WO2015029427A1 - 角度位置検出装置 - Google Patents

角度位置検出装置 Download PDF

Info

Publication number
WO2015029427A1
WO2015029427A1 PCT/JP2014/004388 JP2014004388W WO2015029427A1 WO 2015029427 A1 WO2015029427 A1 WO 2015029427A1 JP 2014004388 W JP2014004388 W JP 2014004388W WO 2015029427 A1 WO2015029427 A1 WO 2015029427A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
vector length
conversion value
output
sampling command
Prior art date
Application number
PCT/JP2014/004388
Other languages
English (en)
French (fr)
Inventor
憲一 岸本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US14/913,376 priority Critical patent/US20160202088A1/en
Priority to JP2015533996A priority patent/JPWO2015029427A1/ja
Priority to CN201480048013.4A priority patent/CN105492870A/zh
Publication of WO2015029427A1 publication Critical patent/WO2015029427A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils

Definitions

  • the present invention relates to an angular position detection device using a resolver that excites one phase and outputs it in two phases.
  • a resolver is often used as a means for detecting the angular position of a motor mainly in the industrial field or electrical field.
  • the resolver is attached to the shaft of the motor.
  • the angular position of the motor is detected by a resolver.
  • the motor 113 is controlled based on the angular position detected by the resolver 101.
  • FIG. 24 is a block diagram showing an angular position detection device using a conventional resolver.
  • the resolver 101 employs a method of exciting one phase and outputting it to two phases.
  • the method of exciting one phase and outputting it to two phases is referred to as “one-phase excitation two-phase output”.
  • the resolver 101 is attached to a shaft that the motor 113 has.
  • the resolver 101 outputs an A-phase signal and a B-phase signal as a two-phase signal whose amplitude is modulated.
  • the A-phase signal and the B-phase signal have a phase difference of approximately 90 degrees.
  • the angular position detection device 1102 detects the angular position of the resolver 101 based on the two-phase signal detected by the resolver 101.
  • the angular position detection device 1102 outputs the detected angular position of the resolver 101 to the servo amplifier 112.
  • the servo amplifier 112 controls and drives the motor 113 according to the detected angular position.
  • the angular position detection device 1102 outputs an excitation signal.
  • the output excitation signal excites the resolver 101 via the buffer circuit 111.
  • the first analog-digital converter 103 converts the A-phase analog signal output from the resolver 101 into a digital value and outputs the digital value.
  • the second analog-digital converter 104 converts the B-phase analog signal output from the resolver 101 into a digital value and outputs the digital value.
  • the analog-digital converter may be referred to as an “AD converter”.
  • the timing for converting the analog signal to the digital signal is based on the sampling command signal output from the sampling command signal generation unit 1107.
  • the resolver digital conversion unit 105 converts the A-phase signal converted into a digital value by the first AD converter 103 and the B-phase signal converted into a digital value by the second AD converter 104 in the resolver 101. Is converted into a signal indicating the angular position.
  • the resolver digital conversion unit may be referred to as an “RD conversion unit”.
  • a method such as a tracking loop is used as a method for converting a digital value into a signal indicating the angular position of the resolver 101.
  • the A-phase signal and the B-phase signal converted into signals indicating the angular position of the resolver 101 are output to the servo amplifier 112 via the interface processing unit 110.
  • the interface processing unit may be referred to as an “IF processing unit”.
  • the servo amplifier 112 controls and drives the motor 113 according to the detected angular position of the resolver 101, that is, the angular position of the motor 113.
  • the sampling command signal generation unit 1107 adjusts the phase of the sampling command signal based on the reference signal output from the reference signal generation unit 108.
  • the sampling command signal generation unit 1107 outputs a sampling command signal whose phase is adjusted to the first AD converter 103 and the second AD converter 104.
  • Patent Document 1 A conventional angular position detection device as described above is disclosed in, for example, Patent Document 1.
  • FIG. 25 is a waveform diagram showing each signal in the conventional angular position detection device.
  • FIG. 25 shows the following waveform.
  • a waveform output from the resolver 101 is shown as the A-phase signal 15a1.
  • a waveform output from the resolver 101 is shown as the B-phase signal 15a2.
  • As the reference signal 15b a waveform output from the reference signal generation unit 108 is shown.
  • the sampling command signal generation unit 1107 adjusts the phase of the sampling command signal based on the reference signal 15b.
  • the sampling command signal generation unit 1107 outputs a sampling command signal whose phase is adjusted. As shown in FIG. 25, the sampling command signal generator 1107 outputs a sampling command signal at times t1 and t3. At times t1 and t3, the output of each of the A phase signal 15a1 and the B phase signal 15a2 output from the resolver 101 is maximized.
  • the angular position detection device performs analog-digital conversion of the A-phase signal 15a1 and the B-phase signal 15a2 at the timing when the A-phase signal 15a1 and the B-phase signal 15a2 output the maximum output.
  • the angular position detection device can detect the angular position of the resolver.
  • An angular position detection device targeted by the present invention includes a resolver, a sampling command signal generation unit, a first analog-digital converter, a second analog-digital converter, and a resolver digital conversion unit.
  • the resolver outputs an A-phase signal whose amplitude is modulated and a B-phase signal whose amplitude is modulated with a phase difference of 90 degrees between the A-phase signal and the A-phase signal.
  • the following four phases exist in at least one of the A phase signal and the B phase signal.
  • the first phase is when the signal magnitude is minimum.
  • the time when the magnitude of the signal is maximum is taken as the second phase.
  • the middle time when the phase changes from the first phase to the second phase is taken as the third phase.
  • the middle time when the second phase changes to the first phase is defined as the fourth phase.
  • the sampling command signal generation unit outputs a sampling command signal in each of the third phase and the fourth phase.
  • the first analog-digital converter receives a phase A signal when a sampling command signal is input, converts the magnitude of the input phase A signal into a digital value, and outputs a first AD conversion value. Is generated. The first analog-digital converter outputs the generated first AD conversion value.
  • the second analog-digital converter receives a B-phase signal when a sampling command signal is input, converts the magnitude of the input B-phase signal into a digital value, and outputs a second AD conversion value. Is generated. The second analog-digital converter outputs the generated second AD conversion value.
  • the resolver digital conversion unit receives the first AD conversion value and the second AD conversion value, and calculates the angular position of the resolver based on the input first AD conversion value and second AD conversion value.
  • the angle data shown is calculated.
  • the resolver digital conversion unit outputs the calculated angle data.
  • FIG. 1 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram showing each signal in the first embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram illustrating an average value calculation unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a waveform diagram showing each signal in the second embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a specific example of the resolver angle detection apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating an average value calculation unit according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram showing each signal in the first embodiment of the present invention.
  • FIG. 8 is a block diagram for explaining another specific example of the resolver angle detection apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram of an RD conversion unit as a comparative example compared in the second embodiment of the present invention.
  • FIG. 10 is a block diagram of the RD conversion unit in Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram illustrating another average value calculation unit according to Embodiment 2 of the present invention.
  • FIG. 12 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 3 of the present invention.
  • FIG. 13 is a block diagram of a sampling command signal generation unit in the third embodiment of the present invention.
  • FIG. 14 is a waveform diagram showing signals in the third embodiment of the present invention.
  • FIG. 9 is a block diagram of an RD conversion unit as a comparative example compared in the second embodiment of the present invention.
  • FIG. 10 is a block diagram of the RD conversion unit in Embodi
  • FIG. 15 is a waveform diagram showing changes in the vector length difference in the third embodiment of the present invention.
  • FIG. 16 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 4 of the present invention.
  • FIG. 17 is a block diagram illustrating an excitation signal generation unit according to Embodiment 4 of the present invention.
  • FIG. 18 is a block diagram illustrating another excitation signal generation unit according to Embodiment 4 of the present invention.
  • FIG. 19 is a block diagram illustrating another resolver angle detection apparatus according to Embodiment 4 of the present invention.
  • FIG. 20 is a block diagram illustrating still another excitation signal generation unit according to Embodiment 4 of the present invention.
  • FIG. 21 is a waveform diagram showing each signal in the fourth embodiment of the present invention.
  • FIG. 22 is a waveform diagram showing other signals in the fourth embodiment of the present invention.
  • FIG. 23 is a waveform diagram showing changes in the vector length value according to the fourth embodiment of the present invention.
  • FIG. 24 is a block diagram showing an angle detection device using a conventional resolver.
  • FIG. 25 is a waveform diagram showing each signal in the conventional angle detection apparatus.
  • the angular position detection device has good response and high detection accuracy due to the configuration described later.
  • the angular position detection device can adjust the timing at which the AD converter detects the signal output from the resolver when detecting the angular position of the motor from the resolver via the AD converter.
  • the timing detected by the AD converter is adjusted by a sampling command signal.
  • the sampling command signal can be adjusted including fluctuation factors such as variations in resolver characteristics, changes in ambient temperature surrounding the resolver, and changes in the resolver over time. Therefore, the angular position detection device in the embodiment of the present invention can detect the angular position of the motor using the resolver stably and accurately.
  • the conventional angular position detection device has the following improvements. That is, the signal output from the resolver exists only twice in one cycle when the signal output is maximized. Therefore, it is difficult for the conventional angular position detection device to increase the responsiveness for detecting the angular position by shortening the sampling period of the signal output from the resolver.
  • the resolver signal amplitude value that can be used to adjust the timing exists only twice in one period. Therefore, there is a problem that the adjustment accuracy of the timing for outputting the sampling command signal is deteriorated or the adjustment time is extended.
  • the embodiment of the present invention provides an angular position detection device using a resolver that can detect the angular position output from the resolver with high responsiveness.
  • the embodiment of the present invention can adjust the timing at which the sampling command signal is output more accurately. Therefore, it is possible to provide an angular position detection device with good responsiveness and high detection accuracy.
  • FIG. 1 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram showing each signal in the first embodiment of the present invention.
  • the angular position detection device 102 includes a resolver 101, a sampling command signal generation unit 107, a first analog-digital converter 103, and a second analog-digital conversion.
  • Device 104 and resolver digital conversion unit 105 are shown in FIG. 1, the angular position detection device 102 according to the first embodiment of the present invention.
  • the resolver 101 outputs an A-phase signal whose amplitude is modulated and a B-phase signal whose amplitude is modulated with a phase difference of 90 degrees between the A-phase signal and the A-phase signal.
  • the first phase is when the magnitude of the A phase signal or the B phase signal is minimized.
  • the second phase is when the magnitude of the A-phase signal or the B-phase signal is maximized.
  • the middle time when the phase changes from the first phase to the second phase is taken as the third phase.
  • the middle time when the second phase changes to the first phase is defined as the fourth phase.
  • the sampling command signal generation unit 107 outputs a sampling command signal in each of the third phase and the fourth phase.
  • the first analog-digital converter 103 When a sampling command signal is input, the first analog-digital converter 103 receives an A-phase signal, converts the magnitude of the input A-phase signal into a digital value, and performs a first AD conversion. Generate a value. The first analog-digital converter 103 outputs the generated first AD conversion value.
  • the second analog-to-digital converter 104 receives a B-phase signal when a sampling command signal is input, converts the magnitude of the input B-phase signal into a digital value, and performs second AD conversion. Generate a value. The second analog-digital converter 104 outputs the generated second AD conversion value.
  • the resolver digital conversion unit 105 receives the first AD conversion value and the second AD conversion value, and the angle of the resolver 101 based on the input first AD conversion value and second AD conversion value. Angle data indicating the position is calculated. The resolver digital conversion unit 105 outputs the calculated angle data.
  • the magnitude of the signal can be translated into the absolute value of the signal.
  • the resolver angular position detection device has good responsiveness and high accuracy.
  • the resolver 101 is a one-phase excitation two-phase output method and is attached to a shaft of the motor 113.
  • the resolver 101 outputs a two-phase signal, one is called an A-phase signal and the other is called a B-phase signal.
  • the A-phase signal and the B-phase signal have a phase difference of approximately 90 degrees, and the amplitude is modulated.
  • the angular position detection device 102 of the resolver 101 detects the angular position of the resolver 101 from this two-phase signal and outputs it to the servo amplifier 112.
  • the servo amplifier 112 controls the motor 113 and drives the motor 113 according to the angular position detected by the angular position detection device 102. Further, the angular position detection device 102 of the resolver 101 outputs an excitation signal to the resolver 101 via the buffer circuit 111 to excite the resolver 101.
  • the first analog-digital converter 103 converts the A-phase analog signal output from the resolver 101 into a digital value.
  • the second analog-digital converter 104 converts the B-phase analog signal output from the resolver 101 into a digital value.
  • the timing at which the first AD converter 103 and the second AD converter 104 convert the analog signal into a digital value follows the sampling command signal output from the sampling command signal generation unit 107.
  • the resolver digital conversion unit 105 converts the signals converted into digital values by the first AD converter 103 and the second AD converter 104 into signals indicating the angular position of the resolver 101.
  • a method such as a tracking loop is used as a method for converting a signal converted into a digital value into a signal indicating the angular position of the resolver 101.
  • a signal indicating the angular position of the resolver 101 is output to the servo amplifier 112 via the interface processing unit 110.
  • the servo amplifier 112 controls the motor 113 and drives the motor 113 based on the detected angular position of the resolver 101, that is, the angular position of the motor 113.
  • the sampling command signal generation unit 107 outputs a sampling command signal to the first AD converter 103 and the second AD converter 104 based on the reference signal output from the reference signal generation unit 108. Output.
  • the excitation signal generator 109 generates an excitation signal based on the reference signal output from the reference signal generator 108, and outputs the generated excitation signal.
  • the resolver angular position detection device configured as described above functions as a motor control device. The operation and action of the resolver angular position detection device will be described below.
  • FIG. 2 shows an A phase signal, a B phase signal, and the like output from the resolver 101.
  • An A-phase signal 2 a 1 and a B-phase signal 2 a 2 shown in FIG. 2 are signals obtained by amplitude-modulating the excitation signal (sin ⁇ t) inside the resolver 101.
  • the A-phase signal 2a1 and the B-phase signal 2a2 have a phase difference of 90 degrees and are modulated in amplitude.
  • the angular position of the resolver 101 is ⁇
  • the A-phase signal 2a1 is represented by Asin ⁇ sin ⁇ t
  • the B-phase signal 2a2 is represented by Acos ⁇ sin ⁇ t.
  • A means amplitude in the signal of each phase.
  • the reference signal generator 108 is output from the reference signal generator 108.
  • the excitation signal generator 109 generates an excitation signal based on the input reference signal 2b.
  • the reference signal 2b is repeatedly output at the same cycle as the A-phase signal 2a1 and the B-phase signal 2a2 output from the resolver 101.
  • the A-phase signal 2a1 and the B-phase signal 2a2 output from the resolver 101 have amplitudes Is assumed to be zero.
  • the amplitudes of the A-phase signal 2a1 and the B-phase signal 2a2 output from the resolver 101 at time t1 between time t0 and time t2 and at time t3 between time t2 and time t4 are maximum. It becomes.
  • the sampling command signal generation unit 1107 outputs a sampling command signal at time t1 and time t3.
  • the first AD converter 103 and the second AD converter 104 to which the sampling command signal is input convert the signal output from the resolver 101 into a digital value, and the amplitude of each signal is sent to the RD converter 105. Output.
  • the RD conversion unit 105 performs conversion processing for deriving the angular position of the resolver 101 from the amplitude of each input signal.
  • the sampling command signal generation unit 107 outputs a sampling command signal at a later-described time indicated by a dotted line in FIG. That is, the time indicated by the dotted line is the time t5 between the time t0 and the time t1, the time t6 between the time t1 and the time t2, the time t7 between the time t2 and the time t3, and the time t3.
  • the time t8 is an intermediate time t4.
  • the amplitudes of the A-phase signal 2a1 and the B-phase signal 2a2 converted into digital values by the first AD converter 103 and the second AD converter 104 are input to the RD conversion unit 105.
  • the RD conversion unit 105 performs conversion processing for deriving the angular position of the resolver 101 from the input amplitude.
  • the sampling opportunity increases to four times for one cycle of the excitation signal.
  • the A-phase signal 2a1 and the B-phase signal 2a2 are detected with equal amplitude.
  • the angular position detection device 102 can obtain twice as much responsiveness as the conventional method without degrading the detection accuracy of the angular position.
  • the sampling command signal generation unit 107 is configured so that the magnitudes of the A-phase signal 2a1 and the B-phase signal 2a2, that is, the absolute values of the signals 2a1 and 2a2, are the maximum and minimum phases.
  • a sampling command signal is output at a phase located in the middle.
  • the RD conversion unit 105 performs conversion for deriving the angular position of the resolver 101 from the digital values output from the first AD converter 103 and the second AD converter 104 at every timing when the sampling command signal is output. Process.
  • the cycle in which the conversion process is performed is shortened to half of the conventional one.
  • the A-phase signal 2a1 and the B-phase signal 2a2 are sampled with equal amplitude. Therefore, the angular position detection device 102 according to the first embodiment of the present invention has good responsiveness and can detect the angle of the resolver 101 with high accuracy.
  • FIG. 3 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 2 of the present invention.
  • the angular position detection device shown in the second embodiment is different from the angular position detection device described in the first embodiment in a resolver digital conversion unit.
  • the angular position detection device shown in the second embodiment includes a resolver digital conversion unit having a function of performing an averaging process.
  • the angular position detection device 302 is an average resolver digital conversion unit in place of the resolver digital conversion unit 105 in the angular position detection device 102 described in the first embodiment. 300.
  • the average resolver digital conversion unit 300 includes an average value calculation unit 114 and a resolver digital conversion unit 105.
  • the first AD conversion value output from the first analog-digital converter 103 is the past first AD conversion value.
  • the first analog-digital signal is output in accordance with the sampling command output from the sampling command signal generation unit 107.
  • the first AD conversion value newly output from the converter 103 is set as a new first AD conversion value.
  • the second AD conversion value output from the second analog-digital converter 104 is a past second AD conversion value.
  • the second analog-digital signal is output in accordance with the sampling command output from the sampling command signal generation unit 107.
  • the second AD conversion value newly output from the converter 104 is set as a new second AD conversion value.
  • the resolver 101 uses the past first AD conversion value, the new first AD conversion value, the past second AD conversion value, and the new second AD conversion value.
  • Angle data indicating the angular position is calculated.
  • the average value calculation unit 114 includes a past first AD conversion value, a new first AD conversion value, a past second AD conversion value, Then, the averaging process is performed based on at least two of the new second AD conversion values.
  • the resolver digital conversion unit 105 includes at least two or more of a past first AD conversion value, a new first AD conversion value, a past second AD conversion value, and a new second AD conversion value.
  • the angle data is calculated based on the value of, and the calculated angle data is output.
  • the angle detection error is caused by a phase shift included in the two-phase signal output from the resolver 101. Therefore, the angular position detection device 302 according to the second embodiment can easily realize highly accurate angular position detection.
  • the average resolver digital conversion unit 300 three modes in which the average value calculation unit 114 is attached to different positions with respect to the resolver digital conversion unit 105 will be described.
  • the three aspects are: 1. When the average value calculation unit is located on the output side of the resolver digital conversion unit. The case where the average value calculation unit is located on the input side of the resolver digital conversion unit is 3, and the case where the average value calculation unit is located inside the resolver digital conversion unit.
  • FIG. 4 is a block diagram illustrating an average value calculation unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a waveform diagram showing each signal in the second embodiment of the present invention.
  • the angular position detection device 302 includes an average resolver digital conversion unit 300 having a resolver digital conversion unit 105 and an average value calculation unit 114.
  • the resolver digital conversion unit 105 receives the first AD conversion value and the second AD conversion value.
  • the resolver digital conversion unit 105 calculates angle data indicating the angular position of the resolver 101 based on the input first AD conversion value and second AD conversion value.
  • the resolver digital conversion unit 105 outputs the calculated angle data.
  • the average value calculation unit 114 includes an angle data storage unit 401 and an angle data average unit 402.
  • the angle data storage unit 401 stores the angle data output from the resolver digital conversion unit 105 according to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase. .
  • the angle data storage unit 401 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or in the third phase that occurs immediately after the fourth phase.
  • the angle data newly output from the resolver digital conversion unit 105 is stored as new angle data in place of the stored angle data.
  • the angle data averaging unit 402 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the angle data output from the resolver digital conversion unit 105 is input as new angle data.
  • the angle data stored in the angle data storage unit 401 before the third phase or before the fourth phase is input as past angle data.
  • the angle data averaging unit 402 calculates an average value of past angle data and new angle data, and outputs the calculated average value.
  • the angular position detection device 302 of the resolver 101 is different from the angular position detection device 102 described in Embodiment 1 in that the RD conversion unit 105 is replaced with an average resolver digital conversion unit 300.
  • the difference is that an average value calculation unit 114 is added to the output side of the RD conversion unit 105 inside the angular position detection device 102 described in the first embodiment.
  • the average resolver digital conversion unit may be referred to as an “average RD conversion unit”.
  • the average value calculation unit 114 will be described with reference to FIG.
  • the average value calculation unit 114 stores the input signal in the angle data storage unit 401.
  • the angle data storage unit 401 stores angle data that is an input signal for one sampling.
  • angle data that is a new signal is input to the average value calculation unit 114.
  • the angle data storage unit 401 outputs the angle data stored before one sampling to the angle data averaging unit 402 as past angle data.
  • the angle data storage unit 401 stores angle data, which is a newly input signal, as new angle data.
