WO2015030055A1 - Heat-resistant silane crosslinked resin molded article and method for producing same, heat-resistant silane crosslinking resin composition and method for producing same, silane master batch, and heat-resistant product produced using heat-resistant silane crosslinked resin molded article - Google Patents

Heat-resistant silane crosslinked resin molded article and method for producing same, heat-resistant silane crosslinking resin composition and method for producing same, silane master batch, and heat-resistant product produced using heat-resistant silane crosslinked resin molded article Download PDF

Info

Publication number
WO2015030055A1
WO2015030055A1 PCT/JP2014/072443 JP2014072443W WO2015030055A1 WO 2015030055 A1 WO2015030055 A1 WO 2015030055A1 JP 2014072443 W JP2014072443 W JP 2014072443W WO 2015030055 A1 WO2015030055 A1 WO 2015030055A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
silane
mass
resistant
parts
Prior art date
Application number
PCT/JP2014/072443
Other languages
French (fr)
Japanese (ja)
Inventor
西口 雅己
有史 松村
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201480045774.4A priority Critical patent/CN105473654A/en
Priority to JP2015534260A priority patent/JP6523171B2/en
Publication of WO2015030055A1 publication Critical patent/WO2015030055A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene

Definitions

  • the present invention relates to a heat-resistant silane cross-linked resin molded article and a production method thereof, a heat-resistant silane cross-linkable resin composition and a production method thereof, a silane master batch, and a heat-resistant product using the heat-resistant silane cross-linked resin molded article.
  • a heat-resistant silane-crosslinked resin molded article having excellent appearance, which is less likely to cause rough appearance and unevenness even when the extruder is temporarily stopped and restarted during molding, and preferably excellent in flame retardancy and mechanical properties, and its production
  • Insulated wires, cables, cords and optical fiber cores, and optical fiber cords used for electrical and electronic equipment internal and external wiring are flame retardant, heat resistant, and mechanical properties (eg tensile properties, wear resistance) Various characteristics are required.
  • a resin composition containing a large amount of a metal hydrate such as magnesium hydroxide or aluminum hydroxide is used.
  • wiring materials used in electrical and electronic equipment may be heated to 80 to 105 ° C. or even 125 ° C. when used for a long time, and heat resistance to this may be required.
  • a method of crosslinking the coating material by an electron beam crosslinking method or a chemical crosslinking method is employed.
  • cross-linking polyolefin resins such as polyethylene
  • electron beam cross-linking by irradiating with an electron beam also referred to as cross-linking
  • organic peroxide and the like are decomposed by applying heat after molding, and cross-linking reaction
  • cross-linking reaction Known are the chemical crosslinking method and the silane crosslinking method.
  • the silane crosslinking method in particular, often does not require special equipment, and thus can be used in a wide range of fields.
  • the silane crosslinking method is a method in which a hydrolyzable silane coupling agent having an unsaturated group is grafted to a polymer in the presence of an organic peroxide to obtain a silane graft polymer, and then the silane grafting in the presence of a silanol condensation catalyst. This is a method for obtaining a crosslinked molded article by bringing a polymer into contact with moisture.
  • a method for producing a halogen-free heat-resistant silane crosslinked resin includes, for example, a silane master batch obtained by grafting a hydrolyzable silane coupling agent having an unsaturated group to a polyolefin resin, a polyolefin resin, and an inorganic filler.
  • a heat-resistant masterbatch obtained by kneading and a catalyst masterbatch containing a silanol condensation catalyst are melt-mixed.
  • the silane masterbatch and the heat-resistant masterbatch are uniformly mixed in a single screw extruder or a twin screw extruder after dry mixing. It becomes difficult to melt and knead. For this reason, there is a problem that the appearance is deteriorated and the physical properties are greatly reduced. Further, there arises a problem that the extrusion load is high and molding cannot be performed. Therefore, in order to uniformly melt and knead the silane masterbatch and the heat-resistant masterbatch after dry mixing, the proportion of the inorganic filler is limited as described above. Therefore, it is difficult to achieve higher flame resistance and higher heat resistance.
  • a hydrolyzable silane coupling agent having an unsaturated group is added to the heat-resistant masterbatch obtained by melting and mixing a polyolefin resin and an inorganic filler.
  • a method of adding an organic peroxide and causing a graft reaction with a single screw extruder is conceivable.
  • appearance defects may occur in the molded product obtained due to variation in reaction.
  • the compounding quantity of the inorganic filler in a masterbatch must be increased very much, and an extrusion load may become remarkably large. As a result, it becomes very difficult to manufacture the molded body. Therefore, a desired material or a molded body could not be obtained.
  • the manufacturing process is two steps, which is also difficult in terms of manufacturing cost.
  • Patent Document 1 an inorganic filler, a silane coupling agent, an organic peroxide, and a cross-linking catalyst that are surface-treated with a silane coupling agent on a resin component obtained by mixing a polyolefin resin and a maleic anhydride resin in a kneader.
  • a method of forming with a single screw extruder after sufficiently melt-kneading has been proposed.
  • Patent Documents 2 to 4 disclose a vinyl aromatic thermoplastic elastomer composition having a block copolymer or the like as a base resin and a non-aromatic rubber softener added as a softener.
  • a method of partial crosslinking using an organic peroxide through a filler has been proposed.
  • Patent Document 5 an organic peroxide, a silane coupling agent, and a metal hydrate are collectively melt-kneaded with a base material, further melt-molded with a silanol condensation catalyst, and then crosslinked in the presence of water.
  • a method for easily obtaining a cable having heat resistance has been proposed.
  • the resin partially cross-links during melt kneading with a Banbury mixer or kneader, resulting in poor appearance of the resulting molded product (a large number of protrusions protruding on the surface). Formation). Further, most of the silane coupling agent other than the silane coupling agent that is treating the surface of the inorganic filler may be volatilized or condensed. For this reason, desired heat resistance cannot be obtained, and condensation between silane coupling agents may cause deterioration of the appearance of the electric wire. Further, even in the methods described in Patent Documents 2 to 4, since the resin has not yet a sufficient network structure, the bond between the resin and the inorganic filler is broken at a high temperature.
  • the molded body melts at a high temperature, and for example, the insulating material sometimes melts during soldering of the electric wire. Further, the molded body may be deformed or foamed during secondary processing. Furthermore, when heated to about 200 ° C. for a short time, the appearance may be significantly deteriorated or deformed.
  • Patent Document 5 can solve the above-described problems of the methods described in Patent Documents 1 to 4 to some extent.
  • this method when the silane cross-linkable flame retardant polyolefin obtained by batch melting and kneading is extruded together with a silanol condensation catalyst, appearance defects due to rough appearance and irregularities (also referred to as irregular appearance) are likely to occur.
  • irregular appearance also referred to as irregular appearance
  • the molded product formed thereafter is likely to have rough appearance and irregularities, resulting in poor appearance. It has been confirmed that this occurs.
  • the present invention solves the above problems, and even if the extruder is stopped and the operation is started again, the appearance is hardly generated and the appearance is hardly generated, and preferably the flame retardancy and mechanical properties are also excellent.
  • PROBLEM TO BE SOLVED To provide a method for producing a heat-resistant silane cross-linked resin molded article, and to provide a heat-resistant silane cross-linked resin molded article that is less likely to cause rough appearance and irregularities and excellent in appearance, and preferably excellent in flame retardancy and mechanical properties. And Moreover, this invention makes it a subject to provide the silane masterbatch which can form this heat resistant silane crosslinked resin molded object, a heat resistant silane crosslinked resin composition, and its manufacturing method. Furthermore, this invention makes it a subject to provide the heat resistant product using the heat resistant silane crosslinked resin molded object obtained with the manufacturing method of the heat resistant silane crosslinked resin molded object.
  • the subject of this invention was achieved by the following means.
  • the organic peroxide is 0.01 to 0.6 parts by mass
  • the inorganic filler is 10 to 400 parts by mass
  • the silane coupling agent exceeds 4 parts by mass.
  • a method for producing a heat-resistant silane cross-linked resin molded article (5) The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of (1) to (4), wherein the melt-mixing in the step (a) is performed with a closed mixer. (6) The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of (1) to (5), wherein a silanol condensation catalyst is not substantially mixed in the step (a).
  • the organic peroxide is 0.01 parts by mass or more and 0.6 parts by mass or less
  • the inorganic filler is 10 parts by mass or more and 400 parts by mass or less, and exceeds 4 parts by mass of the silane coupling agent.
  • a method for producing a heat-resistant silane crosslinkable resin composition comprising the step (b) of mixing the silane master batch and a silanol condensation catalyst to obtain a mixture.
  • (11) A heat resistant product comprising the heat resistant silane crosslinked resin molded article according to (9) or (10).
  • the organic peroxide is 0.01 to 0.6 parts by mass
  • the inorganic filler is 10 to 400 parts by mass
  • the silane coupling agent exceeds 4 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • a silane master batch obtained by melt-kneading 15.0 parts by mass or less at a temperature not lower than the decomposition temperature of the organic peroxide.
  • the method for producing a heat-resistant silane-crosslinked resin molded article of the present invention comprises a silane coupling agent of more than 4 parts by mass and less than 15 parts by mass with respect to 100 parts by mass of a polyolefin resin in the presence of an inorganic filler and an organic peroxide.
  • both the cross-linking reaction between polyolefin resins and the condensation reaction between silane coupling agents can be suppressed, and the silane cross-linked resin having a clean appearance can be obtained.
  • a molded body can be produced.
  • an inorganic filler and a silane coupling agent are mixed at a predetermined ratio before and / or during kneading with a polyolefin resin.
  • mixing can be suppressed, and a heat resistant silane crosslinked resin molding can be manufactured efficiently.
  • excellent flame retardancy and mechanical properties can be imparted to the heat-resistant silane-crosslinked resin molded article.
  • the highly heat-resistant silane crosslinked resin molding which added the inorganic filler in large quantities can be manufactured, without using special machines, such as an electron beam crosslinking machine.
  • heat-resistant silane cross-linked resin molding that is less likely to cause rough appearance and irregularities and is excellent in appearance, and preferably excellent in flame retardancy and mechanical properties.
  • the manufacturing method of a body, and the heat-resistant silane crosslinked resin molding obtained by this manufacturing method can be provided.
  • the silane masterbatch which can form this heat-resistant silane crosslinked resin molded object, a heat-resistant silane crosslinkable resin composition, and its manufacturing method can be provided.
  • a heat-resistant product using the heat-resistant silane cross-linked resin molded product obtained by the method for producing a heat-resistant silane cross-linked resin molded product can be provided.
  • the “method for producing a heat-resistant silane-crosslinked resin molded article” of the present invention includes the following steps (a) to (d).
  • the “method for producing a heat-resistant silane crosslinkable resin composition” of the present invention has the following steps (a) and (b), and does not make the steps (c) and (d) essential steps.
  • the “method for producing a heat-resistant silane-crosslinked resin molded product” of the present invention and the “method for producing a heat-resistant silane-crosslinked resin composition” of the present invention include the following steps (c) and (d). Other than that is basically the same.
  • the polyolefin resin is not particularly limited as long as it is a resin made of a polymer obtained by polymerizing or copolymerizing a compound having an ethylenically unsaturated bond, and is conventionally known as a heat-resistant resin composition. Can be used.
  • Examples thereof include resins and resins made of polymers such as rubbers, elastomers, styrene elastomers, ethylene-propylene rubbers (for example, ethylene-propylene-diene rubbers).
  • polyethylene, polypropylene, and ethylene- ⁇ -olefin co-polymers are highly receptive to various inorganic fillers such as metal hydrates and can maintain mechanical strength even when a large amount of inorganic fillers are blended.
  • a resin such as a polymer, a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, a styrene elastomer, and an ethylene-propylene rubber is preferred.
  • These polyolefin resins may be used individually by 1 type, or may use 2 or more types together.
  • the polyethylene is not particularly limited as long as it is a polymer mainly composed of an ethylene component.
  • Polyethylene is a homopolymer consisting only of ethylene, a copolymer of ethylene and 5 mol% or less ⁇ -olefin (excluding propylene), and 1 mol% or less having only ethylene, carbon, oxygen and hydrogen atoms in the functional group.
  • copolymers with non-olefins for example, JIS K 6748.
  • known ones conventionally used as a copolymerization component of polyethylene can be used without any particular limitation.
  • polyethylene examples include high density polyethylene (HDPE), low density polyethylene (LDPE), ultra high molecular weight polyethylene (UHMW-PE), linear low density polyethylene (LLDPE), and very low density polyethylene (VLDPE). Is mentioned. Of these, linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) are preferable. Polyethylene may be used individually by 1 type, and may use 2 or more types together.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • UHMW-PE ultra high molecular weight polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • Polyethylene may be used individually by 1 type, and may use 2 or more types together.
  • Polypropylene is not particularly limited as long as it is a polymer mainly composed of a propylene component.
  • Polypropylene includes propylene homopolymers, ethylene-propylene copolymers such as random polypropylene, and block polypropylene as copolymers.
  • random polypropylene refers to a copolymer of propylene and ethylene having an ethylene component content of 1 to 5 mass%.
  • Block polypropylene is a composition containing a homopolypropylene and an ethylene-propylene copolymer, having an ethylene component content of about 5 to 15% by mass, and an ethylene component and a propylene component existing as independent components. Say what you do. Polypropylene may be used alone or in combination of two or more.
  • the ethylene- ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms (except for those contained in the above-mentioned polyethylene and polypropylene).
  • Specific examples of the ⁇ -olefin component in the ethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like. These components are mentioned.
  • the ethylene- ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms (excluding those contained in polyethylene and polypropylene). Specifically, an ethylene-propylene copolymer (excluding those contained in polypropylene), an ethylene-butylene copolymer, an ethylene- ⁇ -olefin copolymer synthesized in the presence of a single site catalyst, etc. Can be mentioned.
  • One ethylene- ⁇ -olefin copolymer may be used alone, or two or more ethylene- ⁇ -olefin copolymers may be used in combination.
  • Examples of the acid copolymerization component or acid ester copolymerization component in the polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component include carboxylic acid compounds such as (meth) acrylic acid, and vinyl acetate and (meth) acrylic.
  • Examples include acid ester compounds such as acid alkyls.
  • the alkyl group of the alkyl (meth) acrylate preferably has 1 to 12 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
  • polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component examples include, for example, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene -Alkyl (meth) acrylate copolymer and the like.
  • ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer are preferable.
  • acceptability and heat resistance of inorganic fillers are preferred.
  • an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer are preferable.
  • the polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component is used singly or in combination of two or more.
  • Styrenic elastomers are those having an aromatic vinyl compound as a constituent component in the molecule. Therefore, in this invention, even if it contains an ethylene component in a molecule
  • aromatic vinyl compound examples include styrene, p- (t-butyl) styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl. Examples thereof include styrene and vinyl toluene. Among these, styrene is preferable as the aromatic vinyl compound. This aromatic vinyl compound is used individually by 1 type, or 2 or more types are used together.
  • conjugated diene compound examples include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound is preferably butadiene.
  • This conjugated diene compound is used individually by 1 type, or 2 or more types are used together.
  • a styrene-based elastomer an elastomer containing an aromatic vinyl compound other than styrene, which does not contain a styrene component, may be used by a similar production method.
  • styrene elastomer examples include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydrogenated SBS, styrene-ethylene-ethylene-propylene-styrene block. Copolymer (SEEPS), styrene-ethylene-propylene-styrene block copolymer (SEPS), hydrogenated SIS, hydrogenated styrene / butadiene rubber (HSBR), hydrogenated acrylonitrile / butadiene rubber (HNBR), etc. it can.
  • SEEPS styrene-ethylene-butylene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS styrene-ethylene-ethylene-propylene-styrene
  • styrene elastomer As the styrene elastomer, it is preferable to use SEPS, SEEPS or SEBS having a styrene constituent content of 10 to 40% alone or in combination of two or more thereof.
  • SEPS polystyrene elastomer
  • SEEPS polystyrene elastomer
  • SEBS polystyrene elastomer
  • commercially available products can be used. For example, Septon 4077, Septon 4055, Septon 8105 (all trade names, manufactured by Kuraray Co., Ltd.), Dynalon 1320P, Dynalon 4600P, 6200P, 8601P, 9901P (all Product name, manufactured by JSR).
  • the polyolefin resin that is, the polymer may be acid-modified.
  • Unsaturated carboxylic acid or its derivative (s) is mentioned.
  • the unsaturated carboxylic acid include maleic acid, itaconic acid, fumaric acid and the like.
  • unsaturated carboxylic acid derivatives include maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride, etc. It is done. Among these, maleic acid or maleic anhydride is preferable.
  • the amount of acid modification is usually about 0.1 to 7% by mass in one molecule of the acid-modified polyolefin resin.
  • the polyolefin resin may contain various oils used as a plasticizer or a softener as desired.
  • oils include oils as plasticizers used in polyolefin resins or mineral oil softeners for rubber.
  • the mineral oil softener is a mixed oil including three oils: an oil composed of a hydrocarbon having an aromatic ring, an oil composed of a hydrocarbon having a naphthene ring, and an oil composed of a hydrocarbon having a paraffin chain.
  • Paraffin oil is the one that occupies 50% or more of the total carbon number of hydrocarbons having paraffin chains, and naphthenic oil or aromatic ones that have 30 to 40% carbon atoms that constitute hydrocarbons having a naphthene ring.
  • aroma oils Those having 30% or more carbon atoms constituting hydrocarbons having a ring are called aroma oils and are distinguished.
  • liquid or low molecular weight synthetic softeners, paraffin oil, and naphthene oil are preferably used, and paraffin oil is particularly preferably used.
  • paraffin oil is particularly preferably used.
  • oils include Diana Process Oil PW90 and PW380 (both are trade names, manufactured by Idemitsu Kosan Co., Ltd.), Cosmo Neutral 500 (Cosmo Oil Co., Ltd.), and the like.
  • the oil is preferably 80% by mass or less with respect to the total mass of the polymer and the oil contained in the polyolefin resin in terms of heat resistance performance, crosslinking performance, and strength. It is more preferably at most 40% by mass, and even more preferably at most 40% by mass.
  • the oil content is at least 0% by mass, but can be 20% by mass or more, for example. That is, the polyolefin resin is preferably 20% by mass or more, more preferably 45% by mass or more, and further preferably 60% by mass or more with respect to the total mass.
  • the content of the polyolefin resin is at most 100% by mass, but may be, for example, 80% by mass or less.
  • Organic peroxide functions to generate radicals by thermal decomposition and promote the grafting reaction of the silane coupling agent to the polyolefin resin.
  • the silane coupling agent contains an ethylenically unsaturated group, it works to promote the grafting reaction by radical reaction between the ethylenically unsaturated group and the polyolefin resin (including hydrogen radical abstraction reaction from the polyolefin resin).
  • the organic peroxide is not particularly limited as long as it generates radicals.
  • R 1 —OO—R 2 , R 1 —OO—C ( ⁇ O) R 3 , R 4 C ( ⁇ O) —OO (C ⁇ O) R 5 is preferably used. It is done.
  • R 1 , R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group, an aryl group or an acyl group.
  • R 1 , R 2 , R 3 , R 4 and R 5 are all alkyl groups, or any one is an alkyl group and the rest is an acyl group.
  • organic peroxides examples include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, , 5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butylperoxy Benzoate, tert-butyl peroxyisopropyl carbonate, dia Chill peroxide, lauroyl peroxide, may be mentioned
  • DCP dicumyl peroxide
  • 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane 2,5-in terms of odor, colorability, and scorch stability.
  • Dimethyl-2,5-di- (tert-butylperoxy) hexyne-3 is preferred.
  • the decomposition temperature of the organic peroxide is preferably from 80 to 195 ° C., particularly preferably from 125 to 180 ° C.
  • the decomposition temperature of an organic peroxide means a temperature at which a decomposition reaction occurs in two or more compounds at a certain temperature or temperature range when an organic peroxide having a single composition is heated. means. Specifically, it refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
  • the inorganic filler can be used without particular limitation as long as it has a site capable of forming a hydrogen bond or the like with a reactive site such as a silanol group of the silane coupling agent on the surface or a site capable of chemical bonding by a covalent bond.
  • a reactive site such as a silanol group of the silane coupling agent on the surface or a site capable of chemical bonding by a covalent bond.
  • Examples of the site that can be chemically bonded to the reaction site of the silane coupling agent in this inorganic filler include OH groups (hydroxy groups, water molecules containing water or water of crystal water, OH groups such as carboxy groups), amino groups, and SH groups. It is done.
  • inorganic fillers examples include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate, whisker, and water.
  • Metal hydrates such as compounds having hydroxyl or water of crystallization such as aluminum silicate, hydrated magnesium silicate, basic magnesium carbonate, hydrotalcite, boron nitride, silica (crystalline silica, amorphous Silica, etc.), carbon, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, antimony trioxide, silicone compound, quartz, talc, zinc borate, white carbon, zinc borate, hydroxy hydroxystannate, zinc stannate can do.
  • the inorganic filler is preferably at least one of silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc borate, and zinc hydroxystannate.
  • Silica, aluminum hydroxide, magnesium hydroxide, carbonate More preferred is at least one selected from the group consisting of calcium and antimony trioxide.
  • an inorganic filler may be mix
  • the average particle diameter of the inorganic filler is preferably 0.2 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m, further preferably 0.4 to 5 ⁇ m, and particularly preferably 0.4 to 3 ⁇ m.
  • the average particle size of the inorganic filler is less than 0.2 ⁇ m, the inorganic filler causes secondary aggregation during mixing with the silane coupling agent, and the appearance of the molded body may be deteriorated or blistered.
  • it exceeds 10 ⁇ m the appearance may be deteriorated, the retention effect of the silane coupling agent may be decreased, and a problem may be caused in crosslinking.
  • the average particle size is determined by an optical particle size measuring device such as a laser diffraction / scattering type particle size distribution measuring device after being dispersed with alcohol or water.
  • an inorganic filler surface-treated with a silane coupling agent can be used.
  • the silane coupling agent surface-treated magnesium hydroxide include magnesium hydroxide commercial products (Kisuma 5L, Kisuma 5P (both trade names, manufactured by Kyowa Chemical Co., Ltd.)) and aluminum hydroxide.
  • silane coupling agent Any silane coupling agent may be used as long as it has a group that can be graft-reacted to a polyolefin resin in the presence of a radical and a group that can be chemically bonded to an inorganic filler.
  • a coupling agent is preferred. More preferably, the silane coupling agent has an amino group, a glycidyl group or an ethylenically unsaturated group-containing group and a hydrolyzable group-containing group at the terminal, and more preferably ethylene at the terminal. It is a silane coupling agent having a group containing a polymerizable unsaturated group and a group containing a hydrolyzable group.
  • the group containing an ethylenically unsaturated group is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth) acryloyloxy group, a (meth) acryloyloxyalkylene group, and a p-styryl group. Moreover, you may use together these silane coupling agents and the silane coupling agent which has another terminal group.
  • silane coupling agent for example, a compound represented by the following general formula (1) can be used.
  • R a11 is a group containing an ethylenically unsaturated group
  • R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 .
  • Y 11 , Y 12 and Y 13 are hydrolyzable organic groups. Y 11 , Y 12 and Y 13 may be the same as or different from each other.
  • R a11 of the silane coupling agent represented by the general formula (1) is preferably a group containing an ethylenically unsaturated group, and the group containing an ethylenically unsaturated group is as described above, preferably vinyl. It is a group.
  • R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 described later, and the aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. and the like, preferably below Y 13.
  • Y 11 , Y 12 and Y 13 are hydrolyzable organic groups such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an acyloxy group having 1 to 4 carbon atoms. And an alkoxy group is preferred.
  • Specific examples of the hydrolyzable organic group include methoxy, ethoxy, butoxy, acyloxy and the like. Among these, methoxy or ethoxy is more preferable, and methoxy is particularly preferable from the viewpoint of the reactivity of the silane coupling agent.
  • the silane coupling agent is preferably a silane coupling agent having a high hydrolysis rate, more preferably a silane coupling agent in which R b11 is Y 13 and Y 11 , Y 12 and Y 13 are the same. . More preferred is a hydrolysable silane coupling agent in which at least one of Y 11 , Y 12 and Y 13 is a methoxy group, and particularly preferred is a hydrolyzable silane coupling agent in which all are methoxy groups.
  • silane coupling agent having a vinyl group, (meth) acryloyloxy group or (meth) acryloyloxyalkylene group at the terminal include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, and vinyldimethoxy.
  • Organosilanes such as ethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxysilane, allyltriethoxysilane, vinyltriacetoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropyl Examples include methyldimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
  • a silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
  • Those having a glycidyl group at the terminal are 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • the silane coupling agent may be used as it is or diluted with a solvent or the like.
  • the silanol condensation catalyst has a function of subjecting a silane coupling agent grafted to a polyolefin resin to a condensation reaction in the presence of moisture. Based on the action of this silanol condensation catalyst, polyolefin resins are cross-linked through a silane coupling agent. As a result, a heat-resistant silane cross-linked resin molded article having excellent heat resistance is obtained.
  • silanol condensation catalyst an organic tin compound, a metal soap, a platinum compound, or the like is used.
  • Common silanol condensation catalysts include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, sodium stearate, Lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds and the like are used.
  • organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate are particularly preferable.
  • the silanol condensation catalyst is used by mixing with a resin if desired.
  • a resin also referred to as carrier resin
  • Such a resin is not particularly limited, and examples thereof include resins similar to polyolefin resins.
  • a part of the above-mentioned polyolefin resin can also be used as the carrier resin.
  • a resin made of polyethylene is preferred in that it has good affinity with the silanol condensation catalyst and is excellent in heat resistance.
  • the heat-resistant silane cross-linked resin molded body and the heat-resistant silane cross-linkable resin composition are various additives commonly used in electric wires, electric cables, electric cords, sheets, foams, tubes, and pipes. It may be blended appropriately as long as the purpose is not impaired.
  • additives include crosslinking aids, antioxidants, lubricants, metal deactivators, fillers, and other resins. These additives, particularly antioxidants and metal deactivators, may be mixed in any component, but are preferably added to the carrier resin. It is preferable that the crosslinking aid is not substantially contained. In particular, it is preferable that the crosslinking aid is not substantially mixed in the step (a) for preparing the silane master batch.
  • crosslinking aid When the crosslinking aid is not substantially mixed, crosslinking between polyolefin resins hardly occurs during kneading, and the appearance and heat resistance of the heat-resistant silane crosslinked resin molded article are excellent.
  • being substantially not contained or not mixed means that a crosslinking aid is not actively added or mixed, and does not exclude inclusion or mixing unavoidably.
  • the crosslinking assistant refers to a compound that forms a partially crosslinked structure with a polyolefin resin in the presence of an organic peroxide.
  • polyfunctional compounds such as methacrylate compounds such as polypropylene glycol diacrylate and trimethylolpropane triacrylate, allyl compounds such as triallyl cyanurate, maleimide compounds, and divinyl compounds can be used.
  • Antioxidants such as 4,4′-dioctyldiphenylamine, N, N′-diphenyl-p-phenylenediamine, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, etc.
  • Agents pentaerythrityl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like, bis (2-methyl-4- (3 -N-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptobenzimidazole and its zinc salt, pentaerythrine Lithol - tetrakis (3-lau
  • Lubricants include hydrocarbons, siloxanes, fatty acids, fatty acid amides, esters, alcohols, metal soaps and the like. These lubricants should be added to the carrier resin (E).
  • metal deactivators examples include N, N′-bis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and the like.
  • Fillers include fillers other than the various fillers described above.
  • the step (a) comprises 0.01 parts by mass or more and 0.6 parts by mass or less of the organic peroxide and 10 parts by mass or more and 400 parts by mass or less of the inorganic filler with respect to 100 parts by mass of the polyolefin resin.
  • the silane coupling agent is melt-kneaded in excess of 4 parts by mass and 15.0 parts by mass at a temperature equal to or higher than the decomposition temperature of the organic peroxide. Thereby, a silane masterbatch is prepared.
  • the mixing amount of the organic peroxide is 0.01 to 0.6 parts by mass, preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the amount of the organic peroxide is less than 0.01 parts by mass, the crosslinking reaction does not proceed at the time of crosslinking, and the silane coupling agents are condensed with each other to sufficiently obtain heat resistance, mechanical strength, and reinforcement. May not be possible.
  • it exceeds 0.6 parts by mass many of the polyolefin resins are directly cross-linked by a side reaction, and there is a risk of causing scum. That is, by setting the mixing amount of the organic peroxide within this range, the polymerization can be carried out in an appropriate range, and the extrudability is excellent without causing agglomerates due to the crosslinked gel or the like. A composition can be obtained.
