WO2015022829A1 - 3次元地図表示システム - Google Patents

3次元地図表示システム Download PDF

Info

Publication number
WO2015022829A1
WO2015022829A1 PCT/JP2014/068658 JP2014068658W WO2015022829A1 WO 2015022829 A1 WO2015022829 A1 WO 2015022829A1 JP 2014068658 W JP2014068658 W JP 2014068658W WO 2015022829 A1 WO2015022829 A1 WO 2015022829A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
display system
map display
map
features
Prior art date
Application number
PCT/JP2014/068658
Other languages
English (en)
French (fr)
Inventor
岸川 喜代成
英治 手島
昌稔 荒巻
公志 内海
卓 中上
達也 阿座上
達郎 米倉
Original Assignee
株式会社ジオ技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジオ技術研究所 filed Critical 株式会社ジオ技術研究所
Priority to CN201480043937.5A priority Critical patent/CN105453140A/zh
Priority to KR1020157036066A priority patent/KR102214906B1/ko
Priority to EP14836758.4A priority patent/EP3035293A4/en
Publication of WO2015022829A1 publication Critical patent/WO2015022829A1/ja
Priority to US15/008,291 priority patent/US9741164B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/203Drawing of straight lines or curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/40Hidden part removal
    • G06T15/405Hidden part removal using Z-buffer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Definitions

  • the present invention relates to a technique for displaying a three-dimensional map that three-dimensionally represents the ground surface and features.
  • three-dimensional maps that represent three-dimensional features have become popular.
  • the three-dimensional map is highly convenient because it is easy to grasp the three-dimensional shape of the feature.
  • This three-dimensional map is drawn by projecting a three-dimensional model of a feature from a viewpoint set in a three-dimensional space.
  • depth determination depth test
  • hidden surface processing are performed in order to realistically display the sense of depth of the feature. For this reason, buildings that are hidden behind other buildings and cannot be seen from the viewpoint are not drawn. Also, underground structures such as tunnels are not drawn because they are hidden by the ground surface.
  • the three-dimensional map may have problems such as difficulty in grasping the positional relationship between buildings, and difficulty in grasping the connection of roads due to the fact that tunnels are not drawn.
  • the building is not hidden by other buildings, and the tunnel is expressed by a broken line or the like as disclosed in Patent Document 1, so that the connection of the road can be grasped. It is drawn. That is, in the three-dimensional map, realization of realistic expressions also causes a problem that deteriorates the convenience of the map.
  • Patent Document 2 discloses a technique for making a point of interest visible by performing a transparent display on a building in front of the point of interest in a three-dimensional map.
  • Patent Documents 3 and 4 disclose a technique for indicating the position of an underground structure on a map by drawing a planar shape of the underground structure on the ground surface.
  • Patent Document 2 cannot be applied to the expression of underground structures because it cannot be transmitted through the ground surface when drawing a map.
  • the techniques of Patent Documents 3 and 4 are not applicable when the ground surface has a three-dimensional shape including irregularities, such as the position and shape of underground structures. The problem remains that can only be expressed in a plane.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to alleviate the trouble in drawing a three-dimensional map caused by depth determination.
  • the apparatus of the present invention is a three-dimensional map display system that displays a three-dimensional map that three-dimensionally represents the ground surface and features.
  • a map database for storing map data representing the three-dimensional shape of the ground surface and features;
  • a first drawing unit that refers to the map database and performs depth determination to draw the ground surface and features;
  • a feature that is at least partially hidden on the ground surface or another feature is used as a target feature, and the drawing result by the first drawing unit is overwritten using the map data.
  • a second drawing unit that draws the target feature without performing a depth determination with a drawing result by the first drawing unit; It is characterized by providing.
  • the target feature in the present invention is not necessarily set exclusively with the feature drawn by the first drawing unit.
  • this tunnel may be included in the feature drawn by the first drawing unit.
  • "Draw the target feature without performing depth determination with the drawing result by the first drawing unit” means the depth relationship between the ground surface and the feature drawn by the first drawing unit. This means that the target feature is drawn irrespectively, and the second drawing unit may perform depth determination between the target features.
  • the second drawing unit may directly overwrite the target feature on the drawing result by the first drawing unit, or may draw the target separately from the drawing result by the first drawing unit.
  • a layer in which the feature is drawn may be generated and superimposed on the drawing result by the first drawing unit.
  • the target feature is displayed in front of the drawing result by the first drawing unit.
  • an underground structure such as a tunnel of a road
  • it can be drawn on the ground surface after drawing the ground surface.
  • a building or road hidden by a building in front near the viewpoint position can be used as a target feature so that it can be drawn in front of other buildings. That is, according to the three-dimensional map display system of the present invention, it is possible to alleviate the trouble in drawing a three-dimensional map that is caused by depth determination that a feature is not drawn or is hidden by another feature.
  • the present invention is also characterized in that a target feature is drawn based on three-dimensional map data.
  • the target feature can be drawn in a state in which the three-dimensional shape is reflected, and the target feature can be displayed without giving a sense of discomfort to the three-dimensional map.
  • a 3D map is drawn with various viewpoint positions and line-of-sight directions
  • various image data corresponding to these viewpoint positions and line-of-sight directions are used.
  • drawing is based on 3D map data, there is an advantage that drawing according to the viewpoint position and line-of-sight direction can be realized without preparing such data. is there.
  • the target feature drawn by the second drawing unit can be specified in various ways.
  • the map data includes data representing an underground part
  • the second drawing unit may identify the target feature based on data representing the underground portion and draw the target feature.
  • map data is prepared so that the underground portion is drawn with a line type different from the ground portion such as a broken line or a dotted line
  • the portion to be drawn with these lines can be determined as the underground portion. According to the present invention, even if the underground part is not individually designated, it can be treated as a target feature and drawn on the map in a state where the underground part can be visually recognized.
  • the underground portion corresponds to, for example, a tunnel, a basement of a building, an underground shopping area, an underground parking lot, or other underground structures.
  • the underground part may be a part of one feature data called a road, for example, so that a part of the road is a tunnel, or only the underground part may be prepared as an individual feature. .
  • the second drawing unit may specify the target feature based on the determination information and draw the target feature.
  • the content of the determination information may be set in advance, for example, or may be set or changed by the user.
  • the target feature can be set or changed flexibly.
  • data such as a flag indicating whether the feature is a target feature may be prepared. Further, data may be prepared in a format such as a list of target features in which IDs of features to be handled as target features are stored.
