WO2015029697A1 - 発電装置、時計用ムーブメントおよび時計 - Google Patents

発電装置、時計用ムーブメントおよび時計 Download PDF

Info

Publication number
WO2015029697A1
WO2015029697A1 PCT/JP2014/070383 JP2014070383W WO2015029697A1 WO 2015029697 A1 WO2015029697 A1 WO 2015029697A1 JP 2014070383 W JP2014070383 W JP 2014070383W WO 2015029697 A1 WO2015029697 A1 WO 2015029697A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
power generation
unit
electrode
power
Prior art date
Application number
PCT/JP2014/070383
Other languages
English (en)
French (fr)
Inventor
芳樹 濱谷
中嶋 正洋
新輪 隆
未英 小西
尾崎 徹
Original Assignee
旭硝子株式会社
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, セイコーインスツル株式会社 filed Critical 旭硝子株式会社
Priority to DE112014003980.2T priority Critical patent/DE112014003980T5/de
Priority to JP2015534108A priority patent/JPWO2015029697A1/ja
Publication of WO2015029697A1 publication Critical patent/WO2015029697A1/ja
Priority to US15/049,430 priority patent/US9665069B2/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/06Other parts or details
    • F03G1/08Other parts or details for winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • F03G1/06Other parts or details
    • F03G1/10Other parts or details for producing output movement other than rotary, e.g. vibratory
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/102Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the mechanical oscillator or of the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1892Generators with parts oscillating or vibrating about an axis