  • the angle data averaging unit 402 calculates an average value using the new angle data input from the RD conversion unit 105 and the past angle data input from the angle data storage unit 401.
  • the angle data averaging unit 402 outputs the calculated average value.
  • FIG. 5 shows an A phase signal, a B phase signal, and the like output from the resolver 101.
  • the excitation signal is sin ⁇ t
  • the angular position of the resolver 101 is ⁇
  • the signal amplitude is A.
  • the A-phase signal 5a1 is represented by Asin ⁇ sin ⁇ t
  • the B-phase signal 5a2 is represented by Acos ⁇ sin ⁇ t.
  • FIG. 5 shows a reference signal 5b.
  • the A phase signal and the B phase signal are slightly out of phase with each other. Let this phase shift be ⁇ . Reflecting the phase shift, the A-phase signal 5a1 is represented by Asin ⁇ sin ⁇ t, and the B-phase signal 5a3 is represented by Acos ⁇ sin ( ⁇ t + ⁇ ). In general, the phase shift ⁇ is a value of about ⁇ 0.1 degrees.
  • the output value of the RD conversion unit 105 fluctuates for each sampling in which the sampling command signal is output. To do. As shown in FIG. 5, the output value 5c1 of the RD conversion unit is indicated by a dotted line.
  • the width of this fluctuation is the maximum width of the phase shift ⁇ . If the phase shift ⁇ is 0.1 degree, the fluctuation width is 6 minutes.
  • an angular position detection device 302 having an average value calculation unit 114 is used. At this time, fluctuations in the output value of the average RD conversion unit 300 are canceled out. As shown in FIG. 5, the output value 5c2 of the average RD conversion unit having a flat waveform after the fluctuation is canceled is indicated by a solid line.
  • the value obtained by detecting the angular position of the resolver 101 is averaged by the average value calculation unit 114 before and after one sampling.
  • the value averaged by the average value calculation unit 114 is output as the angular position of the resolver 101. If the averaged output value is used, the angle of the resolver 101 can be detected with good responsiveness and high accuracy.
  • the angle data storage unit 401 stores only one sampling of angle data, and updates and stores new angle data as needed.
  • angle data stored in the angle data storage unit 401 is not limited to one sampling, and a plurality of predetermined samplings may be stored.
  • the angle data stored in the angle data storage unit 401 is for one sampling, the calculation in the angle data averaging unit 402 is accelerated, and the responsiveness is improved. On the other hand, when the angle data stored in the angle data storage unit 401 stores a plurality of samplings, the accuracy of the average value calculated by the angle data averaging unit 402 is improved.
  • the angular position detection device 302 of the resolver shown in FIG. 3 is somewhat less responsive than the angular position detection device 102 of the resolver 101 shown in FIG.
  • the angular position detection device 302 of the resolver 101 shown in FIG. 3 has a response that is about 1.5 times faster than the angular position detection device 1102 of the conventional resolver 101 shown in FIG. ing.
  • the magnitude of the A phase signal and the B phase signal that is, the phase of the A phase output from the resolver 101 in the phase that is located approximately in the middle of the phase where the absolute value is maximum and the phase where the absolute value is minimum.
  • the amplitude of the signal and the B-phase signal is about 0.7 times the maximum value.
  • FIG. 6 is a block diagram illustrating a specific example of the resolver angle detection apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating an average value calculation unit according to Embodiment 2 of the present invention.
  • the angular position detection device 502 includes an average resolver digital conversion unit 300 having a resolver digital conversion unit 105 and an average value calculation unit 514.
  • the average value calculation unit 514 includes an A-phase average value calculation unit 503 and a B-phase average value calculation unit 504.
  • the A-phase average value calculation unit 503 includes a first AD conversion value storage unit 511 and a first AD conversion value average unit 512.
  • the first AD conversion value storage unit 511 responds to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the first AD conversion value output from the first analog-digital converter 103 is stored.
  • the first AD conversion value storage unit 511 is output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the first AD conversion value newly output from the first analog-digital converter 103 is replaced with the stored first AD conversion value, and a new first AD conversion value is obtained. Store as a value.
  • the first AD conversion value averaging unit 512 is output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or in the third phase that occurs immediately after the fourth phase. In response to the sampling command, the first AD conversion value output from the first analog-digital converter 103 is input as a new first AD conversion value.
  • the first AD conversion value averaging unit 512 stores the first AD conversion value stored in the first AD conversion value storage unit 511 before the third phase or the fourth phase in the past. Input as the first AD conversion value.
  • the first AD conversion value averaging unit 512 calculates an average value of the past first AD conversion value and the new first AD conversion value, and averages the calculated average value. Output as converted value.
  • the B-phase average value calculation unit 504 includes a second AD conversion value storage unit 521 and a second AD conversion value average unit 522.
  • the second AD conversion value storage unit 521 receives the second analog-to-digital converter 104 from the second analog-digital converter 104 according to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the output second AD conversion value is stored.
  • the second AD conversion value storage unit 521 is output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the second AD conversion value newly output from the second analog-digital converter 104 is replaced with the new second AD conversion value instead of the stored second AD conversion value. Store as a value.
  • the second AD conversion value averaging unit 522 is output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or in the third phase that occurs immediately after the fourth phase.
  • the second AD conversion value output from the second analog-digital converter 104 is input as a new second AD conversion value in response to the sampling command.
  • the second AD conversion value averaging unit 522 stores the second AD conversion value stored in the second AD conversion value storage unit 521 before the third phase or before the fourth phase. Input as the second AD conversion value.
  • the second AD conversion value averaging unit 522 calculates an average value of the past second AD conversion value and the new second AD conversion value, and averages the calculated average value. Output as converted value.
  • the resolver digital conversion unit 105 receives the averaged first AD conversion value and the averaged second AD conversion value.
  • the resolver digital conversion unit 105 calculates angle data indicating the angular position of the resolver 101 based on the input averaged first AD conversion value and averaged second AD conversion value.
  • the resolver digital conversion unit 105 outputs the calculated angle data.
  • the angular position detection device 502 of the resolver 101 is different from the angular position detection device 102 described in the first embodiment in that the RD conversion unit 105 is replaced with an average resolver digital conversion unit 300.
  • an average value calculation unit 514 is added to the input side of the RD conversion unit 105 inside the angular position detection device 102 described in the first embodiment.
  • the average value calculation unit 514 includes an A phase average value calculation unit 503 and a B phase average value calculation unit 504.
  • the A-phase average value calculation unit 503 and the B-phase average value calculation unit 504 will be described with reference to FIG.
  • the A-phase average value calculation unit 503 and the B-phase average value calculation unit 504 are respectively 1. It has the same function as the average value calculation unit 114 described in the aspect. Therefore, the A-phase average value calculation unit 503 will be described below on behalf of both.
  • the description of the A-phase average value calculation unit 503 is cited.
  • the A-phase average value calculation unit 503 stores the input signal in the first AD conversion value storage unit 511.
  • the first AD conversion value storage unit 511 stores the first AD conversion value, which is an input signal, for one sampling.
  • the first AD conversion value which is a new signal
  • the first AD conversion value storage unit 511 After the one sampling, the first AD conversion value, which is a new signal, is input to the A-phase average value calculation unit 503.
  • the first AD conversion value storage unit 511 outputs the first AD conversion value stored before one sampling to the first AD conversion value averaging unit 512 as the past first AD conversion value. To do.
  • the first AD conversion value storage unit 511 stores the first AD conversion value, which is a newly input signal, as a new first AD conversion value.
  • the first AD conversion value averaging unit 512 includes a new first AD conversion value input from the first AD converter 103 and a past input from the first AD conversion value storage unit 511. The average value is calculated using the first AD conversion value. The first AD conversion value averaging unit 512 outputs the calculated average value.
  • the A-phase signal converted into a digital value by the first AD converter 103 is input to the A-phase average value calculation unit 503. Then, after the above-described averaging process is performed, the averaged first AD conversion value is input to the RD conversion unit 105.
  • the B-phase signal converted into a digital value by the second AD converter 104 is input to the B-phase average value calculation unit 504. Then, after the above-described averaging process is performed, the averaged second AD conversion value is input to the RD conversion unit 105.
  • the A-phase signal 5a1 and the B-phase signal 5a2 output from the resolver 101 have a slight phase shift from each other.
  • the above-described 1 As described in detail in the embodiment, when the angular position detection device 102 that does not have the average value calculation unit 114 described in the first embodiment is used, the output value of the RD conversion unit 105 is the sampling command signal. Fluctuate every sampling. As shown in FIG. 5, the output value 5c1 of the RD conversion unit is indicated by a dotted line.
  • the values obtained by detecting the angular position of the resolver 101 before and after one sampling are averaged by an average value calculation unit 514, which is an average value calculation unit 514, and an average value calculation unit 504 for B phase, respectively.
  • a value averaged by the A-phase average value calculation unit 503 and the B-phase average value calculation unit 504, which are the average value calculation unit 514, is output as the angular position of the resolver 101. If the averaged output value is used, the angle of the resolver 101 can be detected with good responsiveness and high accuracy.
  • the first AD conversion value storage unit 511 stores the first AD conversion value for only one sampling, and updates and stores the new AD conversion value as needed. To do.
  • the first AD conversion value stored in the first AD conversion value storage unit 511 is not limited to one sampling, and a plurality of predetermined samplings may be stored.
  • the calculation in the first AD conversion value averaging unit 512 is accelerated, and the responsiveness is improved. To do.
  • the first AD conversion value stored in the first AD conversion value storage unit 511 stores a plurality of samplings, the accuracy of the average value calculated by the first AD conversion value averaging unit 512 Will improve.
  • the angular position detection device 502 of the resolver 101 shown in FIG. 6 is somewhat less responsive than the angular position detection device 102 of the resolver 101 shown in FIG.
  • the angular position detection device 502 of the resolver 101 shown in FIG. 6 has a response that is about 1.5 times faster than the angular position detection device 1102 of the conventional resolver 101 shown in FIG. ing.
  • the magnitude of the A phase signal and the B phase signal that is, the phase of the A phase output from the resolver 101 in the phase that is located approximately in the middle of the phase where the absolute value is maximum and the phase where the absolute value is minimum.
  • the amplitude of the signal and the B-phase signal is about 0.7 times the maximum value.
  • FIG. 8 is a block diagram for explaining another specific example of the resolver angle detection apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram of an RD conversion unit as a comparative example compared in the second embodiment of the present invention.
  • FIG. 10 is a block diagram of the RD conversion unit in Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram illustrating another average value calculation unit according to Embodiment 2 of the present invention.
  • the angular position detection device 702 in this aspect includes an average resolver digital conversion unit 300 having a resolver digital conversion unit 705 and an average value calculation unit 714.
  • the resolver digital conversion unit 705 when the first AD conversion value and the second AD conversion value are input, based on the input first AD conversion value and the input second AD conversion value, The angular position ⁇ of the resolver 101 is calculated from the rotation angle ⁇ of the resolver 101.
  • the resolver digital conversion unit 705 calculates a deviation signal sin ( ⁇ ) from the input first AD conversion value and the input second AD conversion value, and calculates the calculated deviation signal sin ( A tracking loop 707 for calculating the angular position ⁇ of the resolver 101 by converging ⁇ ) to zero.
  • the resolver digital conversion unit 705 outputs angle data from the calculated angular position ⁇ .
  • the average value calculation unit 714 includes a deviation signal storage unit 711 and a deviation signal average unit 712.
  • the deviation signal storage unit 711 is used in the tracking loop 707 according to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the calculated deviation signal is stored.
  • the deviation signal storage unit 711 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the deviation signal newly calculated by the tracking loop 707 is stored as a new deviation signal in place of the stored deviation signal.
  • the deviation signal averaging unit 712 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the deviation signal calculated by the tracking loop 707 is input as a new deviation signal.
  • the deviation signal averaging unit 712 receives the deviation signal stored in the deviation signal storage unit 711 before the third phase or before the fourth phase as a past deviation signal.
  • the deviation signal averaging unit 712 calculates an average value of the past deviation signal and the new deviation signal, and outputs the calculated average value.
  • the resolver angular position detection device 702 is different from the angular position detection device 102 described in Embodiment 1 in that the RD conversion unit 105 is replaced with an average RD conversion unit 300. More precisely, the difference is that an average value calculation unit 714 is added to the inside of the RD conversion unit 105 inside the angular position detection device 102 described in the first embodiment.
  • the average RD conversion unit 300 will be described with reference to FIGS. 9 and 10.
  • the RD conversion unit 1815 is called a tracking loop.
  • the A-phase signal (sin ⁇ ) is input from the first AD converter to the RD converter 1815.
  • the A-phase signal input to the RD conversion unit 1815 is input to the first multiplication unit 1801.
  • the A-phase signal is multiplied by the cosine wave signal (cos ⁇ ) output from the cosine wave table 1805.
  • the A-phase signal multiplied by the cosine wave signal is output from the first multiplier 1801 to the difference unit 1803.
  • a B-phase signal (cos ⁇ ) is input from the second AD converter to the RD conversion unit 1815.
  • the B-phase signal input to the RD conversion unit 1815 is input to the second multiplication unit 1802.
  • the B-phase signal is multiplied by the sine wave signal (sin ⁇ ) output from the sine wave table 1806.
  • the B-phase signal multiplied by the sine wave signal is output from the second multiplier 1802 to the difference unit 1803.
  • the difference unit 1803 the difference between the output value of the first multiplier 1801 and the output value of the second multiplier 1802 is calculated, and an error signal (sin ( ⁇ )) is calculated as a result of the calculation. Is done.
  • the calculated error signal is input to a proportional-integral controller (Proportional-Integral Controller) 1804.
  • PI controller Proportional-Integral Controller
  • the PI controller 1804 performs integration processing, gain multiplication processing, and the like. As a result of the integration processing and gain multiplication processing, the PI controller 1804 outputs the angular position ⁇ of the resolver 101.
  • the angular position ⁇ of the resolver 101 output from the PI controller 1804 is input to the cosine wave table 1805 and the sine wave table 1806.
  • the value of the angular position ⁇ of the resolver 101 the value of the cosine wave signal (cos ⁇ ) is input to the cosine wave table 1805.
  • the value of the angular position ⁇ of the resolver 101 is input to the sine wave table 1806 as the value of the sine wave signal (sin ⁇ ).
  • the RD conversion unit 1815 performs conversion processing for calculating the angular position of the resolver 101 from the input A-phase signal and B-phase signal.
  • the average RD conversion unit 300 includes an average value calculation unit 714 in addition to the RD conversion unit 705 constituting the tracking loop 707.
  • the error signal (sin ( ⁇ )) output from the difference unit 1803 is input to the average value calculation unit 714.
  • the average value calculation unit 714 performs an averaging process on the input error signal.
  • the averaged error signal is output from the average value calculation unit 714 to the PI controller 1804.
  • the average value calculation unit 714 will be described with reference to FIG.
  • the average value calculation unit 714 includes: It has the same function as the average value calculation unit 114 described in the aspect.
  • the average value calculation unit 714 stores the input signal in the deviation signal storage unit 711.
  • the deviation signal storage unit 711 stores a deviation signal, which is an input signal, for one sampling.
  • a deviation signal that is a new signal is input to the average value calculation unit 714.
  • the deviation signal storage unit 711 outputs the deviation signal stored before one sampling to the deviation signal averaging unit 712 as a past deviation signal.
  • the deviation signal storage unit 711 stores a deviation signal, which is a newly input signal, as a new deviation signal.
  • the deviation signal averaging unit 712 calculates an average value using the new deviation signal input from the difference unit 1803 and the past deviation signal input from the deviation signal storage unit 711.
  • the deviation signal averaging unit 712 outputs the calculated average value.
  • the angular position detection device 702 is operated by the average value calculation unit 714.
  • the same effect is obtained with the A-phase average value calculation unit 503 and the B-phase average value calculation unit 504 described in the above aspect.
  • the A-phase signal 5a1 and the B-phase signal 5a2 output from the resolver 101 have a slight phase shift from each other.
  • the above-described 1 As described in detail in the embodiment, when the angular position detection device 102 that does not have the average value calculation unit 114 described in the first embodiment is used, the output value of the RD conversion unit 105 is the sampling command signal. Fluctuate every sampling. As shown in FIG. 5, the output value 5c1 of the RD conversion unit is indicated by a dotted line.
  • an angular position detection device 702 having an average value calculation unit 714 is used. At this time, fluctuations in the output value of the average RD conversion unit 300 are canceled out. As shown in FIG. 5, the output value 5c2 of the average RD conversion unit having a flat waveform after the fluctuation is canceled is indicated by a solid line.
  • the value obtained by detecting the angular position of the resolver 101 is averaged by the average value calculation unit 714 before and after one sampling.
  • the value averaged by the average value calculation unit 714 is output as the angular position of the resolver 101. If the averaged output value is used, the angle of the resolver 101 can be detected with good responsiveness and high accuracy.
  • the deviation signal storage unit 711 stores the deviation signal for one sampling, and updates and stores a new deviation signal as needed.
  • the deviation signal stored in the deviation signal storage unit 711 is not limited to one sampling, and a plurality of predetermined samplings may be stored.
  • the deviation signal stored in the deviation signal storage unit 711 is for one sampling, the calculation in the deviation signal averaging unit 712 is accelerated, and the responsiveness is improved. On the other hand, when the deviation signal stored in the deviation signal storage unit 711 stores a plurality of samplings, the accuracy of the average value calculated by the deviation signal averaging unit 712 is improved.
  • the angular position detection device 702 of the resolver 101 shown in FIG. 8 is somewhat less responsive than the angular position detection device 102 of the resolver 101 shown in FIG.
  • the angular position detection device 702 of the resolver 101 shown in FIG. 8 has a response that is about 1.5 times faster than the angular position detection device 1102 of the conventional resolver 101 shown in FIG. ing.
  • the magnitude of the A phase signal and the B phase signal that is, the phase of the A phase output from the resolver 101 in the phase that is located approximately in the middle of the phase where the absolute value is maximum and the phase where the absolute value is minimum.
  • the amplitude of the signal and the B-phase signal is about 0.7 times the maximum value.
  • FIG. 12 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 3 of the present invention.
  • FIG. 13 is a block diagram of a sampling command signal generation unit in the third embodiment of the present invention.
  • FIG. 14 is a waveform diagram showing signals in the third embodiment of the present invention.
  • FIG. 15 is a waveform diagram showing changes in the vector length difference in the third embodiment of the present invention.
  • a vector length calculation unit is added to the angular position detection device described in the first embodiment.
  • the angular position detection device 602 according to the third embodiment of the present invention further includes a vector length calculation unit 106 in the angular position detection device 102 described in the first embodiment.
  • the vector length calculation unit 106 outputs the first analog / digital converter 103 output in response to the sampling command output from the sampling command signal generation unit 607 in the third phase or the fourth phase.
  • the AD conversion value and the second AD conversion value output from the second analog-digital converter 104 are input.
  • the vector length calculation unit 106 calculates a vector length indicating the magnitude of the vector based on the input first AD conversion value and second AD conversion value, and outputs the calculated vector length.
  • the sampling command signal generation unit 607 has a vector length storage unit 611 and a timing adjustment unit 612.
  • the vector length storage unit 611 includes a vector length calculation unit according to the sampling command output from the sampling command signal generation unit 607 in the third phase or the fourth phase.
  • the vector length output by 106 is stored as the first vector length.
  • the vector length storage unit 611 responds to the sampling command output from the sampling command signal generation unit 607 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the vector length newly output by the vector length calculation unit 106 is stored as a new first vector length instead of the stored first vector length.
  • the timing adjustment unit 612 responds to the sampling command output from the sampling command signal generation unit 607 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the vector length output by the vector length calculation unit 106 is input as the second vector length.
  • the timing adjustment unit 612 receives the first vector length stored in the vector length storage unit 611 before the third phase or the fourth phase, and receives the first vector length and the second vector length. The timing at which the sampling command signal is output is adjusted so that the difference between the two becomes zero.
  • the angular position detection device 602 can easily realize highly accurate angular position detection.
  • the angular position detection device 602 of the resolver 101 is different from the angular position detection device 102 described in Embodiment 1 in that a vector length calculation unit 106 is added.
  • the sampling command signal generation unit 607 also has a specific function.
  • the vector length calculation unit 106 receives the output of the first AD converter 103 and the output of the second AD converter 104. The vector length calculation unit 106 calculates the vector length based on the input outputs of the first AD converter 103 and the second AD converter 104. The vector length calculation unit 106 outputs the calculated vector length.
  • the sampling command signal generation unit 607 outputs a sampling command signal to the first AD converter 103 and the second AD converter 104 based on the input signal of the reference signal generation unit 108.
  • the sampling command signal generation unit 607 has a function of adjusting the phase of the sampling command signal based on the vector length output from the vector length calculation unit 106.
  • the sampling command signal generation unit 607 will be described with reference to FIG.
  • the sampling command signal generation unit 607 stores the input signal in the vector length storage unit 611.
  • the vector length storage unit 611 stores the first vector length, which is an input signal, for one sampling.
  • the vector length storage unit 611 After the one sampling, the second vector length that is a new signal is input to the timing adjustment unit 612. At this time, the vector length storage unit 611 outputs the first vector length stored before one sampling to the timing adjustment unit 612. The vector length storage unit 611 stores the newly input signal as a new first vector length.
  • the timing adjustment unit 612 performs a sampling command so that the difference between the second vector length input from the vector length calculation unit 106 and the first vector length input from the vector length storage unit 611 is zero. Adjust the signal output timing.
  • FIG. 14 shows an A-phase signal 7a1 and a B-phase signal 7a2 output from the resolver 101.