  • the mixing amount of the inorganic filler is 10 to 400 parts by mass, preferably 30 to 280 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the mixing amount of the inorganic filler is less than 10 parts by mass, the graft reaction of the silane coupling agent becomes nonuniform, and the desired heat resistance cannot be obtained, or the appearance may deteriorate due to the nonuniform reaction.
  • it exceeds 400 parts by mass the load during molding or kneading becomes very large, and secondary molding may be difficult.
  • the mixing amount of the silane coupling agent is more than 4.0 parts by mass and not more than 15.0 parts by mass, preferably 6 to 15.0 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • amount of the silane coupling agent mixed is 4.0 parts by mass or less, when molding with the silanol condensation catalyst, if the extruder is stopped or the rotational speed of the extruder is greatly changed by adjustment, etc. There is a possibility that it will occur many times, resulting in poor appearance.
  • the silane coupling agent when the amount exceeds 15.0 parts by mass, the silane coupling agent cannot be completely adsorbed on the surface of the inorganic filler, and the silane coupling agent volatilizes during kneading, which is not economical. Moreover, the silane coupling agent which does not adsorb
  • the usage-amount of a silane coupling agent exceeds 4.0 mass parts and is 15.0 mass parts or less, it is excellent in an external appearance.
  • the reaction due to the decomposition of the organic peroxide when the silane coupling agent is silane-grafted onto the polyolefin resin is a graft reaction between the silane coupling agent and the polyolefin resin having a high reaction rate, or a silane coupling agent.
  • the condensation reaction between them becomes dominant. Therefore, the cross-linking reaction between the polyolefin resins that causes rough appearance and rough appearance hardly occurs.
  • the cross-linking reaction between polyolefin resins can be effectively suppressed by the mixing amount of the silane coupling agent.
  • molding becomes favorable.
  • the said defect by the crosslinking reaction of polyolefin resin decreases, even if an extruder is stopped, it becomes difficult to generate
  • a cross-linking reaction between polyolefin resins can be suppressed, and a silane cross-linked resin molded article having a good appearance can be produced.
  • in the step (a) many silane coupling agents are bonded and fixed to the inorganic filler.
  • the condensation reaction between the silane coupling agents bonded to the inorganic filler hardly occurs.
  • the condensation reaction between the free silane coupling agents does not occur without binding to the inorganic filler, and the occurrence of gel spots due to the condensation reaction between the free silane coupling agents can be suppressed.
  • both the crosslinking reaction between the polyolefin resins and the condensation reaction between the silane coupling agents can be suppressed, and the silane crosslinked resin molded article having a clean appearance. It is thought that can be manufactured.
  • the kneading temperature for melting and mixing the above-mentioned components is not less than the decomposition temperature of the organic peroxide, preferably the decomposition temperature of the organic peroxide + (25 to 110) ° C.
  • This decomposition temperature is preferably set after the polyolefin resin is melted.
  • kneading conditions such as kneading time can be set as appropriate.
  • a kneading method any method usually used for rubber, plastic, etc. can be used satisfactorily, and the kneading apparatus is appropriately selected according to, for example, the amount of inorganic filler mixed.
  • a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, or various kneaders are used, and a closed mixer such as a Banbury mixer or various kneaders is used to disperse the polyolefin resin and stabilize the crosslinking reaction. In terms of surface.
  • such an inorganic filler when such an inorganic filler is mixed in an amount exceeding 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, it is preferably kneaded with a continuous kneader, a pressure kneader, or a Banbury mixer.
  • the order of mixing is not specified, and the components may be mixed in any order as long as the mixing ratio is within the above range. That is, in the step (a), the mixing order is not particularly limited.
  • the above components can be melted and mixed at a time.
  • the silane coupling agent is not introduced into the silane master batch alone, but is introduced by premixing with an inorganic filler.
  • the silane coupling agent is not introduced into the silane master batch alone, but is introduced by premixing with an inorganic filler.
  • a desired shape can be obtained during extrusion molding.
  • a mixing method preferably, a mixer type kneader such as a Banbury mixer or a kneader is used, and the organic peroxide, the inorganic filler, and the silane coupling agent are mixed or dispersed at a temperature lower than the decomposition temperature of the organic peroxide.
  • a method of melt-mixing the mixture and the polyolefin resin after the mixing is performed. If it does in this way, the excessive crosslinking reaction of polyolefin resin can be prevented, and it is excellent in an external appearance.
  • the inorganic filler, the silane coupling agent and the organic peroxide are mixed at a temperature lower than the decomposition temperature of the organic peroxide, preferably at room temperature (25 ° C.).
  • the method for mixing the inorganic filler, the silane coupling agent, and the organic peroxide is not particularly limited, and the organic peroxide may be mixed with the inorganic filler or the like, or the inorganic filler and the silane coupling agent may be mixed. They may be mixed in any of the mixing stages. Examples of the mixing method of the inorganic filler, the silane coupling agent, and the organic peroxide include mixing methods such as wet processing and dry processing.
  • a wet process in which the silane coupling agent is added in a state where the inorganic filler is dispersed in a solvent such as water a dry process in which both are added by heating or non-heating, and mixed. And both.
  • dry processing is preferred in which a silane coupling agent is added to an inorganic filler, preferably a dried inorganic filler, with heating or non-heating and mixed.
  • the silane coupling agent tends to be strongly bonded to the inorganic filler, so that the subsequent silanol condensation reaction may be difficult to proceed.
  • dry mixing since the bond between the inorganic filler and the silane coupling agent is relatively weak, the silanol condensation reaction easily proceeds efficiently.
  • the silane coupling agent added to the inorganic filler exists so as to surround the surface of the inorganic filler, and part or all of the silane coupling agent is adsorbed by the inorganic filler or chemically bonded to the surface of the inorganic filler.
  • the volatilization of the silane coupling agent during kneading with a subsequent kneader or Banbury mixer is greatly reduced, and the unsaturated group of the silane coupling agent is reduced by the organic peroxide. It is thought that it crosslinks with polyolefin resin.
  • the silane coupling agent undergoes a condensation reaction with a silanol condensation catalyst during molding.
  • the organic peroxide may be mixed with the silane coupling agent and then dispersed in the inorganic filler, or separately from the silane coupling agent and dispersed separately in the inorganic filler.
  • the organic peroxide and the silane coupling agent should be mixed substantially together.
  • only the silane coupling agent may be mixed with the inorganic filler, and then the organic peroxide may be added. That is, in the step (a), an inorganic filler previously mixed with a silane coupling agent can be used.
  • the organic peroxide As a method of adding the organic peroxide, it may be dispersed in a polyolefin resin, may be added alone, or may be added after being dispersed in oil or the like, and is preferably added after being dispersed in a polyolefin resin.
  • a mixture of an inorganic filler, a silane coupling agent and an organic peroxide, and a polyolefin resin are then melt-kneaded while heating to a temperature higher than the decomposition temperature of the organic peroxide to obtain a silane master batch.
  • step (a) no silanol condensation catalyst is used. That is, in the step (a), the above-described components are kneaded without substantially mixing the silanol condensation catalyst. Thereby, the silane coupling agent is easy to melt and mix without condensing, and a desired shape can be obtained during extrusion molding.
  • substantially not mixed does not exclude the unavoidably existing silanol condensation catalyst, and is present to such an extent that the above-mentioned problem due to silanol condensation of the silane coupling agent does not occur. Means good.
  • step (a) is performed to prepare a silane master batch.
  • the silane masterbatch prepared in the step (a) contains a reaction mixture of an organic peroxide decomposition product, a polyolefin resin, an inorganic filler and a silane coupling agent, and can be molded by the step (b) described later.
  • the silane coupling agent contains two types of silane crosslinkable resins (silane graft polymer) grafted onto the polyolefin resin.
  • the step (b) of obtaining a mixture by mixing the silane master batch and the silanol condensation catalyst is performed.
  • the mixing method may be any mixing method as long as a uniform mixture can be obtained as described above.
  • pellets such as dry blends may be mixed and introduced into a molding machine at room temperature or high temperature, or may be mixed and melted and mixed, pelletized again, and then introduced into the molding machine.
  • the silane master batch and the silanol condensation catalyst are not maintained at a high temperature for a long time in a mixed state.
  • about the obtained mixture let it be the mixture with which the moldability in the shaping
  • the silanol condensation catalyst is preferably used together with a carrier resin. That is, the step (b) may be a step of mixing the silane master batch and the silanol condensation catalyst, and a step of melt mixing the catalyst master batch containing the silanol condensation catalyst and the carrier resin and the silane master batch is preferable. Therefore, preferably, in performing step (b), the carrier resin and the silanol condensation catalyst are melt-mixed to prepare a catalyst master batch.
  • the mixing ratio of the carrier resin and the silanol condensation catalyst in the catalyst master batch is set so as to satisfy the mixing ratio with the polyolefin resin of the silane master batch in the step (b) described later.
  • the mixing of the carrier resin and the silanol condensation catalyst is appropriately determined according to the melting temperature of the carrier resin.
  • the kneading temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C.
  • the kneading conditions such as kneading time can be set as appropriate.
  • the kneading method can be performed by the same method as the above kneading method.
  • the catalyst masterbatch prepared in this way is a mixture of a silanol condensation catalyst, a carrier resin, and a filler that is optionally added.
  • the compounding amount of the silanol condensation catalyst is preferably 0.0001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the mixing amount of the silanol condensation catalyst is within the above range, the crosslinking reaction by the condensation reaction of the silane coupling agent is likely to proceed almost uniformly, and the heat-resistant silane crosslinked resin molded article has excellent heat resistance, appearance and physical properties, and is produced. Also improves.
  • the amount of the carrier resin is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, and further preferably 2 to 40 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • an inorganic filler may or may not be added to this carrier resin.
  • the amount of the inorganic filler is not particularly limited, but is preferably 350 parts by mass or less with respect to 100 parts by mass of the polyolefin resin as the carrier resin. This is because if the amount of filler is too large, the silanol condensation catalyst is difficult to disperse and crosslinking is difficult to proceed. On the other hand, if the carrier resin is too much, the degree of cross-linking of the molded article is lowered, and there is a possibility that proper heat resistance cannot be obtained.
  • step (b) the mixing conditions of the silane masterbatch and the silanol condensation catalyst or catalyst masterbatch are appropriately selected. That is, when the silanol condensation catalyst is mixed alone with the silane master batch, the mixing condition is set to an appropriate melt mixing condition depending on the polyolefin resin.
  • melt mixing is preferable in terms of dispersion of the silanol condensation catalyst, which is basically the same as the melt mixing in step (1).
  • polyolefin resins whose melting points cannot be measured by DSC or the like, such as elastomers, but they are kneaded at a temperature at which at least one of the polyolefin resin and the organic peroxide is melted.
  • the melting temperature is appropriately selected according to the melting temperature of the carrier resin, and is preferably 80 to 250 ° C., more preferably 100 to 240 ° C., for example.
  • the kneading conditions such as kneading time can be set as appropriate.
  • the steps (a) and (b) of the present invention that is, the method for producing the heat-resistant silane crosslinkable resin composition of the present invention is carried out, and silanes having at least two different crosslinking methods as described later.
  • a heat-resistant silane crosslinkable resin composition containing a crosslinkable resin is produced. Therefore, the heat-resistant silane crosslinkable resin composition of the present invention is a composition obtained by carrying out step (a) and step (b), and is a mixture of a silane masterbatch and a silanol condensation catalyst or a catalyst masterbatch. It is considered a thing.
  • the components are basically the same as the silane masterbatch and silanol condensation catalyst or catalyst masterbatch.
  • the step (c) and the step (d) are then performed. That is, in the method for producing a heat-resistant silane cross-linked resin molded article of the present invention, the step (c) of molding the obtained mixture, that is, the heat-resistant silane cross-linkable resin composition of the present invention to obtain a molded article is performed.
  • This process (c) should just be able to shape
  • step (c) the operation of the extruder can be temporarily stopped and restarted without problems due to reasons such as cleaning of the extruder, changeover, eccentricity adjustment, and production interruption.
  • the temperature at this time is not particularly limited as long as the polyolefin resin is softened or melted, and is 200 ° C., for example.
  • step (c) can be carried out simultaneously or sequentially with step (b).
  • a series of steps in which a silane masterbatch and a silanol condensation catalyst (C) or a catalyst masterbatch are melt-kneaded in a coating apparatus and then coated on, for example, an extruded electric wire or fiber and formed into a desired shape can be employed.
  • the heat-resistant silane crosslinkable resin composition of the present invention is molded, and the molded body of the heat-resistant silane crosslinkable resin composition obtained in steps (a) to (c) is an uncrosslinked body. Therefore, the heat-resistant silane crosslinked resin molded product of the present invention is a molded product that is crosslinked or finally crosslinked by performing the following step (d) after the step (c).
  • a step of bringing the molded product (uncrosslinked product) obtained in the step (c) into contact with water is performed.
  • the hydrolyzable group of the silane coupling agent is hydrolyzed into silanol, and the silanol condensation catalyst present in the resin condenses the hydroxyl groups of the silanol to cause a crosslinking reaction, resulting in a heat-resistant molded article.
  • the process itself in this step (d) can be performed by a usual method.
  • the hydrolyzable group of the silane coupling agent is hydrolyzed and the silane coupling agents are condensed to form a crosslinked structure.
  • Condensation between silane coupling agents proceeds just by storing at room temperature. Therefore, in the step (d), it is not necessary to positively contact the molded body (uncrosslinked body) with water. It can also be contacted with moisture to further accelerate the crosslinking.
  • a method of positively contacting water such as immersion in warm water, charging into a wet heat tank, exposure to high-temperature steam, and the like. In this case, pressure may be applied to allow moisture to penetrate inside.
  • the method for producing a heat-resistant silane crosslinked resin molded product of the present invention is carried out, and a heat-resistant silane crosslinked resin molded product is produced from the heat-resistant silane crosslinked resin composition of the present invention. Therefore, the heat-resistant silane cross-linked resin molded product of the present invention is a molded product obtained by carrying out steps (a) to (d). And this molded object contains the polyolefin resin formed by bridge
  • reaction mechanism in the production method of the present invention is not yet clear, but are considered as follows. That is, when a polyolefin resin is heated and kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide together with an inorganic filler and a silane coupling agent in the presence of the organic peroxide component, the organic peroxide is decomposed to generate radicals. On the other hand, grafting occurs with a silane coupling agent. In addition, the heating reaction at this time partially promotes a chemical bond formation reaction by a covalent bond between a silane coupling agent and a group such as a hydroxyl group on the surface of the inorganic filler.
  • the final cross-linking reaction may be performed in the step (d), and when a specific amount of the silane coupling agent is blended with the polyolefin resin as described above, the inorganic filler is obtained without impairing the extrusion processability at the time of molding. Can be blended in a large amount, and both heat resistance and mechanical properties can be obtained while ensuring excellent flame retardancy.
  • the mechanism of action of the above process of the present invention is not yet clear, but is estimated as follows. That is, by using an inorganic filler and a silane coupling agent before and / or during kneading with a polyolefin resin, the silane coupling agent is bonded to the inorganic filler with an alkoxy group and is present at the other end. It binds to an uncrosslinked portion of the polyolefin resin with an ethylenically unsaturated group such as a group, or is physically and chemically adsorbed and held in the hole or surface of the inorganic filler without being bonded to the inorganic filler.
  • a silane coupling agent that binds to an inorganic filler with a strong bond for example, a chemical bond with a hydroxyl group on the surface of the inorganic filler may be considered
  • a silane coupling agent that binds to a weak bond for example, The reason can be, for example, an interaction by hydrogen bond, an interaction between ions, partial charges or dipoles, an action by adsorption, etc.
  • the reason can be, for example, an interaction by hydrogen bond, an interaction between ions, partial charges or dipoles, an action by adsorption, etc.
  • the silane coupling agent having a strong bond with the inorganic filler among the silane coupling agents undergoes a graft reaction with the cross-linked site of the polyolefin resin.
  • a plurality of silane coupling agents are bonded to the surface of one inorganic filler particle through a strong bond, a plurality of polyolefin resins are bonded through the inorganic filler particle.
  • the silane coupling agent having a weak bond with the inorganic filler is detached from the surface of the inorganic filler, and the ethylenically unsaturated group, which is a crosslinking group of the silane coupling agent, is A graft reaction occurs by reacting with a resin radical generated by abstraction of a hydrogen radical by a radical generated by decomposition of an organic peroxide.
  • the silane coupling agent in the graft portion thus produced is then mixed with a silanol condensation catalyst and brought into contact with moisture to cause a condensation reaction (crosslinking reaction).
  • the crosslinking reaction by condensation using a silanol condensation catalyst in the presence of water in this step (d) is performed after forming the molded body.
  • a plurality of silane coupling agents can be bonded to the surface of one inorganic filler particle, so that higher heat resistance than before can be obtained and high mechanical strength can be obtained.
  • the silane crosslinkable resin formed by graft reaction of the silane coupling agent bonded to the inorganic filler with a strong bond to the polyolefin resin comes into contact with moisture, the inorganic filler is bonded via the silanol bond of the silane coupling agent.
  • a crosslinked silane-crosslinked polyolefin resin is formed.
  • a silane coupling agent bonded to an inorganic filler with a strong bond is considered to contribute to high mechanical properties, in some cases, abrasion resistance, scratch resistance, and the like.
  • the silane crosslinkable resin formed by graft reaction of the silane coupling agent bonded to the inorganic filler with a weak bond on the polyolefin resin comes into contact with moisture
  • the polyolefin resin is cross-linked through the silanol bond of the silane coupling agent.
  • a silane-crosslinked polyolefin resin is formed.
  • a silane coupling agent bonded to an inorganic filler with a weak bond is considered to contribute to an improvement in the degree of crosslinking, that is, an improvement in heat resistance.
  • a silane coupling agent exceeding 4.0 parts by mass and 15.0 parts by mass or less is mixed with the inorganic filler, and as described above, the polyolefin at the time of melt-kneading in the step (a)
  • the cross-linking reaction between the resins can be effectively suppressed.
  • the degree is different, the silane coupling agent is bonded to the inorganic filler, and is not easily volatilized during the melt kneading in the step (a), and the reaction between the free silane coupling agents is also effective. Can be suppressed. Therefore, even if the extruder is stopped, it is considered that poor appearance is unlikely to occur and a silane-crosslinked resin molded article with good appearance can be produced.
  • the manufacturing method of the present invention can be applied to the manufacture of products (including semi-finished products, parts, and members) that require heat resistance, products that require strength, component parts of products such as rubber materials, or members thereof.
  • Examples of such products include electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films.
  • Electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films.
  • power plugs, connectors, sleeves, boxes, tape substrates, tubes, sheets, packing materials, cushioning materials, anti-vibration materials, electrical and electronic equipment, and wiring materials especially electric wires and optical cables. Can be applied.
  • the manufacturing method of the present invention is particularly suitably applied to the manufacture of the insulators and sheaths of electric wires and optical cables among the components of the above-described products, and can be formed as a covering thereof.
  • Insulators, sheaths, and the like can be formed by coating them in such a shape while melt-kneading them in an extrusion coating apparatus.
  • a general-purpose extrusion coating apparatus is used without using a special machine such as an electron beam cross-linking machine, which is a high heat resistant high temperature non-melting cross-linked composition to which a large amount of inorganic filler is added.
  • any conductor such as an annealed copper single wire or stranded wire can be used as the conductor.
  • the conductor may be tin-plated or an enamel-covered insulating layer.
  • the thickness of the insulating layer (the coating layer made of the heat resistant resin composition of the present invention) formed around the conductor is not particularly limited, but is usually about 0.15 to 5 mm.
  • Examples 1 to 18 and Comparative Examples 1 to 5 were carried out using the components shown in Tables 1 and 2 while changing the respective specifications or manufacturing conditions.
  • ⁇ Organic peroxide> “Perhexa 25B” (trade name, manufactured by NOF Corporation, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, decomposition temperature 149 ° C.)
  • ⁇ Inorganic filler> (1) Magnesium hydroxide (trade name: Kisuma 5, manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.8 ⁇ m) (2) Aluminum hydroxide (trade name: Heidilite H42M, Showa Denko, average particle size 1.2 ⁇ m) (3) Calcium carbonate (trade name: Softon 1200, manufactured by Bihoku Flour Chemical Co., Ltd., average particle size 1.5 ⁇ m) (4) Antimony trioxide (trade name: PATOX-C, manufactured by Nippon Seiko Co., Ltd., average particle size of 3.5 ⁇ m) (5) Silica (trade name: Crystallite 5X, manufactured by Tatsumori, average particle size 1.2 ⁇ m)
  • Examples 1 to 15 and Comparative Examples 1 to 5 First, an organic peroxide, an inorganic filler, and a silane coupling agent are put into a 10 L Henschel mixer manufactured by Toyo Seiki at a mass ratio shown in Table 1, and mixed at room temperature (25 ° C.) for 1 hour to obtain a powder mixture. Got. Next, the powder mixture thus obtained and the polyolefin resin were charged into a 2 L Banbury mixer manufactured by Nippon Roll at a mass ratio shown in Table 1, and the decomposition temperature of the organic peroxide (P) or higher was exceeded. After kneading at a temperature, specifically 180 to 190 ° C.
  • silane master batch also referred to as silane MB
  • step (a) The obtained silane MB contains at least two silane crosslinkable resins obtained by graft-reacting a silane coupling agent to an olefin resin.
  • the carrier resin “UE320”, the silanol condensation catalyst, and the antioxidant are separately melt-mixed by a Banbury mixer at a mass ratio shown in Table 1 at 180 to 190 ° C., and discharged at a material discharge temperature of 180 to 190 ° C.
  • a catalyst master batch (also referred to as catalyst MB) was obtained.
  • This catalyst masterbatch is a mixture of a carrier resin, a silanol condensation catalyst and an antioxidant.
  • silane MB and catalyst MB were melted at 180 ° C. by a Banbury mixer at a mass ratio shown in Table 1, that is, 100 parts by mass of polyolefin resin of silane SM and 5 parts by mass of carrier resin of catalyst MB. Mixed (step (b)).
  • a heat-resistant silane crosslinkable resin composition was prepared.
  • This heat-resistant silane crosslinkable resin composition is a mixture of silane MB and catalyst MB, and contains at least two types of silane crosslinkable resins described above.
  • this heat-resistant silane cross-linked resin molded product contains the above-described silane cross-linked resin obtained by cross-linking the silane cross-linkable resin by a condensation reaction of a hydrolyzable group of the silane coupling agent.
  • Silane MB (step (a)) and catalyst MB were prepared in the same manner as in Example 1, using the components shown in Table 2 in the mass ratio (parts by mass) shown in the same table. Subsequently, the obtained silane MB and catalyst MB were put into a closed ribbon blender, and dry blended at room temperature (25 ° C.) for 5 minutes to obtain a dry blend. At this time, the mixing ratio of the silane MB and the catalyst MB was such that the polyolefin resin of silane SM was 100 parts by mass and the carrier resin of catalyst MB was 5 parts by mass (see Table 2).
  • the outside of the conductor was coated with a thickness of 1 mm to obtain an electric wire (uncrosslinked) having an outer diameter of 2.8 mm (step (b) and step (c)).
  • the obtained electric wire (uncrosslinked) was left in an atmosphere of a temperature of 80 ° C. and a humidity of 95% for 24 hours (step (d)).
  • cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
  • Example 17 Each component shown in Table 2 was used at a mass ratio (parts by mass) shown in the same table, and in the same manner as in Example 1 above, an electric wire (outer diameter 2. 8 mm, uncrosslinked) was obtained (step (a), step (b) and step (c)). The obtained electric wire was left in an atmosphere of a temperature of 23 ° C. and a humidity of 50% for 72 hours (step (d)). Thus, the electric wire which has the coating
  • Silane MB was prepared in the same manner as in Example 1 above using the components shown in Table 2 in the mass ratio (parts by mass) shown in the same table (step (a)).
  • the carrier resin “UE320”, the silanol condensation catalyst, and the antioxidant were melt-mixed by a twin screw extruder at a mass ratio shown in Table 2 to obtain a catalyst MB.
  • the screw diameter of the twin screw extruder was set to 35 mm, and the cylinder temperature was set to 180 to 190 ° C.
  • the obtained catalyst MB is a mixture of a carrier resin, a silanol condensation catalyst and an antioxidant. Subsequently, the obtained silane MB and catalyst MB were melt-mixed at 180 ° C.
  • step (b) The mixing ratio of silane MB and catalyst MB was such that the polyolefin resin of silane SM was 100 parts by mass and the carrier resin of catalyst MB was 5 parts by mass (see Table 2).
  • This heat-resistant silane crosslinkable resin composition is a mixture of silane MB and catalyst MB, and contains at least two types of silane crosslinkable resins described above.
  • an electric wire (uncrosslinked) having an outer diameter of 2.8 mm was obtained (step (c)).
  • the obtained electric wire (uncrosslinked) was left in a state of being immersed in warm water at a temperature of 50 ° C. for 10 hours (step (d)).
  • cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
  • a tensile test was conducted as a mechanical property of the electric wire. This tensile test was performed according to JIS C 3005. Using the wire tubular piece from which the conductor was extracted from the wire, the tensile strength (MPa) and the tensile elongation (%) were measured at 25 mm between the marked lines and at a pulling speed of 500 mm / min. A tensile strength of 8 MPa or more is accepted, and a tensile elongation of 100% or more is accepted.
  • Heat deformation test was conducted as the heat resistance of the electric wires. The heat deformation test was performed at a measurement temperature of 150 ° C. and a load of 5 N based on UL1581. A measured value of 50% or less was accepted.
  • Hot set test 1 is to make a tubular piece of electric wire, mark it with a length of 50mm, attach a weight of 117g in a constant temperature bath at 170 ° C, leave it for 15 minutes, and measure the length after leaving Then, the elongation was determined (hot set test 1). Next, the length after standing after the load was removed was measured to determine the elongation (hot set test 2). In the hot set test 1, an elongation rate of 100% or less was accepted, and in the hot set test 2, an elongation rate of 80% or less was accepted.
  • Extrusion appearance test 1 was conducted as an extrusion appearance characteristic of the electric wire.
  • the extrusion appearance test 1 was evaluated by observing the extrusion appearance when manufacturing the electric wire. Specifically, when the wire was extruded with a 65 mm extruder at a line speed of 50 m / min, “A” indicates that the appearance of the wire was good, “B” indicates that the appearance was slightly bad, and “B” indicates that the appearance was remarkably bad. Was “C”, and “B” or higher was accepted as a product level.
  • Extrusion appearance 2 is that when producing an electric wire, the wire speed is set to 50 m / min with a 65 mm extruder, the electric wire is produced, the extruder is stopped once in the middle, and the extruder is again operated under the same conditions after 10 minutes. It evaluated by observing the external appearance of the manufactured electric wire by operating and manufacturing an electric wire. Specifically, the wire speed was set again at 50 m / min, the extruder was restarted, and the appearance of the electric wire extruded after 5 minutes was observed.
  • the evaluation was “A” when the wire speed was good and no more than 2 pieces per 1 m when observed 5 minutes after setting the line speed to 50 m / min. Or, “B” means that 3 to 10 bumps are confirmed in 1 m, “C” means that the appearance is remarkably bad, or 11 or more bumps are confirmed in 1 m, and “B” or more.
  • the product level was accepted.
  • Examples 1 to 18 all passed the extrusion appearance test 2. Even if the extruder was stopped and restarted, rough appearance and irregularities occurred. This makes it possible to produce electric wires that are difficult to handle and have an excellent appearance.
  • Examples 1 to 4, 6 to 10, 12 to 14, and 16 to 18 in which the silane coupling agent was used in an amount of 6 parts by mass or more with respect to the polyolefin resin in the extrusion appearance test 2, no more than 2 pieces per 1 m
  • the heat-resistant silane crosslinked resin moldings according to the present invention provided as the coatings for the wires of Examples 1 to 18 were excellent in appearance even when the extruder was stopped and then restarted. Moreover, it was excellent in mechanical properties, heat resistance and appearance. In addition, it can be easily understood that flame retardancy is superior from the amount of inorganic filler mixed.
  • Comparative Example 4 in which the amount of organic peroxide used is small the heat deformation test and hot set test 1 failed and the heat resistance was poor, and in Comparative Example 5 where the amount of organic peroxide used was large, even extrusion molding could not be performed. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A production method involving step (a) of melt-kneading 100 parts by mass of a polyolefin resin with 0.01 to 0.6 part by mass inclusive of an organic peroxide, 10 to 400 parts by mass inclusive of an inorganic filler, and more than 4 parts by mass and 15.0 parts by mass or less of a silane coupling agent at a temperature that is equal to or higher than the decomposition temperature of the organic peroxide to prepare a silane master batch; a silane master batch produced by the production method; a heat-resistant silane crosslinked resin molded article; a heat-resistant silane crosslinking resin composition; and a heat-resistant product.