  • the determination information may be set individually for each feature, or a plurality of features may be set as a group.
  • the second drawing unit may identify the target feature based on the type of the feature and draw the target feature.
  • the type of the feature examples include a type of a feature existing in the basement such as a tunnel, an underground parking lot, an underground structure such as an underground shopping center, and the like.
  • which type of feature the second drawing unit specifies as the target feature may be set in advance, or may be set or changed by the user.
  • the target features can be specified collectively for each type of feature.
  • a tunnel is drawn as a target feature, but an underground parking lot is not drawn, so that it is possible to flexibly change handling between underground features.
  • the type of the feature is not necessarily limited to the underground feature.
  • the target feature can be specified in a subdivided unit such that only the national road is the target feature in the road.
  • the second drawing unit identifies the target feature based on a vertical or vertical positional relationship with a reference feature specified in advance as a reference for determining the target feature, and draws the target feature You may make it do.
  • the type and number of the reference features can be arbitrarily set.
  • the ground surface is drawn three-dimensionally like the feature, the ground surface can be set as the reference feature.
  • the vertical positional relationship with the reference feature means the vertical positional relationship in the vertical direction.
  • the ground surface is compared with the coordinate value of the ground surface and the coordinate value of the constituent point in the vertical direction for each constituent point constituting the polygon of the feature. It is possible to grasp the upper and lower positional relationship.
  • the positional relationship before and after the reference feature means whether it is in front of or behind the line of sight with respect to the viewpoint position.
  • the target feature can be, for example, a feature below or in front of the reference feature.
  • the target feature may be specified based on only one of the vertical relationship and the longitudinal relationship, or may be specified based on both.
  • the method of designating the target feature side has been exemplified.
  • the side overwritten by the target feature is designated as the reference feature.
  • the identification of target features is a matter of identifying which features should be given priority and displayed between the ground surface and each feature, so display between the ground surface and features It is possible to adopt various methods capable of relatively specifying the priorities of. Further, when the method of specifying the target feature based on the context with the reference feature is used, there is an advantage that the target feature can be freely changed depending on the direction of the viewpoint position.
  • a mask image generation unit that generates a mask image by projecting only the features designated as those to be drawn in front of the target features under the same projection conditions as the first drawing unit;
  • the second drawing unit may draw the target feature while prohibiting drawing of the target feature in a portion corresponding to the mask image.
  • the designation of the feature to be drawn in front of the target feature can take various aspects described above for specifying the target feature. Even in the case of the target feature, there is a case where it is desired to display a part of the target feature while being hidden by a specific other feature. For example, when the target feature is a tunnel, the tunnel is displayed in front of the ground surface, and in addition, it is displayed in front of the tunnel to avoid being displayed as if the tunnel penetrates the building. You may want to display the building. In such a case, in the tunnel of the road, it is only necessary to prevent the tunnel from being displayed for an area overlapping the building as viewed from the viewpoint. According to the present invention, since the target feature can be prevented from being drawn in the portion corresponding to the mask image, it is possible to display a part of the target feature in a state where it is hidden by other features.
  • the third drawing unit may draw the designated feature (hereinafter referred to as the designated feature) directly on the drawing result of the first drawing unit and the second drawing unit, or the first drawing Separately from the drawing results of the first drawing unit and the second drawing unit, a layer on which the designated feature is drawn may be generated and superimposed on the drawing results of the first drawing unit and the second drawing unit.
  • the third drawing unit draws the feature by performing depth determination between the designated features. Also according to the present invention, it is possible to display in a state where a part of the target feature is hidden by another feature. Also in this aspect, the designated feature can take various methods described above for specifying the target feature.
  • the third drawing unit draws the designated features while ignoring the depth relationship with the first drawing unit and the second drawing unit, when there are a large number of designated features, the sense of depth as a three-dimensional map. May be greatly impaired.
  • a method for avoiding such trouble a method can be used in which the designated feature drawn by the third drawing unit can be individually designated using the determination information described above.
  • the second drawing unit may perform depth determination between the target features and draw the target features.
  • the viewpoint For example, when tunnels are used as target features, in locations where there are multiple tunnels, it is possible to grasp the positional relationship between these tunnels by drawing the target features by determining the depth between these tunnels. Display can be realized.
  • the present invention does not necessarily have all of the various features described above, and can be configured by omitting some of them or combining them appropriately. Further, the present invention can be configured as an invention of a three-dimensional map display method in addition to the configuration as the above-described three-dimensional map display system. Further, the present invention can be realized in various modes such as a computer program that realizes these, a recording medium that records the program, and a data signal that includes the program and is embodied in a carrier wave. In addition, in each aspect, it is possible to apply the various additional elements shown above.
  • the entire program for controlling the operation of the three-dimensional map display system may be configured, or only the portion that performs the function of the present invention. It is good also as what comprises.
  • Recording media include flexible disks, CD-ROMs, DVD-ROMs, magneto-optical disks, IC cards, ROM cartridges, punched cards, printed products printed with codes such as barcodes, computer internal storage devices (RAM and Various types of computer-readable media such as a memory such as ROM and an external storage device can be used.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a three-dimensional map display system 100 of the first embodiment.
  • the three-dimensional map display system 100 includes a map database (DB) 10, a command input unit 20, a transmission / reception unit 30, a display control unit 40, and a display device 50.
  • DB map database
  • Each of these functional blocks can be configured by software by installing a computer program for realizing each function in a personal computer including a CPU, RAM, ROM, hard disk drive, communication device, and the like. You may make it comprise at least one part of these functional blocks by hardware.
  • the map database 10 stores map data 12 and character data 14.
  • the map data 12 is data for displaying a three-dimensional map.
  • a three-dimensional model (polygon or line) representing a three-dimensional shape of various features such as the sea, mountains, rivers, roads, and buildings and the ground surface is displayed. Contains. The contents of the map data 12 will be described later.
  • the character data 14 is data representing characters drawn in the three-dimensional map, for example, building names, road names, intersection names, and the like.
  • the character data 14 is associated with the map data 12.
  • the character data 14 includes data describing the display position of each character in the 3D map, the font and size of the character, and the relationship between the scale of the 3D map and the display / non-display of the character.
  • the command input unit 10 inputs a user instruction regarding display of a three-dimensional map.
  • the command input unit 10 inputs, for example, the scale of the three-dimensional map, the viewpoint position, the line-of-sight direction, and the like.