  • the A-phase signal 7 a 1 and the B-phase signal 7 a 2 are signals obtained by amplitude-modulating the excitation signal (sin ⁇ t) inside the resolver 101.
  • the A-phase signal 7a1 and the B-phase signal 7a2 are amplitude-modulated with a phase difference of 90 degrees from each other.
  • the A-phase signal 7a1 is represented by Asin ⁇ sin ⁇ t
  • the B-phase signal 7a2 is represented by Acos ⁇ sin ⁇ t.
  • A means the amplitude of the signal.
  • the A-phase signal 7a1 and the B-phase signal 7a2 are amplitude-modulated with a phase difference of 90 degrees from each other. Therefore, when these two signals are considered as vectors, the vector length indicating the length of the vector is represented by the square root of the following equation.
  • the vector length described above always has a constant amplitude regardless of the angular position ⁇ of the resolver 101.
  • the vector length is a signal synchronized with the reference signal, the A-phase signal 7a1, and the B-phase signal 7a2.
  • the angular position detection device 602 can easily and accurately detect the vector length. Since the vector length can be detected easily and accurately, the angular position detection device 602 can determine the optimum timing for outputting the sampling command signal from the sampling command signal generation unit 607.
  • FIG. 14 shows a vector length value 7b and a reference signal 7c.
  • the vector length value 7 b is output from the vector length calculation unit 106.
  • the reference signal 7c is output from the reference signal generation unit 108.
  • the sampling command signal generator 607 outputs four sampling command signals at regular intervals. This corresponds to a phase difference of 90 degrees.
  • the sampling command signal generation unit 607 outputs a sampling command signal at times t1, t2, t3, and t4.
  • the vector length at time t1 and the vector length at time t2 are values that are greatly different from each other.
  • the vector length at time t3 and the vector length at time t4 are values that are greatly different from each other.
  • the times t1, t2, t3, and t4 are from the time corresponding to the phase in which the magnitude of the A-phase signal and the magnitude of the B-phase signal are located approximately in the middle between the maximum phase and the minimum phase. It's off.
  • the excitation signal (sin ⁇ t) is generated by the excitation signal generation unit 109 based on the reference signal 7 c and then input to the resolver 101 via the buffer circuit 111.
  • the phase relationship among the reference signal 7c, the A-phase signal 7a1, and the B-phase signal 7a2 is as follows. That is, (1) an excitation signal is generated from the reference signal 7c. (2) The generated excitation signal is transmitted to the first AD converter 103 and the second AD converter 104 via the resolver 101. (3) Based on the transmitted excitation signal, the A-phase signal 7a1 and the B-phase signal 7a2 are converted into digital values. The reference signal 7c, the A-phase signal 7a1, and the B-phase signal 7a2 are affected by the phase delay, delay, etc. that occur in the transmission process from (1) to (3).
  • each component arranged in the transmission path described above may also be affected by temperature changes and changes over time. Therefore, it is necessary to adjust the timing for the sampling command signal.
  • the sampling command signal generation unit 607 adjusts the timing of the sampling command signal to be output so that the vector lengths are equal in the output timing of the sampling command signal. Specifically, the sampling command signal generation unit 607 calculates the difference between the value held before one sampling and the latest value for the value of the vector length output by the vector length calculation unit 106. The sampling command signal generation unit 607 adjusts the timing of the sampling command signal so that the difference becomes zero.
  • the sampling command signal is output at times t5, t6, t7, and t8 shown in FIG.
  • the vector lengths at time t5 and time t6 are substantially the same value.
  • the vector lengths at time t7 and time t8 are also substantially the same value.
  • the time interval at which the sampling command signal is output corresponds to a phase difference of 90 degrees. Therefore, the times t5, t6, t7, and t8 naturally correspond to phases in which the magnitude of the A-phase signal and the magnitude of the B-phase signal are located approximately in the middle between the maximum phase and the minimum phase. It is time.
  • the sampling command signal has a phase shift amount ⁇ from a phase located approximately in the middle.
  • the difference between the value of the vector length and the value of the vector length stored until one sampling is a curve 15 of a sine wave function via the origin zero. Therefore, by forming a negative feedback loop in a region where the phase shift amount ⁇ is relatively small, the timing at which the sampling command signal is output can be adjusted so that the phase shift amount ⁇ automatically becomes zero. it can.
  • the sampling command signal generation unit 607 uses the vector length calculation unit 106 to adjust the timing for outputting the sampling command signal.
  • the vector length calculation unit 106 uses the output value of the first AD converter 103 and the output value of the second AD converter 104 that are output according to the timing at which the sampling command signal is output, to Calculate the size.
  • the sampling command signal generation unit 607 stores the output value of the vector length calculation unit 106 output before one sampling.
  • the sampling command signal generation unit 607 compares the output values before and after one sampling output from the vector length calculation unit 106, and adjusts the timing for outputting the sampling command signal so that the difference becomes zero.
  • the sampling command signal generation unit 607 outputs the sampling command signal at a phase where the magnitude of the A phase signal and the magnitude of the B phase signal are located approximately in the middle between the maximum phase and the minimum phase. it can. Therefore, for example, with the configuration shown in FIG. 12, the angular position detection device 602 according to the third embodiment can always detect the angle of the resolver 101 stably and with high accuracy.
  • the above-described processing can be performed by acquiring the vector length four times in one cycle of the excitation signal. Therefore, the angular position detection device 602 according to the third embodiment can adjust the timing of the sampling command signal to be output in a shorter period than before.
  • the vector length is calculated using a square root operation.
  • the calculation of the vector length need not be constrained by the square root operation.
  • the calculation of the vector length may omit the square root calculation.
  • FIG. 16 is a block diagram illustrating a resolver angle detection apparatus according to Embodiment 4 of the present invention.
  • FIG. 17 is a block diagram illustrating an excitation signal generation unit according to Embodiment 4 of the present invention.
  • FIG. 18 is a block diagram illustrating another excitation signal generation unit according to Embodiment 4 of the present invention.
  • FIG. 19 is a block diagram illustrating another resolver angle detection apparatus according to Embodiment 4 of the present invention.
  • FIG. 20 is a block diagram illustrating still another excitation signal generation unit according to Embodiment 4 of the present invention.
  • FIG. 21 is a waveform diagram showing each signal in the fourth embodiment of the present invention.
  • FIG. 22 is a waveform diagram showing other signals in the fourth embodiment of the present invention.
  • FIG. 23 is a waveform diagram showing changes in the vector length value 23 in the fourth embodiment of the present invention.
  • the angular position detection device shown in the fourth embodiment further includes a vector length calculation unit and an excitation signal generation unit compared to the angular position detection device described in the first embodiment.
  • the angular position detection device 902 is different from the angular position detection device 102 described in the first embodiment with a vector length calculation unit 106 and an excitation signal generation unit 909. And further comprising.
  • the vector length calculation unit 106 outputs the first analog-to-digital converter 103 output in response to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the AD conversion value and the second AD conversion value output from the second analog-digital converter 104 are input.
  • the vector length calculation unit 106 calculates a vector length indicating the magnitude of the vector based on the input first AD conversion value and second AD conversion value, and outputs the calculated vector length.
  • the excitation signal generation unit 909 includes a vector length storage unit 911 and a phase adjustment unit 912.
  • the vector length storage unit 911 includes a vector length calculation unit according to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the vector length output by 106 is stored as the first vector length.
  • the vector length storage unit 911 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the vector length newly output by the vector length calculation unit 106 is stored as a new first vector length instead of the stored first vector length.
  • the phase adjustment unit 912 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the vector length output by the vector length calculation unit 106 is input as the second vector length.
  • the phase adjustment unit 912 receives the first vector length stored in the vector length storage unit 911 before the third phase or the fourth phase, and receives the first vector length and the second vector length.
  • the phase of the excitation signal for exciting the resolver 101 is adjusted so that the difference between them becomes zero.
  • the angular position detection device According to such a configuration, the timing at which the sampling command signal is output is relatively adjusted. Therefore, the angular position detection device according to the fourth embodiment can easily realize highly accurate angular position detection.
  • the angular position detection device 902 may have the following configuration.
  • the excitation signal generation unit 909 further includes a rectangular wave pulse generation unit 1002 and an amplitude adjustment unit 1003.
  • the rectangular wave pulse generation unit 1002 outputs a first rectangular wave pulse based on the adjustment result of the phase adjustment unit 912.
  • the amplitude adjustment unit 1003 receives the first rectangular wave pulse, and adjusts the amplitude of the excitation signal for exciting the resolver 101 according to the input first rectangular wave pulse. Is output.
  • the amplitude of the signal output from the resolver that is, the amplitude of the input signal of the first AD converter and the amplitude of the input signal of the second AD converter are appropriate values. Adjusted to Therefore, the angular position detection device according to the fourth embodiment can easily realize highly accurate angular position detection.
  • the angular position detection device 902 may be configured to further include a sine wave conversion unit 1004.
  • the sine wave conversion unit 1004 receives the second rectangular wave pulse, converts the input second rectangular wave pulse into a sine wave having the same frequency as that of the second rectangular wave pulse, and converts the second rectangular wave pulse. Outputs a sine wave.
  • the phase of the excitation signal can be easily adjusted.
  • the sine wave conversion unit 1004 may be a low-pass filter. With such a configuration, sine wave conversion processing can be easily realized.
  • another angular position detection device 902 according to the fourth embodiment of the present invention is different from the angular position detection device 102 described in the first embodiment in terms of a reference signal generation unit 108 and a vector.
  • a length calculation unit 106 and an excitation signal generation unit 909 are further provided.
  • the reference signal generator 108 generates a reference signal given to the resolver 101 and outputs the generated reference signal.
  • the vector length calculation unit 106 outputs the first analog-to-digital converter 103 output in response to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the AD conversion value and the second AD conversion value output from the second analog-digital converter 104 are input.
  • the vector length calculation unit 106 calculates a vector length indicating the magnitude of the vector based on the input first AD conversion value and second AD conversion value, and outputs the calculated vector length.
  • the excitation signal generation unit 909 includes a vector length storage unit 1011, a vector length difference calculation unit 1001, and a rectangular wave pulse generation unit 1002.
  • the vector length storage unit 1011 includes a vector length calculation unit according to the sampling command output from the sampling command signal generation unit 107 in the third phase or the fourth phase.
  • the vector length output by 106 is stored as the first vector length.
  • the vector length storage unit 1011 responds to the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the vector length newly output by the vector length calculation unit 106 is stored as a new first vector length instead of the stored first vector length.
  • the vector length difference calculation unit 1001 receives the sampling command output from the sampling command signal generation unit 107 in the fourth phase that occurs immediately after the third phase or the third phase that occurs immediately after the fourth phase.
  • the first sampling command is input.
  • the vector length difference calculation unit 1001 receives the vector length output from the vector length calculation unit 106 in response to the first sampling command as the second vector length.
  • the vector length difference calculation unit 1001 receives the first vector length stored in the vector length storage unit 1011 and receives a vector length difference that is a difference generated between the first vector length and the second vector length. The signal is calculated, and the calculated vector length difference signal is output.
  • the rectangular wave pulse generation unit 1002 receives the vector length difference signal output from the vector length difference calculation unit 1001 and the reference signal output from the reference signal generation unit 108.
  • the rectangular wave pulse generation unit 1002 generates a rectangular wave pulse so that the difference between the first vector length and the second vector length becomes zero according to the vector length difference signal and the reference signal, and generates the generated rectangular wave. A wave pulse is output.
  • the angular position detection device 902 according to Embodiment 4 of the present invention may be configured to further include an amplitude adjustment unit 1003.
  • the amplitude adjustment unit 1003 receives the first rectangular wave pulse, and adjusts the amplitude of the excitation signal for exciting the resolver according to the input first rectangular wave pulse. Output.
  • the angular position detection device 902 may be configured to further include a sine wave conversion unit 1004.
  • the sine wave conversion unit 1004 receives the second rectangular wave pulse, converts the input second rectangular wave pulse into a sine wave having the same frequency as that of the second rectangular wave pulse, and converts the second rectangular wave pulse. Outputs a sine wave.
  • the sine wave conversion unit 1004 may be a low-pass filter.
  • the angular position detection device 902 of the resolver 101 has a characteristic feature of the excitation signal generation unit 909 compared to the angular position detection device described in the first embodiment.
  • the excitation signal generation unit 909 receives the vector length value output from the vector length calculation unit 106 and the reference signal output from the reference signal generation unit 108.
  • the excitation signal generation unit 909 generates an excitation signal based on each input signal and the like.
  • the excitation signal generation unit 909 outputs the generated excitation signal.
  • the vector length difference calculation unit 1001 receives the vector length signal output from the vector length calculation unit 106 and the sampling command signal output from the sampling command signal generation unit 107. .
  • the vector length difference calculation unit 1001 calculates the difference between the vector length value and the value stored until one sampling.
  • the vector length difference calculation unit 1001 outputs the calculated result.
  • the rectangular wave pulse generator 1002 outputs a rectangular wave pulse based on the reference signal.
  • the rectangular wave pulse generation unit 1002 has a function of adjusting the phase of the rectangular wave pulse output from the rectangular wave pulse generation unit 1002 by reflecting the value of the vector length difference output from the vector length difference calculation unit 1001.
  • the amplitude adjusting unit 1003 adjusts the amplitude of the rectangular wave pulse output from the rectangular wave pulse generating unit 1002 and outputs the adjusted result.
  • the sine wave conversion unit 1004 converts the rectangular wave pulse output from the amplitude adjustment unit 1003 into a sine wave having the same frequency, and outputs the converted result.
  • the result of this conversion is an excitation signal output from the excitation signal generation unit 909.
  • the sine wave conversion unit 1004 can use a switched capacitor filter having a steep low-pass cutoff characteristic. If a switched capacitor filter is used as the sine wave conversion unit 1004, the sine wave conversion unit 1004 can be easily realized.
  • FIG. 14 shows an A-phase signal 7a1 and a B-phase signal 7a2 output from the resolver 101.
  • FIG. 14 also shows a vector length value 7 b output from the vector length calculation unit 106 and a reference signal 7 c output from the reference signal generation unit 108. Similar to the third embodiment of the present invention described above, these signals are also common in the angular position detection device 902 of the resolver 101 in the fourth embodiment of the present invention.
  • the sampling command signal generator 107 outputs four sampling command signals at regular intervals. This corresponds to a phase difference of 90 degrees.
  • the sampling command signal generator 107 outputs a sampling command signal at times t1, t2, t3, and t4.
  • the vector length at time t1 and the vector length at time t2 are values that are greatly different from each other.
  • the vector length at time t3 and the vector length at time t4 are values that are greatly different from each other.
  • the times t1, t2, t3, and t4 are from the time corresponding to the phase in which the magnitude of the A-phase signal and the magnitude of the B-phase signal are located approximately in the middle between the maximum phase and the minimum phase. It's off.
  • the excitation signal (sin ⁇ t) is generated by the excitation signal generation unit 909 based on the reference signal 7 c and then input to the resolver 101 via the buffer circuit 111.
  • the phase relationship among the reference signal 7c, the A-phase signal 7a1, and the B-phase signal 7a2 is as follows. That is, (1) an excitation signal is generated from the reference signal 7c. (2) The generated excitation signal is transmitted to the first AD converter 103 and the second AD converter 104 via the resolver 101. (3) Based on the transmitted excitation signal, the A-phase signal 7a1 and the B-phase signal 7a2 are affected by the phase delay, delay, etc. that occur in the transmission process from (1) to (3). receive.
  • each component arranged in the transmission path described above may also be affected by temperature changes and changes over time. Therefore, as with the third embodiment, it is necessary to adjust the timing for the sampling command signal.
  • FIG. 21 shows the reference signal 11a.
  • FIG. 21 shows a rectangular wave pulse signal 11b output from the rectangular wave pulse generation unit 1002 in the initial state.
  • FIG. 21 shows a signal output from the sine wave conversion unit 1004 in the initial state, that is, the excitation signal 11d output from the excitation signal generation unit 909.
  • the vector lengths are greatly different from each other at times t1, t2, t3, and t4 shown in FIG. That is, the vector length difference value output by the vector length difference calculation unit 1001 is deviated from zero.
  • the phase of the rectangular wave pulse output by the rectangular wave pulse generation unit 1002 is changed so that the value of the vector length difference becomes zero.
  • the signal 11c output from the rectangular wave pulse generator is a signal whose phase is shifted forward. Therefore, based on the signal 11c output from the rectangular wave pulse generation unit, the signal output from the sine wave conversion unit 1004, that is, the excitation signal 11e output from the excitation signal generation unit 909 is also a signal whose phase is shifted forward. .
  • FIG. 22 shows an A-phase signal 12a1 output from the resolver 101, a B-phase signal 12a2, a vector length value 12b output from the vector length calculation unit 106, and a reference signal 12c output from the reference signal generation unit 108. Is shown.
  • the A-phase signals 7a1 and 12a1 output from the resolver 101, the B-phase signals 7a2 and 12a2, and the vector length values 7b and 12b output from the vector length calculation unit 106 are the reference output from the reference signal generation unit 108.
  • the signals 7c and 12c are signals whose phases are shifted forward.
  • the vector length at time t1 and the vector length at time t2 are substantially the same by the process of adjusting the phase of the excitation signal. Value.
  • the vector length at time t3 and the vector length at time t4 are substantially the same value.
  • the time interval at which the sampling command signal is output corresponds to a phase difference of 90 degrees. Therefore, the times t1, t2, t3, and t4 naturally correspond to phases in which the magnitude of the A-phase signal and the magnitude of the B-phase signal are located approximately in the middle between the maximum phase and the minimum phase. It is time.
  • the sampling command signal has a phase shift amount ⁇ from a phase located approximately in the middle.
  • the difference between the value of the vector length and the value of the vector length stored until one sampling is a curve 15 of a sine wave function via the origin zero. Therefore, by forming a negative feedback loop in a region where the phase shift amount ⁇ is relatively small, the timing at which the sampling command signal is output can be adjusted so that the phase shift amount ⁇ automatically becomes zero. it can.
  • the excitation signal generator 909 adjusts the phase of the excitation signal for exciting the resolver through the following process. That is, the vector length calculation unit 106 uses the output value of the first AD converter 103 and the output value of the second AD converter 104, which are output according to the timing at which the sampling command signal is output, Calculate the magnitude of the vector.
  • the excitation signal generation unit 909 stores the output value of the vector length calculation unit 106 output before one sampling.
  • the excitation signal generator 909 compares the output values before and after one sampling output from the vector length calculator 106 and adjusts the phase of the excitation signal for exciting the resolver so that the difference becomes zero.
  • the timing at which the sampling command signal is output coincides with a phase in which the magnitude of the A-phase signal and the magnitude of the B-phase signal are located approximately in the middle between the maximum phase and the minimum phase. Therefore, for example, with the configuration shown in FIG. 19, the angular position detection device 902 according to the fourth embodiment can always detect the angle of the resolver 101 stably and with high accuracy.
  • the excitation signal generation unit 909 includes the amplitude adjustment unit 1003
  • the amplitude of the excitation signal can be adjusted.
  • the amplitude of the excitation signal can be adjusted using the vector length value as described above.
  • initial adjustment of the amplitude of the excitation signal can be performed.
  • the amplitude of the excitation signal can be continuously adjusted while executing the operation of detecting the angular position of the resolver. Therefore, the angular position detection device 902 according to the fourth embodiment can cope with an amplitude shift caused by a factor such as a temperature change.
  • the angular position detection device 902 starts adjusting the amplitude of the excitation signal at time t0. Thereafter, the vector length value 23 gradually increases from the initial value at time t0, and reaches the target value at time t1. Thus, the angular position detection device 902 completes the initial adjustment of the amplitude of the excitation signal. In order to perform such initial adjustment of the amplitude of the excitation signal with high accuracy and stability, it is desirable to perform the adjustment after performing the phase adjustment of the excitation signal as described above. By adjusting the amplitude of the excitation signal, the amplitude of the signal of the resolver 101 input to the first AD converter 103 and the second AD converter 104 is adjusted to an appropriate value. Therefore, if the angular position detection device 902 according to the fourth embodiment is used, the angle of the resolver 101 can be detected more stably and with high accuracy.
  • the processing performed by the angular position detection device 902 in the fourth embodiment can be performed by obtaining the vector length four times in one cycle of the excitation signal. Therefore, the angular position detection device 902 according to the fourth embodiment can adjust the phase of the excitation signal and the amplitude of the excitation signal in a shorter period than before.
  • the vector length is calculated using a square root operation.
  • the calculation of the vector length need not be constrained by the square root operation.
  • the calculation of the vector length may omit the square root calculation.
  • the angular position detection device of the resolver in the present invention has good responsiveness and can detect the angular position with high accuracy.
  • the angular position detection device of the present invention can adjust the timing of the sampling command signal output to the AD converter and the phase of the excitation signal, including resolver characteristic variations, temperature changes, changes with time, and the like. Therefore, the angular position detection device of the present invention can stably and accurately detect the angular position of the resolver. Therefore, the present invention can also be applied to industrial FA servo motors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本発明の角度位置検出装置(102)は、レゾルバ(101)と、サンプリング指令信号生成部(107)と、第1のアナログデジタル変換器(103)と、第2のアナログデジタル変換器(104)と、レゾルバデジタル変換部(105)と、を備える。レゾルバ(101)は、A相の信号と、A相の信号とは90度の位相差を有するB相の信号と、を出力する。第1のアナログデジタル変換器(103)と第2のアナログデジタル変換器(104)は、それぞれ、サンプリング指令信号が入力されたときに、レゾルバ(101)から入力された各相の信号を、デジタル値に変換して、第1のAD変換値と第2のAD変換値とを出力する。レゾルバデジタル変換部(105)は、入力された第1のAD変換値と第2のAD変換値とに基いて、レゾルバ(101)の角度位置を示す角度データを算出する。レゾルバデジタル変換部(105)は、算出した角度データを出力する。

