WO2015029553A1 - ステアリングラックバー用圧延丸鋼材およびステアリングラックバー - Google Patents

ステアリングラックバー用圧延丸鋼材およびステアリングラックバー Download PDF

Info

Publication number
WO2015029553A1
WO2015029553A1 PCT/JP2014/066200 JP2014066200W WO2015029553A1 WO 2015029553 A1 WO2015029553 A1 WO 2015029553A1 JP 2014066200 W JP2014066200 W JP 2014066200W WO 2015029553 A1 WO2015029553 A1 WO 2015029553A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
round steel
rack bar
steel material
steering rack
Prior art date
Application number
PCT/JP2014/066200
Other languages
English (en)
French (fr)
Inventor
江頭 誠
禎悟 堀上
真志 東田
貴洋 岡田
根石 豊
長谷川 達也
松本 斉
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020167007392A priority Critical patent/KR101773729B1/ko
Priority to EP14839024.8A priority patent/EP3040435B9/en
Priority to CN201480047675.XA priority patent/CN105492644B/zh
Priority to JP2015534047A priority patent/JP5987992B2/ja
Priority to PL14839024T priority patent/PL3040435T3/pl
Priority to US14/911,804 priority patent/US9976206B2/en
Publication of WO2015029553A1 publication Critical patent/WO2015029553A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a rolled round steel material for a steering rack bar and a steering rack bar.
  • a steering rack bar (hereinafter also simply referred to as “rack bar”) used in a steering device is an important part that shows a skeletal role that steers the traveling direction of an automobile and connects the left and right wheels. Yes, if this is damaged, the steering wheel operation becomes impossible. For this reason, high reliability is requested
  • rack bars have been subjected to tempering treatment for quenching and tempering of rolled round steel materials of medium carbon steel, and then, after being drawn, if necessary, drilling and gear cutting by cutting are performed.
  • the mold part has been manufactured by induction hardening and tempering. Note that the rolled round steel material means that the shape of the cross section is processed into a circle by rolling, and the gear cutting means that a tooth mold part is formed.
  • the rack bar subjected to induction hardening is required to prevent cracks generated in the induction hardening layer from propagating through the base material and causing breakage even when an excessive load is applied.
  • the rack bar is deep hole processed in the length direction of the central portion in the radial direction.
  • the round steel material used as the material for the rack bar is required to have good machinability and excellent base material impact characteristics (base material toughness) that resist the progress of cracks.
  • the present inventors have proposed, for example, the following steel materials as steel materials used for such a steering rack bar.
  • the chemical composition has a fn1 value of 1.20 or less, and the microstructure is composed of ferrite, lamellar pearlite, and spherical cementite.
  • the crystal grain size is 10 ⁇ m or less, and the lamellar spacing of lamellar perlite is 200 n
  • Area percentage of the microstructure of the following lamellar pearlite is the number of 20-50% and spheroidal cementite 4 ⁇ 10 5 cells / mm 2 or more, the steel material is disclosed for induction hardening.
  • this rolled steel material for induction hardening may further contain one or more selected from Cu, Ni, Mo, Ti, Nb and V.
  • the Ceq value represented by (1) or less satisfies the total content of Si, Mn and Cr of 1.2 to 3.5%.
  • the microstructure is composed of ferrite, lamellar pearlite and spherical cementite, and the average crystal grain size of the ferrite is
  • a rolling steel material for induction hardening is disclosed that is 10 ⁇ m or less, the area ratio of the lamellar pearlite in the microstructure is 20% or less (including 0%), and the number of spherical cementite is 6 ⁇ 10 5 pieces / mm 2 or more. .
  • this rolled steel material for induction hardening may further contain one or more selected from Cu, Ni, Mo, Ti, Nb and V.
  • An object of the present invention is to provide a rolled round steel material that can be suitably used as a raw material for a rack bar to be induction-hardened, and a rack bar using the same.
  • An object of the present invention is to provide a rolled round steel material excellent in base material toughness and machinability and a rack bar using the same without particularly adding an expensive element or tempering treatment. To do. It is another object of the present invention to provide a rolled round steel material that can easily process a deep hole in the length direction of the central portion in the radial direction, and a rack bar that can retain a generated crack.
  • the high base metal toughness targeted by the present invention is a V notch having a notch angle of 45 °, a notch depth of 2 mm and a notch bottom radius of 0.25 mm as defined in JIS Z 2242 (2005) in the state of rolled steel.
  • the present inventors have obtained a high base metal toughness without performing a tempering treatment in medium carbon steel, and means for ensuring good machinability at the center.
  • Various laboratory studies were conducted.
  • the ferrite is fine and stretched in a direction parallel to the rolling direction, and the cementite in the lamellar pearlite is made spherical cementite so that the lamellar pearlite is less than a specific ratio, and the spherical cementite is more than a specific amount. If included, resistance to cracks that progress in a cross section perpendicular to the rolling direction is increased, so that the base material toughness can be increased.
  • (C) S combines with Mn to form MnS, and extends in the longitudinal direction of the steel material (direction parallel to the rolling direction) to improve toughness. Moreover, if a specific amount of S is contained, the chip resistance is improved and the cutting resistance is lowered, so that the machinability is improved.
  • a portion requiring base metal toughness for preventing breakage is a region from the surface of the round steel material to a position of a half radius. Therefore, in the case of a rolled round steel material whose microstructure is composed of ferrite, lamellar pearlite, and cementite, the microstructure in the above-mentioned region is fine and finely stretched in a direction parallel to the rolling direction, lamellar pearlite limited to a specific ratio or less. And if it consists of more than a specific amount of spherical cementite, the base material toughness for preventing breakage can be obtained.
  • the inventors of the present invention based on the knowledge (A) to (E) above, specifically, in order to further improve the toughness, specifically, Charpy impact using a V-notch Charpy impact test piece in the state of rolled steel.
  • Charpy impact using a V-notch Charpy impact test piece in the state of rolled steel In order to set the impact value at a test temperature of 25 ° C. in the test to 160 J / cm 2 or more, the influence of component elements was investigated. As a result, the following knowledge was obtained.
  • (F) B has the effect of suppressing the release of strain at high temperatures by strengthening the grain boundaries and suppressing the segregation of P and S at the austenite grain boundaries during induction hardening. As a result, the toughness is further increased.
  • the present invention has been completed based on the above findings, and the gist thereof is the rolled round steel material for steering rack bars and the steering rack bar described below.
  • the average grain size of ferrite in the region from the surface to the half position of the radius is 10 ⁇ m or less, and the area ratio of lamellar pearlite is less than 20%.
  • the number of spherical cementites in the cementite is 4 ⁇ 10 5 pieces / mm 2 or more, the area ratio of lamellar pearlite in the center is 20% or more, and the number of spherical cementites in the cementite is 4 ⁇ 10 5.
  • the steering rack bar according to the above (1) which contains at least one selected from Ca: 0.0005 to 0.005% and Pb: 0.05 to 0.30% by mass% Rolled round steel material.
  • Impurity refers to what is mixed from ore as a raw material, scrap, or the manufacturing environment when industrially producing steel materials.
  • Spherical cementite refers to cementite having a ratio of major axis L to minor axis W (L / W) of 2.0 or less.
  • the central part refers to a part at a distance from the center to a quarter of the radius.
  • “Use as untempered” means to use without performing so-called “tempering” of quenching and tempering.
  • the rolled round steel material for the steering rack bar of the present invention does not necessarily contain expensive V, and Charpy impact using a V-notch Charpy impact test piece in the rolled round steel material state without any tempering treatment. Since it has a high base metal toughness with an impact value at a test temperature of 25 ° C. of 160 J / cm 2 or more in the test and a good machinability for machining a deep hole in the center, It is suitable for use as a material.
  • the steering rack bar of the present invention can be obtained by using the rolled round steel material for the steering rack bar as it is not tempered.
  • FIG. 1 is a front view (overall view)
  • FIG. 2B is a side view
  • C 0.38 to 0.55%
  • C has the effect of improving the strength of steel, induction hardenability, and the strength of a hardened layer formed by induction hardening.
  • the content is less than 0.38%, the desired effect due to the above action cannot be obtained.
  • the content of C exceeds 0.55%, the base material toughness decreases. Therefore, the C content is set to 0.38 to 0.55%.
  • content of C shall be 0.40% or more. Further, the C content is preferably 0.51% or less.
  • Si 1.0% or less
  • Si is a deoxidizing element and is an element that improves the strength of ferrite by solid solution strengthening. However, if the Si content exceeds 1.0%, the machinability is lowered and it is difficult to machine deep holes. Therefore, the Si content is set to 1.0% or less. The Si content is preferably 0.8% or less.
  • the Si content is preferably 0.03% or more, and more preferably 0.10% or more. preferable.
  • Mn 0.20 to 2.0% Mn combines with S to form MnS, and has an effect of lowering cutting resistance by improving machinability, especially chip disposal when machining deep holes. It has the effect of suppressing progress and increasing toughness. Mn is an element effective for improving the induction hardenability and also an element for improving the strength of the ferrite by solid solution strengthening. However, when the content of Mn is less than 0.20%, the desired effect due to the above action cannot be obtained. On the other hand, if Mn is contained exceeding 2.0%, the machinability is lowered, and it becomes difficult to process a deep hole. Therefore, the Mn content is set to 0.20 to 2.0%. In order to stably obtain the above effects while keeping the alloy cost low, the Mn content is preferably 0.40% or more, and preferably 1.50% or less. .
  • S 0.005 to 0.10%
  • S is an important element in the present invention.
  • S combines with Mn to form MnS, and has the effect of lowering the cutting resistance by improving the machinability, especially chip disposal when processing deep holes. It has the effect of suppressing progress and increasing toughness.
  • the S content is set to 0.005 to 0.10%.
  • the S content is preferably 0.010% or more, and more preferably 0.015% or more.
  • the S content is preferably 0.08% or less.
  • Cr 0.01 to 2.0% Cr is an element effective for improving the induction hardenability and is an element for improving the strength of the ferrite by solid solution strengthening, so it is necessary to contain 0.01% or more. However, if the Cr content exceeds 2.0%, the machinability is lowered and it is difficult to machine deep holes. Therefore, the Cr content is set to 0.01 to 2.0%. Note that the Cr content is preferably 0.05% or more, and more preferably 0.10% or more. Further, the Cr content is preferably 1.8% or less.
  • Al 0.003 to 0.10%
  • Al has a deoxidizing action.
  • the Al content is set to 0.003 to 0.10%.
  • the Al content is preferably 0.08% or less.
  • the Al content is preferably 0.005% or more, and more preferably 0.010% or more.
  • B 0.0005 to 0.0030% B strengthens the grain boundary, thereby suppressing the release of strain at high temperature and improving the induction hardenability, and further suppressing the segregation of P and S at the austenite grain boundary during induction hardening. As a result, the toughness is further increased.
  • the above effect is remarkable when the B content is 0.0005% or more. However, even if it contains B exceeding 0.0030%, the above-mentioned effect is saturated and the cost is increased. Therefore, the content of B is set to 0.0005 to 0.0030%.
  • the B content is preferably 0.0010% or more, and more preferably 0.0020% or less.
  • Ti 0.047% or less Ti is preferentially bonded to impurity element N in the steel and fixes N, thereby suppressing the formation of BN and causing B to exist as a solid solution B. Therefore, Ti is effective in securing the effect of strengthening the grain boundary, the effect of improving the induction hardenability, and the effect of suppressing the segregation of P and S at the austenite grain boundary at the time of induction hardening. It is an element. However, if the Ti content exceeds 0.047%, the toughness of the base metal is significantly reduced. Therefore, the Ti content is set to 0.047% or less.
  • Cu 0 to 1.0% Since Cu has the effect of improving induction hardenability and increasing the base material toughness, Cu may be added to improve the base material toughness. However, if the Cu content exceeds 1.0%, the machinability is lowered, and it becomes difficult to machine deep holes. Therefore, the amount of Cu in the case of inclusion is set to 1.0% or less. Note that the amount of Cu is preferably 0.80% or less.
  • the amount of Cu is preferably 0.05% or more, and more preferably 0.10% or more.
  • Ni 0 to 3.0% Since Ni has the effect of improving induction hardenability and increasing the base material toughness, Ni may be included to improve the base material toughness. However, if the Ni content exceeds 3.0%, the machinability is lowered and it is difficult to machine deep holes. Therefore, the amount of Ni in the case of inclusion is set to 3.0% or less. Note that the amount of Ni is preferably 2.0% or less.
  • the amount of Ni is preferably 0.05% or more, and more preferably 0.10% or more.
  • Mo 0 to 0.50% Mo improves the induction hardenability and has the effect of increasing the base material toughness, so Mo may be included to improve the base material toughness. However, when the Mo content exceeds 0.50%, the machinability is lowered and it is difficult to machine deep holes. Therefore, the amount of Mo in the case of inclusion is set to 0.50% or less. The amount of Mo is preferably 0.40% or less.
