WO2015024732A1 - Régulation de la vitesse de rotation d'un système d'énergie houlomotrice rotatif en fonction de la vitesse d'écoulement - Google Patents

Régulation de la vitesse de rotation d'un système d'énergie houlomotrice rotatif en fonction de la vitesse d'écoulement Download PDF

Info

Publication number
WO2015024732A1
WO2015024732A1 PCT/EP2014/065993 EP2014065993W WO2015024732A1 WO 2015024732 A1 WO2015024732 A1 WO 2015024732A1 EP 2014065993 W EP2014065993 W EP 2014065993W WO 2015024732 A1 WO2015024732 A1 WO 2015024732A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
lever arm
rotor
operating mode
wave energy
Prior art date
Application number
PCT/EP2014/065993
Other languages
German (de)
English (en)
Inventor
Alexander Poddey
Daniel Seiler-Thull
Michael Hilsch
Nik Scharmann
Johannes Nitzsche
Matthias Lenssen
Benjamin Hagemann
Carolina Passenberg
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2015024732A1 publication Critical patent/WO2015024732A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • F03B13/183Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation of a turbine-like wom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a method for operating a wave energy plant for converting energy from a wave motion of a fluid into another form of energy, a computing unit for its implementation and a wave energy plant.
  • Wave energy plants also referred to as wave energy converters or wave power plants
  • Wave energy plants convert the energy of sea waves into another form of energy, for example, for the production of electricity.
  • Newer design approaches use rotating units (rotors), which convert the wave motion into a torque.
  • rotors which convert the wave motion into a torque.
  • These may have one or more lever arms with coupling bodies attached thereto.
  • Hydrodynamic buoyancy bodies ie bodies that generate buoyancy when circulating, such as buoyancy profiles and / or Flettner rotors using the Magnus effect
  • the invention aims to improve the operation of generic wave energy systems in multichromatic wave states. Disclosure of the invention
  • the invention makes it possible to operate a wave energy plant with the highest possible energy yield. This is achieved by starting from a substantially synchronous first operating mode (ie rotational speed of the rotor corresponds on average over one revolution of the orbital speed of the shaft movement) in an asynchronous second operating mode (ie rotational speed of the rotor does not correspond over one revolution over a period of time Orbital Irish the wave motion) is changed when a flow rate characterizing size (eg wave height or flow velocity itself) at the location of the wave energy plant falls below a lower threshold.
  • a substantially synchronous first operating mode ie rotational speed of the rotor corresponds on average over one revolution of the orbital speed of the shaft movement
  • asynchronous second operating mode ie rotational speed of the rotor does not correspond over one revolution over a period of time Orbital york the wave motion
  • An arithmetic unit according to the invention e.g. a control unit of a wave energy plant, is, in particular programmatically, adapted to perform a method according to the invention.
  • Suitable data carriers for providing the computer program are, in particular, floppy disks, hard disks, flash memories, EEPROMs, CD-ROMs, DVDs and the like. It is also possible to download a program via computer networks (Internet, intranet, etc.).
  • FIG. 1 shows a preferred embodiment of a wave energy plant according to the invention in a perspective view.
  • FIG. 2 shows the wave energy installation according to FIG. 1 in a side view and illustrates the pitch angle a P and the phase angle ⁇ between rotor and orbital flow.
  • FIG. 3 shows a dependence of a wave height on time for a multichromatic one
  • FIGS. 4-7 show different possibilities for controlling the rotational angle position of the rotor over time for situations where the flow velocity is too low.
  • the present invention relates to the operation of rotating equipment for the recovery of energy from moving fluids, for example from the sea.
  • the functional principle of such systems is first explained below with reference to Figures 1 and 2.
  • the wave energy plant 1 shows a wave energy plant 1 with a rotor base 2, a housing 7 and four each attached via lever arms 4 to the rotor base 2 coupling body 3.
  • the wave energy plant 1 is provided for operation below the water surface of a wavy body of water - for example, an ocean.
  • the coupling body 3 are profiled in the example shown, but can also be designed as Flettner rotors, ie cylinders with additional self-rotation.
  • An adjustment device 5 with at least one degree of freedom is available to change the orientation (eg "pitch angle", ie the angle between chord and tangential velocity) of the respective coupling body and thus to influence the interaction between the fluid and the coupling body.
  • the degree of freedom of the displacement devices is described here by adjustment parameters (pitch angle).
  • the rotational speed of the Flettner rotors can also be adapted.
  • the adjusting devices are preferably hydraulic (or electromotive or pneumatic) adjusting devices.
  • a sensor 6 is also available for detecting the current adjustment.
  • the components 2, 3, 4, 5, 6 are components of a rotor 1 1, which rotates about a rotor axis x.
  • the housing 7 is part of a frame 12.
  • the rotor 1 1 is rotatably mounted relative to the frame 12.
  • the frame 12 is non-rotatably connected to a stator of a directly driven generator for power generation
  • the rotor 1 1 (here the rotor base 2) is non-rotatably connected to a rotor of this directly driven generator. It may also be provided a gear or a hydrostatic drive train between the rotor base and generator rotor.
  • An arithmetic unit which is set up to carry out a method according to the invention is arranged inside the housing 7 and serves to control the operation of the wave power plant 1.
  • an intended attachment of the wave energy plant 1 on the seabed which can be done for example by a mooring system, in particular a monopile.
  • Figure 2 shows a side view of the system with rotated by 90 ° to the position shown in Figure 1 lever arms.
  • the adjustment parameters can be seen as the pitch angle a P between the chord of the coupling body 3 and the tangent (shown by an arrow) on the circular path through the suspension point (pivot point) of the coupling body.