Description

角度位置検出装置
 本発明は、1相を励磁して2相に出力される、レゾルバを用いた角度位置検出装置に関する。
 従来、主に、産業分野や電装分野などにおいて、モータの角度位置を検出する手段として、レゾルバがよく用いられる。
 レゾルバは、モータが有する軸に取り付けられる。モータの角度位置は、レゾルバによって検出される。例えば、図24に示すように、レゾルバ101によって検出された角度位置に基いて、モータ113は制御される。
 図24は、従来のレゾルバを用いた角度位置検出装置を示すブロック図である。
 レゾルバ101は、1相を励磁して2相に出力する方式が採用されている。以下、1相を励磁して2相に出力する方式を「1相励磁2相出力」という。レゾルバ101は、モータ113が有する軸に取り付けられる。レゾルバ101は、振幅が変調された2相の信号として、A相の信号とB相の信号とを出力する。A相の信号とB相の信号とは、略90度の位相差を有する。角度位置検出装置1102は、レゾルバ101で検出された2相の信号に基いて、レゾルバ101の角度位置を検出する。角度位置検出装置1102は、検出したレゾルバ101の角度位置をサーボアンプ112に出力する。サーボアンプ112は、検出された角度位置に従い、モータ113の制御および駆動を行う。
 また、角度位置検出装置1102は励磁信号を出力する。出力された励磁信号は、バッファー回路111を経由してレゾルバ101を励磁する。
 次に、角度位置検出装置1102の内部の構成について、説明する。第1のアナログデジタル変換器103は、レゾルバ101が出力するA相のアナログ信号をデジタル値に変換して出力する。第2のアナログデジタル変換器104は、レゾルバ101が出力するB相のアナログ信号をデジタル値に変換して出力する。以下、アナログデジタル変換器を「AD変換器」ということもある。アナログ信号をデジタル信号に変換するタイミングは、サンプリング指令信号生成部1107から出力されるサンプリング指令信号に基く。第1のAD変換器103によってデジタル値に変換されたA相の信号、および、第2のAD変換器104によってデジタル値に変換されたB相の信号は、レゾルバデジタル変換部105において、レゾルバ101の角度位置を示す信号に変換される。以下、レゾルバデジタル変換部を「RD変換部」ということもある。一般的に、デジタル値を、レゾルバ101の角度位置を示す信号に変換する方法は、トラッキングループなどの方法が用いられる。レゾルバ101の角度位置を示す信号に変換された、A相の信号とB相の信号とは、インターフェイス処理部110を経由して、サーボアンプ112に出力される。以下、インターフェイス処理部を「IF処理部」ということもある。
 サーボアンプ112は、検出されたレゾルバ101の角度位置、すなわち、モータ113の角度位置に従って、モータ113の制御、および、駆動を行う。
 サンプリング指令信号生成部1107は、基準信号生成部108が出力する基準信号に基いて、サンプリング指令信号の位相を調整する。サンプリング指令信号生成部1107は、第1のAD変換器103と第2のAD変換器104に対して、位相が調整されたサンプリング指令信号を出力する。
 上述したような、従来の角度位置検出装置は、例えば、特許文献1などに示されている。
 図25は、従来の角度位置検出装置における各信号を示す波形図である。
 図25には、つぎの波形が示される。A相の信号15a1として、レゾルバ101から出力される波形が示される。B相の信号15a2として、レゾルバ101から出力される波形が示される。基準信号15bとして、基準信号生成部108から出力される波形が示される。
 サンプリング指令信号生成部1107は、基準信号15bに基いて、サンプリング指令信号の位相を調整する。サンプリング指令信号生成部1107は、位相が調整されたサンプリング指令信号を出力する。図25に示すように、サンプリング指令信号生成部1107は、時刻t1、t3において、サンプリング指令信号を出力する。時刻t1、t3において、レゾルバ101から出力されるA相の信号15a1とB相の信号15a2とは、各々の信号の出力が最大となる。
 なお、時刻t1、t3を見出す方法は、つぎの方法もある。まず、A相の信号15a1とB相の信号15a2とにおいて、各々の信号の出力がゼロとなる時刻t2、t4を検出する。つぎに、検出された時刻t2、t4に対して、1周期の4分の1に相当する時刻を加算すれば、時刻t1、t3が求められる。
 このようにして、角度位置検出装置は、A相の信号15a1とB相の信号15a2とが最大の出力を出すタイミングにおいて、A相の信号15a1とB相の信号15a2とをアナログデジタル変換する。この結果、角度位置検出装置は、レゾルバの角度位置を検出できる。
特開2011-33602号公報
 本発明が対象とする角度位置検出装置は、レゾルバと、サンプリング指令信号生成部と、第1のアナログデジタル変換器と、第2のアナログデジタル変換器と、レゾルバデジタル変換部と、を備える。
 レゾルバは、振幅が変調されたA相の信号と、A相の信号とは90度の位相差を有して、振幅が変調されたB相の信号と、を出力する。
 A相の信号とB相の信号とのうち、少なくともいずれか一方の信号において、つぎの4つの位相が存在する。信号の大きさが最小となるときを第1の位相とする。信号の大きさが最大となるときを第2の位相とする。第1の位相から第2の位相へと変化する中間のときを第3の位相とする。第2の位相から第1の位相へと変化する中間のときを第4の位相とする。サンプリング指令信号生成部は、第3の位相と第4の位相とにおいて、各々サンプリング指令信号を出力する。
 第1のアナログデジタル変換器は、サンプリング指令信号が入力されたときに、A相の信号が入力され、入力されたA相の信号の大きさをデジタル値に変換して第1のAD変換値を生成する。第1のアナログデジタル変換器は、生成した第1のAD変換値を出力する。
 第2のアナログデジタル変換器は、サンプリング指令信号が入力されたときに、B相の信号が入力され、入力されたB相の信号の大きさをデジタル値に変換して第2のAD変換値を生成する。第2のアナログデジタル変換器は、生成した第2のAD変換値を出力する。
 レゾルバデジタル変換部は、第1のAD変換値と第2のAD変換値とが入力され、入力された第1のAD変換値と第2のAD変換値とに基いて、レゾルバの角度位置を示す角度データを算出する。レゾルバデジタル変換部は、算出した角度データを出力する。
図1は、本発明の実施の形態1におけるレゾルバの角度検出装置を説明するブロック図である。 図2は、本発明の実施の形態1における各信号を示す波形図である。 図3は、本発明の実施の形態2におけるレゾルバの角度検出装置を説明するブロック図である。 図4は、本発明の実施の形態2における平均値演算部を説明するブロック図である。 図5は、本発明の実施の形態2における各信号を示す波形図である。 図6は、本発明の実施の形態2におけるレゾルバの角度検出装置の具体例を説明するブロック図である。 図7は、本発明の実施の形態2における平均値演算部を説明するブロック図である。 図8は、本発明の実施の形態2におけるレゾルバの角度検出装置の他の具体例を説明するブロック図である。 図9は、本発明の実施の形態2で比較する比較例であるRD変換部のブロック図である。 図10は、本発明の実施の形態2におけるRD変換部のブロック図である。 図11は、本発明の実施の形態2における他の平均値演算部を説明するブロック図である。 図12は、本発明の実施の形態3におけるレゾルバの角度検出装置を説明するブロック図である。 図13は、本発明の実施の形態3におけるサンプリング指令信号生成部のブロック図である。 図14は、本発明の実施の形態3における各信号を示す波形図である。 図15は、本発明の実施の形態3におけるベクトル長差の変化を示す波形図である。 図16は、本発明の実施の形態4におけるレゾルバの角度検出装置を説明するブロック図である。 図17は、本発明の実施の形態4における励磁信号生成部を説明するブロック図である。 図18は、本発明の実施の形態4における他の励磁信号生成部を説明するブロック図である。 図19は、本発明の実施の形態4における他のレゾルバの角度検出装置を説明するブロック図である。 図20は、本発明の実施の形態4におけるさらに他の励磁信号生成部を説明するブロック図である。 図21は、本発明の実施の形態4における各信号を示す波形図である。 図22は、本発明の実施の形態4における他の各信号を示す波形図である。 図23は、本発明の実施の形態4におけるベクトル長の値の変化を示す波形図である。 図24は、従来のレゾルバを用いた角度検出装置を示すブロック図である。 図25は、従来の角度検出装置における各信号を示す波形図である。
 本発明の実施の形態における角度位置検出装置は、後述する構成により、応答性が良く、検出精度が高くなる。
 特に、本発明の実施の形態における角度位置検出装置は、レゾルバからAD変換器を介してモータの角度位置を検出する際、レゾルバから出力された信号をAD変換器が検出するタイミングを調整できる。具体的には、AD変換器が検出するタイミングは、サンプリング指令信号で調整される。サンプリング指令信号は、レゾルバの特性ばらつき、レゾルバを取り巻く周囲の温度変化、あるいは、レゾルバの経時変化などの変動要因も含めて調整できる。よって、本発明の実施の形態における角度位置検出装置は、安定して精度良く、レゾルバを用いてモータの角度位置を検出できる。
 つまり、従来の角度位置検出装置には、つぎの改善点があった。すなわち、レゾルバから出力される信号は、信号の出力が最大となるタイミングが1周期のうち、2回しか存在しない。よって、従来の角度位置検出装置は、レゾルバから出力される信号のサンプリング周期を短くして、角度位置を検出するための応答性を高めることが困難であった。
 また、サンプリング指令信号を出力するタイミングを調整する場合、タイミングを調整するために用いることができる、レゾルバ信号の振幅値は、1周期のうち、2回しか存在しない。よって、サンプリング指令信号を出力するタイミングの調整精度が悪くなる、あるいは、調整時間が長くなる、という課題があった。
 そこで、本発明の実施の形態は、高い応答性でレゾルバから出力される角度位置を検出できる、レゾルバを用いた角度位置検出装置を提供する。また、本発明の実施の形態は、サンプリング指令信号が出力されるタイミングを、より精度よく調整できる。よって、応答性がよく、検出精度が高い、角度位置検出装置を提供できる。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1におけるレゾルバの角度検出装置を説明するブロック図である。図2は、本発明の実施の形態1における各信号を示す波形図である。
 図1に示すように、本発明の実施の形態1における角度位置検出装置102は、レゾルバ101と、サンプリング指令信号生成部107と、第1のアナログデジタル変換器103と、第2のアナログデジタル変換器104と、レゾルバデジタル変換部105と、を備える。
 レゾルバ101は、振幅が変調されたA相の信号と、A相の信号とは90度の位相差を有して、振幅が変調されたB相の信号と、を出力する。
 A相の信号とB相の信号とのうち、少なくともいずれか一方の信号において、つぎの4つの位相が存在する。A相の信号の大きさまたはB相の信号の大きさが、最小となるときを第1の位相とする。A相の信号の大きさまたはB相の信号の大きさが、最大となるときを第2の位相とする。第1の位相から第2の位相へと変化する中間のときを第3の位相とする。第2の位相から第1の位相へと変化する中間のときを第4の位相とする。サンプリング指令信号生成部107は、第3の位相と第4の位相とにおいて、各々サンプリング指令信号を出力する。
 第1のアナログデジタル変換器103は、サンプリング指令信号が入力されたときに、A相の信号が入力され、入力されたA相の信号の大きさをデジタル値に変換して第1のAD変換値を生成する。第1のアナログデジタル変換器103は、生成した第1のAD変換値を出力する。
 第2のアナログデジタル変換器104は、サンプリング指令信号が入力されたときに、B相の信号が入力され、入力されたB相の信号の大きさをデジタル値に変換して第2のAD変換値を生成する。第2のアナログデジタル変換器104は、生成した第2のAD変換値を出力する。
 レゾルバデジタル変換部105は、第1のAD変換値と第2のAD変換値とが入力され、入力された第1のAD変換値と第2のAD変換値とに基いて、レゾルバ101の角度位置を示す角度データを算出する。レゾルバデジタル変換部105は、算出した角度データを出力する。
 なお、A相の信号とB相の信号において、信号の大きさとは、信号の絶対値と換言することもできる。
 このような構成とすれば、レゾルバから出力される信号の1周期において、有効にサンプリングできる回数が、従来、2回であったものが2倍の4回に増える。よって、サンプリング周期は、従来の半分の期間に短縮できる。しかも、各サンプリングにおいて、均等な振幅でサンプリングできる。この結果、本実施の形態1におけるレゾルバの角度位置検出装置は、応答性がよく、精度が高くなる。
 さらに、詳細に説明する。
 図1に示すように、レゾルバ101は、1相励磁2相出力の方式であり、モータ113が有する軸に取り付けられる。レゾルバ101は、2相の信号を出力し、一方をA相の信号、他方をB相の信号という。A相の信号とB相の信号とは、互いに、略90度の位相差を有し、振幅が変調されている。
 レゾルバ101の角度位置検出装置102は、この2相の信号からレゾルバ101の角度位置を検出し、サーボアンプ112に出力する。サーボアンプ112は、角度位置検出装置102で検出された角度位置に従い、モータ113の制御および、モータ113の駆動を行う。また、レゾルバ101の角度位置検出装置102は、バッファー回路111を経由してレゾルバ101へ励磁信号を出力し、レゾルバ101を励磁する。
 次に、レゾルバ101の角度位置検出装置102の内部の構成について説明する。
 第1のアナログデジタル変換器103は、レゾルバ101から出力されるA相のアナログ信号を、デジタル値に変換する。第2のアナログデジタル変換器104は、レゾルバ101から出力されるB相のアナログ信号を、デジタル値に変換する。第1のAD変換器103、第2のAD変換器104が、アナログ信号をデジタル値に変換するタイミングは、サンプリング指令信号生成部107から出力されるサンプリング指令信号に従う。
 レゾルバデジタル変換部105は、第1のAD変換器103、第2のAD変換器104によってデジタル値に変換された信号を、レゾルバ101の角度位置を示す信号に変換する。一般的に、デジタル値に変換された信号を、レゾルバ101の角度位置を示す信号に変換する方法は、トラッキングループなどの方法が用いられる。レゾルバ101の角度位置を示す信号は、インターフェイス処理部110を経由してサーボアンプ112に出力される。
 サーボアンプ112は、検出されたレゾルバ101の角度位置、すなわち、モータ113の角度位置に基いて、モータ113の制御、および、モータ113の駆動を行う。
 所定の位相において、サンプリング指令信号生成部107は、基準信号生成部108から出力される基準信号に基いて、第1のAD変換器103、第2のAD変換器104に対してサンプリング指令信号を出力する。
 励磁信号生成部109は、基準信号生成部108から出力される基準信号に基いて、励磁信号を生成し、生成した励磁信号を出力する。
 以上のように構成されたレゾルバの角度位置検出装置は、モータの制御装置として機能する。以下、レゾルバの角度位置検出装置について、その動作、作用を説明する。
 図2には、レゾルバ101から出力されるA相の信号、B相の信号などを示す。図2に示す、A相の信号2a1とB相の信号2a2とは、レゾルバ101の内部において、励磁信号(sinωt)を振幅変調した信号である。A相の信号2a1とB相の信号2a2とは、互いに90度の位相差を有して、振幅が変調される。レゾルバ101の角度位置をθとすると、A相の信号2a1はAsinθsinωtで表され、B相の信号2a2はAcosθsinωtで表される。ここで、Aは、各相の信号において、振幅を意味する。
 図2に示す、基準信号2bは、基準信号生成部108から出力される。励磁信号生成部109は、入力される基準信号2bに基いて、励磁信号を生成する。基準信号2bは、レゾルバ101から出力される、A相の信号2a1とB相の信号2a2と、同一の周期で繰り返して出力される。
 ここで、基準信号2bがゼロとなる時刻t0、t4、および、時刻t0と時刻t4の中間の時刻t2において、レゾルバ101から出力されるA相の信号2a1とB相の信号2a2とは、振幅がゼロになると仮定する。
 このとき、時刻t0と時刻t2の中間の時刻t1と、時刻t2と時刻t4の中間の時刻t3において、レゾルバ101から出力される、A相の信号2a1とB相の信号2a2の振幅は、最大となる。
 図24に示すように、従来の方式では、時刻t1と時刻t3において、サンプリング指令信号生成部1107は、サンプリング指令信号を出力する。サンプリング指令信号が入力された、第1のAD変換器103と第2のAD変換器104は、レゾルバ101から出力された信号をデジタル値に変換して、RD変換部105に各信号の振幅を出力する。RD変換部105は、入力された各信号の振幅から、レゾルバ101の角度位置を導き出す変換処理を行う。
 しかしながら、このような従来の方式では、1周期の励磁信号に対して、サンプリングの機会が2回しかない。同様に、RD変換部105に入力される各信号を更新する機会も、1周期の励磁信号に対して2回しかない。よって、従来の方式は、応答性を改善することが困難であった。
 そこで、本発明の実施の形態1における角度位置検出装置102では、図2中、点線で示された後述する時刻において、サンプリング指令信号生成部107は、サンプリング指令信号を出力する。すなわち、点線で示された時刻とは、時刻t0と時刻t1の中間の時刻t5と、時刻t1と時刻t2の中間の時刻t6と、時刻t2と時刻t3の中間の時刻t7と、時刻t3と時刻t4の中間の時刻t8と、である。各々の時刻では、第1のAD変換器103、第2のAD変換器104でデジタル値に変換された、A相の信号2a1とB相の信号2a2の振幅が、RD変換部105に入力される。RD変換部105は、入力された振幅から、レゾルバ101の角度位置を導き出す変換処理を行う。
 このような処理を行えば、1周期の励磁信号に対して、サンプリングの機会が4回に増える。しかも、各サンプリングの機会において、A相の信号2a1とB相の信号2a2とは、均等な振幅で検出される。
 よって、各サンプリングの機会で検出された、各信号2a1、2a2の振幅がRD変換部105に入力され、RD変換部105に入力された各信号2a1、2a2の振幅がレゾルバ101の角度位置に変換処理される際、本発明の実施の形態1における角度位置検出装置102は、角度位置の検出精度を劣化させることなく、従来の方式に比べて、2倍の応答性を得ることができる。
 換言すれば、サンプリング指令信号生成部107は、A相の信号2a1とB相の信号2a2の大きさ、つまり、各信号2a1、2a2の絶対値が、最大となる位相と最小となる位相の略中間に位置する位相において、サンプリング指令信号を出力する。また、RD変換部105は、サンプリング指令信号が出力されるタイミングごとに、第1のAD変換器103と第2のAD変換器104とが出力するデジタル値から、レゾルバ101の角度位置を導き出す変換処理を行う。この結果、変換処理が行われる周期は、従来の半分に短縮される。しかも、各々の検出の機会において、A相の信号2a1とB相の信号2a2とは、均等な振幅でサンプリングされる。よって、本発明の実施の形態1における角度位置検出装置102は、応答性が良く、高い精度で、レゾルバ101の角度検出を行うことができる。
 (実施の形態2)
 図3は、本発明の実施の形態2におけるレゾルバの角度検出装置を説明するブロック図である。
 実施の形態2で示す角度位置検出装置は、実施の形態1で説明した角度位置検出装置とレゾルバデジタル変換部が異なる。具体的には、実施の形態2で示す角度位置検出装置は、平均化処理を行う機能を備えたレゾルバデジタル変換部を有する。
 以下、図3から図11を用いて説明する。
 なお、上述した実施の形態1に示した構成と同一のものについては、同じ符号を付して、説明を援用する。
 図3に示すように、本発明の実施の形態2における角度位置検出装置302は、実施の形態1で説明した角度位置検出装置102において、レゾルバデジタル変換部105に代えて、平均レゾルバデジタル変換部300を備える。平均レゾルバデジタル変換部300は、平均値演算部114と、レゾルバデジタル変換部105と、を有する。
 第1のアナログデジタル変換器103が出力する第1のAD変換値を、過去の第1のAD変換値とする。
 第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、第1のアナログデジタル変換器103から新たに出力される第1のAD変換値を、新たな第1のAD変換値とする。
 第2のアナログデジタル変換器104が出力する第2のAD変換値を、過去の第2のAD変換値とする。
 第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、第2のアナログデジタル変換器104から新たに出力される第2のAD変換値を、新たな第2のAD変換値とする。
 このとき、過去の第1のAD変換値と、新たな第1のAD変換値と、過去の第2のAD変換値と、新たな第2のAD変換値と、を用いて、レゾルバ101の角度位置を示す角度データが算出される。レゾルバ101の角度位置を示す角度データが算出される過程において、平均値演算部114は、過去の第1のAD変換値、新たな第1のAD変換値、過去の第2のAD変換値、および、新たな第2のAD変換値、のうち少なくとも2以上の値に基いて平均化処理を行う。
 レゾルバデジタル変換部105は、過去の第1のAD変換値、新たな第1のAD変換値、過去の第2のAD変換値、および、新たな第2のAD変換値、のうち少なくとも2以上の値に基いて角度データを算出し、算出した角度データを出力する。
 このような構成とすれば、角度検出誤差を相殺できる。角度検出誤差は、レゾルバ101から出力される、2相の信号に含まれる位相ずれが要因となる。よって、本実施の形態2における角度位置検出装置302は、高精度な角度位置検出を、容易に実現できる。
 平均レゾルバデジタル変換部300内において、レゾルバデジタル変換部105に対して、平均値演算部114が異なる位置に取り付けられる3態様について、説明する。3態様とは、1.平均値演算部がレゾルバデジタル変換部の出力側に位置する場合、2.平均値演算部がレゾルバデジタル変換部の入力側に位置する場合、3、平均値演算部がレゾルバデジタル変換部の内側に位置する場合、をいう。
 1.平均値演算部がレゾルバデジタル変換部の出力側に位置する場合:
 図4は、本発明の実施の形態2における平均値演算部を説明するブロック図である。図5は、本発明の実施の形態2における各信号を示す波形図である。
 図3に示すように、本態様における角度位置検出装置302は、レゾルバデジタル変換部105と、平均値演算部114と、を有する平均レゾルバデジタル変換部300を備える。
 レゾルバデジタル変換部105は、第1のAD変換値と第2のAD変換値とが入力される。レゾルバデジタル変換部105は、入力された、第1のAD変換値と第2のAD変換値とに基いて、レゾルバ101の角度位置を示す角度データを算出する。レゾルバデジタル変換部105は、算出した角度データを出力する。
 図4に示すように、平均値演算部114は、角度データ記憶部401と、角度データ平均部402と、を有する。
 角度データ記憶部401は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、レゾルバデジタル変換部105から出力される角度データを記憶する。角度データ記憶部401は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、レゾルバデジタル変換部105から新たに出力される角度データを、記憶されていた角度データに代えて、新たな角度データとして記憶する。
 角度データ平均部402は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、レゾルバデジタル変換部105から出力される角度データが新たな角度データとして入力される。角度データ平均部402は、第3の位相以前または第4の位相以前において、角度データ記憶部401で記憶されていた角度データが、過去の角度データとして入力される。角度データ平均部402は、過去の角度データと新たな角度データとの平均値を算出し、算出した平均値を出力する。
 図面を用いて、さらに詳細に説明する。
 図3に示すように、レゾルバ101の角度位置検出装置302は、実施の形態1で説明した角度位置検出装置102と比べて、RD変換部105が平均レゾルバデジタル変換部300に置き換わっている点が異なる。より正確に言えば、実施の形態1で説明した角度位置検出装置102の内部において、RD変換部105の出力側に、平均値演算部114が追加された点が異なる。以下、平均レゾルバデジタル変換部を「平均RD変換部」ということもある。
 平均値演算部114について、図4を用いて説明する。
 図4に示すように、平均値演算部114は、入力された信号を角度データ記憶部401で記憶する。本実施の形態2において、角度データ記憶部401は、入力された信号である角度データを、1サンプリング分だけ記憶する。
 その1サンプリング後、平均値演算部114には、新たな信号である角度データが入力される。このとき、角度データ記憶部401は、1サンプリング前に記憶した角度データを、過去の角度データとして角度データ平均部402に出力する。角度データ記憶部401は、新たに入力された信号である角度データを、新たな角度データとして記憶する。
 一方、角度データ平均部402は、RD変換部105から入力された新たな角度データと、角度データ記憶部401から入力された過去の角度データと、を用いて平均値を算出する。角度データ平均部402は、算出した平均値を出力する。
 上述した平均RD変換部300を有する、レゾルバ101の角度位置検出装置302について、平均値演算部114を付加した理由と効果について、以下に説明する。
 図5には、レゾルバ101から出力されるA相の信号、B相の信号などが示される。
 実施の形態1で説明したように、励磁信号をsinωt、レゾルバ101の角度位置をθ、信号の振幅をAとする。このとき、図5に示すように、A相の信号5a1はAsinθsinωtで表され、B相の信号5a2はAcosθsinωtで表される。併せて、図5には、基準信号5bを示す。
 A相の信号とB相の信号とは、お互いにわずかな位相ずれを有している。この位相ずれをαとする。位相ずれを反映すると、A相の信号5a1はAsinθsinωtで表され、B相の信号5a3はAcosθsin(ωt+α)で表される。一般的に、位相ずれαは、±0.1度程度の値となる。
 このように、A相の信号5a1とB相の信号5a3との間に、わずかな位相ずれαがある場合で、その効果を比較する。
 まず、実施の形態1で説明した、平均値演算部114を有さない角度位置検出装置102を用いた場合、RD変換部105の出力値は、サンプリング指令信号が出力される1サンプリングごとに変動する。図5に示すように、RD変換部の出力値5c1は点線で示される。
