WO2015025631A1 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
WO2015025631A1
WO2015025631A1 PCT/JP2014/068266 JP2014068266W WO2015025631A1 WO 2015025631 A1 WO2015025631 A1 WO 2015025631A1 JP 2014068266 W JP2014068266 W JP 2014068266W WO 2015025631 A1 WO2015025631 A1 WO 2015025631A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
underlayer
light emitting
layer
substrate
Prior art date
Application number
PCT/JP2014/068266
Other languages
English (en)
French (fr)
Inventor
聡 駒田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/653,800 priority Critical patent/US20150325741A1/en
Priority to JP2015513921A priority patent/JP5997373B2/ja
Priority to CN201480002287.XA priority patent/CN104603959B/zh
Publication of WO2015025631A1 publication Critical patent/WO2015025631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Definitions

  • the present invention relates to a nitride semiconductor light emitting device.
  • a group III-V compound semiconductor (group III nitride semiconductor) containing nitrogen has a band gap energy corresponding to the energy of light having a wavelength in the infrared region to the ultraviolet region. Therefore, the group III nitride semiconductor is useful as a material for a light emitting element that emits light having a wavelength in the infrared region to the ultraviolet region, or as a material for a light receiving element that receives light having a wavelength in the region.
  • In a blue LED (Light Emitting Diode) having an emission wavelength of about 420 nm preferably, InGaN is used for the light emitting layer, and GaN is used for the n-type semiconductor layer, p-type semiconductor layer, cap layer, or underlayer having a double hetero structure. Is used.
  • GaN or AlGaN is preferably used for the light emitting layer (for example, Japanese Patent Application Laid-Open No. 2007-151807 (Patent Document 1)).
  • a sapphire substrate is usually used as the substrate on which the light emitting layer and the like are formed.
  • a sapphire substrate (PSS substrate (Patternd Sapphire Substrate)) having an uneven surface may be used (for example, International Publication No. 2012/090818 (Patent Document 2)).
  • GaN has a band gap energy corresponding to the energy of light having a wavelength of about 364 nm. Therefore, for example, when an LED having an emission wavelength of 365 nm (ultraviolet region) is manufactured using GaN, light emitted from the LED is absorbed by the GaN layer, and thus an LED with high emission efficiency cannot be provided. Therefore, AlGaN is often used for layers other than the light emitting layer.
  • AlGaN the three-dimensional growth mode is dominant. Therefore, when AlGaN is grown on the surface of the substrate on which the concavo-convex shape is formed, the AlGaN may grow abnormally on the concavo-convex convex portion. On the part where AlGaN is abnormally grown, the formation of a film having poor crystal quality may propagate. In addition, it is difficult to form an AlGaN layer having a flat upper surface.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a nitride semiconductor light emitting device excellent in light extraction efficiency.
  • a substrate having a concavo-convex shape on the upper surface, a base layer, and a nitride semiconductor multilayer structure having at least a light emitting layer are provided in this order.
  • a hollow portion is provided above the convex portion included in the concavo-convex shape and inside the base layer.
  • a part of the underlayer is provided between the cavity and the substrate.
  • a base layer and a nitride semiconductor multilayer structure having at least a light emitting layer may be provided in order.
  • the underlayer has an uneven portion above and on the upper surface of the nitride semiconductor multilayer structure.
  • a hollow portion is provided inside the underlayer.
  • the hollow portion is provided immediately below the concave portion included in the uneven portion.
  • the underlayer is preferably made of Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the underlayer preferably has a first AlGaN underlayer and a second AlGaN underlayer provided on the first AlGaN underlayer.
  • the Al composition ratio of the second AlGaN underlayer is preferably larger than the Al composition ratio of the first AlGaN underlayer.
  • the hollow portion is preferably provided in the first AlGaN underlayer.
  • the underlayer may include an AlGaN underlayer and a GaN underlayer provided on the AlGaN underlayer.
  • the length of the cavity portion is preferably not less than 1/4 times and not more than 5 times the emission wavelength in the horizontal direction of the nitride semiconductor multilayer structure, and is 1/4 times the emission wavelength in the thickness direction of the nitride semiconductor multilayer structure. It is preferably 5 times or less.
  • the convex portions are preferably provided in a dot shape on the upper surface of the substrate.
  • the height of the convex part is preferably 500 nm or more and 2 ⁇ m or less.
  • the surface of the hollow portion extending in the thickness direction of the nitride semiconductor multilayer structure is preferably inclined with respect to the c-axis direction of the material constituting the substrate.
  • the method for manufacturing a nitride semiconductor light emitting device of the present invention includes a step of forming a concavo-convex shape on the upper surface of a substrate, a step of forming a base layer made of a nitride semiconductor on the concavo-convex shape, Forming a nitride semiconductor multilayer structure having at least a light emitting layer.
  • the step of forming the underlayer includes a step of forming a hollow portion inside the underlayer. It is preferable to further include a step of removing the substrate.
  • the nitride semiconductor light emitting device according to the present invention is excellent in light extraction efficiency.
  • FIG. 1 is a cross-sectional view of a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • (A)-(d) is sectional drawing which shows a part of manufacturing method of the nitride semiconductor light-emitting device based on one Embodiment of this invention in order of a process.
  • 2 is a cross-sectional SEM (scanning electron microscope) photograph of a nitride semiconductor light emitting device.
  • (A) is the cross-sectional SEM photograph in the middle of the growth of a base layer
  • (b) is the SEM photograph of the upper surface of a board
  • FIG. 1 is a cross-sectional view of a nitride semiconductor light emitting device according to an embodiment of the present invention. 1 is a cross-sectional view of a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • the nitride semiconductor light emitting device according to the present embodiment includes a substrate 1 having a concavo-convex shape (including a convex portion 1a and a concave portion 1b) on an upper surface, a buffer layer 3 provided in contact with the upper surface of the substrate 1, An underlayer 5 having a cavity 7 provided in contact with the upper surface of the buffer layer 3, an n-type nitride semiconductor layer 9 provided in contact with the upper surface of the underlayer 5, and an n-type nitride semiconductor The light emitting layer 11 provided in contact with the upper surface of the layer 9, the p-type nitride semiconductor layer 13 provided in contact with the upper surface of the light emitting layer 11, and the upper surface of the p-type nitride semiconductor layer 13
  • the substrate 1 having a concavo-convex shape (including a convex portion 1
  • the nitride semiconductor light emitting device includes an n-side electrode 17 provided in contact with the exposed surface of the n-type nitride semiconductor layer 9 and a p provided in contact with the upper surface of the transparent electrode 15.
  • Side electrode 19 The “upper surface” means a surface located on the upper side in FIG. 1, and does not mean a surface located on the upper side in the gravity direction.
  • the substrate 1 may be made of, for example, sapphire, Si, SiC, spinel, or the like, or may be made of a group III nitride semiconductor such as GaN.
  • the substrate 1 is preferably made of sapphire that is transparent to the emission wavelength. “Emission wavelength” means the peak wavelength of light emitted from the light emitting layer 11.
  • the substrate 1 has a concave portion 1b and a convex portion 1a provided between the concave portions 1b on the upper surface (the upper surface in FIG. 1).
  • the convex portion 1a may be provided in a stripe shape on the upper surface of the substrate 1 (the surface of the substrate 1 on which the uneven shape is formed), but is preferably provided in a dot shape. If the convex portion 1a is provided in a stripe shape on the upper surface of the substrate 1, only the convex portion 1a exists in the longitudinal direction of the convex portion 1a, and the width direction of the convex portion 1a (relative to the longitudinal direction of the convex portion 1a).
  • the convex portions 1a and the concave portions 1b are merely arranged alternately.
  • the convex portions 1a are provided in a dot shape on the upper surface of the substrate 1
  • the convex portions 1a and the concave portions 1b are alternately arranged on the upper surface of the substrate 1 in two directions orthogonal to each other. Therefore, the light scattering effect is greater than in the case where the convex portions 1a are provided in a stripe pattern on the upper surface of the substrate 1, so that the light extraction efficiency is further increased.
  • the height of the convex portion 1a is preferably 500 nm or more and 2 ⁇ m or less. If the height of the convex portion 1a is 500 nm or more, the cavity portion 7 having a predetermined length y is formed inside the base layer 5. Therefore, the light extraction efficiency can be further increased (described later). As the height of the convex portion 1a is higher, the length y of the cavity portion 7 is longer, so that the light extraction efficiency is further increased. More preferably, the height of the convex portion 1a is 600 nm or more. On the other hand, if the height of the convex portion 1a is 2 ⁇ m or less, it is possible to prevent the nitride semiconductor light emitting element from becoming too thick due to the formation of the concavo-convex shape on the substrate 1.
  • the outer shape of the convex portion 1a is preferably a conical shape. This makes it easier to control the propagation of dislocations when the underlayer 5 is grown in the facet growth mode.
  • the interval between the convex portions 1a is not particularly limited.
  • the external shape of the convex part 1a should just be a shape which is easy to control the propagation of a dislocation.
  • the cross-sectional shape of the convex part 1a may have a rounded tip or a rounded slope as shown in FIG.
  • the buffer layer 3 is provided in order to eliminate the lattice constant difference between the material constituting the substrate 1 and the group III nitride semiconductor.
  • Buffer layer 3 is made of a nitride semiconductor, is preferably Al s1 Ga t1 O u1 N 1 -u1 (0 ⁇ s1 ⁇ 1,0 ⁇ t1 ⁇ 1,0 ⁇ u1 ⁇ 1, s1 + t1 + u1 ⁇ 0) layer More preferably, it is an AlN layer or an AlON layer.
  • the thickness of the buffer layer 3 is preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 50 nm or less.
  • the underlayer 5 is preferably made of Al x Ga 1-x N (0 ⁇ x ⁇ 1). “The underlayer 5 is made of Al x Ga 1-x N (0 ⁇ x ⁇ 1)” means that the underlayer is an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer (single layer). And the case where the underlayer is a laminated body of Al x Ga 1-x N (0 ⁇ x ⁇ 1) layers in which at least one of the Al composition ratio and the Ga composition ratio is different from each other.
  • the foundation layer 5 preferably includes a first foundation layer 5A and a second foundation layer 5B provided on the first foundation layer 5A.
  • the first underlayer 5A is preferably grown mainly in the facet growth mode in which the facet surface 5f (see FIG. 2B) is formed.
  • the second underlayer 5B is preferably grown mainly in the lateral growth mode.
  • the first underlayer 5A is preferably an AlGaN layer. Thereby, even if the emission wavelength is 380 nm or less, the light can be prevented from being absorbed by the first underlayer 5A.
  • AlGaN means “Al x Ga 1-x N (0 ⁇ x ⁇ 1)”.
  • the second underlayer 5B may be an AlGaN layer having an Al composition ratio larger than that of the first AlGaN underlayer 5A, or may be a GaN layer.
  • the emission wavelength is 380 nm or less
  • the second underlayer 5B absorbs light (light emitted from the light emitting layer 11).
  • the second underlayer 5B is an AlGaN layer, the second underlayer 5B can be prevented from absorbing light (light emitted from the light emitting layer 11). Therefore, the second underlayer 5B is preferably an AlGaN layer, and more preferably an AlGaN layer having an Al composition ratio larger than that of the first AlGaN underlayer 5A.
  • the second underlayer 5B When the second underlayer 5B is a GaN layer, the second underlayer 5B can be easily grown in the lateral growth mode. If the growth temperature is 1000 ° C. or higher, the second underlayer 5B can be grown in the lateral growth mode without being limited by the growth conditions.
  • the second underlayer 5B is an AlGaN layer
  • the second underlayer 5B is formed by using a surfactant such as Mg, growing under a reduced pressure of 200 Torr or less, growing at a temperature of 1100 ° C. or higher, or using a carrier gas containing N 2 as a main component. It can be easily grown in the lateral growth mode.
  • a surfactant such as Mg
  • a carrier gas containing N 2 as a main component.
  • Using the carrier gas mainly composed of N 2 means the use of a carrier gas composed mainly of N 2 when forming the second base layer 5B by MOCVD (Metal Organic Chemical Vapor Deposition) method .
  • the hollow portion 7 is provided above the convex portion 1 a of the substrate 1 and inside the base layer 5. Thereby, even when AlGaN abnormally grows on the convex portion 1 a of the substrate 1, the abnormal growth becomes difficult to propagate upward from the cavity portion 7 by the cavity portion 7. Even when the dislocation occurs on the uneven shape of the substrate 1 (the shape formed by the concave portion 1 b and the convex portion 1 a), the dislocation is higher than the hollow portion 7 by the hollow portion 7. It becomes difficult to propagate to. From these things, the crystallinity of the layer (for example, the light emitting layer 11) formed on the base layer 5 can be maintained high.
  • the cavity portion 7 is provided inside the first foundation layer 5A (for example, an AlGaN layer), and more preferably, the foundation layer (for example, the first foundation layer) is provided between the cavity portion 7 and the substrate 1. 5A).
  • first foundation layer 5A for example, an AlGaN layer
  • the foundation layer for example, the first foundation layer
  • the hollow portion 7 is provided above the convex portion 1 a of the substrate 1” means that when the underlayer 5 is positioned above the substrate 1 in the direction of gravity, the hollow portion 7 is formed on the substrate 1. This means that it is provided above the convex portion 1a in the gravitational direction, and when the underlayer 5 is located below the substrate 1 in the gravitational direction, the hollow portion 7 is located above the convex portion 1a of the substrate 1. It means that it is provided on the lower side in the direction of gravity.
  • the hollow portion 7 is provided above the convex portion 1a of the substrate 1 as described above.
  • the cavity portion 7 and the cavity are formed.