Description

耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
 本発明は、耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品に関する。
 特に、成形する際に押出機を一旦停止させ再開しても外観荒れやブツが発生しにくく外観に優れ、好ましくは難燃性及び機械特性にも優れた耐熱性シラン架橋樹脂成形体及びその製造方法、この耐熱性シラン架橋樹脂成形体を形成可能な、シランマスターバッチ、耐熱性シラン架橋性樹脂組成物及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を電線の絶縁体やシース等として用いた耐熱性製品に関する。
The present invention relates to a heat-resistant silane cross-linked resin molded article and a production method thereof, a heat-resistant silane cross-linkable resin composition and a production method thereof, a silane master batch, and a heat-resistant product using the heat-resistant silane cross-linked resin molded article.
In particular, a heat-resistant silane-crosslinked resin molded article having excellent appearance, which is less likely to cause rough appearance and unevenness even when the extruder is temporarily stopped and restarted during molding, and preferably excellent in flame retardancy and mechanical properties, and its production A silane masterbatch, a heat-resistant silane cross-linkable resin composition and a method for producing the same, and the heat-resistant silane cross-linked resin molded body as an insulator or sheath of an electric wire. It relates to the heat-resistant products used.
 電気、電子機器の内部及び外部配線に使用される絶縁電線、ケーブル、コード及び光ファイバ心線、光ファイバコードには、難燃性、耐熱性、機械特性(例えば、引張特性、耐摩耗性)など種々の特性が要求されている。これらの配線材に使用される材料としては、水酸化マグネシウム、水酸化アルミニウム等の金属水和物を多量に配合した樹脂組成物が用いられる。 Insulated wires, cables, cords and optical fiber cores, and optical fiber cords used for electrical and electronic equipment internal and external wiring are flame retardant, heat resistant, and mechanical properties (eg tensile properties, wear resistance) Various characteristics are required. As a material used for these wiring materials, a resin composition containing a large amount of a metal hydrate such as magnesium hydroxide or aluminum hydroxide is used.
 また、電気、電子機器に使用される配線材は、長時間使用すると80~105℃、さらには125℃位にまで昇温することがあり、これに対する耐熱性が要求される場合がある。このような場合、配線材に高耐熱性を付与することを目的として、被覆材料を電子線架橋法や化学架橋法等によって架橋する方法がとられている。 In addition, wiring materials used in electrical and electronic equipment may be heated to 80 to 105 ° C. or even 125 ° C. when used for a long time, and heat resistance to this may be required. In such a case, for the purpose of imparting high heat resistance to the wiring material, a method of crosslinking the coating material by an electron beam crosslinking method or a chemical crosslinking method is employed.
 従来、ポリエチレン等のポリオレフィン樹脂を架橋する方法として、電子線を照射して橋架け(架橋ともいう)させる電子線架橋法、成形後に熱を加えることにより有機過酸化物等を分解させて架橋反応させる化学架橋法、及び、シラン架橋法が知られている。
 これらの架橋法の中でも、特にシラン架橋法は、特殊な設備を要しないことが多いため、幅広い分野で使用することができる。
 シラン架橋法とは、有機過酸化物の存在下で不飽和基を有する加水分解性シランカップリング剤をポリマーにグラフト反応させてシラングラフトポリマーを得た後に、シラノール縮合触媒の存在下でシラングラフトポリマーを水分と接触させることにより架橋成形体を得る方法である。
Conventionally, as a method of cross-linking polyolefin resins such as polyethylene, electron beam cross-linking by irradiating with an electron beam (also referred to as cross-linking), organic peroxide and the like are decomposed by applying heat after molding, and cross-linking reaction Known are the chemical crosslinking method and the silane crosslinking method.
Among these crosslinking methods, the silane crosslinking method, in particular, often does not require special equipment, and thus can be used in a wide range of fields.
The silane crosslinking method is a method in which a hydrolyzable silane coupling agent having an unsaturated group is grafted to a polymer in the presence of an organic peroxide to obtain a silane graft polymer, and then the silane grafting in the presence of a silanol condensation catalyst. This is a method for obtaining a crosslinked molded article by bringing a polymer into contact with moisture.
 具体的には、ハロゲンフリーの耐熱性シラン架橋樹脂の製造方法は、例えば、ポリオレフィン樹脂に不飽和基を有する加水分解性シランカップリング剤をグラフトさせたシランマスターバッチと、ポリオレフィン樹脂及び無機フィラーを混練して得られる耐熱性マスターバッチと、シラノール縮合触媒を含有した触媒マスターバッチとを溶融混合させる方法である。しかし、この方法では、ポリオレフィン樹脂100質量部に対して無機フィラーが100質量部を超える場合、シランマスターバッチと耐熱性マスターバッチとを乾式混合した後に単軸押出機や二軸押出機内にて均一に溶融混練することが困難になる。そのため、外観が悪くなり、物性が大幅に低下するという問題が生じる。また、押出負荷が高く成形できないという問題が生じる。
 したがって、シランマスターバッチと耐熱性マスターバッチとを乾式混合した後に均一に溶融混練するには、上述のように無機フィラーの割合が制限されてしまう。そのため、より高難燃化、高耐熱化することが困難である。
Specifically, a method for producing a halogen-free heat-resistant silane crosslinked resin includes, for example, a silane master batch obtained by grafting a hydrolyzable silane coupling agent having an unsaturated group to a polyolefin resin, a polyolefin resin, and an inorganic filler. In this method, a heat-resistant masterbatch obtained by kneading and a catalyst masterbatch containing a silanol condensation catalyst are melt-mixed. However, in this method, when the inorganic filler exceeds 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, the silane masterbatch and the heat-resistant masterbatch are uniformly mixed in a single screw extruder or a twin screw extruder after dry mixing. It becomes difficult to melt and knead. For this reason, there is a problem that the appearance is deteriorated and the physical properties are greatly reduced. Further, there arises a problem that the extrusion load is high and molding cannot be performed.
Therefore, in order to uniformly melt and knead the silane masterbatch and the heat-resistant masterbatch after dry mixing, the proportion of the inorganic filler is limited as described above. Therefore, it is difficult to achieve higher flame resistance and higher heat resistance.
 通常、このような無機フィラーが、ポリオレフィン樹脂100質量部に対して100質量部を超える場合の混練には、連続混練機、加圧式ニーダーやバンバリーミキサー等の密閉型ミキサーを用いることが一般的である。
 一方、ニーダーやバンバリーミキサーでシラングラフトを行う場合には、不飽和基を有する加水分解性シランカップリング剤は一般に揮発性が高く、グラフト反応する前に揮発してしまうという問題がある。そのため所望のシラン架橋マスターバッチを調製することが非常に困難であった。
Usually, when such inorganic filler exceeds 100 parts by mass with respect to 100 parts by mass of polyolefin resin, it is common to use a continuous mixer, a closed mixer such as a pressure kneader or a Banbury mixer. is there.
On the other hand, when performing silane grafting with a kneader or a Banbury mixer, the hydrolyzable silane coupling agent having an unsaturated group is generally highly volatile and has a problem of volatilizing before the graft reaction. Therefore, it was very difficult to prepare a desired silane cross-linked master batch.
 そこで、バンバリーミキサーやニーダーにて、耐熱性シランマスターバッチを調製する場合、ポリオレフィン樹脂及び無機フィラーを溶融混合して得られる耐熱性マスターバッチに、不飽和基を有する加水分解性シランカップリング剤と有機過酸化物を加え、単軸押出機によってグラフト反応させる方法が考えられる。しかし、この方法では反応のばらつきによって得られる成形体に外観不良が生じることがある。また、マスターバッチ中の無機フィラーの配合量を非常に多くしなければならず押出負荷が著しく大きくなることがある。これらにより、成形体の製造が非常に難しくなる。そのため、所望の材料や成形体を得ることができなかった。また、製造工程が2工程となり、製造コスト面でもこれが難点となっている。 Therefore, when preparing a heat-resistant silane masterbatch with a Banbury mixer or kneader, a hydrolyzable silane coupling agent having an unsaturated group is added to the heat-resistant masterbatch obtained by melting and mixing a polyolefin resin and an inorganic filler. A method of adding an organic peroxide and causing a graft reaction with a single screw extruder is conceivable. However, in this method, appearance defects may occur in the molded product obtained due to variation in reaction. Moreover, the compounding quantity of the inorganic filler in a masterbatch must be increased very much, and an extrusion load may become remarkably large. As a result, it becomes very difficult to manufacture the molded body. Therefore, a desired material or a molded body could not be obtained. In addition, the manufacturing process is two steps, which is also difficult in terms of manufacturing cost.
 特許文献1には、ポリオレフィン系樹脂及び無水マレイン酸系樹脂を混合してなる樹脂成分にシランカップリング剤で表面処理した無機フィラー、シランカップリング剤、有機過酸化物及び架橋触媒をニーダーにて十分に溶融混練した後に、単軸押出機にて成形する方法が提案されている。
 また、特許文献2~4にはブロック共重合体等をベース樹脂とし、軟化剤として非芳香族系ゴム用軟化剤を加えたビニル芳香族系熱可塑性エラストマー組成物を、シラン表面処理された無機フィラーを介して有機過酸化物を用いて部分架橋する方法が提案されている。
 さらに、特許文献5には、ベース材料に対し、有機過酸化物とシランカップリング剤と金属水和物とを一括溶融混練し、さらにシラノール縮合触媒と共に溶融成形し、その後水存在下で架橋することにより、簡易に耐熱性を有するケーブルを得る方法が提案されている。
In Patent Document 1, an inorganic filler, a silane coupling agent, an organic peroxide, and a cross-linking catalyst that are surface-treated with a silane coupling agent on a resin component obtained by mixing a polyolefin resin and a maleic anhydride resin in a kneader. A method of forming with a single screw extruder after sufficiently melt-kneading has been proposed.
Further, Patent Documents 2 to 4 disclose a vinyl aromatic thermoplastic elastomer composition having a block copolymer or the like as a base resin and a non-aromatic rubber softener added as a softener. A method of partial crosslinking using an organic peroxide through a filler has been proposed.
Furthermore, in Patent Document 5, an organic peroxide, a silane coupling agent, and a metal hydrate are collectively melt-kneaded with a base material, further melt-molded with a silanol condensation catalyst, and then crosslinked in the presence of water. Thus, a method for easily obtaining a cable having heat resistance has been proposed.
特開2001-101928号公報JP 2001-101928 A 特開2000-143935号公報JP 2000-143935 A 特開2000-315424号公報JP 2000-315424 A 特開2001-240719号公報JP 2001-240719 A 特開2012-255077号公報JP 2012-255077 A
 しかし、特許文献1に記載された方法では、バンバリーミキサーやニーダーでの溶融混練中に、樹脂が一部架橋してしまい、得られる成形体の外観不良(表面に突出した多数のツブ状物を形成)を引き起こすおそれがある。さらに、無機フィラーを表面処理しているシランカップリング剤以外のシランカップリング剤の大部分が揮散するか又は縮合するおそれがある。そのため、所望の耐熱性を得ることができないばかりか、シランカップリング剤同士の縮合が電線の外観悪化の要因となるおそれがある。
 また、特許文献2~4に記載された方法であっても、まだ、樹脂が十分な網状構造になっていないため、高温で樹脂と無機フィラーの結合が切れる。したがって、成形体が高温下で溶融し、例えば電線をハンダ加工中に絶縁材が熔けてしまうことがあった。また成形体を2次加工する際に変形したり、発泡を生じたりすることがあった。さらに200℃程度に短時間加熱されると、外観が著しく劣化したり、変形したりすることがあった。
However, in the method described in Patent Document 1, the resin partially cross-links during melt kneading with a Banbury mixer or kneader, resulting in poor appearance of the resulting molded product (a large number of protrusions protruding on the surface). Formation). Further, most of the silane coupling agent other than the silane coupling agent that is treating the surface of the inorganic filler may be volatilized or condensed. For this reason, desired heat resistance cannot be obtained, and condensation between silane coupling agents may cause deterioration of the appearance of the electric wire.
Further, even in the methods described in Patent Documents 2 to 4, since the resin has not yet a sufficient network structure, the bond between the resin and the inorganic filler is broken at a high temperature. Therefore, the molded body melts at a high temperature, and for example, the insulating material sometimes melts during soldering of the electric wire. Further, the molded body may be deformed or foamed during secondary processing. Furthermore, when heated to about 200 ° C. for a short time, the appearance may be significantly deteriorated or deformed.
 特許文献5に記載された方法は、特許文献1~4に記載された方法が有する上述の問題をある程度解決しうる。しかし、この方法では、一括溶融混練してなるシラン架橋性難燃ポリオレフィンをシラノール縮合触媒と共に押し出し成形する際に、外観荒れやブツ(外観ブツともいう)による外観不良を生じやすい。
 特に、押出機を掃除する際、段替えのする際又は偏心調整を行う際に押出機を一旦停止させると、その後に成形される成形体に外観荒れや外観ブツが発生しやすく、外観不良が生じることが確認された。
The method described in Patent Document 5 can solve the above-described problems of the methods described in Patent Documents 1 to 4 to some extent. However, in this method, when the silane cross-linkable flame retardant polyolefin obtained by batch melting and kneading is extruded together with a silanol condensation catalyst, appearance defects due to rough appearance and irregularities (also referred to as irregular appearance) are likely to occur.
In particular, when cleaning the extruder, when changing the setup, or when adjusting the eccentricity, once the extruder is stopped, the molded product formed thereafter is likely to have rough appearance and irregularities, resulting in poor appearance. It has been confirmed that this occurs.
 本発明は、上記の問題点を解決し、押出機を停止させて再び運転を開始しても、外観荒れやブツが発生しにくく外観に優れ、好ましくは難燃性及び機械特性にも優れた耐熱性シラン架橋樹脂成形体の製造方法、並びに、外観荒れやブツが発生しにくく外観に優れ、好ましくは難燃性及び機械特性にも優れた耐熱性シラン架橋樹脂成形体を提供することを課題とする。
 また、本発明は、この耐熱性シラン架橋樹脂成形体を形成可能な、シランマスターバッチ、耐熱性シラン架橋性樹脂組成物及びその製造方法を提供することを課題とする。
 さらに、本発明は、耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供することを課題とする。
The present invention solves the above problems, and even if the extruder is stopped and the operation is started again, the appearance is hardly generated and the appearance is hardly generated, and preferably the flame retardancy and mechanical properties are also excellent. PROBLEM TO BE SOLVED: To provide a method for producing a heat-resistant silane cross-linked resin molded article, and to provide a heat-resistant silane cross-linked resin molded article that is less likely to cause rough appearance and irregularities and excellent in appearance, and preferably excellent in flame retardancy and mechanical properties. And
Moreover, this invention makes it a subject to provide the silane masterbatch which can form this heat resistant silane crosslinked resin molded object, a heat resistant silane crosslinked resin composition, and its manufacturing method.
Furthermore, this invention makes it a subject to provide the heat resistant product using the heat resistant silane crosslinked resin molded object obtained with the manufacturing method of the heat resistant silane crosslinked resin molded object.
 すなわち、本発明の課題は以下の手段によって達成された。
(1)ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを前記有機過酸化物の分解温度以上の温度において溶融混練してシランマスターバッチを調製する工程(a)と、
 前記シランマスターバッチとシラノール縮合触媒とを混合して混合物を得る工程(b)と、
 前記混合物を成形して成形体を得る工程(c)と、
 前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(d)とを有する耐熱性シラン架橋樹脂成形体の製造方法。
(2)前記シランカップリング剤の混合量が、前記ポリオレフィン樹脂100質量部に対し、6質量部以上15.0質量部以下である(1)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(3)前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランである(1)又は(2)に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(4)前記無機フィラーが、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム及び三酸化アンチモンからなる群から選ばれる少なくとも1種である(1)~(3)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(5)前記工程(a)の溶融混合が、密閉型のミキサーで行われる(1)~(4)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(6)前記工程(a)において、シラノール縮合触媒を実質的に混合しない(1)~(5)のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。
(7)ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを前記有機過酸化物の分解温度以上の温度において溶融混練してシランマスターバッチを調製する工程(a)と、
 前記シランマスターバッチとシラノール縮合触媒とを混合して混合物を得る工程(b)とを有する耐熱性シラン架橋性樹脂組成物の製造方法。
That is, the subject of this invention was achieved by the following means.
(1) With respect to 100 parts by mass of the polyolefin resin, the organic peroxide is 0.01 to 0.6 parts by mass, the inorganic filler is 10 to 400 parts by mass, and the silane coupling agent exceeds 4 parts by mass. (1) a step of preparing a silane masterbatch by melt-kneading 15.0 parts by mass or less at a temperature equal to or higher than the decomposition temperature of the organic peroxide;
Mixing the silane masterbatch and silanol condensation catalyst to obtain a mixture (b);
A step (c) of forming the mixture to obtain a molded body;
A method for producing a heat-resistant silane cross-linked resin molded product, comprising the step (d) of bringing the molded product into contact with water to obtain a heat-resistant silane cross-linked resin molded product.
(2) The manufacturing method of the heat-resistant silane crosslinked resin molding as described in (1) whose mixing amount of the said silane coupling agent is 6 mass parts or more and 15.0 mass parts or less with respect to 100 mass parts of said polyolefin resins. .
(3) The method for producing a heat-resistant silane crosslinked resin molded article according to (1) or (2), wherein the silane coupling agent is vinyltrimethoxysilane or vinyltriethoxysilane.
(4) The inorganic filler according to any one of (1) to (3), wherein the inorganic filler is at least one selected from the group consisting of silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, and antimony trioxide. A method for producing a heat-resistant silane cross-linked resin molded article.
(5) The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of (1) to (4), wherein the melt-mixing in the step (a) is performed with a closed mixer.
(6) The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of (1) to (5), wherein a silanol condensation catalyst is not substantially mixed in the step (a).
(7) With respect to 100 parts by mass of the polyolefin resin, the organic peroxide is 0.01 parts by mass or more and 0.6 parts by mass or less, the inorganic filler is 10 parts by mass or more and 400 parts by mass or less, and exceeds 4 parts by mass of the silane coupling agent. (1) a step of preparing a silane masterbatch by melt-kneading 15.0 parts by mass or less at a temperature equal to or higher than the decomposition temperature of the organic peroxide;
A method for producing a heat-resistant silane crosslinkable resin composition comprising the step (b) of mixing the silane master batch and a silanol condensation catalyst to obtain a mixture.
(8)(7)に記載の製造方法により製造されてなる耐熱性シラン架橋性樹脂組成物。
(9)(1)~(6)のいずれか1項に記載の製造方法により製造されてなる耐熱性シラン架橋樹脂成形体。
(10)耐熱性シラン架橋樹脂成形体が、シラノール結合を介して前記無機フィラーと架橋してなる前記ポリオレフィン樹脂を含む(9)に記載の耐熱性シラン架橋樹脂成形体。
(11)(9)又は(10)に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。
(12)前記耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている(11)に記載の耐熱性製品。
(13)ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを前記有機過酸化物の分解温度以上の温度において溶融混練して得られるシランマスターバッチ。
(8) A heat-resistant silane crosslinkable resin composition produced by the production method according to (7).
(9) A heat-resistant silane crosslinked resin molded product produced by the production method according to any one of (1) to (6).
(10) The heat resistant silane crosslinked resin molded product according to (9), wherein the heat resistant silane crosslinked resin molded product includes the polyolefin resin formed by crosslinking with the inorganic filler through a silanol bond.
(11) A heat resistant product comprising the heat resistant silane crosslinked resin molded article according to (9) or (10).
(12) The heat-resistant product according to (11), wherein the heat-resistant silane-crosslinked resin molded body is provided as a coating for an electric wire or an optical fiber cable.
(13) The organic peroxide is 0.01 to 0.6 parts by mass, the inorganic filler is 10 to 400 parts by mass, and the silane coupling agent exceeds 4 parts by mass with respect to 100 parts by mass of the polyolefin resin. A silane master batch obtained by melt-kneading 15.0 parts by mass or less at a temperature not lower than the decomposition temperature of the organic peroxide.
 本発明の耐熱性シラン架橋樹脂成形体の製造方法は、無機フィラー及び有機過酸化物の存在下においてポリオレフィン樹脂100質量部に対して4質量部を超えて15質量部以下のシランカップリング剤を溶融混合することにより、押出機を一旦停止後、運転を再開させても外観に優れたシラン架橋樹脂成形体を製造することができる。 The method for producing a heat-resistant silane-crosslinked resin molded article of the present invention comprises a silane coupling agent of more than 4 parts by mass and less than 15 parts by mass with respect to 100 parts by mass of a polyolefin resin in the presence of an inorganic filler and an organic peroxide. By melt-mixing, a silane-crosslinked resin molded article having an excellent appearance can be produced even if the operation is resumed after stopping the extruder.
 本発明の耐熱性シラン架橋樹脂成形体の製造方法によれば、ポリオレフィン樹脂同士の架橋反応、及び、シランカップリング剤同士の縮合反応を、いずれも、抑えることができ、外観のきれいなシラン架橋樹脂成形体を製造することができる。 According to the method for producing a heat-resistant silane cross-linked resin molded product of the present invention, both the cross-linking reaction between polyolefin resins and the condensation reaction between silane coupling agents can be suppressed, and the silane cross-linked resin having a clean appearance can be obtained. A molded body can be produced.
 また、本発明の耐熱性シラン架橋樹脂成形体の製造方法は、ポリオレフィン樹脂との混練り前及び/又は混練り時に、無機フィラー及びシランカップリング剤を所定の割合で混合する。これにより、混練り時のシランカップリング剤の揮発を抑え、耐熱性シラン架橋樹脂成形体を効率的に製造できる。しかも耐熱性シラン架橋樹脂成形体に優れた難燃性、機械特性を付与できる。また、無機フィラーを大量に加えた高耐熱性のシラン架橋樹脂成形体を電子線架橋機等の特殊な機械を使用することなく製造することができる。 Further, in the method for producing a heat-resistant silane cross-linked resin molded article of the present invention, an inorganic filler and a silane coupling agent are mixed at a predetermined ratio before and / or during kneading with a polyolefin resin. Thereby, volatilization of the silane coupling agent at the time of kneading | mixing can be suppressed, and a heat resistant silane crosslinked resin molding can be manufactured efficiently. Moreover, excellent flame retardancy and mechanical properties can be imparted to the heat-resistant silane-crosslinked resin molded article. Moreover, the highly heat-resistant silane crosslinked resin molding which added the inorganic filler in large quantities can be manufactured, without using special machines, such as an electron beam crosslinking machine.
 したがって、本発明により、押出機の作動を一旦停止後、再開しても、外観荒れやブツが発生しにくく外観に優れ、好ましくは難燃性及び機械特性にも優れた耐熱性シラン架橋樹脂成形体の製造方法、及びこの製造方法で得られた耐熱性シラン架橋樹脂成形体を提供できる。また、この耐熱性シラン架橋樹脂成形体を形成可能な、シランマスターバッチ、耐熱性シラン架橋性樹脂組成物及びその製造方法を提供できる。さらに、耐熱性シラン架橋樹脂成形体の製造方法で得られた耐熱性シラン架橋樹脂成形体を用いた耐熱性製品を提供できる。 Therefore, according to the present invention, even if the operation of the extruder is once stopped and restarted, heat-resistant silane cross-linked resin molding that is less likely to cause rough appearance and irregularities and is excellent in appearance, and preferably excellent in flame retardancy and mechanical properties. The manufacturing method of a body, and the heat-resistant silane crosslinked resin molding obtained by this manufacturing method can be provided. Moreover, the silane masterbatch which can form this heat-resistant silane crosslinked resin molded object, a heat-resistant silane crosslinkable resin composition, and its manufacturing method can be provided. Furthermore, a heat-resistant product using the heat-resistant silane cross-linked resin molded product obtained by the method for producing a heat-resistant silane cross-linked resin molded product can be provided.
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description.
 本発明の「耐熱性シラン架橋樹脂成形体の製造方法」は下記工程(a)~(d)を有する。本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」は下記工程(a)及び(b)を有し、工程(c)及び工程(d)を必須の工程としない。
 このように、本発明の「耐熱性シラン架橋樹脂成形体の製造方法」と本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」は、下記工程(c)及び工程(d)の有無以外は基本的に同様である。したがって、本発明の「耐熱性シラン架橋樹脂成形体の製造方法」及び本発明の「耐熱性シラン架橋性樹脂組成物の製造方法」(両者の共通部分の説明においては、これらを併せて、本発明の製造方法ということがある)を、併せて、以下に説明する。
The “method for producing a heat-resistant silane-crosslinked resin molded article” of the present invention includes the following steps (a) to (d). The “method for producing a heat-resistant silane crosslinkable resin composition” of the present invention has the following steps (a) and (b), and does not make the steps (c) and (d) essential steps.
As described above, the “method for producing a heat-resistant silane-crosslinked resin molded product” of the present invention and the “method for producing a heat-resistant silane-crosslinked resin composition” of the present invention include the following steps (c) and (d). Other than that is basically the same. Accordingly, the “method for producing a heat-resistant silane cross-linked resin molded product” of the present invention and the “method for producing a heat-resistant silane cross-linkable resin composition” of the present invention (in the explanation of the common parts of both, The production method of the present invention is sometimes described below.
 以下に本発明の好ましい実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
工程(a):ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを、有機過酸化物の分解温度以上の温度において溶融混練して、シランマスターバッチを調製する工程
工程(b):シランマスターバッチとシラノール縮合触媒とを混合して混合物を得る工程
工程(c):混合物を成形して成形体を得る工程
工程(d):成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程
 ここで、混合するとは、均一な混合物を得ることをいう。
Step (a): 0.01 parts by weight or more and 0.6 parts by weight or less of an organic peroxide, 10 parts by weight or more and 400 parts by weight or less of an inorganic filler, and 4 parts by weight of a silane coupling agent with respect to 100 parts by weight of a polyolefin resin. Step (b) of preparing a silane masterbatch by melting and kneading at a temperature higher than the decomposition temperature of the organic peroxide to 15.0 parts by mass or more and mixing the silane masterbatch and the silanol condensation catalyst Step (c) for obtaining a mixture step: Step (d) for obtaining a molded product by forming the mixture Step (d): Step for obtaining a heat-resistant silane-crosslinked resin molded product by bringing the molded product into contact with water To obtain a uniform mixture.
 まず、本発明において用いる各成分について説明する。
<ポリオレフィン樹脂>
 ポリオレフィン樹脂は、エチレン性不飽和結合を有する化合物を重合又は共重合して得られる重合体からなる樹脂であれば特に限定されるものではなく、従来、耐熱性樹脂組成物に使用されている公知のものを使用することができる。
 例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-α-オレフィン共重合体、ポリプロピレンとエチレン-α-オレフィン樹脂とのブロック共重合体、酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体、及びそれらのゴム、エラストマー、スチレン系エラストマー、エチレン-プロピレンゴム(例えば、エチレン-プロピレン-ジエンゴム)等の重合体からなる樹脂が挙げられる。
 これらの中でも、金属水和物等をはじめとする各種無機フィラーに対する受容性が高く、無機フィラーを多量に配合しても機械的強度を維持できる点から、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体、スチレン系エラストマー、エチレン-プロピレンゴム等の樹脂が好適である。これらのポリオレフィン樹脂は、1種を単独で用いても2種以上を併用してもよい。
First, each component used in the present invention will be described.
<Polyolefin resin>
The polyolefin resin is not particularly limited as long as it is a resin made of a polymer obtained by polymerizing or copolymerizing a compound having an ethylenically unsaturated bond, and is conventionally known as a heat-resistant resin composition. Can be used.
For example, polyethylene (PE), polypropylene (PP), ethylene-α-olefin copolymer, block copolymer of polypropylene and ethylene-α-olefin resin, polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component. Examples thereof include resins and resins made of polymers such as rubbers, elastomers, styrene elastomers, ethylene-propylene rubbers (for example, ethylene-propylene-diene rubbers).
Among these, polyethylene, polypropylene, and ethylene-α-olefin co-polymers are highly receptive to various inorganic fillers such as metal hydrates and can maintain mechanical strength even when a large amount of inorganic fillers are blended. A resin such as a polymer, a polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, a styrene elastomer, and an ethylene-propylene rubber is preferred. These polyolefin resins may be used individually by 1 type, or may use 2 or more types together.
 ポリエチレンは、エチレン成分を主成分とする重合体であれば特に限定されない。ポリエチレンは、エチレンのみからなる単独重合体、エチレンと5mol%以下のα-オレフィレン(プロピレンを除く)との共重合体、並びに、エチレンと官能基に炭素、酸素及び水素原子だけを持つ1mol%以下の非オレフィンとの共重合体を包含する(例えば、JIS K 6748)。なお、上述のα-オレフィレン及び非オレフィンはポリエチレンの共重合成分として従来用いられる公知のものを特に制限されることなく用いることができる。
 本発明において用い得るポリエチレンとしては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレン(UHMW-PE)、直鎖型低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)が挙げられる。なかでも、直鎖型低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)が好ましい。ポリエチレンは1種単独で使用してもよく、また2種以上を併用してもよい。
The polyethylene is not particularly limited as long as it is a polymer mainly composed of an ethylene component. Polyethylene is a homopolymer consisting only of ethylene, a copolymer of ethylene and 5 mol% or less α-olefin (excluding propylene), and 1 mol% or less having only ethylene, carbon, oxygen and hydrogen atoms in the functional group. And copolymers with non-olefins (for example, JIS K 6748). As the above-mentioned α-olefin and non-olefin, known ones conventionally used as a copolymerization component of polyethylene can be used without any particular limitation.
Examples of polyethylene that can be used in the present invention include high density polyethylene (HDPE), low density polyethylene (LDPE), ultra high molecular weight polyethylene (UHMW-PE), linear low density polyethylene (LLDPE), and very low density polyethylene (VLDPE). Is mentioned. Of these, linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) are preferable. Polyethylene may be used individually by 1 type, and may use 2 or more types together.
 ポリプロピレンは、プロピレン成分を主成分とする重合体であれば特に限定されない。ポリプロピレンは、プロピレンの単独重合体のほか、共重合体としてランダムポリプロピレン等のエチレン-プロピレン共重合体及びブロックポリプロピレンを包含する。
 ここで、「ランダムポリプロピレン」は、プロピレンとエチレンとの共重合体であって、エチレン成分含有量が1~5質量%のものをいう。また、「ブロックポリプロピレン」は、ホモポリプロピレンとエチレン-プロピレン共重合体とを含む組成物であって、エチレン成分含有量が5~15質量%程度で、エチレン成分とプロピレン成分が独立した成分として存在するものをいう。
 ポリプロピレンは、1種を単独で用いても2種以上を併用してもよい。
Polypropylene is not particularly limited as long as it is a polymer mainly composed of a propylene component. Polypropylene includes propylene homopolymers, ethylene-propylene copolymers such as random polypropylene, and block polypropylene as copolymers.
Here, “random polypropylene” refers to a copolymer of propylene and ethylene having an ethylene component content of 1 to 5 mass%. “Block polypropylene” is a composition containing a homopolypropylene and an ethylene-propylene copolymer, having an ethylene component content of about 5 to 15% by mass, and an ethylene component and a propylene component existing as independent components. Say what you do.
Polypropylene may be used alone or in combination of two or more.
 エチレン-α-オレフィン共重合体としては、好ましくは、エチレンと炭素数3~12のα-オレフィンとの共重合体(なお、上述のポリエチレン及びポリプロピレンに含まれるものを除く)が挙げられる。
 エチレン-α-オレフィン共重合体におけるα-オレフィン構成成分の具体例としては、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン等の各構成成分が挙げられる。エチレン-α-オレフィン共重合体は、好ましくはエチレンと炭素数3~12のα-オレフィンとの共重合体(ポリエチレン及びポリプロピレンに含まれるものを除く)である。具体的には、エチレン-プロピレン共重合体(ただし、ポリプロピレンに含まれるものを除く)、エチレン-ブチレン共重合体、及びシングルサイト触媒存在下に合成されたエチレン-α-オレフィン共重合体等が挙げられる。エチレン-α-オレフィン共重合体は1種単独で使用してもよく、また2種以上を併用してもよい。
The ethylene-α-olefin copolymer is preferably a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms (except for those contained in the above-mentioned polyethylene and polypropylene).
Specific examples of the α-olefin component in the ethylene-α-olefin copolymer include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like. These components are mentioned. The ethylene-α-olefin copolymer is preferably a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms (excluding those contained in polyethylene and polypropylene). Specifically, an ethylene-propylene copolymer (excluding those contained in polypropylene), an ethylene-butylene copolymer, an ethylene-α-olefin copolymer synthesized in the presence of a single site catalyst, etc. Can be mentioned. One ethylene-α-olefin copolymer may be used alone, or two or more ethylene-α-olefin copolymers may be used in combination.
 酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体における酸共重合成分又は酸エステル共重合成分としては、(メタ)アクリル酸等のカルボン酸化合物、並びに、酢酸ビニル及び(メタ)アクリル酸アルキル等の酸エステル化合物が挙げられる。ここで、(メタ)アクリル酸アルキルのアルキル基は、炭素数1~12のものが好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基が挙げられる。酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体(ポリエチレンに含まれるものを除く)としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸アルキル共重合体等が挙げられる。この中でも、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体が好ましく、さらには無機フィラーの受容性及び耐熱性の点から、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エチル共重合体が好ましい。酸共重合成分又は酸エステル共重合成分を有するポリオレフィン共重合体は1種単独で使用され、又は2種以上が併用される。 Examples of the acid copolymerization component or acid ester copolymerization component in the polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component include carboxylic acid compounds such as (meth) acrylic acid, and vinyl acetate and (meth) acrylic. Examples include acid ester compounds such as acid alkyls. Here, the alkyl group of the alkyl (meth) acrylate preferably has 1 to 12 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group. Examples of the polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component (excluding those contained in polyethylene) include, for example, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene -Alkyl (meth) acrylate copolymer and the like. Of these, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer are preferable. Furthermore, acceptability and heat resistance of inorganic fillers are preferred. From these points, an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer are preferable. The polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component is used singly or in combination of two or more.
 スチレン系エラストマーとしては、分子内に芳香族ビニル化合物を構成成分とするものをいう。したがって、本発明において、分子内にエチレン構成成分を含んでいても芳香族ビニル化合物構成成分を含んでいれば、スチレン系エラストマーに分類する。
 このようなスチレン系エラストマーとしては、共役ジエン化合物と芳香族ビニル化合物とのブロック共重合体及びランダム共重合体、又は、それらの水素添加物等が挙げられる。芳香族ビニル化合物としては、例えば、スチレン、p-(t-ブチル)スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルトルエン等が挙げられる。芳香族ビニル化合物は、これらの中でも、スチレンが好ましい。この芳香族ビニル化合物は、1種単独で使用され、又は2種以上が併用される。共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。共役ジエン化合物は、これらの中でも、ブタジエンが好ましい。この共役ジエン化合物は、1種単独で使用され、又は2種以上が併用される。また、スチレン系エラストマーとして、同様な製法で、スチレン成分が含有されてなく、スチレン以外の芳香族ビニル化合物を含有するエラストマーを使用してもよい。
Styrenic elastomers are those having an aromatic vinyl compound as a constituent component in the molecule. Therefore, in this invention, even if it contains an ethylene component in a molecule | numerator, if it contains an aromatic vinyl compound component, it will classify | categorize into a styrene-type elastomer.
Examples of such styrenic elastomers include block copolymers and random copolymers of conjugated diene compounds and aromatic vinyl compounds, or hydrogenated products thereof. Examples of the aromatic vinyl compound include styrene, p- (t-butyl) styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl. Examples thereof include styrene and vinyl toluene. Among these, styrene is preferable as the aromatic vinyl compound. This aromatic vinyl compound is used individually by 1 type, or 2 or more types are used together. Examples of the conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. Among these, the conjugated diene compound is preferably butadiene. This conjugated diene compound is used individually by 1 type, or 2 or more types are used together. In addition, as a styrene-based elastomer, an elastomer containing an aromatic vinyl compound other than styrene, which does not contain a styrene component, may be used by a similar production method.
 スチレン系エラストマーとしては、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素化SBS、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、水素化SIS、水素化スチレン・ブタジエンゴム(HSBR)、水素化アクリロニトリル・ブタジエンゴム(HNBR)等を挙げることができる。
 スチレン系エラストマーとしては、スチレン構成成分の含有率が10~40%であるSEPS、SEEPS又はSEBSを単独で、あるいはこれらの2種以上を組み合わせて使用することが好ましい。
 なお、スチレン系エラストマーは、市販品を用いることができ、例えば、セプトン4077、セプトン4055、セプトン8105(いずれも商品名、クラレ社製)、ダイナロン1320P、ダイナロン4600P、6200P、8601P、9901P(いずれも商品名、JSR社製)等が挙げられる。
Examples of the styrene elastomer include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), hydrogenated SBS, styrene-ethylene-ethylene-propylene-styrene block. Copolymer (SEEPS), styrene-ethylene-propylene-styrene block copolymer (SEPS), hydrogenated SIS, hydrogenated styrene / butadiene rubber (HSBR), hydrogenated acrylonitrile / butadiene rubber (HNBR), etc. it can.
As the styrene elastomer, it is preferable to use SEPS, SEEPS or SEBS having a styrene constituent content of 10 to 40% alone or in combination of two or more thereof.
As the styrene elastomer, commercially available products can be used. For example, Septon 4077, Septon 4055, Septon 8105 (all trade names, manufactured by Kuraray Co., Ltd.), Dynalon 1320P, Dynalon 4600P, 6200P, 8601P, 9901P (all Product name, manufactured by JSR).
 ポリオレフィン樹脂、すなわち上記重合体は、酸変性されていてもよい。酸変性に用いられる酸としては、特に限定されないが、不飽和カルボン酸又はその誘導体が挙げられる。不飽和カルボン酸としては、例えば、マレイン酸、イタコン酸、フマル酸等が挙げられる。不飽和カルボン酸の誘導体としては、マレイン酸モノエステル、マレイン酸ジエステル、無水マレイン酸、イタコン酸モノエステル、イタコン酸ジエステル、無水イタコン酸、フマル酸モノエステル、フマル酸ジエステル、無水フマル酸等が挙げられる。これらのなかでも、マレイン酸又は無水マレイン酸が好ましい。酸変性量は、酸変性されたポリオレフィン樹脂1分子中、通常0.1~7質量%程度である。 The polyolefin resin, that is, the polymer may be acid-modified. Although it does not specifically limit as an acid used for acid modification, Unsaturated carboxylic acid or its derivative (s) is mentioned. Examples of the unsaturated carboxylic acid include maleic acid, itaconic acid, fumaric acid and the like. Examples of unsaturated carboxylic acid derivatives include maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride, etc. It is done. Among these, maleic acid or maleic anhydride is preferable. The amount of acid modification is usually about 0.1 to 7% by mass in one molecule of the acid-modified polyolefin resin.
 ポリオレフィン樹脂は、所望により可塑剤又は軟化剤として使用される各種オイルを含有していてもよい。このようなオイルとして、ポリオレフィン樹脂に用いられる可塑剤又はゴムの鉱物油軟化剤としてのオイルが挙げられる。鉱物油軟化剤は、芳香族環を有する炭化水素からなるオイル、ナフテン環を有する炭化水素からなるオイル及びパラフィン鎖を有する炭化水素からなるオイルの三者を含む混合油である。パラフィン鎖を有する炭化水素を構成する炭素数が全炭素数の50%以上を占めるものをパラフィンオイル、ナフテン環を有する炭化水素を構成する炭素数が30~40%のものはナフテンオイル、芳香族環を有する炭化水素を構成する炭素数が30%以上のものはアロマオイルと呼ばれて区別されている。これらの中でも、液状又は低分子量の合成軟化剤、パラフィンオイル、ナフテンオイルが好適に用いられ、特にパラフィンオイルが好適に用いられる。このようなオイルとして、例えば、ダイアナプロセスオイルPW90、PW380(いずれも商品名、出光興産社製)、コスモニュートラル500(コスモ石油社製)等が挙げられる。 The polyolefin resin may contain various oils used as a plasticizer or a softener as desired. Examples of such oils include oils as plasticizers used in polyolefin resins or mineral oil softeners for rubber. The mineral oil softener is a mixed oil including three oils: an oil composed of a hydrocarbon having an aromatic ring, an oil composed of a hydrocarbon having a naphthene ring, and an oil composed of a hydrocarbon having a paraffin chain. Paraffin oil is the one that occupies 50% or more of the total carbon number of hydrocarbons having paraffin chains, and naphthenic oil or aromatic ones that have 30 to 40% carbon atoms that constitute hydrocarbons having a naphthene ring. Those having 30% or more carbon atoms constituting hydrocarbons having a ring are called aroma oils and are distinguished. Among these, liquid or low molecular weight synthetic softeners, paraffin oil, and naphthene oil are preferably used, and paraffin oil is particularly preferably used. Examples of such oils include Diana Process Oil PW90 and PW380 (both are trade names, manufactured by Idemitsu Kosan Co., Ltd.), Cosmo Neutral 500 (Cosmo Oil Co., Ltd.), and the like.
 ポリオレフィン樹脂がオイルを含有する場合、オイルは、耐熱性能、架橋性能及び強度の点で、ポリオレフィン樹脂に含まれる上述の重合体とオイルとの合計質量に対して、80質量%以下が好ましく、55質量%以下がより好ましく、40質量%以下がさらに好ましい。オイルの含有率は、最少で0質量%であるが、例えば20質量%以上にすることもできる。すなわち、ポリオレフィン樹脂は、上記合計質量に対して、20質量%以上が好ましく、45%質量以上がより好ましく、60質量%以上がさらに好ましい。ポリオレフィン樹脂の含有率は、最多で100質量%であるが、例えば80質量%以下にすることもできる。 When the polyolefin resin contains oil, the oil is preferably 80% by mass or less with respect to the total mass of the polymer and the oil contained in the polyolefin resin in terms of heat resistance performance, crosslinking performance, and strength. It is more preferably at most 40% by mass, and even more preferably at most 40% by mass. The oil content is at least 0% by mass, but can be 20% by mass or more, for example. That is, the polyolefin resin is preferably 20% by mass or more, more preferably 45% by mass or more, and further preferably 60% by mass or more with respect to the total mass. The content of the polyolefin resin is at most 100% by mass, but may be, for example, 80% by mass or less.
<有機過酸化物>
 有機過酸化物は、熱分解によりラジカルを発生して、シランカップリング剤のポリオレフィン樹脂へのグラフト化反応を促進させる働きをする。特に、シランカップリング剤がエチレン性不飽和基を含む場合、エチレン性不飽和基とポリオレフィン樹脂とのラジカル反応(ポリオレフィン樹脂からの水素ラジカルの引き抜き反応を含む)によるグラフト化反応を促進させる働きをする。有機過酸化物は、ラジカルを発生させるものであれば、特に制限はない。例えば、一般式:R-OO-R、R-OO-C(=O)R、RC(=O)-OO(C=O)Rで表される化合物が好ましく用いられる。ここで、R、R、R、R及びRは各々独立にアルキル基、アリール基又はアシル基を表す。このうち、本発明においては、R、R、R、R及びRがいずれもアルキル基であるか、いずれかがアルキル基で残りがアシル基であるものが好ましい。
<Organic peroxide>
The organic peroxide functions to generate radicals by thermal decomposition and promote the grafting reaction of the silane coupling agent to the polyolefin resin. In particular, when the silane coupling agent contains an ethylenically unsaturated group, it works to promote the grafting reaction by radical reaction between the ethylenically unsaturated group and the polyolefin resin (including hydrogen radical abstraction reaction from the polyolefin resin). To do. The organic peroxide is not particularly limited as long as it generates radicals. For example, a compound represented by the general formula: R 1 —OO—R 2 , R 1 —OO—C (═O) R 3 , R 4 C (═O) —OO (C═O) R 5 is preferably used. It is done. Here, R 1 , R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group, an aryl group or an acyl group. Among these, in the present invention, it is preferable that R 1 , R 2 , R 3 , R 4 and R 5 are all alkyl groups, or any one is an alkyl group and the rest is an acyl group.
 このような有機過酸化物としては、例えば、ジクミルパーオキサイド(DCP)、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルクミルパーオキサイド等を挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド(DCP)、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3が好ましい。 Examples of such organic peroxides include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, , 5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3, 3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butylperoxy Benzoate, tert-butyl peroxyisopropyl carbonate, dia Chill peroxide, lauroyl peroxide, may be mentioned tert- butyl cumyl peroxide and the like. Of these, dicumyl peroxide (DCP), 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-in terms of odor, colorability, and scorch stability. Dimethyl-2,5-di- (tert-butylperoxy) hexyne-3 is preferred.
 有機過酸化物の分解温度は、80~195℃であるのが好ましく、125~180℃であるのが特に好ましい。
 本発明において、有機過酸化物の分解温度とは、単一組成の有機過酸化物を加熱したとき、ある一定の温度又は温度域でそれ自身が2種類以上の化合物に分解反応を起こす温度を意味する。具体的には、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
The decomposition temperature of the organic peroxide is preferably from 80 to 195 ° C., particularly preferably from 125 to 180 ° C.
In the present invention, the decomposition temperature of an organic peroxide means a temperature at which a decomposition reaction occurs in two or more compounds at a certain temperature or temperature range when an organic peroxide having a single composition is heated. means. Specifically, it refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
<無機フィラー>
 無機フィラーは、その表面に、シランカップリング剤のシラノール基等の反応部位と水素結合等が形成できる部位もしくは共有結合による化学結合しうる部位を有するものであれば特に制限なく用いることができる。この無機フィラーにおける、シランカップリング剤の反応部位と化学結合しうる部位としては、OH基(水酸基、含水もしくは結晶水の水分子、カルボキシ基等のOH基)、アミノ基、SH基等が挙げられる。
 このような無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミニウム、ウイスカ、水和ケイ酸アルミニウム、水和ケイ酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト等の水酸基あるいは結晶水を有する化合物のような金属水和物や、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカ等)、カーボン、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、ほう酸亜鉛、ホワイトカーボン、硼酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛を使用することができる。
 無機フィラーは、これらのなかでも、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、硼酸亜鉛、ヒドロキシスズ酸亜鉛の少なくとも1種が好ましく、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム及び三酸化アンチモンからなる群から選ばれる少なくとも1種がより好ましい。
 なお、無機フィラーは、1種類を単独で配合してもよいし、2種類以上を併用して用いてもよい。
<Inorganic filler>
The inorganic filler can be used without particular limitation as long as it has a site capable of forming a hydrogen bond or the like with a reactive site such as a silanol group of the silane coupling agent on the surface or a site capable of chemical bonding by a covalent bond. Examples of the site that can be chemically bonded to the reaction site of the silane coupling agent in this inorganic filler include OH groups (hydroxy groups, water molecules containing water or water of crystal water, OH groups such as carboxy groups), amino groups, and SH groups. It is done.
Examples of such inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate, whisker, and water. Metal hydrates such as compounds having hydroxyl or water of crystallization such as aluminum silicate, hydrated magnesium silicate, basic magnesium carbonate, hydrotalcite, boron nitride, silica (crystalline silica, amorphous Silica, etc.), carbon, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, antimony trioxide, silicone compound, quartz, talc, zinc borate, white carbon, zinc borate, hydroxy hydroxystannate, zinc stannate can do.
Among these, the inorganic filler is preferably at least one of silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc borate, and zinc hydroxystannate. Silica, aluminum hydroxide, magnesium hydroxide, carbonate More preferred is at least one selected from the group consisting of calcium and antimony trioxide.
In addition, an inorganic filler may be mix | blended individually by 1 type and may be used in combination of 2 or more types.
 無機フィラーの平均粒径は、0.2~10μmが好ましく、0.3~8μmがより好ましく、0.4~5μmがさらに好ましく、0.4~3μmが特に好ましい。無機フィラーの平均粒径が0.2μm未満であると、シランカップリング剤との混合時に無機フィラーが2次凝集を引き起こして、成形体の外観が低下し、又はブツを生じるおそれがある。一方、10μmを超えると、外観が低下したり、シランカップリング剤の保持効果が低下し、架橋に問題が生じたりするおそれがある。なお、平均粒径は、アルコールや水で分散させて、レーザ回折/散乱式粒子径分布測定装置等の光学式粒径測定器によって求められる。 The average particle diameter of the inorganic filler is preferably 0.2 to 10 μm, more preferably 0.3 to 8 μm, further preferably 0.4 to 5 μm, and particularly preferably 0.4 to 3 μm. When the average particle size of the inorganic filler is less than 0.2 μm, the inorganic filler causes secondary aggregation during mixing with the silane coupling agent, and the appearance of the molded body may be deteriorated or blistered. On the other hand, if it exceeds 10 μm, the appearance may be deteriorated, the retention effect of the silane coupling agent may be decreased, and a problem may be caused in crosslinking. The average particle size is determined by an optical particle size measuring device such as a laser diffraction / scattering type particle size distribution measuring device after being dispersed with alcohol or water.
 無機フィラーは、シランカップリング剤で表面処理した無機フィラーを使用することができる。例えば、シランカップリング剤表面処理水酸化マグネシウムとして、水酸化マグネシウムの市販品(キスマ5L、キスマ5P(いずれも商品名、協和化学社製)等)や水酸化アルミニウム等が挙げられる。 As the inorganic filler, an inorganic filler surface-treated with a silane coupling agent can be used. Examples of the silane coupling agent surface-treated magnesium hydroxide include magnesium hydroxide commercial products (Kisuma 5L, Kisuma 5P (both trade names, manufactured by Kyowa Chemical Co., Ltd.)) and aluminum hydroxide.
<シランカップリング剤>
 シランカップリング剤は、ラジカルの存在下でポリオレフィン樹脂にグラフト反応しうる基と、無機フィラーと化学結合しうる基とを有するものであればよく、末端に加水分解性基を有する加水分解性シランカップリング剤が好ましい。シランカップリング剤は、末端に、アミノ基、グリシジル基又はエチレン性不飽和基を含有する基と加水分解性基を含有する基とを有しているものがより好ましく、さらに好ましくは末端にエチレン性不飽和基を含有する基と加水分解性基を含有する基とを有しているシランカップリング剤である。エチレン性不飽和基を含有する基としては、特に限定されないが、例えば、ビニル基、アリル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基等が挙げられる。またこれらのシランカップリング剤と、その他の末端基を有するシランカップリング剤を併用してもよい。
<Silane coupling agent>
Any silane coupling agent may be used as long as it has a group that can be graft-reacted to a polyolefin resin in the presence of a radical and a group that can be chemically bonded to an inorganic filler. A coupling agent is preferred. More preferably, the silane coupling agent has an amino group, a glycidyl group or an ethylenically unsaturated group-containing group and a hydrolyzable group-containing group at the terminal, and more preferably ethylene at the terminal. It is a silane coupling agent having a group containing a polymerizable unsaturated group and a group containing a hydrolyzable group. The group containing an ethylenically unsaturated group is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth) acryloyloxy group, a (meth) acryloyloxyalkylene group, and a p-styryl group. Moreover, you may use together these silane coupling agents and the silane coupling agent which has another terminal group.
 このようなシランカップリング剤としては、例えば下記の一般式(1)で表される化合物を用いることができる。 As such a silane coupling agent, for example, a compound represented by the following general formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、Ra11はエチレン性不飽和基を含有する基、Rb11は脂肪族炭化水素基、水素原子又はY13である。Y11、Y12及びY13は加水分解しうる有機基である。Y11、Y12及びY13は互いに同じでも異なっていてもよい。 In general formula (I), R a11 is a group containing an ethylenically unsaturated group, and R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 . Y 11 , Y 12 and Y 13 are hydrolyzable organic groups. Y 11 , Y 12 and Y 13 may be the same as or different from each other.
 一般式(1)で表されるシランカップリング剤のRa11は、エチレン性不飽和基を含有する基が好ましく、エチレン性不飽和基を含有する基は、上述した通りであり、好ましくはビニル基である。 R a11 of the silane coupling agent represented by the general formula (1) is preferably a group containing an ethylenically unsaturated group, and the group containing an ethylenically unsaturated group is as described above, preferably vinyl. It is a group.
 Rb11は脂肪族炭化水素基、水素原子又は後述のY13であり、脂肪族炭化水素基としては、脂肪族不飽和炭化水素基を除く炭素数1~8の1価の脂肪族炭化水素基が挙げられ、好ましくは後述のY13である。 R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 described later, and the aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. and the like, preferably below Y 13.
 Y11、Y12及びY13は、加水分解しうる有機基であり、例えば、炭素数1~6のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~4のアシルオキシ基が挙げられ、アルコキシ基が好ましい。加水分解しうる有機基としては、具体的には例えば、メトキシ、エトキシ、ブトキシ、アシルオキシ等を挙げることができる。この中でも、シランカップリング剤の反応性の点から、メトキシ又はエトキシがさらに好ましく、メトキシが特に好ましい。 Y 11 , Y 12 and Y 13 are hydrolyzable organic groups such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an acyloxy group having 1 to 4 carbon atoms. And an alkoxy group is preferred. Specific examples of the hydrolyzable organic group include methoxy, ethoxy, butoxy, acyloxy and the like. Among these, methoxy or ethoxy is more preferable, and methoxy is particularly preferable from the viewpoint of the reactivity of the silane coupling agent.
 シランカップリング剤としては、好ましくは加水分解速度の速いシランカップリング剤、より好ましくはRb11がY13であり、かつY11、Y12及びY13が互いに同じであるシランカップリング剤である。さらに好ましくは、Y11、Y12及びY13の少なくとも1つがメトキシ基である加水分解性シランカップリング剤であり、特に好ましくはすべてがメトキシ基である加水分解性シランカップリング剤である。 The silane coupling agent is preferably a silane coupling agent having a high hydrolysis rate, more preferably a silane coupling agent in which R b11 is Y 13 and Y 11 , Y 12 and Y 13 are the same. . More preferred is a hydrolysable silane coupling agent in which at least one of Y 11 , Y 12 and Y 13 is a methoxy group, and particularly preferred is a hydrolyzable silane coupling agent in which all are methoxy groups.
 末端にビニル基、(メタ)アクリロイルオキシ基又は(メタ)アクリロイルオキシアルキレン基を有するシランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン等のオルガノシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン等を挙げることができる。これらのシランカップリング剤は単独又は2種以上を併用してもよい。このような架橋性のシランカップリング剤の中でも、末端にビニル基とアルコキシ基を有するシランカップリング剤がさらに好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましい。
 末端にグリシジル基を有するものは、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
Specific examples of the silane coupling agent having a vinyl group, (meth) acryloyloxy group or (meth) acryloyloxyalkylene group at the terminal include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, and vinyldimethoxy. Organosilanes such as ethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxysilane, allyltriethoxysilane, vinyltriacetoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropyl Examples include methyldimethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Among such crosslinkable silane coupling agents, a silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
Those having a glycidyl group at the terminal are 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
 シランカップリング剤は、そのままで用いても、溶媒等で希釈して用いてもよい。 The silane coupling agent may be used as it is or diluted with a solvent or the like.
<シラノール縮合触媒>
 シラノール縮合触媒は、ポリオレフィン樹脂にグラフト化されたシランカップリング剤を水分の存在下で縮合反応させる働きがある。このシラノール縮合触媒の働きに基づき、シランカップリング剤を介して、ポリオレフィン樹脂同士が架橋される。その結果、耐熱性に優れた耐熱性シラン架橋樹脂成形体が得られる。
<Silanol condensation catalyst>
The silanol condensation catalyst has a function of subjecting a silane coupling agent grafted to a polyolefin resin to a condensation reaction in the presence of moisture. Based on the action of this silanol condensation catalyst, polyolefin resins are cross-linked through a silane coupling agent. As a result, a heat-resistant silane cross-linked resin molded article having excellent heat resistance is obtained.
 シラノール縮合触媒としては、有機スズ化合物、金属石けん、白金化合物等が用いられる。一般的なシラノール縮合触媒としては、例えば、ジブチルスズジラウリレート、ジオクチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物等が用いられる。これらの中でも、特に好ましくはジブチルスズジラウリレート、ジオクチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物である。 As the silanol condensation catalyst, an organic tin compound, a metal soap, a platinum compound, or the like is used. Common silanol condensation catalysts include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, sodium stearate, Lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds and the like are used. Among these, organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate are particularly preferable.
<キャリア樹脂>
 シラノール縮合触媒は、所望により樹脂に混合されて用いられる。このような樹脂(キャリア樹脂ともいう)としては、特に限定されず、例えば、ポリオレフィン樹脂と同様の樹脂が挙げられる。キャリア樹脂は、上述のポリオレフィン樹脂の一部を用いることもできる。シラノール縮合触媒と親和性がよく耐熱性にも優れる点で、ポリエチレンからなる樹脂が好ましい。
<Carrier resin>
The silanol condensation catalyst is used by mixing with a resin if desired. Such a resin (also referred to as carrier resin) is not particularly limited, and examples thereof include resins similar to polyolefin resins. A part of the above-mentioned polyolefin resin can also be used as the carrier resin. A resin made of polyethylene is preferred in that it has good affinity with the silanol condensation catalyst and is excellent in heat resistance.
<添加剤>
 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物は、電線、電気ケーブル、電気コード、シート、発泡体、チューブ、パイプにおいて、一般的に使用されている各種の添加剤が本発明の目的を損なわない範囲で適宜配合されていてもよい。このような添加剤として、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、充填剤、他の樹脂等が挙げられる。
 これらの添加剤、特に酸化防止剤や金属不活性剤は、いずれの成分に混合されてもよいが、キャリア樹脂に加えた方がよい。架橋助剤は実質的に含有していないことが好ましい。特に架橋助剤はシランマスターバッチを調製する工程(a)において実質的に混合されないのが好ましい。架橋助剤が実質的に混合されないと、混練り中にポリオレフィン樹脂同士の架橋が生じにくく、耐熱性シラン架橋樹脂成形体の外観及び耐熱性に優れる。ここで、実質的に含有しない又は混合されないとは、架橋助剤を積極的に添加又は混合しないことを意味し、不可避的に含有又は混合されることを除外するものではない。
<Additives>
The heat-resistant silane cross-linked resin molded body and the heat-resistant silane cross-linkable resin composition are various additives commonly used in electric wires, electric cables, electric cords, sheets, foams, tubes, and pipes. It may be blended appropriately as long as the purpose is not impaired. Examples of such additives include crosslinking aids, antioxidants, lubricants, metal deactivators, fillers, and other resins.
These additives, particularly antioxidants and metal deactivators, may be mixed in any component, but are preferably added to the carrier resin. It is preferable that the crosslinking aid is not substantially contained. In particular, it is preferable that the crosslinking aid is not substantially mixed in the step (a) for preparing the silane master batch. When the crosslinking aid is not substantially mixed, crosslinking between polyolefin resins hardly occurs during kneading, and the appearance and heat resistance of the heat-resistant silane crosslinked resin molded article are excellent. Here, being substantially not contained or not mixed means that a crosslinking aid is not actively added or mixed, and does not exclude inclusion or mixing unavoidably.
 架橋助剤は、有機過酸化物の存在下においてポリオレフィン樹脂との間に部分架橋構造を形成する化合物をいう。例えば、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート等のメタクリレート化合物、トリアリルシアヌレート等のアリル化合物、マレイミド化合物、ジビニル化合物等の多官能性化合物を挙げることができる。 The crosslinking assistant refers to a compound that forms a partially crosslinked structure with a polyolefin resin in the presence of an organic peroxide. For example, polyfunctional compounds such as methacrylate compounds such as polypropylene glycol diacrylate and trimethylolpropane triacrylate, allyl compounds such as triallyl cyanurate, maleimide compounds, and divinyl compounds can be used.
 酸化防止剤としては、例えば、4,4’-ジオクチルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のアミン酸化防止剤、ペンタエリスリチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等のフェノール酸化防止剤、ビス(2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル)スルフィド、2-メルカプトベンヅイミダゾール及びその亜鉛塩、ペンタエリスリトール-テトラキス(3-ラウリル-チオプロピオネート)等のイオウ酸化防止剤等が挙げられる。酸化防止剤は、ポリオレフィン樹脂100質量部に対して、好ましくは0.1~15.0質量部、さらに好ましくは0.1~10質量部で加えることができる。 Antioxidants such as 4,4′-dioctyldiphenylamine, N, N′-diphenyl-p-phenylenediamine, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, etc. Agents, pentaerythrityl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like, bis (2-methyl-4- (3 -N-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptobenzimidazole and its zinc salt, pentaerythrine Lithol - tetrakis (3-lauryl - thiopropionate) sulfur antioxidant such as and the like. The antioxidant can be added in an amount of preferably 0.1 to 15.0 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyolefin resin.
 滑剤としては、炭化水素、シロキサン、脂肪酸、脂肪酸アミド、エステル、アルコール、金属石けん等が挙げられる。これらの滑剤はキャリア樹脂(E)に加えた方がよい。 Lubricants include hydrocarbons, siloxanes, fatty acids, fatty acid amides, esters, alcohols, metal soaps and the like. These lubricants should be added to the carrier resin (E).
 金属不活性剤としては、N,N’-ビス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル)ヒドラジン、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2,2’-オキサミドビス-(エチル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)等が挙げられる。 Examples of metal deactivators include N, N′-bis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and the like.
 充填剤(難燃(助)剤を含む)としては、上述の各種フィラー以外の充填剤が挙げられる。 Fillers (including flame retardant (auxiliary) agents) include fillers other than the various fillers described above.
 次に、本発明の製造方法を具体的に説明する。
 本発明の製造方法において、工程(a)は、ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを、有機過酸化物の分解温度以上の温度において、溶融混練する。これにより、シランマスターバッチが調製される。
Next, the production method of the present invention will be specifically described.
In the production method of the present invention, the step (a) comprises 0.01 parts by mass or more and 0.6 parts by mass or less of the organic peroxide and 10 parts by mass or more and 400 parts by mass or less of the inorganic filler with respect to 100 parts by mass of the polyolefin resin. The silane coupling agent is melt-kneaded in excess of 4 parts by mass and 15.0 parts by mass at a temperature equal to or higher than the decomposition temperature of the organic peroxide. Thereby, a silane masterbatch is prepared.
 有機過酸化物の混合量は、ポリオレフィン樹脂100質量部に対して、0.01~0.6質量部であり、0.1~0.5質量部が好ましい。有機過酸化物の混合量が0.01質量部未満では、架橋時に架橋反応が進行せず、またシランカップリング剤同士が縮合して、耐熱性、機械的強度、補強性を十分に得ることができない場合がある。一方、0.6質量部を超えると、副反応によってポリオレフィン樹脂の多くが直接的に架橋してしまいブツが生じるおそれがある。すなわち、有機過酸化物の混合量をこの範囲内にすることにより、適切な範囲で重合を行うことができ、架橋ゲル等に起因する凝集塊(ブツ)も発生することなく押し出し性に優れた組成物が得ることができる。 The mixing amount of the organic peroxide is 0.01 to 0.6 parts by mass, preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the polyolefin resin. When the amount of the organic peroxide is less than 0.01 parts by mass, the crosslinking reaction does not proceed at the time of crosslinking, and the silane coupling agents are condensed with each other to sufficiently obtain heat resistance, mechanical strength, and reinforcement. May not be possible. On the other hand, when it exceeds 0.6 parts by mass, many of the polyolefin resins are directly cross-linked by a side reaction, and there is a risk of causing scum. That is, by setting the mixing amount of the organic peroxide within this range, the polymerization can be carried out in an appropriate range, and the extrudability is excellent without causing agglomerates due to the crosslinked gel or the like. A composition can be obtained.
 無機フィラーの混合量は、ポリオレフィン樹脂100質量部に対して、10~400質量部であり、30~280質量部が好ましい。無機フィラーの混合量が10質量部未満の場合は、シランカップリング剤のグラフト反応が不均一となり、所望の耐熱性が得られず、又は、不均一な反応により外観が低下するおそれがある。一方、400質量部を超えると、成型時や混練時の負荷が非常に大きくなり、2次成形が難しくなるおそれがある。 The mixing amount of the inorganic filler is 10 to 400 parts by mass, preferably 30 to 280 parts by mass with respect to 100 parts by mass of the polyolefin resin. When the mixing amount of the inorganic filler is less than 10 parts by mass, the graft reaction of the silane coupling agent becomes nonuniform, and the desired heat resistance cannot be obtained, or the appearance may deteriorate due to the nonuniform reaction. On the other hand, if it exceeds 400 parts by mass, the load during molding or kneading becomes very large, and secondary molding may be difficult.
 シランカップリング剤の混合量は、ポリオレフィン樹脂100質量部に対して、4.0質量部を超えて15.0質量部以下であり、好ましくは6~15.0質量部である。
 シランカップリング剤の混合量が4.0質量部以下の場合は、シラノール縮合触媒と共に成形する際に、押出機を止めたり、調整等で押出機の回転数を大きく変えた際にはブツが多く生じたりして、外観不良を生ずるおそれがある。一方、15.0質量部を超えると、それ以上の無機フィラー表面にシランカップリング剤が吸着しきれず、シランカップリング剤が混練中に揮発してしまい、経済的でない。また、吸着しないシランカップリング剤が縮合してしまい、成形体に架橋ゲルブツや焼けが生じて、外観が悪化するおそれがある。
The mixing amount of the silane coupling agent is more than 4.0 parts by mass and not more than 15.0 parts by mass, preferably 6 to 15.0 parts by mass with respect to 100 parts by mass of the polyolefin resin.