 A相の信号とB相の信号とにおいて、各信号の振幅が近い値になるほど、RD変換部の出力値5c1は、変動の幅が大きくなる。この変動の幅は、最大で位相ずれαの幅になる。仮に、位相ずれαが0.1度とすると、変動の幅は6分となる。
 このような現象は、レゾルバ101の角度位置を検出する際、速い応答性や高い精度が要求される用途では、不都合となる。
 そこで、図3に示すように、平均値演算部114を有する角度位置検出装置302が用いられる。このとき、平均RD変換部300の出力値は、変動が打ち消される。図5に示すように、変動が打ち消されて、平坦な波形となった平均RD変換部の出力値5c2は、実線で示される。
 1サンプリングの前後において、レゾルバ101の角度位置を検出した値が、平均値演算部114で平均化される。平均値演算部114で平均化された値は、レゾルバ101の角度位置として出力される。平均化された出力値を用いれば、応答性が良く、かつ、精度が高い、レゾルバ101の角度検出を行うことができる。
 ところで、上述した説明において、角度データ記憶部401は、角度データを1サンプリング分のみ記憶して、随時、新たな角度データに更新して、記憶する。
 なお、角度データ記憶部401が記憶する角度データは、1サンプリング分に限らず、予め定めた、複数のサンプリング分を記憶するようにしてもよい。
 角度データ記憶部401が記憶する角度データが、1サンプリング分であれば、角度データ平均部402での演算が早くなるため、応答性が向上する。一方、角度データ記憶部401が記憶する角度データが、複数のサンプリング分を記憶した場合、角度データ平均部402で算出される平均値の精度が向上する。
 ところで、図3に示したレゾルバの角度位置検出装置302は、図1に示したレゾルバ101の角度位置検出装置102に比べて、多少、応答性の悪化が発生する。しかし、図3に示したレゾルバ101の角度位置検出装置302は、図24に示した従来のレゾルバ101の角度位置検出装置1102に比べて、1.5倍程度は高速となる応答性を有している。
 また、A相の信号とB相の信号の大きさ、すなわち、絶対値が最大となる位相と、絶対値が最小となる位相の略中間に位置する位相において、レゾルバ101が出力するA相の信号とB相の信号とは、信号の振幅が、最大値に対して0.7倍程度の大きさとなる。しかしながら、上述したように、レゾルバ101の角度位置を検出した出力値を平均化することで、本実施の形態2における角度位置検出装置302は、SN比が向上する。よって、本発明の効果は、総合的には、十分な優位性を確保できる。
 2.平均値演算部がレゾルバデジタル変換部の入力側に位置する場合:
 図6は、本発明の実施の形態2におけるレゾルバの角度検出装置の具体例を説明するブロック図である。図7は、本発明の実施の形態2における平均値演算部を説明するブロック図である。
 図6に示すように、本態様における角度位置検出装置502は、レゾルバデジタル変換部105と、平均値演算部514と、を有する平均レゾルバデジタル変換部300を備える。
 平均値演算部514は、A相の平均値演算部503と、B相の平均値演算部504と、を有する。
 図7に示すように、A相の平均値演算部503は、第1のAD変換値の記憶部511と、第1のAD変換値の平均部512と、を有する。
 図6、図7に示すように、第1のAD変換値の記憶部511は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されたサンプリング指令に応じて、第1のアナログデジタル変換器103から出力された第1のAD変換値を記憶する。第1のAD変換値の記憶部511は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、第1のアナログデジタル変換器103から新たに出力される第1のAD変換値を、記憶されていた第1のAD変換値に代えて、新たな第1のAD変換値として記憶する。
 第1のAD変換値の平均部512は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、第1のアナログデジタル変換器103から出力される第1のAD変換値が新たな第1のAD変換値として入力される。第1のAD変換値の平均部512は、第3の位相以前または第4の位相以前において、第1のAD変換値の記憶部511で記憶されていた第1のAD変換値が、過去の第1のAD変換値として入力される。第1のAD変換値の平均部512は、過去の第1のAD変換値と新たな第1のAD変換値との平均値を算出し、算出した平均値を平均化された第1のAD変換値として出力する。
 B相の平均値演算部504は、第2のAD変換値の記憶部521と、第2のAD変換値の平均部522と、を有する。
 第2のAD変換値の記憶部521は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されたサンプリング指令に応じて、第2のアナログデジタル変換器104から出力された第2のAD変換値を記憶する。第2のAD変換値の記憶部521は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、第2のアナログデジタル変換器104から新たに出力される第2のAD変換値を、記憶されていた第2のAD変換値に代えて、新たな第2のAD変換値として記憶する。
 第2のAD変換値の平均部522は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、第2のアナログデジタル変換器104から出力される第2のAD変換値が新たな第2のAD変換値として入力される。第2のAD変換値の平均部522は、第3の位相以前または第4の位相以前において、第2のAD変換値の記憶部521で記憶されていた第2のAD変換値が、過去の第2のAD変換値として入力される。第2のAD変換値の平均部522は、過去の第2のAD変換値と新たな第2のAD変換値との平均値を算出し、算出した平均値を平均化された第2のAD変換値として出力する。
 レゾルバデジタル変換部105は、平均化された第1のAD変換値と、平均化された第2のAD変換値とが入力される。レゾルバデジタル変換部105は、入力された、平均化された第1のAD変換値と平均化された第2のAD変換値とに基いて、レゾルバ101の角度位置を示す角度データを算出する。レゾルバデジタル変換部105は、算出した角度データを出力する。
 図面を用いて、さらに詳細に説明する。
 図6に示すように、レゾルバ101の角度位置検出装置502は、実施の形態1で説明した角度位置検出装置102と比べて、RD変換部105が平均レゾルバデジタル変換部300に置き換わっている点が異なる。より正確に言えば、実施の形態1で説明した角度位置検出装置102の内部において、RD変換部105の入力側に、平均値演算部514が追加された点が異なる。平均値演算部514は、A相の平均値演算部503と、B相の平均値演算部504と、を有する。
 A相の平均値演算部503とB相の平均値演算部504について、図7を用いて説明する。なお、A相の平均値演算部503と、B相の平均値演算部504とは、各々、1.の態様で説明した平均値演算部114と同様の機能を有する。よって、以下、双方を代表して、A相の平均値演算部503の説明を行う。B相の平均値演算部504については、A相の平均値演算部503の説明を援用する。
 A相の平均値演算部503は、入力された信号を第1のAD変換値の記憶部511で記憶する。本実施の形態2において、第1のAD変換値の記憶部511は、入力された信号である第1のAD変換値を、1サンプリング分だけ記憶する。
 その1サンプリング後、A相の平均値演算部503には、新たな信号である第1のAD変換値が入力される。このとき、第1のAD変換値の記憶部511は、1サンプリング前に記憶した第1のAD変換値を、過去の第1のAD変換値として第1のAD変換値の平均部512に出力する。第1のAD変換値の記憶部511は、新たに入力された信号である第1のAD変換値を、新たな第1のAD変換値として記憶する。
 一方、第1のAD変換値の平均部512は、第1のAD変換器103から入力された新たな第1のAD変換値と、第1のAD変換値の記憶部511から入力された過去の第1のAD変換値と、を用いて平均値を算出する。第1のAD変換値の平均部512は、算出した平均値を出力する。
 図6に示す、レゾルバの角度位置検出装置502において、第1のAD変換器103によって、デジタル値に変換されたA相の信号は、A相の平均値演算部503に入力される。そして、上述した平均化処理が施された後、平均化された第1のAD変換値は、RD変換部105に入力される。
 同様に、第2のAD変換器104によって、デジタル値に変換されたB相の信号は、B相の平均値演算部504に入力される。そして、上述した平均化処理が施された後、平均化された第2のAD変換値は、RD変換部105に入力される。
 上述した平均RD変換部300を有する、レゾルバの角度位置検出装置502について、平均値演算部514として、A相の平均値演算部503とB相の平均値演算部504とを付加した理由と効果について、図5を用いて、以下に説明する。
 なお、下記説明は、上述した1.の態様に則した内容となる。
 つまり、レゾルバ101から出力されるA相の信号5a1とB相の信号5a2とは、お互いにわずかな位相ずれを有している。このとき、上述した1.の態様にて詳細に説明したように、実施の形態1で説明した、平均値演算部114を有さない角度位置検出装置102を用いた場合、RD変換部105の出力値は、サンプリング指令信号が出力される1サンプリングごとに変動する。図5に示すように、RD変換部の出力値5c1は点線で示される。
 このような現象は、レゾルバ101の角度位置を検出する際、速い応答性や高い精度が要求される用途では、不都合となる。
 そこで、図6に示すように、平均値演算部514である、A相の平均値演算部503とB相の平均値演算部504と、を有する角度位置検出装置502が用いられる。このとき、平均RD変換部300の出力値は、変動が打ち消される。図5に示すように、変動が打ち消されて、平坦な波形となった平均RD変換部の出力値5c2は、実線で示される。
 1サンプリングの前後において、レゾルバ101の角度位置を検出した値が、平均値演算部514である、A相の平均値演算部503とB相の平均値演算部504とで、各々平均化される。平均値演算部514である、A相の平均値演算部503とB相の平均値演算部504とで平均化された値は、レゾルバ101の角度位置として出力される。平均化された出力値を用いれば、応答性が良く、かつ、精度が高い、レゾルバ101の角度検出を行うことができる。
 ところで、上述した説明において、第1のAD変換値の記憶部511は、第1のAD変換値を1サンプリング分のみ記憶して、随時、新たな第1のAD変換値に更新して、記憶する。
 なお、第1のAD変換値の記憶部511が記憶する第1のAD変換値は、1サンプリング分に限らず、予め定めた、複数のサンプリング分を記憶するようにしてもよい。
 第1のAD変換値の記憶部511が記憶する第1のAD変換値が、1サンプリング分であれば、第1のAD変換値の平均部512での演算が早くなるため、応答性が向上する。一方、第1のAD変換値の記憶部511が記憶する第1のAD変換値が、複数のサンプリング分を記憶した場合、第1のAD変換値の平均部512で算出される平均値の精度が向上する。
 ところで、図6に示したレゾルバ101の角度位置検出装置502は、図1に示したレゾルバ101の角度位置検出装置102に比べて、多少、応答性の悪化が発生する。しかし、図6に示したレゾルバ101の角度位置検出装置502は、図24に示した従来のレゾルバ101の角度位置検出装置1102に比べて、1.5倍程度は高速となる応答性を有している。
 また、A相の信号とB相の信号の大きさ、すなわち、絶対値が最大となる位相と、絶対値が最小となる位相の略中間に位置する位相において、レゾルバ101が出力するA相の信号とB相の信号とは、信号の振幅が、最大値に対して0.7倍程度の大きさとなる。しかしながら、上述したように、レゾルバ101の角度位置を検出した出力値を平均化することで、本実施の形態2における角度位置検出装置502は、SN比が向上する。よって、本発明の効果は、総合的には、十分な優位性を確保できる。
 3.平均値演算部がレゾルバデジタル変換部の内部にある場合:
 図8は、本発明の実施の形態2におけるレゾルバの角度検出装置の他の具体例を説明するブロック図である。図9は、本発明の実施の形態2で比較する比較例であるRD変換部のブロック図である。図10は、本発明の実施の形態2におけるRD変換部のブロック図である。図11は、本発明の実施の形態2における他の平均値演算部を説明するブロック図である。
 図8に示すように、本態様における角度位置検出装置702は、レゾルバデジタル変換部705と、平均値演算部714と、を有する平均レゾルバデジタル変換部300を備える。
 レゾルバデジタル変換部705は、第1のAD変換値と第2のAD変換値とが入力されたとき、入力された第1のAD変換値と入力された第2のAD変換値に基いて、レゾルバ101の回転角θからレゾルバ101の角度位置φを算出する。この場合、レゾルバデジタル変換部705は、入力された第1のAD変換値と入力された第2のAD変換値とから、偏差信号sin(θ-φ)を算出し、算出した偏差信号sin(θ-φ)をゼロに収束してレゾルバ101の角度位置φを算出するトラッキングループ707を有する。レゾルバデジタル変換部705は、算出された角度位置φから角度データを出力する。
 図11に示すように、平均値演算部714は、偏差信号記憶部711と、偏差信号平均部712と、を有する。
 図8、図11に示すように、偏差信号記憶部711は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、トラッキングループ707で算出される偏差信号を記憶する。偏差信号記憶部711は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、トラッキングループ707で新たに算出される偏差信号を、記憶されていた偏差信号に代えて、新たな偏差信号として記憶する。
 偏差信号平均部712は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、トラッキングループ707で算出される偏差信号が新たな偏差信号として入力される。偏差信号平均部712は、第3の位相以前または第4の位相以前において、偏差信号記憶部711で記憶されていた偏差信号が、過去の偏差信号として入力される。偏差信号平均部712は、過去の偏差信号と新たな偏差信号との平均値を算出し、算出した平均値を出力する。
 図面を用いて、さらに詳細に説明する。
 図8に示すように、レゾルバの角度位置検出装置702は、実施の形態1で説明した角度位置検出装置102と比べて、RD変換部105が平均RD変換部300に置き換わっている点が異なる。より正確に言えば、実施の形態1で説明した角度位置検出装置102の内部において、RD変換部105の内部に、平均値演算部714が追加された点が異なる。
 平均RD変換部300について、図9、図10を用いて説明する。
 図9に示すRD変換部1815は、比較例であり、レゾルバ101の角度位置検出装置として、広く用いられている。RD変換部1815は、トラッキングループと呼ばれる。
 第1のAD変換器からRD変換部1815に対して、A相の信号(sinθ)が入力される。RD変換部1815に入力されたA相の信号は、第1の乗算部1801に入力される。第1の乗算部1801において、A相の信号は、余弦波テーブル1805から出力された余弦波信号(cosφ)と乗算される。余弦波信号と乗算されたA相の信号は、第1の乗算部1801から差分部1803に対して出力される。
 一方、第2のAD変換器からRD変換部1815に対して、B相の信号(cosθ)が入力される。RD変換部1815に入力されたB相の信号は、第2の乗算部1802に入力される。第2の乗算部1802において、B相の信号は、正弦波テーブル1806から出力された正弦波信号(sinφ)と乗算される。正弦波信号と乗算されたB相の信号は、第2の乗算部1802から差分部1803に対して出力される。
 差分部1803では、第1の乗算部1801の出力値と、第2の乗算部1802の出力値との差が演算され、演算された結果として、誤差信号(sin(θ-φ))が算出される。算出された誤差信号は、比例積分制御器(Proportional-Integral Controller)1804に入力される。以下、比例積分制御器は、「PI制御器」ということもある。
 PI制御器1804では、積分処理やゲイン乗算処理などが行われる。積分処理やゲイン乗算処理などが行われた結果、PI制御器1804は、レゾルバ101の角度位置φを出力する。
 PI制御器1804から出力されたレゾルバ101の角度位置φは、余弦波テーブル1805と正弦波テーブル1806に入力される。レゾルバ101の角度位置φの値は、余弦波信号(cosφ)の値が余弦波テーブル1805に入力される。また、レゾルバ101の角度位置φの値は、正弦波信号(sinφ)の値が正弦波テーブル1806に入力される。
 このようなトラッキングループの処理によって、RD変換部1815は、入力されたA相の信号とB相の信号から、レゾルバ101の角度位置を算出する変換処理を行う。
 図10に示すように、本実施の形態2における平均RD変換部300は、トラッキングループ707を構成するRD変換部705に加えて、平均値演算部714を有する。
 図10に示す平均RD変換部300において、差分部1803が出力する誤差信号(sin(θ-φ))は、平均値演算部714に入力される。平均値演算部714は、入力された誤差信号に平均化処理を施す。平均化された誤差信号は、平均値演算部714からPI制御器1804に出力される。
 平均値演算部714について、図11を用いて説明する。なお、平均値演算部714は、1.の態様で説明した平均値演算部114と同様の機能を有する。
 平均値演算部714は、入力された信号を偏差信号記憶部711で記憶する。本実施の形態2において、偏差信号記憶部711は、入力された信号である偏差信号を、1サンプリング分だけ記憶する。
 その1サンプリング後、平均値演算部714には、新たな信号である偏差信号が入力される。このとき、偏差信号記憶部711は、1サンプリング前に記憶した偏差信号を、過去の偏差信号として偏差信号平均部712に出力する。偏差信号記憶部711は、新たに入力された信号である偏差信号を、新たな偏差信号として記憶する。
 一方、偏差信号平均部712は、差分部1803から入力された新たな偏差信号と、偏差信号記憶部711から入力された過去の偏差信号と、を用いて平均値を算出する。偏差信号平均部712は、算出した平均値を出力する。
 角度位置検出装置702は、平均値演算部714の作用により、2.の態様で説明した、A相の平均値演算部503とB相の平均値演算部504と、同様の効果が得られる。
 上述した平均RD変換部300を有する、レゾルバの角度位置検出装置702について、平均値演算部714を付加した理由と効果を、図5を用いて、以下に説明する。
 なお、下記説明は、上述した1.の態様に則した内容となる。
 つまり、レゾルバ101から出力されるA相の信号5a1とB相の信号5a2とは、お互いにわずかな位相ずれを有している。このとき、上述した1.の態様にて詳細に説明したように、実施の形態1で説明した、平均値演算部114を有さない角度位置検出装置102を用いた場合、RD変換部105の出力値は、サンプリング指令信号が出力される1サンプリングごとに変動する。図5に示すように、RD変換部の出力値5c1は点線で示される。
 このような現象は、レゾルバ101の角度位置を検出する際、速い応答性や高い精度が要求される用途では、不都合となる。
 そこで、図8に示すように、平均値演算部714を有する角度位置検出装置702が用いられる。このとき、平均RD変換部300の出力値は、変動が打ち消される。図5に示すように、変動が打ち消されて、平坦な波形となった平均RD変換部の出力値5c2は、実線で示される。
 1サンプリングの前後において、レゾルバ101の角度位置を検出した値が、平均値演算部714で平均化される。平均値演算部714で平均化された値は、レゾルバ101の角度位置として出力される。平均化された出力値を用いれば、応答性が良く、かつ、精度が高い、レゾルバ101の角度検出を行うことができる。
 ところで、上述した説明において、偏差信号記憶部711は、偏差信号を1サンプリング分のみ記憶して、随時、新たな偏差信号に更新して、記憶する。
 なお、偏差信号記憶部711が記憶する偏差信号は、1サンプリング分に限らず、予め定めた、複数のサンプリング分を記憶するようにしてもよい。
 偏差信号記憶部711が記憶する偏差信号が、1サンプリング分であれば、偏差信号平均部712での演算が早くなるため、応答性が向上する。一方、偏差信号記憶部711が記憶する偏差信号が、複数のサンプリング分を記憶した場合、偏差信号平均部712で算出される平均値の精度が向上する。
 ところで、図8に示したレゾルバ101の角度位置検出装置702は、図1に示したレゾルバ101の角度位置検出装置102に比べて、多少、応答性の悪化が発生する。しかし、図8に示したレゾルバ101の角度位置検出装置702は、図24に示した従来のレゾルバ101の角度位置検出装置1102に比べて、1.5倍程度は高速となる応答性を有している。
 また、A相の信号とB相の信号の大きさ、すなわち、絶対値が最大となる位相と、絶対値が最小となる位相の略中間に位置する位相において、レゾルバ101が出力するA相の信号とB相の信号とは、信号の振幅が、最大値に対して0.7倍程度の大きさとなる。しかしながら、上述したように、レゾルバ101の角度位置を検出した出力値を平均化することで、本実施の形態2における角度位置検出装置702は、SN比が向上する。よって、本発明の効果は、総合的には、十分な優位性を確保できる。
 (実施の形態3)
 図12は、本発明の実施の形態3におけるレゾルバの角度検出装置を説明するブロック図である。図13は、本発明の実施の形態3におけるサンプリング指令信号生成部のブロック図である。図14は、本発明の実施の形態3における各信号を示す波形図である。図15は、本発明の実施の形態3におけるベクトル長差の変化を示す波形図である。
 実施の形態3で示す角度位置検出装置は、実施の形態1で説明した角度位置検出装置に対して、ベクトル長演算部が付加される。
 以下、図12から図15を用いて説明する。
 なお、上述した実施の形態1に示した構成と同一のものについては、同じ符号を付して、説明を援用する。
 図12に示すように、本発明の実施の形態3における角度位置検出装置602は、実施の形態1で説明した角度位置検出装置102において、ベクトル長演算部106をさらに備える。
 ベクトル長演算部106は、第3の位相、または、第4の位相において、サンプリング指令信号生成部607から出力されたサンプリング指令に応じて、第1のアナログデジタル変換器103が出力する第1のAD変換値と、第2のアナログデジタル変換器104が出力する第2のAD変換値と、が入力される。ベクトル長演算部106は、入力された第1のAD変換値と第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出したベクトル長を出力する。
 図13に示すように、特に、サンプリング指令信号生成部607は、ベクトル長記憶部611と、タイミング調整部612と、を有する。
 図12、図13に示すように、ベクトル長記憶部611は、第3の位相、または、第4の位相において、サンプリング指令信号生成部607から出力されたサンプリング指令に応じて、ベクトル長演算部106が出力したベクトル長を第1のベクトル長として記憶する。
 ベクトル長記憶部611は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部607から出力されるサンプリング指令に応じて、ベクトル長演算部106が新たに出力するベクトル長を、記憶されていた第1のベクトル長に代えて、新たな第1のベクトル長として記憶する。
 タイミング調整部612は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部607から出力されるサンプリング指令に応じて、ベクトル長演算部106が出力したベクトル長が、第2のベクトル長として入力される。
 タイミング調整部612は、第3の位相以前または第4の位相以前において、ベクトル長記憶部611で記憶された第1のベクトル長が入力されて、第1のベクトル長と第2のベクトル長との差がゼロとなるように、サンプリング指令信号を出力するタイミングを調整する。
 このような構成とすれば、サンプリング指令信号が出力されるタイミングを調整できる。よって、本実施の形態3における角度位置検出装置602は、高い精度の角度位置検出を、容易に実現できる。
 図面を用いて、さらに詳細に説明する。
 図12に示すように、レゾルバ101の角度位置検出装置602は、実施の形態1で説明した角度位置検出装置102と比べて、ベクトル長演算部106が付加されている点が異なる。併せて、サンプリング指令信号生成部607も特有の機能を有する。
 ベクトル長演算部106には、第1のAD変換器103の出力と第2のAD変換器104の出力とが、入力される。ベクトル長演算部106は、入力された第1のAD変換器103、第2のAD変換器104の出力に基いて、ベクトル長を計算する。ベクトル長演算部106は、計算したベクトル長を出力する。
 サンプリング指令信号生成部607は、入力した基準信号生成部108の信号に基いて、第1のAD変換器103と第2のAD変換器104に対してサンプリング指令信号を出力する。サンプリング指令信号生成部607は、ベクトル長演算部106から出力されるベクトル長に基いて、サンプリング指令信号の位相を調整する機能を有する。
 サンプリング指令信号生成部607について、図13を用いて説明する。
 サンプリング指令信号生成部607は、入力された信号をベクトル長記憶部611で記憶する。本実施の形態3において、ベクトル長記憶部611は、入力された信号である第1のベクトル長を、1サンプリング分だけ記憶する。
 その1サンプリング後、タイミング調整部612には、新たな信号である第2のベクトル長が入力される。このとき、ベクトル長記憶部611は、1サンプリング前に記憶した第1のベクトル長をタイミング調整部612に出力する。ベクトル長記憶部611は、新たに入力された信号を、新たな第1のベクトル長として記憶する。
 一方、タイミング調整部612は、ベクトル長演算部106から入力された第2のベクトル長と、ベクトル長記憶部611から入力された第1のベクトル長との差がゼロとなるように、サンプリング指令信号を出力するタイミングを調整する。
 以上のように構成された、モータ113の制御装置におけるレゾルバ101の角度位置検出装置について、以下にその動作、作用を説明する。
 図14には、レゾルバ101から出力される、A相の信号7a1とB相の信号7a2が示される。前述したとおり、A相の信号7a1とB相の信号7a2とは、レゾルバ101内部において、励磁信号(sinωt)を振幅変調した信号である。A相の信号7a1とB相の信号7a2とは、お互いに90度の位相差を有した状態で、振幅変調される。
 レゾルバ101の角度位置をθとすると、A相の信号7a1はAsinθsinωt、B相の信号7a2はAcosθsinωtで表される。ここで、Aは、信号の振幅を意味する。