  • the amount of Mo is preferably 0.05% or more, and more preferably 0.10% or more.
  • said Cu, Ni, and Mo can be contained only in any 1 type in them, or 2 or more types of composites.
  • the total amount of these elements may be 4.50%, but is preferably 3.20% or less.
  • Nb 0 to 0.10%
  • Nb has the effect
  • Nb also has the effect of improving the strength of steel. However, if the Nb content exceeds 0.10%, the effect is saturated and the cost increases, and the toughness is reduced. For this reason, the amount of Nb in the case of inclusion is set to 0.10% or less. Note that the amount of Nb is preferably 0.08% or less.
  • the amount of Nb is preferably 0.010% or more, and more preferably 0.015% or more.
  • V 0 to 0.30%
  • V combines with C or N in steel to form carbides or carbonitrides and has the effect of refining crystal grains. V also has the effect of improving the strength of the steel. However, if the V content exceeds 0.30%, the effect is saturated and the cost increases, and the toughness is reduced. For this reason, the V amount in the case of inclusion is set to 0.30% or less. Note that the amount of V is preferably 0.25% or less.
  • the amount of V is preferably 0.01% or more, and more preferably 0.02% or more.
  • said Nb and V can be contained only in any 1 type in them, or 2 types of composite.
  • the total amount of these elements may be 0.40%, but is preferably 0.33% or less.
  • Ca 0 to 0.005% Ca has the effect
  • the amount of Ca is preferably 0.0035% or less.
  • the amount of Ca is preferably set to 0.0005% or more.
  • Pb 0 to 0.30% Pb, like Ca, has the effect of improving the machinability of steel. For this reason, you may contain Pb as needed. However, if the Pb content exceeds 0.30%, the machinability improving effect is saturated, the hot workability is excessively lowered, and the manufacture becomes difficult. Therefore, the amount of Pb in the case of inclusion is set to 0.30% or less.
  • the amount of Pb is desirably 0.05% or more.
  • said Ca and Pb can be contained only in any 1 type in them, or 2 types of composite.
  • the total amount of these elements is preferably 0.30% or less.
  • the chemical composition of the rolled round steel material for a steering rack bar of the present invention is such that the balance is Fe and impurities, P and N in the impurities are P: 0.030% or less and N: 0.008% or less, , 3.4N ⁇ Ti ⁇ 3.4N + 0.02 (1) It satisfies.
  • P 0.030% or less
  • P is contained as an impurity in steel and causes grain boundary segregation and center segregation, leading to a decrease in base material toughness.
  • the content of P is set to 0.030% or less.
  • the P content is preferably 0.020% or less.
  • N 0.008% or less N is also contained in the steel as an impurity.
  • N has a large affinity with B, and when it binds to B in steel to form BN, the effect of strengthening grain boundaries, the effect of improving induction hardenability by including B, and The effect of suppressing the segregation of P and S at the austenite grain boundary during induction hardening cannot be expected.
  • the N content is set to 0.008% or less.
  • the microstructure of the rolled round steel material of the present invention is composed of ferrite, lamellar pearlite, and cementite, and in the cross section perpendicular to the rolling direction, the average grain size of ferrite in the region from the surface to a half position of the radius is 10 ⁇ m or less.
  • the area ratio of pearlite is less than 20%, and the number of spherical cementites of cementite is 4 ⁇ 10 5 pieces / mm 2 or more. Further, the area ratio of lamellar pearlite in the center is 20% or more, and spherical pieces of cementite.
  • the number of cementite is less than 4 ⁇ 10 5 pieces / mm 2 , and the average ferrite content in the region from the surface to the half radius position in the cross section passing through the center line of the round steel material and parallel to the rolling direction
  • the aspect ratio must be 3 or higher.
  • the average particle diameter of the ferrite in the region from the surface to a half position of the radius exceeds 10 ⁇ m in the cross section perpendicular to the rolling direction, the target base material toughness is obtained. It is difficult to obtain. Therefore, the average particle diameter of the ferrite is set to 10 ⁇ m or less.
  • the average particle size of the ferrite is preferably 8 ⁇ m or less.
  • the average grain size of the ferrite is preferably as small as possible for strengthening by refining crystal grains.
  • special processing conditions or equipment are required, which is industrially realized. Difficult to do. Therefore, the lower limit of the average grain size of the ferrite as a size that can be industrially realized is about 1 ⁇ m.
  • the average particle diameter of ferrite in the region from the surface to the half position of the radius is, for example, a position 1 mm from the surface of the rolled round steel material and a quarter of the radius from the surface.
  • Position hereinafter referred to as “R / 4 position”, where “R” refers to the radius of the rolled round steel, and the same shall apply hereinafter
  • R / 2 1/2 position of the radius from the surface
  • the area ratio of the lamellar pearlite in the region from the surface to the half position of the radius is 20% or more in the cross section perpendicular to the rolling direction, the toughness of the base material is reduced. . Therefore, the area ratio of the lamellar pearlite is defined as less than 20%.
  • the area ratio of the lamellar pearlite is preferably 15% or less, and may be 0%.
  • the area ratio of lamellar pearlite in the region from the surface to the half position of the radius is, for example, 1 mm from the surface of the rolled round steel material, R / 4 position, and R / What is necessary is just to obtain
  • the number of spherical cementite in the region from the surface to the half position of the radius is less than 4 ⁇ 10 5 / mm 2 .
  • the base material toughness is reduced. Therefore, the number of spherical cementite was set to 4 ⁇ 10 5 pieces / mm 2 or more.
  • the number of spherical cementite is preferably 5.0 ⁇ 10 5 pieces / mm 2 or more, and preferably 1.0 ⁇ 10 12 pieces / mm 2 or less.
  • the number of spherical cementite in the region from the surface to the half position of the radius is, for example, 1 mm from the surface of the rolled round steel, R / 4 position, and R / 2. What is necessary is just to obtain
  • the area ratio of the lamellar pearlite at the center is defined as 20% or more.
  • the area ratio of the lamellar pearlite is preferably 25% or more, and preferably 80% or less.
  • the “center portion” refers to a portion at a distance from the center to 1 ⁇ 4 of the radius.
  • the area ratio of the lamellar pearlite at the center is, for example, 3/4 position (hereinafter referred to as “3R / 4 position”) and center from the surface of the rolled round steel material.
  • 3R / 4 position 3/4 position
  • the area ratios of the two lamellar pearlites may be obtained by arithmetic averaging.
  • the number of spherical cementite at the center is 4 ⁇ 10 5 pieces / mm 2 or more, the toughness is increased and the chip disposal is reduced. Cutting resistance increases and machinability decreases. Therefore, the number of spherical cementite was defined as less than 4 ⁇ 10 5 pieces / mm 2 .
  • the number of spherical cementite may be 0 piece / mm 2 , but is preferably 1 ⁇ 10 2 pieces / mm 2 or more, and is preferably 3 ⁇ 10 5 pieces / mm 2 or less.
  • the number of spherical cementite in the central portion is determined by, for example, obtaining the 3R / 4 position of the rolled round steel material and the number of spherical cementite at two central positions, respectively, What is necessary is just to obtain
  • the aspect ratio of the ferrite is set to 3 or more.
  • the average aspect ratio of the ferrite is preferably 4 or more, and is preferably 45 or less.
  • the average aspect ratio of ferrite is, for example, 3 mm at a position of 1 mm, R / 4 position, and R / 2 position from the surface of the rolled round steel material. What is necessary is just to obtain
  • microstructure of the rolled round steel material of the present invention described above can be obtained by, for example, hot rolling and cooling a material to be rolled having the chemical composition already described as follows.
  • an all continuous hot rolling method including two or more rolling steps is suitable for producing the rolled round steel material for a steering rack bar of the present invention. For this reason, the following description is based on the rolling by the above-mentioned all continuous hot rolling method (hereinafter, simply referred to as “all continuous hot rolling”).
  • the heating temperature is higher than 880 ° C.
  • the strain is easily released, and in the cross section perpendicular to the rolling direction, the ferrite average particle diameter, lamellar pearlite area ratio, and the number of spherical cementites in the region from the surface to the half position of the radius
  • One or more of the above may be out of the conditions described in the section “2. Microstructure”.
  • the heating temperature is lower than 670 ° C., one or more of the lamellar pearlite area ratio and the number of spherical cementites in the center in the cross section described above may deviate from the above-described microstructure condition.
  • the heating in the temperature range of 670 to 880 ° C. performed before hot rolling not only the temperature of the material to be rolled (raw material) is raised to a predetermined area but also the temperature in the cross section of the raw material is made uniform. In order to achieve this, heat treatment for a long time may be performed, and in this case, ferrite decarburization may occur on the surface of the material. Therefore, in order to suppress the ferrite decarburization, the heating time in the temperature range is preferably 3 hours or less.
  • the surface temperature of the material to be rolled is 500 to 820 ° C.
  • the cumulative area reduction in the temperature range of 650 to 820 ° C. is 30% or more
  • the area ratio is 35% or more.
  • the “surface temperature of the material to be rolled” does not include the surface temperature of the material to be rolled during the intermediate cooling step described later.
  • v (m / s) is the rolling material speed (hereinafter referred to as “finishing speed”), “Rd ( %) ”Is the total area reduction rate of all continuous hot rolling, and“ T (° C.) ”is the heating temperature of the material to be rolled, and fn (1) expressed below satisfies 0 or more.
  • the “total area reduction ratio” means that when the cross-sectional area before rolling of the material to be rolled in all-continuous hot rolling is A 0 and the cross-sectional area after leaving the final rolling mill is A f , It indicates a value (%) obtained by the equation ⁇ (A 0 ⁇ A f ) / A 0 ⁇ ⁇ 100.
  • the surface temperature of the material to be rolled exceeds 820 ° C. during rolling, the strain is easily released, and in the cross section perpendicular to the rolling direction, the ferrite average in the region from the surface to a half position of the radius
  • One or more of the particle size, the lamellar pearlite area ratio, and the number of spherical cementites may deviate from the conditions described in the section “2. Microstructure”.
  • the surface temperature of the material to be rolled during rolling is preferably 500 to 820 ° C.
  • the cumulative reduction in area in the temperature range of 650 to 820 ° C. is less than 30%, the ferrite average particle diameter and lamellar pearlite area ratio in the region from the surface to the half position of the radius in the cross section perpendicular to the rolling direction. And one or more of the numbers of spherical cementite may deviate from the microstructure conditions described above.
  • the upper limit of the cumulative area reduction at 650 to 820 ° C. is about 99.5% in order to prevent a significant increase in the production line.
  • the region from the surface in the cross section parallel to the rolling direction through the center line of the material to be rolled to the half position of the radius In some cases, one or more of the average aspect ratio of the ferrite and the number of spherical cementites in the region from the surface to the half position of the radius in the cross section perpendicular to the rolling direction deviate from the above-described microstructure condition.
  • the upper limit of the cumulative area reduction at 500 ° C. or more and less than 650 ° C. is about 80% in order to prevent a significant increase in the production line.
  • [2] is an expression obtained empirically in order to make the microstructure of the central portion in the cross section perpendicular to the rolling direction as described in the section “2. Microstructure”.
  • fn (1) is less than 0, in the cross section perpendicular to the rolling direction, one or more of the area ratio of the lamellar pearlite at the center and the number of spherical cementites may deviate from the microstructure conditions described above.
  • intermediate cooling such as water cooling may be performed in an intermediate step.
  • the surface temperature of the material to be rolled may temporarily fall below 500 ° C. during the intermediate cooling step.
  • the next rolling step is started after reheating to a temperature of 500 ° C or higher by sensible heat inside the material to be rolled, There may be no influence that the surface temperature of the rolled material temporarily falls below 500 ° C.
  • the untransformed austenite of the material to be rolled is transformed into a hard phase such as martensite or bainite, the microstructure defined in the present invention may not be obtained.
  • the intermediate cooling step is such that the time ⁇ t until the reheat to a temperature of 500 ° C. or higher after the surface temperature of the material to be rolled temporarily falls below 500 ° C. is 10 seconds or less. It is desirable. Furthermore, when aiming at more stable production by all-continuous hot rolling, an intermediate cooling step in which ⁇ t is 8 seconds or less is preferable.
  • the temperature range up to 500 ° C. is finally cooled under the condition that the surface cooling rate is 0.5 to 200 ° C./s. Is good.
  • the surface cooling rate in the above temperature range is less than 0.5 ° C./s after completion of all-continuous hot rolling, in the cross section perpendicular to the rolling direction, the area ratio of lamellar pearlite in the center and the number of spherical cementite One or more may deviate from the conditions described in the section “2. Microstructure”.
