が貼合される。フィルム貼合システム1の各部は、電子制御装置としての制御部20により統括制御される。
 フィルム貼合システム1は、上流工程の終着位置まで搬送された液晶パネルPを吸着して上流側コンベヤ6の始発位置まで搬送すると共に液晶パネルPのアライメントを行う第1吸着装置11と、始発位置よりもパネル搬送下流側に設けられる第1集塵装置12と、第1集塵装置12よりもパネル搬送下流側に設けられる第1貼合装置13と、第1貼合装置13よりもパネル搬送下流側に設けられる第1ズレ検査装置14と、第1ズレ検査装置14よりもパネル搬送下流側に設けられて上流側コンベヤ6の終着位置に達した液晶パネルPを下流側コンベヤ7の始発位置まで搬送する第1反転装置15と、を備えている。
 また、フィルム貼合システム1は、下流側コンベヤ7の始発位置よりもパネル搬送下流側に設けられる第2集塵装置16と、第2集塵装置16よりもパネル搬送下流側に設けられる第2貼合装置17と、第2貼合装置17よりもパネル搬送下流側に設けられる第2ズレ検査装置18と、第2ズレ検査装置18よりもパネル搬送下流側に設けられるオートクレーブ装置100と、オートクレーブ装置100よりもパネル搬送下流側に設けられる第2反転装置19と、を備えている。
(第1吸着装置)
 第1吸着装置11は、液晶パネルPを保持して垂直方向及び水平方向で自在に搬送すると共に液晶パネルPのアライメントを行うパネル保持部11aと、例えばパネル保持部11aに設けられて液晶パネルPのアライメント基準を検出するアライメントカメラ11bと、を有する。
 パネル保持部11aは、上流工程の終着位置に運ばれた液晶パネルPの上面を真空吸着によって保持すると共に、この液晶パネルPを貼合工程(上流側コンベヤ6)の始発位置へ水平状態のまま搬送し、その位置で吸着を解除して液晶パネルPを上流側コンベヤ6に受け渡す。
 アライメントカメラ11bは、例えばパネル保持部11aが保持した液晶パネルPを上流側コンベヤ6上に載置する際、液晶パネルPのアライメントマークや先端形状等を撮像する。アライメントカメラ11bの撮像データは制御部20に送信され、この撮像データに基づき制御部20がパネル保持部11aを作動させる。これにより、上流側コンベヤ6に対する液晶パネルPのアライメントが行われる。このとき、液晶パネルPは、上流側コンベヤ6に対して、搬送方向と直交する水平方向(コンベヤ幅方向)での位置決めと、垂直軸回りの回転方向での位置決めとが行われる。
(第1集塵装置)
 第1集塵装置12は、第1貼合装置13の貼合位置に近接してそのパネル搬送上流側に設けられる。第1集塵装置12は、貼合位置に導入される直前の液晶パネルPの下面側の静電気の除去及び集塵を行う。
(第1貼合装置)
 第1貼合装置13は、第1光学部材シートF1が巻回された原反ロールR1aから第1光学部材シートF1を巻き出しつつ第1光学部材シートF1の長手方向に沿って第1光学部材シートF1を搬送する搬送装置22と、搬送装置22が第1光学部材シートF1から分離させた光学部材を上流側コンベヤ6が搬送する液晶パネルPの下面に貼合する挟圧ロール23と、を備える。
 本実施形態においては、第1光学部材シートF1は、液晶パネルPの幅に対応した幅を有するように構成されている。「液晶パネルPの幅に対応する幅を有する」とは、第1光学部材シートF1をシート幅方向にハーフカットして得られる貼合シートのシート片が、液晶パネルPの表示領域P4の大きさ以上で、且つ、そのシート片が貼合される液晶パネルPの基板の大きさ(その基板において電子部品取付部などの機能部分を除く大きさ)以下の大きさとなるようなものをいう。
 具体的には、第1光学部材シートF1の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の長辺と同じかそれよりも広く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の長辺と対応する辺と同じかそれよりも狭い。第1貼合装置13は、第1光学部材シートF1の貼合シートF5を、液晶パネルPの表示領域P4の短辺と同じかそれよりも長く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の短辺と対応する辺と同じかそれよりも短い長さでカットして貼合シートF5のシート片を形成し、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットされた貼合シートF5のシート片の貼合を行う。
 第1貼合装置13において作製される「貼合シートF5のシート片」は、液晶パネルPに貼合される光学部材に該当する。上述のようにして作製される光学部材は、周縁部が、液晶パネルPに重ねたとき額縁部Gに収まるような大きさとなる。
 搬送装置22は、セパレータシートF3aをキャリアとして貼合シートF5を搬送するように構成される。搬送装置22は、帯状の第1光学部材シートF1を巻回した原反ロールR1aを保持すると共に第1光学部材シートF1の長手方向に沿って第1光学部材シートF1を繰り出すロール保持部22aと、原反ロールR1aから巻き出した第1光学部材シートF1を所定の搬送経路に沿って案内するために第1光学部材シートF1を巻きかける複数のガイドローラ22bと、搬送経路上の第1光学部材シートF1にハーフカットを施す切断装置22cと、ハーフカットを施した第1光学部材シートF1を鋭角に巻きかけてセパレータシートF3aから光学部材を分離させつつ、この光学部材を貼合位置に供給するナイフエッジ22dと、ナイフエッジ22dを経て単独となったセパレータシートF3aを巻き取るセパレータロールR2を保持する巻き取り部22eと、を有する。
 本実施形態において「ハーフカット」とは、第1光学部材シートF1の搬送中に働くテンションによってセパレータシートF3aが破断せずセパレータシートF3aが所定の厚さだけ残るように、セパレータシートF3aとは反対側から粘着層F2aとセパレータシートF3aとの境界面の近傍まで第1光学部材シートF1に切り込みを入れることを指す。切り込みの形成には、切断刃やレーザー装置を用いることができる。
 搬送装置22の始点に位置するロール保持部22aと搬送装置22の終点に位置する巻き取り部22eとは、例えば互いに同期して駆動する。これにより、ロール保持部22aが第1光学部材シートF1の搬送方向へ第1光学部材シートF1を繰り出しつつ、巻き取り部22eがナイフエッジ22dを経たセパレータシートF3aを巻き取る。以下、搬送装置22における第1光学部材シートF1(セパレータシートF3a)の搬送方向上流側をシート搬送上流側、搬送方向下流側をシート搬送下流側という。
 各ガイドローラ22bは、搬送中の第1光学部材シートF1の進行方向を搬送経路に沿って変化させる。複数のガイドローラ22bの少なくとも一部は、搬送中の第1光学部材シートF1のテンションを調整するために移動可能である。
 切断装置22cは、第1光学部材シートF1が所定長さ繰り出された際、第1光学部材シートF1の長手方向と直交する幅方向の全幅にわたって、第1光学部材シートF1の厚さ方向の一部を切断する(ハーフカットを施す)。
 切断装置22cは、第1光学部材シートF1の搬送中に働くテンションによって第1光学部材シートF1(セパレータシートF3a)が破断しないように(所定の厚さがセパレータシートF3aに残るように)、切断刃の進退位置を調整し、粘着層F2aとセパレータシートF3aとの界面の近傍までハーフカットを施す。
 ハーフカット後の第1光学部材シートF1には、第1光学部材シートF1の厚さ方向で貼合シートF5が切断されることにより、第1光学部材シートF1の幅方向の全幅にわたる切込線が形成される。切込線は、帯状の第1光学部材シートF1の長手方向で複数並ぶように形成される。例えば同一サイズの液晶パネルPを搬送する貼合工程の場合、複数の切り込み線は第1光学部材シートF1の長手方向で等間隔に形成される。第1光学部材シートF1は、複数の切込線によって長手方向で複数の区画に分けられる。第1光学部材シートF1における長手方向で隣り合う一対の切込線に挟まれる区画は、それぞれ貼合シートF5における一つのシート片とされる。
 ナイフエッジ22dは、上流側コンベヤ6の下方に配置されて第1光学部材シートF1の幅方向で少なくとも第1光学部材シートF1の全幅にわたって延在する。ナイフエッジ22dは、ハーフカット後の第1光学部材シートF1のセパレータシートF3aに摺接するように第1光学部材シートF1を巻きかける。
 ナイフエッジ22dは、第1光学部材シートF1の幅方向(上流側コンベヤ6の幅方向)から見て伏せた姿勢に(すなわち、液晶パネルPの搬送方向に対して所定の角度を有するように)配置される第1面と、第1面の上方で第1光学部材シートF1の幅方向から見て第1面に対して鋭角に配置される第2面と、第1面及び第2面が交わる先端部と、を有する。
 ナイフエッジ22dは、ナイフエッジ22dの先端部に第1光学部材シートF1を鋭角に巻きかける。第1光学部材シートF1は、ナイフエッジ22dの先端部で鋭角に折り返す際、セパレータシートF3aから貼合シートF5のシート片(光学部材)を分離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送上流側に近接して配置される。ナイフエッジ22dによりセパレータシートF3aから分離した光学部材は、上流側コンベヤ6が搬送する液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。
 挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23aを有する。一対の貼合ローラ23a間には所定の間隙が形成され、この間隙内が第1貼合装置13の貼合位置となる。その間隙内には、液晶パネルP及び光学部材が重なり合って導入される。これら液晶パネルP及び光学部材が、一対の貼合ローラ23aに挟圧されつつパネル搬送下流側に送り出される。これにより、液晶パネルPの下面に光学部材が一体的に貼合される。以下、この貼合後のパネルを片面貼合パネル(光学部材貼合体)P11という。
(第1ズレ検査装置)
 第1ズレ検査装置14は、片面貼合パネルP11における第1貼合装置13で貼合した光学部材の液晶パネルPに対する位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第1ズレ検査装置14は、例えば片面貼合パネルP11のパネル搬送上流側における光学部材の端縁及びパネル搬送下流側における光学部材の端縁を撮像する一対のカメラ14aを有する。各カメラ14aによる撮像データは制御部20に送信され、この撮像データに基づき光学部材及び液晶パネルPの相対位置が適正か否かが判定される。その相対位置が適正ではないと判定された片面貼合パネルP11は、不図示の払い出し手段によりシステム外(製造ライン外)に排出される。
(第1反転装置)