  • the refractive index difference with the member surrounding the portion 7 is increased. Therefore, compared with the case where the cavity portion is formed above the concave portion of the substrate, the light scattering effect or the light irregular reflection effect is increased, so that the light extraction efficiency is increased.
  • the length y of the cavity portion 7 is preferably 100 nm or more in the thickness direction of the nitride semiconductor multilayer structure, and is preferably at least 1/4 times the emission wavelength in the thickness direction of the nitride semiconductor multilayer structure. . As a result, it is possible to minimize the leakage of light, so that the light scattering effect or the light irregular reflection effect is increased, thereby further increasing the light extraction efficiency.
  • the length y of the cavity portion 7 is more preferably not less than 1/4 times and not more than 5 times the emission wavelength in the thickness direction of the nitride semiconductor multilayer structure.
  • the width x of the cavity portion 7 is preferably not less than 1/4 times and not more than 5 times the emission wavelength in the horizontal direction of the nitride semiconductor multilayer structure (direction perpendicular to the thickness direction of the nitride semiconductor multilayer structure). .
  • the hollow portion 7 is formed during the formation of the foundation layer 5 (particularly the first foundation layer 5A). Therefore, the size of the cavity portion 7 can be changed by changing the formation conditions of the underlayer 5. This increases the degree of freedom in designing the cavity portion 7 as compared with the case where the cavity portion is formed at the interface between the substrate and the nitride semiconductor layer. For example, if the size of the unevenness or the inclination angle of the side surface of the convex portion 1a with respect to the concave portion 1b is changed, the width x of the hollow portion 7 is changed. If the thickness of the initial growth layer of the underlayer 5 is changed, the length y of the cavity portion 7 is changed.
  • the “initial growth layer” means a nitride semiconductor layer grown before switching the growth mode of the nitride semiconductor to the lateral growth mode, and is the first underlayer 5A in the present embodiment.
  • the hollow portion 7 is preferably provided periodically. Thereby, since the light scattering effect or the light irregular reflection effect is increased, the light extraction efficiency is further increased. For example, if the period of the unevenness of the substrate 1 (such as the interval between the adjacent convex portions 1a) is changed, the interval i between the adjacent hollow portions 7 is changed. Thereby, compared with the case where a cavity part is provided in a growth layer at random, the period (for example, space
  • the optimum period of the cavity portion 7 is different for each emission wavelength. If the period of the unevenness of the substrate 1 is changed, the period of the cavity part 7 can be changed, so that the period of the cavity part 7 can be optimized according to the emission wavelength.
  • the surface of the cavity portion 7 extending in the thickness direction of the nitride semiconductor multilayer structure is preferably inclined with respect to the c-axis direction of the material constituting the substrate 1.
  • the side surface of the cavity portion 7 is inclined with respect to the c-axis direction, a nitride semiconductor layer that does not function as a light emitting layer (for example, the underlayer 5, the n-type nitride semiconductor layer 9, or the p-type nitride semiconductor layer 13) and The incident angle of light incident on the substrate 1, the transparent electrode 15, the interface with air or resin at an angle larger than the total reflection angle is changed, so that the incident angle of a part of the light is less than the total reflection angle. Become. Therefore, the side surface of the cavity portion 7 is inclined with respect to the c-axis direction, so that the light extraction efficiency is further increased. More preferably, the side surface of the cavity portion 7 is inclined at 2 ° or more and 6 ° or less with respect to the c-axis direction of the material (for example, sapphire) constituting the substrate 1.
  • the material for example, sapphire
  • n-type nitride semiconductor layer 9 is a layer n-type dopant is doped Al s2 Ga t2 In u2 N ( 0 ⁇ s2 ⁇ 1,0 ⁇ t2 ⁇ 1,0 ⁇ u2 ⁇ 1, s2 + t2 + u2 ⁇ 0) layer Preferably there is.
  • the n-type dopant is preferably Si or Ge.
  • the n-type dopant concentration of the n-type nitride semiconductor layer 9 is preferably 5 ⁇ 10 17 cm ⁇ 3 or more and 5 ⁇ 10 19 cm ⁇ 3 or less.
  • the thickness of the n-type nitride semiconductor layer 9 is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the light emitting layer 11 may have a single quantum well structure or a multiple quantum well structure.
  • the light emitting layer 11 preferably includes a Ga 1 -s3 In s3 N (0 ⁇ s3 ⁇ 0.4) layer as a quantum well layer.
  • the light emitting layer 11 When the light emitting layer 11 has a multiple quantum well structure, the light emitting layer 11 includes a Ga 1 -s3 In s3 N (0 ⁇ s3 ⁇ 0.4) layer (well layer) and an Al s4 Gat4 In u4 N (0 ⁇ s4 ⁇ 1, 0 ⁇ t4 ⁇ 1, 0 ⁇ u4 ⁇ 1, s4 + t4 + u4 ⁇ 0) layers (barrier layers) are preferably laminated alternately one by one.
  • the p-type nitride semiconductor layer 13 is a layer in which a p-type dopant is doped in an Al s5 Ga t5 In u5 N (0 ⁇ s5 ⁇ 1, 0 ⁇ t5 ⁇ 1, 0 ⁇ u5 ⁇ 1, s5 + t5 + u5 ⁇ 0) layer. Preferably there is.
  • the p-type dopant is preferably Mg.
  • the p-type dopant concentration of the p-type nitride semiconductor layer 13 is preferably 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • the thickness of the p-type nitride semiconductor layer 13 is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the transparent electrode 15 may be made of ITO (Indium Tin Oxide), indium oxide (Indium Oxide), tin oxide (Tin Oxide), zinc oxide (Zinc Oxide), or the like, or Au, Ag, Pt, Ti, Pd, It may be made of a material containing at least one of Al and Ni.
  • the thickness of the transparent electrode 15 is preferably 20 nm or more and 200 nm or less.
  • the n-side electrode 17 may be composed of a single layer of a metal layer containing at least one of Au, Ag, Pt, Ti, Pd, Al and Ni, or two or more kinds of metal layers having different materials are laminated. Also good.
  • the thickness of the n-side electrode 17 is preferably 1 ⁇ m or more. Thereby, wire bonding can be performed on the n-side electrode 17.
  • the p-side electrode 19 may be composed of a single layer of a metal layer containing at least one of Au, Ag, Pt, Ti, Pd, Al, and Ni, or two or more kinds of metal layers having different materials are laminated. Also good.
  • the thickness of the p-side electrode 19 is preferably 1 ⁇ m or more. Thereby, wire bonding can be performed on the p-side electrode 19.
  • the hollow portion 7 is provided above the convex portion 1 a of the substrate 1 and inside the base layer 5. Thereby, it is possible to prevent a layer having poor crystal orientation that has grown abnormally on the convex portion 1a of the substrate 1 from propagating to the nitride semiconductor multilayer structure side. Further, it is possible to prevent dislocations generated on the uneven shape of the substrate 1 from propagating to the nitride semiconductor multilayer structure side. Furthermore, since a high scattering effect due to a large refractive index difference between the internal space of the cavity portion 7 and the member surrounding the cavity portion 7 is obtained, the light extraction efficiency is increased. The increase in the light extraction efficiency becomes remarkable by optimizing the size of the cavity portion 7 using an Al-containing layer as the underlayer 5, and becomes more remarkable by periodically providing the cavity portion 7. Further, the design of the cavity portion 7 can be freely changed according to the emission wavelength.
  • FIGS. 2A to 2D are cross-sectional views showing a part of the method for manufacturing the nitride semiconductor light emitting device according to this embodiment in the order of steps.
  • a method of obtaining a nitride semiconductor light emitting device by dividing a substrate on which a nitride semiconductor multilayer structure is formed will be described.
  • the same reference numerals are given to the members before the division and the members corresponding to the members after the division.
  • an uneven shape is formed on the substrate 1 by, for example, an existing etching method.
  • the convex portion 1 a having a height of 0.6 ⁇ m is provided at a position that becomes a vertex of a triangle on the upper surface of the substrate 1 with an adjacent interval of 2 ⁇ m.
  • the buffer layer 3 is formed by sputtering, for example.
  • the buffer layer 3 made of, for example, AlN is formed on the convex portion 1a of the substrate 1 and on the concave portion 1b.
  • the base layer 5 is formed by, eg, MOCVD.
  • AlGaN which is the material of the underlayer 5
  • the three-dimensional growth mode is dominant. That is, in AlGaN, the epitaxial growth in the c-axis direction is dominant over the epitaxial growth in the planar direction (lateral direction) of the substrate 1.
  • AlGaN is selectively grown on the concave portion 1b instead of on the convex portion 1a (L51), and is three-dimensionally grown while holding the facet surface 5f (L51 ⁇ L52 ⁇ L53).
  • AlGaN is crystal-grown so as to cover the convex portion 1a (L54).
  • the adjacent facet surfaces 5f are not completely associated (coalescence). Therefore, AlGaN is further crystal-grown in the c-axis direction with a groove (a portion where AlGaN is not grown, a portion that becomes the hollow portion 7) formed above the convex portion 1a (L55). As the AlGaN crystal grows, the depth of the groove portion increases.
  • the AlGaN crystal growth condition is changed from the three-dimensional growth mode to the lateral growth mode. Thereby, the opening of the groove is covered with AlGaN to form the cavity portion 7 (FIG. 2D).
  • the first underlayer 5A can be formed according to the following method.
  • the substrate on which the buffer layer 3 is formed is placed in an MOCVD apparatus, and the temperature of the substrate 1 is set to 1045 ° C.
  • the supply amounts of trimethylaluminum (TMA (Trimethylaluminium)), trimethylgallium (TMG (Trimethylgallium)) and NH 3 are set so that the formed AlGaN layer (first ground layer) contains 4 mol% of Al.
  • TMA Trimethylaluminum
  • TMG Trimethylgallium
  • NH 3 trimethylaluminum
  • N 2 is supplied as a carrier gas into the MOCVD apparatus, and an AlGaN layer is crystal-grown in facet growth mode in an atmosphere containing 90% by volume or more of N 2 .
  • the second underlayer 5B can be formed according to the following method.
  • substrate 1 shall be 1100 degreeC.
  • the supply amounts of TMA, TMG, and NH 3 are set so that the formed AlGaN layer (second base layer) contains 5 mol% of Al, and these are supplied into the MOCVD apparatus.
  • N 2 is supplied as a carrier gas into the MOCVD apparatus, and an AlGaN layer (thickness: 2.5 ⁇ m) is crystal-grown in the lateral growth mode in an atmosphere containing 90% by volume or more of N 2 .
  • the AlGaN layer is crystal-grown in the lateral growth mode in an atmosphere containing N 2 as the carrier gas, the upper surface L56 of the AlGaN layer becomes flat.
  • n-type nitride semiconductor layer 9 the light emitting layer 11, and the p-type nitride semiconductor layer 13 are formed according to a known method
  • annealing is performed under known conditions.
  • Etching is performed under known conditions to expose n-type nitride semiconductor layer 9.
  • An n-side electrode 17 is provided on the exposed surface of the n-type nitride semiconductor layer 9, and a p-side electrode 19 is provided on the upper surface of the p-type nitride semiconductor layer 13 with the transparent electrode 15 interposed therebetween.
  • the substrate 1 is divided to obtain the nitride semiconductor light emitting device according to this embodiment.
  • FIG. 3 is a cross-sectional SEM photograph of a part of the nitride semiconductor light emitting device of this experimental example.
  • the hollow portion is formed on the convex portion of the sapphire substrate.
  • the width x of the formed cavity was 0.25 ⁇ m, and the length y was 1.675 ⁇ m. This size of the cavity is considered large enough to scatter or diffusely reflect light in the cavity.
  • FIG. 4A is a cross-sectional SEM photograph during the growth of the underlayer
  • FIG. 4B is a SEM photograph of the upper surface of the substrate. It can be seen that the groove portion serving as the hollow portion is formed on the convex portion of the substrate (FIG. 4A), and that the concave-convex shape is formed on the upper surface of the substrate (FIG. 4B).
  • a sapphire substrate (a substrate having a concavo-convex shape) having convex portions (height of about 0.6 ⁇ m) provided in a dot shape on the upper surface )
  • a sapphire substrate having a flat upper surface, and an AlN layer, an AlGaN layer, and an n-type nitride semiconductor layer were grown on the upper surface of each of these two types of sapphire substrates.
  • each of the sapphire substrates was put into a sputtering apparatus, and an AlN layer (buffer layer) was formed on each upper surface of the sapphire substrate.
  • each of the sapphire substrates on which the AlN layer was formed was put into an MOCVD apparatus, and an AlGaN layer was formed on the upper surface of the AlN layer.
  • the growth temperature was 1255 ° C., a carrier gas containing hydrogen and nitrogen was used, the mixing ratio of hydrogen gas to the total carrier gas was 58 vol%, and the AlGaN layer was grown by 2.2 ⁇ m.
  • the growth temperature was left as it was, and the mixing ratio of hydrogen gas to the total carrier gas was reduced from 58% by volume to 10% by volume, and the flow rate of nitrogen gas was increased. Thereby, the two-dimensional growth of AlGaN was promoted, and the upper surface of the AlGaN layer was flattened while forming a cavity portion above the convex portion of the sapphire substrate.
  • silane gas was further added at the same growth temperature, and Si was doped 3 ⁇ 10 18 / cm 3 (formation of an n-type nitride semiconductor layer).
  • a product number “SR23K” manufactured by Taiyo Nippon Sanso Corporation was used as the MOCVD apparatus.
  • a Veeco furnace was used as the MOCVD apparatus unless otherwise specified.
  • FIG. 5 and FIG. 6 are a cross-sectional SEM photograph and a Nomarski optical microscope photograph of a laminate obtained using a substrate having an uneven shape, respectively.
  • 7 and 8 are a cross-sectional SEM photograph and a Nomarski optical microscope photograph of a laminate obtained using a substrate having a flat upper surface, respectively.
  • the side surface of the cavity portion was inclined by about 2 ° to 6 ° with respect to the c-axis direction of the sapphire.
  • the aspect ratio (width x / length y) of the cavity portion was increased, and the surface area of the side surface of the cavity portion was increased.
  • a nitride semiconductor layer eg, an underlayer, an n-type nitride semiconductor layer or a p-type nitride semiconductor layer
  • the incident angle of light incident at an angle larger than the total reflection angle with respect to the interface with the resin is changed, so that the incident angle of a part of the light becomes equal to or less than the total reflection angle. Therefore, if the side surface of the cavity portion 7 is inclined with respect to the c-axis direction, the light extraction efficiency is further increased.