  • the coupling bodies 3 are suspended at their pressure point in order to reduce rotational torques occurring during operation to the coupling bodies and thus to reduce the requirements for the holder and / or the adjusting devices.
  • the representation of the coupling body in Figure 2 and in the other figures is only exemplary for the definition of the different machine parameters.
  • a curvature of the coupling body to the circular path may be advantageous.
  • the wave energy plant 1 is surrounded by a flow vector field v. In the described embodiments, it is assumed that the
  • denotes the angle between the flow direction and the horizontal, which is hereinafter referred to as "flow angle”.
  • the lever arm 4 rotates in the first mode of operation in time synchronous with the orbital flow of the wave motion with u> i.
  • ⁇ «u> i A value or a range of values for an angular velocity u> i of the rotor is thus predefined or adapted on the basis of an angular velocity ⁇ of the orbital flow. This can be done a constant control or a short-term or short-term adjustment.
  • a variable load moment M L acts between the rotor base 2 and the housing 7 or frame 12.
  • the load torque can act in a positive direction (counter to
  • the load torque is caused for example by a power generation in the generator.
  • phase angle ⁇ ⁇ - ⁇
  • the amount by the adjustment of the drive torque and / or the load torque can be influenced.
  • a phase angle at the rotor rotational axis of -25 ° to 25 °, preferably from -10 ° to 10 ° and particularly preferably from about 0 ° for generating the drive torque appears to be particularly advantageous, since in this case the orbital flow and the flow due to the intrinsic rotation largely perpendicular oriented to each other, which leads to a maximization of the amount of the resulting flow.
  • a so-called beating wave the wave height H, as shown clearly varies over time.
  • FIG. 3 in particular, three regions marked with a frame in the figure can be identified, in which the wave height H and thus the flow velocity prevailing below the water surface become very small and are no longer suitable for energy-producing operation of the wave energy plant 1.
  • multichromatic waves In the case of stationary multichromatic waves (waves with several, different frequency and amplitude components, these shares are constant) or multichromatic waves (the frequency and amplitude components are time-varying) can be as local orbital flow, an effectively resulting value, such as an average or a Value of the main part, to be used.
  • the local orbital flow can be measured or calculated.
  • the wave height can be measured above the wave energy plant or at a location at which the wave passes in time before the wave energy plant. From this the orbital flow velocity can be calculated.
  • One possibility for prognosis is described in DE 10 2013 002 127.8.
  • variable characterizing a flow rate is preferably measured at the location of the wave energy plant or calculated at the location of the wave energy plant from a measurement at a location different from the location of the wave energy plant.
  • the wave energy plant is operated in two different operating modes, the decision as to which operating mode is to be used being made dependent on the flow velocity.
  • a variable characterizing the flow rate is measured, here preferably the wave height H and / or the flow velocity itself, and compared with one or more threshold values.
  • FIGS. 4 to 7 different embodiments for the second operating mode will now be explained.
  • a profile of the flow angle ⁇ and of the rotor angle ⁇ ⁇ is in each case in the upper half.
  • the power P generated in each case is plotted against the time t.
  • a substantially synchronous operation takes place, so that the angles ⁇ and ⁇ / i run synchronously.
  • the rotational speed ⁇ of the rotor accordingly corresponds in the time average over one revolution of the orbital velocity ⁇ .
  • the rotor will continue to rotate due to inertia, with the rotational speed slightly decreasing.
  • the adjustment parameters of the coupling bodies are expediently selected such that they cause the lowest possible flow resistance, so that the rotor retains its rotational speed as far as possible.
  • FIG. 5 shows that, according to an alternative preferred embodiment, in the second operating mode, the rotor is advanced at a constant rotational speed ⁇ . This is to avoid large accelerations and thereby caused large energy losses.
  • the renewed change to the first operating mode after the renewed change to the first operating mode (after the upper threshold value has been exceeded by the variable characterizing a flow speed), more or less energy is expended in order to restore the synchronous operation.
  • FIG. 6 shows a further preferred embodiment, in which the rotor is essentially stopped in the second operating mode.
  • This means that the setpoint for the rotor angle is no longer the flow angle ⁇ (if applicable ⁇ phase angle ⁇ ), but a fixed angle.
  • This fixed angle may be a previously defined fixed angle or an angle resulting from the previous movement of the rotor.
  • the purpose of this mode of operation is to position the rotor so that energy from the shaft can be used to restart the rotor and not, as in the two previously described embodiments, an active and thus energy-consuming acceleration is necessary.
  • the adjustment parameters of the coupling body are here arbitration hosted so that during standstill the lowest possible flow resistance prevails and to restart the largest possible flow resistance is generated in order to enable a quick and energetically favorable restart of the rotor.
  • FIG. 7 shows a further preferred embodiment in which a predetermined trajectory is traveled in the second operating mode.
  • a trajectory a dependence of the rotor angle ⁇ / i of the time is defined here. This can be advantageously combined with a time prediction of the wave motion so that an energetically optimal trajectory can be planned over time to accelerate the rotor as little as possible, yet at the ideal time to the right position at the right speed respectively.
  • the adjustment parameters of the coupling bodies are preferably selected such that the coupling bodies generate the lowest possible flow resistance in order to ensure energy-efficient continuity of the rotor.
  • the adjustment parameters can also be adapted to the respective present flow direction during the further operation in order to be able to convert as much energy as possible during the further operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