 図2に示す第1反転装置15は、例えば液晶パネルPの搬送方向に対して平面視で45°に傾斜した回動軸15aと、回動軸15aを介して上流側コンベヤ6の終着位置及び下流側コンベヤ7の始発位置の間に支持される反転アーム15bと、を有する。反転アーム15bは、第1ズレ検査装置14を経て上流側コンベヤ6の終着位置に達した片面貼合パネルP11を吸着や挟持等により保持し、回動軸15a回りに180°回動する。これにより、反転アーム15bは、片面貼合パネルP11の表裏を反転させると共に、例えば表示領域P4の短辺と平行に搬送されていた片面貼合パネルP11を表示領域P4の長辺と平行に搬送されるように方向転換させる。
 上記反転は、液晶パネルPの表面に貼合される光学部材FIXの偏光軸方向と、液晶パネルPの裏面に貼合される各光学部材F1Xの偏光軸方向とを互いに直角に配置するような場合に行われる。上流側コンベヤ6及び下流側コンベヤ7は、共に図の右側から左側へ向う方向を液晶パネルPの搬送方向とするが、第1反転装置15を経由することで、上流側コンベヤ6及び下流側コンベヤ7が平面視で所定量オフセットする。
 単に液晶パネルPの表裏を反転させる場合には、例えば搬送方向と平行な回動軸を有する反転アームを有する反転装置を用いればよい。この場合、第1貼合装置13のシート搬送方向と第2貼合装置17のシート搬送方向とを平面視で互いに直角にして配置すれば、液晶パネルPの表面及び裏面に互いに偏光軸方向を直角にした光学部材F1Xを貼合できる。
 反転アーム15bは、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有する。第1反転装置15には、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ15cが設けられる。
(第2集塵装置)
 図1にもどって、第2集塵装置16は、第2貼合装置17の貼合位置に近接して第2貼合装置17のパネル搬送上流側に設けられる。第2集塵装置16は、貼合位置に導入される直前の片面貼合パネルP11の下面側の静電気の除去及び集塵を行う。
(第2貼合装置)
 第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。第2貼合装置17においては、貼合位置に導入された片面貼合パネルP11の下面に対して、第2光学部材シートF2を所定サイズにカットして形成される光学部材の貼合を行う。
 本実施形態においては、上述した第1光学部材シートF1と同様に、第2光学部材シートF2は、液晶パネルPの幅に対応した幅を有するように構成されている。具体的には、第2光学部材シートF2の幅(短手方向の長さ)が、液晶パネルPの表示領域P4の短辺と同じかそれよりも広く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の短辺と対応する辺と同じかそれよりも狭い。第2貼合装置17は、第2光学部材シートF2の貼合シートF5を、液晶パネルPの表示領域P4の長辺と同じかそれよりも長く、且つシート片が貼合される液晶パネルPの基板において表示領域P4の長辺と対応する辺と同じかそれよりも短い長さでカットして貼合シートF5のシート片を形成し、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5のシート片の貼合を行う。
 第2貼合装置17において作製される「貼合シートF5のシート片」は、液晶パネルPに貼合される光学部材に該当する。上述のようにして作製される光学部材は、周縁部が、液晶パネルPに重ねたとき額縁部Gに収まるような大きさとなる。
 挟圧ロール23の一対の貼合ローラ23a間の間隙内(第2貼合装置17の貼合位置)には、片面貼合パネルP11及び光学部材が重なり合った状態で導入され、片面貼合パネルP11の下面に光学部材が一体的に貼合される。以下、この貼合後のパネルを両面貼合パネル(光学部材貼合体)P12という。
 第2ズレ検査装置18は、両面貼合パネルP12における第2貼合装置17で貼合した光学部材の液晶パネルPに対する位置が適正か否か(位置ズレが公差範囲内にあるか否か)を検査する。第2ズレ検査装置18は、例えば両面貼合パネルP12のパネル搬送上流側における光学部材の端縁及び下流側における光学部材の端縁を撮像する一対のカメラ18aを有する。各カメラ18aによる撮像データは制御部20に送信され、この撮像データに基づき光学部材及び液晶パネルPの相対位置が適正か否かが判定される。その相対位置が適正ではないと判定された両面貼合パネルP12は、不図示の払い出し手段によりシステム外に排出される。
(オートクレーブ装置)
 オートクレーブ装置100は、第2ズレ検査装置18を経た両面貼合パネルP12に加熱加圧処理(オートクレーブ処理、第1オートクレーブ処理)を施す。オートクレーブ装置100は、チャンバー101を有する。チャンバー101には、複数枚積み上げた両面貼合パネルP12がまとめて搬入される。複数枚の両面貼合パネルP12に対してチャンバー101内で加熱加圧処理が施される。
 本明細書において「オートクレーブ処理」とは、被処理品である不良品を、大気圧よりも高い加圧環境下において室温よりも高い温度に曝し、一定時間保持することを指す。処理条件は、一例として、0.294MPa以上0.785MPa以下(3kgf/cm以上8kgf/cm以下)の圧力条件において、40℃以上80℃以下の温度条件で30秒以上25分以下の保持時間とすることが挙げられる。
 圧力条件は、例えば0.392MPa以上(4kgf/cm以上)かつ0.588MPa以下(6kgf/cm以下)にできる。
 温度条件は、例えば50℃以上かつ70℃以下にできる。
 保持時間は、例えば1分以上かつ5分以下にできる。
 処理条件の上限値および下限値は、それぞれ任意に組み合わせることができる。なお、上記の数値は一例であり、これに限定されない。
 また、「保持時間」とは、チャンバー101内が圧力および温度の設定値以上となった後、圧力および温度のいずれか一方が設定値を下回るまで、の時間を指す。そのため、圧力および温度のいずれか一方または両方について変動したとしても、圧力および温度が設定値以上であれば、その条件での処理時間は保持時間に含まれる。
 オートクレーブ装置100では、まず、順次搬送されてくる両面貼合パネルP12を、チャンバー101の上流側の位置102に配置された不図示の積み上げ部で所定の枚数積み上げる。積み上げ部では、すでにチャンバー101に搬入された両面貼合パネルP12に対してチャンバー101でオートクレーブ処理を行う間に、所定枚数の積み上げが行われる。そのため、積み上げ部は、オートクレーブ処理中に両面貼合パネルP12の搬送が滞らないようにするためのバッファーとして機能する。
 次いで、積み上げた複数枚数の両面貼合パネルP12をまとめてチャンバー101内に搬入し、オートクレーブ処理を行う。
 オートクレーブ処理を行うことが可能な最長時間は、製造ラインにおける両面貼合パネルP12の搬送速度と、積み上げ部における積み上げ枚数により規定される。例えば、両面貼合パネルP12が10秒ごとに積み上げ部に搬入され、積み上げ部で両面貼合パネルP12を20枚積み上げる場合、積み上げ部からチャンバー101に向けて200秒ごとに20枚の両面貼合パネルP12が搬入される。このような場合には、チャンバー101では、昇温昇圧や、降温降圧の時間を含めて最長200秒間オートクレーブ処理を行うことができる。なお、上記の数値は一例であり、これに限定されない。
 次いで、チャンバー101の下流側の位置103に配置された不図示の積み下ろし部において、チャンバー101から搬出された複数枚の両面貼合パネルP12を1枚ずつ積み下ろし、下流側に搬送する。積み下ろし部では、積み上げ部における両面貼合パネルP12の積み上げと同等以上の速度で両面貼合パネルP12の積み下ろしを行うことで、両面貼合パネルP12の搬送が滞らないようにする。
 第2ズレ検査装置18の下流側において、下流側コンベヤ7を複数に分岐させて複数の処理ラインとし、分岐された下流側コンベヤ7毎(処理ライン毎)にオートクレーブ装置100を配置することで、オートクレーブ処理を並列処理するように構成してもよい。オートクレーブ処理を並列処理する場合、各オートクレーブ装置における処理可能時間を長くすることができる。
 オートクレーブ装置100におけるオートクレーブ処理により、オートクレーブ装置100に搬入される両面貼合パネルP12のうち欠陥を含む一部の両面貼合パネルP12については、後述するように欠陥を消失させることができる。オートクレーブ処理で消失しなかった欠陥は、検査工程において検出される。
 ここで、本実施形態の光学部材貼合体の製造方法において、検査工程における検査対象である「欠陥」とは、両面貼合パネルP12の表示領域に存在する光学的に検査可能な不具合であって、両面貼合パネルP12を用いて製造される表示装置において表示不良を引き起こすものを指す。
 このような欠陥としては、(1)液晶パネルP自身が有する欠陥、(2)光学部材自身が有する欠陥、(3)液晶パネルPと光学部材との貼合面に生じる欠陥、が挙げられる。
 「(1)液晶パネルP自身が有する欠陥」としては、例えば、液晶パネルPの液晶配向膜の乱れにより、液晶パネルPの液晶が設計通りに配向していないことが挙げられる。液晶パネルPがこのような欠陥を有する場合、例えば、一対の偏光板が正確にクロスニコルに貼合され、液晶パネルPをノーマリーブラックに設計しても、両面貼合パネルP12の一方側から光を照射すると、光漏れを生じるため、欠陥を輝点として確認できる。また、液晶パネルPが搬送中に損傷しているような場合も、(1)液晶パネルP自身が有する欠陥として挙げられる。
 「(2)光学部材自身が有する欠陥」としては、光学部材F1Xの表面に形成された傷やへこみなどの変形を挙げることができる。このような欠陥があると、液晶パネルPを介して射出される光に、変形部分で屈折や散乱を生じるため、変形が無い他の部分と輝度が異なることから、輝度差を利用して検査可能となる。
 「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」としては、液晶パネルPと光学部材との貼合面に、塵やほこり(以下、「異物」と総称する)を挟み込むことによる欠陥や、貼合面に空気を挟み込み気泡が形成されることによる欠陥が挙げられる。貼合面とは、図4に示す液晶パネルPと第1光学部材F11との貼合面、および液晶パネルPと第2光学部材F12との貼合面のことである。このような欠陥があると、液晶パネルPを介して射出される光に、欠陥部分で屈折や散乱を生じるため、欠陥が無い他の部分と輝度が異なることから、輝度差を利用して検査可能となる。
 両面貼合パネルP12に対してオートクレーブ処理を施すと、両面貼合パネルP12が有する欠陥が、「(2)光学部材自身が有する欠陥」のうち、光学部材自身の小さな変形や、「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」のうち、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって微小な物である場合、その欠陥が消失することが期待できる。