  • FIG. 9 and FIG. 10 are cross-sectional SEM photographs of laminates obtained using a sapphire substrate with convex portions having heights of about 500 nm and about 600 nm, respectively.
  • FIG. 11 is a cross-sectional STEM photograph of a laminate obtained by using a sapphire substrate with a convex portion having a height of about 600 nm.
  • the length of the hollow portion (the cavity in the thickness direction of the nitride semiconductor multilayer structure is larger than that when the height of the convex portion of the sapphire substrate is about 600 nm.
  • the size of the portion was found to be as small as 150 nm (FIGS. 9 and 10).
  • the height of the convex portion of the sapphire substrate is about 600 nm, there is an effect of terminating the dislocation (threading dislocation) (FIG. 11).
  • the half-value width of the X-ray diffraction peak from the (102) plane of AlGaN was measured, the half-value width was 408 arcsec when the height of the convex portion was about 600 nm, whereas that of the convex portion was When the height was about 500 nm, it was 483 arcsec. From the result of the half-value width of the X-ray peak, it can be seen that the higher the height of the convex portion, the less the dislocation (edge dislocation). From these facts, it was found that the height of the convex portion is preferably 500 nm or more, and more preferably 600 nm or more.
  • the nitride semiconductor light emitting device according to the second embodiment includes a reflective layer 31 instead of the transparent electrode 15 and can be flip-chip mounted.
  • a reflective layer 31 instead of the transparent electrode 15 and can be flip-chip mounted.
  • FIG. 12 is a cross-sectional view of the nitride semiconductor light emitting device according to this embodiment.
  • the nitride semiconductor light emitting device according to this embodiment is provided with a substrate 1 having an uneven shape on the lower surface, a buffer layer 3 provided in contact with the lower surface of the substrate 1, and a lower surface of the buffer layer 3.
  • the base layer 5 having the cavity 7, the n-type nitride semiconductor layer 9 provided in contact with the lower surface of the base layer 5, and the lower surface of the n-type nitride semiconductor layer 9 are provided.
  • the nitride semiconductor light emitting device includes an n-side electrode 17 provided in contact with the exposed surface of the n-type nitride semiconductor layer 9 and a p provided in contact with the lower surface of the reflective layer 31. Side electrode 19.
  • the lower surface of the n-side electrode 17 and the lower surface of the p-side electrode 19 are flush with each other.
  • the “lower surface” means a surface located on the lower side of FIG. 12, and does not mean a surface located on the lower side in the gravity direction.
  • the hollow portion 7 is provided below the convex portion 1 a of the substrate 1.
  • the cavity portion 7 is provided above the convex portion 1 a of the substrate 1. Therefore, also in this embodiment, it can be said that the hollow portion 7 is provided above the convex portion 1a of the substrate 1, so that the effect described in the first embodiment can be obtained.
  • the nitride semiconductor light emitting device of this embodiment can be manufactured. From this, it can be said that the effect described in the first embodiment can be obtained.
  • the reflective layer 31 is preferably made of metal, and more preferably made of Al. Thereby, even if the light emission wavelength of the nitride semiconductor light emitting device according to this embodiment is 380 nm or less, the light from the light emitting layer 11 can be efficiently reflected to the substrate 1 side.
  • the thickness of the reflective layer 31 is not particularly limited, and is preferably a thickness that does not allow light from the light emitting layer 11 to pass through the reflective layer 31.
  • the reflective layer 31 is preferably formed by, for example, a sputtering method or a plating method.
  • the reflective layer 31 is provided so as to be in contact with the lower surface of the p-type nitride semiconductor layer 13, and the lower surface of the n-side electrode 17 and the lower surface of the p-side electrode 19 are surfaces. It is one.
  • the nitride semiconductor light emitting device according to the present embodiment can be flip-chip mounted. Therefore, it is not necessary to electrically connect the nitride semiconductor light emitting device and the mounting substrate (a substrate (for example, a mounting substrate) for mounting the nitride semiconductor light emitting device) using a conductive wire or the like. Can be prevented from being blocked by a conductive wire or the like. Therefore, the light extraction efficiency is higher than that in the first embodiment.
  • the reflective layer 31 is provided so as to be in contact with the lower surface of the p-type nitride semiconductor layer 13. Thereby, the light from the light emitting layer 11 is reflected by the reflective layer 31 to the substrate 1 side. Therefore, since the light from the light emitting layer 11 can be prevented from being absorbed by the mounting substrate, the light extraction efficiency is further increased. Since the refractive index of sapphire is between the refractive index of the nitride semiconductor material and the refractive index of air, if the substrate 1 is a sapphire substrate, the light extraction efficiency is further increased.
  • Example 4 The first layer except that the reflective layer 31 made of Al is formed by sputtering instead of the transparent electrode 15 and that the lower surface of the n-side electrode 17 and the lower surface of the p-side electrode 19 are flush with each other.
  • An optical simulation was performed on the assumption that a nitride semiconductor light emitting device was manufactured according to the method described in the embodiment. In the optical simulation, it is assumed that the emission wavelength is 365 nm, the reflectivity at 365 nm of the reflective layer made of Al is assumed to be 92%, the transmittance at 365 nm of the AlGaN layer is assumed to be 100%, and at 365 nm of the GaN layer. Assuming that the transmittance of light is 50%, the light extraction efficiency was determined. As a result, when the cavity portion was formed, the light extraction efficiency was improved by 1% compared to the case where the cavity portion was not formed.
  • the nitride semiconductor light emitting device according to the third embodiment does not include a substrate.
  • points different from the second embodiment will be mainly described.
  • FIG. 13 is a cross-sectional view of the nitride semiconductor light emitting device according to this embodiment.
  • the nitride semiconductor light emitting device according to this embodiment includes a base layer 5 having a cavity portion 7, an n-type nitride semiconductor layer 9 provided so as to be in contact with the lower surface of the base layer 5, and an n-type nitride semiconductor layer. 9 is in contact with the lower surface of the light-emitting layer 11, the p-type nitride semiconductor layer 13 is provided in contact with the lower surface of the light-emitting layer 11, and is in contact with the lower surface of the p-type nitride semiconductor layer 13. And a reflective layer 31 provided as described above.
  • the nitride semiconductor light emitting device includes an n-side electrode 17 provided in contact with the exposed surface of the n-type nitride semiconductor layer 9 and a p provided in contact with the lower surface of the reflective layer 31. Side electrode 19.
  • the lower surface of the n-side electrode 17 and the lower surface of the p-side electrode 19 are flush with each other.
  • the “lower surface” means a surface located on the lower side of FIG. 13 and does not mean a surface located on the lower side in the gravity direction.
  • the underlayer 5 is provided above the nitride semiconductor multilayer structure and has an uneven portion on the upper surface thereof.
  • the concavo-convex portion has a convex portion 5a and a concave portion 5b.
  • the reflective layer 31 made of Al is formed by sputtering instead of forming the transparent electrode 15, and the lower surface of the n-side electrode 17 and p Except for making the lower surface of the side electrode 19 flush with the surface, a method of manufacturing a nitride semiconductor light emitting device with a substrate according to the method described in the first embodiment and then removing the substrate is given. It is done. Therefore, the concave portion 5 b corresponds to the convex portion 1 a of the substrate 1, and the convex portion 5 a corresponds to the concave portion 1 b of the substrate 1.
  • the hollow portion 7 is provided immediately below the recess 5 b of the base layer 5. Since the nitride semiconductor light emitting device according to this embodiment can be manufactured according to the above-described method, the effects described in the first embodiment can be obtained also in this embodiment.
  • the hollow portion 7 only needs to be provided below the concave portion 5 b of the base layer 5. Thereby, the effect described in the first embodiment is obtained.
  • the hollow portion 7 is provided immediately below the recess 5b of the base layer 5, the effect of further increasing the light extraction efficiency can be obtained. Therefore, it is preferable that the hollow portion 7 is provided immediately below the concave portion 5 b of the base layer 5.
  • the underlayer 5 is provided above the nitride semiconductor multilayer structure and has an uneven portion on the upper surface
  • the underlayer 5 is located above the nitride semiconductor multilayer structure in the gravity direction.
  • the concavo-convex portion is provided on the upper surface of the underlayer 5 (the surface of the underlayer 5 located on the side opposite to the nitride semiconductor multilayer structure).
  • the uneven portion is provided on the lower surface of the underlayer 5 (the surface of the underlayer 5 located on the side opposite to the nitride semiconductor multilayer structure).
  • the cavity 7 is provided immediately below the recess 5b of the underlayer 5” means that when the underlayer 5 is located above the nitride semiconductor multilayer structure in the gravity direction, the cavity 7 is This means that it is provided immediately below the recess 5 b of the base layer 5, and when the base layer 5 is located below the nitride semiconductor laminated structure in the gravity direction, the cavity portion 7 is formed in the recess 5 b of the base layer 5. It is provided directly above. The same can be said for "the hollow portion 7 is provided below the recess 5b of the underlayer 5".
  • the thickness of the nitride semiconductor light emitting device is reduced. Further, as shown in FIG. 13, the strength can be maintained by increasing the thickness of the reflective layer 31 or attaching a support substrate.
  • the method for removing the substrate is not particularly limited.
  • the substrate 1 and the buffer layer 3 may be removed by irradiating the vicinity of the interface between the substrate (or buffer layer) and the base layer 5 by irradiating the substrate 1 or the buffer layer 3, or irradiating the convex portion of the substrate with the laser light.
  • the substrate 1 and the buffer layer 3 may be removed.
  • the substrate 1 having an uneven shape on the top surface, the base layer 5, and the nitride semiconductor multilayer structure having at least the light emitting layer 11 are provided in this order. It has been.
  • a hollow portion 7 is provided above the convex portion 1 a included in the concavo-convex shape and inside the base layer 5. This increases the light extraction efficiency.
  • a part of the foundation layer 5 is provided between the cavity portion 7 and the substrate 1.
  • the base layer 5 and the nitride semiconductor multilayer structure having at least the light emitting layer 11 may be provided in order.
  • the underlayer 5 has a concavo-convex portion above and on the upper surface of the nitride semiconductor multilayer structure.
  • a hollow portion 7 is provided inside the underlayer 5. This increases the light extraction efficiency.
  • the cavity portion 7 is provided directly below the recess portion 5b included in the uneven portion.
  • the underlayer 5 is preferably made of Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the underlayer 5 preferably has a first AlGaN underlayer 5A and a second AlGaN underlayer 5B provided on the first AlGaN underlayer 5A.
  • the Al composition ratio of the second AlGaN foundation layer 5B is preferably larger than the Al composition ratio of the first AlGaN foundation layer 5A.
  • the underlayer 5 may include an AlGaN underlayer 5A and a GaN underlayer 5B provided on the AlGaN underlayer 5A. Thereby, the GaN foundation layer 5B can be easily grown in the lateral growth mode.
  • the underlayer 5 preferably includes a first AlGaN underlayer 5A and a second AlGaN underlayer 5B provided on the first AlGaN underlayer 5A.
  • the hollow portion 7 is preferably provided inside the first AlGaN foundation layer 5A. Thereby, even if the emission wavelength is 380 nm or less, the light can be prevented from being absorbed by the underlayer 5.
  • the length of the cavity portion 7 is preferably 100 nm or more in the thickness direction of the nitride semiconductor multilayer structure, and is not less than 1/4 times and not more than 5 times the emission wavelength in the thickness direction of the nitride semiconductor multilayer structure. Is more preferable. Thereby, it is possible to minimize the bleeding of light.
  • the length of the cavity portion 7 is preferably not less than 1/4 times and not more than 5 times the emission wavelength in the horizontal direction of the nitride semiconductor multilayer structure.
  • the convex portions 1 a are preferably provided in a dot shape on the upper surface of the substrate 1. Thereby, the light extraction efficiency is further increased.
  • the surface of the cavity portion 7 extending in the thickness direction of the nitride semiconductor multilayer structure is preferably inclined with respect to the c-axis direction of the material constituting the substrate 1. Thereby, the light extraction efficiency is further increased.
  • the height of the convex portion 1a is preferably 500 nm or more and 2 ⁇ m or less. Thereby, the light extraction efficiency is further increased.
  • the method for manufacturing a nitride semiconductor light emitting device includes a step of forming a concavo-convex shape on the upper surface of the substrate 1, a step of forming a base layer 5 made of a nitride semiconductor on the concavo-convex shape, And a step of forming a nitride semiconductor multilayer structure having at least the light emitting layer 11.
  • the step of forming the base layer 5 includes a step of forming the cavity portion 7 inside the base layer 5.
  • the part described at the lower side of the drawing may be expressed as “lower”, and the part described at the upper side of the drawing may be expressed as “upper”. This is a notation for convenience and is different from “upper” and “lower” defined for the direction of gravity.
  • 1 substrate 1a convex portion, 1b concave portion, 3 buffer layer, 5 base layer, 5a convex portion, 5b concave portion, 5f facet surface, 7 hollow portion, 9 n-type nitride semiconductor layer, 11 light emitting layer, 13 p-type nitride Semiconductor layer, 15 transparent electrode, 17 n-type electrode, 19 p-side electrode, 31 reflective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 窒化物半導体発光素子では、凹凸形状を有する基板と、下地層と、少なくとも発光層を有する窒化物半導体積層構造とが順に設けられている。凹凸形状に含まれる凸部の上方で且つ下地層の内部には、空洞部分が設けられている。