Definitions

  • the present invention relates to a power generation device, a timepiece movement including a power generation device, and a timepiece.
  • Patent Document 1 proposes a power generation device in which a stationary substrate having a plurality of electret electrodes on its surface and a movable substrate having a plurality of movable electrodes on its surface are arranged apart from each other.
  • the movable electrode and the movable substrate are connected to a fixed structure provided on the stationary substrate via an elastic member such as a spring driver.
  • the movable substrate is configured to move when external vibration is applied to the power generation device.
  • external vibration for exciting the power generation apparatus it is desirable to use environmental vibration in consideration of improvement of power generation efficiency.
  • the movable substrate moves by the input of external vibration. Thereby, the overlapping area of the electret electrode and the movable electrode increases or decreases from the initial area. Due to the change in the overlapping area, a change in charge occurs in the movable electrode (collecting electrode).
  • the power generator converts the alternating current generated by the change in the electric charge into a direct current through a conversion circuit such as a half-wave rectifier circuit and generates electric power by taking it out as electric energy.
  • the conversion efficiency when converting an alternating current to a direct current by a conversion circuit is better when the frequency and period of the alternating current are constant than when the frequency and period of the alternating current are irregular.
  • the present invention has been made in view of the above-described circumstances, and provides a power generator excellent in power generation efficiency, a timepiece movement including the power generator, and a timepiece.
  • the gist of the present invention comprises the following [1] to [11].
  • [1] A variable portion whose position varies due to external variation; An accumulator that accumulates the fluctuating power of the fluctuating unit; A vibration energy generating unit that generates vibration energy having an amplitude and a frequency adjusted by the power stored in the storage unit; A power generation unit that converts the vibration energy generated by the vibration energy generation unit into electric power;
  • a power generator characterized by comprising: [2] The power generation device according to [1], wherein the vibration energy generation unit includes a pendulum that adjusts a rotation speed of the rotating unit by contacting a rotating unit that rotates by power accumulated in the accumulating unit.
  • the power generation unit includes: A first electrode; A second electrode disposed opposite the first electrode; A charge holding portion provided in at least one of the first electrode and the second electrode; The power generator according to any one of [1] to [3].
  • the fluoropolymer is one using a fluoropolymer (a) having an aliphatic ring in the main chain or a derivative (a ′) of the fluoropolymer (a). [5] or [6].
  • the fluorine-containing polymer (a) is a polymer (I) having a repeating unit based on a cyclic fluorine-containing monomer, or a repeating unit formed by cyclopolymerization of a diene-based fluorine-containing monomer.
  • the power generation device of [7] which is a polymer (II).
  • the derivative (a ′) of the fluoropolymer (a) is a mixture of the fluoropolymer (a) and the following other components other than the fluoropolymer (a), or the fluorine-containing polymer.
  • Other components silane coupling agents or polyvalent polar compounds having a molecular weight of 50 to 2,000 having two or more polar functional groups.
  • the variable power of the variable part is stored, the variable power is temporarily stored in the storage part even if it is variable power due to irregular external fluctuations such as environmental vibration. it can.
  • the vibration energy generation unit that generates vibration energy whose amplitude and frequency are adjusted by the power stored in the storage unit is provided, the power temporarily stored in the storage unit is converted into the amplitude and frequency. Can be generated as adjusted vibration energy.
  • the power generation unit can efficiently convert vibration energy into electric power, a power generation device having excellent power generation efficiency can be provided.
  • the vibration energy generation unit has the pendulum that adjusts the rotation speed of the rotation unit by contacting the rotation unit that rotates by the power accumulated in the accumulation unit.
  • the rotation speed of the pendulum can be adjusted with high accuracy and the pendulum can vibrate with high accuracy in a predetermined cycle. Therefore, since the vibration energy generation unit can generate vibration energy whose amplitude and frequency are accurately adjusted, it is possible to provide a power generation device with extremely excellent power generation efficiency.
  • the power generation device can be provided in a casing that can be moved by carrying. Therefore, the fluctuation power of the fluctuation part can be accumulated in the accumulation part using the environmental vibration.
  • the power generation device of [4] since the charge holding unit is provided in at least one of the first electrode and the second electrode, the overlapping area between the charge holding unit and at least the other of the first electrode and the second electrode is reduced. The increase / decrease increases / decreases the charge of at least the other electrode. Therefore, the power generation device can generate power by taking out the change in charge as electric power.
  • a charge holding unit that can hold more charges can be provided.
  • the watch movement of [10] and the watch of [11] it is possible to supply a watch movement and watch capable of generating power.
  • the watch when the watch is a wristwatch, it is possible to efficiently generate power by using vibration (environmental vibration) when the user walks as external vibration.
  • FIG. 3 is a block diagram of the power generation device 5.
  • FIG. It is a schematic structure figure of power generator 5 concerning one embodiment of the present invention. It is an enlarged view of vibration energy generation part 40A.
  • FIG. 4 is an explanatory diagram schematically showing a cross-sectional view along the line AA in FIG. 3 and a circuit diagram of a rectifier circuit of the power generator.
  • FIG. 4 is a structural diagram of a movement of a quartz wristwatch. It is explanatory drawing of the electric power generation part of the electric power generating apparatus concerning other embodiment of this invention.
  • the power generation device 5 includes a changing unit 61A, a storage unit 20A, a vibration energy generation unit 40A, and a power generation unit 70 (70A, 70B). Below, the detail of each component of the electric power generating apparatus 5 is demonstrated.
  • the changing unit 61 ⁇ / b> A includes a rotating weight 61 whose position changes with respect to the housing 12 due to an external change such as an environmental vibration.
  • the rotating weight 61 has a substantially fan-shaped plane, and is provided to be rotatable around the central axis of the power generation device 5.
  • a ratchet 63 is provided at the rotation center of the rotary weight 61. The ratchet 63 transmits only the rotation in one direction of the rotary weight 61 to the storage unit 20A.
  • the accumulating unit 20 ⁇ / b> A includes a barrel complete 20.
  • the barrel complete 20 is rotatably supported with respect to the housing 12 and has a mainspring 21 inside.
  • the mainspring 21 is configured to be wound up by rotation of the rotary weight 61 due to external variation.
  • variable power from the variable part 61 ⁇ / b> A is accumulated.
  • the rotating weight 61 that is the changing portion 61 ⁇ / b> A rotates, the mainspring 21 inside the barrel complete 20 is wound up via the ratchet 63, and the fluctuation power of the rotating weight 61 is accumulated as power in the mainspring 21.
  • the vibration energy generation unit 40 ⁇ / b> A is configured by an escapement speed governor 40 including an escape wheel 41, an ankle 45, and a hairspring 55. Teeth 42 are formed on the outer periphery of the escape wheel 41.
  • the ankle 45 is supported between the housing 12 and the ankle receiver 43 so as to be rotatable around the ankle stem 44.
  • the ankle 45 is formed in a V-shape that is open to the escape wheel 41 side by a pair of ankle beams 46a and 46b.
  • the ankle 45 includes a pair of vibrating bodies 51a and 51b.
  • the pair of vibrating bodies 51 a and 51 b are plate members formed in an arc shape having a predetermined curvature around the ankle true 44.
  • the pair of vibrating bodies 51 a and 51 b are disposed on both sides in the radial direction of the ankle stem 44 with the ankle stem 44 interposed therebetween.
  • the pair of vibrating bodies 51a and 51b are connected to the ankle beams 46a and 46b via the arms 52a and 52b, respectively. Accordingly, the pair of vibrating bodies 51a and 51b are configured to reciprocate (i.e., vibrate) around the ankle true 44 with a fixed period together with the ankle beams 46a and 46b.
  • the hairspring 55 is a spiral thin plate spring member made of a metal material such as iron or nickel and having a plurality of turns.
  • one end on the inner peripheral side is fixed in the vicinity of the ankle true 44 of the ankle 45, and the other end on the outer peripheral side is fixed, for example, to a beard 58 of a beard holding 57 extending from the ankle receiver 43.
  • the hairspring 55 vibrates the ankle 45 and the pair of vibrating bodies 51a and 51b with a predetermined period by a spring force generated by expansion and contraction.
  • the vibration energy generation unit 40A generates vibration energy whose amplitude and frequency are adjusted by the power stored in the storage unit 20A.
  • the mainspring 21 of the barrel complete 20 that is the storage unit 20 ⁇ / b> A is wound up, and the power is stored as the restoring force of the mainspring 21.
  • the barrel complete 20 is rotated by the power accumulated in the mainspring 21, and the power is transmitted to the escape wheel 41 of the escapement governor 40 that is the vibration energy generation unit 40 ⁇ / b> A via the transmission gear 24. That is, the escape wheel 41 is a rotating part 41A that rotates by the power accumulated in the accumulating part 20A.
  • the rotation speed of the escape wheel 41 is adjusted by the ankle 45.
  • the first wheel 47a and the second wheel 47b of the ankle 45 are alternately engaged with and released from the teeth 42 of the escape wheel 41, so that the escape wheel 41 is fixed. Escape at speed. That is, the ankle 45 functions as a pendulum 45A that adjusts the rotation speed of the rotating portion 41A.
  • the pallet fork 45 has a constant amplitude and frequency around the pallet fork 44 by the energy generated by the expansion and contraction of the hairspring 55 and the collision energy applied when the scissors 47a and 47b come into contact with the escape wheel 41. It reciprocates around 44.
  • the vibration energy generation unit 40A can generate vibration energy whose amplitude and frequency are adjusted from the vibration bodies 51a and 51b of the ankle 45.
  • the power generation unit 70 converts vibration energy generated by the vibration energy generation unit 40A into electric power, and is formed in the vibration bodies 51a and 51b of the ankle 45 and the housing 12.
  • the power generation unit 70A formed on one vibration body 51a and the housing 12 of the ankle 45 and the power generation unit 70B formed on the other vibration body 51b and the housing 12 have the same structure. ing. Therefore, only the power generation unit 70A formed on one vibration body 51a of the ankle 45 and the casing 12 will be described below, and the power generation section formed on the other vibration body 51b of the ankle 45 and the casing 12 will be described. Description of 70B is omitted.
  • FIG. 4 is an explanatory diagram schematically showing a cross-sectional view taken along the line AA in FIG. 3 and a circuit diagram of the rectifier circuit 90 of the power generation device 5.
  • the power generation unit 70 ⁇ / b> A includes a first electrode 71, a second electrode 72, and an electret film 75 (corresponding to “charge holding unit” in the claims).
  • the first electrode 71 is made of a conductive metal material such as copper, gold, silver, aluminum, or iron, and is formed on the surface of the housing 12 by, for example, a sputtering technique. Yes.
  • the first electrode 71 has a strip shape along the radial direction centering on the pallet true 44 and is patterned in a plurality along the circumferential direction centering on the pallet true 44 with a predetermined pitch.
  • the range in which the plurality of first electrodes 71 are formed is sufficiently wider than the movable range when the vibrating body 51a vibrates.
  • the lengths of the plurality of first electrodes 71 are sufficiently longer than the width along the radial direction of the oscillating body 51a formed in an arc shape. Thereby, when the vibrating body 51a vibrates, the first electrode 71 and the vibrating body 51a always overlap each other in plan view.
  • the plurality of first electrodes 71 are electrically connected via connection wirings 91 and electrically connected to a rectifier circuit 90 described later.
  • the second electrode 72 is made of a conductive metal material such as copper, gold, silver, aluminum, or iron, and is formed on the surface of the vibrating body 51a on the side of the housing 12 by, for example, a sputtering technique. Etc. are formed.
  • the second electrode 72 has a strip shape along the radial direction of the vibrating body 51a, and a plurality of second electrodes 72 are patterned side by side with a predetermined pitch in the circumferential direction of the vibrating body 51a.
  • the plurality of second electrodes 72 are electrically connected to each other via a connection wiring 92 and are electrically connected to a rectifier circuit 90 described later.
  • the second electrode 72 functions as a current collector that collects charges of an electret film 75 described later.
  • the second electrode 72 includes an electret film 75 on the surface.
  • the electret film 75 is formed on the surface of the second electrode 72 so as to correspond to the patterning of the second electrode 72, and is in the form of a band along the radial direction of the vibrating body 51a and the circumferential direction of the vibrating body 51a.
  • a plurality of patterns are arranged side by side with a predetermined pitch.
  • an insulating material conventionally used for electrets can be used as the charge holding medium constituting the electret film 75 (charge holding unit).
  • the insulating material may be an organic insulating material or an inorganic insulating material.
  • organic insulating materials include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene copolymer.
  • Fluoropolymers such as (ETFE); hydrocarbon polymers such as polypropylene, polystyrene, and cycloolefin copolymers; polycarbonates; materials derived from these polymers.
  • the material derived from the polymer include a mixture of the polymer and other components other than the polymer, a reaction product of the polymer and other components other than the polymer, and the like.
  • the inorganic insulating material include a silicon oxide film and a silicon nitride film formed by thermal oxidation or plasma CVD.
  • a resin film using a fluoropolymer is preferable because it has high insulating properties and low water absorption.
  • a polymer having an aliphatic ring structure in the main chain or a material derived from the polymer is used.
  • the resin film used is preferred.
  • a resin film (hereinafter referred to as a resin film (A)) using a fluoropolymer (a) having an aliphatic ring in the main chain or a derivative (a ′) of the fluoropolymer (a). are particularly preferred.
  • the resin film (A) can be formed by wet coating (coating method using a solution), is excellent in precision workability, and is excellent in applicability to parts used for rotational motion.
  • the resin film (A) has high charge retention performance by using the fluoropolymer (a) or derivative (a ′), and the electret formed by injecting charge into the resin film (A) has a high surface charge. Has a density.
  • the resin film (A) is formed using a fluoropolymer (a) having an aliphatic ring in the main chain or a derivative (a ′) of the fluoropolymer (a), that is, mainly containing them.
  • the derivative (a ′) which will be described in detail later, is a mixture of the fluoropolymer (a) and other components other than the fluoropolymer (a), the fluoropolymer (a) and the fluoropolymer.
  • the reaction product with other components other than (a), etc. are mentioned.
  • the fluoropolymer (a) used for forming the reaction product or a part of other components is unreacted in the resin film (A). It may remain as it is.
  • the fluorinated polymer (a) is a fluorinated polymer having an aliphatic ring in the main chain.
  • the fluorine atom may be bonded to the carbon atom constituting the main chain or may be bonded to the side chain.
  • the fluorine atom is preferably bonded to the carbon atom constituting the main chain because it is suitable for electretization with a low water absorption and low dielectric constant, high dielectric breakdown voltage, and high volume resistivity.
  • “Having an aliphatic ring in the main chain” means that at least one of the carbon atoms constituting the ring skeleton of the aliphatic ring is a carbon atom constituting the main chain of the fluoropolymer (a). means.
  • the fluoropolymer (a) is obtained by polymerization of a monomer having a polymerizable double bond, carbon derived from the polymerizable double bond of the monomer used for the polymerization At least one of the atoms becomes a carbon atom constituting the main chain.
  • the fluorine-containing polymer (a) is a fluorine-containing polymer obtained by polymerizing a cyclic monomer as described later, two polymerizable double bonds constituting the cyclic monomer are included.
  • the carbon atom becomes the carbon atom constituting the main chain.