 すなわち、欠陥が光学部材自身の小さな変形である場合には、オートクレーブ処理を施すと、熱により光学部材が軟化して変形しやすくなる。これにより、欠陥の原因となっている小さな変形が消失することが期待できる。
 また、欠陥が貼合面に空気を挟み込み生じた気泡である場合には、熱および圧力により、光学部材が有する粘着層F2a(図5参照)のシート片における空気の飽和溶解度が増加するため、気泡を形成する空気が粘着層F2aのシート片に溶け込む。これにより気泡が消失することが期待できる。
 さらに、粘着層F2aのシート片に溶解した空気は、粘着層F2aのシート片内に拡散するため、オートクレーブ処理の後に不良品を大気圧下常温に戻したとしても、消失した気泡があった位置に再度空気が凝集して気泡が再生することはないと期待できる。
 オートクレーブ処理で消失すると期待される欠陥は、検査工程で発見しにくいものが多い。このため、このような微細な欠陥を有する両面貼合パネルP12を検査工程に導入すると、良品が不良品として判定される「虚報」や、不良品が良品として判定される「見逃し」を生じやすい。そのため、オートクレーブ処理によりこのような欠陥を消失させることで、後述の検査工程での検査結果が安定しやすくなる。
 それに対して、両面貼合パネルP12が有する欠陥が、液晶パネルPの損傷など「(1)液晶パネルP自身が有する欠陥」、「(2)光学部材自身が有する欠陥」のうち光学部材自身の大きな変形、及び「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」のうち液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって大きな物、または貼合面に異物を挟み込み生じた欠陥、の少なくとも1つである場合には、オートクレーブ処理で、欠陥が消失しないと予想される。
 しかし、オートクレーブ処理で消失しない欠陥は、検査工程で発見しやすいため、検査工程での虚報や見逃しを生じにくい。そのため、後述の検査工程での検査結果が安定しやすくなる。
(第2反転装置)
 第2反転装置19は、オートクレーブ装置100から搬出された両面貼合パネルP12の表裏を反転させる。第2反転装置19に搬送されてくる両面貼合パネルP12は、第1反転装置15を経ることでバックライト側が上向きになっているが、第2反転装置19により、フィルム貼合システム1への搬入時と同様に液晶パネルPの表示面側が上向きとなる。
 第2反転装置19を経た両面貼合パネルP12は、下流側コンベヤ7によって下流側に搬送され、フィルム貼合システム1の製造ラインから搬出される。
(欠陥検査・検査工程)
 本実施形態においては、製造ラインから搬出された両面貼合パネルP12について、オフラインで目視により欠陥の有無を全数検査する。目視検査は、複数の検査員により分担して行うことができる。
 目視検査される両面貼合パネルP12については、製造ライン内のオートクレーブ装置100によりオートクレーブ処理が行われている。このため、オートクレーブ処理で消失しないような大きな欠陥のみを検査対象とすることができる。そのため、欠陥の検出が容易となり、欠陥検査の結果が安定する。
 目視検査(検査部120)において検査され、欠陥が見つからなかった両面貼合パネルP12については、完成品の両面貼合パネルP12として、次の工程に搬出される。
 目視検査において欠陥が見つかった両面貼合パネルP12(不良品)については、製造ライン外において、オートクレーブ装置(第2オートクレーブ装置)110を用いて、再度オートクレーブ処理(第2オートクレーブ処理)が施される。第1オートクレーブ処理により不良品の数が減少するため、第2オートクレーブ処理は十分な時間をかけて実施することができる。
 製造ラインから搬出された両面貼合パネルP12については、すでに製造ライン内のオートクレーブ装置100で第1オートクレーブ処理を施している。そのため、第2オートクレーブ処理の処理条件が、第1オートクレーブ処理の処理条件よりも緩やかな条件である場合には、欠陥が消失しにくいと考えられる。
 したがって、第2オートクレーブ処理は、第1オートクレーブ処理の処理条件よりも厳しい条件で行うことができる。第2オートクレーブ処理においては、温度や圧力の設定値を第1オートクレーブ処理における設定値よりも高く設定することも可能であるが、こうした設定は液晶パネルPの破損を招く可能性がある。そのため、例えば、第2オートクレーブ処理では、オートクレーブ処理における保持時間を第1オートクレーブ処理よりも長く設定する。これにより、第1オートクレーブ処理の処理条件よりも厳しい条件で第2オートクレーブ処理を行うことができる。
 第2オートクレーブ処理の処理条件は、一例として、0.294MPa以上0.785MPa以下(3kgf/cm以上8kgf/cm以下)の圧力条件において、40℃以上80℃以下の温度条件で30秒以上25分以下の保持時間とすることが挙げられる。
 処理条件の別のレンジとして、圧力条件は、例えば0.392MPa以上(4kgf/cm以上)かつ0.588MPa以下(6kgf/cm以下)にできる。
 温度条件は、例えば50℃以上かつ70℃以下にできる。
 保持時間は、例えば1分以上かつ5分以下にできる。
 処理条件の上限値および下限値は、それぞれ任意に組み合わせることができる。
 一例として、第1オートクレーブ処理の圧力と第2オートクレーブ処理の圧力とを0.5MPaに設定し、第1オートクレーブ処理の温度と第2オートクレーブ処理の温度とを60℃に設定し、第1オートクレーブ処理の保持時間を30秒に設定し、かつ第2オートクレーブ処理の保持時間を1分に設定できる。この場合、圧力の設定値は第1オートクレーブ処理と第2オートクレーブ処理とで同じであり、温度の設定値は第1オートクレーブ処理と第2オートクレーブ処理とで同じであり、かつ第2オートクレーブ処理の保持時間は第1オートクレーブ処理の保持時間よりも長い。したがって、液晶パネルPの破損を回避するとともに、欠陥を効果的に消失させることができる。
 なお、上記の数値は一例であり、これに限定されない。
 図6は、オートクレーブ処理を2回行うことについての効果を確認した実験結果を示す散布図である。図6において、気泡が原因の欠陥を有する両面貼合パネルP12について、オートクレーブ処理を施したときの気泡の大きさの変化が示されている。図では、横軸にサンプル番号を示し、縦軸に、各サンプルが有する気泡の大きさ(単位:μm)を示している。
 図6に示した実験において、1回目のオートクレーブ処理(図では1stAC処理と記載)の条件は、温度50℃、圧力5kgf/cm(490.35kPa)で2分間の加熱加圧である。2分間という処理時間は、インラインでのオートクレーブ処理時間に対応する時間として設定している。
 2回目のオートクレーブ処理(図では2ndAC処理と記載)の条件は、温度50℃、圧力5kgf/cm(490.35kPa)で20分間の加熱加圧である。20分間という処理時間は、オフラインでのオートクレーブ処理時間に対応する時間として設定している。
 図6に示すように、サンプル番号14までの両面貼合パネルP12については、1回目のオートクレーブ処理後に気泡の大きさが0μmであり、すなわち1回目のオートクレーブ処理によって気泡が消失した。
 また、サンプル番号15~19のものは、1回目のオートクレーブ処理後、気泡は小さくなったが残存した。その後、2回目のオートクレーブ処理で、サンプル番号15,16,19のものについては、気泡が消失した。
 すなわち、インラインのオートクレーブ処理(1stAC処理)においては消失しない欠陥も、オフラインのオートクレーブ処理(2ndAC処理)によって消失させることができる。
 発明者の検討により、フィルム貼合システム1と同様の装置において、オートクレーブ装置100に導入する前の両面貼合パネルP12については、2500μm程度の大きさまでの欠陥が全体の89%を占め、3000μm程度の大きさまでの欠陥が全体の93%を占めているという統計データが得られている。
 図6に示した確認実験では、1stAC処理でサンプル番号14(2800μm程度の気泡)まで欠陥が消失していることから、上記データと照らし合わせると、欠陥の90%近くを1回目のオートクレーブ処理で消失させることが可能であると言える。残る10%程度の欠陥については、十分な時間をかけて2回目のオートクレーブ処理を行い、消失を図ることができる。そのため、2回のオートクレーブ処理を行うことにより、欠陥の大半を消失させることができる。
 図7は、1回目のオートクレーブ処理と2回目のオートクレーブ処理との間の時間を変更したときの、オートクレーブ処理の効果を確認した実験結果を示す図である。図7(a)は、1回目のオートクレーブ処理と2回目のオートクレーブ処理との間を18時間としたときの実験結果である。図7(b)は、1回目のオートクレーブ処理と2回目のオートクレーブ処理との間を36時間としたときの実験結果である。
 図7では、各オートクレーブ処理後に欠陥が消失したサンプルについて、「OK」と表記した欄にサンプル数を記載し、各オートクレーブ処理後に欠陥が消失しなかったサンプルについて、「NG」と表記した欄にサンプル数を記載している。また、欠陥除去率(%)は、総サンプル数に対する、各オートクレーブ処理後の「OK」サンプル数の割合を示している。
 図7に示すように、1回目のオートクレーブ処理から2回目のオートクレーブ処理までの時間が長くなると、欠陥除去率が低下している。従って、2回目のオートクレーブ処理は、1回目のオートクレーブ処理からなるべく時間を空けずに実施することが好ましい。
 例えば、2回目のオートクレーブ処理を行う対象となる不良品は、数が少ない。従って、オートクレーブ装置で処理可能な上限数が溜まるまで2回目のオートクレーブ処理を保留しておくと、2回目のオートクレーブ処理の効果が低下するおそれがある。
 そのため、2回目のオートクレーブ処理は、(1)オートクレーブ装置で処理可能な上限数が溜まったとき、(2)1回目のオートクレーブ処理から一定時間経過したとき(例えば、1回目のオートクレーブ後24時間経過したとき)、というように2つの基準を設けて、実施をすることができる。
 なお、上記の数値は一例であり、これに限定されない。
 このようなオートクレーブ処理で消失すると期待される欠陥は、検査工程で発見しにくいものが多い。そのため、このような微細な欠陥を有する両面貼合パネルP12を検査工程に導入すると、虚報や見逃しを生じやすい。オートクレーブ処理によりこのような欠陥を消失させることで、検査結果が安定しやすくなる。
 それに対して、両面貼合パネルP12が有する欠陥が、液晶パネルPの損傷など「(1)液晶パネルP自身が有する欠陥」、「(2)光学部材自身が有する欠陥」のうち光学部材自身の大きな変形、「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」、のうち液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって大きな物、または貼合面に異物を挟み込み生じた欠陥である場合には、オートクレーブ処理で、欠陥が消失しないと予想される。