  • the cooling rate of the surface exceeds 200 ° C./s, untransformed austenite is hard like martensite or bainite. It may transform into a phase.
  • Example 1 Square billets (160 mm square and 10 m long) made of steels AZ having the chemical composition shown in Table 1 were prepared.
  • the square billet was rolled into a steel bar having a diameter of 34 mm by a fully continuous hot rolling line equipped with a cooling facility under the conditions shown as test numbers 1 to 34 in Table 2. Specifically, after processing to a diameter of 60 mm by a rough rolling mill row and processing to a diameter of 50 mm by an intermediate rolling mill row, processing to a steel bar having a diameter of 34 mm by a finishing rolling mill row, the “total area reduction ratio: Rd” is 96.4% hot rolling was performed.
  • ⁇ Rough rolling mill row Consists of 8 rolling mills
  • Intermediate rolling mill row Consists of four rolling mills
  • -Finish rolling mill row Consists of four rolling mills
  • Cooling zone Between the eighth rolling mill in the rough rolling mill row and the first rolling mill in the intermediate rolling mill row, and one in the fourth rolling mill and the finishing rolling mill row in the intermediate rolling mill row Installed between eye rolling mills.
  • the surface temperature of the material to be rolled during rolling and the surface temperature of the material to be rolled in the cooling process after completion of all-continuous hot rolling are measured using a radiation thermometer, and after the intermediate cooling step, The time ⁇ t ′ until the start of the subsequent rolling process was measured.
  • the cooling rate is set by cooling in the air or changing the cooling medium such as air cooling. And finally cooled to 500 ° C. The subsequent cooling was allowed to cool in the atmosphere.
  • the rough rolling mill row, the intermediate rolling mill row, and the finishing rolling mill row are denoted as “rough row”, “intermediate row”, and “finishing row”, respectively.
  • “input temperature” and “out temperature” in the rough column, intermediate column, and finish column shown in Table 2 are respectively applied to the rough column, intermediate column, and finish column measured using a radiation thermometer. Is the surface temperature of the material to be rolled at the time immediately before entering the material to be rolled and the surface temperature of the material to be rolled as measured above using a radiation thermometer. It calculated
  • the time ⁇ t ′ from the intermediate cooling step to the start of the subsequent rolling step was 8 seconds or less in all cases.
  • microstructure, tensile properties, impact properties and machinability of each steel bar obtained as described above were investigated by the following methods.
  • test piece having a length of 20 mm is cut out from each steel bar having a diameter of 34 mm, and the cross section perpendicular to the rolling direction of these test pieces and the cross section parallel to the rolling direction through the center line are each a test surface. Embedded and mirror polished.
  • the microstructure was developed by corroding with 3% nitric alcohol (nitral liquid) and observed with a scanning electron microscope (hereinafter referred to as “SEM”). At the same time, the average particle diameter of ferrite and the area ratio of lamellar pearlite were investigated.
  • a total of 12 structures were observed at a magnification of 2000 times in a 90 ° increment in the circumferential direction with a SEM in a total of 12 visual fields for a total of 12 visual fields, and the phases constituting the microstructure were identified.
  • the average particle diameter of ferrite and the area ratio of lamellar pearlite were determined using image analysis software using the photographed image.
  • the magnification is 5000 times
  • the 3R / 4 position is 4 fields in 90 ° increments in the circumferential direction for the 3R / 4 position.
  • a total of 5 visual fields were observed, and the number of spherical cementites per 1 mm 2 area was calculated by using image analysis software.
  • the cross section passing through the center line and parallel to the rolling direction was further subjected to electrolytic polishing after mirror polishing and observed by an electron beam backscattering pattern method (hereinafter referred to as “EBSD”).
  • EBSD electron beam backscattering pattern method
  • the average aspect ratio of the ferrite was determined by measuring the orientation of the ferrite and analyzing the image with an orientation difference of 15 ° or more as the grain boundary.
  • tensile properties For the tensile properties, a 14A test piece (however, the diameter of the parallel part: 4 mm) specified in JIS Z 2241 (2011) was taken so that the R / 4 position of each steel bar having a diameter of 34 mm was the central axis of the test piece. Then, a tensile test was performed at room temperature with a gauge distance of 20 mm, and tensile strength (MPa) was obtained.
  • the impact characteristics of the V-notch Charpy impact test specimen described above are such that the direction of the notch is the surface and the R / 4 position of each steel bar having a diameter of 34 mm is exactly the notch bottom position.
  • the sample was collected and subjected to a Charpy impact test at 25 ° C. to determine an impact value (J / cm 2 ).
  • the machinability was determined by cutting each steel bar with a diameter of 34 mm to a length of 170 mm and then using a gun drill with a diameter of 8.0 mm to deepen in the rolling direction on the basis of the center of the cross section perpendicular to the rolling direction under the following conditions. Cutting resistance was evaluated by measuring the torque when deep hole machining was performed up to 150 mm. ⁇ Rotation speed: 2300 rpm Feed: 0.05 mm / rev, and Feed hydraulic pressure: 5 MPa.
  • the target of the base material toughness is an impact value of 160 J / cm 2 or more.
  • the target of machinability was that the torque, which is an index of cutting resistance, was 300 N ⁇ cm or less.
  • Table 3 shows the results of each of the above surveys.
  • cross section perpendicular to the rolling direction and “cross section passing through the center line of the round steel material and parallel to the rolling direction” are denoted as “cross section” and “longitudinal section”, respectively.
  • indicates that both the impact characteristics and machinability targets are satisfied, while “ ⁇ ” indicates that at least one of the above targets has been achieved. It means not.
  • the Si content of the steel R used is as high as 1.25%, which exceeds the value specified in the present invention.
  • the torque when deep drilling is performed with a gun drill is as high as 345 N ⁇ cm.
  • the Mn content of the steel S used is as high as 2.31%, which exceeds the value specified in the present invention. For this reason, the torque when drilling deep holes with a gun drill is as high as 325 N ⁇ cm.
  • the C content of the steel T used is as high as 0.62%, which exceeds the value specified in the present invention.
  • the V-notch Charpy impact value is as low as 105 J / cm 2 .
  • the Cr content of the steel U used is as high as 2.41%, which exceeds the value specified in the present invention. For this reason, the torque when deep drilling is performed with a gun drill is as high as 340 N ⁇ cm.
  • the steel V used does not contain B, deviates from the chemical composition defined in the present invention, and the average grain of ferrite in the region from the surface to the half position of the radius in the cross section perpendicular to the rolling direction.
  • the diameter, the area ratio of lamellar pearlite, and the number of spherical cementite were also 11.8 ⁇ m, 22.1%, and 2.1 ⁇ 10 5 pieces / mm 2 , respectively, which were out of the ranges defined in the present invention.
  • the V-notch Charpy impact value is as low as 110 J / cm 2 .
  • the N content of the steel W used is as high as 0.012%, which exceeds the value specified in the present invention, and is a region from the surface in a cross section perpendicular to the rolling direction to a position at half the radius.
  • the average particle diameter of ferrite and the number of spherical cementites are also 11.2 ⁇ m and 3.8 ⁇ 10 5 pieces / mm 2 , respectively, which are out of the ranges defined in the present invention. For this reason, the V-notch Charpy impact value is as low as 115 J / cm 2 .
  • the Ti content of the used steel X is as high as 0.057%, which exceeds the value specified in the present invention. For this reason, the V-notch Charpy impact value is as low as 145 J / cm 2 .
  • the Ti content of the steel Y used is lower than [3.4N], which is the lower limit of the formula (1), deviating from the conditions defined in the present invention, and from the surface in the cross section perpendicular to the rolling direction.
  • the average particle diameter of ferrite in the region up to half the radius, the area ratio of lamellar pearlite, and the number of spherical cementites were 12.1 ⁇ m, 20.2%, and 2.9 ⁇ 10 5 pieces / mm 2 , respectively. It is outside the range defined by the present invention. For this reason, the V-notch Charpy impact value is as low as 110 J / cm 2 .
  • the Ti content of the steel Z used is higher than [3.4N + 0.02], which is the upper limit of the formula (1), and deviates from the conditions specified in the present invention. For this reason, the V-notch Charpy impact value is as low as 130 J / cm 2 .
  • test numbers 27 to 31 Although the chemical composition of the steel B used satisfies the conditions specified in the present invention, the microstructure is outside the range specified in the present invention. For this reason, one of the impact characteristics and the machinability has not reached the target.
  • the average particle diameter of ferrite, the area ratio of lamellar pearlite, and the number of spherical cementite in the region from the surface to the half position of the radius in the cross section perpendicular to the rolling direction are 14 respectively.
  • 0.1 ⁇ m, 32.8%, and 4.0 ⁇ 10 4 pieces / mm 2 which are outside the range defined in the present invention.
  • the V-notch Charpy impact value is as low as 105 J / cm 2 .
  • the average aspect ratio of ferrite in the region from the surface to the half position of the radius in the cross section passing through the center line and parallel to the rolling direction is 1.9, which is out of the range specified in the present invention. Yes.
  • the V-notch Charpy impact value is as low as 115 J / cm 2 .
  • the number of spherical cementite in the region from the surface to the half position of the radius in the cross section perpendicular to the rolling direction is 3.3 ⁇ 10 5 pieces / mm 2, and the rolling direction passes through the center line.
  • the average aspect ratio of the ferrite in the region from the surface to the half position of the radius in the cross section parallel to is 1.6, which is outside the range defined in the present invention. For this reason, the V-notch Charpy impact value is as low as 110 J / cm 2 .
  • test number 31 in the cross section perpendicular to the rolling direction, the area ratio of lamellar pearlite at the center and the number of spherical cementites were 17.2% and 6.1 ⁇ 10 5 pieces / mm 2 , respectively. It is out of the specified range. For this reason, the torque when deep drilling is performed with a gun drill is as high as 335 N ⁇ cm.
  • the average aspect ratio of the ferrite in the region from the surface to the half position of the radius in the cross section passing through the center line and parallel to the rolling direction is defined by the present invention. You are out of range. For this reason, the V-notch Charpy impact value is as low as 105 J / cm 2 .
  • the average aspect ratio of the ferrite in the region from the surface to the half position of the radius in the cross section passing through the center line and parallel to the rolling direction is 2.6, which is out of the range specified in the present invention. Yes. For this reason, the V-notch Charpy impact value is as low as 115 J / cm 2 .
  • rolling is performed at 650 to 820 ° C. in the rough and finish rows.
  • the cumulative reduction in area is [(area reduction in the coarse) + (100% -Area reduction ratio just before entering the finishing row) x Area reduction rate of the finishing row].
  • Example 2 The rack bar was simulated using the steel bars of 34 mm in diameter of test number 2, test number 11, test number 13, test number 16, test number 20, test number 28, test number 32, and test number 34 obtained in Example 1. A test piece was prepared.
  • a steel bar having a diameter of 34 mm was shot peened, the surface scale was removed, and then a drawing process was performed to a diameter of 31 mm with a lubricating oil applied to the surface.
  • induction hardening was carried out by variously adjusting the conditions of induction hardening so that the hardened layer depth (depth from the surface where the Vickers hardness is 450) at the tooth bottom corresponding portion of the rack bar was 1 mm. Thereafter, for the purpose of preventing cracking after induction hardening, a tempering treatment was performed at 180 ° C. for 2 hours.
  • the fractured surface was photographed in appearance, and by image analysis processing, the area ratio of cracks that developed during the bending test was obtained for the entire section, Progress resistance was evaluated.
  • the damage prevention characteristic aimed at the area ratio of the crack which progressed at the time of the said bending test being 30% or less.
  • Table 4 shows the results of each of the above surveys.
  • “ ⁇ ” marks in the “Evaluation” column indicate that the area ratio of cracks developed during the bending test is 30% or less, which satisfies the target, while “ ⁇ ” marks indicate the above target. Indicates that you are not satisfied.
  • the rolled round steel material for the steering rack bar of the present invention does not necessarily contain expensive V, and Charpy impact using a V-notch Charpy impact test piece in the rolled round steel material state without any tempering treatment. Since it has a high base metal toughness with an impact value at a test temperature of 25 ° C. of 160 J / cm 2 or more in the test and a good machinability for machining a deep hole in the center, It is suitable for use as a material.
  • the steering rack bar of the present invention can be obtained by using the rolled round steel material for steering rack bar as it is not tempered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