  • the transmission / reception unit 30 exchanges data with other devices via a network (not shown). For example, the transmission / reception unit 30 receives the map data 12 and the character data 14 from another device, updates the map database 10, and outputs the three-dimensional map generated by the display control unit 40 to the printer.
  • the display control unit 40 includes a first drawing unit 42, a mask image generation unit 44, a second drawing unit 46, and a character drawing unit 48.
  • the first drawing unit 42 performs depth determination and hidden surface processing using the map data 12 read from the map database 10, and draws the ground surface and the feature.
  • the mask image generation unit 44 uses the map data 12 to generate a mask image for partially prohibiting the drawing of features by the second drawing unit 46.
  • the mask image generation unit 44 projects only the three-dimensional model of the building on the ground under the same projection conditions as the first drawing unit 42, thereby overlapping the building on the ground as seen from the viewpoint. A mask image for prohibiting drawing of underground features in the region is generated.
  • the second drawing unit 46 uses the map data 12 as a target feature that is at least partly hidden by the ground surface or other features when drawn by the first drawing unit 42, and uses the first drawing unit
  • the target feature is drawn without performing depth determination and hidden surface processing with the drawing result by the first drawing unit 42 so as to overwrite the drawing result by 42.
  • the second drawing unit 46 performs drawing by overwriting the target feature on the drawing result by the first drawing unit 42.
  • the second drawing unit 46 may generate a layer in which the target feature is drawn separately from the drawing result by the first drawing unit 42 and superimpose the layer on the drawing result by the first drawing unit 42.
  • the second drawing unit 46 draws the target features by performing depth determination and hidden surface processing between the target features.
  • the character drawing unit 48 draws characters on the three-dimensional map using the character data 14 read from the map database 10.
  • the display control unit 40 controls the operations of the first drawing unit 42, the mask image generation unit 44, the second drawing unit 46, and the character drawing unit 48, and displays a three-dimensional map drawn by these on the display device 50.
  • FIG. 2 is an explanatory diagram showing the contents of the map data 12.
  • a unique feature ID is assigned to each feature, and various data are managed for each feature.
  • the ground surface is divided into mesh shapes, and each is managed with a unique ID, as with the features.
  • “Type” represents the type of a feature such as sea, mountain, river, road, railroad, and building. For roads and railways, the ground section (ground part) and tunnel section (underground part) are managed as one feature, and the tunnel section is assigned a sub-type indicating an underground structure. Yes.
  • the building is managed as one feature in both the above-ground part and the underground part, and a sub-type indicating that it is an underground structure is assigned to the underground part of the building.
  • a type indicating an underground structure is assigned to an underground structure such as an underground parking lot or an underground mall.
  • the ground section and the underground section may be managed as separate features.
  • a type of ground surface is assigned to the map data 12 of the ground surface. “Name” is the name of the feature.
  • the “three-dimensional model” is polygon data for displaying the ground surface and various features in three dimensions, or line data for displaying roads and railways.
  • the ground features and the ground portions of the features are drawn by solid lines, and the underground portions and underground structures of the features are drawn by broken lines.
  • the ground section of the road is drawn with a solid line
  • the tunnel section is drawn with a broken line.
  • the ground part of the building is drawn with a solid line
  • the underground part is drawn with a broken line.
  • the ground features and the ground portions of the features are collectively referred to as ground features.
  • the underground part and underground structure of a feature are collectively called an underground feature.
  • Coordinats are coordinate data of each constituent point of the three-dimensional model (polygon data or line data).
  • Textture is an image that is pasted in accordance with the shape of a feature (three-dimensional model) in texture mapping. In this embodiment, since the underground feature is drawn transparently, the texture of the underground feature is not prepared.
  • 3D map display processing 3 to 5 are flowcharts showing the flow of the 3D map display process of the first embodiment.
  • This process is a process executed by the 3D map display system 100 when a 3D map display instruction is input.
  • the 3D map display system 100 acquires the scale, viewpoint position, and line-of-sight direction of the 3D map specified by the user (step S100).
  • the 3D map display system 100 determines a display area based on the scale, viewpoint position, and line-of-sight direction of the acquired 3D map (Step S110), and the surface and features existing in the display area are determined.
  • the map data 12 and the character data 14 are read (step S120).
  • the three-dimensional map display system 100 discriminates the type of each map data 12 (step S130), and features without the subtype “underground structure”, that is, the ground surface and the ground features , And drawing by performing depth determination and hidden surface processing using a Z buffer (depth buffer) (step S140) (hereinafter, this drawing result is referred to as “normal drawing”).
  • a three-dimensional map in which roads RD1, RD2 and buildings BLD1, BLD2, BLD3 as the ground surface and ground features are drawn in the frame of step S140 is shown.
  • the road includes a ground portion and a tunnel as one feature data
  • the building includes a ground portion and an underground portion as one feature data.
  • step S140 from these feature data, only the constituent points and polygons corresponding to the ground features are extracted and drawn. In the drawing with depth determination, the underground feature is not drawn because it is hidden on the ground surface. Therefore, in the process of step S140, the process of extracting only the ground feature is omitted, and all the features are drawn. Good.
  • the three-dimensional map display system 100 determines whether or not an underground feature exists in the display area based on the determination result in step S130 (step S150).
  • step S150 NO
  • the 3D map display system 100 advances the process to step S190.
  • step S150 YES
  • the 3D map display system 100 clears the Z buffer before drawing the underground feature (step S160). By doing so, in the subsequent drawing process of the underground feature, the depth determination and the hidden surface process are not performed between the drawing result (normal drawing) in step S140.
  • the extraction of underground features in step S150 may take a method other than the type.
  • the ground features are drawn as solid lines, and the underground features are drawn as broken lines. Therefore, the underground features are extracted based on the type of line used for drawing. You may do it. In addition, it may be extracted based on features on data representing underground features such as the presence or absence of texture.
  • the 3D map display system 100 draws the underground feature so as to overwrite the normal drawing.
  • depth determination is not performed between normal drawing and the building on the ground may be obscured by the underground feature depending on the positional relationship between the underground feature and the building on the ground. Can occur. Therefore, in this embodiment, in order to avoid such a state, the underground feature is not displayed in the portion where the building on the ground is drawn. In other words, the underground feature is drawn as if the depth determination is made between the building on the ground and the underground feature.
  • the 3D map display system 100 projects only the building on the ground under the same projection conditions as in step S140, and generates a stencil mask SM as a mask image (step S170).
  • a stencil mask SM having a mask region MK generated by projecting only the buildings BLD1, BLD2, and BLD3 on the ground is shown in the frame of step S170.