 しかし、このようにオートクレーブ処理で消失しない欠陥については、検査工程で発見しやすいものが多いため、検査工程での虚報や見逃しを生じにくい。そのため、後述の検査工程での検査結果が安定しやすくなる。
(欠陥検査)
 本実施形態においては、第2オートクレーブ処理を施した両面貼合パネルP12について、オフラインで目視により欠陥の有無を検査する。目視検査される両面貼合パネルP12については、第1オートクレーブ処理および第2オートクレーブ処理が行われている。そのため、これら2回のオートクレーブ処理で消失しないような大きな欠陥についてのみ検査対象とすることができる。その結果、検査員の負担が軽減するとともに欠陥の検出が容易となり、欠陥検査の結果が安定する。
 目視検査において検査され、欠陥が見つからなかった両面貼合パネルP12については、完成品の両面貼合パネルP12として、次の工程に搬出される。
 また、目視検査において欠陥が見つかった両面貼合パネルP12(不良品)については、欠陥の種類や状態を確認し、後段の処理を施すことにより欠陥を消失させることが可能か否かの判断がなされる。
(リワーク処理)
 不良品が有する欠陥が、「(2)光学部材自身が有する欠陥」のうち、光学部材自身の大きな変形や、「(3)液晶パネルPと光学部材との貼合面に生じる欠陥」のうち、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって大きな物である場合、また貼合面に異物を挟み込み生じた欠陥である場合、液晶パネルP自身には欠陥が無いと判断することができる。
 しかし、このような不良品は、すでに2回のオートクレーブ処理を施していることから、重ねてオートクレーブ処理を施しても欠陥を消失させることが困難、または欠陥が消失しないと予想される。そのため、上述のような欠陥が見つかった不良品については、不良品から光学部材を剥離して液晶パネルPを露出させ、露出させた液晶パネルPに新たなシート片を貼合して、新たな両面貼合パネルP12を形成するリワーク処理を施す。
 この際、両面貼合パネルP12に対しオートクレーブ処理を施さない場合と比べると、不良品の数が減少するため、余裕をもってリワーク処理を実施することができる。
 また、不良品が有する欠陥が、液晶パネルPの損傷など「(1)液晶パネルP自身が有する欠陥」であり、上記オートクレーブ処理でもリワーク処理でも再生不能と判断する場合には、不良品を廃棄する。
 このようなリワーク処理工程は、上述の製造ラインとは分離して行われる(オフライン処理)。そのため、リワーク処理に十分な時間をかけることができ、廃棄品の低減が期待できる。
 リワーク処理工程を経た両面貼合パネルP12については、上述の製造ラインとは分離した目視検査(第2目視検査工程)において欠陥の有無が検査される。欠陥が見つからなければ、完成品の両面貼合パネルP12として、次の工程に搬出される。
 また、第2目視検査工程において欠陥が見つかり不良品として判定されたものについては、再度上述の第2オートクレーブ処理工程に戻し、オートクレーブ処理を施した後、再生を試みる。
(光学部材貼合体の製造方法)
 図8は、本実施形態における光学部材貼合体の製造方法についての説明図であり、上述した製造工程を示したフロー図である。以下、図1で示した符号を適宜使用して製造フローを説明する。
 フロー図においては、符号S1で示された処理は、製造ライン内で行われる処理を示し、符号S2で示された処理は、製造ライン外で行われる処理を示す。
(光学部材貼合体形成工程)
 まず、両面貼合パネルP12の製造において、製造ラインに液晶パネルPを搬入し(ステップS11)、液晶パネルPの表面に付着した塵やほこりなどの汚れを洗浄する(ステップS12)。
 次いで、上述のフィルム貼合システム1にて、第1光学部材シートF1および第2光学部材シートF2をそれぞれ原反ロールR1a,R1bから巻き出しつつ、第1光学部材シートF1および第2光学部材シートF2をそれぞれ表示領域P4の長辺または短辺に対応した長さにカットして、第1光学部材F11および第2光学部材F12を形成する。ここで、「表示領域P4の長辺または短辺に対応した長さにカットする」とは、カットして得られたシート片の大きさが液晶パネルPの表示領域P4の大きさ以上で、且つ、そのシート片が貼合される光学表示部品の基板の大きさ(その基板において電子部品取付部などの機能部分を除く大きさ)以下の大きさとなるように、表示領域P4の長辺の長さまたは短辺の長さ以上で、且つ、シート片が貼合される液晶パネルPの基板の辺に対応する長さ以下の長さでカットすることを意味する。
 その後、第1光学部材F11を液晶パネルPの第1面に、第2光学部材F12を液晶パネルPの第2面に貼り合わせて両面貼合パネルP12を形成する(ステップS13)。
(第1オートクレーブ処理工程)
 その後、得られた両面貼合パネルP12について、製造ライン内(インライン)でオートクレーブ処理を行う(ステップS14)。
 その後、得られた両面貼合パネルP12については、製造ラインから搬出される(ステップS15)。
(目視検査工程)
 製造ラインから搬出された両面貼合パネルP12については、製造ライン外(オフライン)で欠陥の目視検査を行う(ステップS21)。目視検査の結果、良品と判定された両面貼合パネルP12については、例えば、複数枚をまとめた上で、次工程に向けて搬出する。
(第2オートクレーブ処理工程)
 一方、目視検査の結果、欠陥を有する不良品と判定された両面貼合パネルP12は、製造ライン外(オフライン)で、オートクレーブ処理を行う(ステップS22)。
(第1目視検査工程)
 第2オートクレーブ処理が施された両面貼合パネルP12については、製造ライン外(オフライン)で、欠陥の目視検査を行う(ステップS23)。目視検査の結果、良品と判定された両面貼合パネルP12については、複数枚をまとめた上で、次工程に向けて搬出する。
(リワーク処理工程)
 一方、目視検査の結果、欠陥を有する不良品と判定された両面貼合パネルP12については、見つかった欠陥の種類や状態を確認し、後段の処理を施すことにより欠陥を消失させることが可能か否かの判断を行う(ステップS24)。
 不良品の欠陥が、光学部材自身の変形や、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡や異物である場合、リワーク処理を施す(ステップS25)。リワーク処理を施す不良品が有する欠陥としては、光学部材自身の小さな変形や、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって微小な物(欠陥・小)、または光学部材自身の大きな変形や、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって大きな物(欠陥・中)が挙げられる。
 不良品の欠陥が、光学部材自身の小さな変形や、液晶パネルPと光学部材との貼合面に空気を挟み込み生じた気泡であって微小な物であっても、両面貼合パネルP12は、すでに2回のオートクレーブ処理を行った後であるため、重ねてオートクレーブ処理を行うことなく、「欠陥・中」のものと共にリワーク処理を行う(フロー図では「欠陥・小中」と表記)。
 また、不良品が有する欠陥が、液晶パネルPの損傷など、上記リワーク処理でも再生不能なもの(フロー図では「欠陥・大」と表記)であると判断する場合には、廃棄する。
 次いで、オートクレーブ処理またはリワーク処理を施した両面貼合パネルP12について、欠陥の目視検査を行う(第2目視検査工程、ステップS26)。
 欠陥が見つからなければ、完成品の両面貼合パネルP12として、次の工程に搬出される。欠陥が見つかり不良品として判定されたものについては、再度ステップS22に戻し、オフライン処理を経ることで再生を試みる。
 本実施形態の光学部材貼合体の製造方法は、以上のようにして行う。
 以上のような光学部材貼合体の製造方法によれば、ライン上を搬送されてくる光学部材貼合体がすべて第1オートクレーブ処理される。そのため、人間では気付きにくい微細な欠陥であって、オートクレーブ処理によって消失する欠陥を有する光学部材貼合体については、欠陥が消失し良品とすることができ、歩留まりが向上する。
 また、第1オートクレーブ処理後の検査で不良品と判定された光学部材貼合体は、オフラインで第2オートクレーブ処理されるようにしている。そのため、第1オートクレーブ処理では消失しなかった欠陥であっても、第2オートクレーブ処理によって消失させることができ、歩留まりが向上する。
 また、オートクレーブ処理により、光学部材自身の変形を解消し、光学部材貼合体の欠陥を消失させることができる。光学部材自身が欠陥の原因となるような変形部分を有している場合であっても、欠陥の無い光学部材貼合体とすることができる。そのため、光学部材歩留まりが向上し、その結果、光学部材貼合体の歩留まりを向上させることができる。
 また、製造ライン外で行う検査員による目視検査は、市販の光学式自動検査装置で欠陥検査を行う場合に比べて、オーバーキルになるおそれが少なく、欠陥検査の精度が実使用に即した適切な水準に保たれる。さらに、光学部材貼合体の形成時に有していた欠陥のうち、多くの欠陥が上記第1オートクレーブ処理および第2オートクレーブ処理により消失するため、不良品の数が減少し、目視検査の工程負荷を低減させることができる。
 さらに、オートクレーブ処理により微細な欠陥を消失させることにより、目視検査では主に判定しやすい大きな欠陥の検出を行えばよく、実使用の上で過不足の無い精度での欠陥検出が容易となる。
 本実施形態では、貼合装置(第1貼合装置13及び/又は第2貼合装置17)とオートクレーブ装置(第1オートクレーブ装置)100とが連続した製造ライン(同一製造ライン)上に配される。また、製造ラインから分けて配されたオートクレーブ装置(第2オートクレーブ装置)110により、検査装置(目視欠陥検査、自動検査装置)120を用いて判定された不良品がオートクレーブ処理される。すなわち、光学部材貼合体形成工程と第1オートクレーブ処理工程とが連続した製造ライン上において行われ、第2オートクレーブ処理工程が製造ラインとは分離した状態で行われる。例えば、貼合システム1において、製造ラインの搬送系を少なくとも部分的に用いて貼合装置13/17及びオートクレーブ装置100に処理対象物が搬送され、その製造ラインの搬送系とは実質的に別の搬送系を用いてオートクレーブ装置110に処理対象物が搬送される。よって、本実施形態の光学部材貼合体の製造方法によれば、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法が提供される。
 なお、この発明は上記実施形態に限られるものではない。例えば、上記の実施形態では液晶パネルに偏光フィルムを貼合する場合について説明したが、光学部材が貼り付けられる光学表示部品は液晶パネルに限られず、有機ELパネルに適用できる。貼合される光学部材としては偏光フィルムに限られず、反射防止フィルム、光拡散フィルムなどにも適用できる。