  • a fluorinated polymer obtained by cyclopolymerizing a monomer having two polymerizable double bonds among the four carbon atoms constituting the two polymerizable double bonds At least two are carbon atoms constituting the main chain.
  • “Aliphatic ring” refers to a ring having no aromaticity.
  • the aliphatic ring may be saturated or unsaturated.
  • the aliphatic ring may have a carbocyclic structure in which the ring skeleton is composed only of carbon atoms, and has a heterocyclic structure that includes atoms other than carbon atoms (heteroatoms) in the ring skeleton. Also good. Examples of the hetero atom include an oxygen atom and a nitrogen atom.
  • the number of atoms constituting the ring skeleton of the aliphatic ring is preferably 4 to 7, and particularly preferably 5 or 6.
  • the aliphatic ring is preferably a 4- to 7-membered ring, particularly preferably a 5- or 6-membered ring.
  • the aliphatic ring may or may not have a substituent.
  • the phrase “which may have a substituent” means that a substituent (an atom or group other than a hydrogen atom) may be bonded to an atom constituting the ring skeleton of the aliphatic ring.
  • the aliphatic ring may be a non-fluorinated aliphatic ring or a fluorinated aliphatic ring.
  • the non-fluorinated aliphatic ring is an aliphatic ring that does not contain a fluorine atom in the structure.
  • a saturated or unsaturated aliphatic hydrocarbon ring, and a part of carbon atoms in the aliphatic hydrocarbon ring is substituted with a hetero atom such as an oxygen atom or a nitrogen atom.
  • An aliphatic heterocyclic ring etc. are mentioned.
  • the fluorine-containing aliphatic ring is an aliphatic ring containing a fluorine atom in the structure.
  • the fluorinated aliphatic ring include an aliphatic ring in which a substituent containing a fluorine atom (hereinafter referred to as a fluorinated group) is bonded to a carbon atom constituting the ring skeleton of the aliphatic ring.
  • a fluorinated group a substituent containing a fluorine atom
  • the fluorine-containing group include a fluorine atom, a perfluoroalkyl group, a perfluoroalkoxy group, and ⁇ CF 2 .
  • the fluorine-containing aliphatic ring or non-fluorine-containing aliphatic ring may have a substituent other than the fluorine-containing group.
  • a fluorine-containing aliphatic ring is preferable from the viewpoint of excellent charge retention performance.
  • Preferred fluorine-containing polymers (a) include the following fluorine-containing cyclic polymers (I) and fluorine-containing cyclic polymers (II).
  • Fluorinated cyclic polymer (I) a polymer having units based on a cyclic fluorinated monomer.
  • Fluorine-containing cyclic polymer (II) a polymer having units formed by cyclopolymerization of a diene fluorine-containing monomer.
  • Cyclic polymer means a polymer having a cyclic structure.
  • “Unit” means a repeating unit constituting a polymer.
  • the compound represented by the formula (1) is also referred to as “compound (1)”.
  • a unit represented by the formula (3-1) is also referred to as “unit (3-1)”.
  • the fluorinated cyclic polymer (I) has units based on a cyclic fluorinated monomer.
  • Cyclic fluorine-containing monomer means a monomer having a polymerizable double bond between carbon atoms constituting a fluorine-containing aliphatic ring, or a carbon atom constituting a fluorine-containing aliphatic ring and a fluorine-containing fat. It is a monomer having a polymerizable double bond with a carbon atom outside the group ring.
  • the cyclic fluorine-containing monomer the following compound (1) or compound (2) is preferable.
  • X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 each independently represent a fluorine atom, a perfluoroalkyl group optionally containing an etheric oxygen atom (—O—), or A perfluoroalkoxy group which may contain an etheric oxygen atom.
  • X 3 and X 4 may be bonded to each other to form a ring.
  • the perfluoroalkyl group in X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 preferably has 1 to 7 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • the perfluoroalkyl group is linear or branched, and is preferably linear. Specific examples include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and the like, and a trifluoromethyl group is particularly preferable.
  • Examples of the perfluoroalkoxy group in X 1 , X 2 , X 3 , X 4 , Y 1 and Y 2 include those in which an oxygen atom (—O—) is bonded to the perfluoroalkyl group, and a trifluoromethoxy group is particularly preferred. preferable.
  • X 1 is preferably a fluorine atom.
  • X 2 is preferably a fluorine atom, a trifluoromethyl group, or a perfluoroalkoxy group having 1 to 4 carbon atoms, and particularly preferably a fluorine atom or a trifluoromethoxy group.
  • X 3 and X 4 are each independently preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, and particularly preferably a fluorine atom or a trifluoromethyl group.
  • X 3 and X 4 may be bonded to each other to form a ring.
  • the number of atoms constituting the ring skeleton of the ring is preferably 4 to 7, and particularly preferably 5 to 6.
  • Preferable specific examples of compound (1) include compounds (1-1) to (1-5).
  • Y 1 and Y 2 are each independently preferably a fluorine atom, a C 1-4 perfluoroalkyl group or a C 1-4 perfluoroalkoxy group, and a fluorine atom or a trifluoromethyl group Particularly preferred.
  • Preferable specific examples of compound (2) include compound (2-1) or (2-2).
  • the fluorinated cyclic polymer (I) may be composed only of units formed by the cyclic fluorinated monomer, or may be a copolymer having the units and other units. Good. However, the proportion of units based on the cyclic fluorinated monomer in the fluorinated cyclic polymer (I) is 20 mol% or more based on the total of all repeating units constituting the fluorinated cyclic polymer (I). Is preferable, 40 mol% or more is more preferable, and 100 mol% may be sufficient.
  • the other monomer is not particularly limited as long as it is copolymerizable with the cyclic fluorine-containing monomer.
  • diene fluorine-containing monomers examples include diene fluorine-containing monomers, monomers having a reactive functional group in the side chain, tetrafluoroethylene, chlorotrifluoroethylene, perfluoro (methyl vinyl ether), and the like.
  • diene-based fluorine-containing monomer examples include the same as those mentioned in the description of the fluorine-containing cyclic polymer (II) described later.
  • monomer having a reactive functional group in the side chain examples include monomers having a polymerizable double bond and a reactive functional group.
  • Examples of the polymerizable double bond include CF 2 ⁇ CF—, CF 2 ⁇ CH—, CH 2 ⁇ CF—, CFH ⁇ CF—, CFH ⁇ CH—, CF 2 ⁇ C—, CF ⁇ CF—, and the like.
  • Examples of the reactive functional group include the same functional groups as those described in the explanation of the fluorine-containing cyclic polymer (II) described later.
  • the polymer obtained by copolymerization of the cyclic fluorinated monomer and the diene-based fluorinated monomer is regarded as the fluorinated cyclic polymer (I).
  • the fluorinated cyclic polymer (II) has units formed by cyclopolymerization of a diene fluorinated monomer.
  • the “diene fluorine-containing monomer” is a monomer having two polymerizable double bonds and fluorine atoms.
  • the polymerizable double bond is not particularly limited, but is preferably a vinyl group, an allyl group, an acryloyl group or a methacryloyl group.
  • the diene fluorine-containing monomer the following compound (3) is preferable.
  • Q may contain an etheric oxygen atom, and a part of fluorine atoms may be substituted with a halogen atom other than fluorine atoms, preferably 1 to 5, preferably 1 to 3 carbon atoms.
  • a halogen atom other than fluorine atoms preferably 1 to 5, preferably 1 to 3 carbon atoms.
  • These are perfluoroalkylene groups which may have a branch. Examples of halogen atoms other than fluorine include chlorine atom and bromine atom.
  • Q is preferably a perfluoroalkylene group containing an etheric oxygen atom.
  • the etheric oxygen atom in the perfluoroalkylene group may be present at one end of the group, may be present at both ends of the group, and is present between the carbon atoms of the group. It may be. From the viewpoint of cyclopolymerizability, it is preferably present at one end of the group.
  • Examples of units formed by cyclopolymerization of compound (3) include the following units (3-1) to (3-4).
  • the fluorinated polymer (a) preferably has a reactive functional group.
  • the “reactive functional group” is bonded by reacting with other components blended between the molecules of the fluoropolymer (a) or together with the fluoropolymer (a) when heating or the like is performed.
  • a silane coupling agent described later or a compound having a molecular weight of 50 to 2,000 having two or more polar functional groups excluding the silane coupling agent; hereinafter referred to as a polyvalent polar compound).
  • the fluoropolymer (a) can react with the functional group of the silane coupling agent or the polar functional group of the polyvalent polar compound. It preferably has a group.
  • the reactive functional group possessed by the fluoropolymer (a) in view of ease of introduction into the polymer, strength of interaction with the silane coupling agent or the polyvalent polar compound, etc., a carboxy group , An acid halide group, an alkoxycarbonyl group, a carbonyloxy group, a carbonate group, a sulfo group, a phosphono group, a hydroxy group, a thiol group, a silanol group, and an alkoxysilyl group, preferably at least one selected from the group consisting of a carboxy group or an alkoxy group A carbonyl group is particularly preferred.
  • the reactive functional group may be bonded to the terminal of the main chain of the fluoropolymer (a) or may be bonded to the side chain. From the viewpoint of easy production, it is preferably bonded to the end of the main chain. That is, the most preferable embodiment as the fluoropolymer (a) is to have a carboxy group or an alkoxycarbonyl group at the end of the main chain.
  • the relative dielectric constant of the fluoropolymer (a) is preferably 1.8 to 8, more preferably 1.8 to 5, further preferably 1.8 to 3, particularly preferably 1.8 to 2.7. Most preferred is .8 to 2.3.
  • the relative dielectric constant is measured at a frequency of 1 MHz in accordance with ASTM D150.
  • the resin film (A) is a part responsible for charge retention as an electret, it is preferable that the fluoropolymer (a) has a high volume resistivity and a high dielectric breakdown strength.
  • the volume resistivity of the fluoropolymer (a) is preferably from 10 10 to 10 20 ⁇ cm, particularly preferably from 10 16 to 10 19 ⁇ cm.
  • the volume resistivity is measured according to ASTM D257.
  • the dielectric breakdown strength of the fluoropolymer (a) is preferably 10 to 25 kV / mm, particularly preferably 15 to 22 kV / mm.
  • the dielectric breakdown strength is measured according to ASTM D149.
  • the refractive index of the fluoropolymer (a) is preferably from 1.2 to 2 from the viewpoint of reducing the difference in refractive index from the substrate, suppressing light interference due to birefringence and the like, and ensuring transparency. 2 to 1.5 is particularly preferred.
  • the weight average molecular weight (Mw) of the fluoropolymer (a) is preferably 50,000 or more, more preferably 150,000 or more, further preferably 200,000 or more, and particularly preferably 250,000 or more.
  • Mw is 50,000 or more
  • film formation is easy.
  • it is 200,000 or more
  • the heat resistance of the film is improved, and the thermal stability of the retained charge is improved when an electret is formed.
  • the weight average molecular weight (Mw) is too large, it is difficult to dissolve in a solvent, and there is a possibility that problems such as limitation of the film forming process may occur.
  • the weight average molecular weight (Mw) of the fluoropolymer (a) is preferably 1 million or less, more preferably 850,000 or less, further preferably 650,000 or less, and particularly preferably 550,000 or less.
  • the intrinsic viscosity [ ⁇ ] (30 ° C.) (unit: dl / g) is a value measured by an Ubbelohde viscometer at 30 ° C. using perfluoro (2-butyltetrahydrofuran) as a solvent.
  • fluoropolymer (a) one produced by polymerizing the above-described monomers may be used, or a commercially available product may be used.
  • CYTOP registered trademark, manufactured by Asahi Glass Co., Ltd.
  • CYTOP is a commercially available fluoropolymer having a fluorine-containing aliphatic ring containing an etheric oxygen atom in the main chain and having a carboxy group or an alkoxycarbonyl group at the end of the main chain. Is mentioned.
  • Teflon-AF registered trademark, manufactured by DuPont
  • a mixture of the fluoropolymer (a) and other components other than the fluoropolymer (a), a fluoropolymer (a) and a fluoropolymer ( Reaction products with other components other than a) and the like can be mentioned.
  • the mixture means a state in which the fluoropolymer (a) and other components other than the fluoropolymer (a) are mixed without reacting.
  • reaction product for example, when the coating liquid in which the fluoropolymer (a) and the other components are dissolved in a solvent is heated (e.g., when the solvent is evaporated to form a film), each component is What is produced
  • the fluoropolymer (a) and other components other than the fluoropolymer (a) are reacted, the fluoropolymer (a) and the fluoropolymer (a The other than) will be a mixture.
  • a silane coupling agent or a polyvalent polar compound is preferable, and a silane coupling agent is particularly preferable.
  • the charge retention performance (thermal stability of the retained charge, stability over time, etc.) of the formed resin film (A) is improved.
  • the effect of improving the charge retention performance is particularly remarkable when the fluoropolymer (a) has a carboxy group or an alkoxycarbonyl group at the end of the main chain.
  • the effect of improving the charge retention performance is that the fluoropolymer (a) and the silane coupling agent or polypolar compound cause nanophase separation, and a nanocluster structure derived from the silane coupling agent or polypolar compound is formed.
  • the nanocluster structure is presumed to function as a site for storing charges in the electret.
  • the silane coupling agent or the polyvalent polar compound may be present in a state where molecules are reacted with each other.
  • silane coupling agent a silane coupling agent having an amino group is preferable.
  • particularly preferred silane coupling agents are ⁇ -aminopropylmethyldiethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, and N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxy One or more selected from silane.
  • a silane coupling agent may be used individually by 1 type, and may use 2 or more types together.
  • the compounding amount of the silane coupling agent is preferably 0.1 to 20% by mass, more preferably 0.3 to 10% by mass with respect to the total amount of the fluoropolymer (a) and the silane coupling agent. 0.5 to 5% by mass is particularly preferred. When it is in the above-mentioned range, when it is dissolved in a solvent together with the fluoropolymer (a) to form a coating solution, a uniform solution can be easily obtained.
  • the polyvalent polar compound is preferably a compound having two or more polar functional groups and a molecular weight of 50 to 2,000 (excluding the silane coupling agent), and a compound having a molecular weight of 100 to 2,000 (however, the silane The coupling agent is excluded.) Is particularly preferable.
  • the molecular weight of the polyvalent polar compound is not less than the lower limit of the above range, the molecular weight is high, so that it is difficult to volatilize and it is easy to remain in the film after film formation. Moreover, compatibility with a fluoropolymer (a) becomes favorable as it is below the upper limit of the said range.
  • the “polar functional group” is a functional group having one or both of the following properties (1a) and (1b).
  • (1a) Two or more types of atoms having different electronegativity are included, and the functional group has polarity due to polarization.
  • (1b) Polarization is caused by the difference in electronegativity with carbon bonded to the functional
  • Specific examples of the polar functional group having only the above characteristic (1a) include a hydroxyphenyl group.
  • Specific examples of the polar functional group having only the characteristic (1b) include a primary amino group (—NH 2 ), a secondary amino group (—NH—), a hydroxyl group, and a thiol group.
  • Specific examples of the polar functional group having both the above characteristics (1a) and (1b) include sulfo group, phosphono group, carboxyl group, alkoxycarbonyl group, acid halide group, formyl group, isocyanate group, cyano group, carbonyl group. And an oxy group (—C (O) —O—) carbonate group (—O—C (O) —O—).
  • polyvalent polar compounds examples include pentane-1,5-diamine, hexane-1,6-diamine, cyclohexane-1,2-diamine, cyclohexane-1,3-diamine, cyclohexane-1,4-diamine, 1,2 -Diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, triaminomethylamine, tris (2-aminoethyl) amine, tris (3-aminopropyl) amine, cyclohexane-1,3,5-triamine , Cyclohexane-1,2,4-triamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 2,4,6-triaminotoluene, 1,3,5-tris (2 -Aminoethyl) benzene, 1,2,4-tris (2-aminoethyl) benz
  • a polyvalent polar compound may be used individually by 1 type, and may use 2 or more types together.
  • a compound having two polar functional groups and a compound having three or more polar functional groups may be mixed and used.
  • the blending amount of the polyvalent polar compound is preferably from 0.01 to 30% by weight, particularly preferably from 0.05 to 10% by weight, based on the blending amount of the fluoropolymer (a).
  • blending a polyvalent polar compound is fully acquired as this compounding quantity is more than the lower limit of the said range.
  • the blending amount is not more than the upper limit of the above range, the miscibility with the fluoropolymer (a) is good and the distribution in the coating liquid becomes uniform.
  • the resin film (A) includes a fluorinated polymer having a fluorinated aliphatic ring containing an etheric oxygen atom in the main chain, a carboxy group or an alkoxycarbonyl group at the end of the main chain, and a silane cup having an amino group.