L'invention concerne un procédé d'exploitation d'un système d'énergie houlomotrice (1) servant à convertir l'énergie produite par le mouvement de houle d'un fluide en une autre forme d'énergie. Le système d'énergie houlomotrice (1) comporte un bras de levier (4) qui est supporté en rotation autour d'un axe de rotation de rotor (x) et qui porte un élément d'accouplement (3), et un convertisseur d'énergie (2, 7) couplé au bras de levier (4) supporté en rotation. Dans un premier mode de fonctionnement, le système d'énergie houlomotrice (1) fonctionne de telle façon qu'une vitesse de rotation (ω1) du bras de levier (4) autour de l'axe de rotation de rotor (x) correspond, en moyenne dans le temps sur un tour, à une vitesse orbitale (Ω) du mouvement de houle. Dans un deuxième mode de fonctionnement, le système d'énergie houlomotrice (1) fonctionne de telle façon que la vitesse de rotation (ω1) du bras de levier (4) au tour de l'axe de rotation de rotor (x) ne correspond pas, en moyenne dans le temps sur un tour, à la vitesse orbitale (Ω) du mouvement de houle. Le système d'énergie houlomotrice (1) fonctionne dans le deuxième mode de fonctionnement lorsqu'une grandeur (H) caractérisant une vitesse d'écoulement (v) passe en dessous d'une valeur seuil inférieure.
PCT/EP2014/065993 2013-08-19 2014-07-25 Régulation de la vitesse de rotation d'un système d'énergie houlomotrice rotatif en fonction de la vitesse d'écoulement WO2015024732A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013216339.8 2013-08-19
DE102013216339.8A DE102013216339A1 (de) 2013-08-19 2013-08-19 Steuerung der Rotationsgeschwindigkeit einer rotierenden Wellenenergieanlage in Abhängigkeit von der Strömungsgeschwindigkeit

Publications (1)

Publication Number Publication Date
WO2015024732A1 true WO2015024732A1 (fr) 2015-02-26

Family

ID=51266286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/065993 WO2015024732A1 (fr) 2013-08-19 2014-07-25 Régulation de la vitesse de rotation d'un système d'énergie houlomotrice rotatif en fonction de la vitesse d'écoulement

Country Status (2)