 また、本実施形態においては、第2目視検査工程で検出された不良品について、再び第2オートクレーブ処理工程以降のオフライン処理を施すこととしたが、オフライン処理におけるオートクレーブ処理工程を複数回経由すると、熱履歴が多くなり、光学部材貼合体の品質が低下しやすい。そのため、第2目視検査工程で検出された不良品については、廃棄することとしても構わない。
 しかし、歩留まりの改善という観点からは、廃棄品は少ない方がよいため、例えば、第2オートクレーブ処理工程について施すことができる上限回数を予め設定しておき、設定回数だけ第2オートクレーブ処理工程を通過した不良品については廃棄するという運用としておくとよい。
 また、本実施形態においては、第1オートクレーブ処理後の欠陥検査が、オフラインでの目視欠陥検査であることとしたが、これに限らない。例えば、図1におけるフィルム貼合システム1において、第2反転装置19の下流側に、光学式自動検査装置を設置し、ライン上を搬送されてくる貼合体の欠陥を順次自動検査することとしてもよい。すなわち、製造ライン上で自動欠陥検査を行うこととしてもよい。
 このような光学式自動検査装置としては、例えば、両面貼合パネルP12の下面側(バックライト側)から光を当てながら、上面側(表示面側)からカメラで撮像し、この撮像データに基づき両面貼合パネルP12の欠陥の有無を自動検査するような構成のものを採用することができる。また、光学式自動検査装置としては、他にも、欠陥について光学的に自動検査できるものであれば用いることができる。
[第2実施形態]
 図9は、本実施形態に係る光学部材貼合体の製造方法の実施に用いられる他の光学部材貼合体の生産システムを示す説明図である。図9は、光学部材貼合体の生産システムの一部を構成するフィルム貼合システム2についての概略構成図であり、図1に対応する図である。図9では、図示都合上、フィルム貼合システム2を上下二段に分けて記載している。以下の説明においては、上述した説明と共通する内容については、詳細な説明を省略する。
 図9に示すフィルム貼合システム2では、帯状の第1光学部材シートF1の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の長辺よりも広い。また、帯状の第2光学部材シートF2の幅(短手方向の長さ)は、液晶パネルPの表示領域P4の短辺よりも広い。
 このようなフィルム貼合システム2では、帯状の第1光学部材シートF1の貼合シートF5を、液晶パネルPの表示領域P4の短辺よりも長い長さで切出して第1シート片F1mを作製し、ローラコンベヤ5を用いた液晶パネルPの搬送中に、液晶パネルPに貼合する。同様に、帯状の第2光学部材シートF2の貼合シートF5を、液晶パネルPの表示領域P4の長辺よりも長い長さで切出して第2シート片F2mを作製し、ローラコンベヤ5を用いた液晶パネルPの搬送中に、液晶パネルPに貼合する。以下の説明においては、第1シート片F1m及び第2シート片F2mを「シート片FXm」と総称することがある。
 その後、液晶パネルPに貼合された時に液晶パネルPの表示領域P4の外側に位置する第1シート片F1mの余剰部分を第1シート片F1mから切り離すことにより第1光学部材F11を形成する。また、液晶パネルPに貼合された時に液晶パネルPの表示領域P4の外側に位置する第2シート片F2mの余剰部分を第2シート片F2mから切り離すことにより第2光学部材F12を形成する。フィルム貼合システム2の各部は、不図示の制御部により統括制御される。
 フィルム貼合システム2は、前段工程の搬出端に搬送された液晶パネルPを吸着して上流側コンベヤ6の搬入端に搬送すると共に液晶パネルPのアライメント(位置決め)を行う第1吸着装置11と、第1吸着装置11のパネル搬送下流側に設けられる第1集塵装置12と、第1集塵装置12よりもパネル搬送下流側に設けられる第1貼合装置13と、第1貼合装置13よりもパネル搬送下流側に配置される第1反転装置31Aと、第1反転装置31Aよりもパネル搬送下流側に配置される第1切断装置32Aと、第1切断装置32Aよりもパネル搬送下流側の第1回収位置33Aに配置される回収装置(不図示)と、回収装置よりもパネル搬送下流側に配置される第1旋回装置34と、を備えている。
 また、フィルム貼合システム2は、下流側コンベヤ7の搬入端よりもパネル搬送下流側に配置される第2集塵装置16と、第2集塵装置16よりもパネル搬送下流側に配置される第2貼合装置17と、第2貼合装置17よりもパネル搬送下流側に配置される第2反転装置31Bと、第2反転装置31Bよりもパネル搬送下流側に配置される第2切断装置32Bと、第2切断装置32Bよりもパネル搬送下流側の第2回収位置33Bに配置される回収装置(不図示)と、回収装置よりもパネル搬送下流側に配置されるオートクレーブ装置100と、オートクレーブ装置100よりもパネル搬送下流側に配置される第2旋回装置35と、を備えている。
 詳しくは後述するが、第1切断装置32Aのパネル搬送上流側には、第1切断装置32Aにおけるカット位置を設定するために用いる検出装置が設けられる。第2切断装置32Bのパネル搬送上流側には、第2切断装置32Bにおけるカット位置を設定するために用いる検出装置が設けられている。
(第1貼合装置)
 第1貼合装置13は、貼合位置に導入された液晶パネルPの下面に対して、所定サイズにカットした貼合シートF5のシート片(第1シート片F1m)の貼合を行う。
 第1貼合装置13は、第1光学部材シートF1が巻回された原反ロールR1aから第1光学部材シートF1を巻き出しつつ第1光学部材シートF1をその長手方向に沿って搬送する搬送装置22と、搬送装置22が第1光学部材シートF1から分離させた第1シート片F1mを上流側コンベヤ6により搬送される液晶パネルPの下面に貼合する挟圧ロール23と、を備えている。
 搬送装置22は、セパレータシートF3aをキャリアとして貼合シートF5を搬送するように構成される。搬送装置22は、ロール保持部22aと、複数のガイドローラ22bと、搬送経路上の第1光学部材シートF1にハーフカットを施す切断装置22cと、ハーフカットを施した第1光学部材シートF1を鋭角に巻きかけてセパレータシートF3aから第1シート片F1mを剥離させつつ第1シート片F1mを貼合位置に供給するナイフエッジ22dと、巻き取り部22eと、を有する。
 第1光学部材シートF1は、その搬送方向と直交する水平方向(シート幅方向)で、平面視における液晶パネルPの幅よりも広い幅を有している。
 切断装置22cは、第1光学部材シートF1がシート幅方向と直交する長さ方向で表示領域P4の長さ(表示領域P4の長辺と短辺のうちいずれかの長さ、本実施形態では表示領域P4の短辺長さに相当)よりも長い長さが繰り出される毎に、シート幅方向に沿って全幅にわたって、第1光学部材シートF1に対してハーフカットを施す。これにより、第1光学部材シートF1が有する貼合シートF5から、液晶パネルPの表示領域P4よりも大きい第1シート片F1mが形成される。
 ハーフカット後の第1光学部材シートF1には、第1光学部材シートF1の幅方向の全幅にわたり、厚さ方向で少なくとも光学部材本体F1a及び表面保護フィルムF4aが切断された切込線が形成される。切込線は、帯状の第1光学部材シートF1の長手方向で表示領域P4の短辺長さ相当の長さを有する間隔に形成される。複数の切込線により、第1光学部材シートF1は、長手方向で複数の区画に分けられる。第1光学部材シートF1において、長手方向で隣り合う一対の切込線に挟まれる区画部分それぞれが、第1シート片F1mとなる。
 第1シート片F1mの大きさは、例えば液晶パネルPよりも大きくできる。なお、第1シート片F1mにおいて、液晶パネルPの外側にはみ出る部分の大きさ(第1シート片F1mの余剰部分の大きさ)は、液晶パネルPのサイズに応じて適宜設定される。例えば、第1シート片F1mを5インチ~10インチの中小型サイズの液晶パネルPに適用する場合は、第1シート片F1mの各辺において第1シート片F1mの一辺と液晶パネルPの一辺との間の間隔を2mm~5mmの範囲の長さに設定する。
 なお、上記の数値は一例であり、これに限定されない。
 ナイフエッジ22dは、上流側コンベヤ6の下方に配置されて第1光学部材シートF1の幅方向で少なくともその全幅に渡って延在する。ハーフカット後の第1光学部材シートF1のセパレータシートF3a側がナイフエッジ22dに摺接するように、第1光学部材シートF1がナイフエッジ22dに巻きかけられる。
 第1光学部材シートF1は、ナイフエッジ22dの先端部で鋭角に折れ曲がるようにして進行方向が変化する際に、第1シート片F1mからセパレータシートF3aを剥離させる。ナイフエッジ22dの先端部は、挟圧ロール23のパネル搬送上流側に近接配置され、ナイフエッジ22dによりセパレータシートF3aから剥離した第1シート片F1mは、上流側コンベヤ6によって搬送される液晶パネルPの下面に重なりつつ、挟圧ロール23の一対の貼合ローラ23a間に導入される。
 挟圧ロール23は、互いに軸方向を平行にして配置された一対の貼合ローラ23aを有する。一対の貼合ローラ23a間には所定の間隙が形成され、この間隙の位置が第1貼合装置13の貼合位置となる。一対の貼合ローラ23aの間隙に、液晶パネルP及び第1シート片F1mが重なり合って導入され、これら液晶パネルP及び第1シート片F1mが、一対の貼合ローラ23aに挟圧されつつパネル搬送下流側に送り出される。これにより、液晶パネルPの下面に第1シート片F1mが一体的に貼合されて、第1光学部材貼合体(貼合体)PA1となる。
(第1反転装置)
 第1反転装置31Aは、第1光学部材貼合体PA1を第1切断装置32Aの切断位置へ搬送するとともに、この搬送時に第1光学部材貼合体PA1の表裏を反転し、液晶パネルPの第1シート片F1mが貼合された面を上面とした状態で第1切断装置32Aに受け渡す。
(第1切断装置)
 第1切断装置32Aは、液晶パネルPに貼合された第1シート片F1mから液晶パネルPと第1シート片F1mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第1シート片F1mとの貼合面に対応する大きさの第1光学部材F11(図4参照)を形成する。第1切断装置32Aにより第1光学部材貼合体PA1から第1シート片F1mの余剰部分が切り離されることにより、液晶パネルPの表面又は裏面に第1光学部材F11が貼合された第2光学部材貼合体PA2が形成される。
 第1切断装置32Aの構成について、詳しくは後述する。
(回収装置)
 第1回収位置33Aに配置される不図示の回収装置は、例えば、第1切断装置32Aによって切断された余剰部分を保持し、第1切断装置32Aで形成された第1光学部材F11から剥離して、不要となった余剰部分を回収する。余剰部分の回収処理後、第2光学部材貼合体PA2は第1旋回装置34の方向に移動する。なお、切断された余剰部分が、第1切断装置32Aによる切断時に自由落下して除去されるようであれば、回収装置は用いなくてもよい。