  • the mask area MK in the stencil mask SM is shown in black.
  • the designation of the feature to be projected when generating the stencil mask SM can be arbitrarily changed.
  • the 3D map display system 100 extracts the underground features based on the determination result in step S130, and prohibits the drawing on the mask area MK overlapping the buildings BLD1, BLD2, BLD3 on the ground by the stencil mask SM,
  • the extracted underground feature is overwritten on the drawing result of step S140 and drawn (step S180).
  • step S180 a three-dimensional map is shown in which the tunnel TN of the road as an underground feature and the underground parts UG1, UG2, UG3 of the buildings BLD1, BLD2, BLD3 are overwritten.
  • the underground feature is drawn only with a broken line.
  • the tunnel TN is a part of the road, and the three-dimensional model of the road is managed by line data.
  • the line data has a width corresponding to the scale, viewpoint position, and line-of-sight direction of the 3D map acquired in step S100, and is converted into a polygon.
  • the edge is drawn with a broken line.
  • Depth determination is performed between the ground buildings BLD1, BLD2, BLD3 and the underground features by drawing the underground features using the stencil mask SM generated by projecting only the buildings BLD1, BLD2, BLD3.
  • the underground features can be displayed as if they are.
  • the three-dimensional map display system 100 performs depth determination and hidden surface processing on the underground features.
  • the 3D map display system 100 draws characters in the 3D map (step S190), and displays the 3D map on the display device 50 (step S192). Then, the 3D map display system 100 ends the 3D map display process. According to the 3D map display process of the first embodiment described above, an underground feature can be drawn. Accordingly, it is possible to alleviate the trouble in drawing the three-dimensional map caused by the depth determination, and to easily grasp the positional relationship with respect to various features.
  • the configuration of the 3D map display system 100 of the second embodiment is the same as the configuration of the 3D map display system 100 of the first embodiment.
  • the 3D map display system 100 of the second embodiment differs from the first embodiment in part of the contents of the 3D map display process. That is, in the first embodiment, in the three-dimensional map display process, the underground feature is extracted by referring to the map data 12 and determining the type of each feature. Underground features are extracted by analyzing the coordinates of the component points.
  • the 3D map display process of the second embodiment will be described.
  • FIGS. 6 and 7 are flowcharts showing the flow of the 3D map display process of the second embodiment.
  • This process is a process executed by the 3D map display system 100 when a 3D map display instruction is input.
  • the three-dimensional map display system 100 acquires the scale, viewpoint position, and line-of-sight direction (step S200), determines the display area (step S210), and reads the map data 12 and the character data 14 (step S220). Do.
  • step S200 acquires the scale, viewpoint position, and line-of-sight direction
  • step S210 determines the display area
  • step S220 reads the map data 12 and the character data 14
  • the coordinate value of the ground surface and the coordinate value of the component point are compared in the vertical direction for each component point of the polygon or line representing the feature. If the coordinate value of the constituent point is larger than the coordinate value of the ground surface, it can be determined that the constituent point is a constituent point of the ground feature, and if the coordinate value of the constituent point is smaller than the coordinate value of the ground surface It can be determined that the constituent point is a constituent point of the underground feature. Then, the 3D map display system 100 extracts the ground portion of the feature based on the analysis result, performs depth determination and hidden surface processing using the Z buffer, and draws the ground surface and the extracted ground portion ( Step S240). The following processing is the same as in the first embodiment.
  • step S250 when there is an underground feature (step S250: YES), the 3D map display system 100 clears the Z buffer (step S260) and generates a stencil mask SM (step S270). Using this, the underground feature is drawn (step S280). When there is no underground feature (step S250), these processes are skipped. Thereafter, the 3D map display system 100 draws characters (step S290) and displays a 3D map (step S292). According to the second embodiment described above, the underground feature can be drawn without setting the type representing the underground feature.
  • the configuration of the 3D map display system 100 of the third embodiment is a configuration in which the mask image generation unit 44 is excluded from the configuration of the 3D map display system 100 of the first embodiment.
  • the 3D map display system 100 of the third embodiment is different from the first embodiment in the map data 12a stored in the map database 10 and part of the contents of the 3D map display processing.
  • the contents of the map data 12a and the 3D map display process in the third embodiment will be described.
  • FIG. 8 is an explanatory diagram showing the contents of the map data 12a in the third embodiment.
  • a “target feature determination flag” is attached to each feature.
  • the “target feature determination flag” is determination information indicating whether or not the feature is a drawing target by the second drawing unit 46, that is, whether or not it is a drawing target after clearing the Z buffer. “1” is set to “0” when the drawing target is not set.
  • the “target feature determination flag” may be set in advance by the provider of the map data 12a, or may be set or changed by the user. In the present embodiment, the drawing objects by the second drawing unit 46 can be set or changed individually and flexibly.
  • FIGS 9 and 10 are flowcharts showing the flow of the 3D map display process of the third embodiment.
  • This process is a process executed by the 3D map display system 100 when a 3D map display instruction is input.
  • the three-dimensional map display system 100 acquires the scale, viewpoint position, and line-of-sight direction (step S300), determines the display area (step S310), and reads the map data 12 and the character data 14 (step S320). Do.
  • the three-dimensional map display system 100 refers to the target feature determination flag in the map data 12 (step S330), and uses the Z buffer for the feature and the ground surface whose target feature determination flag is “0”. Drawing is performed by depth determination and hidden surface processing (step S340).
  • step S340 A three-dimensional map in which roads RD1, RD2 and buildings BLD1, BLD2, BLD3 as features having a ground surface and a target feature determination flag of “0” are drawn in the frame of step S340 is shown.
  • step S350 YES
  • the 3D map display system 100 clears the Z buffer (step S360).
  • the feature is overwritten on the drawing result obtained in step S340 (step S370), the character is drawn (step S380), and displayed on the display device (step S390).
  • step S370 the building BLD2 as the feature having the target feature determination flag “1” and its underground portion UG2 are overwritten and the three-dimensional map is drawn.
  • the building BLD2 and the underground portion UG2 can be displayed with priority over other features such as the building BLD3.
  • the building BLD2 can be displayed so as to be immediately visible in the three-dimensional map, the display is useful when the building BLD2 is a destination designated by the user or a landmark.
  • the target feature determination flag is set for each feature, the building BLD2 and the underground portion UG2 are integrated and treated as being preferentially drawn.
  • the building BLD2 and the underground portion UG2 are separated into different feature data, What is necessary is just to set a target feature determination flag for each.