Description

窒化物半導体発光素子
 本発明は、窒化物半導体発光素子に関する。
 窒素を含むIII-V族化合物半導体(III族窒化物半導体)は、赤外領域から紫外領域の波長を有する光のエネルギーに相当するバンドギャップエネルギーを有する。よって、III族窒化物半導体は、赤外領域から紫外領域の波長を有する光を発する発光素子の材料、又は、その領域の波長を有する光を受ける受光素子の材料等として有用である。
 発光波長が420nm付近の青色LED(Light Emitting Diode)では、好適には、発光層にInGaNを用い、ダブルへテロ構造となるn型半導体層、p型半導体層、キャップ層又は下地層等にGaNを用いる。紫外領域の発光波長を有するLEDでは、好適には、発光層にGaN又はAlGaNを用いる(例えば特開2007-151807号公報(特許文献1))。発光層等を形成する基板には、通常、サファイヤ基板が用いられる。結晶成長中の転位の伝播を減少させるために、表面に凹凸形状を有するサファイヤ基板(PSS基板(Patternd Sapphire Substrate))を用いることがある(例えば国際公開第2012/090818号(特許文献2))。
特開2007-151807号公報 国際公開第2012/090818号
 GaNは、波長が約364nmの光のエネルギーに相当するバンドギャップエネルギーを有する。そのため、GaNを用いて例えば発光波長が365nm(紫外領域)のLEDを製造すると、そのLEDの発する光がGaN層に吸収されるので、発光効率の高いLEDを提供できない。そのため、発光層以外の層にAlGaNを用いることが多い。
 しかし、AlGaNでは、3次元成長モードが支配的である。そのため、凹凸形状が形成された基板の面にAlGaNを成長させると、凹凸形状の凸部の上においてAlGaNが異常成長することがある。AlGaNが異常成長した部分の上では、結晶品質に優れない膜の形成が伝播することがある。また、上面が平坦なAlGaN層を形成することは難しい。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、光の取り出し効率に優れた窒化物半導体発光素子の提供である。
 本発明の窒化物半導体発光素子では、凹凸形状を上面に有する基板と、下地層と、少なくとも発光層を有する窒化物半導体積層構造とが順に設けられている。凹凸形状に含まれる凸部の上方で且つ下地層の内部には、空洞部分が設けられている。好ましくは、空洞部分と基板との間には下地層の一部が設けられている。
 本発明の窒化物半導体発光素子では、下地層と、少なくとも発光層を有する窒化物半導体積層構造とが順に設けられていても良い。下地層は、窒化物半導体積層構造の上方で且つ上面に、凹凸部分を有する。下地層の内部には空洞部分が設けられている。好ましくは、空洞部分は、凹凸部分に含まれる凹部の直下に設けられている。
 下地層は、AlxGa1-xN(0≦x≦1)からなることが好ましい。下地層は、第1のAlGaN下地層と、第1のAlGaN下地層の上に設けられた第2のAlGaN下地層とを有することが好ましい。第2のAlGaN下地層のAl組成比は、第1のAlGaN下地層のAl組成比より大きいことが好ましい。空洞部分は、第1のAlGaN下地層の内部に設けられていることが好ましい。下地層は、AlGaN下地層と、AlGaN下地層の上に設けられたGaN下地層とを有しても良い。
 空洞部分の長さは、窒化物半導体積層構造の水平方向において発光波長の1/4倍以上5倍以下であることが好ましく、窒化物半導体積層構造の厚さ方向において発光波長の1/4倍以上5倍以下であることが好ましい。
 凸部は、基板の上面においてドット状に設けられていることが好ましい。凸部の高さは、500nm以上2μm以下であることが好ましい。窒化物半導体積層構造の厚さ方向に延びる空洞部分の面は、基板を構成する材料のc軸方向に対して傾斜していることが好ましい。
 本発明の窒化物半導体発光素子の製造方法は、基板の上面に凹凸形状を形成する工程と、凹凸形状の上に、窒化物半導体からなる下地層を形成する工程と、下地層の上に、少なくとも発光層を有する窒化物半導体積層構造を形成する工程とを備える。下地層を形成する工程は、下地層の内部に空洞部分を形成する工程を有する。基板を除去する工程を更に備えていることが好ましい。
 本発明に係る窒化物半導体発光素子は、光の取り出し効率に優れる。
本発明の一実施形態に係る窒化物半導体発光素子の断面図である。 (a)~(d)は、本発明の一実施形態に係る窒化物半導体発光素子の製造方法の一部を工程順に示す断面図である。 窒化物半導体発光素子の断面SEM(scanning electron microscope(走査型電子顕微鏡))写真である。 (a)は下地層の成長途中の断面SEM写真であり、(b)は基板の上面のSEM写真である。 凹凸形状を有する基板を用いて得られた積層体の断面SEM写真である。 凹凸形状を有する基板を用いて得られた積層体のノマルスキー光学顕微鏡写真である。 上面が平坦な基板を用いて得られた積層体の断面SEM写真である。 上面が平坦な基板を用いて得られた積層体のノマルスキー光学顕微鏡写真である。 凸部の高さが約500nmであるサファイヤ基板を用いて得られた積層体の断面SEM写真である。 凸部の高さが約600nmであるサファイヤ基板を用いて得られた積層体の断面SEM写真である。 凸部の高さが約600nmであるサファイヤ基板を用いて得られた積層体の断面STEM(scanning transmission electron microscope)写真である。 本発明の一実施形態に係る窒化物半導体発光素子の断面図である。 本発明の一実施形態に係る窒化物半導体発光素子の断面図である。
 以下、本発明に係る窒化物半導体発光素子及びその製造方法について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さ等の寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。
 <第1の実施形態>
 [窒化物半導体発光素子の構造]
 図1は、本発明の第1の実施形態に係る窒化物半導体発光素子の断面図である。本実施形態に係る窒化物半導体発光素子は、凹凸形状(凸部1aと凹部1bとを含む)を上面に有する基板1と、基板1の上面に接するようにして設けられたバッファ層3と、バッファ層3の上面に接するようにして設けられ、空洞部分7を有する下地層5と、下地層5の上面に接するようにして設けられたn型窒化物半導体層9と、n型窒化物半導体層9の上面に接するようにして設けられた発光層11と、発光層11の上面に接するようにして設けられたp型窒化物半導体層13と、p型窒化物半導体層13の上面に接するようにして設けられた透明電極15とを備える。n型窒化物半導体層9と発光層11とp型窒化物半導体層13とで窒化物半導体積層構造を構成する。
 本実施形態に係る窒化物半導体発光素子は、n型窒化物半導体層9の露出面に接するようにして設けられたn側電極17と、透明電極15の上面に接するようにして設けられたp側電極19とを備える。「上面」は、図1の上側に位置する面を意味するのであって、重力方向上側に位置する面を意味するものではない。
 <基板>
 基板1は、例えば、サファイヤ、Si、SiC又はスピネル等からなっても良いし、GaN等のIII族窒化物半導体からなっても良い。基板1は、発光波長に対して透明なサファイヤからなることが好ましい。「発光波長」は、発光層11が発する光のピーク波長を意味する。
 基板1は、凹部1bと、凹部1b同士の間に設けられた凸部1aとを、上面(図1の上面)に有する。凸部1aは、基板1の上面(凹凸形状が形成された基板1の面)において、ストライプ状に設けられていても良いが、ドット状に設けられていることが好ましい。凸部1aが基板1の上面においてストライプ状に設けられていれば、凸部1aの長手方向においては凸部1aしか存在せず、凸部1aの幅方向(凸部1aの長手方向に対して垂直な方向)において凸部1aと凹部1bとが交互に配置されるに過ぎない。しかし、凸部1aが基板1の上面においてドット状に設けられていれば、基板1の上面では互いに直交する2方向のそれぞれにおいて凸部1aと凹部1bとが交互に配置される。よって、凸部1aが基板1の上面においてストライプ状に設けられている場合よりも、光の散乱効果が大きくなるので光の取り出し効率が更に高くなる。
 凸部1aの高さは、500nm以上2μm以下であることが好ましい。凸部1aの高さが500nm以上であれば、所定の長さyを有する空洞部分7が下地層5の内部に形成される。よって、光の取り出し効率を更に高めることができる(後述)。凸部1aの高さが高いほど、空洞部分7の長さyが長くなるので、光の取り出し効率がより一層、高くなる。より好ましくは、凸部1aの高さは600nm以上である。一方、凸部1aの高さが2μm以下であれば、凹凸形状を基板1に形成したことに起因して窒化物半導体発光素子の厚さが厚くなり過ぎることを防止できる。
 凸部1aの外形は、円錐形状であることが好ましい。これにより、ファセット成長モードで下地層5を成長させたときに、転位の伝播を制御し易くなる。凸部1aの間隔は、特に限定されない。なお、凸部1aの外形は、転位の伝播を制御し易い形状であれば良い。凸部1aの断面形状は、図1に示すように、丸みを帯びた先端又は丸みを帯びた斜面を有していても良い。
 <バッファ層>
 バッファ層3は、基板1を構成する材料とIII族窒化物半導体との間の格子定数差を解消させるために設けられる。バッファ層3は、窒化物半導体からなり、Als1Gat1u11-u1(0≦s1≦1、0≦t1≦1、0≦u1≦1、s1+t1+u1≠0)層であることが好ましく、AlN層又はAlON層であることがより好ましい。バッファ層3の厚さは、3nm以上100nm以下であることが好ましく、5nm以上50nm以下であることがより好ましい。
 <下地層>
 下地層5は、AlxGa1-xN(0≦x≦1)からなることが好ましい。「下地層5がAlxGa1-xN(0≦x≦1)からなる」は、下地層がAlxGa1-xN(0≦x≦1)層(単層)である場合と、下地層が、Al組成比及びGa組成比の少なくとも一方が互いに異なるAlxGa1-xN(0≦x≦1)層の積層体である場合とを含む。
 下地層5は、第1下地層5Aと、第1下地層5Aの上に設けられた第2下地層5Bとを有することが好ましい。第1下地層5Aは、ファセット面5f(図2(b)参照)が形成されるファセット成長モードを主として成長されることが好ましい。第2下地層5Bは、横方向成長モードを主として成長されることが好ましい。
 第1下地層5Aは、AlGaN層であることが好ましい。これにより、発光波長が380nm以下であっても、当該光が第1下地層5Aに吸収されることを防止できる。本明細書では、「AlGaN」は、「AlxGa1-xN(0<x<1)」を意味する。
 第2下地層5Bは、Al組成比が第1のAlGaN下地層5AのAl組成比よりも大きなAlGaN層であっても良いし、GaN層であっても良い。しかし、発光波長が380nm以下である場合、第2下地層5BがGaN層であれば、第2下地層5Bが光(発光層11が発する光)を吸収してしまう。一方、第2下地層5BがAlGaN層であれば、第2下地層5Bが光(発光層11が発する光)を吸収することを防止できる。したがって、第2下地層5Bは、AlGaN層であることが好ましく、Al組成比が第1のAlGaN下地層5AのAl組成比よりも大きなAlGaN層であることがさらに好ましい。
 第2下地層5BがGaN層である場合には、第2下地層5Bを横方向成長モードで容易に成長させることができる。成長温度を1000℃以上とすれば、成長条件に制限されることなく第2下地層5Bを横方向成長モードで成長させることができる。
 第2下地層5BがAlGaN層である場合には、第2下地層5BがGaN層である場合に比べて横方向成長モードでの第2下地層5Bの成長が困難となる。しかし、Mg等のサーファクタントを用いる、200Torr以下の減圧下で成長させる、1100℃以上の温度下で成長させる、又は、N2を主成分とするキャリアガスを用いる等により、第2下地層5Bを横方向成長モードで容易に成長させることができる。「N2を主成分とするキャリアガスを用いる」は、MOCVD(Metal Organic Chemical Vapor Deposition)法により第2下地層5Bを形成するときにN2を主成分とするキャリアガスを用いることを意味する。
 <空洞部分>
 空洞部分7は、基板1の凸部1aの上方で且つ下地層5の内部に、設けられている。これにより、AlGaNが基板1の凸部1aの上において異常成長した場合であっても、その異常成長は、空洞部分7によって、当該空洞部分7よりも上方へ伝播し難くなる。また、転位が基板1の凹凸形状(凹部1bと凸部1aとで形成される形状)の上で発生した場合であっても、その転位は、空洞部分7によって、当該空洞部分7よりも上方へ伝播し難くなる。これらのことから、下地層5の上に形成された層(例えば発光層11)の結晶性を高く維持できる。さらに、空洞部分7の内部空間と空洞部分7を取り囲む部材(下地層5)との間の屈折率差が大きくなるので、空洞部分7に届いた光が散乱又は乱反射される。よって、光の取り出し効率を高めることができる。好ましくは、空洞部分7が第1下地層5A(例えばAlGaN層)の内部に設けられていることであり、より好ましくは、空洞部分7と基板1との間に下地層(例えば第1下地層5A)の一部を有することである。
 ここで、「空洞部分7が基板1の凸部1aの上方に設けられている」は、下地層5が基板1よりも重力方向上側に位置している場合には空洞部分7が基板1の凸部1aよりも重力方向上側に設けられていることを意味し、下地層5が基板1よりも重力方向下側に位置している場合には空洞部分7が基板1の凸部1aよりも重力方向下側に設けられていることを意味する。
 空洞部分7は、上述のように基板1の凸部1aの上方に設けられている。これにより、空洞部分が基板の凹部の上方に形成されている場合に比べて、つまり空洞部分が隣り合う凸部の頂点を架橋するように設けられている場合に比べて、空洞部分7と空洞部分7を取り囲む部材との間の屈折率差が大きくなる。よって、空洞部分が基板の凹部の上方に形成されている場合に比べて、光の散乱効果又は光の乱反射効果が大きくなるので光の取り出し効率が高くなる。