C:0.38~0.55%、Si≦1.0%、Mn:0.20~2.0%、S:0.005~0.10%、Cr:0.01~2.0%、Al:0.003~0.10%、B:0.0005~0.0030%、Ti≦0.047%、Cu:0~1.0%、Ni:0~3.0%、Mo:0~0.50%、Nb:0~0.10%、V:0~0.30%、Ca:0~0.005%、Pb:0~0.30%、残部がFeと不純物であり、不純物中のP≦0.030%、N≦0.008%で〔3.4N≦Ti≦3.4N+0.02〕を満たす化学組成を有し、ミクロ組織がフェライト(F)、ラメラーパーライト(LP)及びセメンタイト(C)からなり、横断面で、表面から半径の1/2位置までの領域のFの平均粒径≦10μm、LPの面積率<20%及びCの内の球状セメンタイト(SC)の個数≧4×105個/mm2、更に中心部のLPの面積率≧20%及びSCの個数<4×105個/mm2で、縦断面で、表面から半径の1/2位置までの領域のFの平均アスペクト比≧3、であるステアリングラックバー用圧延丸鋼材。この鋼材は、調質処理を行わずとも、高い母材靱性と良好な被削性を有する。

Description

ステアリングラックバー用圧延丸鋼材およびステアリングラックバー
 本発明は、ステアリングラックバー用圧延丸鋼材およびステアリングラックバーに関する。
 自動車部品のうちで、ステアリング装置に用いられるステアリングラックバー(以下、単に、「ラックバー」ともいう。)は、自動車の進行方向を操舵するとともに左右両輪を繋ぐ骨組み的な役割を示す重要部品であり、これが破損した場合にはハンドル操作が不可能となってしまう。このため、ラックバーに用いられる鋼材には、高い信頼性が要求される。
 なお、ラックバーは、従来、中炭素鋼材の圧延丸鋼材に焼入れ焼戻しの調質処理を行った後に、必要に応じて引抜き加工を行ってから、切削加工によって穴あけおよび歯切りを行い、その歯型部に、高周波焼入れと焼戻しを行って製造されてきた。なお、圧延丸鋼材とは圧延によって断面の形状が円形に加工されたものを意味し、歯切りとは歯型部を形成することを意味する。
 そして、高周波焼入れをしたラックバーには、過大な荷重が加わった際にも、高周波焼入れ層で生じた亀裂が母材を進展して破断に至らないことが要求される。
 さらに、ラックバーは、径方向中心部の長さ方向に、深穴加工が施される。
 したがって、ラックバーの素材として用いられる丸鋼材には、良好な被削性および亀裂の進展に抵抗する優れた母材衝撃特性(母材靱性)が要求される。
 このようなステアリングラックバーに用いられる鋼材として、本発明者らは例えば次のような鋼材を提案した。
 特許文献1には、質量%で、C:0.38~0.55%、Si:1.0%以下、Mn:0.20~2.0%、P:0.020%以下、S:0.10%以下、Cr:0.10~2.0%、Al:0.10%以下およびN:0.004~0.03%と、残部がFeおよび不純物とからなり、[fn1=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S]の式(ただし、式中の、C、Si、Mn、Cr、VおよびSは、それぞれの元素の質量%での含有量を表す。)で表されるfn1の値が1.20以下である化学成分を有し、ミクロ組織がフェライト、ラメラーパーライトおよび球状セメンタイトからなり、フェライトの平均結晶粒径が10μm以下、ラメラーパーライトのうちのラメラー間隔が200nm以下のラメラーパーライトのミクロ組織に占める面積割合が20~50%および球状セメンタイトの個数が4×105個/mm2以上である、高周波焼入れ用圧延鋼材が開示されている。
 なお、この高周波焼入れ用圧延鋼材は、さらにCu、Ni、Mo、Ti、NbおよびVから選択される1種以上を含んでもよい。
 特許文献2には、質量%で、C:0.38~0.55%、Si:1.0%以下、Mn:0.20~2.0%、P:0.020%以下、S:0.10%以下、Cr:0.10~2.0%、Al:0.010~0.10%およびN:0.004~0.03%と、残部がFeおよび不純物とからなり、[Ceq=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S]の式(ただし、式中の、C、Si、Mn、Cr、VおよびSは、それぞれの元素の質量%での含有量を表す。)で表されるCeqの値が1.20以下およびSi、MnおよびCrの合計含有量が1.2~3.5%を満たす化学成分を有し、ミクロ組織がフェライト、ラメラーパーライトおよび球状セメンタイトからなり、該フェライトの平均結晶粒径が10μm以下、ラメラーパーライトのミクロ組織に占める面積割合が20%以下(0%を含む)および球状セメンタイトの個数が6×105個/mm2以上である、高周波焼入れ用圧延鋼材が開示されている。
 なお、この高周波焼入れ用圧延鋼材は、さらにCu、Ni、Mo、Ti、NbおよびVから選択される1種以上を含んでもよい。
特開2011-214130号公報 特開2011-241466号公報
 特許文献1および特許文献2で提案した圧延鋼材に対して、破損防止のための母材靱性と深穴を加工するための被削性をさらに向上させたステアリングラックバー用圧延丸鋼材およびステアリングラックバーに対する要望が大きくなってきた。
 本発明は、高周波焼入れされるラックバーの素材として好適に用いることができる圧延丸鋼材およびそれを用いたラックバーを提供することを目的とする。本発明は、特に高価な元素の添加を行わずとも、また調質処理を行わずとも、母材靱性および被削性に優れる圧延丸鋼材およびそれを用いたラックバーを提供することを目的とする。さらに、径方向中心部の長さ方向に容易に深穴を加工することができる圧延丸鋼材および生じた亀裂を停留させることができるラックバーを提供することを目的とする。
 なお、本発明の目的とする高い母材靱性とは、圧延鋼材の状態で、JIS Z 2242(2005)に規定の、ノッチ角度45゜、ノッチ深さ2mmおよびノッチ底半径0.25mmのVノッチを付けた幅10mmの標準試験片(以下、「Vノッチシャルピー衝撃試験片」という。)を用いたシャルピー衝撃試験における試験温度25℃での衝撃値が160J/cm2以上であることを意味する。上記試験片を用いた試験温度25℃での衝撃値が160J/cm2以上であれば、より破損の可能性が高い環境下での走行、例えば、悪路走行の際に、より一層の安全性を確保することができる。
 本発明者らは、前述した課題を解決するために、中炭素鋼において調質処理を行うことなく高い母材靱性が得られ、なおかつ中心部の良好な被削性を確保するための手段について種々の実験室的な検討を行った。
 具体的には、先ず、フェライトとラメラーパーライトからなるミクロ組織を基準に、母材靱性を向上させる手段を検討した。その結果、下記の知見を得た。
 (A)フェライトを微細で、かつ圧延方向と平行な方向に延伸させ、さらに、ラメラーパーライト中のセメンタイトを球状セメンタイトにして、ラメラーパーライトを特定の割合未満にするとともに、球状セメンタイトを特定の量以上含むようにすれば、圧延方向と垂直な断面に進展する亀裂に対する抵抗が高くなるので、母材靱性を高めることができる。
 次いで、フェライトとラメラーパーライトからなるミクロ組織を基準に、深穴を加工する際の被削性に及ぼす組織の影響を調査した。その結果、下記の知見を得た。
 (B)ミクロ組織中に球状セメンタイトの量が多くなりすぎると、切屑処理性が悪くなることにより切削抵抗が高くなって、被削性に劣る。一方、ラメラーパーライトを特定の割合以上含むとともに球状セメンタイトを特定の量未満に抑えた組織の場合は、切屑処理性が良いため切削抵抗が低くなるので、被削性に優れる。
 そこでさらに、母材靱性および被削性を向上させるために、成分元素の影響を調査した。その結果、下記の知見を得た。
 (C)Sは、Mnと結合してMnSを形成し、鋼材の長手方向(圧延方向と平行な方向)に延伸して靱性を向上させる。しかも、特定量のSを含有すれば、切屑処理性が向上することで切削抵抗が低くなるので、被削性が良好になる。
 そこで上記(A)~(C)の知見に基づいて、さらに詳細な検討を行った。その結果、下記の重要な知見を得た。
 (D)ステアリングラックバー用圧延丸鋼材として、破損防止のための母材靱性が必要な部位は、丸鋼材の表面から半径の1/2位置までの領域である。したがって、ミクロ組織がフェライト、ラメラーパーライトおよびセメンタイトからなる圧延丸鋼材の場合、上述の領域におけるミクロ組織を、微細でかつ圧延方向と平行な方向に延伸したフェライト、特定の割合以下に制限したラメラーパーライトおよび特定の量以上の球状セメンタイトからなるものにすれば、破損防止のための母材靱性が得られる。
 (E)一方、ミクロ組織がフェライト、ラメラーパーライトおよびセメンタイトからなる圧延丸鋼材の中心部において、ラメラーパーライトが特定の割合以上含まれているとともに球状セメンタイトが特定の量未満であれば、優れた被削性が得られる。
 さらに本発明者らは、上記(A)~(E)の知見に基づいて、靱性を一層向上させるため、具体的には、圧延鋼材の状態で、Vノッチシャルピー衝撃試験片を用いたシャルピー衝撃試験における試験温度25℃での衝撃値を160J/cm2以上とするために、成分元素の影響を調査した。その結果、下記の知見を得た。
 (F)Bは、粒界を強化することにより、高温時のひずみの解放を抑え、かつ、高周波焼入れ時のオーステナイト粒界におけるPおよびSの偏析を抑制する作用を有する。その結果として、靱性が一層高まる。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示すステアリングラックバー用圧延丸鋼材およびステアリングラックバーにある。
 (1)質量%で、C:0.38~0.55%、Si:1.0%以下、Mn:0.20~2.0%、S:0.005~0.10%、Cr:0.01~2.0%、Al:0.003~0.10%、B:0.0005~0.0030%、Ti:0.047%以下、Cu:0~1.0%、Ni:0~3.0%、Mo:0~0.50%、Nb:0~0.10%、V:0~0.30%、Ca:0~0.005%、Pb:0~0.30%、残部がFeおよび不純物であり、不純物中のPおよびNが、P:0.030%以下およびN:0.008%以下であり、さらに、下記の(1)式を満たす化学組成を有するステアリングラックバー用圧延丸鋼材であって、
ミクロ組織がフェライト、ラメラーパーライトおよびセメンタイトからなり、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライトの平均粒径が10μm以下、ラメラーパーライトの面積率が20%未満およびセメンタイトのうちの球状セメンタイトの個数が4×105個/mm2以上であり、さらに、中心部のラメラーパーライトの面積率が20%以上およびセメンタイトのうちの球状セメンタイトの個数が4×105個/mm2未満であり、しかも、その丸鋼材の中心線を通って圧延方向と平行な断面において、表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が3以上である、ステアリングラックバー用圧延丸鋼材。
  3.4N≦Ti≦3.4N+0.02・・・(1)
上記の(1)式中の元素記号は、その元素の質量%での含有量を意味する。
 (2)質量%で、Cu:0.05~1.0%、Ni:0.05~3.0%およびMo:0.05~0.50%から選択される1種以上を含有する、上記(1)に記載のステアリングラックバー用圧延丸鋼材。
 (3)質量%で、Nb:0.010~0.10%およびV:0.01~0.30%から選択される1種以上を含有する、上記(1)に記載のステアリングラックバー用圧延丸鋼材。
 (4)質量%で、Ca:0.0005~0.005%およびPb:0.05~0.30%から選択される1種以上を含有する、上記(1)に記載のステアリングラックバー用圧延丸鋼材。
 (5)上記(1)から(4)までのいずれかに記載のステアリングラックバー用圧延丸鋼材を非調質のまま用いる、ステアリングラックバー。
「不純物」とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップまたは製造環境などから混入するものを指す。
 「球状セメンタイト」とは、長径Lと短径Wの比(L/W)が2.0以下であるセメンタイトを指す。
 「中心部」とは、中心から、半径の1/4までの距離にある部位を指す。
 「非調質のまま用いる」とは、焼入れ-焼戻しのいわゆる「調質処理」を行わないで用いることを指す。
 本発明のステアリングラックバー用圧延丸鋼材は、必ずしも高価なVを含有させる必要がなく、しかも、調質処理を行わずとも、圧延丸鋼材の状態でVノッチシャルピー衝撃試験片を用いたシャルピー衝撃試験における試験温度25℃での衝撃値が160J/cm2以上という高い母材靱性を有し、さらに、中心部に深穴を加工するための良好な被削性を有するので、ステアリングラックバーの素材として用いるのに好適である。
 また、本発明のステアリングラックバーは、上記ステアリングラックバー用圧延丸鋼材を非調質のまま用いることによって得ることができる。
[規則91に基づく訂正 07.07.2014] 
実施例1で棒鋼から採取したVノッチシャルピー衝撃試験片のノッチの方向を模式的に説明する図である。 引抜き加工した棒鋼から採取し、実施例2の3点曲げ試験で用いたステアリングラックバーを模擬した試験片の形状を説明する図である。図2において、(a)は正面図(全体図)、(b)は側面図、(c)は歯形部の断面A-Aでの拡大図、である。なお、図2の(a)~(c)における寸法の単位は「mm」である。 実施例2で行った3点曲げ試験の方法を模式的に説明する図である。
 以下、本発明の各要件について詳しく説明する。なお、以下の説明における各元素の含有量の「%」表示は「質量%」を意味する。
 1.化学組成:
 C:0.38~0.55%