  • a structure in which a target feature determination flag can be set for each part of the feature data as in the first embodiment can be set.
  • the underground feature is drawn using the stencil mask SM while prohibiting drawing on the mask area MK.
  • the 3D map display system 100A of the fourth embodiment the entire underground feature is overwritten on the drawing result of the ground feature, and further overwritten on the drawing result. By drawing only the buildings on the ground, at least a part of the underground features is hidden and displayed by the buildings on the ground.
  • FIG. 11 is an explanatory diagram showing a schematic configuration of a 3D map display system 100A of the fourth embodiment.
  • a 3D map display system 100A according to the fourth embodiment includes a display control unit 40A instead of the display control unit 40 in the 3D map display system 100 according to the first embodiment shown in FIG.
  • the display control unit 40 ⁇ / b> A includes a third drawing unit 47 instead of the mask image generation unit 44 in the display control unit 40.
  • the rest is the same as the 3D map display system 100 of the first embodiment.
  • the third drawing unit 47 draws only the building on the ground (the ground portion of the building) so as to overwrite the drawing result by the second drawing unit 46.
  • the third drawing unit 47 generates a layer in which only the building on the ground is drawn separately from the drawing results by the first drawing unit 42 and the second drawing unit 46, and this is generated as the first drawing unit 42 and The image is superimposed on the drawing result by the second drawing unit 46.
  • the third drawing unit 47 may draw the building on the ground by overwriting the drawing results obtained by the first drawing unit 42 and the second drawing unit 46.
  • step S400 obtains the scale, viewpoint position, and line-of-sight direction (step S400), determines the display area (step S410), and reads the map data 12 and the character data 14 (step S420). Do. These are the same processes as in the first embodiment. Also, the 3D map display system 100A determines the type of each map data 12 (step S430), extracts the ground surface and ground features, and uses the Z buffer to perform depth determination and hidden surface, as in the first embodiment.
  • step S440 Processing is performed to draw the extracted ground surface and ground features (step S440).
  • step S450 when there is an underground feature in the display area (step S450: YES), the 3D map display system 100A clears the Z buffer (step S460), and draws the underground feature in step S440. The result is overwritten and drawn (step S470).
  • step S170 the processing contents are the same as those in the first embodiment.
  • step S470 the output result when the processing of step S470 is completed is different from that of the first embodiment.
  • a three-dimensional map is shown in which the road tunnel TN as an underground feature and the underground parts UG1, UG2, UG3 of the buildings BLD1, BLD2, BLD3 are overwritten in the frame of step S470.
  • an underground feature such as the tunnel TN is drawn so as to penetrate the ground building BLD1 and the like drawn earlier.
  • the 3D map display system 100A generates a drawn layer by projecting only the building on the ground (the ground portion of the building) under the same projection conditions as in step S440, apart from the drawing result in step S470 (step S440). S480).
  • the 3D map display system 100A also performs depth determination between buildings on the ground.
  • step S482 the 3D map display system 100A superimposes this layer on the drawing result obtained in step S470 (step S482).
  • the underground feature can be displayed as if the depth determination is performed between the buildings BLD1, BLD2, BLD3 on the ground and the underground feature.
  • step S450: NO these processes are skipped.
  • the 3D map display system 100A draws characters (step S490) and displays them on the display device (step S492). According to the 3D map display process of the fourth embodiment described above, the same drawing as that of the first embodiment can be realized without using the stencil mask SM.
  • the ground surface and ground features are drawn (step S440) ⁇ the Z buffer is cleared (step S460) ⁇ the underground features are drawn (step S470). ) ⁇ 3D map drawing is performed in the order of superimposing layers on which only buildings on the ground are drawn (steps S480 and 482), but the present invention is not limited to this. Drawing the ground surface and ground features ⁇ clearing the Z buffer ⁇ drawing underground features ⁇ clearing the Z buffer ⁇ drawing buildings on the ground may be performed in the order of drawing. In this way, the underground feature can be displayed as if the depth determination is performed between the building on the ground (the ground portion of the building) and the underground feature.
  • the various processes described in the above embodiments and modifications are not necessarily all provided, and some of them may be omitted, replaced with other processes, or combined.
  • the mask image generation unit 44 may be omitted.
  • the 3D map display system 100A of the second embodiment the third drawing unit 47 may be omitted.
  • the 3D map display process of the first embodiment or the second embodiment may be combined with the 3D map display process of the third embodiment.
  • the 3D map display process of the third embodiment and the 3D map display process of the fourth embodiment may be combined.
  • the target feature to be drawn after the Z buffer is cleared is not necessarily limited to the underground feature. It is also possible to apply the 3D map display systems 100 and 100A of the above embodiment to a navigation system that performs route guidance using a 3D map.
  • the processing executed in software may be executed in hardware and vice versa.