 A相の信号7a1とB相の信号7a2とは、お互いに90度の位相差を有して振幅変調される。よって、この2つの信号をベクトルと考えると、ベクトルの長さを示すベクトル長は、次式の平方根で表される。
Figure JPOXMLDOC01-appb-M000001
 すなわち、ベクトル長は|Asinωt|となる。
 レゾルバ101の角度位置θが変化すれば、A相の信号7a1とB相の信号7a2とは、図14に示した振幅とは異なる振幅になる。しかしながら、前述したベクトル長は、レゾルバ101の角度位置θによらず、常に、一定の振幅である。しかも、このベクトル長は、基準信号と、A相の信号7a1と、B相の信号7a2と、に同期した信号となる。
 従って、レゾルバ101が回転している状態であっても、角度位置検出装置602は、ベクトル長を容易に、正確に検出できる。ベクトル長を容易に、正確に検出できるため、角度位置検出装置602は、サンプリング指令信号生成部607からサンプリング指令信号を出力する、最適なタイミングを決定できる。
 以下、このようなベクトル長を用いて、サンプリング指令信号が出力されるタイミングを調整する過程について、具体例を挙げて説明する。
 図14には、ベクトル長の値7bと、基準信号7cが示される。ベクトル長の値7bは、ベクトル長演算部106から出力される。基準信号7cは、基準信号生成部108から出力される。
 図14に示すように、基準信号7cの1周期において、サンプリング指令信号生成部607は、4回のサンプリング指令信号を等間隔で出力する。これは、90度の位相差に相当する。初期状態では、時刻t1、t2、t3、t4において、サンプリング指令信号生成部607が、サンプリング指令信号を出力する。この場合、時刻t1におけるベクトル長と時刻t2におけるベクトル長とは、お互いに大きく異なる値である。同様に、時刻t3におけるベクトル長と時刻t4におけるベクトル長とは、お互いに大きく異なる値である。また、時刻t1、t2、t3、t4は、A相の信号の大きさとB相の信号の大きさとが、最大となる位相と最小となる位相との略中間に位置する位相に相当する時刻からずれている。
 励磁信号(sinωt)は、基準信号7cに基いて励磁信号生成部109で生成された後、バッファー回路111を経由してレゾルバ101に入力される。
 従って、基準信号7cと、A相の信号7a1と、B相の信号7a2との位相の関係は、つぎのとおりである。すなわち、(1)基準信号7cから励磁信号が生成される。(2)生成された励磁信号は、レゾルバ101を経由して、第1のAD変換器103と、第2のAD変換器104に伝達される。(3)伝達された励磁信号に基いて、A相の信号7a1とB相の信号7a2とは、デジタル値に変換される。基準信号7cと、A相の信号7a1と、B相の信号7a2とは、これら(1)から(3)までの伝達過程において生じる、位相遅れ、遅延などの影響を受ける。
 さらに、前述した伝達経路に配置された各構成要素の特性も、温度変化や経時変化の影響を受ける可能性がある。よって、サンプリング指令信号について、タイミング調整を行うことが必要となる。
 図14に示すように、サンプリング指令信号生成部607は、ベクトル長の大きさがサンプリング指令信号の出力タイミングにおいて等しくなるように、出力するサンプリング指令信号のタイミングを調整する。具体的には、サンプリング指令信号生成部607は、ベクトル長演算部106が出力するベクトル長の大きさの値について、1サンプリング前までに保持した値と最新の値との差を計算する。サンプリング指令信号生成部607は、その差がゼロとなるように、サンプリング指令信号のタイミングを調整する。
 このような処理によって、サンプリング指令信号が出力されるタイミングが調整された結果、図14に示す、時刻t5、t6、t7、t8でサンプリング指令信号が出力されるようになる。この場合、時刻t5と時刻t6におけるベクトル長は、お互いにほぼ同一の値である。時刻t7と時刻t8におけるベクトル長も、お互いにほぼ同一の値である。
 また、サンプリング指令信号が出力される時間の間隔は、90度の位相差に相当する。よって、時刻t5、t6、t7、t8は、自ずと、A相の信号の大きさとB相の信号の大きさとが、最大となる位相と最小となる位相との略中間に位置する位相に相当する時刻となる。
 なお、サンプリング指令信号は、略中間に位置する位相からの位相ずれ量Δθを有する。一方、図15に示すように、ベクトル長の大きさの値と、1サンプリング前まで記憶したベクトル長の大きさの値との差は、原点ゼロを経由した正弦波関数の曲線15となる。よって、位相ずれ量Δθが比較的小さい領域において、負のフィードバックループを形成することにより、自動的に位相ずれ量Δθがゼロとなるように、サンプリング指令信号が出力されるタイミングを調整することができる。
 また、負のフィードバックループを形成することで、初期の調整を行った後、角度位置を検出する動作を実行しながら、継続してサンプリング指令信号を出力するタイミングを自動的に調整できる。よって、伝達経路に配置された各構成要素などが、温度変化などの要因によって位相がずれることにも対応ができる。
 このように、サンプリング指令信号生成部607は、ベクトル長演算部106を用いて、サンプリング指令信号を出力するタイミングを調整する。ベクトル長演算部106は、サンプリング指令信号が出力されるタイミングに応じて出力される、第1のAD変換器103の出力値と第2のAD変換器104の出力値とを用いて、ベクトルの大きさを算出する。サンプリング指令信号生成部607は、1サンプリング前に出力されたベクトル長演算部106の出力値を記憶している。サンプリング指令信号生成部607は、ベクトル長演算部106から出力される1サンプリング前後の出力値を比較して、その差がゼロとなるように、サンプリング指令信号を出力するタイミングを調整する。この結果、サンプリング指令信号生成部607は、A相の信号の大きさとB相の信号の大きさとが、最大となる位相と最小となる位相の略中間に位置する位相で、サンプリング指令信号を出力できる。よって、例えば、図12に示す構成により、本実施の形態3における角度位置検出装置602は、常に、安定して、高い精度で、レゾルバ101の角度検出を行うことができる。
 しかも、前述した処理は、1周期の励磁信号において、ベクトル長を4回取得して行うことができる。よって、本実施の形態3における角度位置検出装置602は、出力するサンプリング指令信号のタイミング調整を、従来よりも短い期間で行うことができる。
 なお、前述した説明において、ベクトル長の計算は、平方根の演算を用いて行った。しかしながら、ベクトル長の計算は、平方根の演算に囚われる必要はない。例えば、処理時間などの都合上、ベクトル長の計算は、平方根の演算を省略してもよい。
 (実施の形態4)
 図16は、本発明の実施の形態4におけるレゾルバの角度検出装置を説明するブロック図である。図17は、本発明の実施の形態4における励磁信号生成部を説明するブロック図である。図18は、本発明の実施の形態4における他の励磁信号生成部を説明するブロック図である。図19は、本発明の実施の形態4における他のレゾルバの角度検出装置を説明するブロック図である。図20は、本発明の実施の形態4におけるさらに他の励磁信号生成部を説明するブロック図である。図21は、本発明の実施の形態4における各信号を示す波形図である。図22は、本発明の実施の形態4における他の各信号を示す波形図である。図23は、本発明の実施の形態4におけるベクトル長の値23の変化を示す波形図である。
 実施の形態4で示す角度位置検出装置は、実施の形態1で説明した角度位置検出装置に対して、ベクトル長演算部と、励磁信号生成部と、をさらに備える。
 以下、図16から図23を用いて説明する。
 なお、上述した実施の形態1に示した構成と同一のものについては、同じ符号を付して、説明を援用する。
 図16に示すように、本発明の実施の形態4における角度位置検出装置902は、実施の形態1で説明した角度位置検出装置102に対して、ベクトル長演算部106と、励磁信号生成部909と、をさらに備える。
 ベクトル長演算部106は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されたサンプリング指令に応じて、第1のアナログデジタル変換器103が出力する第1のAD変換値と、第2のアナログデジタル変換器104が出力する第2のAD変換値と、が入力される。ベクトル長演算部106は、入力された第1のAD変換値と第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出したベクトル長を出力する。
 図17に示すように、励磁信号生成部909は、ベクトル長記憶部911と、位相調整部912と、を有する。
 図16、図17に示すように、ベクトル長記憶部911は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されたサンプリング指令に応じて、ベクトル長演算部106が出力したベクトル長を第1のベクトル長として記憶する。
 ベクトル長記憶部911は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、ベクトル長演算部106が新たに出力するベクトル長を、記憶されていた第1のベクトル長に代えて、新たな第1のベクトル長として記憶する。
 位相調整部912は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、ベクトル長演算部106が出力したベクトル長が、第2のベクトル長として入力される。
 位相調整部912は、第3の位相以前または第4の位相以前において、ベクトル長記憶部911で記憶された第1のベクトル長が入力されて、第1のベクトル長と第2のベクトル長との差がゼロとなるように、レゾルバ101を励磁するための励磁信号の位相を調整する。
 このような構成によれば、相対的にサンプリング指令信号が出力されるタイミングが調整される。よって、本実施の形態4における角度位置検出装置は、高い精度の角度位置検出を、容易に実現できる。
 さらに、図18に示すように、本発明の実施の形態4における角度位置検出装置902は、つぎの構成であってもよい。
 励磁信号生成部909は、矩形波パルス生成部1002と、振幅調整部1003と、をさらに備える。
 矩形波パルス生成部1002は、位相調整部912の調整結果に基いて第1の矩形波パルスを出力する。
 振幅調整部1003は、第1の矩形波パルスが入力され、入力された第1の矩形波パルスに応じて、レゾルバ101を励磁するための励磁信号の振幅を調整する、第2の矩形波パルスを出力する。
 また、このような構成によれば、レゾルバから出力される信号の振幅、すなわち、第1のAD変換器の入力信号の振幅と、第2のAD変換器の入力信号の振幅とが、適正値に調整される。よって、本実施の形態4における角度位置検出装置は、高い精度の角度位置検出を、容易に実現できる。
 また、本発明の実施の形態4における角度位置検出装置902は、正弦波変換部1004をさらに備える構成であってもよい。
 正弦波変換部1004は、第2の矩形波パルスが入力され、入力された第2の矩形波パルスを、第2の矩形波パルスが有する周波数と同じ周波数を有する正弦波に変換し、変換した正弦波を出力する。
 また、このような構成とすれば、励磁信号が有する位相の調整が、容易に実現できる。
 特に、正弦波変換部1004は、ローパスフィルタであってもよい。このような構成とすれば、正弦波変換処理が容易に実現できる。
 また、図19に示すように、本発明の実施の形態4における他の角度位置検出装置902は、実施の形態1で説明した角度位置検出装置102に対して、基準信号生成部108と、ベクトル長演算部106と、励磁信号生成部909と、をさらに備える。
 基準信号生成部108は、レゾルバ101に付与される基準信号を生成して、生成した基準信号を出力する。
 ベクトル長演算部106は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されたサンプリング指令に応じて、第1のアナログデジタル変換器103が出力する第1のAD変換値と、第2のアナログデジタル変換器104が出力する第2のAD変換値と、が入力される。ベクトル長演算部106は、入力された第1のAD変換値と第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出したベクトル長を出力する。
 図20に示すように、励磁信号生成部909は、ベクトル長記憶部1011と、ベクトル長差演算部1001と、矩形波パルス生成部1002と、を有する。
 図19、図20に示すように、ベクトル長記憶部1011は、第3の位相、または、第4の位相において、サンプリング指令信号生成部107から出力されたサンプリング指令に応じて、ベクトル長演算部106が出力したベクトル長を第1のベクトル長として記憶する。
 ベクトル長記憶部1011は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令に応じて、ベクトル長演算部106が新たに出力するベクトル長を、記憶されていた第1のベクトル長に代えて、新たな第1のベクトル長として記憶する。
 ベクトル長差演算部1001は、第3の位相の直後に生じる第4の位相、または、第4の位相の直後に生じる第3の位相において、サンプリング指令信号生成部107から出力されるサンプリング指令が、第1のサンプリング指令として入力される。
 ベクトル長差演算部1001は、第1のサンプリング指令に応じて、ベクトル長演算部106が出力したベクトル長が、第2のベクトル長として入力される。
 ベクトル長差演算部1001は、ベクトル長記憶部1011で記憶された第1のベクトル長が入力されて、第1のベクトル長と第2のベクトル長との間に生じた差であるベクトル長差信号を算出し、算出したベクトル長差信号を出力する。
 矩形波パルス生成部1002は、ベクトル長差演算部1001から出力されたベクトル長差信号と、基準信号生成部108から出力された基準信号と、が入力される。
 矩形波パルス生成部1002は、ベクトル長差信号と基準信号とに応じて、第1のベクトル長と第2のベクトル長との差がゼロとなるように矩形波パルスを生成し、生成した矩形波パルスを出力する。
 さらに、本発明の実施の形態4における角度位置検出装置902は、振幅調整部1003をさらに備える構成であってもよい。
 振幅調整部1003は、第1の矩形波パルスが入力され、入力された第1の矩形波パルスに応じて、レゾルバを励磁するための励磁信号の振幅を調整する、第2の矩形波パルスを出力する。
 また、本発明の実施の形態4における角度位置検出装置902は、正弦波変換部1004をさらに備える構成であってもよい。
 正弦波変換部1004は、第2の矩形波パルスが入力され、入力された第2の矩形波パルスを、第2の矩形波パルスが有する周波数と同じ周波数を有する正弦波に変換し、変換した正弦波を出力する。
 特に、正弦波変換部1004は、ローパスフィルタであってもよい。
 図面を用いて、さらに詳細に説明する。
 図19に示すように、レゾルバ101の角度位置検出装置902は、実施の形態1で説明した角度位置検出装置と比べて、励磁信号生成部909が特徴のある機能を有する。
 励磁信号生成部909には、ベクトル長演算部106から出力されたベクトル長の値と、基準信号生成部108から出力された基準信号とが、入力される。励磁信号生成部909は、入力された各信号等に基いて、励磁信号を生成する。励磁信号生成部909は、生成した励磁信号を出力する。
 図20に示すように、ベクトル長差演算部1001には、ベクトル長演算部106から出力されたベクトル長の信号と、サンプリング指令信号生成部107から出力されたサンプリング指令信号と、が入力される。ベクトル長差演算部1001は、ベクトル長の値について、1サンプリング前まで記憶した値との差を計算する。ベクトル長差演算部1001は、計算した結果を出力する。
 矩形波パルス生成部1002は、基準信号に基いて、矩形波パルスを出力する。矩形波パルス生成部1002は、ベクトル長差演算部1001から出力されたベクトル長差の値を反映して、矩形波パルス生成部1002が出力する矩形波パルスの位相を調整する機能を有する。
 振幅調整部1003は、矩形波パルス生成部1002から出力された矩形波パルスの振幅を調整して、調整した結果を出力する。
 正弦波変換部1004は、振幅調整部1003から出力された矩形波パルスを、同一周波数の正弦波に変換して、変換した結果を出力する。この変換した結果が、励磁信号生成部909が出力する励磁信号となる。
 なお、正弦波変換部1004は、急峻なローパスの遮断特性を有するスイッチトキャパシタフィルタを用いることができる。正弦波変換部1004としてスイッチトキャパシタフィルタを用いれば、正弦波変換部1004は、容易に実現される。
 以上のように構成された、モータの制御装置におけるレゾルバ101の角度位置検出装置902について、以下にその動作、作用を説明する。
 図14には、レゾルバ101から出力される、A相の信号7a1とB相の信号7a2が示される。また、図14には、ベクトル長演算部106から出力されるベクトル長の値7bと、基準信号生成部108から出力される基準信号7cも示される。前述した本発明の実施の形態3と同様に、本発明の実施の形態4におけるレゾルバ101の角度位置検出装置902においても、これらの信号は共通している。
 図14に示すように、基準信号7cの1周期において、サンプリング指令信号生成部107は、4回のサンプリング指令信号を等間隔で出力する。これは、90度の位相差に相当する。初期状態では、時刻t1、t2、t3、t4において、サンプリング指令信号生成部107が、サンプリング指令信号を出力する。この場合、時刻t1におけるベクトル長と時刻t2におけるベクトル長とは、お互いに大きく異なる値である。同様に、時刻t3におけるベクトル長と時刻t4におけるベクトル長とは、お互いに大きく異なる値である。また、時刻t1、t2、t3、t4は、A相の信号の大きさとB相の信号の大きさとが、最大となる位相と最小となる位相との略中間に位置する位相に相当する時刻からずれている。
 励磁信号(sinωt)は、基準信号7cに基いて励磁信号生成部909で生成された後、バッファー回路111を経由してレゾルバ101に入力される。
 従って、基準信号7cと、A相の信号7a1と、B相の信号7a2との位相の関係は、つぎのとおりである。すなわち、(1)基準信号7cから励磁信号が生成される。(2)生成された励磁信号は、レゾルバ101を経由して、第1のAD変換器103と、第2のAD変換器104に伝達される。(3)伝達された励磁信号に基いて、A相の信号7a1と、B相の信号7a2とは、これら(1)から(3)までの伝達過程において生じる、位相遅れ、遅延などの影響を受ける。
 さらに、前述した伝達経路に配置された各構成要素の特性も、温度変化や経時変化の影響を受ける可能性がある。よって、実施の形態3と同様、サンプリング指令信号について、タイミング調整を行うことが必要となる。
 図21から図23を用いて、タイミング調整過程の詳細について、説明する。
 図21には、基準信号11aが示される。図21には、初期状態において、矩形波パルス生成部1002が出力する、矩形波パルス信号11bが示される。同様に、図21には、初期状態において、正弦波変換部1004が出力する信号、すなわち、励磁信号生成部909が出力する励磁信号11dが示される。
 前述したように、初期状態では、図14に示す、時刻t1、t2、t3、t4において、ベクトル長は互いに大きく異なる。すなわち、ベクトル長差演算部1001が出力するベクトル長差の値が、ゼロからずれた状態である。
 そこで、このベクトル長差の値がゼロとなるように、矩形波パルス生成部1002が出力する矩形波パルスの位相を変更する。
 つまり、図21に示すように、矩形波パルス生成部が出力する信号11cは、位相が前にずれた信号となる。よって、矩形波パルス生成部が出力する信号11cに基いて、正弦波変換部1004が出力する信号、すなわち、励磁信号生成部909が出力する励磁信号11eも、位相が前にずれた信号となる。
 この結果を図22に示す。図22には、レゾルバ101が出力するA相の信号12a1と、B相の信号12a2と、ベクトル長演算部106が出力するベクトル長の値12bと、基準信号生成部108が出力する基準信号12cと、が示される。
 図22に示した波形と図14に示した波形とを比較すると、つぎのようになる。
 レゾルバ101が出力する、A相の信号7a1、12a1と、B相の信号7a2、12a2と、ベクトル長演算部106が出力するベクトル長の値7b、12bは、基準信号生成部108が出力する基準信号7c、12cに対して、位相が前にずれた信号となる。
 図22に示すとおり、本実施の形態4における角度位置検出装置902を用いれば、励磁信号の位相を調整する処理により、時刻t1におけるベクトル長と時刻t2におけるベクトル長とは、お互いにほぼ同一の値になる。同様に、時刻t3におけるベクトル長と時刻t4におけるベクトル長も、お互いにほぼ同一の値になる。
 また、サンプリング指令信号が出力される時間の間隔は、90度の位相差に相当する。よって、時刻t1、t2、t3、t4は、自ずと、A相の信号の大きさとB相の信号の大きさとが、最大となる位相と最小となる位相との略中間に位置する位相に相当する時刻となる。
 なお、サンプリング指令信号は、略中間に位置する位相からの位相ずれ量Δθを有する。一方、図15に示すように、ベクトル長の大きさの値と、1サンプリング前まで記憶したベクトル長の大きさの値との差は、原点ゼロを経由した正弦波関数の曲線15となる。よって、位相ずれ量Δθが比較的小さい領域において、負のフィードバックループを形成することにより、自動的に位相ずれ量Δθがゼロとなるように、サンプリング指令信号が出力されるタイミングを調整することができる。
 また、負のフィードバックループを形成することで、初期の調整を行った後、角度位置を検出する動作を実行しながら、継続してサンプリング指令信号を出力するタイミングを自動的に調整できる。よって、伝達経路に配置された各構成要素などが、温度変化などの要因によって位相がずれることにも対応できる。
 このように、図19に示すように、励磁信号生成部909は、つぎの過程を経て、レゾルバを励磁するための励磁信号の位相を調整する。すなわち、ベクトル長演算部106では、サンプリング指令信号が出力されるタイミングに応じて出力される、第1のAD変換器103の出力値と第2のAD変換器104の出力値とを用いて、ベクトルの大きさを算出する。励磁信号生成部909は、1サンプリング前に出力されたベクトル長演算部106の出力値を記憶している。励磁信号生成部909は、ベクトル長演算部106から出力される1サンプリング前後の出力値を比較して、その差がゼロとなるように、レゾルバを励磁するための励磁信号の位相を調整する。サンプリング指令信号が出力されるタイミングは、A相の信号の大きさとB相の信号の大きさとが、最大となる位相と最小となる位相との略中間に位置する位相と一致する。よって、例えば、図19に示す構成により、本実施の形態4における角度位置検出装置902は、常に、安定して、高い精度で、レゾルバ101の角度検出を行うことができる。
 また、図20に示すように、励磁信号生成部909は、振幅調整部1003を備えているため、励磁信号の振幅調整を行うことができる。なお、励磁信号の振幅については、前述したように、ベクトル長の値を用いて調整できる。ベクトル長の値は、目標値との差を用いて、負のフィードバックループを構成することにより、励磁信号の振幅の初期調整を行うことができる。しかも、初期調整が完了した後、レゾルバの角度位置を検出する動作を実行しながら、継続して励磁信号の振幅を調整できる。よって、本実施の形態4における角度位置検出装置902は、温度変化などの要因による、振幅のずれにも対応できる。
 図23に示すように、本実施の形態4における角度位置検出装置902は、時刻t0において、励磁信号の振幅の調整を開始している。その後、ベクトル長の値23は、時刻t0における初期値から徐々に増加して、時刻t1において、目標値に達している。こうして、角度位置検出装置902は、励磁信号の振幅の初期調整を完了する。このような、励磁信号の振幅の初期調整を精度よく、安定して行うためには、前述したように、励磁信号の位相調整を実行した後に行うことが望ましい。励磁信号の振幅調整を行うことで、第1のAD変換器103と第2のAD変換器104と、に入力されるレゾルバ101の信号の振幅は、適正値に調整される。よって、本実施の形態4における角度位置検出装置902を用いれば、さらに安定して、高い精度で、レゾルバ101の角度検出を行うことができる。
 また、本実施の形態4における角度位置検出装置902で行う処理は、1周期の励磁信号において、ベクトル長を4回取得して行うことができる。よって、本実施の形態4における角度位置検出装置902は、励磁信号の位相調整、および、励磁信号の振幅調整を、従来よりも短い期間で行うことができる。
 なお、前述した説明において、ベクトル長の計算は、平方根の演算を用いて行う。しかしながら、ベクトル長の計算は、平方根の演算に囚われる必要はない。例えば、処理時間などの都合上、ベクトル長の計算は、平方根の演算を省略してもよい。
 以上、説明したように、本発明におけるレゾルバの角度位置検出装置は、応答性が良く、高精度な角度位置検出ができる。また、本発明の角度位置検出装置は、AD変換器に出力されるサンプリング指令信号のタイミングや励磁信号の位相を、レゾルバの特性ばらつきや温度変化、あるいは、経時変化なども含めて、調整できる。よって、本発明の角度位置検出装置は、安定して、精度のよい、レゾルバの角度位置検出ができる。従って、産業用FAサーボモータなどにも、適用できる。
2a1,5a1,7a1,12a1,15a1 A相の信号
2a2,5a2,5a3,7a2,12a2,15a2 B相の信号
2b,5b,7c,11a,12c,15b 基準信号
5c1 RD変換部の出力値
5c2 平均RD変換部の出力値
7b,12b ベクトル長の値
11b 矩形波パルス信号
11c 矩形波パルス生成部が出力する信号
11e 励磁信号
15 曲線
23 ベクトル長の値
101 レゾルバ
102,302,502,602,702,902,1102 角度位置検出装置
103 第1のアナログデジタル変換器(第1のAD変換器)
104 第2のアナログデジタル変換器(第2のAD変換器)
105,705,1815 レゾルバデジタル変換部(RD変換部)
106 ベクトル長演算部
107,607,1107 サンプリング指令信号生成部
108 基準信号生成部
109 励磁信号生成部
110 インターフェイス処理部(IF処理部)
111 バッファー回路
112 サーボアンプ
113 モータ
114,514,714 平均値演算部
300 平均レゾルバデジタル変換部(平均RD変換部)
401 角度データ記憶部
402 角度データ平均部
503 A相の平均値演算部
504 B相の平均値演算部
511 第1のAD変換値の記憶部
512 第1のAD変換値の平均部
521 第2のAD変換値の記憶部
522 第2のAD変換値の平均部
611,911,1011 ベクトル長記憶部
612 タイミング調整部
711 偏差信号記憶部
712 偏差信号平均部
707 トラッキングループ
909 励磁信号生成部
912 位相調整部
1001 ベクトル長差演算部
1002 矩形波パルス生成部
1003 振幅調整部
1004 正弦波変換部
1801 第1の乗算部
1802 第2の乗算部
1803 差分部
1804 比例積分制御器(PI制御器)
1805 余弦波テーブル
1806 正弦波テーブル