 Cは、鋼の強度、高周波焼入れ性および高周波焼入れで形成された硬化層の強度を向上させる作用を有する。しかしながら、その含有量が0.38%未満では、前記作用による所望の効果が得られない。一方、Cの含有量が0.55%を超えると、母材靱性が低下する。したがって、Cの含有量を0.38~0.55%とした。なお、前記の効果を安定して得るために、Cの含有量は、0.40%以上とすることが好ましい。また、Cの含有量は、0.51%以下とすることが好ましい。
 Si:1.0%以下
 Siは、脱酸元素であり、さらに、固溶強化によってフェライトの強度を向上させる元素である。しかしながら、Siの含有量が1.0%を超える場合には、被削性が低下して、深穴を加工することが困難になる。したがって、Siの含有量を1.0%以下とした。Siの含有量は、0.8%以下とすることが好ましい。
 なお、後述のAlも脱酸作用を有するため、Siの含有量について下限は特に定める必要はない。しかしながら、前記したSiの固溶強化作用を利用して強度確保を確実に行うためには、Siの含有量は、0.03%以上とすることが好ましく、0.10%以上とすれば一層好ましい。
 Mn:0.20~2.0%
 Mnは、Sと結合してMnSを形成し、被削性、なかでも深穴を加工する際の切屑処理性を高めることで切削抵抗を低くする作用を有し、さらに延伸したMnSが亀裂の進展を抑制して靱性を高める効果を有する。また、Mnは、高周波焼入れ性を向上させるのに有効な元素であるとともに、固溶強化によってフェライトの強度を向上させる元素でもある。しかしながら、Mnの含有量が0.20%未満の場合、前記作用による所望の効果が得られない。一方、2.0%を超えてMnを含有させると、被削性が低下して、深穴を加工することが困難になる。したがって、Mnの含有量を0.20~2.0%とした。なお、合金コストを低く抑えたうえで前記の効果を安定して得るために、Mnの含有量は、0.40%以上とすることが好ましく、また、1.50%以下とすることが好ましい。
 S:0.005~0.10%
 Sは、本発明において重要な元素である。Sは、Mnと結合してMnSを形成し、被削性、なかでも深穴を加工する際の切屑処理性を高めることで切削抵抗を低くする作用を有し、さらに延伸したMnSが亀裂の進展を抑制して靱性を高める効果を有する。しかしながら、Sの含有量が0.005%未満では、こうした効果が得られない。一方、Sの含有量が多くなって、MnSを多く形成しすぎると、逆に靱性を低下させる。したがって、Sの含有量を0.005~0.10%とした。なお、Sの含有量は、0.010%以上とすることが好ましく、0.015%以上とすればより好ましい。また、Sの含有量は、0.08%以下とすることが好ましい。
 Cr:0.01~2.0%
 Crは、高周波焼入れ性を向上させるのに有効な元素であるとともに、固溶強化によってフェライトの強度を向上させる元素であるため、0.01%以上含有させる必要がある。しかしながら、Crの含有量が2.0%を超えると、被削性が低下して、深穴を加工することが困難になる。したがって、Crの含有量を0.01~2.0%とした。なお、Crの含有量は、0.05%以上とすることが好ましく、0.10%以上とすればより好ましい。また、Crの含有量は、1.8%以下とすることが好ましい。
 Al:0.003~0.10%
 Alは、脱酸作用を有する。しかしながら、Alの含有量が0.003%未満の場合、前記作用による所望の効果が得られない。一方、Alの含有量が0.10%を超える場合には、高周波焼入れ性の低下が著しくなり、さらに、母材靱性の劣化も招く。したがって、Alの含有量を0.003~0.10%とした。なお、Alの含有量は、0.08%以下とすることが好ましい。一方、Alの脱酸効果を安定して得るためには、Alの含有量は、0.005%以上とすることが好ましく、0.010%以上とすれば一層好ましい。
 B:0.0005~0.0030%
 Bは、粒界を強化することにより、高温時のひずみの解放を抑え、かつ、高周波焼入れ性を向上させる作用、さらには高周波焼入れ時のオーステナイト粒界におけるPおよびSの偏析を抑制する作用を有し、その結果として、靱性が一層高まる。上記の効果はBの含有量が0.0005%以上で顕著である。しかしながら、0.0030%を超えてBを含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Bの含有量を0.0005~0.0030%とした。Bの含有量は0.0010%以上とすることが好ましく、また、0.0020%以下とすることが好ましい。
 Ti:0.047%以下
 Tiは、鋼中の不純物元素のNと優先的に結合し、Nを固定することで、BNの形成を抑制し、Bを固溶Bとして存在させる。そのため、Tiは、上記したBの、粒界を強化する効果、高周波焼入れ性を向上させる効果、ならびに高周波焼入れ時のオーステナイト粒界におけるPおよびSの偏析を抑制する効果を確保するのに有効な元素である。しかしながら、Tiの含有量が0.047%を超えると、母材靱性の著しい低下をきたす。このため、Tiの含有量を0.047%以下とした。
 Cu:0~1.0%
 Cuは、高周波焼入れ性を向上させ、母材靱性を高める作用を有するので、母材靱性向上のためにCuを含有させてもよい。しかしながら、Cuの含有量が1.0%を超えると、被削性が低下して、深穴を加工することが困難になる。したがって、含有させる場合のCuの量を1.0%以下とした。なお、Cuの量は、0.80%以下とすることが好ましい。
 一方、前記したCuの母材靱性向上効果を安定して得るためには、Cuの量は、0.05%以上とすることが好ましく、0.10%以上とすれば一層好ましい。
 Ni:0~3.0%
 Niは、高周波焼入れ性を向上させ、母材靱性を高める作用を有するので、母材靱性向上のためにNiを含有させてもよい。しかしながら、Niの含有量が3.0%を超えると、被削性が低下して、深穴を加工することが困難になる。したがって、含有させる場合のNiの量を3.0%以下とした。なお、Niの量は、2.0%以下とすることが好ましい。
 一方、前記したNiの母材靱性向上効果を安定して得るためには、Niの量は、0.05%以上とすることが好ましく、0.10%以上とすれば一層好ましい。
 Mo: 0~0.50%
 Moは、高周波焼入れ性を向上させ、母材靱性を高める作用を有するので、母材靱性向上のためにMoを含有させもよい。しかしながら、Moの含有量が0.50%を超えた場合、被削性が低下して、深穴を加工することが困難になる。したがって、含有させる場合のMoの量を0.50%以下とした。なお、Moの量は、0.40%以下とすることが好ましい。
 一方、前記したMoの母材靱性向上効果を安定して得るためには、Moの量は、0.05%以上とすることが好ましく、0.10%以上とすれば一層好ましい。
 なお、上記のCu、NiおよびMoは、そのうちのいずれか1種のみ、または2種以上の複合で含有させることができる。なお、これらの元素の合計量は、4.50%であっても構わないが、3.20%以下とすることが好ましい。
 Nb:0~0.10%
 Nbは、鋼中のCあるいはNと結合して炭化物あるいは炭窒化物を形成し、結晶粒を微細化する作用を有する。また、Nbには、鋼の強度を向上させる作用もある。しかしながら、Nbの含有量が0.10%を超えると、その効果が飽和してコストが嵩むのみならず、靱性の低下を招く。このため、含有させる場合のNbの量を0.10%以下とした。なお、Nbの量は、0.08%以下とすることが好ましい。
 一方、Nbの結晶粒微細化効果を安定して得るためには、Nbの量は、0.010%以上とすることが好ましく、0.015%以上とすれば一層好ましい。
 V:0~0.30%
 Vは、鋼中のCあるいはNと結合して炭化物あるいは炭窒化物を形成し、結晶粒を微細化する作用を有する。また、Vには、鋼の強度を向上させる作用もある。しかしながら、Vの含有量が0.30%を超えると、その効果が飽和してコストが嵩むのみならず、靱性の低下を招く。このため、含有させる場合のVの量を0.30%以下とした。なお、Vの量は、0.25%以下とすることが好ましい。
 一方、Vの結晶粒微細化効果を安定して得るためには、Vの量は、0.01%以上とすることが好ましく、0.02%以上とすれば一層好ましい。
 なお、上記のNbおよびVは、そのうちのいずれか1種のみ、または2種の複合で含有させることができる。なお、これらの元素の合計量は、0.40%であっても構わないが、0.33%以下とすることが好ましい。
 Ca: 0~0.005%
 Caは、鋼の被削性を向上させる作用を有する。このため、必要に応じてCaを含有させてもよい。しかしながら、Caの含有量が0.005%を超えると、熱間加工性の低下をきたし、製造性が低下してしまう。したがって、含有させる場合のCaの量を0.005%以下とした。Caの量は、0.0035%以下とすることが好ましい。
 一方、前記したCaの被削性向上効果を安定して得るためには、Caの量は、0.0005%以上とすることが望ましい。
 Pb:0~0.30%
 PbもCaと同様に、鋼の被削性を向上させる作用を有する。このため、必要に応じてPbを含有させてもよい。しかしながら、Pbの含有量が0.30%を超えると、前記の被削性向上効果は飽和し、熱間加工性が過度に低下し製造が困難となる。したがって、含有させる場合のPbの量を0.30%以下とした。
 一方、前記したPbの被削性向上効果を安定して得るためには、Pbの量は、0.05%以上とすることが望ましい。
 なお、上記のCaおよびPbは、そのうちのいずれか1種のみ、または2種の複合で含有させることができる。これらの元素の合計量は、0.30%以下であることが好ましい。
 本発明のステアリングラックバー用圧延丸鋼材の化学組成は、残部がFeおよび不純物であり、不純物中のPおよびNが、P:0.030%以下およびN:0.008%以下であり、さらに、
3.4N≦Ti≦3.4N+0.02・・・(1)
を満たすものである。
 P:0.030%以下
 Pは、鋼中に不純物として含有され、粒界偏析および中心偏析を起こし、母材靱性の低下を招き、特に、その含有量が0.030%を超えると、母材靱性の低下が著しくなる。したがって、Pの含有量を、0.030%以下とした。なお、Pの含有量は、0.020%以下にすることが好ましい。
 N:0.008%以下
 Nも、鋼中に不純物として含有される。Nは、Bとの親和力が大きく、鋼中のBと結合してBNを形成した場合には、Bを含有させたことによる、粒界を強化する効果、高周波焼入れ性を向上させる効果、ならびに高周波焼入れ時のオーステナイト粒界におけるPおよびSの偏析を抑制する効果が期待できない。特に、Nの含有量が多くなって0.008%を超えると、上記のBを含有させたことによる効果が得られない。したがって、Nの含有量を0.008%以下とした。
 3.4N≦Ti≦3.4N+0.02
 本発明に係るステアリングラックバー用圧延丸鋼材は、
3.4N≦Ti≦3.4N+0.02・・・(1)
の式を満たす化学組成でなければならない。既に述べたとおり、上記の(1)式中の元素記号は、その元素の質量%での含有量を意味する。
 これは、TiおよびNの含有量がたとえ上述した範囲にあっても、Tiの含有量が〔3.4N〕未満の場合には、Tiによる鋼中のNの固定が不十分となってNがBと結合してBNを形成するので、上述したBの効果を十分に発現することができず、一方、Tiの含有量が〔3.4N+0.02〕を超えると、母材の靱性低下が避けられないからである。
 2.ミクロ組織:
 本発明の圧延丸鋼材のミクロ組織は、フェライト、ラメラーパーライトおよびセメンタイトからなり、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライトの平均粒径が10μm以下、ラメラーパーライトの面積率が20%未満およびセメンタイトのうちの球状セメンタイトの個数が4×105個/mm2以上であり、さらに、中心部のラメラーパーライトの面積率が20%以上およびセメンタイトのうちの球状セメンタイトの個数が4×105個/mm2未満であり、しかも、その丸鋼材の中心線を通って圧延方向と平行な断面において、表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が3以上でなければならない。
 本発明の圧延丸鋼材の場合、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライトの平均粒径が10μmを超えた場合には、目標とする母材靱性を得ることが困難である。したがって、上記フェライトの平均粒径を10μm以下とした。なお、上記フェライトの平均粒径は8μm以下であることが好ましい。
 上記フェライトの平均粒径は、極力小さい方が結晶粒微細化による強化を図るうえで好ましいが、サブミクロンオーダーの結晶粒を形成するには、特殊な加工条件あるいは設備が必要となり工業的に実現することが困難である。したがって、工業上実現しうるサイズとしての上記フェライトの平均粒径の下限は1μm程度である。
 なお、上述の圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライトの平均粒径は、例えば、圧延丸鋼材の表面から1mmの位置、表面から半径の1/4位置(以下、「R/4位置」という。ただし、「R」は、圧延丸鋼材の半径を指し、以下も同様である。)および表面から半径の1/2位置(以下、「R/2位置」という。)の3箇所のフェライト粒径をそれぞれ求めた後、その3か所のフェライト粒径を算術平均することによって、求めればよい。
 また、本発明の圧延丸鋼材の場合、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のラメラーパーライトの面積率が20%以上になると、母材靱性の低下を招く。したがって、上記ラメラーパーライトの面積率を20%未満と規定した。上記ラメラーパーライトの面積率は、15%以下であることが好ましく、0%でもよい。
 なお、上述の圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のラメラーパーライトの面積率は、例えば、圧延丸鋼材の表面から1mmの位置、R/4位置およびR/2位置の3箇所のラメラーパーライトの面積率をそれぞれ求めた後、その3箇所のラメラーパーライトの面積率を算術平均することによって、求めればよい。