(第1旋回装置)
 第1旋回装置34は、第1切断装置32Aを経て上流側コンベヤ6の搬出端に達した第2光学部材貼合体PA2を吸着あるいは挟持することにより保持し、第2光学部材貼合体PA2が表示領域P4の長辺に沿う方向に搬送されるように、第2光学部材貼合体PA2を旋回させる。これにより、第2光学部材貼合体PA2における、液晶パネルPの表面に貼合される偏光フィルムの偏光軸と、裏面に貼合される偏光フィルムの偏光軸とが互いに直角となる。
 ここで、第1旋回装置34は、第1吸着装置11のアライメントカメラ11bと同様のアライメントカメラ34cを備えており、第1吸着装置11のパネル保持部11aと同様のアライメント機能を有している。
(第2貼合装置)
 第2貼合装置17は、貼合位置に導入された第2光学部材貼合体PA2の下面に対して、所定サイズにカットされた貼合シートF5のシート片(第2シート片F2m)の貼合を行う。第2貼合装置17は、第1貼合装置13と同様の搬送装置22及び挟圧ロール23を備えている。
 第2貼合装置17の切断装置22cは、この第2貼合装置17で用いる第2光学部材シートF2がシート幅方向と直交する長さ方向で表示領域P4の長さ(表示領域P4の長辺と短辺のうちいずれかの長さ、本実施形態では表示領域P4の長辺長さに相当)よりも長い長さが繰り出される毎に、シート幅方向に沿って全幅にわたって、第2光学部材シートF2に対してハーフカットを施す。これにより、第2光学部材シートF2が有する貼合シートF5から、液晶パネルPの表示領域P4よりも大きい第2シート片F2mが形成される。
 ハーフカット後の第2光学部材シートF2には、帯状の第2光学部材シートF2の長手方向で表示領域P4の長辺長さ相当の長さを有する間隔で、切込線が形成される。複数の切込線により、第2光学部材シートF2は、長手方向で複数の区画に分けられる。第2光学部材シートF2において、長手方向で隣り合う一対の切込線に挟まれる区画部分それぞれが、第2シート片F2mとなる。
 第2シート片F2mの大きさは、例えば液晶パネルPよりも大きくできる。なお、第2シート片F2mにおいて、液晶パネルPの外側にはみ出る部分の大きさ(第2シート片F2mの余剰部分の大きさ)は、液晶パネルPのサイズに応じて適宜設定される。例えば、第2シート片F2mを5インチ~10インチの中小型サイズの液晶パネルPに適用する場合は、第2シート片F2mの各辺において第2シート片F2mの一辺と液晶パネルPの一辺との間の間隔を2mm~5mmの範囲の長さに設定する。
 なお、上記の数値は一例であり、これに限定されない。
 挟圧ロール23は、互いに軸方向を平行にして配置される一対の貼合ローラ23aを有し、一対の貼合ローラ23a間には所定の間隙が形成され、この間隙の位置が第2貼合装置17の貼合位置となる。間隙内には、第2光学部材貼合体PA2及び第2シート片F2mが重なり合った状態で導入され、これら第2光学部材貼合体PA2及び第2シート片F2mが、一対の貼合ローラ23aに挟圧されつつパネル搬送下流側に送り出される。これにより、第2光学部材貼合体PA2の面(第2光学部材貼合体PA2の第1光学部材F11が貼合された面とは反対側の面)に第2シート片F2mが一体的に貼合され、第3光学部材貼合体(貼合体)PA3となる。
(第2反転装置)
 第2反転装置31Bは、第3光学部材貼合体PA3を第2切断装置32Bの切断位置へ搬送するとともに、この搬送時に第3光学部材貼合体PA3の表裏を反転し、液晶パネルPの第2シート片F2mが貼合された面を上面とした状態で第2切断装置32Bに受け渡す。
(第2切断装置)
 第2切断装置32Bは、第3光学部材貼合体PA3に貼合された第2シート片F2mから液晶パネルPと第2シート片F2mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第2シート片F2mとの貼合面に対応する大きさの第2光学部材F12(図4参照)を形成する。第2切断装置32Bにより第3光学部材貼合体PA3から第2シート片F2mの余剰部分が切り離されることにより、液晶パネルPの第2面(表面又は裏面)に第2光学部材F12が貼合され、且つ、液晶パネルPの第1面(表面又は裏面)に第1光学部材F11が貼合された第4光学部材貼合体(光学部材貼合体)PA4が形成される。
 ここで、第1切断装置32Aおよび第2切断装置32Bは、例えばCOレーザーカッターである。第1切断装置32Aによって、第1シート片F1mから、液晶パネルPと第1シート片F1mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第1シート片F1mとの貼合面に対応する大きさの第1光学部材F11を形成する。第2切断装置32Bによって、第2シート片F2mから、液晶パネルPと第2シート片F2mとの貼合面に対応する部分の外側に配置された余剰部分を切り離し、液晶パネルPと第2シート片F2mとの貼合面に対応する大きさの第2光学部材F12を形成する。
 切断装置32(第1切断装置32A及び第2切断装置32Bを「切断装置32」と総称することがある)は、後述する検出装置で検出された、液晶パネルPと、液晶パネルPに貼合されたシート片FXmと、の貼合面の外周縁に沿って、液晶パネルPに貼合されたシート片FXmを無端状に切断する。表示領域P4の外側には、液晶パネルPの第1及び第2基板P1,P2を接合するシール剤等を配置する所定幅の額縁部G(図4参照)が設けられており、額縁部Gの幅内で切断装置32によるシート片FXmの切断が行われる。
 このような、貼合面の外周縁の検出および切断装置による切断は、詳しくは以下のようにして行う。
 図10は、貼合面の外周縁を検出する第1検出装置61の模式図である。本実施形態のフィルム貼合システム2が備える第1検出装置61は、第1光学部材貼合体PA1における、液晶パネルPと第1シート片F1mとの貼合面(以下、第1貼合面(貼合面)SA1と称することがある。)の外周縁ED(液晶パネルPとシート片FXmとが貼合されている領域の外周縁の少なくとも一部分)の画像を撮像する撮像装置63と、外周縁EDを照明する照明光源64と、撮像装置63で撮像した画像の記憶や、画像に基づいて外周縁EDを検出するための演算を行う制御部65と、を有する。
 このような第1検出装置61は、図9における第1切断装置32Aのパネル搬送上流側であって、第1反転装置31Aと第1切断装置32Aとの間に設けられている。
 撮像装置63は、外周縁EDよりも第1貼合面SA1の内側に固定して配置されており、第1貼合面SA1の法線と、撮像装置63の撮像面63aの法線とが、角度θ(以下、撮像装置63の傾斜角度θと称する)をなすように傾斜した姿勢となっている。撮像装置63は、撮像面63aを外周縁EDに向け、第1光学部材貼合体PA1において第1シート片F1mが貼合された側から外周縁EDの画像を撮像する。
 撮像装置63の傾斜角度θは、第1貼合面SA1を構成する第1基板P1の外周縁を確実に撮像できるように設定することができる。例えば、液晶パネルPが、マザーパネルを複数枚の液晶パネルに分割する、いわゆる多面取りで形成されている場合、液晶パネルPを構成する第1基板P1と第2基板P2との外周縁にずれが生じ、第2基板P2の端面が第1基板P1の端面よりも外側にずれることがある。このような場合、撮像装置63の傾斜角度θは、撮像装置63の撮像視野内に第2基板P2の外周縁が入り込まないように設定することができる。
 このような場合、撮像装置63の傾斜角度θは、第1貼合面SA1と撮像装置63の撮像面63aの中心との間の距離(以下、撮像装置63の高さHと称する)に適合するように設定できる。例えば、撮像装置63の高さHが50mm以上100mm以下の場合、撮像装置63の傾斜角度θは、5°以上20°以下の範囲の角度に設定できる。ただし、経験的にずれ量が分かっている場合には、そのずれ量に基づいて撮像装置63の高さH及び撮像装置63の傾斜角度θを求めることができる。本実施形態では、撮像装置63の高さHが78mm、撮像装置63の傾斜角度θが10°に設定されている。
 なお、上記の数値は一例であり、これに限定されない。
 撮像装置63の傾斜角度θは、0°であってもよい。図11は、第1検出装置61の変形例を示す模式図であり、撮像装置63の傾斜角度θが0°である場合の例である。この場合、撮像装置63及び照明光源64の各々が、第1貼合面SA1の法線方向に沿って外周縁EDに重なる位置に配置されていてもよい。
 第1貼合面SA1と撮像装置63の撮像面63aの中心との間の距離(以下、撮像装置63の高さH1と称する)は、第1貼合面SA1の外周縁EDを検出しやすい位置に設定できる。例えば、撮像装置63の高さH1は、50mm以上320mm以下の範囲に設定できる。
 なお、上記の数値は一例であり、これに限定されない。
 照明光源64は、第1光学部材貼合体PA1における第1シート片F1mが貼合された側とは反対側に固定して配置されている。照明光源64は、外周縁EDよりも第1貼合面SA1の外側に配置されている。本実施形態では、照明光源64の光軸と撮像装置63の撮像面63aの法線とが平行になっている。
 なお、照明光源64は、第1光学部材貼合体PA1における第1シート片F1mが貼合された側(すなわち、撮像装置63と同じ側)に配置されていてもよい。
 また、照明光源64から射出される照明光により、撮像装置63が撮像する外周縁EDが照明されていれば、照明光源64の光軸と撮像装置63の撮像面63aの法線とが交差していてもよい。
 図12は、貼合面の外周縁を検出する位置を示す平面図である。図に示す第1光学部材貼合体PA1の搬送経路上には、検査領域CAが設定されている。検査領域CAは、搬送される液晶パネルPにおける、第1貼合面SA1の外周縁EDに対応する位置に設定されている。図では、検査領域CAは、平面視矩形の第1貼合面SA1の4つの角部に対応する4箇所に設定されており、第1貼合面SA1の角部を外周縁EDとして検出する構成となっている。図では、第1貼合面SA1の外周縁のうち、角部に対応する鉤状の部分を外周縁EDとして示している。
 図10の第1検出装置61は、4箇所の検査領域CAにおいて外周縁EDを検出する。具体的には、各検査領域CAには、それぞれ撮像装置63および照明光源64が配置されており、第1検出装置61は、搬送される液晶パネルPごとに第1貼合面SA1の角部を撮像し、撮像データに基づいて外周縁EDを検出する。検出された外周縁EDのデータは、図10に示す制御部65に記憶される。
 第1貼合面SA1の外周縁が検出可能であれば、検査領域CAの設定位置はこれに限らない。例えば、各検査領域CAが、第1貼合面SA1の各辺の一部(例えば各辺の中央部)に対応する位置に配置されていてもよい。この場合、第1貼合面SA1の各辺(四辺)を外周縁として検出する構成となる。