  • the present invention can be used for a technique for displaying a three-dimensional map that three-dimensionally represents the ground surface and features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Remote Sensing (AREA)
  • Instructional Devices (AREA)
  • Processing Or Creating Images (AREA)
  • Navigation (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

【課題】奥行き判定によって生じる3次元地図描画上の支障を緩和する。 【解決手段】3次元地図表示システム100は、第1描画部42によって、奥行き判定および陰面処理を行って、地表面および地上の地物を描画する。その後、第2描画部46によって、第1描画部42による描画結果との間で奥行き判定および陰面処理を行わずに、地下地物を第1描画部42による描画結果の上に上書きして描画する。地下地物の描画の際には、地上の建物と地下地物との間で奥行き判定が行われているかのように地下地物が表示されるように、マスク画像生成部44によって生成されたマスク画像によって、地上の建物と重なる領域への地下地物の描画を禁止する。

Description

3次元地図表示システム
 本発明は、地表面および地物を3次元的に表現した3次元地図を表示する技術に関するものである。
 従来、地物を3次元的に表現した3次元地図が普及している。3次元地図は、地物の立体形状を把握しやすいため、利便性が高い。この3次元地図は、3次元空間内に設定された視点から地物の3次元モデルを投影することによって描画される。そして、一般に、3次元地図において、地物を描画する際には、地物の奥行き感をリアルに表示するために、奥行き判定(深度テスト)および隠面処理が行われる。このため、他の建物の陰に隠れて視点から見えない建物は描画されない。また、トンネルなどの地下構造物も、地表面によって隠れるため、描画されない。この結果、3次元地図には、建物同士の位置関係を把握しにくくなったり、トンネルが描かれないことによって道路のつながりが把握しにくくなったりするなどの支障が生じることがある。
 これに対し、2次元地図では、建物が他の建物によって隠されることはなく、また、特許文献1に開示されているようにトンネルは破線等で表現され、道路のつながりなどが把握できるように描かれている。つまり、3次元地図では、リアルな表現を実現することによって、かえって地図としての利便性を損ねている面も生じているのである。
 こうした点を考慮し、特許文献2は、3次元地図において、注目点よりも手前の建物について透過表示をすることによって注目点を視認できるようにする技術を開示している。また、特許文献3、4は、地下構造物の平面形状を地表面に描くことで、地図上に地下構造物の位置を示す技術を開示している。
特開平9-138136号公報 特開2004-333155号公報 特開2008-128928号公報 特開2003-166836号公報
 しかし、地図を描画する際に地表面を透過させる訳にはいかないから、特許文献2の技術は、地下構造物の表現には適用できない。また、特許文献3、4の技術は、地表面が凹凸を含む3次元形状となっている場合には適用できないなど、適用できる場面が限られており、しかも、地下構造物の位置や形状などを平面的に表現できるに過ぎないという課題が残る。
 本発明は、上述の課題を解決するためになされたものであり、奥行き判定によって生じる3次元地図描画上の支障を緩和することを目的とする。
 上述の課題の少なくとも一部を解決するため、本発明では、以下の構成を採用した。
 本発明の装置は、地表面および地物を3次元的に表現する3次元地図を表示する3次元地図表示システムであって、
 前記地表面および地物の3次元形状を表した地図データを格納する地図データベースと、
 前記地図データベースを参照して、奥行き判定を行って前記地表面および地物を描画する第1描画部と、
 前記第1描画部による描画において地表面または他の地物に少なくとも一部が隠される地物を対象地物として、前記地図データを用いて、前記第1描画部による描画結果に上書きするように、前記第1描画部による描画結果との間での奥行き判定を行わずに前記対象地物を描画する第2描画部と、
 を備えることを特徴とする。
 本発明における対象地物は、第1描画部によって描画される地物と必ずしも排他的に設定されている必要はない。例えば、あるトンネルを対象地物とする場合、このトンネルは、第1描画部によって描画される地物に含まれていても構わない。
 「第1描画部による描画結果との間での奥行き判定を行わずに、前記対象地物を描画する」とは、第1描画部によって描画された地表面および地物との奥行き関係とは無関係に上記対象地物を描画することを意味し、第2描画部は、上記対象地物間においては、奥行き判定を行ってもよい。また、第2描画部は、第1描画部による描画結果の上に、直接、上記対象地物を上書きして描画するようにしてもよいし、第1描画部による描画結果とは別に上記対象地物を描画したレイヤを生成し、これを第1描画部による描画結果の上に重畳するようにしてもよい。
 こうすることによって、上記対象地物は、第1描画部による描画結果よりも前面に表示される。例えば、道路のトンネルなどの地下構造物を対象地物としておけば、地表面を描いた後、その上に描画することができる。また、本発明の3次元地図表示システムでは、視点位置に近い手前の建物によって隠れる建物や道路などを対象地物とすることによって、他の建物等よりも前面に出して描画することもできる。つまり、本発明の3次元地図表示システムによれば、地物が描かれないとか、他の地物によって隠されてしまうという奥行き判定によって生じる3次元地図描画上の支障を緩和することができる。
 本発明では、あくまでも3次元の地図データに基づいて対象地物を描く点にも特徴がある。こうすることにより、3次元形状を反映させた状態で対象地物を描くことができ、3次元地図に大きな違和感を与えることなく対象地物を表示させることができる。また、3次元地図は多様な視点位置、視線方向で描かれるものであるから、仮に対象地物を2次元の画像で描こうとすれば、これらの視点位置、視線方向に応じた多様な画像データを用意しておく必要があるが、3次元地図データに基づいて描くものとすれば、こうしたデータを用意するまでなく、視点位置、視線方向に応じた描画を実現することが可能となる利点もある。
 本発明の3次元地図表示システムにおいて、第2描画部が描画する上記対象地物は、種々の態様で特定することができる。
 例えば、本発明の3次元地図表示システムにおいて、
 前記地図データは、地下部分を表すデータを含み、
 前記第2描画部は、前記地下部分を表すデータに基づいて、前記対象地物を特定し、該対象地物を描画するようにしてもよい。
 本発明において、地下部分は、例えば、鉛直方向について、座標値が地表面の座標値よりも小さい部分とすることができる。また、地表面は高さ=0と考え、負の高さ座標値を有する部分を地下部分と扱ってもよい。また、地下部分を破線や点線等、地上部分と異なる線種で描画するように地図データが用意されている場合には、これらの線で描画する部分を地下部分と判定することができる。
 本発明によれば、地下部分を個別に指定等しなくても、対象地物として扱い、地下部分を視認できる状態で地図上に描画することができる。