  • a mixture with a ring agent, or a fluorinated polymer having a fluorinated aliphatic ring containing an etheric oxygen atom in the main chain and having a carboxy group or an alkoxycarbonyl group at the end of the main chain, and a silane having an amino group It is particularly preferable that it is formed from a reaction product with a coupling agent.
  • Method for forming resin film (A) It does not specifically limit as a formation method of a resin film (A), A well-known method can be utilized. For example, a method of forming a coating film on the surface of the vibrating body 51 a on which the second electrode 72 is formed on the second electrode 72 side and patterning the coating film into a pattern corresponding to the second electrode 72 can be mentioned. .
  • a coating solution obtained by dissolving the fluoropolymer (a) in a solvent, or the fluoropolymer (a) and other components other than the fluoropolymer (a) there is a method of forming a coating film using a coating solution obtained by dissolving in a solvent.
  • a silane coupling agent or a polyvalent polar compound is preferable, and a silane coupling agent is especially preferable.
  • the solvent a solvent that dissolves at least the fluoropolymer (a) is used, and when it contains other components, the solvent that dissolves the fluoropolymer (a) dissolves the other components. If present, the solvent alone can be a uniform solution. Moreover, you may use together the other solvent which melt
  • Specific examples of the solvent include a protic solvent, an aprotic solvent, and the like, and a solvent that dissolves a component to be blended in the coating liquid may be appropriately selected.
  • the “protic solvent” is a solvent having a proton donating property.
  • An “aprotic solvent” is a solvent that does not have proton donating properties.
  • protic solvent examples include the following protic non-fluorinated solvents and protic fluorinated solvents.
  • Protic non-fluorinated solvents such as propylene glycol monobutyl ether, propylene glycol and methyl lactate.
  • 2-Protic fluorine-containing solvents such as fluorine-containing alcohols such as 2- (perfluorooctyl) ethanol, fluorine-containing carboxylic acids, amides of fluorine-containing carboxylic acids, and fluorine-containing sulfonic acids.
  • aprotic solvent examples include the following aprotic non-fluorinated solvents and aprotic fluorinated solvents.
  • Polyfluoroaromatic compounds such as 1,4-bis (trifluoromethyl) benzene, polyfluorotrialkylamine compounds such as perfluorotributylamine, polyfluorocycloalkane compounds such as perfluorodecalin, and perfluoro (2-butyltetrahydrofuran)
  • Aprotic fluorine-containing solvents such as polyfluorocyclic ether compounds, perfluoropolyethers, polyfluoroalkane compounds, hydrofluoroethers (HFE);
  • the solvent used for dissolving the fluoropolymer (a) is preferably an aprotic fluorine-containing solvent because the solubility of the fluoropolymer (a) is large and a good solvent.
  • the solvent for dissolving the silane coupling agent or the polyvalent polar compound is preferably a protic fluorine-containing solvent.
  • the boiling point of the solvent is preferably from 65 to 220 ° C., particularly preferably from 100 to 220 ° C., since a uniform film can be easily formed during coating.
  • the solvent used for preparing the coating liquid preferably has a low water content.
  • the water content is preferably 100 mass ppm or less, and particularly preferably 20 mass ppm or less.
  • the concentration of the fluoropolymer (a) in the coating liquid is preferably from 0.1 to 30% by mass, particularly preferably from 0.5 to 20% by mass. What is necessary is just to set the solid content concentration of a coating liquid suitably according to the film thickness to form. Usually, it is 0.1 to 30% by mass, and preferably 0.5 to 20% by mass.
  • the solid content is calculated by heating the coating liquid whose mass was measured at 200 ° C. for 1 hour under normal pressure to distill off the solvent and measuring the mass of the remaining solid content.
  • the coating liquid may be obtained by preparing a composition containing each component in advance and dissolving it in a solvent, or by dissolving each component in a solvent and mixing each solution.
  • the solid and the solid, or the solid and the liquid may be mixed by kneading, eutectic extrusion, etc.
  • Each solution dissolved in may be mixed. Among these, it is particularly preferable to mix each solution.
  • the coating liquid is a polymer solution obtained by dissolving the fluorine-containing polymer (a) in an aprotic fluorine-containing solvent, and the silane coupling agent is protonated. It is preferable to obtain a silane coupling agent solution dissolved in a fluorinated solvent and to mix the polymer solution and the silane coupling agent solution.
  • the coating film can be formed, for example, by coating the surface of the substrate with a coating liquid and drying it by baking or the like.
  • a coating method a conventionally known method for forming a film from a solution can be used and is not particularly limited. Specific examples of such a method include a spin coating method, a roll coating method, a casting method, a dipping method, a water casting method, a Langmuir-Blodget method, a die coating method, an ink jet method, and a spray coating method.
  • Printing techniques such as letterpress printing, gravure printing, lithographic printing, screen printing, flexographic printing, and the like can also be used. Drying may be performed by air drying at normal temperature, but is preferably performed by heating and baking.
  • the baking temperature is preferably equal to or higher than the boiling point of the solvent, and particularly at a high temperature of 230 ° C. or higher, the reaction between the added silane coupling agent or polyvalent polar compound and the fluoropolymer (a) is sufficiently performed. It is particularly preferable in terms of completion.
  • the surface of the substrate on which the resin film (A) is formed ensures bondability with the substrate. For this reason, it is preferably formed of chromium, aluminum, copper or the like. If the surface of the substrate on which the resin film (A) is formed is formed of gold, platinum, or pure nickel, the resin film (A) is difficult to bond to the substrate. Therefore, when the resin film (A) is formed on the diaphragm 23, the surface of the diaphragm 23 is made of a conductive material excluding gold, platinum, and pure nickel among the materials described above as the electrode film forming material. Preferably it is formed. Therefore, if gold, platinum, or pure nickel is used as the main forming material of the diaphragm 23, it is preferable to form a film of chromium, aluminum, or the like on the surface of gold, platinum, or pure nickel.
  • the patterning method for the coating film is not particularly limited, and a known patterning technique can be used.
  • a method of forming a mask having a predetermined pattern on the coating film and performing etching can be used.
  • the mask can be formed by a method similar to that for the second electrode 72, for example.
  • the material constituting the mask only needs to have a certain etching selectivity with respect to the coating film, and may not be a conductive material.
  • a resist film patterned in a pattern corresponding to the second electrode 72 may be used as the mask.
  • the resist film can be patterned by a known lithography method.
  • the formation of the electret film 75 for example, in the embodiment of FIG.
  • the resin film (A) By injecting electric charge into the resin film (A), the resin film (A) can be used as the electret film 75.
  • the method for injecting charges into the resin film (A) is not particularly limited as long as it is a method for charging an insulator generally.
  • the corona discharge method described in GMSessler, Electrets Third Edition, pp20, Chapter 2.2 “Charging and Polarizing Methods” (Laplacian Press, 1998) electron beam collision method, ion beam collision method, radiation irradiation method, light irradiation method, A contact charging method, a liquid contact charging method, or the like is applicable.
  • the temperature condition for injecting the charge it is maintained after the injection that the temperature is higher than the glass transition temperature (Tg) of the fluoropolymer (a) or the derivative (a ′) contained in the resin film (A). It is preferable from the viewpoint of charge stability, and it is particularly preferable to carry out under a temperature condition of about Tg + 10 ° C. to Tg + 20 ° C. As an applied voltage at the time of injecting electric charges, it is preferable to apply a high voltage as long as it is not higher than the dielectric breakdown voltage of the resin film (A).
  • the applied voltage to the resin film (A) is 6 to 30 kV for positive charges, preferably 8 to 15 kV, and is ⁇ 6 to ⁇ 30 kV for negative charges, preferably ⁇ 8 to ⁇ 15 kV. Since the fluoropolymer (a) or the derivative (a ′) can hold a negative charge more stably than a positive charge, the applied voltage is preferably a negative charge. In this case, the surface potential of the electret film 75 is negative.
  • the resin film (A) is directly formed on the second electrode 72 of the vibrating body 51a having the second electrode 72 formed on the surface and the charge is injected has been shown, but the manufacture of the electret film 75 is shown.
  • the method is not limited to this.
  • the resin film (A) is formed on an arbitrary substrate and peeled off from the substrate, the resin film (A) is disposed on the vibrating body 51a having the second electrode 72 formed on the surface, and an electric charge is injected to form the electret film 75. Good.
  • the electret film 75 is peeled from the substrate, and the second electrode 72 is formed on the surface thereof. It may be arranged on the vibrating body 51a.
  • the substrate can be used without any particular choice.
  • the substrate may be grounded when the charge is injected into the obtained laminate. A substrate that can be connected to is used.
  • Preferred materials include, for example, conductivity such as gold, silver, copper, nickel, chromium, aluminum, titanium, tungsten, molybdenum, tin, cobalt, palladium, platinum, and an alloy containing at least one of these as a main component. These metals are mentioned.
  • the material is a substrate other than a conductive metal, for example, an inorganic material such as glass, or an insulating material such as an organic material such as polyethylene terephthalate, polyimide, polycarbonate, or acrylic resin (insulating substrate), Metal film by sputtering, vapor deposition, wet coating, etc.
  • metal oxides such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), zinc oxide, titanium dioxide, tin oxide; polyaniline, polypyrrole, PEDOT / PSS (conductive composite containing poly (3,4-ethylenedioxythiophene) and poly (4-styrenesulfonate)), an organic conductive material composed of carbon nanotubes, or the like can be used.
  • a semiconductor material such as silicon can be used as a substrate if the same surface treatment is performed or the semiconductor material itself has a low resistance value.
  • the resistance value of the substrate material is preferably 0.1 ⁇ cm or less, particularly preferably 0.01 ⁇ cm or less, in terms of volume resistivity. With such a low resistance substrate material, it is possible to produce an electret by injecting a charge as it is into the laminate formed on the substrate.
  • the rectifier circuit 90 of the power generation device 5 includes a bridge type rectifier circuit 93 and a smoothing circuit 94.
  • the bridge type rectifier circuit 93 includes, for example, four diodes.
  • a first electrode 71 and a second electrode 72 that is a current collector of the electret film 75 are connected via connection wirings 91 and 92, respectively.
  • connection wirings 91 and 92 are connected to various electric devices 95 via a smoothing circuit 94 having a smoothing capacitor.
  • the electrostatic induction power generation device 5 generates power by taking out a change in electric charge as electric energy. That is, the power generation device 5 provided with the rectifier circuit 90 functions as a DC power source.
  • the storage unit 20A since the variable power of the variable unit 61A is stored, the storage unit 20A is stored. Therefore, even the variable power due to irregular external fluctuations such as environmental vibrations is temporarily stored in the storage unit 20A. it can.
  • the vibration energy generation unit 40A that generates vibration energy whose amplitude and frequency are adjusted by the power stored in the storage unit 20A is provided, the power temporarily stored in the storage unit 20A is converted into the amplitude. And frequency can be generated as adjusted vibration energy.
  • the electric power generation part 70 can convert vibration energy into electric power efficiently, the electric power generating apparatus 5 excellent in electric power generation efficiency can be provided.
  • the vibration energy generation unit 40A has the pendulum 45A that adjusts the rotation speed of the rotation unit 41A by contacting the rotation unit 41A that rotates by the power accumulated in the accumulation unit 20A, and thus the rotation speed of the rotation unit 41A. Can be accurately adjusted, and the pendulum 45A can vibrate accurately with a predetermined period. Therefore, since the vibration energy generation unit 40A can generate vibration energy in which the amplitude and frequency are accurately adjusted, the power generation apparatus 5 that is extremely excellent in power generation efficiency can be provided.
  • the power generation device 5 can be provided for a wristwatch that can be moved by carrying it. Therefore, for example, the fluctuation power of the fluctuation part 61A can be accumulated in the accumulation part 20A by using vibration (environmental vibration) during walking of the user as external vibration.
  • vibration environmental vibration
  • the power generation device 5 can generate power by taking out the change in charge as electric power.
  • FIG. 5 is an internal structure diagram of the movement 10 of the quartz wristwatch 1 (corresponding to “timepiece movement” in the claims).
  • FIG. 5 schematically shows the power generation device 5.
  • the quartz wristwatch 1 includes a power generation device 5, a crystal resonator 2, a circuit board 3, a coil 6, a stator 7, a rotor 8, and a gear 9 according to the above-described embodiment. It has.
  • the circuit board 3 includes an oscillation circuit, a frequency divider circuit, and a drive circuit.
  • the power generation device 5 When a person wearing the quartz wristwatch 1 walks, walking vibration is input to the power generation device 5 as external fluctuation (environmental vibration), and the power generation device 5 generates power.
  • the crystal resonator 2 When a voltage is applied from the power generation device 5 to the crystal resonator 2, the crystal resonator 2 outputs an electrical signal having a predetermined frequency due to the piezoelectric effect.
  • this electric signal is input to the circuit board 3, the oscillation circuit oscillates stably at a predetermined frequency.
  • the frequency dividing circuit counts the output signal of the oscillation circuit and outputs a pulse signal every predetermined time.
  • the drive circuit alternately inverts the drive current of the coil 6 using the pulse signal as a trigger.
  • the drive current causes the coil 6 to generate a magnetic field, and a magnetic field is applied to the rotor 8 from both ends of the stator 7 to rotate the rotor 8 having a permanent magnet.
  • the rotation of the rotor 8 rotates the gear 9 to drive the quartz wristwatch 1.
  • a watch movement 10 and a quartz wristwatch 1 provided with the power generation device 5 can be supplied.
  • the timepiece is the quartz wristwatch 1, it is possible to efficiently generate power by utilizing vibration (environmental vibration) during walking of the user as an external variation.
  • the timepiece in which the power generation device 5 is incorporated is the so-called quartz wristwatch 1, but the application of the power generation device 5 is not limited to the quartz wristwatch 1.
  • the power generator 5 may exist independently.
  • the patterning of the first electrode 71, the second electrode 72, and the electret film 75 is not limited to the shape of the embodiment, and when the vibrating bodies 51 a and 51 b move relative to the housing 12. If the overlapping area increases or decreases, it may be patterned into other shapes.
  • the first electrode 71 is provided on the casing 12, and the second electrode 72 and the electret film 75 are provided on the vibrating bodies 51a and 51b.
  • the housing 12 may be provided with the first electrode 71 and the electret film 75, and the vibrating bodies 51 a and 51 b may be provided with the second electrode 72.
  • the bridge type rectifier circuit 93 is employed as the rectifier circuit 90 of the power generation device 5, but the bridge type rectifier circuit 93 is not limited thereto.
  • FIG. 6 is a longitudinal sectional view of a power generation unit 70 according to another embodiment.
  • the electret film 75 is provided only on the second electrode 72, but it may be provided on at least one of the first electrode 71 and the second electrode 72. Therefore, for example, as in another embodiment shown in FIG. 6, electret films 75 may be provided on both the first electrode 71 and the second electrode 72.
  • the housing 12 for example, the first electrodes 71 a provided with the electret film 75 and the first electrodes 71 b not provided with the electret film 75 are alternately arranged.
  • a second electrode 72a having an electret film 75 and a second electrode 72b having no electret film 75 are alternately arranged so as to oppose the first electrodes 71a and 71b. Are lined up.
  • the power generation device 5 can generate power similarly to the above-described embodiment even when the electret film 75 is provided on both the first electrode 71 and the second electrode 72.
  • the power generator of the present invention can be widely used in movements for watches, in particular, quartz watches. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-175911 filed on August 27, 2013 is cited here as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electromechanical Clocks (AREA)