Claims (26)

  1. 振幅が変調されたA相の信号と、前記A相の信号とは90度の位相差を有して、振幅が変調されたB相の信号と、を出力するレゾルバと、
    前記A相の信号と前記B相の信号とのうち、少なくともいずれか一方の信号において、前記A相の信号の大きさまたは前記B相の信号の大きさが、最小となるときを第1の位相、前記A相の信号の大きさまたは前記B相の信号の大きさが、最大となるときを第2の位相、前記第1の位相から前記第2の位相へと変化する中間のときを第3の位相、前記第2の位相から前記第1の位相へと変化する中間のときを第4の位相とする場合、前記第3の位相と前記第4の位相とにおいて、各々サンプリング指令信号を出力するサンプリング指令信号生成部と、
    前記サンプリング指令信号が入力されたときに、前記A相の信号が入力され、入力された前記A相の信号の大きさをデジタル値に変換して第1のAD変換値を生成し、生成した前記第1のAD変換値を出力する第1のアナログデジタル変換器と、
    前記サンプリング指令信号が入力されたときに、前記B相の信号が入力され、入力された前記B相の信号の大きさをデジタル値に変換して第2のAD変換値を生成し、生成した前記第2のAD変換値を出力する第2のアナログデジタル変換器と、
    前記第1のAD変換値と前記第2のAD変換値とが入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出して、算出した前記角度データを出力するレゾルバデジタル変換部と、
    を備える角度位置検出装置。
  2. 前記レゾルバデジタル変換部に代えて、
    前記第1のアナログデジタル変換器が出力する前記第1のAD変換値を過去の第1のAD変換値とし、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記第1のアナログデジタル変換器から新たに出力される前記第1のAD変換値を新たな第1のAD変換値とし、
    前記第2のアナログデジタル変換器が出力する前記第2のAD変換値を過去の第2のAD変換値とし、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記第2のアナログデジタル変換器から新たに出力される前記第2のAD変換値を新たな第2のAD変換値とするとき、
    前記過去の第1のAD変換値と、前記新たな第1のAD変換値と、前記過去の第2のAD変換値と、前記新たな第2のAD変換値と、を用いて、前記レゾルバの角度位置を示す角度データを算出する過程において、
    前記過去の第1のAD変換値、前記新たな第1のAD変換値、前記過去の第2のAD変換値、および、前記新たな第2のAD変換値、のうち少なくとも2以上の値に基いて平均処理を行う平均値演算部と、
    前記過去の第1のAD変換値、前記新たな第1のAD変換値、前記過去の第2のAD変換値、および、前記新たな第2のAD変換値、のうち少なくとも2以上の値に基いて前記角度データを算出し、算出した前記角度データを出力するレゾルバデジタル変換部と、
    を有する、平均レゾルバデジタル変換部を備える請求項1に記載の角度位置検出装置。
  3. 前記平均レゾルバデジタル変換部において、
    前記レゾルバデジタル変換部は、前記第1のAD変換値と前記第2のAD変換値とが入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出して、算出した前記角度データを出力し、
    前記平均値演算部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記レゾルバデジタル変換部から出力される前記角度データを記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記レゾルバデジタル変換部から新たに出力される前記角度データを、記憶されていた前記角度データに代えて、新たな角度データとして記憶する、角度データ記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記レゾルバデジタル変換部から出力される前記角度データが前記新たな角度データとして入力されるとともに、前記第3の位相以前または前記第4の位相以前において、前記角度データ記憶部で記憶されていた前記角度データが過去の角度データとして入力されて、前記過去の角度データと前記新たな角度データとの平均値を算出し、算出した前記平均値を出力する、角度データ平均部と、
    を有する、
    請求項2に記載の角度位置検出装置。
  4. 前記平均レゾルバデジタル変換部において、
    前記平均値演算部は、A相の平均値演算部と、B相の平均値演算部と、を有し、
    前記A相の平均値演算部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器から出力された前記第1のAD変換値を記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記第1のアナログデジタル変換器から新たに出力される前記第1のAD変換値を、記憶されていた前記第1のAD変換値に代えて、新たな第1のAD変換値として記憶する、第1のAD変換値の記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記第1のアナログデジタル変換器から出力される前記第1のAD変換値が前記新たな第1のAD変換値として入力されるとともに、前記第3の位相以前または前記第4の位相以前において、前記第1のAD変換値の記憶部で記憶されていた前記第1のAD変換値が過去の第1のAD変換値として入力されて、前記過去の第1のAD変換値と前記新たな第1のAD変換値との平均値を算出し、算出した前記平均値を平均化された第1のAD変換値として出力する、第1のAD変換値の平均部と、
    を有し、
    前記B相の平均値演算部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第2のアナログデジタル変換器から出力された前記第2のAD変換値を記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記第2のアナログデジタル変換器から新たに出力される前記第2のAD変換値を、記憶されていた前記第2のAD変換値に代えて、新たな第2のAD変換値として記憶する、第2のAD変換値の記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記第2のアナログデジタル変換器から出力される前記第2のAD変換値が前記新たな第2のAD変換値として入力されるとともに、前記第3の位相以前または前記第4の位相以前において、前記第2のAD変換値の記憶部で記憶されていた前記第2のAD変換値が過去の第2のAD変換値として入力されて、前記過去の第2のAD変換値と前記新たな第2のAD変換値との平均値を算出し、算出した前記平均値を平均化された第2のAD変換値として出力する、第2のAD変換値の平均部と、
    を有し、
    前記レゾルバデジタル変換部は、前記平均化された第1のAD変換値と、前記平均化された第2のAD変換値とが入力され、入力された前記平均化された第1のAD変換値と前記平均化された第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出して、算出した前記角度データを出力する、
    請求項2に記載の角度位置検出装置。
  5. 前記平均レゾルバデジタル変換部において、
    前記レゾルバデジタル変換部は、前記第1のAD変換値と前記第2のAD変換値とが入力されたとき、入力された前記第1のAD変換値と入力された前記第2のAD変換値に基いて、前記レゾルバの回転角θから前記レゾルバの角度位置φを算出する場合、入力された前記第1のAD変換値と入力された前記第2のAD変換値とから、偏差信号sin(θ-φ)を算出し、算出した偏差信号sin(θ-φ)をゼロに収束して前記レゾルバの角度位置φを算出するトラッキングループを有して、算出された前記角度位置φから前記角度データを出力し、
    前記平均値演算部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記トラッキングループで算出される前記偏差信号を記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記トラッキングループで新たに算出される前記偏差信号を、記憶されていた前記偏差信号に代えて、新たな偏差信号として記憶する、偏差信号記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記トラッキングループで算出される前記偏差信号が前記新たな偏差信号として入力されるとともに、前記第3の位相以前または前記第4の位相以前において、前記偏差信号記憶部で記憶されていた前記偏差信号が過去の偏差信号として入力されて、前記過去の偏差信号と前記新たな偏差信号との平均値を算出し、算出した前記平均値を出力する、偏差信号平均部と、
    を有する、
    請求項2に記載の角度位置検出装置。
  6. 前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部をさらに備え、
    前記サンプリング指令信号生成部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長を第1のベクトル長として記憶し、かつ、前記第4の位相、または、前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が新たに出力する前記ベクトル長を、記憶されていた前記第1のベクトル長に代えて、新たな第1のベクトル長として記憶する、ベクトル長記憶部と、
    前記第4の位相、または、前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長が、第2のベクトル長として入力されるとともに、前記ベクトル長記憶部で記憶された前記第1のベクトル長が入力されて、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように、前記サンプリング指令信号を出力するタイミングを調整するタイミング調整部と、
    を有する請求項1または2のいずれか一項に記載の角度位置検出装置。
  7. 前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部をさらに備え、
    前記サンプリング指令信号生成部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長を第1のベクトル長として記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が新たに出力する前記ベクトル長を、記憶されていた前記第1のベクトル長に代えて、新たな第1のベクトル長として記憶する、ベクトル長記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長が、第2のベクトル長として入力されるとともに、前記第3の位相以前または前記第4の位相以前において、前記ベクトル長記憶部で記憶された前記第1のベクトル長が入力されて、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように、前記サンプリング指令信号を出力するタイミングを調整するタイミング調整部と、
    を有する請求項1または2のいずれか一項に記載の角度位置検出装置。
  8. 前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部をさらに備え、
    前記サンプリング指令信号生成部は、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長を第1のベクトル長として記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が新たに出力する前記ベクトル長を、記憶されていた前記第1のベクトル長に代えて、新たな第1のベクトル長として記憶する、ベクトル長記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長が、第2のベクトル長として入力されるとともに、前記ベクトル長記憶部で記憶された前記第1のベクトル長が入力されて、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように、前記サンプリング指令信号を出力するタイミングを調整するタイミング調整部と、
    を有する請求項1または2のいずれか一項に記載の角度位置検出装置。
  9. 前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部と、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長を第1のベクトル長として記憶し、かつ、前記第4の位相、または、前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が新たに出力する前記ベクトル長を、記憶されていた前記第1のベクトル長に代えて、新たな第1のベクトル長として記憶する、ベクトル長記憶部と、
    前記第4の位相、または、前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長が、第2のベクトル長として入力されるとともに、前記ベクトル長記憶部で記憶された前記第1のベクトル長が入力されて、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように、前記レゾルバを励磁するための励磁信号の位相を調整する、位相調整部と、
    を有する励磁信号生成部と、
    をさらに備える請求項1または2のいずれか一項に記載の角度位置検出装置。
  10. 前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部と、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長を第1のベクトル長として記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が新たに出力する前記ベクトル長を、記憶されていた前記第1のベクトル長に代えて、新たな第1のベクトル長として記憶する、ベクトル長記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長が、第2のベクトル長として入力されるとともに、前記第3の位相以前または前記第4の位相以前において、前記ベクトル長記憶部で記憶された前記第1のベクトル長が入力されて、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように、前記レゾルバを励磁するための励磁信号の位相を調整する、位相調整部と、
    を有する励磁信号生成部と、
    をさらに備える請求項1または2のいずれか一項に記載の角度位置検出装置。
  11. 前記励磁信号生成部は、
    前記位相調整部の調整結果に基いて第1の矩形波パルスを出力する矩形波パルス生成部と、
    前記第1の矩形波パルスが入力され、入力された前記第1の矩形波パルスに応じて、前記レゾルバを励磁するための前記励磁信号の振幅を調整する、第2の矩形波パルスを出力する振幅調整部と、
    をさらに備える請求項9または10のいずれか一項に記載の角度位置検出装置。
  12. 前記第2の矩形波パルスが入力され、入力された前記第2の矩形波パルスを、前記第2の矩形波パルスが有する周波数と同じ周波数を有する正弦波に変換し、変換した前記正弦波を出力する正弦波変換部をさらに備える請求項11に記載の角度位置検出装置。
  13. 前記正弦波変換部は、ローパスフィルタである、請求項12に記載の角度位置検出装置。
  14. 前記レゾルバに付与される基準信号を生成して、生成した前記基準信号を出力する基準信号生成部と、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部と、
    前記第3の位相、または、前記第4の位相において、前記サンプリング指令信号生成部から出力された前記サンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長を第1のベクトル長として記憶し、かつ、前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令に応じて、前記ベクトル長演算部が新たに出力する前記ベクトル長を、記憶されていた前記第1のベクトル長に代えて、新たな第1のベクトル長として記憶する、ベクトル長記憶部と、
    前記第3の位相の直後に生じる前記第4の位相、または、前記第4の位相の直後に生じる前記第3の位相において、前記サンプリング指令信号生成部から出力される前記サンプリング指令が、第1のサンプリング指令として入力され、かつ、前記第1のサンプリング指令に応じて、前記ベクトル長演算部が出力した前記ベクトル長が、第2のベクトル長として入力されるとともに、前記ベクトル長記憶部で記憶された前記第1のベクトル長が入力されて、前記第1のベクトル長と前記第2のベクトル長との間に生じた差であるベクトル長差信号を算出し、算出した前記ベクトル長差信号を出力するベクトル長差演算部と、
    前記ベクトル長差演算部から出力された前記ベクトル長差信号と、前記基準信号生成部から出力された前記基準信号と、が入力されて、前記ベクトル長差信号と前記基準信号とに応じて、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように矩形波パルスを生成し、生成した前記矩形波パルスを出力する矩形波パルス生成部と、
    を有する励磁信号生成部と、
    をさらに備える請求項1または2のいずれか一項に記載の角度位置検出装置。
  15. 前記第1の矩形波パルスが入力され、入力された前記第1の矩形波パルスに応じて、前記レゾルバを励磁するための前記励磁信号の振幅を調整する、第2の矩形波パルスを出力する振幅調整部をさらに備える請求項14に記載の角度位置検出装置。
  16. 前記第2の矩形波パルスが入力され、入力された前記第2の矩形波パルスを、前記第2の矩形波パルスが有する周波数と同じ周波数を有する正弦波に変換し、変換した前記正弦波を出力する正弦波変換部をさらに備える請求項15に記載の角度位置検出装置。
  17. 前記正弦波変換部は、ローパスフィルタである、請求項16に記載の角度位置検出装置。
  18. 前記レゾルバデジタル変換部に代えて、
    前記第3の位相における前記サンプリング指令信号に従って得られた前記第1のAD変換値および前記第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出した結果と、前記第4の位相における前記サンプリング指令信号に従って得られた前記第1のAD変換値および前記第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出した結果と、を順次、均等に平均して出力されるように処理する平均値演算部を含む、平均レゾルバデジタル変換部を備える請求項1に記載の角度位置検出装置。
  19. 前記第3の位相における前記サンプリング指令信号に従って得られた前記第1のAD変換値および前記第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出した結果と、前記第4の位相における前記サンプリング指令信号に従って得られた前記第1のAD変換値および前記第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出した結果と、を順次、均等に平均して新たな角度データとして出力する平均値演算部を備えた請求項18に記載の角度位置検出装置。
  20. 前記平均レゾルバデジタル変換部において、
    前記平均値演算部は、A相の平均値演算部と、B相の平均値演算部と、を有し、
    前記A相の平均値演算部は、前記第3の位相における前記サンプリング指令信号に従って得られた前記第1のAD変換値と、前記第4の位相における前記サンプリング指令信号に従って得られた前記第1のAD変換値と、を順次、均等に平均して新たな第1のAD変換値として出力し、
    前記B相の平均値演算部は、前記第3の位相における前記サンプリング指令信号に従って得られた前記第2のAD変換値と、前記第4の位相における前記サンプリング指令信号に従って得られた前記第2のAD変換値と、を順次、均等に平均して新たな第2のAD変換値として出力し、
    前記レゾルバデジタル変換部は、前記平均化された新たな第1のAD変換値と、前記平均化された新たな第2のAD変換値とが入力され、入力された前記平均化された新たな第1のAD変換値と前記平均化された新たな第2のAD変換値とに基いて、前記レゾルバの角度位置を示す角度データを算出して、算出した前記角度データを出力する、
    請求項18に記載の角度位置検出装置。
  21. 前記平均レゾルバデジタル変換部において、
    前記レゾルバデジタル変換部は、前記第1のAD変換値と前記第2のAD変換値とが入力されたとき、入力された前記第1のAD変換値と入力された前記第2のAD変換値に基いて、前記レゾルバの回転角θから前記レゾルバの角度位置φを算出する場合、入力された前記第1のAD変換値と入力された前記第2のAD変換値とから、偏差信号sin(θ-φ)を算出し、算出した偏差信号sin(θ-φ)をゼロに収束して前記レゾルバの角度位置φを算出するトラッキングループを有して、算出された前記角度位置φから前記角度データを出力し、
    前記第3の位相における前記サンプリング指令信号のタイミングにおける前記偏差信号と、前記第4の位相における前記サンプリング指令信号のタイミングにおける前記偏差信号と、を順次、均等に平均して新たな偏差信号として出力する前記平均値演算部を備えた請求項18に記載の角度位置検出装置。
  22. 前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部をさらに備え、
    前記第3の位相における前記サンプリング指令信号のタイミングにおける前記ベクトル長を第1のベクトル長とし、前記第4の位相における前記サンプリング指令信号のタイミングにおける前記ベクトル長を第2のベクトル長としたとき、
    前記レゾルバを励磁するための励磁信号を出力する励磁信号生成部と、
    前記励磁信号の位相に対して、前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように、前記サンプリング指令信号を出力するタイミングを調整するタイミング調整部と、
    を有する請求項1または18のいずれか一項に記載の角度位置検出装置。
  23. 前記第1のアナログデジタル変換器が出力する前記第1のAD変換値と、前記第2のアナログデジタル変換器が出力する前記第2のAD変換値と、が入力され、入力された前記第1のAD変換値と前記第2のAD変換値とに基いて、ベクトルの大きさを示すベクトル長を算出して、算出した前記ベクトル長を出力するベクトル長演算部をさらに備え、
    前記第3の位相における前記サンプリング指令信号のタイミングにおける前記ベクトル長を第1のベクトル長とし、前記第4の位相における前記サンプリング指令信号のタイミングにおける前記ベクトル長を第2のベクトル長としたとき、
    前記レゾルバを励磁するための励磁信号を出力し、かつ、前記励磁信号の位相を前記第1のベクトル長と前記第2のベクトル長との差がゼロとなるように調整する位相調整部を含む励磁信号生成部と、
    をさらに備える請求項1または18のいずれか一項に記載の角度位置検出装置。
  24. 前記励磁信号生成部は、
    前記位相調整部の調整結果に基いて第1の矩形波パルスを出力する矩形波パルス生成部と、
    前記第1の矩形波パルスが入力され、入力された前記第1の矩形波パルスに応じて、前記レゾルバを励磁するための前記励磁信号の振幅を調整する、第2の矩形波パルスを出力する振幅調整部と、
    をさらに備える請求項22または23のいずれか一項に記載の角度位置検出装置。
  25. 前記第2の矩形波パルスが入力され、入力された前記第2の矩形波パルスを、前記第2の矩形波パルスが有する周波数と同じ周波数を有する正弦波に変換し、変換した前記正弦波を出力する正弦波変換部をさらに備える請求項24に記載の角度位置検出装置。
  26. 前記正弦波変換部は、ローパスフィルタである、請求項25に記載の角度位置検出装置。
PCT/JP2014/004388 2013-08-30 2014-08-27 角度位置検出装置 WO2015029427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/913,376 US20160202088A1 (en) 2013-08-30 2014-08-27 Angular position detection device
JP2015533996A JPWO2015029427A1 (ja) 2013-08-30 2014-08-27 角度位置検出装置
CN201480048013.4A CN105492870A (zh) 2013-08-30 2014-08-27 角度位置检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013179036 2013-08-30
JP2013-179036 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029427A1 true WO2015029427A1 (ja) 2015-03-05