When the amount of the silane coupling agent mixed is 4.0 parts by mass or less, when molding with the silanol condensation catalyst, if the extruder is stopped or the rotational speed of the extruder is greatly changed by adjustment, etc. There is a possibility that it will occur many times, resulting in poor appearance. On the other hand, when the amount exceeds 15.0 parts by mass, the silane coupling agent cannot be completely adsorbed on the surface of the inorganic filler, and the silane coupling agent volatilizes during kneading, which is not economical. Moreover, the silane coupling agent which does not adsorb | suck will condense, a bridge | crosslinking gel spot and a burn will arise in a molded object, and there exists a possibility that an external appearance may deteriorate.
 このように、シランカップリング剤の使用量が4.0質量部を超えて15.0質量部以下であると外観に優れる。その機構の詳細についてはまだ定かではないが、次のように考えられる。
 すなわち、工程(a)において、シランカップリング剤がポリオレフィン樹脂にシラングラフトする際の有機過酸化物分解による反応は、反応速度が速いシランカップリング剤とポリオレフィン樹脂とのグラフト反応やシランカップリング剤同士の縮合反応が支配的になる。したがって、外観荒れや外観ブツの原因となるポリオレフィン樹脂同士の架橋反応は非常に起こりにくくなる。このように、ポリオレフィン樹脂同士の架橋反応がシランカップリング剤の混合量によって効果的に抑えられる。これにより、成形時の外観が良好になる。また、ポリオレフィン樹脂同士の架橋反応による上記欠陥が少なくなるため、押出機を止めても外観不良が発生しにくくなる。その結果、ポリオレフィン樹脂同士の架橋反応を抑えて、外観の良好なシラン架橋樹脂成形体を製造することができる。
 一方で、工程(a)において、多くのシランカップリング剤が無機フィラーに結合して固定化されている。したがって、無機フィラーに結合しているシランカップリング剤同士の縮合反応は起こりにくい。加えて、無機フィラーに結合せず、遊離しているシランカップリング剤同士の縮合反応もほとんど生じず、遊離しているシランカップリング剤同士の縮合反応によるゲルブツの発生を抑えることができる。
 このように、特定量のシランカップリング剤を用いることにより、ポリオレフィン樹脂同士の架橋反応、及び、シランカップリング剤同士の縮合反応のいずれをも抑えることができ、外観のきれいなシラン架橋樹脂成形体を製造することができると、考えられる。
Thus, when the usage-amount of a silane coupling agent exceeds 4.0 mass parts and is 15.0 mass parts or less, it is excellent in an external appearance. Although the details of the mechanism are not yet clear, it is thought as follows.
That is, in the step (a), the reaction due to the decomposition of the organic peroxide when the silane coupling agent is silane-grafted onto the polyolefin resin is a graft reaction between the silane coupling agent and the polyolefin resin having a high reaction rate, or a silane coupling agent. The condensation reaction between them becomes dominant. Therefore, the cross-linking reaction between the polyolefin resins that causes rough appearance and rough appearance hardly occurs. Thus, the cross-linking reaction between polyolefin resins can be effectively suppressed by the mixing amount of the silane coupling agent. Thereby, the external appearance at the time of shaping | molding becomes favorable. Moreover, since the said defect by the crosslinking reaction of polyolefin resin decreases, even if an extruder is stopped, it becomes difficult to generate | occur | produce an appearance defect. As a result, a cross-linking reaction between polyolefin resins can be suppressed, and a silane cross-linked resin molded article having a good appearance can be produced.
On the other hand, in the step (a), many silane coupling agents are bonded and fixed to the inorganic filler. Therefore, the condensation reaction between the silane coupling agents bonded to the inorganic filler hardly occurs. In addition, the condensation reaction between the free silane coupling agents does not occur without binding to the inorganic filler, and the occurrence of gel spots due to the condensation reaction between the free silane coupling agents can be suppressed.
Thus, by using a specific amount of the silane coupling agent, both the crosslinking reaction between the polyolefin resins and the condensation reaction between the silane coupling agents can be suppressed, and the silane crosslinked resin molded article having a clean appearance. It is thought that can be manufactured.
 工程(a)において、上述の成分を溶融混合する混練温度は、有機過酸化物の分解温度以上、好ましくは有機過酸化物の分解温度+(25~110)℃の温度である。この分解温度はポリオレフィン樹脂が溶融してから設定することが好ましい。また、混練時間等の混練条件も適宜設定することができる。有機過酸化物の分解温度未満の温度で混練りすると、シランカップリング剤のグラフト反応等が起こらず、所望の耐熱性を得ることができないばかりか、押出中に有機過酸化物が反応してしまい、所望の形状に成形できない場合がある。 In the step (a), the kneading temperature for melting and mixing the above-mentioned components is not less than the decomposition temperature of the organic peroxide, preferably the decomposition temperature of the organic peroxide + (25 to 110) ° C. This decomposition temperature is preferably set after the polyolefin resin is melted. Also, kneading conditions such as kneading time can be set as appropriate. When kneaded at a temperature lower than the decomposition temperature of the organic peroxide, the graft reaction of the silane coupling agent does not occur and the desired heat resistance cannot be obtained, and the organic peroxide reacts during the extrusion. Therefore, it may be impossible to form the desired shape.
 混練方法としては、ゴム、プラスチック等で通常用いられる方法であれば満足に使用でき、混練装置は例えば無機フィラーの混合量に応じて適宜に選択される。混練装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダー等が用いられ、バンバリーミキサー又は各種のニーダー等の密閉型ミキサーがポリオレフィン樹脂の分散性及び架橋反応の安定性の面で好ましい。
 また、通常、このような無機フィラーがポリオレフィン樹脂100質量部に対して100質量部を超えて混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサーで混練りするのがよい。
As a kneading method, any method usually used for rubber, plastic, etc. can be used satisfactorily, and the kneading apparatus is appropriately selected according to, for example, the amount of inorganic filler mixed. As the kneading apparatus, a single-screw extruder, a twin-screw extruder, a roll, a Banbury mixer, or various kneaders are used, and a closed mixer such as a Banbury mixer or various kneaders is used to disperse the polyolefin resin and stabilize the crosslinking reaction. In terms of surface.
Usually, when such an inorganic filler is mixed in an amount exceeding 100 parts by mass with respect to 100 parts by mass of the polyolefin resin, it is preferably kneaded with a continuous kneader, a pressure kneader, or a Banbury mixer.
 本発明において、混合順は特定されるものではなく、混合割合が上述の範囲内にあれば、どのような順で上記成分を混合してもよい。すなわち、工程(a)において、混合順は特に限定されない。例えば、上述の成分を一度に溶融混合することができる。
 好ましくは、シランカップリング剤は、シランマスターバッチに単独で導入されず、無機フィラーと前混合等して導入される。これにより、シランカップリング剤が混練中に揮発しにくくなり、無機フィラーに吸着しないシランカップリング剤同士の縮合を防止できる。したがって、外観に優れる。また工程(a)の溶融混練が困難になることも防止できる。さらに、押出成形の際に所望の形状を得ることもできる。
 このような混合方法として、好ましくは、バンバリーミキサーやニーダー等のミキサー型混練機を用い、有機過酸化物の分解温度未満の温度で有機過酸化物と無機フィラーとシランカップリング剤を混合又は分散させた後に、この混合物とポリオレフィン樹脂とを溶融混合させる方法が挙げられる。このようにすると、ポリオレフィン樹脂同士の過剰な架橋反応を防止することができ、外観に優れる。
In the present invention, the order of mixing is not specified, and the components may be mixed in any order as long as the mixing ratio is within the above range. That is, in the step (a), the mixing order is not particularly limited. For example, the above components can be melted and mixed at a time.
Preferably, the silane coupling agent is not introduced into the silane master batch alone, but is introduced by premixing with an inorganic filler. Thereby, it becomes difficult for a silane coupling agent to volatilize during kneading | mixing, and condensation of the silane coupling agent which is not adsorbed to an inorganic filler can be prevented. Therefore, the appearance is excellent. Further, it is possible to prevent the melt kneading in step (a) from becoming difficult. Furthermore, a desired shape can be obtained during extrusion molding.
As such a mixing method, preferably, a mixer type kneader such as a Banbury mixer or a kneader is used, and the organic peroxide, the inorganic filler, and the silane coupling agent are mixed or dispersed at a temperature lower than the decomposition temperature of the organic peroxide. A method of melt-mixing the mixture and the polyolefin resin after the mixing is performed. If it does in this way, the excessive crosslinking reaction of polyolefin resin can be prevented, and it is excellent in an external appearance.
 無機フィラーとシランカップリング剤と有機過酸化物は、有機過酸化物の分解温度未満の温度、好ましくは室温(25℃)で、混合される。無機フィラーとシランカップリング剤と有機過酸化物とを混合する方法としては、特に限定されず、有機過酸化物は無機フィラー等と同時に混合されても、また無機フィラーとシランカップリング剤との混合段階のいずれにおいて混合されてもよい。無機フィラーとシランカップリング剤と有機過酸化物との混合方法として、湿式処理、乾式処理等の混合方法が挙げられる。 The inorganic filler, the silane coupling agent and the organic peroxide are mixed at a temperature lower than the decomposition temperature of the organic peroxide, preferably at room temperature (25 ° C.). The method for mixing the inorganic filler, the silane coupling agent, and the organic peroxide is not particularly limited, and the organic peroxide may be mixed with the inorganic filler or the like, or the inorganic filler and the silane coupling agent may be mixed. They may be mixed in any of the mixing stages. Examples of the mixing method of the inorganic filler, the silane coupling agent, and the organic peroxide include mixing methods such as wet processing and dry processing.
 無機フィラーとシランカップリング剤とを混合する方法としては、水などの溶媒に無機フィラーを分散させた状態でシランカップリング剤を加える湿式処理、加熱又は非加熱で両者を加え混合する乾式処理、及び、その両方が挙げられる。本発明においては、無機フィラー、好ましくは乾燥させた無機フィラー中にシランカップリング剤を、加熱又は非加熱で加え混合する乾式処理が好ましい。
 上述の湿式混合では、シランカップリング剤が無機フィラーと強く結合しやすくなるため、その後のシラノール縮合反応が進みにくくなることがある。一方、乾式混合は、無機フィラーとシランカップリング剤の結合が比較的弱いため、効率的にシラノール縮合反応が進みやすくなる。
As a method of mixing the inorganic filler and the silane coupling agent, a wet process in which the silane coupling agent is added in a state where the inorganic filler is dispersed in a solvent such as water, a dry process in which both are added by heating or non-heating, and mixed. And both. In the present invention, dry processing is preferred in which a silane coupling agent is added to an inorganic filler, preferably a dried inorganic filler, with heating or non-heating and mixed.
In the above-described wet mixing, the silane coupling agent tends to be strongly bonded to the inorganic filler, so that the subsequent silanol condensation reaction may be difficult to proceed. On the other hand, in dry mixing, since the bond between the inorganic filler and the silane coupling agent is relatively weak, the silanol condensation reaction easily proceeds efficiently.
 無機フィラーに加えられたシランカップリング剤は、無機フィラーの表面を取り囲むように存在し、その一部又は全部は無機フィラーに吸着されたり、無機フィラー表面と化学的な結合を生じたりする。このような状態になることにより、その後のニーダーやバンバリーミキサー等で混練り加工する際のシランカップリング剤の揮発を大幅に低減するとともに、有機過酸化物によってシランカップリング剤の不飽和基はポリオレフィン樹脂と架橋反応すると考えられる。また、成形の際にシラノール縮合触媒によってシランカップリング剤同士が縮合反応すると考えられる。この反応の機構は定かではないが縮合反応の際に、無機フィラーとシランカップリング剤の結合があまりに強いと、シラノール縮合触媒を加えても無機フィラーと結合したシランカップリング剤が無機フィラーからはずれることがなく、シラノール縮合反応(架橋反応)が進みにくくなると考えられる。 The silane coupling agent added to the inorganic filler exists so as to surround the surface of the inorganic filler, and part or all of the silane coupling agent is adsorbed by the inorganic filler or chemically bonded to the surface of the inorganic filler. By being in such a state, the volatilization of the silane coupling agent during kneading with a subsequent kneader or Banbury mixer is greatly reduced, and the unsaturated group of the silane coupling agent is reduced by the organic peroxide. It is thought that it crosslinks with polyolefin resin. In addition, it is considered that the silane coupling agent undergoes a condensation reaction with a silanol condensation catalyst during molding. Although the mechanism of this reaction is not clear, if the bond between the inorganic filler and the silane coupling agent is too strong during the condensation reaction, the silane coupling agent bonded to the inorganic filler will be removed from the inorganic filler even if a silanol condensation catalyst is added. It is considered that the silanol condensation reaction (crosslinking reaction) is difficult to proceed.
 工程(a)において、有機過酸化物は、シランカップリング剤と一緒に混合した後に無機フィラーに分散させても良いし、シランカップリング剤と分けて別々に無機フィラーに分散させてもよい。本発明において、有機過酸化物とシランカップリング剤とは実質的に一緒に混合した方がよい。
 なお、本発明において、生産条件によっては、シランカップリング剤のみを無機フィラーに混合し、次いで有機過酸化物を加えてもよい。すなわち、工程(a)において、無機フィラーはシランカップリング剤と予め混合したものを用いることができる。有機過酸化物を加える方法としては、ポリオレフィン樹脂に分散させたものでもよいし、単体で加えてもよく、オイル等に分散させて加えてもよく、好ましくはポリオレフィン樹脂に分散させて加える。
In the step (a), the organic peroxide may be mixed with the silane coupling agent and then dispersed in the inorganic filler, or separately from the silane coupling agent and dispersed separately in the inorganic filler. In the present invention, the organic peroxide and the silane coupling agent should be mixed substantially together.
In the present invention, depending on production conditions, only the silane coupling agent may be mixed with the inorganic filler, and then the organic peroxide may be added. That is, in the step (a), an inorganic filler previously mixed with a silane coupling agent can be used. As a method of adding the organic peroxide, it may be dispersed in a polyolefin resin, may be added alone, or may be added after being dispersed in oil or the like, and is preferably added after being dispersed in a polyolefin resin.
 好ましい混合方法においては、次いで、無機フィラー、シランカップリング剤及び有機過酸化物の混合物とポリオレフィン樹脂とを、有機過酸化物の分解温度以上に加熱しながら、溶融混練して、シランマスターバッチを調製する。 In a preferred mixing method, a mixture of an inorganic filler, a silane coupling agent and an organic peroxide, and a polyolefin resin are then melt-kneaded while heating to a temperature higher than the decomposition temperature of the organic peroxide to obtain a silane master batch. Prepare.
 工程(a)において、シラノール縮合触媒は用いられない。すなわち、工程(a)は、シラノール縮合触媒を実質的に混合せずに上述の各成分を混練する。これにより、シランカップリング剤が縮合せずに溶融混合しやすく、また押出成形の際に所望の形状を得ることができる。ここで、「実質的に混合せず」とは、不可避的に存在するシラノール縮合触媒をも排除するものではなく、シランカップリング剤のシラノール縮合による上述の問題が生じない程度に存在していてもよいことを意味する。 In step (a), no silanol condensation catalyst is used. That is, in the step (a), the above-described components are kneaded without substantially mixing the silanol condensation catalyst. Thereby, the silane coupling agent is easy to melt and mix without condensing, and a desired shape can be obtained during extrusion molding. Here, “substantially not mixed” does not exclude the unavoidably existing silanol condensation catalyst, and is present to such an extent that the above-mentioned problem due to silanol condensation of the silane coupling agent does not occur. Means good.
 このようにして、工程(a)を行い、シランマスターバッチが調製される。 Thus, the step (a) is performed to prepare a silane master batch.
 工程(a)で調製されるシランマスターバッチは、有機過酸化物の分解物、ポリオレフィン樹脂、無機フィラー及びシランカップリング剤の反応混合物を含有しており、後述の工程(b)により成形可能な程度にシランカップリング剤がポリオレフィン樹脂にグラフトした2種のシラン架橋性樹脂(シラングラフトポリマー)を含有している。 The silane masterbatch prepared in the step (a) contains a reaction mixture of an organic peroxide decomposition product, a polyolefin resin, an inorganic filler and a silane coupling agent, and can be molded by the step (b) described later. To the extent, the silane coupling agent contains two types of silane crosslinkable resins (silane graft polymer) grafted onto the polyolefin resin.
 本発明の製造方法において、次いで、シランマスターバッチとシラノール縮合触媒とを混合して混合物を得る工程(b)を行う。
 混合方法は、上述のように均一な混合物を得ることができれば、どのような混合方法でもよい。例えば、ドライブレンド等のペレット同士を常温又は高温で混ぜ合わせて成形機に導入してもよいし、混ぜ合わせた後に溶融混合し、再度ペレット化をして成形機に導入してもよい。
 いずれの混合においても、シラノール縮合反応を避けるため、シランマスターバッチとシラノール縮合触媒が混合された状態で高温状態に長時間保持されないことが好ましい。得られる混合物について、少なくとも工程(c)での成形における成形性が保持された混合物とする。
Next, in the production method of the present invention, the step (b) of obtaining a mixture by mixing the silane master batch and the silanol condensation catalyst is performed.
The mixing method may be any mixing method as long as a uniform mixture can be obtained as described above. For example, pellets such as dry blends may be mixed and introduced into a molding machine at room temperature or high temperature, or may be mixed and melted and mixed, pelletized again, and then introduced into the molding machine.
In any mixing, in order to avoid the silanol condensation reaction, it is preferable that the silane master batch and the silanol condensation catalyst are not maintained at a high temperature for a long time in a mixed state. About the obtained mixture, let it be the mixture with which the moldability in the shaping | molding in a process (c) was hold | maintained at least.
 工程(b)において、シラノール縮合触媒はキャリア樹脂と共に用いられるのが好ましい。すなわち、工程(b)は、シランマスターバッチとシラノール縮合触媒とを混合する工程であればよく、シラノール縮合触媒及びキャリア樹脂を含有する触媒マスターバッチとシランマスターバッチとを溶融混合する工程が好ましい。したがって、好ましくは、工程(b)を行うに当って、キャリア樹脂とシラノール縮合触媒とを溶融混合して、触媒マスターバッチを調製する。
 触媒マスターバッチにおけるキャリア樹脂とシラノール縮合触媒との混合割合は、後述する工程(b)におけるシランマスターバッチのポリオレフィン樹脂との混合割合を満たすように、設定される。
 キャリア樹脂とシラノール縮合触媒との混合は、キャリア樹脂の溶融温度に応じて適宜に決定される。例えば、混練温度は、80~250℃、より好ましくは100~240℃で行うことができる。なお、混練時間等の混練条件は適宜設定することができる。混練方法は上記混練方法と同様の方法で行うことができる。
In step (b), the silanol condensation catalyst is preferably used together with a carrier resin. That is, the step (b) may be a step of mixing the silane master batch and the silanol condensation catalyst, and a step of melt mixing the catalyst master batch containing the silanol condensation catalyst and the carrier resin and the silane master batch is preferable. Therefore, preferably, in performing step (b), the carrier resin and the silanol condensation catalyst are melt-mixed to prepare a catalyst master batch.
The mixing ratio of the carrier resin and the silanol condensation catalyst in the catalyst master batch is set so as to satisfy the mixing ratio with the polyolefin resin of the silane master batch in the step (b) described later.
The mixing of the carrier resin and the silanol condensation catalyst is appropriately determined according to the melting temperature of the carrier resin. For example, the kneading temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C. The kneading conditions such as kneading time can be set as appropriate. The kneading method can be performed by the same method as the above kneading method.
 このようにして調製される触媒マスターバッチは、シラノール縮合触媒及びキャリア樹脂、所望により添加されるフィラーの混合物である。 The catalyst masterbatch prepared in this way is a mixture of a silanol condensation catalyst, a carrier resin, and a filler that is optionally added.
 工程(b)において、シラノール縮合触媒の配合量は、ポリオレフィン樹脂100質量部に対して、好ましくは0.0001~0.5質量部、より好ましくは0.001~0.1質量部である。シラノール縮合触媒の混合量が上述の範囲内にあると、シランカップリング剤の縮合反応による架橋反応がほぼ均一に進みやすく、耐熱性シラン架橋樹脂成形体の耐熱性、外観及び物性に優れ、生産性も向上する。
 触媒マスターバッチを混合する場合は、キャリア樹脂の配合量は、ポリオレフィン樹脂100質量部に対して、好ましくは1~60質量部、より好ましくは2~50質量部、さらに好ましくは2~40質量部である。またこのキャリア樹脂には無機フィラーを加えてもよいし、加えなくてもよい。その際の無機フィラーの量は、特には限定しないがキャリア樹脂のポリオレフィン樹脂100質量部に対し、350質量部以下が好ましい。あまりフィラー量が多いとシラノール縮合触媒が分散しにくく、架橋が進行しにくくなるためである。一方、キャリア樹脂が多すぎると、成形体の架橋度が低下してしまい、適正な耐熱性が得られないおそれがある。
In the step (b), the compounding amount of the silanol condensation catalyst is preferably 0.0001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the polyolefin resin. When the mixing amount of the silanol condensation catalyst is within the above range, the crosslinking reaction by the condensation reaction of the silane coupling agent is likely to proceed almost uniformly, and the heat-resistant silane crosslinked resin molded article has excellent heat resistance, appearance and physical properties, and is produced. Also improves.
When the catalyst master batch is mixed, the amount of the carrier resin is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, and further preferably 2 to 40 parts by mass with respect to 100 parts by mass of the polyolefin resin. It is. Further, an inorganic filler may or may not be added to this carrier resin. The amount of the inorganic filler is not particularly limited, but is preferably 350 parts by mass or less with respect to 100 parts by mass of the polyolefin resin as the carrier resin. This is because if the amount of filler is too large, the silanol condensation catalyst is difficult to disperse and crosslinking is difficult to proceed. On the other hand, if the carrier resin is too much, the degree of cross-linking of the molded article is lowered, and there is a possibility that proper heat resistance cannot be obtained.
 工程(b)においては、シランマスターバッチとシラノール縮合触媒又は触媒マスターバッチの混合条件は、適宜に選択される。すなわち、シラノール縮合触媒を単独でシランマスターバッチに混合する場合には、混合条件はポリオレフィン樹脂に応じて適宜の溶融混合条件に設定される。 In step (b), the mixing conditions of the silane masterbatch and the silanol condensation catalyst or catalyst masterbatch are appropriately selected. That is, when the silanol condensation catalyst is mixed alone with the silane master batch, the mixing condition is set to an appropriate melt mixing condition depending on the polyolefin resin.
 一方、シラノール縮合触媒を含む触媒マスターバッチをシランマスターバッチと混合する場合、シラノール縮合触媒の分散の点で、溶融混合が好ましく、工程(1)の溶融混合と基本的に同様である。なお、DSC等で融点が測定できないポリオレフィン樹脂、例えばエラストマーもあるが、少なくともポリオレフィン樹脂及び有機過酸化物のいずれかが溶融する温度で混練する。溶融温度は、キャリア樹脂の溶融温度に応じて適宜に選択され、例えば、好ましくは80~250℃、より好ましくは100~240℃である。なお、混練時間等の混練条件は適宜設定することができる。 On the other hand, when a catalyst masterbatch containing a silanol condensation catalyst is mixed with a silane masterbatch, melt mixing is preferable in terms of dispersion of the silanol condensation catalyst, which is basically the same as the melt mixing in step (1). There are polyolefin resins whose melting points cannot be measured by DSC or the like, such as elastomers, but they are kneaded at a temperature at which at least one of the polyolefin resin and the organic peroxide is melted. The melting temperature is appropriately selected according to the melting temperature of the carrier resin, and is preferably 80 to 250 ° C., more preferably 100 to 240 ° C., for example. The kneading conditions such as kneading time can be set as appropriate.
 このようにして、本発明の工程(a)及び工程(b)、すなわち本発明の耐熱性シラン架橋性樹脂組成物の製造方法が実施され、後述するように少なくとも2種の架橋方法の異なるシラン架橋性樹脂を含有する耐熱性シラン架橋性樹脂組成物が製造される。したがって、この発明の耐熱性シラン架橋性樹脂組成物は工程(a)及び工程(b)を実施することによって得られる組成物であって、シランマスターバッチとシラノール縮合触媒又は触媒マスターバッチとの混和物と考えられる。その成分は、基本的には、シランマスターバッチ及びシラノール縮合触媒又は触媒マスターバッチと同じである。 Thus, the steps (a) and (b) of the present invention, that is, the method for producing the heat-resistant silane crosslinkable resin composition of the present invention is carried out, and silanes having at least two different crosslinking methods as described later. A heat-resistant silane crosslinkable resin composition containing a crosslinkable resin is produced. Therefore, the heat-resistant silane crosslinkable resin composition of the present invention is a composition obtained by carrying out step (a) and step (b), and is a mixture of a silane masterbatch and a silanol condensation catalyst or a catalyst masterbatch. It is considered a thing. The components are basically the same as the silane masterbatch and silanol condensation catalyst or catalyst masterbatch.
 本発明の耐熱性シラン架橋樹脂成形体の製造方法は、次いで、工程(c)及び工程(d)を行う。すなわち、本発明の耐熱性シラン架橋樹脂成形体の製造方法において、得られた混合物、つまり本発明の耐熱性シラン架橋性樹脂組成物を成形して成形体を得る工程(c)を行う。この工程(c)は、混合物を成形できればよく、本発明の耐熱性製品の形態に応じて、適宜に成形方法及び成形条件が選択される。例えば、本発明の耐熱性製品が電線又は光ファイバケーブルである場合には、押出成形等が選択される。 In the method for producing a heat-resistant silane cross-linked resin molded product of the present invention, the step (c) and the step (d) are then performed. That is, in the method for producing a heat-resistant silane cross-linked resin molded article of the present invention, the step (c) of molding the obtained mixture, that is, the heat-resistant silane cross-linkable resin composition of the present invention to obtain a molded article is performed. This process (c) should just be able to shape | mold a mixture, and according to the form of the heat resistant product of this invention, a shaping | molding method and shaping | molding conditions are selected suitably. For example, when the heat-resistant product of the present invention is an electric wire or an optical fiber cable, extrusion molding or the like is selected.
 工程(c)は、押出機の掃除、段替え、偏心調整及び製造中断等の事由によって押出機の作動を一旦停止後、再開させることが問題なくできる。ここで、一旦停止後、再開するとは、耐熱性シラン架橋性樹脂組成物の組成、加工条件等に左右され一義的に述べることはできないが、例えば間隔で5分間まで、好ましくは10分間まで、さらに好ましくは15分間まで停止できることをいう。このときの温度は、ポリオレフィン樹脂が軟化又は溶融する温度であれば特に限定されず、例えば200℃である。 In step (c), the operation of the extruder can be temporarily stopped and restarted without problems due to reasons such as cleaning of the extruder, changeover, eccentricity adjustment, and production interruption. Here, once stopped and then restarted, depending on the composition of the heat-resistant silane crosslinkable resin composition, processing conditions, etc., it cannot be uniquely stated, but for example, at intervals of up to 5 minutes, preferably up to 10 minutes, More preferably, it can be stopped for up to 15 minutes. The temperature at this time is not particularly limited as long as the polyolefin resin is softened or melted, and is 200 ° C., for example.
 また、工程(c)は工程(b)と同時に又は連続して実施することができる。例えば、シランマスターバッチとシラノール縮合触媒(C)又は触媒マスターバッチとを被覆装置内で溶融混練し、次いで例えば押出し電線やファイバに被覆して所望の形状に成形する一連の工程を採用できる。 Also, step (c) can be carried out simultaneously or sequentially with step (b). For example, a series of steps in which a silane masterbatch and a silanol condensation catalyst (C) or a catalyst masterbatch are melt-kneaded in a coating apparatus and then coated on, for example, an extruded electric wire or fiber and formed into a desired shape can be employed.
 このようにして、本発明の耐熱性シラン架橋性樹脂組成物が成形され、工程(a)~工程(c)で得られる耐熱性シラン架橋性樹脂組成物の成形体は未架橋体である。したがって、この発明の耐熱性シラン架橋樹脂成形体は、工程(c)の後に、下記工程(d)を実施することによって架橋もしくは最終架橋された成形体とするものである。 Thus, the heat-resistant silane crosslinkable resin composition of the present invention is molded, and the molded body of the heat-resistant silane crosslinkable resin composition obtained in steps (a) to (c) is an uncrosslinked body. Therefore, the heat-resistant silane crosslinked resin molded product of the present invention is a molded product that is crosslinked or finally crosslinked by performing the following step (d) after the step (c).
 本発明の耐熱性シラン架橋樹脂成形体の製造方法においては、工程(c)で得られた成形体(未架橋体)を水と接触させる工程を行う。これにより、シランカップリング剤の加水分解性の基を加水分解してシラノールとし、樹脂中に存在するシラノール縮合触媒により、シラノールの水酸基同士が縮合して架橋反応が起こり、成形体が架橋した耐熱性シラン架橋樹脂成形体を得ることができる。この工程(d)の処理自体は通常の方法によって行うことができる。成形体に水分を接触させることで、シランカップリング剤の加水分解しうる基が加水分解してシランカップリング剤同士が縮合し、架橋構造を形成する。 In the method for producing a heat-resistant silane crosslinked resin molded product of the present invention, a step of bringing the molded product (uncrosslinked product) obtained in the step (c) into contact with water is performed. As a result, the hydrolyzable group of the silane coupling agent is hydrolyzed into silanol, and the silanol condensation catalyst present in the resin condenses the hydroxyl groups of the silanol to cause a crosslinking reaction, resulting in a heat-resistant molded article. Can be obtained. The process itself in this step (d) can be performed by a usual method. By bringing moisture into contact with the molded body, the hydrolyzable group of the silane coupling agent is hydrolyzed and the silane coupling agents are condensed to form a crosslinked structure.
 シランカップリング剤同士の縮合は、常温で保管するだけで進行する。したがって、工程(d)において、成形体(未架橋体)を水に積極的に接触される必要はない。架橋をさらに加速させるために、水分と接触させることもできる。例えば、温水への浸水、湿熱槽への投入、高温の水蒸気への暴露等の積極的に水に接触させる方法を採用できる。また、その際に水分を内部に浸透させるために圧力をかけてもよい。 Condensation between silane coupling agents proceeds just by storing at room temperature. Therefore, in the step (d), it is not necessary to positively contact the molded body (uncrosslinked body) with water. It can also be contacted with moisture to further accelerate the crosslinking. For example, it is possible to employ a method of positively contacting water, such as immersion in warm water, charging into a wet heat tank, exposure to high-temperature steam, and the like. In this case, pressure may be applied to allow moisture to penetrate inside.
 このようにして、本発明の耐熱性シラン架橋樹脂成形体の製造方法が実施され、本発明の耐熱性シラン架橋性樹脂組成物から耐熱性シラン架橋樹脂成形体が製造される。したがって、この発明の耐熱性シラン架橋樹脂成形体は、工程(a)~工程(d)を実施することによって得られる成形体である。そして、この成形体は、後述するように、シラノール結合を介して無機フィラーと架橋してなるポリオレフィン樹脂を含んでいる。 Thus, the method for producing a heat-resistant silane crosslinked resin molded product of the present invention is carried out, and a heat-resistant silane crosslinked resin molded product is produced from the heat-resistant silane crosslinked resin composition of the present invention. Therefore, the heat-resistant silane cross-linked resin molded product of the present invention is a molded product obtained by carrying out steps (a) to (d). And this molded object contains the polyolefin resin formed by bridge | crosslinking with an inorganic filler through a silanol bond so that it may mention later.
 本発明の製造方法における反応機構の詳細についてはまだ定かではないが、以下のように考えられる。すなわち、ポリオレフィン樹脂は有機過酸化物成分の存在下、無機フィラー及びシランカップリング剤と共に有機過酸化物の分解温度以上で加熱混練すると、有機過酸化物が分解してラジカルを発生し、ポリオレフィン樹脂に対してシランカップリング剤によりグラフト化が起こる。また、このときの加熱により、部分的には、シランカップリング剤と無機フィラーの表面での水酸基等の基との共有結合による化学結合の形成反応も促進される。
 本発明では、工程(d)で、最終的な架橋反応を行うこともあり、ポリオレフィン樹脂にシランカップリング剤を上述のように特定量配合すると、成形時の押し出し加工性を損なうことなく無機フィラーを多量に配合することが可能になり、優れた難燃性を確保しながらも耐熱性及び機械特性等を併せ持つことができる。
The details of the reaction mechanism in the production method of the present invention are not yet clear, but are considered as follows. That is, when a polyolefin resin is heated and kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide together with an inorganic filler and a silane coupling agent in the presence of the organic peroxide component, the organic peroxide is decomposed to generate radicals. On the other hand, grafting occurs with a silane coupling agent. In addition, the heating reaction at this time partially promotes a chemical bond formation reaction by a covalent bond between a silane coupling agent and a group such as a hydroxyl group on the surface of the inorganic filler.
In the present invention, the final cross-linking reaction may be performed in the step (d), and when a specific amount of the silane coupling agent is blended with the polyolefin resin as described above, the inorganic filler is obtained without impairing the extrusion processability at the time of molding. Can be blended in a large amount, and both heat resistance and mechanical properties can be obtained while ensuring excellent flame retardancy.