 空洞部分7の長さyは、窒化物半導体積層構造の厚さ方向において100nm以上であることが好ましく、窒化物半導体積層構造の厚さ方向において発光波長の1/4倍以上であることが好ましい。これにより、光の染み出しを最小限に抑えることができるので、光の散乱効果又は光の乱反射効果が大きくなり、よって、光の取り出し効率が更に高くなる。空洞部分7の長さyは、窒化物半導体積層構造の厚さ方向において発光波長の1/4倍以上5倍以下であることがより好ましい。空洞部分7の幅xは、窒化物半導体積層構造の水平方向(窒化物半導体積層構造の厚さ方向に対して垂直な方向)において発光波長の1/4倍以上5倍以下であることが好ましい。
 空洞部分7は、下地層5(特に第1下地層5A)の形成途中で形成される。そのため、下地層5の形成条件を変更すれば、空洞部分7の大きさを変更できる。これにより、空洞部分を基板と窒化物半導体層との界面に形成する場合に比べて、空洞部分7の設計の自由度が高くなる。例えば、凹凸の大きさ、又は、凹部1bに対する凸部1aの側面の傾斜角度等を変更すれば、空洞部分7の幅xが変更される。下地層5の初期成長層の厚さを変更すれば、空洞部分7の長さyが変更される。「初期成長層」は、窒化物半導体の成長モードを横方向成長モードへ切り換える前までに成長される窒化物半導体層を意味し、本実施形態では第1下地層5Aである。
 空洞部分7は、周期的に設けられていることが好ましい。これにより、光の散乱効果又は光の乱反射効果が大きくなるので、光の取り出し効率が更に高くなる。例えば、基板1の凹凸の周期(隣り合う凸部1aの間隔等)を変更すれば、隣り合う空洞部分7の間隔iが変更される。これにより、空洞部分が成長層中にランダムに設けられる場合に比べて、空洞部分7の周期(例えば隣り合う空洞部分7の間隔i)を自由に設計することができる。よって、空洞部分が成長層中にランダムに設けられる場合に比べて、空洞部分7の設計の自由度が高くなる。
 発光波長ごとに空洞部分7の最適な周期が異なる。基板1の凹凸の周期を変更すれば空洞部分7の周期を変更することができるので、発光波長に合わせて空洞部分7の周期を最適化させることができる。
 窒化物半導体積層構造の厚さ方向に延びる空洞部分7の面(空洞部分7の側面)は、基板1を構成する材料のc軸方向に対して傾斜していることが好ましい。これにより、空洞部分7のアスペクト比(幅x/長さy)が高くなるので、空洞部分7の側面の表面積が大きくなる。空洞部分7の側面が上記c軸方向に対して傾斜することにより、発光層として機能しない窒化物半導体層(例えば下地層5、n型窒化物半導体層9又はp型窒化物半導体層13)と基板1、透明電極15、空気又は樹脂との界面に対して全反射角よりも大きな角度で入射した光の入射角が変更され、よって、その光の一部の入射角が全反射角以下となる。したがって、空洞部分7の側面が上記c軸方向に対して傾斜することにより、光の取り出し効率が更に高くなる。より好ましくは、空洞部分7の側面は、基板1を構成する材料(たとえばサファイヤ)のc軸方向に対して2°以上6°以下傾斜している。
 <n型窒化物半導体層>
 n型窒化物半導体層9は、n型ドーパントがAls2Gat2Inu2N(0≦s2≦1、0≦t2≦1、0≦u2≦1、s2+t2+u2≠0)層にドープされた層であることが好ましい。n型ドーパントは、Si又はGeであることが好ましい。n型窒化物半導体層9のn型ドーパント濃度は、5×1017cm-3以上5×1019cm-3以下であることが好ましい。n型窒化物半導体層9の厚さは、1μm以上10μm以下であることが好ましい。
 <発光層>
 発光層11は、単一量子井戸構造を有しても良いし、多重量子井戸構造を有しても良い。発光層11が単一量子井戸構造を有する場合には、発光層11は、Ga1-s3Ins3N(0<s3<0.4)層を量子井戸層として含むことが好ましい。発光層11が多重量子井戸構造を有する場合には、発光層11は、Ga1-s3Ins3N(0<s3<0.4)層(井戸層)とAls4Gat4Inu4N(0≦s4≦1、0≦t4≦1、0≦u4≦1、s4+t4+u4≠0)層(障壁層)とが交互に1層ずつ積層されたものであることが好ましい。
 <p型窒化物半導体層>
 p型窒化物半導体層13は、p型ドーパントがAls5Gat5Inu5N(0≦s5≦1、0≦t5≦1、0≦u5≦1、s5+t5+u5≠0)層にドープされた層であることが好ましい。p型ドーパントは、Mgであることが好ましい。p型窒化物半導体層13のp型ドーパント濃度は、1×1018cm-3以上1×1021cm-3以下であることが好ましい。p型窒化物半導体層13の厚さは、1μm以上10μm以下であることが好ましい。
 <透明電極、n側電極、p側電極>
 透明電極15は、ITO(Indium Tin Oxide)、酸化インジウム(Indium Oxide)、酸化スズ(Tin Oxide)又は酸化亜鉛(Zinc Oxide)等からなっても良いし、Au、Ag、Pt、Ti、Pd、Al及びNiの少なくとも1つを含む材料からなっても良い。透明電極15の厚さは、20nm以上200nm以下であることが好ましい。
 n側電極17は、Au、Ag、Pt、Ti、Pd、Al及びNiの少なくとも1つを含む金属層の単層からなっても良いし、材料が異なる2種以上の金属層が積層されても良い。n側電極17の厚さは1μm以上であることが好ましい。これにより、n側電極17にワイヤボンディングを行うことができる。
 p側電極19は、Au、Ag、Pt、Ti、Pd、Al及びNiの少なくとも1つを含む金属層の単層からなっても良いし、材料が異なる2種以上の金属層が積層されても良い。p側電極19の厚さは1μm以上であることが好ましい。これにより、p側電極19にワイヤボンディングを行うことができる。
 以上説明したように、本実施形態では、空洞部分7は、基板1の凸部1aの上方で且つ下地層5の内部に、設けられている。これにより、基板1の凸部1aの上に異常成長した、結晶配向性の悪い層が窒化物半導体積層構造側へ伝播することを防止できる。また、基板1の凹凸形状の上で生じた転位が窒化物半導体積層構造側へ伝播することを防止できる。さらに、空洞部分7の内部空間と空洞部分7を取り囲む部材との間の大きな屈折率差に因る高い散乱効果が得られるので、光の取り出し効率が高くなる。光の取り出し効率が高くなることは、Alを含む層を下地層5に用い空洞部分7の大きさを最適化することにより顕著となり、空洞部分7を周期的に設けることによりさらに顕著となる。また、発光波長に応じて空洞部分7の設計を自由に変更できる。
 [窒化物半導体発光素子の製造]
 図2(a)~(d)は、本実施形態に係る窒化物半導体発光素子の製造方法の一部を工程順に示す断面図である。以下では、窒化物半導体積層構造が形成された基板を分割して窒化物半導体発光素子を得るという方法を記載する。しかし、便宜上、分割前の部材と、分割後の当該部材に対応する部材とには、同一の符号を付している。
 まず、例えば既存のエッチング方法により凹凸形状を基板1に形成する。これにより、例えば、高さが0.6μmである凸部1aが、隣り合う間隔を2μmとして、基板1の上面において三角形の頂点となる位置に設けられる。
 次に、例えばスパッタ法によりバッファ層3を形成する。これにより、図2(a)に示すように、例えばAlNからなるバッファ層3が基板1の凸部1aの上とその凹部1bの上とに形成される。
 続いて、例えばMOCVD法により、下地層5を形成する。下地層5の材料であるAlGaNでは、3次元成長モードが支配的である。つまり、AlGaNでは、基板1の平面方向(横方向)におけるエピタキシャル成長に対して、c軸方向におけるエピタキシャル成長が支配的となる。以下、仮想的に引いた点線L51~L56を参照しながら詳細に示す。
 AlGaNは、凸部1aの上ではなく凹部1bの上に選択的に成長され(L51)、ファセット面5fを保持しながら3次元成長される(L51→L52→L53)。隣り合うファセット面5fの下端が凸部1aの頂点上で重なると、AlGaNは凸部1aを覆うように結晶成長される(L54)。しかし、隣り合うファセット面5fは、完全には会合(コアレッセンス)されない。そのため、AlGaNは、溝部(AlGaNが成長されない部分、空洞部分7となる部分)が凸部1aの上方に形成された状態でc軸方向へさらに結晶成長される(L55)。AlGaNが結晶成長されるにつれて、溝部の深さが深くなる。
 溝部の深さが所定値を超えると、AlGaNの結晶成長条件を3次元成長モードから横方向成長モードに変更する。これにより、溝部の開口がAlGaNにより蓋されて空洞部分7が形成される(図2(d))。
 例えば次に示す方法にしたがって第1下地層5Aを形成できる。バッファ層3が形成された基板をMOCVD装置内に入れて、基板1の温度を1045℃とする。形成されるAlGaN層(第1下地層)が4mol%のAlを含むようにトリメチルアルミニウム(TMA(Trimethylaluminium))、トリメチルガリウム(TMG(Trimethylgallium))及びNH3の供給量を設定して、これらをMOCVD装置内に供給する。キャリアガスとしてN2をMOCVD装置内に供給し、N2を90体積%以上含む雰囲気下でAlGaN層をファセット成長モードで結晶成長させる。
 例えば次に示す方法にしたがって第2下地層5Bを形成できる。基板1の温度を1100℃とする。形成されるAlGaN層(第2下地層)が5mol%のAlを含むようにTMA、TMG及びNH3の供給量を設定して、これらをMOCVD装置内に供給する。キャリアガスとしてN2をMOCVD装置内に供給し、N2を90体積%以上含む雰囲気下でAlGaN層(厚さ2.5μm)を横方向成長モードで結晶成長させる。このようにキャリアガスとしてN2を含む雰囲気下でAlGaN層を横方向成長モードで結晶成長させれば、AlGaN層の上面L56が平坦となる。
 既知の方法にしたがってn型窒化物半導体層9と発光層11とp型窒化物半導体層13とを形成してから、既知の条件でアニールを行う。既知の条件でエッチングを行ってn型窒化物半導体層9を露出させる。n型窒化物半導体層9の露出面にはn側電極17を設け、p型窒化物半導体層13の上面には透明電極15を挟んでp側電極19を設ける。その後、基板1を分割して、本実施形態に係る窒化物半導体発光素子を得る。
 [実験例1]
 FIB(Focused Ion Beam(集束イオンビーム))装置を用いて、上述の方法にしたがって得られた窒化物半導体発光素子の断面を露出させた。その後、SEMを用いて、露出された断面を観察した。図3は、本実験例の窒化物半導体発光素子の一部の断面SEM写真である。
 図3に示すように、空洞部分がサファイヤ基板の凸部の上に形成されていることが分かる。形成された空洞部分の幅xは0.25μmであり、その長さyは1.675μmであった。空洞部分のこの大きさは、光を空洞部分において散乱又は乱反射させるためには十分の大きさであると考えられる。
 図3では、サファイヤ基板の凸部の上では、AlGaNが異常成長していることを確認できる。しかし、図3に示すように、この異常成長は、空洞部分によって、当該空洞部分よりも上へ伝播することが防止されている。
 図4(a)は下地層の成長途中の断面SEM写真であり、図4(b)は基板の上面のSEM写真である。空洞部分となる溝部が基板の凸部の上に形成されていることが分かり(図4(a))、基板の上面に凹凸形状が形成されていることが分かる(図4(b))。
 [実験例2]
 AlGaN層(下地層)に形成される空洞部分の作用・効果を調べるために、ドット状に設けられた凸部(高さが約0.6μm)を上面に有するサファイヤ基板(凹凸形状を有する基板)と上面が平坦なサファイヤ基板とを準備し、これらの2種類のサファイヤ基板のそれぞれの上面に、AlN層、AlGaN層及びn型窒化物半導体層を成長させた。
 まず、サファイヤ基板のそれぞれをスパッタ装置に入れ、サファイヤ基板のそれぞれの上面にAlN層(バッファ層)を形成した。その後直ちに、AlN層が形成されたサファイヤ基板のそれぞれをMOCVD装置に入れ、AlN層の上面にAlGaN層を形成した。
 成長温度を1255℃とし、水素及び窒素を含むキャリアガスを用い、全キャリアガスに対する水素ガスの混合比率を58体積%として、AlGaN層を2.2μm成長させた。次に、成長温度をそのままとし、全キャリアガスに対する水素ガスの混合比率を58体積%から10体積%まで減らし、窒素ガスの流量を増加させた。これにより、AlGaNの2次元成長が促進され、サファイヤ基板の凸部の上方に空洞部分を形成しながらAlGaN層の上面が平坦化された。その後、同じ成長温度でシランガスをさらに加え、Siを3×1018/cm3ドーピングした(n型窒化物半導体層の形成)。なお、本実験例では、MOCVD装置として、大陽日酸株式会社製の品番「SR23K」を用いた。本明細書において、特に記載がない場合には、MOCVD装置としてVeeco炉を用いた。
 図5及び図6は、それぞれ、凹凸形状を有する基板を用いて得られた積層体の断面SEM写真及びノマルスキー光学顕微鏡写真である。図7及び図8は、それぞれ、上面が平坦な基板を用いて得られた積層体の断面SEM写真及びノマルスキー光学顕微鏡写真である。
 凹凸形状を上面に有する基板では、AlGaNが基板の上面にファセット成長するので、AlGaN層に空洞部分が形成された(図5)。一方、上面が平坦な基板では、AlGaNが基板の上面にファセット成長しないので、AlGaN層には空洞部分が形成されなかった(図7)。
 凹凸形状を上面に有する基板を用いた場合、Siがドープされた層の表面(図5の上面)にはクラックが発生しなかった(図6)。一方、上面が平坦な基板を用いた場合、Siがドープされた層の表面(図7の上面)には複数のクラックが発生した(図8における黒線がクラックに相当する)。このような結果から、AlGaN層の空洞部分は歪を緩和する効果を奏すると考えられる。
 発光ダイオードのようなpn接合を含むデバイスの場合、n型AlGaN層を用いる必要がある。n型ドーパントとしてSiが使われると、転位が斜めに曲げられ、それによって、強い引っ張り歪が生じる。AlGaN層で多層膜を形成する場合、上記強い引っ張り歪を緩和する機構が必要となる。本実験例では、本実施形態の空洞部分が上記強い引っ張り歪の緩和に対して大きな効果を発揮することが示された。