 また、撮像装置63および照明光源64は、各検査領域CAに配置されている構成に限らず、第1貼合面SA1の外周縁EDに沿うように設定された移動経路を移動可能である構成であってもよい。この場合、撮像装置63と照明光源64とが各検査領域CAに位置した際に外周縁EDを検出する構成とすることで、撮像装置63と照明光源64とがそれぞれ1つずつ設けられていれば、外周縁EDの検出が可能となる。
 第1切断装置32Aによる第1シート片F1mについてのカット位置は、第1貼合面SA1の外周縁EDの検出結果に基づいて設定される。
 例えば、図10に示す制御部65が、記憶された第1貼合面SA1の外周縁EDのデータに基づいて、第1光学部材F11が液晶パネルPの外側(第1貼合面SA1の外側)にはみ出さない大きさとなるように第1シート片F1mのカット位置を設定する構成とすることができる。また、カット位置の設定は、必ずしも第1検出装置61の制御部65で行う必要はなく、第1検出装置61で検出した外周縁EDのデータを用い、別途計算手段を用いて行うこととしても構わない。
 第1切断装置32Aは、制御部65によって設定されたカット位置において第1シート片F1mを切断する。
 図9に戻り、第1切断装置32Aは、液晶パネルPに貼合された第1シート片F1mのうち第1貼合面SA1に対応する部分と、その外側の余剰部分と、を検出された外周縁EDに基づいて設定されたカット位置に沿って切り離し、第1貼合面SA1に対応する大きさの第1光学部材F11(図4参照)を切り出す。これにより、液晶パネルPの上面に第1光学部材F11が重ねて貼合された第2光学部材貼合体(二次貼合体)PA2が形成される。
 ここで、「第1貼合面SA1に対応する部分」とは、第1シート片F1mにおいて、対向する液晶パネルPの表示領域の大きさ以上、液晶パネルPの外形状(平面視における輪郭形状)の大きさ以下の領域であって、かつ液晶パネルPにおける電気部品取付部等の機能部分を避けた領域を指す。
 本実施形態では、平面視矩形状の液晶パネルPにおける機能部分を除いた三辺では、液晶パネルPの外周縁に沿って余剰部分をレーザーカットし、機能部分に相当する一辺では、液晶パネルPの外周縁から表示領域P4側に適宜入り込んだ位置で余剰部分をレーザーカットする構成を採用できる。例えば、第1基板P1がTFT基板の場合、機能部分に相当する一辺では機能部分を除くよう液晶パネルPの外周縁から表示領域P4側に所定量ずれた位置でカットする構成を採用できる。
 図13は、貼合面の外周縁を検出する第2検出装置62の模式図である。本実施形態のフィルム貼合システム2が備える第2検出装置62は、第3光学部材貼合体PA3における、液晶パネルPと第2シート片F2mとの貼合面(以下、第2貼合面(貼合面)SA2と称することがある。)の外周縁EDの画像を撮像する撮像装置63と、外周縁EDを照明する照明光源64と、撮像装置63で撮像した画像を記憶し、画像に基づいて外周縁EDを検出するための演算を行う制御部65と、を有する。第2検出装置62は、上述の第1検出装置61と同様の構成を有している。
 このような第2検出装置62は、図9における第2切断装置32Bのパネル搬送上流側であって、第2反転装置31Bと第2切断装置32Bとの間に設けられている。第2検出装置62は、第3光学部材貼合体PA3の搬送経路上において設定された検査領域において、上述の第1検出装置61と同様にして第2貼合面SA2の外周縁EDを検出する。
 第2切断装置32Bによる第2シート片F2mのカット位置は、第2貼合面SA2の外周縁EDの検出結果に基づいて設定される。
 例えば、図13に示す制御部65は、記憶された第2貼合面SA2の外周縁EDのデータに基づいて、第2光学部材F12が液晶パネルPの外側(第2貼合面SA2の外側)にはみ出さない大きさとなるように第2シート片F2mのカット位置を設定する構成とすることができる。また、カット位置の設定は、必ずしも第2検出装置62の制御部65で行う必要はなく、第2検出装置62で検出した外周縁EDのデータを用い、別途計算手段を用いて行うこととしても構わない。
 第2切断装置32Bは、制御部65によって設定されたカット位置において第2シート片F2mを切断する。
 第2切断装置32Bは、液晶パネルPに貼合された第2シート片F2mのうち第2貼合面SA2に対応する部分と、その外側の余剰部分と、を検出された外周縁EDに基づいて設定されたカット位置に沿って切り離し、第2貼合面SA2に対応する大きさの第2光学部材F12(図4参照)を切り出す。これにより、第3光学部材貼合体PA3の上面に第2光学部材F12が貼合された第4光学部材貼合体PA4が形成される。
 ここで、「第2貼合面SA2に対応する部分」とは、第2シート片F2mにおいて、対向する液晶パネルPの表示領域の大きさ以上、液晶パネルPの外形状(平面視における輪郭形状)の大きさ以下の領域であって、かつ液晶パネルPにおける電気部品取付部等の機能部分を避けた領域を指す。
 このように、切断装置32では、検出装置を用いて複数の液晶パネルPごとに貼合面の外周縁を検出し、検出した外周縁に基づいて、個々の液晶パネルPごとに貼合したシート片FXmの切断位置を設定する。これにより、液晶パネルPやシート片FXmの大きさの個体差によらず所望の大きさの光学部材を切り離すことができる。このため、液晶パネルPやシート片FXmの大きさの個体差による品質バラツキをなくし、表示領域周辺の額縁部を縮小して表示エリアの拡大及び機器の小型化を図ることができる。
 上記実施形態では、切断装置32の一例としてCOレーザーを用いたが、切断装置32はこれに限定されない。切断刃などの他の切断手段を切断装置32として用いることも可能である。
(回収装置)
 第2回収位置33Bに配置される不図示の回収装置は、例えば、第2切断装置32Bによって切断された余剰部分を保持し、第2切断装置32Bで形成された第2光学部材F12から剥離して、不要となった余剰部分を回収する。余剰部分の回収処理後、第4光学部材貼合体PA4は第2旋回装置35の方向に移動する。なお、切断された余剰部分が、第2切断装置32Bによる切断時に自由落下して除去されるようであれば、回収装置は用いなくてもよい。
(第2旋回装置)
 第2旋回装置35は、オートクレーブ装置100から搬出された第4光学部材貼合体PA4が、表示領域P4の短辺に沿う方向に搬送されるように、第4光学部材貼合体PA4を旋回させる。
 その後、第1実施形態と同様に、製造ラインから搬出された第4光学部材貼合体PA4について、製造ライン外にて目視検査を行い、不良品と判定された第4光学部材貼合体PA4については、第2オートクレーブ処理を施す。製造ライン外における第4光学部材貼合体PA4の取り扱い(オフライン処理)については、第1実施形態と同様である。
(光学部材貼合体の製造方法)
 図8を参照して、第2実施形態における光学部材貼合体の製造方法について説明する。
 まず、両面貼合パネルP12の製造において、製造ラインに液晶パネルPを搬入し(ステップS11)、液晶パネルPの表面に付着した塵やほこりなどの汚れを洗浄する(ステップS12)。
 次いで、上述のフィルム貼合システム2にて、第1光学部材シートF1を原反ロールR1aから巻き出しつつカットし、表示領域P4よりも大きい(例えば液晶パネルPよりも大きい)第1シート片F1mを形成する。その後、第1シート片F1mを液晶パネルPに貼り合わせて第1光学部材貼合体(一次貼合体)PA1を形成する。
 その後、第1光学部材貼合体PA1において、第1シート片F1mと液晶パネルPとの貼合面の外周縁を検出し、検出した外周縁に沿って第1シート片F1mの余剰部分を切り離して、第2光学部材貼合体PA2を形成する。
 同様に、第2光学部材シートF2を原反ロールR1bから巻き出しつつカットし、表示領域P4よりも大きい(例えば液晶パネルPよりも大きい)第2シート片F2mを形成し、第2光学部材貼合体PA2に貼り合わせて第3光学部材貼合体PA3を形成する。
 その後、第3光学部材貼合体PA3において、第2シート片F2mと液晶パネルPとの貼合面の外周縁を検出し、検出した外周縁に沿って第2シート片F2mの余剰部分を切り離して、第4光学部材貼合体PA4を形成する(ステップS13)。
 その後、得られた第4光学部材貼合体PA4について、第1実施形態と同様にステップS14、S15、S21~S26を施す。
 本実施形態の光学部材貼合体の製造方法は、以上のようにして行う。
 以上のような光学部材貼合体の製造方法によっても、第1実施形態と同様に、実使用の上で過不足の無い精度で欠陥検出が可能であり、且つ製造歩留りを損なわず安定した製造が可能な光学部材貼合体の製造方法が提供される。
 本実施形態では、第1貼合装置13や第2貼合装置17において、作製した第1シート片F1mや第2シート片F2mを、セパレータシートF3aから剥離させながら、液晶パネルPや第2光学部材貼合体PA2に直接貼合する構成としたが、これに限らない。貼合装置においては、作製した第1シート片F1mや第2シート片F2mを付着させて保持し、液晶パネルPや第2光学部材貼合体PA2上に搬送して貼合する貼合ヘッドを有することとしても構わない。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 ED…外周縁、F1X…光学部材、F11…第1光学部材(光学部材)、F12…第2光学部材(光学部材)、FX…光学部材シート、F1…第1光学部材シート(光学部材シート)、F2…第2光学部材シート(光学部材シート)、P4…表示領域、R1…原反ロール、FXm…シート片、F1m…第1シート片(シート片)、F2m…第2シート片(シート片)、P…液晶パネル(光学表示部品)、P11…片面貼合パネル(光学部材貼合体)、P12…両面貼合パネル(光学部材貼合体)、PA1…第1光学部材貼合体(貼合体)、PA3…第3光学部材貼合体(貼合体)、PA4…第4光学部材貼合体(光学部材貼合体)、1…フィルム貼合システム、2…フィルム貼合システム

Claims (10)

  1.  光学表示部品に光学部材が貼合された光学部材貼合体の製造方法であって、
     帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数の前記光学部材を、複数の前記光学表示部品に貼合して、複数の前記光学部材貼合体を形成する光学部材貼合体形成工程と、
     複数の前記光学部材貼合体を加熱加圧処理する第1オートクレーブ処理工程と、
     前記第1オートクレーブ処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を検査する検査工程と、
     前記検査工程で検出された不良品について加熱加圧処理する第2オートクレーブ処理工程と、を有し、
     前記光学部材貼合体形成工程と前記第1オートクレーブ処理工程とを、連続した製造ラインにおいて行い、
     前記第2オートクレーブ処理工程を、前記製造ラインとは分離して行う光学部材貼合体の製造方法。
  2.  光学表示部品に光学部材が貼合された光学部材貼合体の製造方法であって、