 また、本発明の上記プロセスの作用のメカニズムはまだ定かではないが次のように推定される。すなわち、ポリオレフィン樹脂と混練り前及び/又は混練り時に、無機フィラー及びシランカップリング剤を用いることにより、シランカップリング剤は、アルコキシ基で無機フィラーと結合し、もう一方の末端に存在するビニル基などのエチレン性不飽和基でポリオレフィン樹脂の未架橋部分と結合し、又は、無機フィラーと結合することなく、無機フィラーの穴や表面に物理的及び化学的に吸着して、保持される。このように、無機フィラーに対して強い結合で結びつくシランカップリング剤(その理由は、例えば、無機フィラー表面の水酸基等との化学結合の形成が考えられる)と弱い結合で結びつくシランカップリング剤(その理由は、例えば、水素結合による相互作用、イオン、部分電荷もしくは双極子間での相互作用、吸着による作用等が考えられる)を形成できる。この状態で、有機過酸化物を加えてポリオレフィン樹脂と混練りを行うと、無機フィラーとの結合が異なる、ポリオレフィン樹脂にシランカップリング剤がグラフト反応した少なくとも2種のシラン架橋性樹脂が形成される。 Also, the mechanism of action of the above process of the present invention is not yet clear, but is estimated as follows. That is, by using an inorganic filler and a silane coupling agent before and / or during kneading with a polyolefin resin, the silane coupling agent is bonded to the inorganic filler with an alkoxy group and is present at the other end. It binds to an uncrosslinked portion of the polyolefin resin with an ethylenically unsaturated group such as a group, or is physically and chemically adsorbed and held in the hole or surface of the inorganic filler without being bonded to the inorganic filler. Thus, a silane coupling agent that binds to an inorganic filler with a strong bond (for example, a chemical bond with a hydroxyl group on the surface of the inorganic filler may be considered) and a silane coupling agent that binds to a weak bond (for example, The reason can be, for example, an interaction by hydrogen bond, an interaction between ions, partial charges or dipoles, an action by adsorption, etc.). In this state, when an organic peroxide is added and kneaded with the polyolefin resin, at least two types of silane crosslinkable resins in which the silane coupling agent is graft-reacted to the polyolefin resin, which have different bonds with the inorganic filler, are formed. The
 上述の混練りにより、シランカップリング剤のうち無機フィラーと強い結合を有するシランカップリング剤は、架橋基であるエチレン性不飽和基等がポリオレフィン樹脂の架橋部位とグラフト反応する。特に、1つの無機フィラー粒子の表面に複数のシランカップリング剤が強い結合を介して結合した場合、この無機フィラー粒子を介してポリオレフィン樹脂が複数結合する。これら反応又は結合により、無機フィラーを介した架橋ネットワークが広がる。
 無機フィラーと強い結合を有するシランカップリング剤の場合は、このシラノール縮合触媒による水存在下での縮合反応が生じにくく、無機フィラーとの結合が保持される。そこで、ポリオレフィン樹脂と無機フィラーの結合が生じ、無機フィラーを介したポリオレフィン樹脂の架橋が生じる。これによりポリオレフィン樹脂と無機フィラーの密着性が強固になり、機械強度及び耐摩耗性が良好で、傷つきにくい成形体が得られる。
In the silane coupling agent having a strong bond with the inorganic filler among the silane coupling agents, the ethylenically unsaturated group or the like which is a cross-linking group undergoes a graft reaction with the cross-linked site of the polyolefin resin. In particular, when a plurality of silane coupling agents are bonded to the surface of one inorganic filler particle through a strong bond, a plurality of polyolefin resins are bonded through the inorganic filler particle. By these reactions or bonds, a crosslinked network via the inorganic filler is expanded.
In the case of a silane coupling agent having a strong bond with an inorganic filler, the condensation reaction in the presence of water by this silanol condensation catalyst is unlikely to occur, and the bond with the inorganic filler is retained. Therefore, a bond between the polyolefin resin and the inorganic filler occurs, and the polyolefin resin crosslinks through the inorganic filler. As a result, the adhesion between the polyolefin resin and the inorganic filler is strengthened, and a molded article having good mechanical strength and wear resistance and hardly scratching is obtained.
 一方、シランカップリング剤のうち無機フィラーと弱い結合を有するシランカップリング剤は、無機フィラーの表面から離脱して、シランカップリング剤の架橋基であるエチレン性不飽和基等が、ポリオレフィン樹脂の有機過酸化物の分解で生じたラジカルによる水素ラジカル引き抜きで生じた樹脂ラジカルと反応して、グラフト反応が起こる。このようにして生じたグラフト部分のシランカップリング剤は、その後シラノール縮合触媒と混合され、水分と接触することにより、縮合反応(架橋反応)が生じる。 On the other hand, among the silane coupling agents, the silane coupling agent having a weak bond with the inorganic filler is detached from the surface of the inorganic filler, and the ethylenically unsaturated group, which is a crosslinking group of the silane coupling agent, is A graft reaction occurs by reacting with a resin radical generated by abstraction of a hydrogen radical by a radical generated by decomposition of an organic peroxide. The silane coupling agent in the graft portion thus produced is then mixed with a silanol condensation catalyst and brought into contact with moisture to cause a condensation reaction (crosslinking reaction).
 特に、本発明では、この工程(d)における、水存在下でのシラノール縮合触媒を使用した縮合による架橋反応を成形体を形成した後に行う。これにより、従来の最終架橋反応後に成形体を形成する方法と比較して、成形体形成までの工程での作業性に優れる。また、1つの無機フィラー粒子表面に複数のシランカップリング剤を複数結合でき、従来以上に高い耐熱性を得ることが可能となるとともに、高い機械強度を得ることができる。 In particular, in the present invention, the crosslinking reaction by condensation using a silanol condensation catalyst in the presence of water in this step (d) is performed after forming the molded body. Thereby, compared with the method of forming a molded object after the conventional last bridge | crosslinking reaction, it is excellent in the workability | operativity in the process until molded object formation. In addition, a plurality of silane coupling agents can be bonded to the surface of one inorganic filler particle, so that higher heat resistance than before can be obtained and high mechanical strength can be obtained.
 このように、無機フィラーに対して強い結合で結合したシランカップリング剤がポリオレフィン樹脂にグラフト反応してなるシラン架橋性樹脂が水分と接触すると、シランカップリング剤のシラノール結合を介して無機フィラーと架橋してなるシラン架橋ポリオレフィン樹脂が形成される。無機フィラーに対して強い結合で結合したシランカップリング剤は、高い機械特性、場合によっては耐摩耗性、耐傷付性等に寄与すると考えられる。
 また、無機フィラーに対して弱い結合で結合したシランカップリング剤がポリオレフィン樹脂にグラフト反応してなるシラン架橋性樹脂が水分と接触すると、シランカップリング剤のシラノール結合を介してポリオレフィン樹脂同士が架橋してなるシラン架橋ポリオレフィン樹脂が形成される。無機フィラーに対して弱い結合で結合したシランカップリング剤は、架橋度の向上、すなわち耐熱性の向上に寄与すると考えられる。
As described above, when the silane crosslinkable resin formed by graft reaction of the silane coupling agent bonded to the inorganic filler with a strong bond to the polyolefin resin comes into contact with moisture, the inorganic filler is bonded via the silanol bond of the silane coupling agent. A crosslinked silane-crosslinked polyolefin resin is formed. A silane coupling agent bonded to an inorganic filler with a strong bond is considered to contribute to high mechanical properties, in some cases, abrasion resistance, scratch resistance, and the like.
In addition, when the silane crosslinkable resin formed by graft reaction of the silane coupling agent bonded to the inorganic filler with a weak bond on the polyolefin resin comes into contact with moisture, the polyolefin resin is cross-linked through the silanol bond of the silane coupling agent. A silane-crosslinked polyolefin resin is formed. A silane coupling agent bonded to an inorganic filler with a weak bond is considered to contribute to an improvement in the degree of crosslinking, that is, an improvement in heat resistance.
 特に、本発明では、4.0質量部を超えて15.0質量部以下のシランカップリング剤が無機フィラーに混合されており、上述したように、工程(a)での溶融混練時におけるポリオレフィン樹脂同士の架橋反応を効果的に抑えることができる。また、程度の差はあるが、シランカップリング剤は無機フィラーに結合しており、工程(a)での溶融混練中にも揮発しにくく、遊離しているシランカップリング剤同士の反応も効果的に抑えることができる。したがって、押出機を止めても外観不良が発生しにくく、外観の良好なシラン架橋樹脂成形体を製造できると、考えられる。 In particular, in the present invention, a silane coupling agent exceeding 4.0 parts by mass and 15.0 parts by mass or less is mixed with the inorganic filler, and as described above, the polyolefin at the time of melt-kneading in the step (a) The cross-linking reaction between the resins can be effectively suppressed. In addition, although the degree is different, the silane coupling agent is bonded to the inorganic filler, and is not easily volatilized during the melt kneading in the step (a), and the reaction between the free silane coupling agents is also effective. Can be suppressed. Therefore, even if the extruder is stopped, it is considered that poor appearance is unlikely to occur and a silane-crosslinked resin molded article with good appearance can be produced.
 本発明の製造方法は、耐熱性が要求される製品(半製品、部品、部材も含む)、強度が求められる製品、ゴム材料等の製品の構成部品又はその部材の製造に適用することができる。このような製品として、例えば、耐熱性難燃絶縁電線等の電線、耐熱難燃ケーブル被覆材料、ゴム代替電線・ケーブル材料、その他耐熱難燃電線部品、難燃耐熱シート、難燃耐熱フィルム等が挙げられる。また、電源プラグ、コネクター、スリーブ、ボックス、テープ基材、チューブ、シート、パッキン、クッション材、防震材、電気、電子機器の内部及び外部配線に使用される配線材、特に電線や光ケーブルの製造に適用することができる。本発明の製造方法は、上述の製品の構成部品等の中でも、特に電線及び光ケーブルの絶縁体、シース等の製造に好適に適用され、これらの被覆として形成することができる。
 絶縁体、シース等は、それらの形状に、押出し被覆装置内で溶融混練しながら被覆する等により成形することができる。このような絶縁体、シース等の成形品は、無機フィラーを大量に加えた高耐熱性の高温溶融しない架橋組成物を電子線架橋機等の特殊な機械を使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添えもしくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚線等の任意のものを用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いてもよい。導体の周りに形成される絶縁層(本発明の耐熱性樹脂組成物からなる被覆層)の肉厚は特に限定しないが通常0.15~5mm程度である。
The manufacturing method of the present invention can be applied to the manufacture of products (including semi-finished products, parts, and members) that require heat resistance, products that require strength, component parts of products such as rubber materials, or members thereof. . Examples of such products include electric wires such as heat-resistant flame-retardant insulated wires, heat-resistant and flame-resistant cable coating materials, rubber substitute electric wires and cable materials, other heat-resistant and flame-resistant electric wire components, flame-resistant and heat-resistant sheets, and flame-resistant and heat-resistant films. Can be mentioned. Also for the production of power plugs, connectors, sleeves, boxes, tape substrates, tubes, sheets, packing materials, cushioning materials, anti-vibration materials, electrical and electronic equipment, and wiring materials, especially electric wires and optical cables. Can be applied. The manufacturing method of the present invention is particularly suitably applied to the manufacture of the insulators and sheaths of electric wires and optical cables among the components of the above-described products, and can be formed as a covering thereof.
Insulators, sheaths, and the like can be formed by coating them in such a shape while melt-kneading them in an extrusion coating apparatus. For such molded products such as insulators and sheaths, a general-purpose extrusion coating apparatus is used without using a special machine such as an electron beam cross-linking machine, which is a high heat resistant high temperature non-melting cross-linked composition to which a large amount of inorganic filler is added. Can be formed by extrusion coating around the conductor, or around the conductor that has been stretched or twisted with tensile strength fibers. For example, any conductor such as an annealed copper single wire or stranded wire can be used as the conductor. In addition to the bare wire, the conductor may be tin-plated or an enamel-covered insulating layer. The thickness of the insulating layer (the coating layer made of the heat resistant resin composition of the present invention) formed around the conductor is not particularly limited, but is usually about 0.15 to 5 mm.
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されない。なお、表1及び表2において、各実施例及び比較例における数値は質量部を表す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. In Tables 1 and 2, the numerical values in the examples and comparative examples represent parts by mass.
 実施例1~18及び比較例1~5は、表1及び表2に示す成分を用いて、それぞれの諸元又は製造条件等を変更して、それぞれ実施した。 Examples 1 to 18 and Comparative Examples 1 to 5 were carried out using the components shown in Tables 1 and 2 while changing the respective specifications or manufacturing conditions.
 なお、表1及び表2中に示す各成分として下記化合物を使用した。
<ポリオレフィン樹脂>
(1)「UE320」(日本ポリエチレン社製、ノバテックPE(商品名)、直鎖低密度ポリエチレン(LLDPE)、密度0.92g/cm
(2)「エボリューSP1540」(商品名、プライムポリマー社製、直鎖状メタロセンポリエチレン(LLDPE))
(3)「EC9」(日本ポリプロ社製、ノバテックPP(商品名)、ポリプロピレン)
(4)「EV360」(商品名、三井・デュポンケミカル社製、エチレン・酢酸ビニル共重合樹脂(EVA)、VA含有量33質量%)
(5)「セプトン4077」(商品名、クラレ社製、スチレン系エラストマー(SEEPS)、スチレン含有量30質量%)
(6)「三井3092EPM」(商品名、三井化学社製、エチレン-プロピレン-ジエンゴム、エチレン含有量66%)
(7)「アドマー XE-070」(商品名、三井化学社製、無水マレイン酸変性エチレン-α-オレフィン共重合体)
(8)「ダイアナプロセスPW90」(商品名、出光興産社製、パラフィンオイル)
In addition, the following compound was used as each component shown in Table 1 and Table 2.
<Polyolefin resin>
(1) “UE320” (Nippon Polyethylene, Novatec PE (trade name), linear low density polyethylene (LLDPE), density 0.92 g / cm 3 )
(2) "Evolue SP1540" (trade name, manufactured by Prime Polymer Co., Ltd., linear metallocene polyethylene (LLDPE))
(3) "EC9" (Nippon Polypro, Novatec PP (trade name), polypropylene)
(4) “EV360” (trade name, manufactured by Mitsui DuPont Chemical Co., Ltd., ethylene / vinyl acetate copolymer resin (EVA), VA content 33% by mass)
(5) "Septon 4077" (trade name, manufactured by Kuraray Co., Ltd., styrene elastomer (SEEPS), styrene content 30% by mass)
(6) "Mitsui 3092 EPM" (trade name, manufactured by Mitsui Chemicals, ethylene-propylene-diene rubber, ethylene content 66%)
(7) “Admer XE-070” (trade name, manufactured by Mitsui Chemicals, maleic anhydride-modified ethylene-α-olefin copolymer)
(8) “Diana Process PW90” (trade name, manufactured by Idemitsu Kosan Co., Ltd., paraffin oil)
<有機過酸化物>
「パーヘキサ25B」(商品名、日本油脂社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、分解温度149℃)
<無機フィラー>
(1)水酸化マグネシウム(商品名:キスマ5、協和化学工業社製、平均粒径0.8μm)
(2)水酸化アルミニウム(商品名:ハイジライトH42M、昭和電工社製、平均粒径1.2μm)
(3)炭酸カルシウム(商品名:ソフトン1200、備北粉化社製、平均粒径1.5μm)
(4)三酸化アンチモン(商品名:PATOX-C、日本精鉱社製、平均粒径3.5μm)
(5)シリカ(商品名:クリスタライト5X、龍森社製、平均粒径1.2μm)
<Organic peroxide>
“Perhexa 25B” (trade name, manufactured by NOF Corporation, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, decomposition temperature 149 ° C.)
<Inorganic filler>
(1) Magnesium hydroxide (trade name: Kisuma 5, manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.8 μm)
(2) Aluminum hydroxide (trade name: Heidilite H42M, Showa Denko, average particle size 1.2 μm)
(3) Calcium carbonate (trade name: Softon 1200, manufactured by Bihoku Flour Chemical Co., Ltd., average particle size 1.5 μm)
(4) Antimony trioxide (trade name: PATOX-C, manufactured by Nippon Seiko Co., Ltd., average particle size of 3.5 μm)
(5) Silica (trade name: Crystallite 5X, manufactured by Tatsumori, average particle size 1.2 μm)
<シランカップリング剤>
「KBM-1003」(商品名、信越化学工業社製、ビニルトリメトキシシラン)
「KBE-1003」(商品名、信越化学工業社製、ビニルトリエトキシシラン)
<キャリア樹脂>
上述の「UE320」(商品名)
<シラノール縮合触媒>
「アデカスタブOT-1」(商品名、ADEKA社製、ジオクチルスズラウリレート)
<酸化防止剤(ヒンダードフェノール酸化防止剤)>
「イルガノックス1010」(商品名、長瀬産業社製、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート])
<Silane coupling agent>
"KBM-1003" (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., vinyltrimethoxysilane)
"KBE-1003" (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., vinyltriethoxysilane)
<Carrier resin>
The above-mentioned “UE320” (product name)
<Silanol condensation catalyst>
“ADK STAB OT-1” (trade name, manufactured by ADEKA, dioctyltin laurate)
<Antioxidant (hindered phenol antioxidant)>
“Irganox 1010” (trade name, manufactured by Nagase Sangyo Co., Ltd., pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate])
(実施例1~15及び比較例1~5)
 まず、有機過酸化物、無機フィラー及びシランカップリング剤を、表1に示す質量比で、東洋精機製10Lヘンシェルミキサーに投入して、室温(25℃)で1時間混合して、粉体混合物を得た。
 次に、このようにして得られた粉体混合物とポリオレフィン樹脂とを、表1に示す質量比で、日本ロール製2Lバンバリーミキサー内に投入し、有機過酸化物(P)の分解温度以上の温度、具体的には180~190℃で約12分混練り後、材料排出温度180~190℃で排出し、シランマスターバッチ(シランMBともいう)を得た(工程(a))。得られたシランMBは、オレフィン樹脂にシランカップリング剤がグラフト反応した少なくとも2種のシラン架橋性樹脂を含有している。
(Examples 1 to 15 and Comparative Examples 1 to 5)
First, an organic peroxide, an inorganic filler, and a silane coupling agent are put into a 10 L Henschel mixer manufactured by Toyo Seiki at a mass ratio shown in Table 1, and mixed at room temperature (25 ° C.) for 1 hour to obtain a powder mixture. Got.
Next, the powder mixture thus obtained and the polyolefin resin were charged into a 2 L Banbury mixer manufactured by Nippon Roll at a mass ratio shown in Table 1, and the decomposition temperature of the organic peroxide (P) or higher was exceeded. After kneading at a temperature, specifically 180 to 190 ° C. for about 12 minutes, the material was discharged at a material discharge temperature of 180 to 190 ° C. to obtain a silane master batch (also referred to as silane MB) (step (a)). The obtained silane MB contains at least two silane crosslinkable resins obtained by graft-reacting a silane coupling agent to an olefin resin.
 一方、キャリア樹脂「UE320」とシラノール縮合触媒と酸化防止剤を、表1に示す質量比で、180~190℃でバンバリーミキサーにて別途溶融混合し、材料排出温度180~190℃で排出して、触媒マスターバッチ(触媒MBともいう)を得た。この触媒マスターバッチは、キャリア樹脂、シラノール縮合触媒及び酸化防止剤の混合物である。 次いで、シランMBと触媒MBを、表1に示す質量比、すなわち、シランSMのポリオレフィン樹脂が100質量部で、触媒MBのキャリア樹脂が5質量部となる割合で、バンバリーミキサーによって180℃で溶融混合した(工程(b))。
 このようにして、耐熱性シラン架橋性樹脂組成物を調製した。この耐熱性シラン架橋性樹脂組成物は、シランMBと触媒MBとの混合物であって、上述の少なくとも2種のシラン架橋性樹脂を含有している。
On the other hand, the carrier resin “UE320”, the silanol condensation catalyst, and the antioxidant are separately melt-mixed by a Banbury mixer at a mass ratio shown in Table 1 at 180 to 190 ° C., and discharged at a material discharge temperature of 180 to 190 ° C. A catalyst master batch (also referred to as catalyst MB) was obtained. This catalyst masterbatch is a mixture of a carrier resin, a silanol condensation catalyst and an antioxidant. Next, silane MB and catalyst MB were melted at 180 ° C. by a Banbury mixer at a mass ratio shown in Table 1, that is, 100 parts by mass of polyolefin resin of silane SM and 5 parts by mass of carrier resin of catalyst MB. Mixed (step (b)).
In this way, a heat-resistant silane crosslinkable resin composition was prepared. This heat-resistant silane crosslinkable resin composition is a mixture of silane MB and catalyst MB, and contains at least two types of silane crosslinkable resins described above.
 次いで、この耐熱性シラン架橋性樹脂組成物を、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に導入し、1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの電線(未架橋)を得た(工程(c))。 Next, this heat-resistant silane crosslinkable resin composition was introduced into a 40 mm extruder (compressor screw temperature 190 ° C., head temperature 200 ° C.) with L / D = 24, and the thickness was increased outside the 1 / 0.8 TA conductor. Covered with 1 mm, an electric wire (uncrosslinked) having an outer diameter of 2.8 mm was obtained (step (c)).
 得られた電線(未架橋)を温度80℃湿度95%の雰囲気に24時間放置した(工程(d))。
 このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
 この耐熱性シラン架橋樹脂成形体は、上述のように、シラン架橋性樹脂がシランカップリング剤の加水分解しうる基の縮合反応によって架橋した上述のシラン架橋樹脂を含有している。
The obtained electric wire (uncrosslinked) was left in an atmosphere of 80 ° C. and 95% humidity for 24 hours (step (d)).
Thus, the electric wire which has the coating | cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
As described above, this heat-resistant silane cross-linked resin molded product contains the above-described silane cross-linked resin obtained by cross-linking the silane cross-linkable resin by a condensation reaction of a hydrolyzable group of the silane coupling agent.
(実施例16)
 表2に示す各成分を同表に示す質量割合(質量部)で用い、上記実施例1と同様にして、シランMB(工程(a))及び触媒MBをそれぞれ調製した。
 次いで、得られたシランMB及び触媒MBを密閉型のリボンブレンダーに投入して、室温(25℃)で5分ドライドブレンドしてドライドブレンド物を得た。このとき、シランMBと触媒MBとの混合割合は、シランSMのポリオレフィン樹脂が100質量部で、触媒MBのキャリア樹脂が5質量部となる割合(表2参照)とした。次いで、このドライドブレンド物を、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に投入し、押出機スクリュー内にて溶融混合を行いながら1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの電線(未架橋)を得た(工程(b)及び工程(c))。
 得られた電線(未架橋)を温度80℃、湿度95%の雰囲気に24時間放置した(工程(d))。
 このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
(Example 16)
Silane MB (step (a)) and catalyst MB were prepared in the same manner as in Example 1, using the components shown in Table 2 in the mass ratio (parts by mass) shown in the same table.
Subsequently, the obtained silane MB and catalyst MB were put into a closed ribbon blender, and dry blended at room temperature (25 ° C.) for 5 minutes to obtain a dry blend. At this time, the mixing ratio of the silane MB and the catalyst MB was such that the polyolefin resin of silane SM was 100 parts by mass and the carrier resin of catalyst MB was 5 parts by mass (see Table 2). Next, this dried blend was put into a 40 mm extruder (compressor screw temperature 190 ° C., head temperature 200 ° C.) with L / D = 24, and 1 / 0.8 TA while melt mixing in the extruder screw. The outside of the conductor was coated with a thickness of 1 mm to obtain an electric wire (uncrosslinked) having an outer diameter of 2.8 mm (step (b) and step (c)).
The obtained electric wire (uncrosslinked) was left in an atmosphere of a temperature of 80 ° C. and a humidity of 95% for 24 hours (step (d)).
Thus, the electric wire which has the coating | cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
(実施例17)
 表2に示す各成分を同表に示す質量割合(質量部)で用い、上記実施例1と同様にして、導体の外周を耐熱性シラン架橋性樹脂組成物で被覆した電線(外径2.8mm、未架橋)を得た(工程(a)、工程(b)及び工程(c))。
 得られた電線を温度23℃、湿度50%の雰囲気に72時間放置した(工程(d))。
 このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
(Example 17)
Each component shown in Table 2 was used at a mass ratio (parts by mass) shown in the same table, and in the same manner as in Example 1 above, an electric wire (outer diameter 2. 8 mm, uncrosslinked) was obtained (step (a), step (b) and step (c)).
The obtained electric wire was left in an atmosphere of a temperature of 23 ° C. and a humidity of 50% for 72 hours (step (d)).
Thus, the electric wire which has the coating | cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
(実施例18)
 表2に記載に示す各成分を同表に示す質量割合(質量部)で用い、上記実施例1と同様にして、シランMBを調製した(工程(a))。
 一方、キャリア樹脂「UE320」とシラノール縮合触媒と酸化防止剤を、表2に示す質量比で、2軸押出機にて溶融混合し、触媒MBを得た。2軸押出機のスクリュー径は35mm、シリンダー温度を180~190℃に設定した。得られた触媒MBは、キャリア樹脂、シラノール縮合触媒及び酸化防止剤の混合物である。
 次いで、得られたシランMB及び触媒MBをバンバリーミキサーによって180℃で溶融混合した(工程(b))。シランMBと触媒MBとの混合割合は、シランSMのポリオレフィン樹脂が100質量部で、触媒MBのキャリア樹脂が5質量部となる割合(表2参照)とした。このようにして、耐熱性シラン架橋性樹脂組成物を調製した。この耐熱性シラン架橋性樹脂組成物は、シランMBと触媒MBとの混合物であって、上述の少なくとも2種のシラン架橋性樹脂を含有している。
 次いで、この耐熱性シラン架橋性樹脂組成物を、L/D=24の40mm押出機(圧縮部スクリュー温度190℃、ヘッド温度200℃)に導入し、1/0.8TA導体の外側に肉厚1mmで被覆し、外径2.8mmの電線(未架橋)を得た(工程(c))。
 得られた電線(未架橋)を温度50℃の温水に10時間浸漬した状態に放置した(工程(d))。
 このようにして、耐熱性シラン架橋樹脂成形体からなる被覆を有する電線を製造した。
(Example 18)
Silane MB was prepared in the same manner as in Example 1 above using the components shown in Table 2 in the mass ratio (parts by mass) shown in the same table (step (a)).
On the other hand, the carrier resin “UE320”, the silanol condensation catalyst, and the antioxidant were melt-mixed by a twin screw extruder at a mass ratio shown in Table 2 to obtain a catalyst MB. The screw diameter of the twin screw extruder was set to 35 mm, and the cylinder temperature was set to 180 to 190 ° C. The obtained catalyst MB is a mixture of a carrier resin, a silanol condensation catalyst and an antioxidant.
Subsequently, the obtained silane MB and catalyst MB were melt-mixed at 180 ° C. by a Banbury mixer (step (b)). The mixing ratio of silane MB and catalyst MB was such that the polyolefin resin of silane SM was 100 parts by mass and the carrier resin of catalyst MB was 5 parts by mass (see Table 2). In this way, a heat-resistant silane crosslinkable resin composition was prepared. This heat-resistant silane crosslinkable resin composition is a mixture of silane MB and catalyst MB, and contains at least two types of silane crosslinkable resins described above.
Next, this heat-resistant silane crosslinkable resin composition was introduced into a 40 mm extruder (compressor screw temperature 190 ° C., head temperature 200 ° C.) with L / D = 24, and the thickness was increased outside the 1 / 0.8 TA conductor. Covered with 1 mm, an electric wire (uncrosslinked) having an outer diameter of 2.8 mm was obtained (step (c)).
The obtained electric wire (uncrosslinked) was left in a state of being immersed in warm water at a temperature of 50 ° C. for 10 hours (step (d)).
Thus, the electric wire which has the coating | cover consisting of a heat resistant silane crosslinked resin molding was manufactured.
 製造した電線について下記評価をし、その結果を表1及び表2に示した。 The following evaluation was performed on the manufactured electric wires, and the results are shown in Tables 1 and 2.
<機械特性>
 電線の機械特性として引張試験を行った。
 この引張試験は、JIS C 3005に準じて行った。電線から導体を抜き取った電線管状片を用いて、標線間25mm、引張速度500mm/分で行い、引張強度(MPa)及び引張伸び(%)を測定した。
 引張強度は8MPa以上のものを合格とし、引張伸びは100%以上のものを合格とする。
<Mechanical properties>
A tensile test was conducted as a mechanical property of the electric wire.
This tensile test was performed according to JIS C 3005. Using the wire tubular piece from which the conductor was extracted from the wire, the tensile strength (MPa) and the tensile elongation (%) were measured at 25 mm between the marked lines and at a pulling speed of 500 mm / min.
A tensile strength of 8 MPa or more is accepted, and a tensile elongation of 100% or more is accepted.
<加熱変形試験>
 電線の耐熱性として加熱変形試験を行った。
 加熱変形試験は、UL1581に基づいて、測定温度150℃、荷重5Nで行った。なお、測定値が50%以下を合格とした。
<Heating deformation test>
A heat deformation test was conducted as the heat resistance of the electric wires.
The heat deformation test was performed at a measurement temperature of 150 ° C. and a load of 5 N based on UL1581. A measured value of 50% or less was accepted.
<ホットセット試験>
 電線の耐熱性としてホットセット試験を行った。
 ホットセット試験1は、電線の管状片を作製し、長さ50mmの評線を付けた後に、170℃の恒温槽の中に117gのおもりを取り付け15分間放置し、放置後の長さを測定し、伸び率を求めた(ホットセット試験1)。
 次に、荷重を取り外した後の放置後の長さを測定して伸び率を求めた(ホットセット試験2)。
 ホットセット試験1は伸び率が100%以下を合格とし、ホットセット試験2は伸び率が80%以下を合格とした。
<Hot set test>
A hot set test was conducted as the heat resistance of the electric wire.
Hot set test 1 is to make a tubular piece of electric wire, mark it with a length of 50mm, attach a weight of 117g in a constant temperature bath at 170 ° C, leave it for 15 minutes, and measure the length after leaving Then, the elongation was determined (hot set test 1).
Next, the length after standing after the load was removed was measured to determine the elongation (hot set test 2).
In the hot set test 1, an elongation rate of 100% or less was accepted, and in the hot set test 2, an elongation rate of 80% or less was accepted.
<電線の押出外観特性>
 電線の押出外観特性として押出外観試験1を行った。
 押出外観試験1は、電線を製造する際に押出外観を観察することで評価した。具体的には、65mm押出機にて線速50m/分で押し出した際に電線の外観が良好だったものを「A」、外観がやや悪かったものを「B」、外観が著しく悪かったものを「C」とし、「B」以上を製品レベルとして合格とした。
<Extrusion appearance characteristics of electric wire>
Extrusion appearance test 1 was conducted as an extrusion appearance characteristic of the electric wire.
The extrusion appearance test 1 was evaluated by observing the extrusion appearance when manufacturing the electric wire. Specifically, when the wire was extruded with a 65 mm extruder at a line speed of 50 m / min, “A” indicates that the appearance of the wire was good, “B” indicates that the appearance was slightly bad, and “B” indicates that the appearance was remarkably bad. Was “C”, and “B” or higher was accepted as a product level.
 電線の押出外観特性として、押出機を一旦停止後、再開する押出外観試験2を行った。
 押出外観2は、電線を製造する際に、65mm押出機にて線速50m/分に設定して電線を製造し、途中で1度押出機を止め、10分後に再度同条件で押出機を稼動させて電線を製造し、製造された電線の外観を観察することで評価した。具体的には、再度線速を50m/分に設定して押出機を再稼動させて5分後に押し出された電線の外観を観察した。
 評価は、再度線速を50m/分に設定した後5分後に観察した際に、電線の外観が良好でブツが1mに2個以内だったものを「A」、外観がやや悪かったもの、又は、1mにブツが3~10個確認されたものを「B」、外観が著しく悪かったもの、又は、ブツが1mに11個以上確認されたものを「C」とし、「B」以上を製品レベルとして合格とした。
As the extrusion appearance characteristics of the electric wire, an extrusion appearance test 2 was performed in which the extruder was temporarily stopped and then resumed.
Extrusion appearance 2 is that when producing an electric wire, the wire speed is set to 50 m / min with a 65 mm extruder, the electric wire is produced, the extruder is stopped once in the middle, and the extruder is again operated under the same conditions after 10 minutes. It evaluated by observing the external appearance of the manufactured electric wire by operating and manufacturing an electric wire. Specifically, the wire speed was set again at 50 m / min, the extruder was restarted, and the appearance of the electric wire extruded after 5 minutes was observed.
The evaluation was “A” when the wire speed was good and no more than 2 pieces per 1 m when observed 5 minutes after setting the line speed to 50 m / min. Or, “B” means that 3 to 10 bumps are confirmed in 1 m, “C” means that the appearance is remarkably bad, or 11 or more bumps are confirmed in 1 m, and “B” or more. The product level was accepted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2の結果から明らかなように、実施例1~18は、いずれも、押出外観試験2に合格しており、押出機を停止後、再開させても、外観荒れやブツが発生しにくく外観に優れた電線を製造できた。特に、シランカップリング剤をポリオレフィン樹脂に対して6質量部以上用いた実施例1~4、6~10、12~14及び16~18は、押出外観試験2において、ブツが1mに2個以内しか生じず、さらに優れた外観特性を有する電線を製造できた。
 また、実施例1~18は、いずれも、機械特性、耐熱性及び押出外観に合格する電線を製造できた。
 このように、実施例1~18の電線の被覆として設けられた本発明における耐熱性シラン架橋樹脂成形体は、押出機を停止させた後に再開させても外観に優れていた。しかも、機械特性、耐熱性及び外観のいずれにも優れていた。なお、難燃性は無機フィラーの混合量から優れていることが容易に理解できる。
As is clear from the results in Tables 1 and 2, Examples 1 to 18 all passed the extrusion appearance test 2. Even if the extruder was stopped and restarted, rough appearance and irregularities occurred. This makes it possible to produce electric wires that are difficult to handle and have an excellent appearance. In particular, in Examples 1 to 4, 6 to 10, 12 to 14, and 16 to 18 in which the silane coupling agent was used in an amount of 6 parts by mass or more with respect to the polyolefin resin, in the extrusion appearance test 2, no more than 2 pieces per 1 m However, it was possible to produce an electric wire having further excellent appearance characteristics.
In each of Examples 1 to 18, an electric wire that passed the mechanical properties, heat resistance, and extrusion appearance could be produced.
As described above, the heat-resistant silane crosslinked resin moldings according to the present invention provided as the coatings for the wires of Examples 1 to 18 were excellent in appearance even when the extruder was stopped and then restarted. Moreover, it was excellent in mechanical properties, heat resistance and appearance. In addition, it can be easily understood that flame retardancy is superior from the amount of inorganic filler mixed.
 これに対して、シランカップリング剤の使用量が少ない比較例1及び2は、いずれも、押出外観試験1に合格したものの、押出外観試験2は不合格であった。一方、シランカップリング剤の使用量が多い比較例3は、製造時に発泡して押出外観試験1及び押出外観試験2に合格せず、しかも、ホットセット試験1が不合格で耐熱性にも劣っていた。
 有機過酸化物の使用量が少ない比較例4は加熱変形試験及びホットセット試験1が不合格で耐熱性に劣り、また有機過酸化物の使用量が多い比較例5は押出成形すらできなかった。
In contrast, Comparative Examples 1 and 2 in which the amount of the silane coupling agent used was small passed the extrusion appearance test 1, but the extrusion appearance test 2 was not acceptable. On the other hand, Comparative Example 3 in which the amount of the silane coupling agent used is large, foams during production and does not pass the extrusion appearance test 1 and the extrusion appearance test 2, and also the hot set test 1 fails and the heat resistance is poor. It was.
In Comparative Example 4 in which the amount of organic peroxide used is small, the heat deformation test and hot set test 1 failed and the heat resistance was poor, and in Comparative Example 5 where the amount of organic peroxide used was large, even extrusion molding could not be performed. .
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2013年8月27日に日本国で特許出願された特願2013-175676に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 
This application claims priority based on Japanese Patent Application No. 2013-175676 filed in Japan on August 27, 2013, which is hereby incorporated herein by reference. Capture as part.