 地下部分とは、例えば、トンネルや、建物の地階、地下街や地下駐車場その他の地下構造物などが該当する。地下部分は、例えば、道路の一部がトンネルとなっているように、道路という一つの地物データの一部分であってもよいし、地下部分だけが個別の地物として用意されていてもよい。
 また、本発明の3次元地図表示システムにおいて、
 前記地図データには、前記地物が前記対象地物か否かを示す判定情報が格納されており、
 前記第2描画部は、前記判定情報に基づいて、前記対象地物を特定し、該対象地物を描画するようにしてもよい。
 判定情報の内容は、例えば、予め設定されているものとしてもよいし、ユーザによって設定あるいは変更可能としてもよい。
 本発明によれば、対象地物を柔軟に設定あるいは変更することができる。
 判定情報は、各地物を表す地物データごとに、それぞれ対象地物か否かを示すフラグ等のデータを用意してもよい。また、対象地物として扱う地物のIDなどを格納した、対象地物の一覧表のような形式でデータを用意してもよい。
 判定情報は、各地物単位で個別に設定可能としてもよいし、複数の地物をグループとして設定可能としてもよい。
 また、本発明の3次元地図表示システムにおいて、
 前記地図データには、前記地物の種別が格納されており、
 前記第2描画部は、前記地物の種別に基づいて、前記対象地物を特定し、該対象地物を描画するようにしてもよい。
 地物の種別としては、例えば、トンネルや、地下駐車場、地下街などの地下構造物等の地下に存在する地物の種別が挙げられる。
 本発明において、第2描画部がいずれの種別の地物を上記対象地物として特定するかは、予め設定されているものとしてもよいし、ユーザによって設定あるいは変更可能としてもよい。
 本発明によれば、地物の種別ごとに、一括して上記対象地物を特定することができる。また、例えば、トンネルは対象地物として描くが、地下駐車場は描かないというように、地下の地物間でも扱いを変えるというようなことが柔軟に可能となる。
 地物の種別は、必ずしも地下の地物に限られるものではなく、例えば、道路のように地上に存在する地物の種別であってもよいし、国道、県道のように細分化した種別としてもよい。こうすることで、例えば、道路のうち、国道だけを対象地物とするというように細分化した単位で対象地物を特定することもできる。
 また、本発明の3次元地図表示システムにおいて、
 前記第2描画部は、前記対象地物を判定するための基準として予め指定された基準地物との上下または前後の位置関係に基づいて前記対象地物を特定し、該対象地物を描画するようにしてもよい。
 上記基準地物の種別や数は、任意に設定可能である。また、本発明では、地表面も地物と同様に3次元的に描画されるので、地表面を上記基準地物として設定することも可能である。
 上記基準地物との上下の位置関係とは、鉛直方向についての上下の位置関係を意味する。例えば、上記基準地物を地表面とした場合、地物のポリゴン等を構成する構成点ごとに、鉛直方向について、地表面の座標値と構成点の座標値とを比較することによって、地表面との上下の位置関係を把握することができる。また、上記基準地物との前後の位置関係とは、視点位置を基準とする視線方向について手前か奥かを意味する。
 対象地物は、例えば、基準地物よりも下にある地物または前にある地物とすることができる。対象地物は、上下関係または前後関係のいずれか一方のみに基づいて特定するようにしてもよいし、双方に基づいて特定するようにしてもよい。
 先に説明した例では、対象地物側を指定する方法を例示したが、上記態様は、対象地物によって上書きされる側を基準地物として指定することになる。このように、対象地物の特定は、地表面および各地物の間で、いずれの地物を前面に出して優先的に表示するかを特定する問題なので、地表面および地物間で、表示の優先度を相対的に特定可能な種々の方法をとることが可能である。
 また、基準地物との前後関係に基づいて対象地物を特定する方法をとる場合には、視点位置の方向によって対象地物を自在に変動させることも可能となる利点がある。
 本発明の3次元地図表示システムにおいて、さらに、
 前記対象地物よりも前面に描画すべきものとして指定された地物のみを前記第1描画部と同じ投影条件で投影することでマスク画像を生成するマスク画像生成部を備え、
 前記第2描画部は、前記マスク画像に対応する部分における前記対象地物の描画を禁止しつつ、前記対象地物を描画するようにしてもよい。
 上記対象地物よりも前面に描画すべき地物の指定は、先に対象地物の特定について説明した種々の態様を採ることができる。
 上記対象地物であっても、その一部が特定の他の地物によって隠れた状態で表示したい場合がある。例えば、上記対象地物が、トンネルである場合に、地表よりも前面にトンネルを表示し、さらに、建物をトンネルが貫通しているかのように表示されるのを回避するため、トンネルよりも前面に建物を表示したい場合がある。このような場合には、道路のトンネルにおいて、視点から見て建物と重なる領域については、トンネルが表示されないようにすればよい。
 本発明によれば、マスク画像に対応する部分には対象地物が描画されないようにできるため、対象地物の一部が他の地物によって隠れた状態で表示することができる。
 本発明の3次元地図表示システムにおいて、上述したマスク画像生成部の代わりに、
 前記第2描画部による描画結果に上書きするように、前記対象地物よりも前面に描画すべきものとして指定された地物のみを、前記第2描画部による描画結果との間での奥行き判定を行わずに描画する第3描画部を備えるようにしてもよい。
 第3描画部は、第1描画部および第2描画部による描画結果の上に、直接、指定された地物(以下、指定地物という)を描画するようにしてもよいし、第1描画部および第2描画部による描画結果とは別に、指定地物を描画したレイヤを生成し、これを第1描画部および第2描画部による描画結果の上に重畳するようにしてもよい。第3描画部は、指定地物間においては、奥行き判定を行って地物の描画を行う。
 本発明によっても、対象地物の一部が他の地物によって隠れた状態で表示することができる。
 この態様においても、指定地物は、先に対象地物の特定について説明した種々の方法をとることができる。ただし、第3描画部は、第1描画部、第2描画部との奥行き関係を無視して指定地物を描くものであるため、指定地物が多数になると、3次元地図としての奥行き感を大きく損ねることも生じ得る。かかる支障を回避する方法としては、第3描画部が描画する指定地物を、先に説明した判定情報を利用して、個別に指定可能とする方法をとることができる。
 本発明の3次元地図表示システムにおいて、
 前記第2描画部は、前記対象地物間においては、奥行き判定を行って前記対象地物を描画するようにしてもよい。
 こうすることによって、第2描画部によって描画される複数の上記対象地物が視点から見て重なる場合に、上記対象地物同士の奥行き関係を明確に表示することができる。例えば、トンネルを対象地物とした場合、複数のトンネルが存在する箇所では、これらのトンネル同士の奥行き判定を行って対象地物を描画することにより、これらのトンネルの位置関係を把握できるような表示を実現できる。
 本発明は、上述した種々の特徴を必ずしも全て備えている必要はなく、その一部を省略したり、適宜、組み合わせたりして構成することができる。また、本発明は、上述の3次元地図表示システムとしての構成の他、3次元地図表示方法の発明として構成することもできる。また、これらを実現するコンピュータプログラム、およびそのプログラムを記録した記録媒体、そのプログラムを含み搬送波内に具現化されたデータ信号など種々の態様で実現することが可能である。なお、それぞれの態様において、先に示した種々の付加的要素を適用することが可能である。