Abstract

 発電効率に優れた発電装置、発電装置を備えた時計用ムーブメントおよび時計を提供する。 外部変動により位置変動する変動部61Aと、変動部61Aの変動動力が蓄積される蓄積部20Aと、蓄積部20Aに蓄積された動力により、振幅と周波数とが調整された振動エネルギーを発生する振動エネルギー発生部40Aと、振動エネルギー発生部40Aで発生した振動エネルギーを電力に変換する発電部70と、を有する発電装置5である。発電装置5は、時計に設けられており、変動部61Aは回転錘61であり、蓄積部20Aは香箱車20であり、振動エネルギー発生部40Aは脱進調速機40である。発電部70は、第1電極71と第2電極とエレクトレット膜とを備えている。

Description

発電装置、時計用ムーブメントおよび時計
 本発明は、発電装置、発電装置を備えた時計用ムーブメントおよび時計に関する。
 エレクトレット材料による静電誘導を利用した発電装置が提案されている。
 特許文献1には、複数のエレクトレット電極を表面に有する不動基板と、複数の可動電極を表面に有する可動基板と、が離れて配置された発電装置が提案されている。
 可動電極および可動基板は、不動基板上に設けられた固定構造体にバネ駆動体のような弾性部材を介して連結されている。可動基板は、発電装置に対して外部振動が加わったときに移動するように構成されている。発電装置を励振する外部振動としては、発電効率の向上を考慮すると、環境振動を利用することが望ましいとされる。
 可動基板は、外部振動の入力により移動する。これにより、エレクトレット電極と可動電極との重なり面積は、初期面積から増加または減少する。この重なり面積の変化によって、可動電極(集電電極)に電荷の変化が生じる。発電装置は、この電荷の変化により生じる交流電流をたとえば半波整流回路等の変換回路を介して直流電流に変換し、電気エネルギーとして取り出すことにより発電する。なお、一般に、変換回路により交流電流を直流電流へ変換する場合の変換効率は、交流電流の周波数および周期が一定であるほうが、交流電流の周波数および周期が不規則である場合よりも良いことが知られている。
特許第4229970号公報
 しかし、従来技術にあっては、環境振動は周波数および振幅が一定ではないため、集電電極の電荷の変化により生じる交流電流の周波数および振幅も不規則となる。したがって、交流電流から直流電流に変換する際の変換効率の向上、すなわち、発電装置の発電効率の向上には限界がある。
 そこで、本発明は、上述の事情に鑑みてなされたものであり、発電効率に優れた発電装置、該発電装置を備えた時計用ムーブメントおよび時計を提供する。
 本発明の要旨は、下記の[1]~[11]からなるものである。
[1]外部変動により位置変動する変動部と、
 前記変動部の変動動力が蓄積される蓄積部と、
 前記蓄積部に蓄積された動力により、振幅と周波数とが調整された振動エネルギーを発生する振動エネルギー発生部と、
 前記振動エネルギー発生部で発生した前記振動エネルギーを電力に変換する発電部と、
 を有することを特徴とする発電装置。
[2]前記振動エネルギー発生部は、前記蓄積部に蓄積された動力により回転する回転部に接触することで、前記回転部の回転速度を調整する振り子を有する、前記[1]の発電装置。
[3]前記変動部は、筐体に対して位置変動可能に固定され、前記振動エネルギー発生部は、前記筐体に支持されている、前記[1]または[2]の発電装置。
[4]前記発電部は、
  第1電極と、
  前記第1電極に対向して配置される第2電極と、
  前記第1電極および前記第2電極の少なくとも一方に備えられる電荷保持部と、
 を備える、前記[1]~[3]のいずれかの発電装置。
[5]前記電荷保持部が、含フッ素重合体を用いた樹脂膜に電荷を注入したものである、前記[4]の発電装置。
[6]前記含フッ素重合体が、1.8~8の比誘電率、1010Ωcm~1020Ωcmの体積固有抵抗、及び10~25kV/mmの絶縁破壊強度を有する前記[5]の発電装置
[7]前記含フッ素重合体が、主鎖に脂肪族環を有する含フッ素重合体(a)または該含フッ素重合体(a)の誘導体(a’)を用いたものである、前記[5]または[6]の発電装置。
[8]前記含フッ素重合体(a)が、環状含フッ素単量体に基づく繰り返し単位を有する重合体(I)、またはジエン系含フッ素単量体の環化重合により形成される繰り返し単位を有する重合体(II)である前記[7]の発電装置。
[9]前記含フッ素重合体(a)の誘導体(a’)が、前記含フッ素重合体(a)と含フッ素重合体(a)以外の下記の他の成分との混合物、または前記含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分との反応生成物である前記[7]または[8]の発電装置。
  他の成分:シランカップリング剤または極性官能基を2個以上有する分子量が50~2000の多価極性化合物。
[10]前記[1]~[9]のいずれかの発電装置を備えた時計用ムーブメント。
[11]前記[10]の時計用ムーブメントを備えた時計。
 前記[1]の発電装置によれば、変動部の変動動力が蓄積される蓄積部を有するので、環境振動等の不規則な外部変動による変動動力であっても、蓄積部に一時的に蓄積できる。また、蓄積部に蓄積された動力により、振幅と周波数とが調整された振動エネルギーを発生する振動エネルギー発生部を備えているので、蓄積部に一時的に蓄積された動力を、振幅と周波数とが調整された振動エネルギーとして発生できる。これにより、発電部は、振動エネルギーを効率よく電力に変換できるので、発電効率に優れた発電装置を提供できる。
 前記[2]の発電装置によれば、振動エネルギー発生部は、蓄積部に蓄積された動力により回転する回転部に接触することで、回転部の回転速度を調整する振り子を有するので、回転部の回転速度を精度よく調整するとともに、振り子が所定の周期で精度よく振動できる。したがって、振動エネルギー発生部は、振幅と周波数とを精度よく調整した振動エネルギーを発生できるので、発電効率に極めて優れた発電装置を提供できる。
 前記[3]の発電装置によれば、たとえば持ち運び等により移動可能な筐体に対して発電装置を設けることができる。したがって、環境振動を利用して、変動部の変動動力を蓄積部に蓄積することができる。
 前記[4]の発電装置によれば、第1電極および第2電極の少なくとも一方に電荷保持部を備えるので、電荷保持部と第1電極および第2電極の少なくとも他方との間の重なり面積の増減により、少なくとも前記他方の電極の電荷が増減する。したがって、発電装置は、電荷の変化を電力として取り出すことにより、発電を行うことができる。
 前記[5]~前記[9]の発電装置によれば、より多くの電荷を保持可能な電荷保持部とすることができる。
 前記[10]の時計用ムーブメントおよび前記[11]の時計によれば、発電可能な時計用ムーブメントおよび時計を供給できる。とりわけ、時計が腕時計である場合には、ユーザーの歩行時の振動(環境振動)を外部振動として利用して、効率的に発電することができる。
発電装置5のブロック図である。 本発明の1つの実施形態に係る発電装置5の概略構成図である。 振動エネルギー発生部40Aの拡大図である。 図3のA-A線に沿った断面図と、発電装置の整流回路の回路図とを模式的に図示した説明図である。 クオーツ式腕時計のムーブメントの構造図である。 本発明の他の実施形態にかかる発電装置の発電部の説明図である。
 以下に、本発明の実施形態について、図面を用いて説明する。
 図1に示すように、発電装置5は、変動部61Aと、蓄積部20Aと、振動エネルギー発生部40Aと、発電部70(70A,70B)とにより構成されている。以下に、発電装置5の各構成部品の詳細について説明する。
 図2に示すように、変動部61Aは、たとえば環境振動等の外部変動により筐体12に対して位置変動する回転錘61を備えている。回転錘61は、平面が視略扇形状に形成されており、発電装置5の中心軸周りに回転可能に設けられている。
 回転錘61の回転中心には、ラチェット63が設けられている。ラチェット63は、回転錘61の一方向の回転のみを蓄積部20Aに伝達するものである。
 蓄積部20Aは香箱車20を備えている。香箱車20は、筐体12に対して回転可能に支持されており、内部にぜんまい21を有している。ぜんまい21は、外部変動により回転錘61が回転することで巻き上げられるように構成されている。
 香箱車20には、変動部61Aからの変動動力が蓄積される。具体的には、変動部61Aである回転錘61が回転することにより、ラチェット63を介して香箱車20の内部のぜんまい21が巻き上げられ、回転錘61の変動動力がぜんまい21に動力として蓄積される。
 図3に示すように、振動エネルギー発生部40Aは、がんぎ車41と、アンクル45と、ひげぜんまい55とを備えた脱進調速機40により構成されている。
 がんぎ車41の外周には、歯42が形成されている。
 アンクル45は、筐体12とアンクル受43との間で、アンクル真44周りに回転可能に支持されている。アンクル45は、一対のアンクルビーム46a,46bにより、がんぎ車41側に開いたV字形状に形成されている。
 一対のアンクルビーム46a,46bの先端には、それぞれつめ石47a,47bが設けられている。アンクル45のつめ石47a,47bは、それぞれがんぎ車41の歯42に係合することにより、がんぎ車41の回転を一時的に停止させることができる。
 アンクル45は、一対の振動体51a,51bを備えている。一対の振動体51a,51bは、それぞれアンクル真44を中心として所定の曲率を有する弧状に形成された板部材である。一対の振動体51a,51bは、それぞれアンクル真44を挟んでアンクル真44の径方向の両側に配置されている。一対の振動体51a,51bは、それぞれアーム52a,52bを介してアンクルビーム46a,46bに連結されている。これにより、一対の振動体51a,51bは、アンクルビーム46a,46bとともに、アンクル真44周りに一定周期で往復回動(すなわち振動)するように構成される。
 ひげぜんまい55は、たとえば鉄やニッケル等の金属材料からなり、複数の巻き数をもった渦巻状の薄板ばね部材である。ひげぜんまい55は、内周側の一方端部がアンクル45のアンクル真44近傍に固定され、外周側の他方端部がたとえばアンクル受43から延設されたひげ持ち受57のひげ持ち58に固定されている。ひげぜんまい55は、拡縮することにより発生するばね力により、アンクル45および一対の振動体51a,51bを所定周期で振動させている。
 振動エネルギー発生部40Aは、蓄積部20Aに蓄積された動力により、振幅と周波数とが調整された振動エネルギーを発生している。
 具体的には、蓄積部20Aである香箱車20のぜんまい21が巻き上げられて、動力がぜんまい21の復元力として蓄積される。香箱車20は、ぜんまい21に蓄積された動力により回転し、伝達歯車24を介して、振動エネルギー発生部40Aである脱進調速機40のがんぎ車41に動力が伝達される。すなわち、がんぎ車41は、蓄積部20Aに蓄積された動力により回転する回転部41Aとなっている。
 がんぎ車41の回転速度は、アンクル45によって調整される。具体的には、アンクル45の一方のつめ石47aおよび他方のつめ石47bが、それぞれ交互にがんぎ車41の歯42に対して係合および解除することにより、がんぎ車41を一定速度で脱進させている。すなわち、アンクル45は、回転部41Aの回転速度を調整する振り子45Aとして機能する。
 アンクル45は、ひげぜんまい55の拡縮によるエネルギーと、がんぎ車41につめ石47a,47bが接触する際に付与される衝突エネルギーとにより、アンクル真44周りに一定の振幅および周波数でアンクル真44周りに往復回動する。これにより、振動エネルギー発生部40Aは、アンクル45の振動体51a,51bから、振幅と周波数とが調整された振動エネルギーを発生することができる。
 発電部70は、振動エネルギー発生部40Aで発生した振動エネルギーを電力に変換しており、アンクル45の振動体51a,51bと筐体12とに形成されている。なお、アンクル45の一方の振動体51aと筐体12とに形成された発電部70Aと、他方の振動体51bと筐体12とに形成された発電部70Bとは、それぞれ同一の構造となっている。したがって、以下では、アンクル45の一方の振動体51aと筐体12とに形成された発電部70Aについてのみ説明をし、アンクル45の他方の振動体51bと筐体12とに形成された発電部70Bについては、説明を省略する。
 図4は、図3のA-A線に沿った断面図と、発電装置5の整流回路90の回路図とを模式的に示した説明図である。
 図4に示すように、発電部70Aは、第1電極71と、第2電極72と、エレクトレット膜75(請求項の「電荷保持部」に相当する)とを備えている。
 図3に示すように、第1電極71は、たとえば銅や金、銀、アルミニウム、鉄等の導電性を有する金属材料からなり、筐体12の表面に、たとえばスパッタリング技術等により成膜されている。第1電極71は、アンクル真44を中心とした径方向に沿う帯状であって、かつアンクル真44を中心とした周方向に所定のピッチを開けた状態で並んで複数パターニングされている。
 複数の第1電極71が形成されている範囲は、振動体51aが振動した時の可動範囲よりも十分に広くなっている。また、複数の第1電極71の長さは、弧状に形成された振動体51aの径方向に沿う幅よりも十分長くなっている。これにより、振動体51aの振動時において、平面視で第1電極71と振動体51aとが常に重なるようになっている。
 図4に示すように、複数の第1電極71は、それぞれ接続配線91を介して電気的に接続され、後述の整流回路90に電気的に接続される。
 第2電極72は、第1電極71と同様に、たとえば銅や金、銀、アルミニウム、鉄等の導電性を有する金属材料からなり、振動体51aの筐体12側の面に、たとえばスパッタリング技術等により成膜されている。第2電極72は、振動体51aの径方向に沿う帯状であって、かつ振動体51aの周方向に所定のピッチを開けた状態で並んで複数パターニングされている。複数の第2電極72は、それぞれ接続配線92を介して電気的に接続され、後述の整流回路90に電気的に接続される。第2電極72は、後述のエレクトレット膜75の電荷を集電する集電材として機能する。
 第2電極72は、表面にエレクトレット膜75を備えている。エレクトレット膜75は、第2電極72の表面に成膜されることにより、第2電極72のパターニングに対応して、振動体51aの径方向に沿う帯状であって、かつ振動体51aの周方向に所定のピッチを開けた状態で並んで複数パターニングされる。
 エレクトレット膜75(電荷保持部)を構成する電荷保持媒体には、従来からエレクトレットに用いられている絶縁材料が使用できる。絶縁材料は、有機絶縁材料であっても無機絶縁材料であってもよい。
 有機絶縁材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ペルフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)等の含フッ素重合体(フッ素樹脂);ポリプロピレン、ポリスチレン、シクロオレフィンコポリマー等の炭化水素系重合体;ポリカーボネート;これらの重合体に由来する材料等が挙げられる。
 重合体に由来する材料としては、重合体と該重合体以外の他の成分との混合物、重合体と該重合体以外の他の成分との反応生成物、等が挙げられる。
 無機絶縁材料としては、熱酸化またはプラズマCVDにより形成されるシリコン酸化膜、シリコン窒化膜等が挙げられる。
 電荷保持部としては、高い絶縁性を有し、吸水性が低いことから、含フッ素重合体を用いた樹脂膜が好ましい。また、表面電位値や電荷保持の安定性(常温安定性、加熱時の安定性の両方)等に優れることから、主鎖に脂肪族環構造を有する重合体または該重合体に由来する材料を用いた樹脂膜が好ましい。電荷保持部としては、主鎖に脂肪族環を有する含フッ素重合体(a)または該含フッ素重合体(a)の誘導体(a’)を用いた樹脂膜(以下、樹脂膜(A)ということがある。)が特に好ましい。また樹脂膜(A)は、ウェットコート(溶液を用いた塗布法)により形成でき、精密加工性に優れ、回転運動に用いる部品への適用性に優れる。
 樹脂膜(A)は、含フッ素重合体(a)または誘導体(a’)を用いることにより、高い電荷保持性能を有し、樹脂膜(A)に電荷を注入してなるエレクトレットは高い表面電荷密度を有する。
(樹脂膜(A))
 樹脂膜(A)は、主鎖に脂肪族環を有する含フッ素重合体(a)または該含フッ素重合体(a)の誘導体(a’)を用いて形成されている、つまりこれらを主として含有する。
 誘導体(a’)としては、詳しくは後述するが、含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分との混合物、含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分との反応生成物、等が挙げられる。樹脂膜(A)が前記反応生成物を含む場合、該樹脂膜(A)中には、前記反応生成物の形成に用いた含フッ素重合体(a)または他の成分の一部が未反応のまま残留していてもよい。
<含フッ素重合体(a)>
 含フッ素重合体(a)は、主鎖に脂肪族環を有する含フッ素重合体である。
 含フッ素重合体(a)において、フッ素原子は、主鎖を構成する炭素原子に結合していてもよく、側鎖に結合していてもよい。低吸水率・低誘電率で絶縁破壊電圧が高く、体積抵抗率の高いエレクトレット化に適していることから、フッ素原子が、主鎖を構成する炭素原子に結合していることが好ましい。
 「主鎖に脂肪族環を有する」とは、脂肪族環の環骨格を構成する炭素原子のうち、少なくとも1つが、含フッ素重合体(a)の主鎖を構成する炭素原子であることを意味する。
 たとえば含フッ素重合体(a)が、重合性二重結合を有する単量体の重合により得られたものである場合、重合に用いられた単量体が有する重合性二重結合に由来する炭素原子のうちの少なくとも1つが、前記主鎖を構成する炭素原子となる。たとえば含フッ素重合体(a)が、後述するような環状単量体を重合させて得た含フッ素重合体の場合は、該環状単量体が有する重合性二重結合を構成する2個の炭素原子が主鎖を構成する炭素原子となる。また、2個の重合性二重結合を有する単量体を環化重合させて得た含フッ素重合体の場合は、2個の重合性二重結合を構成する4個の炭素原子のうちの少なくとも2個が主鎖を構成する炭素原子となる。
 「脂肪族環」とは、芳香族性を有さない環を示す。脂肪族環は、飽和であってもよく、不飽和であってもよい。脂肪族環は、環骨格が、炭素原子のみから構成される炭素環構造のものであってもよく、環骨格に、炭素原子以外の原子(ヘテロ原子)を含む複素環構造のものであってもよい。該ヘテロ原子としては酸素原子、窒素原子等が挙げられる。
 脂肪族環の環骨格を構成する原子の数は、4~7個が好ましく、5または6個が特に好ましい。すなわち、脂肪族環は4~7員環が好ましく、5または6員環が特に好ましい。
 脂肪族環は置換基を有していてもよく、有さなくてもよい。「置換基を有していてもよい」とは、該脂肪族環の環骨格を構成する原子に置換基(水素原子以外の原子または基)が結合してもよいことを意味する。
 脂肪族環は、非含フッ素脂肪族環であってもよく、含フッ素脂肪族環であってもよい。
 非含フッ素脂肪族環は、構造中にフッ素原子を含まない脂肪族環である。非含フッ素脂肪族環として、具体的には、飽和または不飽和の脂肪族炭化水素環、該脂肪族炭化水素環における炭素原子の一部が酸素原子、窒素原子等のヘテロ原子で置換された脂肪族複素環等が挙げられる。