Claims (13)

  1.  ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを前記有機過酸化物の分解温度以上の温度において溶融混練してシランマスターバッチを調製する工程(a)と、
     前記シランマスターバッチとシラノール縮合触媒とを混合して混合物を得る工程(b)と、
     前記混合物を成形して成形体を得る工程(c)と、
     前記成形体を水と接触させて耐熱性シラン架橋樹脂成形体を得る工程(d)とを有する耐熱性シラン架橋樹脂成形体の製造方法。
    15. Over 100 parts by mass of polyolefin resin, 0.01 to 0.6 parts by mass of organic peroxide, 10 to 400 parts by mass of inorganic filler, and more than 4 parts by mass of silane coupling agent. (A) a step of preparing a silane master batch by melt-kneading 0 parts by mass or less at a temperature equal to or higher than the decomposition temperature of the organic peroxide;
    Mixing the silane masterbatch and silanol condensation catalyst to obtain a mixture (b);
    A step (c) of forming the mixture to obtain a molded body;
    A method for producing a heat-resistant silane cross-linked resin molded product, comprising the step (d) of bringing the molded product into contact with water to obtain a heat-resistant silane cross-linked resin molded product.
  2.  前記シランカップリング剤の混合量が、前記ポリオレフィン樹脂100質量部に対し、6質量部以上15.0質量部以下である請求項1に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The method for producing a heat-resistant silane-crosslinked resin molded article according to claim 1, wherein a mixing amount of the silane coupling agent is 6 parts by mass or more and 15.0 parts by mass or less with respect to 100 parts by mass of the polyolefin resin.
  3.  前記シランカップリング剤が、ビニルトリメトキシシラン又はビニルトリエトキシシランである請求項1又は2に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The method for producing a heat-resistant silane crosslinked resin molded article according to claim 1 or 2, wherein the silane coupling agent is vinyltrimethoxysilane or vinyltriethoxysilane.
  4.  前記無機フィラーが、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム及び三酸化アンチモンからなる群から選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The heat-resistant silane-crosslinked resin according to any one of claims 1 to 3, wherein the inorganic filler is at least one selected from the group consisting of silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, and antimony trioxide. Manufacturing method of a molded object.
  5.  前記工程(a)の溶融混合が、密閉型のミキサーで行われる請求項1~4のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The method for producing a heat-resistant silane-crosslinked resin molded article according to any one of claims 1 to 4, wherein the melt mixing in the step (a) is performed with a closed mixer.
  6.  前記工程(a)において、シラノール縮合触媒を実質的に混合しない請求項1~5のいずれか1項に記載の耐熱性シラン架橋樹脂成形体の製造方法。 The method for producing a heat-resistant silane crosslinked resin molded article according to any one of claims 1 to 5, wherein the silanol condensation catalyst is not substantially mixed in the step (a).
  7.  ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを前記有機過酸化物の分解温度以上の温度において溶融混練してシランマスターバッチを調製する工程(a)と、
     前記シランマスターバッチとシラノール縮合触媒とを混合して混合物を得る工程(b)とを有する耐熱性シラン架橋性樹脂組成物の製造方法。
    15. Over 100 parts by mass of polyolefin resin, 0.01 to 0.6 parts by mass of organic peroxide, 10 to 400 parts by mass of inorganic filler, and more than 4 parts by mass of silane coupling agent. (A) a step of preparing a silane master batch by melt-kneading 0 parts by mass or less at a temperature equal to or higher than the decomposition temperature of the organic peroxide;
    A method for producing a heat-resistant silane crosslinkable resin composition comprising the step (b) of mixing the silane master batch and a silanol condensation catalyst to obtain a mixture.
  8.  請求項7に記載の製造方法により製造されてなる耐熱性シラン架橋性樹脂組成物。 A heat-resistant silane crosslinkable resin composition produced by the production method according to claim 7.
  9.  請求項1~6のいずれか1項に記載の製造方法により製造されてなる耐熱性シラン架橋樹脂成形体。 A heat-resistant silane-crosslinked resin molded product produced by the production method according to any one of claims 1 to 6.
  10.  耐熱性シラン架橋樹脂成形体が、シラノール結合を介して前記無機フィラーと架橋してなる前記ポリオレフィン樹脂を含む請求項9に記載の耐熱性シラン架橋樹脂成形体。 The heat-resistant silane cross-linked resin molded product according to claim 9, wherein the heat-resistant silane cross-linked resin molded product includes the polyolefin resin formed by cross-linking with the inorganic filler through a silanol bond.
  11.  請求項9又は10に記載の耐熱性シラン架橋樹脂成形体を含む耐熱性製品。 A heat-resistant product comprising the heat-resistant silane cross-linked resin molded article according to claim 9 or 10.
  12.  前記耐熱性シラン架橋樹脂成形体が、電線又は光ファイバケーブルの被覆として設けられている請求項11に記載の耐熱性製品。 The heat-resistant product according to claim 11, wherein the heat-resistant silane cross-linked resin molded body is provided as a coating for an electric wire or an optical fiber cable.
  13.  ポリオレフィン樹脂100質量部に対し、有機過酸化物0.01質量部以上0.6質量部以下と、無機フィラー10質量部以上400質量部以下と、シランカップリング剤4質量部を超えて15.0質量部以下とを前記有機過酸化物の分解温度以上の温度において溶融混練して得られるシランマスターバッチ。 15. Over 100 parts by mass of polyolefin resin, 0.01 to 0.6 parts by mass of organic peroxide, 10 to 400 parts by mass of inorganic filler, and more than 4 parts by mass of silane coupling agent. A silane master batch obtained by melt-kneading 0 parts by mass or less at a temperature not lower than the decomposition temperature of the organic peroxide.
PCT/JP2014/072443 2013-08-27 2014-08-27 Heat-resistant silane crosslinked resin molded article and method for producing same, heat-resistant silane crosslinking resin composition and method for producing same, silane master batch, and heat-resistant product produced using heat-resistant silane crosslinked resin molded article WO2015030055A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480045774.4A CN105473654A (en) 2013-08-27 2014-08-27 Heat-resistant silane crosslinked resin molded article and method for producing same, heat-resistant silane crosslinking resin composition and method for producing same, silane master batch, and heat-resistant product produced using heat-resistant silane crosslinked resin molded article
JP2015534260A JP6523171B2 (en) 2013-08-27 2014-08-27 Heat resistant silane cross-linked resin molded article and method for producing the same, heat resistant silane cross-linkable resin composition and method for producing the same, silane master batch, and heat resistant product using heat resistant silane cross-linked resin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175676 2013-08-27
JP2013-175676 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015030055A1 true WO2015030055A1 (en) 2015-03-05