 図5に示すように、空洞部分の側面は、サファイヤのc軸方向に対して2°~6°程度、傾斜した。これにより、空洞部分のアスペクト比(幅x/長さy)が高くなるので、空洞部分の側面の表面積が大きくなった。空洞部分の側面が上記c軸方向に対して傾斜すると、発光層として機能しない窒化物半導体層(例えば下地層、n型窒化物半導体層又はp型窒化物半導体層)と基板、透明電極、空気又は樹脂との界面に対して全反射角よりも大きな角度で入射した光の入射角が変更され、よって、その光の一部の入射角が全反射角以下となる。したがって、空洞部分7の側面が上記c軸方向に対して傾斜すれば、光の取り出し効率が更に高くなる。
 [実験例3]
 ドット状に設けられた凸部の高さが互いに異なるサファイヤ基板を用いて、凸部の高さがもたらす作用・効果を調べた。
 上記実験例2に示す方法にしたがって、凸部の高さが約500nmであるサファイヤ基板及び凸部の高さが約600nmであるサファイヤ基板のそれぞれの上に、AlN層、AlGaN層及びn型窒化物半導体層を成長させた。図9及び図10は、それぞれ、凸部の高さが約500nm及び約600nmであるサファイヤ基板を用いて得られた積層体の断面SEM写真である。図11は、凸部の高さが約600nmであるサファイヤ基板を用いて得られた積層体の断面STEM写真である。
 サファイヤ基板の凸部の高さが約500nmであれば、サファイヤ基板の凸部の高さが約600nmである場合に比べて、空洞部分の長さ(窒化物半導体積層構造の厚さ方向における空洞部分の大きさ)が150nm程度小さいことが分かった(図9、図10)。
 サファイヤ基板の凸部の高さが約600nmであれば、転位(貫通転位)を終端させる効果があることが確認された(図11)。実際、AlGaNの(102)面からのX線回折ピークの半値幅を測定すると、その半値幅は、凸部の高さが約600nmである場合には408arcsecであったのに対し、凸部の高さが約500nmである場合には483arcsecであった。このX線ピークの半値幅の結果からも、凸部の高さが高い方が転位(刃状転位)が少ないことが分かる。これらのことから、凸部の高さは、500nm以上であることが好ましく、600nm以上であることがより好ましいことが分かった。
 <第2の実施形態>
 第2の実施形態に係る窒化物半導体発光素子は、透明電極15の代わりに反射層31を備え、フリップチップ実装可能である。以下では、上記第1の実施形態とは異なる点を主に示す。
 図12は、本実施形態に係る窒化物半導体発光素子の断面図である。本実施形態に係る窒化物半導体発光素子は、凹凸形状を下面に有する基板1と、基板1の下面に接するようにして設けられたバッファ層3と、バッファ層3の下面に接するようにして設けられ、空洞部分7を有する下地層5と、下地層5の下面に接するようにして設けられたn型窒化物半導体層9と、n型窒化物半導体層9の下面に接するようにして設けられた発光層11と、発光層11の下面に接するようにして設けられたp型窒化物半導体層13と、p型窒化物半導体層13の下面に接するようにして設けられた反射層31とを備える。
 本実施形態に係る窒化物半導体発光素子は、n型窒化物半導体層9の露出面に接するようにして設けられたn側電極17と、反射層31の下面に接するようにして設けられたp側電極19とを備える。n側電極17の下面とp側電極19の下面とは面一である。「下面」は、図12の下側に位置する面を意味するのであって、重力方向下側に位置する面を意味するものではない。
 空洞部分7は、基板1の凸部1aの下方に設けられている。しかし、図12に示す窒化物半導体発光素子を上下逆さにすると、空洞部分7は基板1の凸部1aの上方に設けられることとなる。よって、本実施形態においても空洞部分7は基板1の凸部1aの上方に設けられると言えるので、上記第1の実施形態で記載した効果が得られる。
 透明電極15を形成する代わりにAlからなる反射層31をスパッタ法により形成すること、及び、n側電極17の下面とp側電極19の下面とを面一とすることを除いては上記第1の実施形態に記載の方法にしたがって、本実施形態の窒化物半導体発光素子を製造できる。このことからも、上記第1の実施形態で記載した効果が得られると言える。
 反射層31は、金属からなることが好ましく、Alからなることがより好ましい。これにより、本実施形態に係る窒化物半導体発光素子の発光波長が380nm以下であっても、発光層11からの光を基板1側へ効率良く反射させることができる。反射層31の厚さは、特に限定されず、発光層11からの光が反射層31を透過しない程度の厚さであることが好ましい。反射層31は、例えば、スパッタ法又はメッキ法等により形成されることが好ましい。
 本実施形態に係る窒化物半導体発光素子では、反射層31がp型窒化物半導体層13の下面に接するように設けられており、n側電極17の下面とp側電極19の下面とは面一である。これにより、本実施形態に係る窒化物半導体発光素子をフリップチップ実装させることができる。よって、導電性ワイヤ等を用いて窒化物半導体発光素子と取付基板(窒化物半導体発光素子を取り付けるための基板(例えば実装基板))とを電気的に接続する必要がないので、発光層11からの光が導電性ワイヤ等に遮られることを防止できる。したがって、上記第1の実施形態よりも光の取り出し効率が高くなる。
 本実施形態に係る窒化物半導体発光素子では、反射層31がp型窒化物半導体層13の下面に接するように設けられている。これにより、発光層11からの光は、反射層31により基板1側へ反射される。よって、発光層11からの光が上述の取付基板に吸収されることを防止できるので、光の取り出し効率がさらに高くなる。サファイヤの屈折率は窒化物半導体材料の屈折率と空気の屈折率との間であるので、基板1がサファイヤ基板であれば光の取り出し効率がさらに高くなる。
 [実験例4]
 透明電極15の代わりにAlからなる反射層31をスパッタ法により形成したこと、及び、n側電極17の下面とp側電極19の下面とを面一としたことを除いては上記第1の実施形態に記載の方法にしたがって窒化物半導体発光素子を製造した場合を仮定して、光学シミュレーションを行なった。光学シミュレーションでは、発光波長を365nmと仮定し、Alからなる反射層の365nmでの反射率を92%と仮定し、AlGaN層の365nmでの透過率を100%と仮定し、GaN層の365nmでの透過率を50%と仮定して、光の取り出し効率を求めた。その結果、空洞部分が形成されていれば、空洞部分が形成されていない場合に比べて、光の取り出し効率が1%改善した。
 <第3の実施形態>
 第3の実施形態に係る窒化物半導体発光素子は、上記第2の実施形態に係る窒化物半導体発光素子とは異なり、基板を備えていない。以下では、上記第2の実施形態とは異なる点を主に示す。
 図13は、本実施形態に係る窒化物半導体発光素子の断面図である。本実施形態に係る窒化物半導体発光素子は、空洞部分7を有する下地層5と、下地層5の下面に接するようにして設けられたn型窒化物半導体層9と、n型窒化物半導体層9の下面に接するようにして設けられた発光層11と、発光層11の下面に接するようにして設けられたp型窒化物半導体層13と、p型窒化物半導体層13の下面に接するようにして設けられた反射層31とを備える。
 本実施形態に係る窒化物半導体発光素子は、n型窒化物半導体層9の露出面に接するようにして設けられたn側電極17と、反射層31の下面に接するようにして設けられたp側電極19とを備える。n側電極17の下面とp側電極19の下面とは面一である。「下面」は、図13の下側に位置する面を意味するのであって、重力方向下側に位置する面を意味するものではない。
 下地層5は、窒化物半導体積層構造の上方に設けられ、その上面に凹凸部分を有する。凹凸部分は、凸部5aと凹部5bとを有する。本実施形態に係る窒化物半導体発光素子の製造方法の一例としては、透明電極15を形成する代わりにAlからなる反射層31をスパッタ法により形成すること、及び、n側電極17の下面とp側電極19の下面とを面一とすることを除いては上記第1の実施形態に記載の方法にしたがって基板付き窒化物半導体発光素子を製造してから、当該基板を除去するという方法が挙げられる。そのため、凹部5bは基板1の凸部1aに対応し、凸部5aは基板1の凹部1bに対応する。
 空洞部分7は、下地層5の凹部5bの直下に設けられている。上述の方法にしたがって本実施形態に係る窒化物半導体発光素子を製造できるので、本実施形態においても上記第1の実施形態で記載した効果が得られる。なお、空洞部分7は、下地層5の凹部5bの下方に設けられていれば良い。これにより、上記第1の実施形態で記載した効果が得られる。しかし、空洞部分7が下地層5の凹部5bの直下に設けられていれば、光の取り出し効率が更に高くなるという効果も得られる。よって、空洞部分7は下地層5の凹部5bの直下に設けられていることが好ましい。
 ここで、「下地層5は、窒化物半導体積層構造の上方に設けられ、その上面に凹凸部分を有する」は、下地層5が窒化物半導体積層構造よりも重力方向上側に位置している場合には凹凸部分が下地層5の上面(窒化物半導体積層構造とは反対側に位置する下地層5の面)に設けられていることを意味し、下地層5が窒化物半導体積層構造よりも重力方向下側に位置している場合には凹凸部分が下地層5の下面(窒化物半導体積層構造とは反対側に位置する下地層5の面)に設けられていることを意味する。
 また、「空洞部分7は下地層5の凹部5bの直下に設けられている」は、下地層5が窒化物半導体積層構造よりも重力方向上側に位置している場合には空洞部分7が下地層5の凹部5bの直下に設けられていることを意味し、下地層5が窒化物半導体積層構造よりも重力方向下側に位置している場合には空洞部分7が下地層5の凹部5bの直上に設けられていることを意味する。「空洞部分7は下地層5の凹部5bの下方に設けられている」についても同様のことが言える。
 本実施形態では、基板が設けられていないので、窒化物半導体発光素子の厚さは薄くなる。また、図13に示すように反射層31の厚さを大きくする、又は、支持基板を貼り付ける等により、強度を維持できる。
 基板を除去する方法は特に限定されない。例えば、基板(又はバッファ層)と下地層5との界面付近にレーザー光を照射することにより基板1とバッファ層3とを除去しても良いし、基板の凸部にレーザー光を照射することにより基板1とバッファ層3とを除去しても良い。
 以上説明したように、図1及び図12に示す窒化物半導体発光素子では、凹凸形状を上面に有する基板1と、下地層5と、少なくとも発光層11を有する窒化物半導体積層構造とが順に設けられている。凹凸形状に含まれる凸部1aの上方で且つ下地層5の内部には、空洞部分7が設けられている。これにより、光の取り出し効率が高くなる。好ましくは、空洞部分7と基板1との間には下地層5の一部が設けられている。
 図13に示す窒化物半導体発光素子では、下地層5と、少なくとも発光層11を有する窒化物半導体積層構造とが順に設けられていても良い。下地層5は、窒化物半導体積層構造の上方で且つ上面に、凹凸部分を有する。下地層5の内部には空洞部分7が設けられている。これにより、光の取り出し効率が高くなる。好ましくは、空洞部分7は、凹凸部分に含まれる凹部5bの直下に設けられている。
 下地層5は、AlxGa1-xN(0≦x≦1)からなることが好ましい。
 下地層5は、第1のAlGaN下地層5Aと、第1のAlGaN下地層5Aの上に設けられた第2のAlGaN下地層5Bとを有することが好ましい。第2のAlGaN下地層5BのAl組成比は、第1のAlGaN下地層5AのAl組成比より大きいことが好ましい。これにより、発光波長が380nm以下であっても、当該光が下地層5に吸収されることを防止できる。
 下地層5は、AlGaN下地層5Aと、AlGaN下地層5Aの上に設けられたGaN下地層5Bとを有しても良い。これにより、GaN下地層5Bを横方向成長モードで容易に成長させることができる。
 下地層5は、第1のAlGaN下地層5Aと、第1のAlGaN下地層5Aの上に設けられた第2のAlGaN下地層5Bとを有することが好ましい。空洞部分7は、第1のAlGaN下地層5Aの内部に設けられていることが好ましい。これにより、発光波長が380nm以下であっても、当該光が下地層5に吸収されることを防止できる。
 空洞部分7の長さは、窒化物半導体積層構造の厚さ方向において100nm以上であることが好ましく、窒化物半導体積層構造の厚さ方向において発光波長の1/4倍以上5倍以下であることがより好ましい。これにより、光の染み出しを最小限に抑えることができる。空洞部分7の長さは、窒化物半導体積層構造の水平方向において発光波長の1/4倍以上5倍以下であることが好ましい。
 凸部1aは、基板1の上面においてドット状に設けられていることが好ましい。これにより、光の取り出し効率が更に高くなる。
 窒化物半導体積層構造の厚さ方向に延びる空洞部分7の面は、基板1を構成する材料のc軸方向に対して傾斜していることが好ましい。これにより、光の取り出し効率が更に高くなる。
 凸部1aの高さは、500nm以上2μm以下であることが好ましい。これにより、光の取り出し効率が更に高くなる。
 本発明の窒化物半導体発光素子の製造方法は、基板1の上面に凹凸形状を形成する工程と、凹凸形状の上に、窒化物半導体からなる下地層5を形成する工程と、下地層5の上に、少なくとも発光層11を有する窒化物半導体積層構造を形成する工程とを有する。下地層5を形成する工程は、下地層5の内部に空洞部分7を形成する工程を有する。これにより、図1及び図12に示す窒化物半導体発光素子が製造される。
 基板1を除去する工程を更に備えることが好ましい。これにより、図13に示す窒化物半導体発光素子が製造される。
 今回開示された実施の形態及び実験例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 例えば、位置関係を表すために、図面の下側に記載した部分を「下」と表記し、図面の上側に記載した部分を「上」と表記していることがある。これは便宜上の表記であり、重力方向に対して定められる「上」及び「下」とは異なる。
 1 基板、1a 凸部、1b 凹部、3 バッファ層、5 下地層、5a 凸部、5b 凹部、5f ファセット面、7 空洞部分、9 n型窒化物半導体層、11 発光層、13 p型窒化物半導体層、15 透明電極、17 n型電極、19 p側電極、31 反射層。