 さらに、本発明の圧延丸鋼材の場合、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域の球状セメンタイトの個数が4×105個/mm2を下回る場合には、母材靱性の低下を招く。したがって、上記球状セメンタイトの個数を4×105個/mm2以上とした。上記球状セメンタイトの個数は、5.0×105個/mm2以上であることが好ましく、また、1.0×1012個/mm2以下であることが好ましい。
 なお、上述の圧延方向と垂直な断面において、表面から半径の1/2位置までの領域の球状セメンタイトの個数は、例えば、圧延丸鋼材の表面から1mmの位置、R/4位置およびR/2位置の3箇所の球状セメンタイトの個数をそれぞれ求めた後、その3箇所の球状セメンタイトの個数を算術平均することによって、求めればよい。
 さらに、本発明のステアリングラックバー用圧延丸鋼材の場合、圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率が20%未満の場合には、靱性が高くなって切屑処理性が低下、すなわち切削抵抗が高くなり、被削性が低下する。したがって、上記ラメラーパーライトの面積率を20%以上と規定した。上記ラメラーパーライトの面積率は、25%以上であることが好ましく、また、80%以下であることが好ましい。既に述べたように、「中心部」とは、中心から、半径の1/4までの距離にある部位を指す。
 なお、上述の圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率は、例えば、圧延丸鋼材の表面から半径の3/4位置(以下、「3R/4位置」という。)および中心の2箇所のラメラーパーライトの面積率をそれぞれ求めた後、その2箇所のラメラーパーライトの面積率を算術平均することによって、求めればよい。
 本発明の圧延丸鋼材の場合、圧延方向と垂直な断面において、中心部の球状セメンタイトの個数が4×105個/mm2以上の場合には、靱性が高くなって切屑処理性が低下し切削抵抗が高くなり、被削性の低下を招く。したがって、上記球状セメンタイトの個数を4×105個/mm2未満と規定した。上記球状セメンタイトの個数は、0個/mm2でもよいが、1×102個/mm2以上であることが好ましく、また、3×105個/mm2以下であることが好ましい。
 なお、上述の圧延方向と垂直な断面において、中心部の球状セメンタイトの個数は、例えば、圧延丸鋼材の3R/4位置および中心の2箇所の球状セメンタイトの個数をそれぞれ求めた後、その2箇所の球状セメンタイトの個数を算術平均することによって、求めればよい。
 本発明の圧延丸鋼材の場合、その丸鋼材の中心線を通って圧延方向と平行な断面において、表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が3未満の場合には、圧延方向と垂直な断面に亀裂が進展しやすくなり、靱性の低下を招く。したがって、上記フェライトのアスペクト比を3以上とした。上記フェライトの平均アスペクト比は、4以上であることが好ましく、また、45以下であることが好ましい。
 なお、上述の丸鋼材の中心線を通って圧延方向と平行な断面において、フェライトの平均アスペクト比は、例えば、圧延丸鋼材の表面から1mmの位置、R/4位置およびR/2位置の3箇所のフェライトの平均アスペクト比をそれぞれ求めた後、その3箇所のフェライトの平均アスペクト比を算術平均することによって、求めればよい。
 上述した本発明の圧延丸鋼材のミクロ組織は、既に述べた化学組成を有する被圧延材を、例えば、次に示すように熱間圧延し、冷却することによって得ることができる。
 熱間圧延方法としては、2以上の圧延工程を備える全連続式熱間圧延方法が、本発明のステアリングラックバー用圧延丸鋼材を製造するのに適している。このため、以下の説明は、上述した全連続式熱間圧延方法による圧延(以下、単に「全連続式熱間圧延」という。)をベースにして行うこととする。
 既に述べた化学組成を有する被圧延材を、670~880℃の温度域に加熱した後、全連続式熱間圧延を開始する。
 加熱温度が880℃より高い場合は、歪が解放されやすくなり、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライト平均粒径、ラメラーパーライト面積率および球状セメンタイト個数のうち1つ以上が、前記「2.ミクロ組織」の項で述べた条件から外れる場合がある。また、加熱温度が670℃より低い場合は、前述の断面において、中心部のラメラーパーライト面積率および球状セメンタイト個数のうち1つ以上が、前記したミクロ組織条件から外れる場合がある。
 したがって、既に述べた化学組成を有する被圧延材を、670~880℃の温度域に加熱した後、全連続式熱間圧延を開始することが好ましい。
 なお、熱間圧延前に行う、上記の670~880℃という温度域での加熱においては、被圧延材(素材)の温度を所定の領域まで上昇させるだけではなく、素材の断面内温度を均一にするために、長時間にわたる加熱処理が行われることがあり、この場合には、素材表面にフェライト脱炭を生じることがある。したがって、上記フェライト脱炭を抑止するために、上記温度域での加熱時間は3時間以下とすることが好ましい。
 上記温度域に加熱した後に施す全連続式熱間圧延は、下記の条件〔1〕および〔2〕を満たすようにするのがよい。
 〔1〕被圧延材の表面温度が500~820℃であり、なおかつ650~820℃の温度範囲における累積減面率が30%以上であり、さらに500℃以上650℃未満の温度範囲における累積減面率が35%以上であること。ただし、上記「被圧延材の表面温度」には、後述する中間冷却工程中の被圧延材の表面温度は含まない。
 〔2〕「v(m/s)」を全連続式熱間圧延終了時点、つまり、最終の圧延機出側、での被圧延材速度(以下、「仕上速度」という。)、「Rd(%)」を全連続式熱間圧延の総減面率、「T(℃)」を被圧延材の加熱温度として、下記で表わされるfn(1)式が0以上を満たすものであること。
  fn(1)=v・Rd/100-(1000-T)/100
ただし、「総減面率」とは、全連続式熱間圧延における被圧延材の圧延前の断面積をA0、最終の圧延機を出た後の断面積をAfとした場合に、{(A0-Af)/A0}×100の式で求められる値(%)を指す。
 〔1〕については、圧延時に被圧延材の表面温度が820℃を上回ると、歪が解放されやすくなり、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライト平均粒径、ラメラーパーライト面積率および球状セメンタイト個数のうち1つ以上が、前記「2.ミクロ組織」の項で述べた条件から外れる場合がある。また、上記の温度が500℃より低い場合は、ミル負荷が著しく高くなるとともに、圧延時に割れが生じやすくなる。したがって、圧延時の被圧延材の表面温度は500~820℃であることが好ましい。
 さらに、650~820℃の温度範囲における累積減面率が30%を下回ると、圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライト平均粒径、ラメラーパーライト面積率および球状セメンタイト個数のうち1つ以上が、前記したミクロ組織条件から外れる場合がある。上記650~820℃における累積減面率の上限は、製造ラインの多大な増設を防ぐため、99.5%程度となる。
 また、500℃以上650℃未満の温度範囲における累積減面率が35%を下回ると、被圧延材の中心線を通って圧延方向と平行な断面における表面から半径の1/2位置までの領域のフェライトの平均アスペクト比および圧延方向と垂直な断面における表面から半径の1/2位置までの領域の球状セメンタイト個数のうち1つ以上が、前記したミクロ組織条件から外れる場合がある。500℃以上650℃未満における累積減面率の上限は、製造ラインの多大な増設を防ぐため、80%程度となる。
 〔2〕は、圧延方向と垂直な断面における中心部のミクロ組織を前記「2.ミクロ組織」の項で述べたものとするために、経験的に得られた式である。fn(1)が0未満となる場合、圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率および球状セメンタイトの個数のうち1つ以上が前記したミクロ組織条件から外れる場合がある。
 本発明におけるラックバー用圧延丸鋼材を圧延する際に、途中工程で水冷などの中間冷却を行ってもよい。なお、中間冷却工程中に、被圧延材の表面温度が500℃を一時的に下回ることがある。しかし、当該冷却により被圧延材の表面温度が500℃を下回った場合でも、被圧延材内部の顕熱により500℃以上の温度に復熱した後に次の圧延工程を開始すれば、冷却によって被圧延材の表面温度が一時的に500℃を下回った影響は無いものとしてよい。また、被圧延材の未変態オーステナイトが、マルテンサイトやベイナイトといった硬質相に変態してしまうと、本発明で規定するミクロ組織を得られない場合がある。これを防ぐために中間冷却工程は、被圧延材の表面温度が500℃を一時的に下回った後、500℃以上の温度に復熱するまでの時間Δtが10秒以下となるような冷却であることが望ましい。さらに、より安定した全連続式熱間圧延による製造を目指す上では、Δtが8秒以下となるような中間冷却工程であることが好ましい。
 上記のようにして全連続式熱間圧延を行って所定の形状に加工した後は、500℃までの温度域を表面の冷却速度が0.5~200℃/sの条件で最終冷却するのがよい。
 全連続式熱間圧延終了後、上記温度域における表面の冷却速度が0.5℃/s未満では、圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率および球状セメンタイトの個数のうち1つ以上が前記「2.ミクロ組織」の項で述べた条件から外れる場合があり、一方、表面の冷却速度が200℃/sを超えれば、未変態のオーステナイトが、マルテンサイトやベイナイトといった硬質相へ変態してしまう場合がある。
 以下、実施例により本発明をさらに詳しく説明する。
 (実施例1)
 表1に示す化学組成を有する鋼A~Zからなる角ビレット(160mm角で長さが10m)を準備した。
Figure JPOXMLDOC01-appb-T000001
 前記の角ビレットを、冷却設備を備えた全連続式熱間圧延ラインによって、表2に試験番号1~34として示した条件で直径34mmの棒鋼に圧延した。具体的には、粗圧延機列で直径60mmに、また中間圧延機列で直径50mmまで加工した後、仕上圧延機列で直径34mmの棒鋼まで加工して、「総減面率:Rd」が96.4%の熱間圧延を行った。
 ・粗圧延機列:8台の圧延機で構成、
 ・中間圧延機列:4台の圧延機で構成、
 ・仕上げ圧延機列:4台の圧延機で構成、
 ・冷却帯:粗圧延機列の8台目の圧延機と中間圧延機列の1台目の圧延機の間および、中間圧延機列の4台目の圧延機と仕上げ圧延機列の1台目の圧延機の間に設置。
 なお、放射温度計を用いて圧延時の被圧延材の表面温度および全連続式熱間圧延終了後の冷却過程での被圧延材の表面温度を測定するとともに、中間での冷却工程後、それに続く圧延工程開始時までの時間Δt’を測定した。
 全連続式熱間圧延終了後、つまり、仕上げ圧延機列の4台目の圧延機による圧延を終了した後は、大気中で放冷するか、風冷など冷却媒体を変化させることによって冷却速度を制御し、500℃まで最終冷却した。なお、その後の冷却は大気中で放冷した。
 表2において、粗圧延機列、中間圧延機列および仕上げ圧延機列をそれぞれ、「粗列」、「中間列」および「仕上列」と表記した。
 なお、表2に記載の粗列、中間列および仕上列欄における「入温度」と「出温度」はそれぞれ、放射温度計を用いて測定した粗列、中間列および仕上列へ、被圧延材が入る直前と、被圧延材が出た直後の時点での被圧延材の表面温度であり、圧延後500℃までの冷却速度は、放射温度計を用いて測定した上記の被圧延材の表面温度と、500℃までの冷却時間により求めた。
 なお、試験番号1~34について、中間での冷却工程後、それに続く圧延工程開始時までの時間Δt’は、いずれの場合も8秒以下であった。
Figure JPOXMLDOC01-appb-T000002
 さらに、上記のようにして得た各棒鋼について、次に示す方法で、ミクロ組織、引張特性、衝撃特性および被削性を調査した。
 直径34mmの各棒鋼から長さが20mmの試験片を切り出し、これらの試験片の圧延方向と垂直な断面および中心線を通って圧延方向と平行な断面がそれぞれ、被検面になるように樹脂に埋め込み、鏡面研磨した。
 圧延方向と垂直な断面については、先ず、3%硝酸アルコール(ナイタル液)で腐食してミクロ組織を現出させ、走査型電子顕微鏡(以下、「SEM」という。)で観察して、相の識別を行うとともに、フェライトの平均粒径およびラメラーパーライトの面積率を調査した。
 具体的には、表面から半径の1/2位置までの領域のミクロ組織について、表面から1mmの位置、表面から4.25mmの位置(R/4位置)および表面から8.5mmの位置(R/2位置)の計3箇所の組織を、倍率を2000倍としてSEMで各箇所あたり円周方向に90°刻みで計4視野ずつ合計12視野観察し、ミクロ組織を構成している相の識別を行うとともに、その撮影画像を用いて、画像解析ソフトによりフェライトの平均粒径およびラメラーパーライトの面積率を求めた。同様に、中心部のミクロ組織について、表面から12.75mmの位置(3R/4位置)および中心位置の計2箇所の組織を、倍率を2000倍としてSEMによって、3R/4位置については円周方向に90°刻みで4視野、中心位置については1視野の合計5視野観察し、ミクロ組織を構成している相の識別を行うとともに、その撮影画像を用いて、画像解析ソフトにより、フェライトの平均粒径およびラメラーパーライトの面積率を求めた。