Family

ID=52586016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004388 WO2015029427A1 (ja) 2013-08-30 2014-08-27 角度位置検出装置

Country Status (4)

Country Link
US (1) US20160202088A1 (ja)
JP (1) JPWO2015029427A1 (ja)
CN (1) CN105492870A (ja)
WO (1) WO2015029427A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619593B1 (ko) * 2014-07-08 2016-05-10 현대자동차주식회사 레졸버 고장판단 방법
JP6405502B1 (ja) * 2017-09-07 2018-10-17 多摩川精機株式会社 角度検出器のキャリア成分の位相ズレ量を検出する方法および手段、回転角度を検出する方法、角度検出器
JP2019207184A (ja) * 2018-05-30 2019-12-05 ルネサスエレクトロニクス株式会社 パルス信号生成器及びそれを備えた角度検出システム
CN109327223B (zh) * 2018-09-30 2022-06-24 中船重工重庆长平机械有限责任公司 一种数字信号转模拟信号方法及***
CN111130561B (zh) * 2018-10-31 2021-03-23 广州汽车集团股份有限公司 信号采样方法、装置、计算机设备和存储介质
TWI685208B (zh) 2018-12-07 2020-02-11 財團法人工業技術研究院 位置編碼裝置與方法
JP6796726B1 (ja) * 2019-03-01 2020-12-09 東芝三菱電機産業システム株式会社 レゾルバ信号処理装置、ドライブ装置、レゾルバ信号処理方法、及びプログラム
JP7465071B2 (ja) * 2019-10-07 2024-04-10 株式会社ミツトヨ 変位測定装置、変位測定装置の信号処理部およびその信号処理方法
JP2021096198A (ja) * 2019-12-19 2021-06-24 多摩川精機株式会社 R/d変換方法及びr/d変換器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172218A (ja) * 1986-01-27 1987-07-29 Yaskawa Electric Mfg Co Ltd レゾルバ/デジタル・コンバ−タによる位置検出方法
JPS63218818A (ja) * 1987-03-06 1988-09-12 Shinko Electric Co Ltd レゾルバ式回転角検出装置
JPH05296793A (ja) * 1992-04-21 1993-11-09 Olympus Optical Co Ltd エンコーダ出力信号のオフセット自動調整装置
JP2002162257A (ja) * 2000-11-24 2002-06-07 Futaba Corp リニヤスケール
JP2006177750A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 回転角検出装置のための異常検出装置
JP2007010329A (ja) * 2005-06-28 2007-01-18 Honda Motor Co Ltd 回転角検出装置及びこれを用いた電動パワーステアリング装置
JP2008506935A (ja) * 2004-07-14 2008-03-06 シーメンス アクチエンゲゼルシヤフト アナログ第1信号およびアナログ第2信号のための評価方法ならびにこれに対応する評価回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218288A (ja) * 1994-01-28 1995-08-18 Mitsubishi Electric Corp 絶対位置検出装置及びその誤差補正方法
US20040129869A1 (en) * 2000-10-22 2004-07-08 Lennart Stridsberg Position transducer
KR100777450B1 (ko) * 2005-05-28 2007-11-21 삼성전자주식회사 엔코더 속도 보정 방법 및 장치
JP5422401B2 (ja) * 2010-01-07 2014-02-19 川崎重工業株式会社 レゾルバ信号変換装置及び方法
JP2012093215A (ja) * 2010-10-27 2012-05-17 Omron Automotive Electronics Co Ltd 回転角度検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172218A (ja) * 1986-01-27 1987-07-29 Yaskawa Electric Mfg Co Ltd レゾルバ/デジタル・コンバ−タによる位置検出方法
JPS63218818A (ja) * 1987-03-06 1988-09-12 Shinko Electric Co Ltd レゾルバ式回転角検出装置
JPH05296793A (ja) * 1992-04-21 1993-11-09 Olympus Optical Co Ltd エンコーダ出力信号のオフセット自動調整装置
JP2002162257A (ja) * 2000-11-24 2002-06-07 Futaba Corp リニヤスケール
JP2008506935A (ja) * 2004-07-14 2008-03-06 シーメンス アクチエンゲゼルシヤフト アナログ第1信号およびアナログ第2信号のための評価方法ならびにこれに対応する評価回路
JP2006177750A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp 回転角検出装置のための異常検出装置
JP2007010329A (ja) * 2005-06-28 2007-01-18 Honda Motor Co Ltd 回転角検出装置及びこれを用いた電動パワーステアリング装置

Also Published As

Publication number Publication date
US20160202088A1 (en) 2016-07-14
CN105492870A (zh) 2016-04-13
JPWO2015029427A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015029427A1 (ja) 角度位置検出装置
WO2016139849A1 (ja) レゾルバ装置
KR101468323B1 (ko) 디지털 pll을 이용한 마그네틱 엔코더의 출력 신호 보상 장치 및 방법
US8004434B2 (en) RD converter and angle detecting apparatus
WO2011068196A1 (ja) レゾルバデジタルコンバータ
WO2015072090A1 (ja) 物理量検出回路、物理量センサ及び電子機器
EP2077621B1 (en) Reference signal generation circuit, angle converter, and angle detection apparatus
KR101834526B1 (ko) 마그네틱 엔코더의 출력 신호를 보상하는 장치
JP2010151669A (ja) 物理量検出回路、物理量センサ装置
JP4515120B2 (ja) レゾルバディジタル角度変換装置および方法ならびにプログラム
JP2013205366A (ja) 位置検出器
JP2004333156A (ja) エンコーダ信号内挿分割器
JP2009025068A (ja) レゾルバ/デジタル変換方法およびレゾルバ/デジタル変換回路
KR101012741B1 (ko) 레졸버 디지털 변환기 및 그 위상 보상 방법
JP2004061157A (ja) レゾルバの信号処理装置及び信号処理方法
JP2014122885A (ja) 角度検出装置
RU2741075C1 (ru) Следящий синусно-косинусный преобразователь угла в код со встроенной цифровой коррекцией ошибки преобразования
JP6432037B2 (ja) レゾルバの角度位置検出装置
JP2008008739A (ja) 信号処理装置、速度検出装置、サーボ機構
JP5799314B2 (ja) インターフェース回路
JP4710634B2 (ja) モータ制御装置
JP2002228488A (ja) エンコーダ出力信号の自動調整装置および自動調整方法
JP2020139916A (ja) レゾルバ信号処理装置、ドライブ装置、レゾルバ信号処理方法、設計支援方法及びプログラム
US11754421B2 (en) Resolver signal processing device, drive apparatus, resolver signal processing method, and program
JP2019086486A (ja) 処理装置、処理システム、物理量測定装置及び測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048013.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533996

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14913376

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838971

Country of ref document: EP

Kind code of ref document: A1