Family

ID=52586605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072443 WO2015030055A1 (en) 2013-08-27 2014-08-27 Heat-resistant silane crosslinked resin molded article and method for producing same, heat-resistant silane crosslinking resin composition and method for producing same, silane master batch, and heat-resistant product produced using heat-resistant silane crosslinked resin molded article

Country Status (3)

Country Link
JP (3) JP6523171B2 (en)
CN (1) CN105473654A (en)
WO (1) WO2015030055A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140253A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140251A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140252A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
JP2017516910A (en) * 2014-06-20 2017-06-22 ファインケミカル カンパニー リミテッド Elastic filler for artificial grass
CN108623883A (en) * 2018-05-16 2018-10-09 安徽华美高分子材料科技有限公司 A kind of refractory polyethylene track CABLE MATERIALS and preparation method thereof
JP2020502302A (en) * 2016-12-22 2020-01-23 ボレアリス エージー Crosslinkable polyolefin composition
KR102103953B1 (en) * 2019-04-09 2020-04-23 한국신발피혁연구원 Epdm rubber composition having excellent heat resistant and low compression set
JP6892185B1 (en) * 2021-03-17 2021-06-23 株式会社Tbm Inorganic substance powder-filled resin composition and molded product
JP2021155592A (en) * 2020-03-27 2021-10-07 古河電気工業株式会社 Heat-resistant flame-retardant crosslinked fluororubber molding, method for producing the same, and heat-resistant product
WO2022163198A1 (en) * 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050921B1 (en) * 2013-09-27 2019-11-06 Furukawa Electric Co., Ltd. Heat-resistant silane cross-linked resin molded body and production method for same, heat-resistant silane cross-linking resin composition and production method for same, silane masterbatch, and heat-resistant product employing heat-resistant silane cross-linked resin molded body
CN105761839B (en) * 2016-04-29 2017-12-08 东莞市民兴电缆有限公司 A kind of high flexibility fireproof cable and preparation method thereof
CN107176631A (en) * 2017-06-07 2017-09-19 常州市海若纺织品有限公司 A kind of method that water purification agent is prepared based on waste aluminium plastic material
JP7305346B2 (en) * 2018-12-25 2023-07-10 矢崎エナジーシステム株式会社 Crosslinking agent masterbatch
KR102629770B1 (en) * 2023-11-10 2024-01-26 박제호 Modified asphalt coating material composition for waterproofing bridge surface having high durability and constructing method of bridge surface waterproofing using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008537A1 (en) * 2007-07-12 2009-01-15 Autonetworks Technologies, Ltd. Flame-retardant silane-crosslinked olefin resin composition, insulated wire, and method for production of flame-retardant silane-crosslinked olefin resin
JP2010090343A (en) * 2008-10-10 2010-04-22 Hitachi Cable Ltd Process for producing non-halogen flame-retardant thermoplastic composition and non-halogen flame-retardant thermoplastic composition
JP2012255077A (en) * 2011-06-08 2012-12-27 Riken Technos Corp Method for manufacturing electric wire-molded body including silane-crosslinking flame retardant polyolefin and silanol catalyst resin composition
JP2013065553A (en) * 2011-08-29 2013-04-11 Hitachi Cable Ltd Coated wire and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134044A (en) * 1977-04-28 1978-11-22 Showa Electric Wire & Cable Co Ltd Production of corsslinked moldings
DE2740053A1 (en) * 1977-09-06 1979-05-03 Klaus Prof Dr Med Gersonde USE OF ALLOSTERIC EFFECTORS WITH THE LIPID VESICLES WITH AN IRREVERSIBLE INCORPORATION FOR THE IMPROVED O DEEP 2 DISCHARGE OF THE HAEMOGLOBIN IN ERYTHROCYTES
JPS6017353B2 (en) * 1978-03-03 1985-05-02 古河電気工業株式会社 Crosslinking method for polyolefin resin
JPH02166106A (en) * 1988-12-19 1990-06-26 Showa Electric Wire & Cable Co Ltd Production of crosslinked polypropylene molding
JPH03233809A (en) * 1989-12-20 1991-10-17 Hitachi Cable Ltd Electric wire cable
JPH04149238A (en) * 1990-10-15 1992-05-22 Showa Electric Wire & Cable Co Ltd Flame retardant silane-crosslinked polyolefin composition
JP3105938B2 (en) * 1991-05-17 2000-11-06 昭和電線電纜株式会社 Flame retardant resin composition
JPH05198215A (en) * 1991-09-24 1993-08-06 Hitachi Cable Ltd Electric-wire/cable
JPH0616745A (en) * 1992-06-29 1994-01-25 Hitachi Cable Ltd Electric wire-cable
JP3486105B2 (en) * 1998-06-17 2004-01-13 矢崎総業株式会社 Flame-retardant crosslinked olefin resin composition and method for producing flame-retardant crosslinked olefin resin
JP5640889B2 (en) * 2011-05-20 2014-12-17 日立金属株式会社 Electric wire / cable
CN104204048B (en) * 2012-03-30 2018-03-16 古河电气工业株式会社 The manufacture method of heat-resistant resin composition and by the heat-resistant resin composition manufactured by the manufacture method and the products formed of the heat-resistant resin composition is used

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008537A1 (en) * 2007-07-12 2009-01-15 Autonetworks Technologies, Ltd. Flame-retardant silane-crosslinked olefin resin composition, insulated wire, and method for production of flame-retardant silane-crosslinked olefin resin
JP2010090343A (en) * 2008-10-10 2010-04-22 Hitachi Cable Ltd Process for producing non-halogen flame-retardant thermoplastic composition and non-halogen flame-retardant thermoplastic composition
JP2012255077A (en) * 2011-06-08 2012-12-27 Riken Technos Corp Method for manufacturing electric wire-molded body including silane-crosslinking flame retardant polyolefin and silanol catalyst resin composition
JP2013065553A (en) * 2011-08-29 2013-04-11 Hitachi Cable Ltd Coated wire and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516910A (en) * 2014-06-20 2017-06-22 ファインケミカル カンパニー リミテッド Elastic filler for artificial grass
WO2016140251A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140252A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
WO2016140253A1 (en) * 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article
US10723874B2 (en) 2016-12-22 2020-07-28 Borealis Ag Crosslinkable polyolefin composition
JP2020502302A (en) * 2016-12-22 2020-01-23 ボレアリス エージー Crosslinkable polyolefin composition
CN108623883A (en) * 2018-05-16 2018-10-09 安徽华美高分子材料科技有限公司 A kind of refractory polyethylene track CABLE MATERIALS and preparation method thereof
KR102103953B1 (en) * 2019-04-09 2020-04-23 한국신발피혁연구원 Epdm rubber composition having excellent heat resistant and low compression set
JP2021155592A (en) * 2020-03-27 2021-10-07 古河電気工業株式会社 Heat-resistant flame-retardant crosslinked fluororubber molding, method for producing the same, and heat-resistant product
JP7203783B2 (en) 2020-03-27 2023-01-13 古河電気工業株式会社 HEAT-RESISTANT FLAME-RETARDANT CROSS-LINKED FLUORO-RUBBER MOLDED PRODUCT, METHOD FOR MANUFACTURING THE SAME, AND HEAT-RESISTANT PRODUCT
WO2022163198A1 (en) * 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable
JP7416288B2 (en) 2021-01-29 2024-01-17 住友電気工業株式会社 power cable
JP6892185B1 (en) * 2021-03-17 2021-06-23 株式会社Tbm Inorganic substance powder-filled resin composition and molded product
WO2022196432A1 (en) * 2021-03-17 2022-09-22 株式会社Tbm Inorganic substance powder-filled resin composition and molded article
JP2022143312A (en) * 2021-03-17 2022-10-03 株式会社Tbm Inorganic substance powder-filled resin composition and molded article

Also Published As

Publication number Publication date
JP6623260B2 (en) 2019-12-18
JP2018172701A (en) 2018-11-08
JP6523171B2 (en) 2019-05-29
JP6767438B2 (en) 2020-10-14
JP2018172702A (en) 2018-11-08
JPWO2015030055A1 (en) 2017-03-02
CN105473654A (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6623260B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6391580B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6219268B2 (en) Method for producing heat resistant resin composition, heat resistant resin composition produced by the production method, and molded article using the heat resistant resin composition
JP6523407B2 (en) Heat resistant silane cross-linked resin molded article and method for producing the same, heat resistant silane cross-linkable resin composition and method for producing the same, silane master batch, and heat resistant product using heat resistant silane cross-linked resin molded article
JP6452611B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6452610B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6265876B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP6407339B2 (en) Heat-resistant silane cross-linked resin molded product and method for producing the same, heat-resistant silane cross-linked resin composition and method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded product
WO2015002263A1 (en) Heat-resistant silane crosslinked resin molded article and method for manufacturing same, and heat-resistant product equipped with heat-resistant silane crosslinked resin molded article
JP2019019327A (en) Silane coupling agent preliminary mixing filler and filler containing the same
JP5995813B2 (en) Heat-resistant silane cross-linked resin molded body, method for producing the same, and heat-resistant product using heat-resistant silane cross-linked resin molded body
JP2022113710A (en) Heat resistant silane crosslinked resin molded body and manufacturing method therefor, and heat resistant product using heat resistant silane crosslinked resin molded body
JP6339720B2 (en) Flame retardant crosslinking composition
JP6462606B2 (en) Heat-resistant silane cross-linked resin molded body, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product
JP6559996B2 (en) Heat-resistant silane cross-linked resin molded body, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product
JP6567311B2 (en) Heat-resistant silane cross-linked resin molded body, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product
JP6523012B2 (en) Heat-resistant silane cross-linked resin molded product and heat-resistant silane cross-linkable resin composition, method for producing them, silane master batch, and heat-resistant product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045774.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839150

Country of ref document: EP

Kind code of ref document: A1