Country Link
DE (1) DE102013216339A1 (fr)
WO (1) WO2015024732A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497190B2 (en) 2015-05-27 2019-12-03 Bundesdruckerei Gmbh Electronic access control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054794A1 (de) * 2010-12-16 2012-06-21 Robert Bosch Gmbh Energiewandlungsmaschine und Rotor dafür
DE102011105177A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Wellenenergiekonverters und Wellenenergiekonverter
EP2604849A1 (fr) * 2011-12-13 2013-06-19 Robert Bosch GmbH Procédé de fonctionnement d'une machine se trouvant dans une eau agitée par des vagues

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012096A1 (de) 2012-06-18 2013-12-19 Robert Bosch Gmbh Verfahren zum Betreiben eines Wellenenergiekonverters zur Umwandlung von Energie aus einer Wellenbewegung eines Fluids in eine andere Energieform
DE102013002127A1 (de) 2013-02-08 2014-08-14 Robert Bosch Gmbh Verfahren zur Bestimmung eines Wellenerhebungs- und/oder Geschwindigkeitspotentialfelds in einem wellenbewegten Gewässer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054794A1 (de) * 2010-12-16 2012-06-21 Robert Bosch Gmbh Energiewandlungsmaschine und Rotor dafür
DE102011105177A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Verfahren zum Betreiben eines Wellenenergiekonverters und Wellenenergiekonverter
EP2604849A1 (fr) * 2011-12-13 2013-06-19 Robert Bosch GmbH Procédé de fonctionnement d'une machine se trouvant dans une eau agitée par des vagues

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497190B2 (en) 2015-05-27 2019-12-03 Bundesdruckerei Gmbh Electronic access control method

Also Published As

Publication number Publication date
DE102013216339A1 (de) 2015-02-19

Similar Documents

Publication Publication Date Title
DE19739164B4 (de) Windenergieanlage
WO2012171600A1 (fr) Procede de fonctionnement d'un convertisseur d'énergie houlomotrice
EP2605958B1 (fr) Engin électrique de changement du pas d'hélice
DE29715248U1 (de) Windenergieanlage
EP3409589B1 (fr) Système d'entraînement pour un véhicule
EP2535557A2 (fr) Procédé de fonctionnement d'un convertisseur d'énergie d'onde et convertisseur d'énergie d'onde
EP2677165A2 (fr) Procédé de fonctionnement d'un convertisseur d'énergie d'ondes destiné à convertir l'énergie d'un mouvement d'onde d'un fluide en une autre forme d'énergie
EP2539578B1 (fr) Installation houlomotrice
EP2885533B1 (fr) Installation génératrice d'énergie à flux
EP3339631A1 (fr) Système d'éoliennes
DE102011105178A1 (de) Wellenenergiekonverter und Verfahren zum Betreiben eines Wellenenergiekonverters
WO2015024732A1 (fr) Régulation de la vitesse de rotation d'un système d'énergie houlomotrice rotatif en fonction de la vitesse d'écoulement
WO2012171598A1 (fr) Convertisseur d'énergie houlomotrice et procede de fonctionnement d'un convertisseur d'énergie houlomotrice
WO2012152356A1 (fr) Centrale marémotrice et procédé de fonctionnement de ladite centrale marémotrice
WO2014094979A1 (fr) Procédé et moyen pour la réduction de la cavitation dans des convertisseurs d'énergie houlomotrice
EP3404256B1 (fr) Dispositif d'ajustement des pales de rotor d'une installation génératrice d'énergie à flux
DE102012021620A1 (de) Wellenenergiekonverter mit Wirbelschleppenleiteinrichtung und Verfahren zur Umwandlung von Wellenenergie
DE10251388B4 (de) Rotor einer Windkraftanlage
EP3688304B1 (fr) Générateur/dispositif d'entraînement de surfaces de support oscillantes pour la conversion d'énergie
DE102014204248A1 (de) Verfahren zum Betreiben einer Wellenenergieanlage und Wellenenergieanlage
WO2024094764A1 (fr) Dispositif et procédé pour positionner une pièce mobile dans une position de consigne par rapport à un fluide en écoulement
EP2182204A2 (fr) Dispositif de rotation avec rue de navette
WO2013149615A1 (fr) Éolienne comprenant deux rotors
DE202009008223U1 (de) Windkraftanlage mit zyklisch und windstärkeabhängig gesteuerten senkrechten Flügeln
DE102008049373A1 (de) Meereskraftwerk ohne Küstenanbindung, durch Rotoren mit Windkraft positioniert unter Ausnutzung unterschiedlicher Strömungsrichtungen von Wind und Wasser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14747556

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14747556

Country of ref document: EP

Kind code of ref document: A1