 含フッ素脂肪族環は、構造中にフッ素原子を含む脂肪族環である。含フッ素脂肪族環としては、脂肪族環の環骨格を構成する炭素原子に、フッ素原子を含む置換基(以下、含フッ素基という。)が結合した脂肪族環が挙げられる。含フッ素基としては、フッ素原子、ペルフルオロアルキル基、ペルフルオロアルコキシ基、=CF等が挙げられる。
 該含フッ素脂肪族環または非含フッ素脂肪族環は、含フッ素基以外の置換基を有していてもよい。
 脂肪族環としては、電荷保持性能に優れる点から、含フッ素脂肪族環が好ましい。
 好ましい含フッ素重合体(a)として、下記含フッ素環状重合体(I)、含フッ素環状重合体(II)が挙げられる。
 含フッ素環状重合体(I):環状含フッ素単量体に基づく単位を有する重合体。
 含フッ素環状重合体(II):ジエン系含フッ素単量体の環化重合により形成される単位を有する重合体。
 「環状重合体」とは環状構造を有する重合体を意味する。
 「単位」は、重合体を構成する繰り返し単位を意味する。
 以下、式(1)で表される化合物を「化合物(1)」とも記す。他の式で表される単位、化合物等についても同様に記し、たとえば式(3-1)で表される単位を「単位(3-1)」とも記す。
 含フッ素環状重合体(I)は、環状含フッ素単量体に基づく単位を有する。
 「環状含フッ素単量体」とは、含フッ素脂肪族環を構成する炭素原子間に重合性二重結合を有する単量体、または、含フッ素脂肪族環を構成する炭素原子と含フッ素脂肪族環外の炭素原子との間に重合性二重結合を有する単量体である。
 環状含フッ素単量体としては、下記の化合物(1)または化合物(2)が好ましい。
Figure JPOXMLDOC01-appb-C000001
[式中、X、X、X、X、YおよびYは、それぞれ独立に、フッ素原子、エーテル性酸素原子(-O-)を含んでいてもよいペルフルオロアルキル基、またはエーテル性酸素原子を含んでいてもよいペルフルオロアルコキシ基である。XおよびXは相互に結合して環を形成してもよい。]
 X、X、X、X、YおよびYにおけるペルフルオロアルキル基は、炭素数が1~7であることが好ましく、炭素数が1~4であることが特に好ましい。該ペルフルオロアルキル基は、直鎖状または分岐鎖状であり、直鎖状が好ましい。具体的には、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等が挙げられ、特にトリフルオロメチル基が好ましい。
 X、X、X、X、YおよびYにおけるペルフルオロアルコキシ基としては、前記ペルフルオロアルキル基に酸素原子(-O-)が結合したものが挙げられ、トリフルオロメトキシ基が特に好ましい。
 式(1)中、Xは、フッ素原子であることが好ましい。
 Xは、フッ素原子、トリフルオロメチル基、または炭素数1~4のペルフルオロアルコキシ基であることが好ましく、フッ素原子またはトリフルオロメトキシ基であることが特に好ましい。
 XおよびXは、それぞれ独立に、フッ素原子または炭素数1~4のペルフルオロアルキル基であることが好ましく、フッ素原子またはトリフルオロメチル基であることが特に好ましい。
 XおよびXは相互に結合して環を形成してもよい。前記環の環骨格を構成する原子の数は、4~7個が好ましく、5~6個が特に好ましい。
 化合物(1)の好ましい具体例として、化合物(1-1)~(1-5)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、YおよびYは、それぞれ独立に、フッ素原子、炭素数1~4のペルフルオロアルキル基または炭素数1~4のペルフルオロアルコキシ基が好ましく、フッ素原子またはトリフルオロメチル基が特に好ましい。
 化合物(2)の好ましい具体例として、化合物(2-1)または(2-2)が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 含フッ素環状重合体(I)は、上記環状含フッ素単量体により形成される単位のみから構成されてもよく、該単位と、それ以外の他の単位とを有する共重合体であってもよい。
 ただし、該含フッ素環状重合体(I)中、環状含フッ素単量体に基づく単位の割合は、該含フッ素環状重合体(I)を構成する全繰り返し単位の合計に対し、20モル%以上が好ましく、40モル%以上がより好ましく、100モル%であってもよい。
 該他の単量体としては、上記環状含フッ素単量体と共重合可能なものであればよく、特に限定されない。具体的には、ジエン系含フッ素単量体、側鎖に反応性官能基を有する単量体、テトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)等が挙げられる。ジエン系含フッ素単量体としては、後述する含フッ素環状重合体(II)の説明で挙げるものと同様のものが挙げられる。側鎖に反応性官能基を有する単量体としては、重合性二重結合および反応性官能基を有する単量体が挙げられる。重合性二重結合としては、CF=CF-、CF=CH-、CH=CF-、CFH=CF-、CFH=CH-、CF=C-、CF=CF-等が挙げられる。反応性官能基としては、後述する含フッ素環状重合体(II)の説明で挙げるものと同様のものが挙げられる。
 なお、ここでは、環状含フッ素単量体とジエン系含フッ素単量体との共重合により得られる重合体は含フッ素環状重合体(I)とみなす。
 含フッ素環状重合体(II)は、ジエン系含フッ素単量体の環化重合により形成される単位を有する。
 「ジエン系含フッ素単量体」とは、2個の重合性二重結合およびフッ素原子を有する単量体である。該重合性二重結合としては、特に限定されないが、ビニル基、アリル基、アクリロイル基またはメタクリロイル基が好ましい。
 ジエン系含フッ素単量体としては、下記化合物(3)が好ましい。
   CF=CF-Q-CF=CF ・・・(3)。
 式(3)中、Qは、エーテル性酸素原子を含んでいてもよく、フッ素原子の一部がフッ素原子以外のハロゲン原子で置換されていてもよい炭素数1~5、好ましくは1~3の、分岐を有してもよいペルフルオロアルキレン基である。該フッ素以外のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 Qは、エーテル性酸素原子を含むペルフルオロアルキレン基であることが好ましい。その場合、該ペルフルオロアルキレン基におけるエーテル性酸素原子は、該基の一方の末端に存在していてもよく、該基の両末端に存在していてもよく、該基の炭素原子間に存在していてもよい。環化重合性の点から、該基の一方の末端に存在していることが好ましい。
 化合物(3)の具体例としては、下記化合物が挙げられる。
 CF=CFOCFCF=CF
 CF=CFOCF(CF)CF=CF
 CF=CFOCFCFCF=CF
 CF=CFOCFCF(CF)CF=CF
 CF=CFOCF(CF)CFCF=CF
 CF=CFOCFClCFCF=CF
 CF=CFOCClCFCF=CF
 CF=CFOCFOCF=CF
 CF=CFOC(CFOCF=CF
 CF=CFOCFCF(OCF)CF=CF
 CF=CFCFCF=CF
 CF=CFCFCFCF=CF
 CF=CFCFOCFCF=CF
 化合物(3)の環化重合により形成される単位として、下記単位(3-1)~(3-4)等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 含フッ素重合体(a)は、反応性官能基を有することが好ましい。
 「反応性官能基」とは、加熱等を行った際に、当該含フッ素重合体(a)の分子間、または含フッ素重合体(a)とともに配合されている他の成分と反応して結合を形成し得る反応性を有する基を意味する。
 たとえば、該他の成分として、後述するシランカップリング剤または極性官能基を2個以上有する分子量50~2,000の化合物(ただしシランカップリング剤は除く。以下、多価極性化合物という。)を混合し、それらを反応させて反応生成物とする場合は、含フッ素重合体(a)が、シランカップリング剤が有する官能基または多価極性化合物が有する極性官能基と反応し得る反応性官能基を有することが好ましい。
 含フッ素重合体(a)が有する反応性官能基としては、重合体中への導入のしやすさ、シランカップリング剤または多価極性化合物との相互作用の強さ等を考慮すると、カルボキシ基、酸ハライド基、アルコキシカルボニル基、カルボニルオキシ基、カーボネート基、スルホ基、ホスホノ基、ヒドロキシ基、チオール基、シラノール基およびアルコキシシリル基からなる群から選ばれる少なくとも1種が好ましく、カルボキシ基またはアルコキシカルボニル基が特に好ましい。
 反応性官能基は、含フッ素重合体(a)の主鎖の末端に結合していてもよく、側鎖に結合していてもよい。製造しやすい点からは、主鎖の末端に結合していることが好ましい。すなわち、含フッ素重合体(a)として最も好ましい様態は、主鎖の末端にカルボキシ基またはアルコキシカルボニル基を有することである。
 含フッ素重合体(a)の比誘電率は1.8~8が好ましく、1.8~5がより好ましく、1.8~3がさらに好ましく、1.8~2.7が特に好ましく、1.8~2.3が最も好ましい。該比誘電率が上記範囲の下限値以上であると、エレクトレットとして蓄え得る電荷量が高く、上限値以下であると、電気絶縁性、およびエレクトレットとしての電荷保持安定性に優れる。該比誘電率は、ASTM D150に準拠し、周波数1MHzにおいて測定される。
 また、樹脂膜(A)は、エレクトレットとしての電荷保持を担う部分であることから、含フッ素重合体(a)としては、体積固有抵抗が高く、絶縁破壊強度が大きいものが好ましい。
 含フッ素重合体(a)の体積固有抵抗は、1010~1020Ωcmが好ましく、1016~1019Ωcmが特に好ましい。該体積固有抵抗は、ASTM D257により測定される。
 含フッ素重合体(a)の絶縁破壊強度は、10~25kV/mmが好ましく、15~22kV/mmが特に好ましい。該絶縁破壊強度は、ASTM D149により測定される。
 含フッ素重合体(a)の屈折率は、基板との屈折率差を小さくし、複屈折等による光の干渉を抑え、透明性を確保する点から、1.2~2が好ましく、1.2~1.5が特に好ましい。
 含フッ素重合体(a)の重量平均分子量(Mw)は、5万以上が好ましく、15万以上がより好ましく、20万以上がさらに好ましく、25万以上が特に好ましい。Mwが5万以上であると、製膜しやすい。特に20万以上であると、膜の耐熱性が向上し、エレクトレットとした際、保持した電荷の熱安定性が向上する。一方、重量平均分子量(Mw)が大きすぎると、溶媒に溶けにくくなり、製膜プロセスが制限される等の問題が生じるおそれがある。したがって、含フッ素重合体(a)の重量平均分子量(Mw)は、100万以下が好ましく、85万以下がより好ましく、65万以下がさらに好ましく、55万以下が特に好ましい。
 本明細書において、含フッ素重合体(a)の重量平均分子量(Mw)は、日本化学会誌、2001,NO.12,P.661に記載される、Mwと固有粘度[η](30℃)との関係式([η]=1.7×10-4×Mw0.60)を用いて算出される値である。
 固有粘度[η](30℃)(単位:dl/g)は、30℃で、ペルフルオロ(2-ブチルテトラヒドロフラン)を溶媒として、ウベローデ型粘度計により測定される値である。
 含フッ素重合体(a)は、前述した単量体を重合させることにより製造したものを用いてもよく、市販品を用いてもよい。
 主鎖にエーテル性酸素原子を含む含フッ素脂肪族環を有し、主鎖の末端にカルボキシ基またはアルコキシカルボニル基を有する含フッ素重合体の市販品としては、CYTOP(登録商標、旭硝子社製)が挙げられる。
 また化合物(1-1)とテトラフルオロエチレンとの共重合体(含フッ素重合体)の市販品としては、Teflon-AF(登録商標、DuPont社製)が挙げられる。
<誘導体(a’)>
 誘導体(a’)としては、上述したように、含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分との混合物、含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分との反応生成物、等が挙げられる。
 前記混合物とは、反応生成物と異なり、含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分とが、反応せずに混合した状態をいう。
 前記反応生成物としては、たとえば含フッ素重合体(a)および前記他の成分を溶媒に溶解したコーティング液を加熱(溶媒を揮発させて成膜する際のベーク等)した際に、各成分が反応して生成するものが挙げられる。なお、含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分とを反応させた際に、反応できずに残存する含フッ素重合体(a)および含フッ素重合体(a)以外の他の成分は、混合物ということになる。
 含フッ素重合体(a)と混合または反応させる他の成分としては、シランカップリング剤または多価極性化合物が好ましく、シランカップリング剤が特に好ましい。これにより、形成される樹脂膜(A)の電荷保持性能(保持した電荷の熱安定性、経時安定性等)が向上する。電荷保持性能の向上効果は、特に、含フッ素重合体(a)が主鎖の末端にカルボキシ基またはアルコキシカルボニル基を有する場合に顕著である。
 電荷保持性能の向上効果は、含フッ素重合体(a)とシランカップリング剤または多価極性化合物とがナノ相分離を引き起こし、シランカップリング剤または多価極性化合物由来のナノクラスタ構造が形成され、当該ナノクラスタ構造が、エレクトレットにおける電荷を蓄える部位として機能するためであると推察される。
 誘導体(a’)中、シランカップリング剤または多価極性化合物は、分子同士が反応した状態で存在していてもよい。
 シランカップリング剤としては、特に限定されず、従来公知または周知のものを含めて広範囲にわたって利用できる。
 シランカップリング剤としては、アミノ基を有するシランカップリング剤が好ましい。
 入手の容易性等を考慮すると、特に好ましいシランカップリング剤は、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、およびN-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、から選択される1種以上である。
 シランカップリング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 シランカップリング剤の配合量は、含フッ素重合体(a)とシランカップリング剤との合計量に対して、0.1~20質量%が好ましく、0.3~10質量%がより好ましく、0.5~5質量%が特に好ましい。上記範囲であると、含フッ素重合体(a)とともに溶媒に溶解してコーティング液とした際に、簡便に均一な溶液とすることができる。
 多価極性化合物は、極性官能基を2個以上有する分子量が50~2,000の化合物(ただし前記シランカップリング剤は除く。)が好ましく、分子量が100~2,000の化合物(ただし前記シランカップリング剤は除く。)が特に好ましい。多価極性化合物の分子量が上記範囲の下限値以上であると、分子量が高いために揮発しにくく、製膜後に膜中に残存させることが容易になる。また、上記範囲の上限値以下であると、含フッ素重合体(a)との相溶性が良好になる。
 「極性官能基」とは、下記の(1a)および(1b)の何れか一方または両方の特性を有する官能基である。
 (1a)電気陰性度の異なる2種類以上の原子を含み、当該官能基中に分極による極性を有する。
 (1b)当該官能基と結合した炭素との電気陰性度の差により分極を生じさせる。
 上記特性(1a)のみを有する極性官能基の具体例としては、ヒドロキシフェニル基等が挙げられる。
 上記特性(1b)のみを有する極性官能基の具体例としては、1級アミノ基(-NH)、2級アミノ基(-NH-)、ヒドロキシル基、チオール基等が挙げられる。
 上記特性(1a)および(1b)の両方を有する極性官能基の具体例としては、スルホ基、ホスホノ基、カルボキシル基、アルコキシカルボニル基、酸ハライド基、ホルミル基、イソシアナート基、シアノ基、カルボニルオキシ基(-C(O)-O-)カーボネート基(-O-C(O)-O-)等が挙げられる。
 多価極性化合物としては、ペンタン-1,5-ジアミン、ヘキサン-1,6-ジアミン、シクロヘキサン-1,2-ジアミン、シクロヘキサン-1,3-ジアミン、シクロヘキサン-1,4-ジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、トリアミノメチルアミン、トリス(2-アミノエチル)アミン、トリス(3-アミノプロピル)アミン、シクロヘキサン-1,3,5-トリアミン、シクロヘキサン-1,2,4-トリアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、2,4,6-トリアミノトルエン、1,3,5-トリス(2-アミノエチル)ベンゼン、1,2,4-トリス(2-アミノエチル)ベンゼン、2,4,6-トリス(2-アミノエチル)トルエン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミンおよびポリエチレンイミンからなる群から選ばれる少なくとも1種が好ましく、トリス(2-アミノエチル)アミン、トリス(3-アミノプロピル)アミン、シクロヘキサン-1,3-ジアミン、ヘキサン-1,6-ジアミン、ジエチレントリアミンおよびポリエチレンイミンからなる群から選ばれる少なくとも1種が特に好ましい。
 多価極性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。たとえば、極性官能基を2個有する化合物と、極性官能基を3個以上有する化合物とを混合して用いてもよい。
 多価極性化合物の配合量は、含フッ素重合体(a)の配合量の0.01~30質量%が好ましく、0.05~10質量%が特に好ましい。該配合量が上記範囲の下限値以上であると、多価極性化合物を配合することによる効果が充分に得られる。該配合量が上記範囲の上限値以下であると、含フッ素重合体(a)との混和性が良好であり、コーティング液中での分布が均一となる。
 樹脂膜(A)は、主鎖にエーテル性酸素原子を含む含フッ素脂肪族環を有し、主鎖の末端にカルボキシ基またはアルコキシカルボニル基を有する含フッ素重合体と、アミノ基を有するシランカップリング剤との混合物、または、主鎖にエーテル性酸素原子を含む含フッ素脂肪族環を有し、主鎖の末端にカルボキシ基またはアルコキシカルボニル基を有する含フッ素重合体と、アミノ基を有するシランカップリング剤との反応生成物で形成されていることが、特に好ましい。
(樹脂膜(A)の形成方法)
 樹脂膜(A)の形成方法としては特に限定されず、公知の方法を利用できる。たとえば、第2電極72が形成された振動体51aの、第2電極72側の表面上にコーティング膜を形成し、該コーティング膜を、第2電極72に対応するパターンにパターニングする方法が挙げられる。
 コーティング膜の形成方法としては、たとえば、含フッ素重合体(a)を溶媒に溶解してなるコーティング液、または含フッ素重合体(a)と該含フッ素重合体(a)以外の他の成分とを溶媒に溶解してなるコーティング液を用いてコーティング膜を製膜する方法が挙げられる。前記他の成分としては、上述したとおり、シランカップリング剤または多価極性化合物が好ましく、シランカップリング剤が特に好ましい。