Claims (15)

  1.  凹凸形状を上面に有する基板と、下地層と、少なくとも発光層を有する窒化物半導体積層構造とが順に設けられ、
     前記凹凸形状に含まれる凸部の上方で且つ前記下地層の内部に、空洞部分が設けられている、窒化物半導体発光素子。
  2.  前記空洞部分と前記基板との間に前記下地層の一部が設けられている請求項1に記載の窒化物半導体発光素子。
  3.  下地層と、少なくとも発光層を有する窒化物半導体積層構造とが順に設けられ、
     前記下地層は、前記窒化物半導体積層構造の上方で且つ上面に、凹凸部分を有し、
     前記下地層の内部に空洞部分が設けられている、窒化物半導体発光素子。
  4.  前記空洞部分は、前記凹凸部分に含まれる凹部の直下に設けられている請求項3に記載の窒化物半導体発光素子。
  5.  前記下地層は、AlxGa1-xN(0≦x≦1)からなることを特徴とする請求項1~4のいずれかに記載の窒化物半導体発光素子。
  6.  前記下地層は、第1のAlGaN下地層と、前記第1のAlGaN下地層の上に設けられた第2のAlGaN下地層とを有し、
     前記第2のAlGaN下地層のAl組成比は、前記第1のAlGaN下地層のAl組成比より大きい請求項5に記載の窒化物半導体発光素子。
  7.  前記下地層は、AlGaN下地層と、前記AlGaN下地層の上に設けられたGaN下地層とを有する請求項5に記載の窒化物半導体発光素子。
  8.  前記下地層は、第1のAlGaN下地層と、前記第1のAlGaN下地層の上に設けられた第2のAlGaN下地層とを有し、
     前記空洞部分は、前記第1のAlGaN下地層の内部に設けられている請求項5に記載の窒化物半導体発光素子。
  9.  前記空洞部分の長さは、前記窒化物半導体積層構造の水平方向において、発光波長の1/4倍以上5倍以下である請求項1~8のいずれかに記載の窒化物半導体発光素子。
  10.  前記空洞部分の長さは、前記窒化物半導体積層構造の厚さ方向において、発光波長の1/4倍以上5倍以下である請求項1~9のいずれかに記載の窒化物半導体発光素子。
  11.  前記凸部は、前記基板の前記上面においてドット状に設けられている請求項1に記載の窒化物半導体発光素子。
  12.  前記窒化物半導体積層構造の厚さ方向に延びる前記空洞部分の面は、前記基板を構成する材料のc軸方向に対して傾斜している請求項1に記載の窒化物半導体発光素子。
  13.  前記凸部の高さは、500nm以上2μm以下である請求項1に記載の窒化物半導体発光素子。
  14.  基板の上面に凹凸形状を形成する工程と、
     前記凹凸形状の上に、窒化物半導体からなる下地層を形成する工程と、
     前記下地層の上に、少なくとも発光層を有する窒化物半導体積層構造を形成する工程とを備え、
     前記下地層を形成する工程は、前記下地層の内部に空洞部分を形成する工程を有する窒化物半導体発光素子の製造方法。
  15.  前記基板を除去する工程を更に備える請求項14に記載の窒化物半導体発光素子の製造方法。
PCT/JP2014/068266 2013-08-21 2014-07-09 窒化物半導体発光素子 WO2015025631A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/653,800 US20150325741A1 (en) 2013-08-21 2014-07-09 Nitride semiconductor light emitting device
JP2015513921A JP5997373B2 (ja) 2013-08-21 2014-07-09 窒化物半導体発光素子
CN201480002287.XA CN104603959B (zh) 2013-08-21 2014-07-09 氮化物半导体发光元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013171232 2013-08-21
JP2013-171232 2013-08-21
JP2014-080160 2014-04-09
JP2014080160 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015025631A1 true WO2015025631A1 (ja) 2015-02-26

Family

ID=52483414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068266 WO2015025631A1 (ja) 2013-08-21 2014-07-09 窒化物半導体発光素子

Country Status (4)