 次いで、上記のナイタル液で腐食した試料を再度鏡面研磨した後、ピクリン酸アルコール(ピクラル液)で腐食し、SEMで観察して、表面から半径の1/2位置までの領域および中心部のそれぞれについて、面積1mm2あたりの球状セメンタイトの個数を調査した。すなわち、表面から半径の1/2位置までの領域については、上記した表面から1mmの位置、R/4位置およびR/2位置の計3箇所の組織を、倍率を5000倍としてSEMで各箇所あたり円周方向に90°刻みで計4視野ずつ合計12視野観察し、その撮影画像を用いて、画像解析ソフトにより各セメンタイトの長径Lと短径Wとを個々に測定し、L/Wが2.0以下であるセメンタイト、つまり、球状セメンタイトの個数をカウントし、最終的に面積1mm2あたりの球状セメンタイトの個数(個/mm2)を算出した。同様に、中心部については、上記した3R/4位置および中心位置の計2箇所の組織を、倍率を5000倍としてSEMで3R/4位置については円周方向に90°刻みで計4視野、中心位置については1視野の合計5視野観察し、その撮影画像を用いて、画像解析ソフトにより、面積1mm2あたりの球状セメンタイトの個数を算出した。
 一方、中心線を通って圧延方向と平行な断面については、鏡面研磨後、さらに電解研磨を行い、電子線後方散乱パターン法(以下、「EBSD」という。)によって観察を行った。
 具体的には、表面から半径の1/2位置までの領域のミクロ組織について、上記した表面から1mmの位置、R/4位置およびR/2位置の計3箇所の組織を、EBSDによって観察し、フェライトの方位を測定し、15°以上の方位差を粒界として画像解析することにより、フェライトの平均アスペクト比を求めた。
 引張特性は、直径34mmの各棒鋼のR/4位置が試験片の中心軸となるように、JIS Z 2241(2011)に規定される14A号試験片(ただし、平行部直径:4mm)を採取し、標点距離を20mmとして室温で引張試験を実施し、引張強度(MPa)を求めた。
 衝撃特性は、図1に模式的に示すようにノッチの方向が表面となり、直径34mmの各棒鋼のR/4位置がちょうどノッチ底位置となるように、既に述べたVノッチシャルピー衝撃試験片を採取し、25℃でシャルピー衝撃試験を実施して衝撃値(J/cm2)を求めた。
 被削性は、直径34mmの各棒鋼を長さ170mmに切断した後、直径8.0mmのガンドリルを用いて、下記の条件で、圧延方向と垂直な断面の中心を基準にして圧延方向に深さ150mmまで深穴加工を行った際のトルクを測定することによって切削抵抗を評価した。
  ・回転数:2300rpm、
 ・送り:0.05mm/rev、および
 ・給油圧:5MPa。
 なお、既に述べたように、母材靱性の目標は、衝撃値が160J/cm2以上である。被削性の目標は、切削抵抗の指標であるトルクが300N・cm以下であることとした。
 表3に、上記の各調査結果を示す。なお、表3においては、「圧延方向と垂直な断面」および「丸鋼材の中心線を通って圧延方向と平行な断面」をそれぞれ、「横断面」および「縦断面」と表記した。表3の「評価」欄における「○」印は、衝撃特性および被削性の目標をともに満足していることを指し、一方、「×」印は上記の目標のうち少なくとも一方が達成できていないことを指す。
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明で規定する化学組成とミクロ組織の条件を満たす試験番号1~17の棒鋼の場合、その評価は「○」であって、調質処理を行うことなく、目標とする特性(Vノッチシャルピー衝撃試験片を用いたシャルピー衝撃試験における試験温度25℃での衝撃値が160J/cm2以上という優れた母材靱性およびガンドリルにより深穴加工した時のトルクが300N・cm以下という優れた被削性)を有していることが明らかである。
 これに対して、本発明で規定する化学組成とミクロ組織の条件の少なくともいずれかから外れた試験番号18~34の棒鋼の場合、その評価は「×」であって、目標とする特性が得られておらず、調質処理の省略化はできないことが明らかである。
 すなわち、試験番号18の場合は、用いた鋼RのSi含有量が1.25%と高く、本発明で規定する値を上回るものである。このため、ガンドリルにより深穴加工した時のトルクが345N・cmと高い。
 試験番号19の場合、用いた鋼SのMn含有量が2.31%と高く、本発明で規定する値を上回るものである。このため、ガンドリルにより深穴加工した時のトルクが325N・cmと高い。
 試験番号20の場合、用いた鋼TのC含有量が0.62%と高く、本発明で規定する値を上回るものである。このため、Vノッチシャルピー衝撃値が105J/cm2と低い。
 試験番号21の場合、用いた鋼UのCr含有量が2.41%と高く、本発明で規定する値を上回るものである。このため、ガンドリルにより深穴加工した時のトルクが340N・cmと高い。
 試験番号22の場合、用いた鋼VがBを含まず、本発明で規定する化学組成から外れるとともに、圧延方向と垂直な断面における表面から半径の1/2位置までの領域のフェライトの平均粒径、ラメラーパーライトの面積率および球状セメンタイトの個数もそれぞれ、11.8μm、22.1%および2.1×105個/mm2と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が110J/cm2と低い。
 試験番号23の場合、用いた鋼WのN含有量が0.012%と高く、本発明で規定する値を上回るとともに、圧延方向と垂直な断面における表面から半径の1/2位置までの領域のフェライトの平均粒径および球状セメンタイトの個数もそれぞれ、11.2μmおよび3.8×105個/mm2と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が115J/cm2と低い。
 試験番号24の場合、用いた鋼XのTi含有量が0.057%と高く、本発明で規定する値を上回るものである。このため、Vノッチシャルピー衝撃値が145J/cm2と低い。
 試験番号25の場合、用いた鋼YのTi含有量が(1)式の下限である〔3.4N〕より低く、本発明で規定する条件から外れるとともに、圧延方向と垂直な断面における表面から半径の1/2位置までの領域のフェライトの平均粒径、ラメラーパーライトの面積率および球状セメンタイトの個数もそれぞれ、12.1μm、20.2%および2.9×105個/mm2と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が110J/cm2と低い。
 試験番号26の場合、用いた鋼ZのTi含有量が(1)式の上限である〔3.4N+0.02〕より高く、本発明で規定する条件から外れるものである。このため、Vノッチシャルピー衝撃値が130J/cm2と低い。
 試験番号27~31の場合、用いた鋼Bの化学組成は本発明で規定する条件を満たすものの、ミクロ組織が本発明で規定する範囲から外れている。このため、衝撃特性および被削性のうちのいずれか一方が目標に未達である。
 具体的には、試験番号27の場合、圧延方向と垂直な断面における表面から半径の1/2位置までの領域のフェライトの平均粒径、ラメラーパーライトの面積率および球状セメンタイトの個数がそれぞれ、14.1μm、32.8%、および4.0×104個/mm2と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が105J/cm2と低い。
 試験番号28の場合、中心線を通って圧延方向と平行な断面における表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が1.9と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が115J/cm2と低い。
 試験番号29の場合、圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率および球状セメンタイトの個数がそれぞれ、14.1%および5.1×105個/mm2と、本発明で規定する範囲から外れている。このため、ガンドリルにより深穴加工した時のトルクが320N・cmと高い。
 試験番号30の場合、圧延方向と垂直な断面における表面から半径の1/2位置までの領域の球状セメンタイトの個数が3.3×105個/mm2と、また中心線を通って圧延方向と平行な断面における表面から半径の1/2位置までの領域のフェライトの平均アスペクト比も1.6と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が110J/cm2と低い。
 試験番号31の場合、圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率および球状セメンタイトの個数がそれぞれ、17.2%および6.1×105個/mm2と、本発明で規定する範囲から外れている。このため、ガンドリルにより深穴加工した時のトルクが335N・cmと高い。
 試験番号32~34の場合、用いた鋼K、鋼Mおよび鋼Pの化学組成は本発明で規定する条件を満たすものの、ミクロ組織が本発明で規定する範囲から外れている。このため、衝撃特性および被削性のうち1つ以上が目標に未達である。
 具体的には、試験番号32の場合、中心線を通って圧延方向と平行な断面における表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が1.3と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が105J/cm2と低い。
 試験番号33の場合、圧延方向と垂直な断面において、中心部のラメラーパーライトの面積率および球状セメンタイトの個数がそれぞれ、14.5%および5.2×105個/mm2と、本発明で規定する範囲から外れている。このため、ガンドリルにより深穴加工した時のトルクが370N・cmと高い。
 試験番号34の場合、中心線を通って圧延方向と平行な断面における表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が2.6と、本発明で規定する範囲から外れている。このため、Vノッチシャルピー衝撃値が115J/cm2と低い。なお、本試験番号では粗列および仕上列にて650~820℃における圧延を実施しているが、この場合の累積減面率については、〔(粗列での減面率)+(100%-仕上列に入る直前の減面率)×仕上列の減面率〕として算出している。
 (実施例2)
 実施例1で得た試験番号2、試験番号11、試験番号13、試験番号16、試験番号20、試験番号28、試験番号32および試験番号34の直径34mmの棒鋼を用いて、ラックバーを模擬した試験片を作製した。
 先ず、直径34mmの棒鋼をショットピーニングして、表面スケールを除去し、その後、表面に潤滑油を付与した状態で直径31mmに引抜き加工を行った。
 次に、上記の引抜き材を、図2に示すステアリングラックバーを模擬した試験片に加工した。
 さらに、ラックバーの歯底相当部位における硬化層深さ(ビッカース硬さで450となる表面からの深さ)が1mmとなるように、高周波焼入れの条件を種々調整して高周波焼入れした。その後、高周波焼入れ後の割れの防止を目的として、180℃で2時間の焼戻し処理を行った。
 次いで、上記の高周波焼入れ後に焼戻しを行った試験片を用いて、図3に示すように、支点間距離180mm、押し込み速度1.0mm/minで3点曲げ試験を行い、「荷重-ストローク(押し込み距離)曲線」を採取し、最大荷重、すなわち、亀裂が生じて、荷重が変動した際の荷重を「亀裂発生荷重」とした。
 次に、3点曲げ試験後の試験片を強制破断した後、その破断面を外観撮影し、画像解析処理によって、全断面に対して、曲げ試験時に進展した亀裂の面積率を求めて、亀裂進展抵抗を評価した。なお、破損防止特性は上記曲げ試験時に進展した亀裂の面積率が30%以下であることを目標とした。
 表4に、上記の各調査結果を示す。なお、表4の「評価」欄における「○」印は曲げ試験時に進展した亀裂の面積率が30%以下であり目標を満足していることを指し、一方、「×」印は上記の目標を満足できていないことを指す。
Figure JPOXMLDOC01-appb-T000004
 表4から、本発明で規定する化学組成とミクロ組織の条件を満たす試験番号2、試験番号11、試験番号13および試験番号16の棒鋼を用いた試験番号35~38の場合、その評価は「○」であって、調質処理を行うことなく、3点曲げ試験時に進展した亀裂の面積率が30%以下という優れた特性を有していることが明らかである。
 これに対して、試験番号20の棒鋼を用いた試験番号39の場合、表3に示したように、そのVノッチシャルピー衝撃値が105J/cm2と低いため、3点曲げ試験においても進展した亀裂の面積率が80%と大きく、破損防止特性が低い。
 同様に、試験番号28の棒鋼を用いた試験番号40の場合、表3に示したように、そのVノッチシャルピー衝撃値が115J/cm2と低いため、3点曲げ試験においても進展した亀裂の面積率が65%と大きく、破損防止特性が低い。
 試験番号32の棒鋼を用いた試験番号41の場合も、表3に示したように、そのVノッチシャルピー衝撃値が105J/cm2と低いため、3点曲げ試験においても進展した亀裂の面積率が70%と大きく、破損防止特性が低い。
 試験番号34の棒鋼を用いた試験番号42の場合も、表3に示したように、そのVノッチシャルピー衝撃値が115J/cm2と低いため、3点曲げ試験においても進展した亀裂の面積率が60%と大きく、破損防止特性が低い。
 本発明のステアリングラックバー用圧延丸鋼材は、必ずしも高価なVを含有させる必要がなく、しかも、調質処理を行わずとも、圧延丸鋼材の状態でVノッチシャルピー衝撃試験片を用いたシャルピー衝撃試験における試験温度25℃での衝撃値が160J/cm2以上という高い母材靱性を有し、さらに、中心部に深穴を加工するための良好な被削性を有するので、ステアリングラックバーの素材として用いるのに好適である。
 また、本発明のステアリングラックバーは、上記ステアリングラックバー用圧延丸鋼材を非調質のまま用いることによって得ることができる。
 