 溶媒としては、少なくとも含フッ素重合体(a)を溶解する溶媒が用いられ、他の成分を含む場合、前記含フッ素重合体(a)を溶解する溶媒が、該他の成分を溶解するものであれば、該溶媒単独で均一な溶液とすることができる。また、該他の成分を溶解する他の溶媒を併用してもよい。
 溶媒として具体的には、プロトン性溶媒、非プロトン性溶媒等が挙げられ、それらの中から当該コーティング液に配合される成分を溶解するものを適宜選択すればよい。
 「プロトン性溶媒」とは、プロトン供与性を有する溶媒である。「非プロトン性溶媒」とは、プロトン供与性を有さない溶媒である。
 プロトン性溶媒としては、以下に示すプロトン性非含フッ素溶媒、プロトン性含フッ素溶媒等が挙げられる。
 メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、tert-ブチルアルコール、ペンタノール、ヘキサノール、1-オクタノール、2-オクタノール、エチレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール、乳酸メチル等のプロトン性非含フッ素溶媒。
 2-(ペルフルオロオクチル)エタノール等の含フッ素アルコール、含フッ素カルボン酸、含フッ素カルボン酸のアミド、含フッ素スルホン酸等のプロトン性含フッ素溶媒。
 非プロトン性溶媒としては、以下に示す非プロトン性非含フッ素溶媒、非プロトン性含フッ素溶媒等が挙げられる。
 ヘキサン、シクロヘキサン、ヘプタン、オクタン、デカン、ドデカン、デカリン、アセトン、シクロヘキサノン、2-ブタノン、ジメトキシエタン、モノメチルエーテル、酢酸エチル、酢酸ブチル、ジグライム、トリグライム、プロピレングリコールモノメチルエーテルモノアセテート(PGMEA)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチルピロリドン、テトラヒドロフラン、アニソール、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼン、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン、メチルナフタレン等の非プロトン性非含フッ素溶媒。
 1,4-ビス(トリフルオロメチル)ベンゼン等のポリフルオロ芳香族化合物、ペルフルオロトリブチルアミン等のポリフルオロトリアルキルアミン化合物、ペルフルオロデカリン等のポリフルオロシクロアルカン化合物、ペルフルオロ(2-ブチルテトラヒドロフラン)等のポリフルオロ環状エーテル化合物、ペルフルオロポリエーテル、ポリフルオロアルカン化合物、ハイドロフルオロエーテル(HFE)等の非プロトン性含フッ素溶媒。
 これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。またこれらの他にも広範な化合物が使用できる。
 これらのうち、含フッ素重合体(a)の溶解の用いる溶媒としては、含フッ素重合体(a)の溶解度が大きく、良溶媒であることから、非プロトン性含フッ素溶媒が好ましい。
 シランカップリング剤または多価極性化合物を溶解する溶媒としては、プロトン性含フッ素溶媒が好ましい。
 該溶媒の沸点は、コーティングの際に均一な膜を形成しやすいことから、65~220℃が好ましく、100~220℃が特に好ましい。
 コーティング液の調製に用いる溶媒は、水分含量が少ないことが好ましい。該水分含量は、100質量ppm以下が好ましく、20質量ppm以下が特に好ましい。
 コーティング液における含フッ素重合体(a)の濃度は、0.1~30質量%が好ましく、0.5~20質量%が特に好ましい。
 コーティング液の固形分濃度は、形成しようとする膜厚に応じて適宜設定すればよい。通常、0.1~30質量%であり、0.5~20質量%が好ましい。
 なお、固形分は、質量を測定したコーティング液を常圧下200℃で1時間加熱することで、溶媒を留去し、残存する固形分の質量を測定して算出する。
 コーティング液は、各成分を含む組成物を予め調製し、これを溶媒に溶解して得てもよく、各成分をそれぞれ溶媒に溶解し、各溶液を混合して得てもよい。
 各成分を含む組成物を予め調製する場合の該組成物の製造方法としては、固体と固体、または固体と液体を混練、共融押し出し法等により混合してもよく、それぞれを可溶な溶媒に溶解した各溶液を混合してもよい。これらの中でも、各溶液を混合することが特に好ましい。
 含フッ素重合体(a)とシランカップリング剤とを併用する場合、コーティング液は、含フッ素重合体(a)を非プロトン性含フッ素溶媒に溶解した重合体溶液と、シランカップリング剤をプロトン性含フッ素溶媒に溶解したシランカップリング剤溶液とを各々調製し、該重合体溶液とシランカップリング剤溶液とを混合することによって得ることが好ましい。
 コーティング膜の製膜は、たとえば、コーティング液を基板の表面にコーティングし、ベーク等により乾燥させることにより実施できる。
 コーティング方法としては、溶液から膜を形成させる従来公知の方法が使用でき、特に限定されない。かかる方法の具体例としては、スピンコート法、ロールコート法、キャスト法、ディッピング法、水上キャスト法、ラングミュア・ブロジェット法、ダイコート法、インクジェット法、スプレーコート法等が挙げられる。また、凸版印刷法、グラビア印刷法、平板印刷法、スクリーン印刷法、フレキソ印刷法等の印刷技術も用いることができる。
 乾燥は、常温での風乾により行ってもよいが、加熱してベークすることにより行うことが好ましい。ベーク温度は、溶媒の沸点以上であることが好ましく、特に230℃以上の高温で行うことが、添加したシランカップリング剤や多価極性化合物と含フッ素重合体(a)との反応を充分に完結させる点で特に好ましい。
 上記した含フッ素重合体(a)または誘導体(a’)を用いて樹脂膜(A)を形成する場合、該樹脂膜(A)を形成する基板の表面は、基板との接合性を確保するため、クロム、アルミニウム、銅等で形成されていることが好ましい。仮に、該樹脂膜(A)を形成する基板の表面が金、白金、純ニッケルで形成されている場合、該樹脂膜(A)は基板に接合しづらい。このため、該樹脂膜(A)を振動板23上に形成する場合、振動板23の表面は、電極膜の形成材料として前述した材料のうち、金、白金、純ニッケルを除く導電性材料で形成されていることが好ましい。したがって、仮に、振動板23の主要形成材として金、白金、純ニッケルを採用する場合には、金、白金、純ニッケルの表面にクロムやアルミニウム等の膜を形成することが好ましい。
 コーティング膜のパターニング方法としては、特に限定されず、公知のパターニング技術を利用できる。
 具体例としては、前記コーティング膜上に、所定のパターンのマスクを形成し、エッチングする方法が挙げられる。
 該マスクは、たとえば第2電極72と同様の方法により形成できる。ただしマスクを構成する材料は、コーティング膜に対し、ある程度のエッチング選択比を有するものであればよく、導電性材料でなくてもよい。たとえば該マスクとして、第2電極72に対応するパターンにパターニングされたレジスト膜を用いてもよい。レジスト膜のパターニングは、公知のリソグラフィ法により実施できる。
 エレクトレット膜75の形成の具体例としては、例えば、図4の実施形態においては、第2電極72を形成する材料の上にCYTOP(旭硝子社登録商標)とγ-アミノプロピルメチルジメトキシシランを含むペルフルオロ(2-ブチルテトラヒドロフラン)の溶液を塗布し、加熱して樹脂膜(A)を得て、リソグラフィ法で第2電極を樹脂膜(A)と共に加工して形成し、電荷を注入することでエレクトレット膜75を形成できる。
(電荷の注入)
 樹脂膜(A)に電荷を注入することで、該樹脂膜(A)をエレクトレット膜75とすることができる。
 樹脂膜(A)への電荷の注入方法としては、一般的に絶縁体を帯電させる方法であれば特に限定されない。たとえば、G.M.Sessler, Electrets Third Edition,pp20,Chapter2.2 “Charging and Polarizing Methods”(Laplacian Press, 1998)に記載のコロナ放電法、電子ビーム衝突法、イオンビーム衝突法、放射線照射法、光照射法、接触帯電法、液体接触帯電法等が適用可能である。本発明においては、特にコロナ放電法、または電子ビーム衝突法を用いることが好ましい。
 電荷を注入する際の温度条件としては、樹脂膜(A)に含まれる含フッ素重合体(a)または誘導体(a’)のガラス転移温度(Tg)以上で行うことが、注入後に保持される電荷の安定性の点から好ましく、該Tg+10℃~該Tg+20℃程度の温度条件で行うことが特に好ましい。
 電荷を注入する際の印加電圧としては、樹脂膜(A)の絶縁破壊電圧以下であれば、高圧を印加することが好ましい。本発明において、樹脂膜(A)への印加電圧は、正電荷では6~30kV、好ましくは8~15kVであり、負電荷では-6~-30kV、好ましくは-8~-15kVである。
 含フッ素重合体(a)または誘導体(a’)は、正電荷より負電荷をより安定に保持できることから、印加電圧は負電荷であることが好ましい。この場合、エレクトレット膜75の表面電位はマイナスとなる。
 なお、ここでは、表面に第2電極72が形成された振動体51aの第2電極72上に直接樹脂膜(A)を形成し、電荷を注入する例を示したが、エレクトレット膜75の製造方法はこれに限定されない。たとえば、任意の基板上に樹脂膜(A)を形成し、基板から剥離した後、表面に第2電極72が形成された振動体51a上に配置し、電荷を注入してエレクトレット膜75としてもよい。また、任意の基板上に樹脂膜(A)を形成し、電荷を注入してエレクトレット膜75とした後、該エレクトレット膜75を基板から剥離し、これを、表面に第2電極72が形成された振動体51a上に配置してもよい。
 振動体51aとは別の基板に樹脂膜(A)を形成する場合であって該基板上で電荷の注入を行わない場合、該基板としては、特に材質を選ばずに用いることができる。
 振動体51aとは別の基板に樹脂膜(A)を形成する場合であって該基板上で電荷の注入を行う場合、該基板としては、得られた積層体に電荷を注入する際にアースに接続できるような基板が用いられる。好ましい材質としては、たとえば、金、銀、銅、ニッケル、クロム、アルミニウム、チタン、タングステン、モリブデン、錫、コバルト、パラジウム、白金、これらのうちの少なくとも1種を主成分とする合金等の導電性の金属が挙げられる。また、材質が導電性の金属以外のもの、たとえばガラス等の無機材料、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、アクリル樹脂等の有機材料等の絶縁性の材料の基板(絶縁性基板)であっても、その表面にスパッタリング、蒸着、ウエットコーティング等の方法で金属膜、またはITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、酸化亜鉛、二酸化チタン、酸化スズ等の金属酸化物;ポリアニリン、ポリピロール、PEDOT/PSS(poly(3,4-ethylenedioxythiophene)及びpoly(4-styrenesulfonate)を含む導電性複合体)、カーボンナノチューブ等からなる有機導電材料等をコーティングしたものであれば用いることができる。またシリコン等の半導体材料も同様の表面処理を行ったものであるか、または半導体材料そのものの抵抗値が低いものであれば、基板として用いることができる。基板材料の抵抗値としては、体積固有抵抗値で0.1Ωcm以下であることが好ましく、特に0.01Ωcm以下であることが特に好ましい。このような低抵抗値の基板材料であれば、当該基板上に形成された積層体にそのまま電荷を注入してエレクトレットとすることができる。
 発電装置5の整流回路90は、ブリッジ式整流回路93と、平滑回路94とを備えている。
 ブリッジ式整流回路93は、たとえば4個のダイオードを備え、その入力側には、第1電極71と、エレクトレット膜75の集電材である第2電極72とが、それぞれ接続配線91,92を介して接続されている。ブリッジ式整流回路93の出力側は、平滑コンデンサを備えた平滑回路94を介して、様々な電気機器95に接続される。
 エレクトレット膜75の表面には、正または負の電荷が保持されているので、対向配置された第1電極71の内面には、静電誘導によりエレクトレット膜75の表面と反対の電荷(エレクトレット膜75の表面が正の場合には、負。エレクトレット膜75の表面が負の場合には、正。)が引き寄せられる。筐体12に対して振動体51aがアンクル45(図3参照)の回動に連動して振動すると、平面視でエレクトレット膜75と第1電極71との重なり面積(以下、単に「重なり面積」という。)が増減するとともに、第1電極71の正電荷が増減する。静電誘導型の発電装置5では、電荷の変化を電気エネルギーとして取り出すことにより発電を行う。すなわち、整流回路90を備えた発電装置5は直流電源として機能する。
 本実施形態によれば、変動部61Aの変動動力が蓄積される蓄積部20Aを有するので、たとえば環境振動等の不規則な外部変動による変動動力であっても、蓄積部20Aに一時的に蓄積できる。また、蓄積部20Aに蓄積された動力により、振幅と周波数とが調整された振動エネルギーを発生する振動エネルギー発生部40Aを備えているので、蓄積部20Aに一時的に蓄積された動力を、振幅と周波数とが調整された振動エネルギーとして発生できる。これにより、発電部70は、振動エネルギーを効率よく電力に変換できるので、発電効率に優れた発電装置5を提供できる。
 また、振動エネルギー発生部40Aは、蓄積部20Aに蓄積された動力により回転する回転部41Aに接触することで、回転部41Aの回転速度を調整する振り子45Aを有するので、回転部41Aの回転速度を精度よく調整するとともに、振り子45Aが所定の周期で精度よく振動できる。したがって、振動エネルギー発生部40Aは、振幅と周波数とを精度よく調整した振動エネルギーを発生できるので、発電効率に極めて優れた発電装置5を提供できる。
 また、たとえば持ち運び等により移動可能な腕時計等に対して発電装置5を設けることができる。したがって、たとえばユーザーの歩行時の振動(環境振動)を外部振動として利用して、変動部61Aの変動動力を蓄積部20Aに蓄積することができる。
 また、第2電極72にエレクトレット膜75を備えるので、エレクトレット膜75と第1電極71との間の重なり面積の増減により、第1電極71の電荷が増減する。したがって、発電装置5は、電荷の変化を電力として取り出すことにより、発電を行うことができる。
(クオーツ式腕時計)
 本発明に係る発電装置を備えた携帯型電気機器の一例として、クオーツ式腕時計1(請求項の「時計」に相当。)について説明する。
 図5は、クオーツ式腕時計1のムーブメント10(請求項の「時計用ムーブメント」に相当。)の内部構造図である。なお、図5は、発電装置5を模式的に示している。
 図5に示すように、クオーツ式腕時計1は、上述した実施形態に係る発電装置5と、水晶振動子2と、回路基板3と、コイル6と、ステータ7と、ロータ8と、歯車9とを備えている。そのうち回路基板3は、発振回路と、分周回路と、駆動回路とを備えている。
 クオーツ式腕時計1を装着した人が歩行すると、歩行振動が外部変動(環境振動)として発電装置5に入力されて、発電装置5が発電する。発電装置5から水晶振動子2に電圧が印加されると、圧電効果により水晶振動子2は所定周波数の電気信号を出力する。この電気信号が回路基板3に入力されると、発振回路は所定周波数で安定して発振する。分周回路は、発振回路の出力信号をカウントして所定時間ごとにパルス信号を出力する。駆動回路は、パルス信号をトリガーとしてコイル6の駆動電流を交互に反転させる。この駆動電流によりコイル6は磁界を発生させ、ステータ7の両端からロータ8に磁界を印加して、永久磁石を備えたロータ8を回転させる。このロータ8の回転により歯車9が回転して、クオーツ式腕時計1が駆動される。
 また、本実施形態によれば、発電装置5を備えた時計用のムーブメント10およびクオーツ式腕時計1を供給できる。とりわけ、時計がクオーツ式腕時計1であるので、ユーザーの歩行時の振動(環境振動)を外部変動として利用して、効率的に発電することができる。
 なお、本発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 実施形態では、発電装置5が組み込まれた時計は、いわゆるクオーツ式腕時計1であったが、発電装置5の適用は、クオーツ式腕時計1に限定されない。
 また、実施形態では、時計1に発電装置5を設けた場合について説明したが、発電装置5が単独で存在してもよい。
 また、第1電極71、第2電極72およびエレクトレット膜75のパターニングは、実施形態の形状に限定されることはなく、筐体12に対して振動体51a,51bが相対的に移動したときに、重なり面積が増減するのであれば、他の形状にパターニングされていてもよい。
 実施形態(図3及び4参照)では、筐体12に第1電極71が設けられ、振動体51a,51bに第2電極72およびエレクトレット膜75が設けられていた。他の実施形態としては、筐体12に第1電極71およびエレクトレット膜75が設けられ、振動体51a,51bに第2電極72が設けられていてもよい。
 また、実施形態では、発電装置5の整流回路90としてブリッジ式整流回路93を採用しているが、ブリッジ式整流回路93に限定はされない。
 図6は、他の実施形態にかかる発電部70の縦断面図である。
 この実施形態では、エレクトレット膜75は、第2電極72にのみ備えられていたが、第1電極71および第2電極72の少なくとも一方に備えられていればよい。したがって、たとえば、図6に示す他の実施形態のように、第1電極71および第2電極72の両電極にエレクトレット膜75が備えられていてもよい。
 筐体12には、たとえば、エレクトレット膜75を備えた第1電極71aと、エレクトレット膜75を備えていない第1電極71bとが交互に並んでいる。また、振動体51aには、第1電極71a,71bに対抗するように、たとえば、エレクトレット膜75を備えた第2電極72aと、エレクトレット膜75を備えていない第2電極72bとが、交互に並んでいる。これにより、筐体12と振動体51aとが相対的に移動したとき、第1電極71側のエレクトレット膜75と第2電極72、および第2電極72側のエレクトレット膜75と第1電極71との重なり面積が増減できる。したがって、発電装置5は、第1電極71および第2電極72の両電極にエレクトレット膜75を備えている場合であっても上述の実施形態と同様に発電することができる。
 その他、本発明を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
 本発明の発電装置は、時計用、特に、クオーツ式腕時計用のムーブメントなどにおいて広く使用可能である。
 なお、2013年8月27日に出願された日本特許出願2013-175911号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1・・・時計 10・・・ムーブメント(時計用ムーブメント) 12・・・筐体 20・・・香箱車(蓄積部) 20A・・・蓄積部 40・・・脱進調速機(振動エネルギー発生部) 40A・・・振動エネルギー発生部 41・・・がんぎ車(回転部) 41A・・・回転部 45・・・アンクル(振り子) 45A・・・振り子 61・・・回転錘(変動部) 61A・・・変動部 70,70A,70B・・・発電部 71・・・第1電極 72・・・第2電極 75・・・エレクトレット膜(電荷保持部)