Country Link
US (1) US20150325741A1 (ja)
JP (1) JP5997373B2 (ja)
CN (1) CN104603959B (ja)
WO (1) WO2015025631A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151330A (ja) * 2014-02-19 2015-08-24 古河機械金属株式会社 Iii族窒化物半導体層およびiii族窒化物半導体基板の製造方法
JP2017017265A (ja) * 2015-07-06 2017-01-19 ナイトライド・セミコンダクター株式会社 発光装置
JP2019079994A (ja) * 2017-10-26 2019-05-23 豊田合成株式会社 テンプレート基板およびその製造方法、発光素子
JP2019517010A (ja) * 2015-12-29 2019-06-20 ジーイー・ライティング・ソルーションズ,エルエルシー 照明フィルタリング用複合材料、照明装置、およびドーピング濃度もしくは複合材料の厚さを決定するための方法
JP2019522373A (ja) * 2016-07-20 2019-08-08 エルジー イノテック カンパニー リミテッド 半導体素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597863B (zh) * 2013-10-22 2017-09-01 晶元光電股份有限公司 發光元件及其製造方法
US9812322B2 (en) * 2015-08-26 2017-11-07 Epileds Technologies, Inc. Sapphire substrate with patterned structure
CN106449920B (zh) * 2016-10-19 2019-08-23 华灿光电(浙江)有限公司 一种发光二极管芯片及其制造方法
KR102611981B1 (ko) 2017-10-19 2023-12-11 삼성전자주식회사 발광 장치 및 그 제조 방법
US11296262B2 (en) 2017-12-21 2022-04-05 Lumileds Llc Monolithic segmented LED array architecture with reduced area phosphor emission surface
DE102019100410A1 (de) * 2019-01-09 2020-07-09 Osram Opto Semiconductors Gmbh Volumenemitter und Verfahren zu dessen Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331947A (ja) * 1999-03-17 2000-11-30 Mitsubishi Cable Ind Ltd 半導体基材及びその作製方法
JP2001267242A (ja) * 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
JP2007266472A (ja) * 2006-03-29 2007-10-11 Stanley Electric Co Ltd 窒化物半導体ウエハないし窒化物半導体装置及びその製造方法
JP2010219269A (ja) * 2009-03-17 2010-09-30 Toshiba Corp 半導体素子、半導体装置、半導体ウェーハ及び半導体結晶の成長方法
JP2012064902A (ja) * 2010-09-17 2012-03-29 Sharp Corp 半導体基材の製造方法、半導体装置、および電気機器

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492687C (zh) * 1997-04-11 2009-05-27 日亚化学工业株式会社 氮化物半导体衬底及器件
WO1998047170A1 (en) * 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
US6015979A (en) * 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
US6335546B1 (en) * 1998-07-31 2002-01-01 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
JP3594826B2 (ja) * 1999-02-09 2004-12-02 パイオニア株式会社 窒化物半導体発光素子及びその製造方法
US6829273B2 (en) * 1999-07-16 2004-12-07 Agilent Technologies, Inc. Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
US6821805B1 (en) * 1999-10-06 2004-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor device, semiconductor substrate, and manufacture method
JP3988018B2 (ja) * 2001-01-18 2007-10-10 ソニー株式会社 結晶膜、結晶基板および半導体装置
EP1276140A3 (en) * 2001-07-04 2007-10-24 FUJIFILM Corporation Substrate including wide low-defect region for use in semiconductor element
US6812496B2 (en) * 2002-01-10 2004-11-02 Sharp Kabushiki Kaisha Group III nitride semiconductor laser device
EP3699963A1 (en) * 2003-08-19 2020-08-26 Nichia Corporation Semiconductor light emitting diode and method of manufacturing its substrate
KR100744933B1 (ko) * 2003-10-13 2007-08-01 삼성전기주식회사 실리콘 기판 상에 형성된 질화물 반도체 및 그 제조 방법
US7491645B2 (en) * 2004-10-21 2009-02-17 Genesis Photonics Inc. Method for manufacturing a semiconductor device
JP2006196631A (ja) * 2005-01-13 2006-07-27 Hitachi Ltd 半導体装置及びその製造方法
JP4818732B2 (ja) * 2005-03-18 2011-11-16 シャープ株式会社 窒化物半導体素子の製造方法
CN101232067B (zh) * 2005-05-16 2013-05-15 索尼株式会社 发光二极管及其制造方法、集成发光二极管、以及显示器
US7342261B2 (en) * 2005-05-16 2008-03-11 Dong-Sing Wuu Light emitting device
KR100638880B1 (ko) * 2005-08-18 2006-10-27 삼성전기주식회사 반도체 적층 구조물과, 질화물 반도체 결정 기판 및 질화물반도체 소자의 제조 방법
US8481977B2 (en) * 2006-03-24 2013-07-09 Goldeneye, Inc. LED light source with thermally conductive luminescent matrix
WO2009002129A2 (en) * 2007-06-27 2008-12-31 Epivalley Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
KR100921789B1 (ko) * 2007-10-24 2009-10-15 주식회사 실트론 화합물 반도체 기판 제조 방법
US8030666B2 (en) * 2008-04-16 2011-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Group-III nitride epitaxial layer on silicon substrate
KR101092079B1 (ko) * 2008-04-24 2011-12-12 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP2009295753A (ja) * 2008-06-04 2009-12-17 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
US9331240B2 (en) * 2008-06-06 2016-05-03 University Of South Carolina Utlraviolet light emitting devices and methods of fabrication
KR101101780B1 (ko) * 2008-09-08 2012-01-05 서울대학교산학협력단 질화물 박막 구조 및 그 형성 방법
KR101009651B1 (ko) * 2008-10-15 2011-01-19 박은현 3족 질화물 반도체 발광소자
TWI408831B (zh) * 2008-12-05 2013-09-11 私立中原大學 發光二極體及其製程
JP5180050B2 (ja) * 2008-12-17 2013-04-10 スタンレー電気株式会社 半導体素子の製造方法
US8460949B2 (en) * 2008-12-30 2013-06-11 Chang Hee Hong Light emitting device with air bars and method of manufacturing the same
KR101055090B1 (ko) * 2009-03-02 2011-08-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101047617B1 (ko) * 2009-05-21 2011-07-07 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
WO2010150809A1 (ja) * 2009-06-24 2010-12-29 日亜化学工業株式会社 窒化物半導体発光ダイオード
JP5409170B2 (ja) * 2009-07-30 2014-02-05 キヤノン株式会社 半導体素子の製造方法および半導体素子
JP4818464B2 (ja) * 2009-07-30 2011-11-16 キヤノン株式会社 微細構造の製造方法
JP4647020B2 (ja) * 2009-07-30 2011-03-09 キヤノン株式会社 窒化物半導体の微細構造の製造方法
KR101125395B1 (ko) * 2009-10-28 2012-03-27 엘지이노텍 주식회사 발광소자 및 그 제조방법
US8476658B2 (en) * 2009-11-25 2013-07-02 Jing Jie Dai Semiconductor light-emitting devices
JP2011129718A (ja) * 2009-12-17 2011-06-30 Showa Denko Kk 基板、テンプレート基板、半導体発光素子、半導体発光素子の製造方法、半導体発光素子を用いた照明装置および電子機器
KR101007136B1 (ko) * 2010-02-18 2011-01-10 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
JP5789782B2 (ja) * 2010-05-20 2015-10-07 パナソニックIpマネジメント株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
KR101034053B1 (ko) * 2010-05-25 2011-05-12 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
WO2011155010A1 (ja) * 2010-06-07 2011-12-15 創光科学株式会社 エピタキシャル成長用テンプレートの作製方法及び窒化物半導体装置
KR101683898B1 (ko) * 2010-06-21 2016-12-20 엘지이노텍 주식회사 발광 소자
JP2012060022A (ja) * 2010-09-10 2012-03-22 Sony Corp 半導体発光素子およびその製造方法
KR20120029767A (ko) * 2010-09-17 2012-03-27 엘지디스플레이 주식회사 반도체 발광소자 제조 방법
US8765509B2 (en) * 2010-09-30 2014-07-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor light-emitting device
JP5521981B2 (ja) * 2010-11-08 2014-06-18 豊田合成株式会社 半導体発光素子の製造方法
KR101274651B1 (ko) * 2010-11-30 2013-06-12 엘지디스플레이 주식회사 발광 다이오드 및 이의 제조 방법
CN102117869B (zh) * 2011-01-21 2013-12-11 厦门市三安光电科技有限公司 一种剥离发光二极管衬底的方法
WO2012114513A1 (ja) * 2011-02-25 2012-08-30 学校法人名城大学 半導体装置の製造方法
KR101259999B1 (ko) * 2011-04-28 2013-05-06 서울옵토디바이스주식회사 반도체 기판 및 그 제조방법
TW201248725A (en) * 2011-05-31 2012-12-01 Aceplux Optotech Inc Epitaxial substrate with transparent cone, LED, and manufacturing method thereof.
WO2012176728A1 (ja) * 2011-06-23 2012-12-27 旭化成株式会社 微細パタン形成用積層体及び微細パタン形成用積層体の製造方法
CN103035786B (zh) * 2011-10-07 2015-07-01 清华大学 发光二极管的制备方法
CN103035785B (zh) * 2011-10-07 2015-11-25 清华大学 发光二极管的制备方法
WO2013070369A2 (en) * 2011-10-10 2013-05-16 Sensor Electronic Technology, Inc. Patterned layer design for group iii nitride layer growth
JP6010867B2 (ja) * 2012-09-20 2016-10-19 豊田合成株式会社 Iii 族窒化物系化合物半導体発光素子とその製造方法および半導体発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331947A (ja) * 1999-03-17 2000-11-30 Mitsubishi Cable Ind Ltd 半導体基材及びその作製方法
JP2001267242A (ja) * 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
JP2007266472A (ja) * 2006-03-29 2007-10-11 Stanley Electric Co Ltd 窒化物半導体ウエハないし窒化物半導体装置及びその製造方法
JP2010219269A (ja) * 2009-03-17 2010-09-30 Toshiba Corp 半導体素子、半導体装置、半導体ウェーハ及び半導体結晶の成長方法
JP2012064902A (ja) * 2010-09-17 2012-03-29 Sharp Corp 半導体基材の製造方法、半導体装置、および電気機器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151330A (ja) * 2014-02-19 2015-08-24 古河機械金属株式会社 Iii族窒化物半導体層およびiii族窒化物半導体基板の製造方法
JP2017017265A (ja) * 2015-07-06 2017-01-19 ナイトライド・セミコンダクター株式会社 発光装置
JP2019517010A (ja) * 2015-12-29 2019-06-20 ジーイー・ライティング・ソルーションズ,エルエルシー 照明フィルタリング用複合材料、照明装置、およびドーピング濃度もしくは複合材料の厚さを決定するための方法
US11242960B2 (en) 2015-12-29 2022-02-08 Savant Technologies Llc Composite material for lighting filtering, lighting apparatus, and method for determining doping concentration or thickness of composite material
JP7034074B2 (ja) 2015-12-29 2022-03-11 コンシューマー ライティング (ユー.エス.),エルエルシー 照明フィルタリング用複合材料、照明装置、およびドーピング濃度もしくは複合材料の厚さを決定するための方法
JP2019522373A (ja) * 2016-07-20 2019-08-08 エルジー イノテック カンパニー リミテッド 半導体素子
US11183614B2 (en) 2016-07-20 2021-11-23 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device
JP7051131B2 (ja) 2016-07-20 2022-04-11 スージョウ レキン セミコンダクター カンパニー リミテッド 半導体素子
JP2019079994A (ja) * 2017-10-26 2019-05-23 豊田合成株式会社 テンプレート基板およびその製造方法、発光素子

Also Published As

Publication number Publication date
US20150325741A1 (en) 2015-11-12
JPWO2015025631A1 (ja) 2017-03-02
JP5997373B2 (ja) 2016-09-28
CN104603959B (zh) 2017-07-04
CN104603959A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
JP5997373B2 (ja) 窒化物半導体発光素子
JP6607614B2 (ja) 紫外発光ダイオードおよびその製造方法
JP5532930B2 (ja) エピタキシャル成長用基板、GaN系半導体膜の製造方法、GaN系半導体膜、GaN系半導体発光素子の製造方法およびGaN系半導体発光素子
KR101020961B1 (ko) 반도체 발광소자 및 그 제조방법
JP5509394B2 (ja) 半導体発光素子、その製造方法及び光源装置
US9041005B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
TWI568018B (zh) 氮化物半導體發光二極體
EP2387081B1 (en) Semiconductor light emitting device and method for fabricating the same
JP4626306B2 (ja) 窒化物半導体発光素子およびその製造方法
KR100986557B1 (ko) 반도체 발광소자 및 그 제조방법
JP6185087B2 (ja) 窒化物半導体素子
JP4925580B2 (ja) 窒化物半導体発光素子およびその製造方法
KR102284535B1 (ko) 발광 소자 및 그 제조 방법
JP2011060917A (ja) 半導体発光素子
JP2009200522A (ja) GaN系半導体発光素子
JP2012216753A (ja) Iii族窒化物半導体発光素子
TWI509831B (zh) 三族氮化物半導體發光元件及其製造方法
TWI636580B (zh) 製造氮化物半導體組件的方法以及氮化物半導體組件
JP6124740B2 (ja) 窒化物半導体発光素子の製造方法、窒化物半導体発光素子および窒化物半導体発光素子用下地基板
KR20120045538A (ko) 발광 소자 및 그 제조방법
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
WO2007055262A1 (ja) 窒化物半導体発光ダイオード素子
JP2007161525A (ja) 半導体装置用基材およびその製造方法
JP2014022446A (ja) 半導体積層構造体及び発光素子
KR100826395B1 (ko) 수직구조 질화물 반도체 발광소자 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015513921

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653800

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837240

Country of ref document: EP

Kind code of ref document: A1