     帯状の光学部材シートを原反ロールから巻き出し、前記光学部材シートを切断して得られる複数のシート片を、複数の前記光学表示部品に貼合して、複数の貼合体を形成する貼合体形成工程と、
     前記貼合体において、前記シート片と前記光学表示部品との貼合面の外周縁を検出する検出工程と、
     前記貼合体において、前記光学表示部品に貼合された前記シート片から前記貼合面に対応する部分の外側に配置された余剰部分を、前記外周縁に沿って切り離し、前記貼合面に対応する大きさの前記光学部材を含む前記光学部材貼合体を形成する光学部材貼合体形成工程と、
     複数の前記光学部材貼合体を加熱加圧処理する第1オートクレーブ処理工程と、
     前記第1オートクレーブ処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を光学的に検査する検査工程と、
     前記検査工程で検出された不良品について加熱加圧処理する第2オートクレーブ処理工程と、を有し、
     前記光学部材貼合体形成工程と前記第1オートクレーブ処理工程とを、連続した製造ラインにおいて行い、
     前記第2オートクレーブ処理工程を、前記製造ラインとは分離して行う光学部材貼合体の製造方法。
  3.  前記検出工程では、複数の前記光学表示部品ごとに、前記シート片と前記光学表示部品との貼合面の外周縁を検出する請求項2に記載の光学部材貼合体の製造方法。
  4.  前記第1オートクレーブ処理工程においては、前記光学部材貼合体形成工程を経て順次搬送される複数の前記光学部材貼合体を複数の処理ラインに分配し、前記処理ライン毎に加熱加圧処理を行う請求項1から3のいずれか1項に記載の光学部材貼合体の製造方法。
  5.  前記第2オートクレーブ処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を目視検査する第1目視検査工程と、
     前記第1目視検査工程で検出された第1目視検査不良品について、前記第1目視検査不良品が有する欠陥の状態に応じて、前記第1目視検査不良品から前記光学部材を剥離して前記光学表示部品を露出させ、露出させた前記光学表示部品の面に、あらかじめ用意された新たな前記光学部材を貼合して、新たな前記光学部材貼合体を形成するリワーク処理工程と、を有し、
     前記第1目視検査工程と前記リワーク処理工程とを、前記製造ラインとは分離して行う請求項1から4のいずれか1項に記載の光学部材貼合体の製造方法。
  6.  前記リワーク処理工程を経た複数の前記光学部材貼合体のそれぞれについて、欠陥を目視検査する第2目視検査工程を有し、
     前記第2目視検査工程を、前記製造ラインとは分離して行う請求項5に記載の光学部材貼合体の製造方法。
  7.  前記第2目視検査工程で検出された第2目視検査不良品について、再び前記第2オートクレーブ処理工程を施す請求項6に記載の光学部材貼合体の製造方法。
  8.  前記検査工程では、前記製造ラインに配置された自動検査装置を用いて、前記欠陥を光学的に自動検査する請求項1から7のいずれか1項に記載の光学部材貼合体の製造方法。
  9.  前記検査工程では、欠陥を目視検査する請求項1から7のいずれか1項に記載の光学部材貼合体の製造方法。
  10.  原反ロールからの帯状の光学部材シートを切断して得られるシート片を光学表示部品に貼合する貼合装置を有し、複数の貼合体を形成する貼合体形成装置と、
     前記貼合体形成装置からの前記複数の貼合体をオートクレーブ処理する第1オートクレーブ装置であり、前記貼合装置と前記第1オートクレーブ装置とが連続した製造ライン上に配される、前記第1オートクレーブ装置と、
     前記第1オートクレーブ装置からの前記複数の貼合体のそれぞれについて欠陥を光学的に検査する検査装置と、
     前記製造ラインから分けて配され、前記検査装置を用いて判定された不良品をオートクレーブ処理する第2オートクレーブ装置と、
     を備える、光学部材貼合体の生産システム。
PCT/JP2014/072648 2013-08-30 2014-08-28 光学部材貼合体の製造方法 WO2015030141A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180591A JP2015049350A (ja) 2013-08-30 2013-08-30 光学部材貼合体の製造方法
JP2013-180591 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030141A1 true WO2015030141A1 (ja) 2015-03-05

Family

ID=52586689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072648 WO2015030141A1 (ja) 2013-08-30 2014-08-28 光学部材貼合体の製造方法

Country Status (3)

Country Link
JP (1) JP2015049350A (ja)
TW (1) TW201514581A (ja)
WO (1) WO2015030141A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641093B2 (ja) * 2015-03-20 2020-02-05 住友化学株式会社 光学フィルム及び積層光学フィルムの欠陥検査方法
CN107407642B (zh) * 2015-04-09 2020-04-03 住友化学株式会社 层叠光学膜的缺陷检查方法以及层叠光学膜的制造方法
CN108345135A (zh) * 2018-01-22 2018-07-31 上海帆声图像科技有限公司 一种全自动背光模组检测机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227941A (ja) * 2003-01-23 2004-08-12 Seiko Epson Corp バックライトユニット、電気光学装置、電子機器、バックライトユニットの製造方法、および電気光学装置の製造方法
JP2005043384A (ja) * 2002-07-04 2005-02-17 Fuji Photo Film Co Ltd 偏光板貼合方法及び装置
JP2006259542A (ja) * 2005-03-18 2006-09-28 Sharp Corp 液晶表示パネルの製造方法
JP2007279383A (ja) * 2006-04-06 2007-10-25 Sharp Corp 積層型偏光板及び液晶表示装置
JP2011002818A (ja) * 2009-05-21 2011-01-06 Nitto Denko Corp 光学表示装置の製造システム及び製造方法
JP2012136622A (ja) * 2010-12-27 2012-07-19 Micro Gijutsu Kenkyusho:Kk ガラスパネル材の貼り合せ構造とその貼り合せ方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043384A (ja) * 2002-07-04 2005-02-17 Fuji Photo Film Co Ltd 偏光板貼合方法及び装置
JP2004227941A (ja) * 2003-01-23 2004-08-12 Seiko Epson Corp バックライトユニット、電気光学装置、電子機器、バックライトユニットの製造方法、および電気光学装置の製造方法
JP2006259542A (ja) * 2005-03-18 2006-09-28 Sharp Corp 液晶表示パネルの製造方法
JP2007279383A (ja) * 2006-04-06 2007-10-25 Sharp Corp 積層型偏光板及び液晶表示装置
JP2011002818A (ja) * 2009-05-21 2011-01-06 Nitto Denko Corp 光学表示装置の製造システム及び製造方法
JP2012136622A (ja) * 2010-12-27 2012-07-19 Micro Gijutsu Kenkyusho:Kk ガラスパネル材の貼り合せ構造とその貼り合せ方法

Also Published As

Publication number Publication date
TW201514581A (zh) 2015-04-16
JP2015049350A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6529250B2 (ja) 光学表示パネルの製造方法および光学表示パネルの製造システム
WO2010134441A1 (ja) 光学表示装置の製造システム及び製造方法
KR101558631B1 (ko) 광학 표시 장치 제조 시스템 및 광학 표시 장치 제조 방법
KR100967499B1 (ko) 광학 표시 유닛의 제조 시스템 및 반송 기구
JP2011085630A (ja) 液層表示素子の連続製造方法及び装置
KR102373254B1 (ko) 광학 부재의 검사 방법, 광학 제품의 제조 방법 및 광학 부재의 검사 장치
WO2015030074A1 (ja) 光学部材貼合体の製造方法
WO2015030141A1 (ja) 光学部材貼合体の製造方法
JP5804404B2 (ja) 光学表示デバイスの生産システム及び光学表示デバイスの生産方法
WO2015030158A1 (ja) 光学部材貼合体の製造方法
JP2013113897A (ja) 光学表示デバイスの生産システムの運転方法
JP2019109532A (ja) 光学表示パネルの製造方法および光学表示パネルの製造システム
WO2015030066A1 (ja) 光学部材貼合体の製造方法
JP5924726B2 (ja) 光学部材貼合体の製造装置及び製造方法
JP4844857B1 (ja) 回収装置、貼合システム及び回収方法
WO2015030062A1 (ja) 光学部材貼合体の製造方法
JP6227279B2 (ja) 光学部材貼合体の製造装置及び製造方法
JP2012173617A (ja) 回収装置、貼合システム及び回収方法
JP5328970B2 (ja) 光学表示デバイスの生産システム及び生産方法
WO2014185093A1 (ja) 光学部材貼合体の製造システム、製造方法及び記録媒体
WO2014185092A1 (ja) 光学部材貼合体の製造システム、製造方法及び記録媒体
JP2012173616A (ja) 回収装置、貼合システム及び回収方法
JP2014224912A (ja) 光学表示デバイスの生産システム及び生産方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839882

Country of ref document: EP

Kind code of ref document: A1