 

 

Claims (5)

  1.  質量%で、
    C:0.38~0.55%、
    Si:1.0%以下、
    Mn:0.20~2.0%、
    S:0.005~0.10%、
    Cr:0.01~2.0%、
    Al:0.003~0.10%、
    B:0.0005~0.0030%、
    Ti:0.047%以下、
    Cu:0~1.0%、
    Ni:0~3.0%、
    Mo:0~0.50%、
    Nb:0~0.10%、
    V:0~0.30%、
    Ca:0~0.005%、
    Pb:0~0.30%、
    残部がFeおよび不純物であり、
    不純物中のPおよびNが、
    P:0.030%以下および
    N:0.008%以下であり、
    さらに、下記の(1)式を満たす化学組成を有するステアリングラックバー用圧延丸鋼材であって、
    ミクロ組織がフェライト、ラメラーパーライトおよびセメンタイトからなり、
    圧延方向と垂直な断面において、表面から半径の1/2位置までの領域のフェライトの平均粒径が10μm以下、ラメラーパーライトの面積率が20%未満およびセメンタイトのうちの球状セメンタイトの個数が4×105個/mm2以上であり、さらに、中心部のラメラーパーライトの面積率が20%以上およびセメンタイトのうちの球状セメンタイトの個数が4×105個/mm2未満であり、しかも、
    その丸鋼材の中心線を通って圧延方向と平行な断面において、表面から半径の1/2位置までの領域のフェライトの平均アスペクト比が3以上である、ステアリングラックバー用圧延丸鋼材。
      3.4N≦Ti≦3.4N+0.02・・・(1)
    上記の(1)式中の元素記号は、その元素の質量%での含有量を意味する。
  2.  質量%で、Cu:0.05~1.0%、Ni:0.05~3.0%およびMo:0.05~0.50%から選択される1種以上を含有する、請求項1に記載のステアリングラックバー用圧延丸鋼材。
  3.  質量%で、Nb:0.010~0.10%およびV:0.01~0.30%から選択される1種以上を含有する、請求項1に記載のステアリングラックバー用圧延丸鋼材。
  4.  質量%で、Ca:0.0005~0.005%およびPb:0.05~0.30%から選択される1種以上を含有する、請求項1に記載のステアリングラックバー用圧延丸鋼材。
  5.  請求項1から4までのいずれかに記載のステアリングラックバー用圧延丸鋼材を非調質のまま用いる、ステアリングラックバー。

     
PCT/JP2014/066200 2013-08-26 2014-06-18 ステアリングラックバー用圧延丸鋼材およびステアリングラックバー WO2015029553A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167007392A KR101773729B1 (ko) 2013-08-26 2014-06-18 스티어링 랙 바용 압연 환강재 및 스티어링 랙 바
EP14839024.8A EP3040435B9 (en) 2013-08-26 2014-06-18 Rolled round steel material for steering rack bar, and steering rack bar
CN201480047675.XA CN105492644B (zh) 2013-08-26 2014-06-18 转向齿条杆用轧制圆钢材以及转向齿条杆
JP2015534047A JP5987992B2 (ja) 2013-08-26 2014-06-18 ステアリングラックバー用圧延丸鋼材およびステアリングラックバー
PL14839024T PL3040435T3 (pl) 2013-08-26 2014-06-18 Walcowany okrągły materiał stalowy do pręta zębatki kierowniczej oraz pręt zębatki kierowniczej
US14/911,804 US9976206B2 (en) 2013-08-26 2014-06-18 Rolled round steel material for steering rack bar, and steering rack bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013174064 2013-08-26
JP2013-174064 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029553A1 true WO2015029553A1 (ja) 2015-03-05

Family

ID=52586132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066200 WO2015029553A1 (ja) 2013-08-26 2014-06-18 ステアリングラックバー用圧延丸鋼材およびステアリングラックバー

Country Status (7)

Country Link
US (1) US9976206B2 (ja)
EP (1) EP3040435B9 (ja)
JP (1) JP5987992B2 (ja)
KR (1) KR101773729B1 (ja)
CN (1) CN105492644B (ja)
PL (1) PL3040435T3 (ja)
WO (1) WO2015029553A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048426A (zh) * 2015-04-14 2016-10-26 现代自动车株式会社 用于热应变降低的转向齿条的碳钢组合物及其制造方法
JP2019502815A (ja) * 2015-12-17 2019-01-31 ポスコPosco 強度及び冷間加工性に優れた非調質線材及びその製造方法
CN114774774A (zh) * 2022-03-15 2022-07-22 江阴兴澄特种钢铁有限公司 一种大直径低偏析油缸活塞杆用圆钢及其制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760378B2 (ja) * 2016-07-27 2020-09-23 日本製鉄株式会社 機械構造用鋼
CN109252096A (zh) * 2018-10-10 2019-01-22 江阴兴澄特种钢铁有限公司 经济型重载卡车转向器齿条用43MnCrMoB钢及其生产方法
CN111304527B (zh) * 2018-12-11 2021-04-27 中内凯思汽车新动力***有限公司 钢质活塞及其制备方法
CN110106446B (zh) * 2019-06-24 2021-04-13 新余钢铁股份有限公司 一种400MPa级含Ti热轧带肋钢筋及其生产工艺
CN110284062B (zh) * 2019-06-29 2022-01-14 江阴兴澄特种钢铁有限公司 一种具有高强度、高韧性的大直径圆钢及其制造方法
WO2021009543A1 (en) * 2019-07-16 2021-01-21 Arcelormittal Method for producing a steel part and steel part
CN112359274A (zh) * 2020-09-29 2021-02-12 江苏永钢集团有限公司 一种高强度风电锚栓用圆钢及其制造方法
JP7385160B2 (ja) * 2020-09-30 2023-11-22 日本製鉄株式会社 鋼材
KR20220073051A (ko) * 2020-11-26 2022-06-03 현대자동차주식회사 랙바용 탄소강 및 이의 제조방법
CN114686755A (zh) * 2020-12-31 2022-07-01 扬州龙川钢管有限公司 一种大口径高强度bj890起重机臂架用无缝钢管及其中频热处理方法
CN113217603B (zh) * 2021-04-30 2023-02-24 四川固锐德科技有限公司 用于重载车主减***的圆柱轮及其制备方法
CN114717474A (zh) * 2022-03-01 2022-07-08 江阴兴澄特种钢铁有限公司 一种蜗杆曲柄销式转向器蜗杆用钢及其制造方法
CN114774790B (zh) * 2022-04-29 2023-08-15 南京工业大学 一种大尺寸低屈强比齿轮用圆钢及其制备方法
CN115369334B (zh) * 2022-08-18 2023-08-01 中天钢铁集团有限公司 一种工程机械截齿用钢aisi8740h的生产方法
CN116607079A (zh) * 2023-07-07 2023-08-18 江苏三鑫特殊金属材料股份有限公司 一种防锈耐磨高破碎性易切削的碳素钢及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214130A (ja) 2010-03-18 2011-10-27 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2011241468A (ja) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2011241466A (ja) 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2013147728A (ja) * 2011-12-19 2013-08-01 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809004B2 (ja) * 1998-02-24 2006-08-16 新日本製鐵株式会社 高強度特性と低熱処理歪み特性に優れた高周波焼入れ用鋼材とその製造方法
EP1584700A4 (en) 2003-01-17 2007-03-28 Jfe Steel Corp HIGH STRENGTH STEEL PRODUCT HAVING EXCELLENT WEAR RESISTANCE, AND PROCESS FOR PRODUCING THE SAME
JP4507494B2 (ja) * 2003-01-17 2010-07-21 Jfeスチール株式会社 疲労強度に優れた高強度鋼材の製造方法
JP4197459B2 (ja) * 2003-05-27 2008-12-17 株式会社ジェイテクト ステアリングラック用棒鋼
JP2010144226A (ja) * 2008-12-19 2010-07-01 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2010168624A (ja) * 2009-01-23 2010-08-05 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP5459062B2 (ja) * 2010-05-21 2014-04-02 新日鐵住金株式会社 高周波焼入れ用圧延鋼材およびその製造方法
CN105121685B (zh) * 2013-04-10 2017-03-08 新日铁住金株式会社 转向齿杆用轧制圆钢材和转向齿杆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214130A (ja) 2010-03-18 2011-10-27 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2011241468A (ja) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2011241466A (ja) 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd 高周波焼入れ用圧延鋼材およびその製造方法
JP2013147728A (ja) * 2011-12-19 2013-08-01 Kobe Steel Ltd 冷間加工用機械構造用鋼およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIS Z 2241, 2011
JIS Z 2242, 2005

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048426A (zh) * 2015-04-14 2016-10-26 现代自动车株式会社 用于热应变降低的转向齿条的碳钢组合物及其制造方法
US10407763B2 (en) * 2015-04-14 2019-09-10 Hyundai Motor Company Carbon steel composition for reduced thermal strain steering rack bar and method for manufacturing same
CN106048426B (zh) * 2015-04-14 2020-03-27 现代自动车株式会社 用于热应变降低的转向齿条的碳钢组合物及其制造方法
JP2019502815A (ja) * 2015-12-17 2019-01-31 ポスコPosco 強度及び冷間加工性に優れた非調質線材及びその製造方法
CN114774774A (zh) * 2022-03-15 2022-07-22 江阴兴澄特种钢铁有限公司 一种大直径低偏析油缸活塞杆用圆钢及其制造方法

Also Published As

Publication number Publication date
CN105492644B (zh) 2017-04-12
EP3040435A4 (en) 2016-10-05
KR20160045831A (ko) 2016-04-27
JP5987992B2 (ja) 2016-09-07
EP3040435B1 (en) 2017-11-01
PL3040435T3 (pl) 2018-04-30
JPWO2015029553A1 (ja) 2017-03-02
US20160186300A1 (en) 2016-06-30
EP3040435B9 (en) 2018-03-07
KR101773729B1 (ko) 2017-08-31
US9976206B2 (en) 2018-05-22
CN105492644A (zh) 2016-04-13
EP3040435A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5987992B2 (ja) ステアリングラックバー用圧延丸鋼材およびステアリングラックバー
JP6149927B2 (ja) ステアリングラックバー用圧延丸鋼材およびステアリングラックバー
JP4709944B2 (ja) 肌焼鋼、浸炭部品、及び肌焼鋼の製造方法
JP5482971B2 (ja) 冷間鍛造性に優れた鋼線材または棒鋼
WO2010116555A1 (ja) 冷間加工性、切削性、浸炭焼入れ後の疲労特性に優れた肌焼鋼及びその製造方法
EP3222743B1 (en) Rolled steel bar or rolled wire material for cold-forged component
WO2011158782A1 (ja) 鍛造クランクシャフト
KR20180082581A (ko) 냉간 단조 조질품용 압연 봉선
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
JP7168003B2 (ja) 鋼材
CA2966479A1 (en) Rolled steel bar or rolled wire rod for cold-forged component
US20190300994A1 (en) Steel for Induction Hardening
WO2017115842A1 (ja) 肌焼鋼、浸炭部品および肌焼鋼の製造方法
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP6766362B2 (ja) 浸炭時の粗大粒防止特性と疲労特性と被削性に優れた肌焼鋼およびその製造方法
JP4528363B1 (ja) 冷間加工性、切削性、浸炭焼入れ後の疲労特性に優れた肌焼鋼及びその製造方法
JP2011241465A (ja) 高周波焼入れ用圧延鋼材およびその製造方法
EP3279361B1 (en) Hot rolled bar or hot rolled wire rod, component, and manufacturing method of hot rolled bar or hot rolled wire rod
JP2011241468A (ja) 高周波焼入れ用圧延鋼材およびその製造方法
JP2018035421A (ja) 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼およびその製造方法
JP2017193766A (ja) 冷間鍛造用鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047675.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534047

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601848

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167007392

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014839024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839024

Country of ref document: EP