Claims (11)

  1.  外部変動により位置変動する変動部と、
     前記変動部の変動動力が蓄積される蓄積部と、
     前記蓄積部に蓄積された動力により、振幅と周波数とが調整された振動エネルギーを発生する振動エネルギー発生部と、
     前記振動エネルギー発生部で発生した前記振動エネルギーを電力に変換する発電部と、
     を有することを特徴とする発電装置。
  2.  前記振動エネルギー発生部は、前記蓄積部に蓄積された動力により回転する回転部に接触することで、前記回転部の回転速度を調整する振り子を有する、請求項1に記載の発電装置。
  3.  前記変動部は、筐体に対して位置変動可能に固定され、前記振動エネルギー発生部は、前記筐体に支持されている、請求項1または2に記載の発電装置。
  4.  前記発電部は、
      第1電極と、
      前記第1電極に対向して配置される第2電極と、
      前記第1電極および前記第2電極の少なくとも一方に備えられる電荷保持部と、
     を備える、請求項1~3のいずれか一項に記載の発電装置。
  5.  前記電荷保持部が、含フッ素重合体を用いた樹脂膜に電荷を注入したものである、請求項4に記載の発電装置。
  6.  前記含フッ素重合体が、1.8~8の比誘電率、1010Ωcm~1020Ωcmの体積固有抵抗、及び10~25kV/mmの絶縁破壊強度を有する請求項5に記載の発電装置
  7.  前記含フッ素重合体が、主鎖に脂肪族環を有する含フッ素重合体(a)または該含フッ素重合体(a)の誘導体(a’)を用いたものである、請求項5または6に記載の発電装置。
  8.  前記含フッ素重合体(a)が、環状含フッ素単量体に基づく繰り返し単位を有する重合体(I)、またはジエン系含フッ素単量体の環化重合により形成される繰り返し単位を有する重合体(II)である請求項7に記載の発電装置。
  9.  前記含フッ素重合体(a)の誘導体(a’)が、前記含フッ素重合体(a)と含フッ素重合体(a)以外の下記の他の成分との混合物、または前記含フッ素重合体(a)と含フッ素重合体(a)以外の他の成分との反応生成物である請求項7または8に記載の発電装置。
      他の成分:シランカップリング剤または極性官能基を2個以上有する分子量が50~2000の多価極性化合物。
  10.  請求項1~9のいずれか一項に記載の発電装置を備えた時計用ムーブメント。
  11.  請求項10に記載の時計用ムーブメントを備えた時計。
PCT/JP2014/070383 2013-08-27 2014-08-01 発電装置、時計用ムーブメントおよび時計 WO2015029697A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014003980.2T DE112014003980T5 (de) 2013-08-27 2014-08-01 Elektrische Generatorvorrichtung, Uhrwerk und Uhr
JP2015534108A JPWO2015029697A1 (ja) 2013-08-27 2014-08-01 発電装置、時計用ムーブメントおよび時計
US15/049,430 US9665069B2 (en) 2013-08-27 2016-02-22 Electric generator device, timepiece movement, and timepiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-175911 2013-08-27
JP2013175911 2013-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/049,430 Continuation US9665069B2 (en) 2013-08-27 2016-02-22 Electric generator device, timepiece movement, and timepiece

Publications (1)

Publication Number Publication Date
WO2015029697A1 true WO2015029697A1 (ja) 2015-03-05

Family

ID=52586271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070383 WO2015029697A1 (ja) 2013-08-27 2014-08-01 発電装置、時計用ムーブメントおよび時計

Country Status (4)

Country Link
US (1) US9665069B2 (ja)
JP (1) JPWO2015029697A1 (ja)
DE (1) DE112014003980T5 (ja)
WO (1) WO2015029697A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027748A1 (ja) * 2014-08-22 2016-02-25 シチズンホールディングス株式会社 静電誘導型発電器付き電子時計
JP2017069999A (ja) * 2015-09-28 2017-04-06 シチズン時計株式会社 静電誘導型発電器
JP2020129960A (ja) * 2015-09-28 2020-08-27 シチズン時計株式会社 静電誘導型発電器
JP2021056159A (ja) * 2019-10-01 2021-04-08 シチズン時計株式会社 時計用調速装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203430718U (zh) * 2013-07-30 2014-02-12 比亚迪股份有限公司 发电装置
CN106134065B (zh) * 2014-03-31 2018-10-09 西铁城时计株式会社 电子设备
CN110119079B (zh) * 2018-02-06 2022-03-04 精工爱普生株式会社 机芯以及钟表
US11650548B2 (en) * 2019-03-13 2023-05-16 Citizen Watch Co., Ltd. Timepiece
US11855505B2 (en) * 2020-08-29 2023-12-26 David Deak, SR. Inline actuated horizontal pendulum energy harvesting generator and battery-free wireless remote switching system
US20230024676A1 (en) 2021-07-22 2023-01-26 Gonzalo Fuentes Iriarte Systems and methods for electric vehicle energy recovery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206630A (ja) * 2011-03-30 2012-10-25 Asahi Glass Co Ltd 移動体
JP2013059149A (ja) * 2011-09-07 2013-03-28 Seiko Instruments Inc 発電装置、携帯型電気機器および携帯型時計
JP2013135544A (ja) * 2011-12-27 2013-07-08 Citizen Holdings Co Ltd 発電装置およびそれを備えた発電機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1691872A4 (ja) * 1972-11-21 1977-05-31
US4287428A (en) * 1979-07-27 1981-09-01 James Smith Automatic spring powered battery charging device
US4799003A (en) * 1987-05-28 1989-01-17 Tu Xuan M Mechanical-to-electrical energy converter
EP0851322B1 (de) * 1996-12-23 2000-05-17 Ronda Ag Mikrogenerator, Modul und Uhrwerk, enthaltend einen solchen Mikrogenerator
JP3624665B2 (ja) * 1997-02-07 2005-03-02 セイコーエプソン株式会社 発電装置、充電方法および計時装置
WO2000063749A1 (de) * 1999-04-21 2000-10-26 Conseils Et Manufactures Vlg Sa Uhrwerk mit einem mikrogenerator und testverfahren für uhrwerke
JP3674466B2 (ja) * 1999-11-24 2005-07-20 セイコーエプソン株式会社 電圧検出装置、電池残量検出装置、電圧検出方法、電池残量検出方法、電子時計および電子機器
JP2001258227A (ja) * 2000-01-06 2001-09-21 Seiko Epson Corp 発電装置、それを有する計時装置および電子機器、発電装置のコギングトルク調整方法
JP2002311162A (ja) * 2001-04-10 2002-10-23 Seiko Epson Corp 電子制御式機械時計
JP3596548B2 (ja) * 2002-03-27 2004-12-02 セイコーエプソン株式会社 電子時計および電子機器
US7205677B2 (en) * 2005-05-19 2007-04-17 Incelex, Llc Automated motion provider for self powered cell phones
US7485992B2 (en) * 2005-07-28 2009-02-03 Incelex, Llc Armature type electrical generators for self powered cell phones
JP4229970B2 (ja) 2006-07-28 2009-02-25 三洋電機株式会社 発電装置、発電装置を搭載した電気機器、及び発電装置を搭載した通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206630A (ja) * 2011-03-30 2012-10-25 Asahi Glass Co Ltd 移動体
JP2013059149A (ja) * 2011-09-07 2013-03-28 Seiko Instruments Inc 発電装置、携帯型電気機器および携帯型時計
JP2013135544A (ja) * 2011-12-27 2013-07-08 Citizen Holdings Co Ltd 発電装置およびそれを備えた発電機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027748A1 (ja) * 2014-08-22 2016-02-25 シチズンホールディングス株式会社 静電誘導型発電器付き電子時計
JPWO2016027748A1 (ja) * 2014-08-22 2017-06-01 シチズン時計株式会社 静電誘導型発電器付き電子時計
US10222761B2 (en) 2014-08-22 2019-03-05 Citizen Watch Co., Ltd. Electronic timepiece with electrostatic induction generator
JP2017069999A (ja) * 2015-09-28 2017-04-06 シチズン時計株式会社 静電誘導型発電器
JP2020129960A (ja) * 2015-09-28 2020-08-27 シチズン時計株式会社 静電誘導型発電器
JP2021056159A (ja) * 2019-10-01 2021-04-08 シチズン時計株式会社 時計用調速装置
JP7222863B2 (ja) 2019-10-01 2023-02-15 シチズン時計株式会社 時計用調速装置

Also Published As

Publication number Publication date
DE112014003980T5 (de) 2016-06-02
US9665069B2 (en) 2017-05-30
US20160170377A1 (en) 2016-06-16
JPWO2015029697A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015029697A1 (ja) 発電装置、時計用ムーブメントおよび時計
WO2014069483A1 (ja) 振動型発電装置、電源モジュール
Ren et al. Energy harvesting from breeze wind (0.7–6 m s− 1) using ultra‐stretchable triboelectric nanogenerator
Maharjan et al. A fully functional universal self‐chargeable power module for portable/wearable electronics and self‐powered IoT applications
JP5804502B2 (ja) 発電装置、携帯型電気機器および携帯型時計
JP6241970B2 (ja) 振動発電素子
JP2012138514A (ja) 携帯装置
Yi et al. Stretchable‐rubber‐based triboelectric nanogenerator and its application as self‐powered body motion sensors
JP4670050B2 (ja) エレクトレット及び静電誘導型変換素子
US8053948B2 (en) Electrostatic induction conversion device
CN101946295B (zh) 驻极体及静电感应型转换元件
Song et al. A shape memory high‐voltage supercapacitor with asymmetric organic electrolytes for driving an integrated NO2 gas sensor
CN108667339B (zh) 一种原位聚合表面修饰的纤维基摩擦纳米发电机及其制备
TW201028021A (en) Electret and electrostatic induction conversion device
JP2009271095A (ja) 可変焦点レンズ、オートフォーカス装置、および撮像装置
Li et al. An SSHI rectifier for triboelectric energy harvesting
JP2014090916A (ja) 音響センサ、およびこれを備える音響モニタ装置
JPWO2013015385A1 (ja) エレクトレットおよびその製造方法、ならびに静電誘導型変換素子
JP2012206630A (ja) 移動体
JP5948624B2 (ja) 導電性高分子複合体、及び、その製造方法
Nie A sliding hybrid triboelectric-electromagnetic nanogenerator with staggered electrodes for human motion posture
JP2011050212A (ja) 静電誘導型発電素子およびその製造方法
JP2008259381A (ja) アクチュエータ体および絞り機構
JP2012139066A (ja) 架空ケーブルモニタリングシステム
WO2015133471A1 (ja) 化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534108

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014003980

Country of ref document: DE

Ref document number: 1120140039802

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840769

Country of ref document: EP

Kind code of ref document: A1