 本発明をコンピュータプログラムまたはそのプログラムを記録した記録媒体等として構成する場合には、3次元地図表示システムの動作を制御するプログラム全体として構成するものとしてもよいし、本発明の機能を果たす部分のみを構成するものとしてもよい。また、記録媒体としては、フレキシブルディスクやCD-ROM、DVD-ROM、光磁気ディスク、ICカード、ROMカートリッジ、パンチカード、バーコードなどの符号が印刷された印刷物、コンピュータの内部記憶装置(RAMやROMなどのメモリ)および外部記憶装置などコンピュータが読み取り可能な種々の媒体を利用できる。
第1実施例の3次元地図表示システム100の概略構成を示す説明図である。 地図データ12の内容を示す説明図である。 第1実施例の3次元地図表示処理の流れを示すフローチャートである。 第1実施例の3次元地図表示処理の流れを示すフローチャートである。 第1実施例の3次元地図表示処理の流れを示すフローチャートである。 第2実施例の3次元地図表示処理の流れを示すフローチャートである。 第2実施例の3次元地図表示処理の流れを示すフローチャートである。 第3実施例における地図データ12aの内容を示す説明図である。 第3実施例の3次元地図表示処理の流れを示すフローチャートである。 第3実施例の3次元地図表示処理の流れを示すフローチャートである。 第4実施例の3次元地図表示システム100Aの概略構成を示す説明図である。 第4実施例の3次元地図表示処理の流れを示すフローチャートである。 第4実施例の3次元地図表示処理の流れを示すフローチャートである。 第4実施例の3次元地図表示処理の流れを示すフローチャートである。
 以下、本発明の実施の形態について、実施例に基づき説明する。
A.システム構成:
 図1は、第1実施例の3次元地図表示システム100の概略構成を示す説明図である。図示するように、3次元地図表示システム100は、地図データベース(DB)10と、コマンド入力部20と、送受信部30と、表示制御部40と、表示装置50と、を備えている。これらの各機能ブロックは、CPU、RAM、ROM、ハードディスクドライブ、通信装置等を備えるパーソナルコンピュータに、それぞれの機能を実現するためのコンピュータプログラムをインストールすることによって、ソフトウェア的に構成することができる。これらの機能ブロックの少なくとも一部を、ハードウェア的に構成するようにしてもよい。
 地図データベース10には、地図データ12と、文字データ14とが格納されている。
 地図データ12は、3次元地図を表示するためのデータであり、海、山、河川、道路、建物などの種々の地物および地表面の3次元形状を表す3次元モデル(ポリゴンまたはライン)を含んでいる。地図データ12の内容については、後から説明する。
 文字データ14は、3次元地図中に描画される文字、例えば、建物の名称や、道路名、交差点名等を表すデータである。文字データ14は、地図データ12と対応付けられている。文字データ14には、3次元地図中の各文字の表示位置、文字のフォントやサイズ、3次元地図の縮尺と文字の表示/非表示との関係を記したデータ等も含まれる。
 コマンド入力部10は、3次元地図の表示等に関するユーザの指示を入力する。コマンド入力部10は、例えば、3次元地図の縮尺、視点位置、視線方向等を入力する。
 送受信部30は、図示しないネットワークを介して、他の装置とのデータのやり取りを行う。送受信部30は、例えば、他の装置から地図データ12および文字データ14を受信して、地図データベース10を更新したり、表示制御部40によって生成された3次元地図をプリンタに出力したりする。
 表示制御部40は、第1描画部42と、マスク画像生成部44と、第2描画部46と、文字描画部48と、を備えている。
 第1描画部42は、地図データベース10から読み出した地図データ12を用いて、奥行き判定および隠面処理を行って、地表面および地物を描画する。
 マスク画像生成部44は、地図データ12を用いて、第2描画部46による地物の描画を部分的に禁止するためのマスク画像を生成する。本実施例では、マスク画像生成部44は、後述するように、第1描画部42と同じ投影条件で地上の建物の3次元モデルのみを投影することにより、視点から見て地上の建物と重なる領域への地下地物の描画を禁止するためのマスク画像を生成する。
 第2描画部46は、第1描画部42によって描画した場合に地表面または他の地物によって少なくとも一部が隠される地物を対象地物として、地図データ12を用いて、第1描画部42による描画結果に上書きするように、第1描画部42による描画結果との間での奥行き判定および隠面処理を行わずに対象地物を描画する。本実施例では、第2描画部46は、第1描画部42による描画結果の上に、対象地物を上書きして描画するものとした。第2描画部46は、第1描画部42による描画結果とは別に対象地物を描画したレイヤを生成し、これを第1描画部42による描画結果の上に重畳するようにしてもよい。第2描画部46は、対象地物間については、奥行き判定および陰面処理を行って対象地物を描画する。
 文字描画部48は、地図データベース10から読み出した文字データ14を用いて、3次元地図上に文字を描画する。
 表示制御部40は、第1描画部42、マスク画像生成部44、第2描画部46、文字描画部48の動作を制御し、これらによって描画された3次元地図を表示装置50に表示する。
B.地図データ:
 図2は、地図データ12の内容を示す説明図である。図示するように、地図データ12においては、各地物に対して固有の地物IDが付与され、地物ごとに種々のデータが管理されている。また、本実施例では、地図データ12において、地表面は、メッシュ状に区分され、それぞれに対して、地物と同様に、固有のIDが付与されて管理されている。
 「種別」は、海、山、河川、道路、鉄道、建物等、地物の種類を表している。そして、道路や鉄道は、地上区間(地上部分)もトンネル区間(地下部分)も1つの地物として管理されており、トンネル区間には、地下構造物であることを示すサブ種別が割り当てられている。また、建物は、地上部分も地下部分も1つの地物として管理されており、建物の地下部分には、地下構造物であることを示すサブ種別が割り当てられている。また、地下駐車場、地下街などの地下構造物には、地下構造物であることを示す種別が割り当てられている。道路や鉄道について、地上区間と地下区間とを別個の地物として管理するようにしてもよい。また、建物についても、地上部分と地下部分とを別個の地物として管理するようにしてもよい。地表面の地図データ12には、地表面という種別が割り当てられている。
 「名称」は、地物の名称である。
 「3次元モデル」は、地表面や、各地物を3次元的に表示するためのポリゴンデータまたは道路や鉄道を表示するためのラインデータである。本実施例では、地上の地物および地物の地上部分は実線で描かれ、地物の地下部分および地下構造物は破線で描かれるものと規定されている。例えば、図2の下段に示したように、道路の地上区間は実線で描かれ、トンネル区間は破線で描かれる。また、建物の地上部分は実線で描かれ、地下部分は破線で描かれる。以下、地上の地物および地物の地上部分をまとめて地上地物とも言う。また、地物の地下部分および地下構造物をまとめて地下地物とも言う。
 「座標」は、3次元モデル(ポリゴンデータまたはラインデータ)の各構成点の座標データである。
 「テクスチャ」は、テクスチャマッピングにおいて、地物(3次元モデル)の形状に合わせて貼り付けられる画像である。本実施例では、地下地物は透明に描画されるため、地下地物のテクスチャは用意されていない。
C.3次元地図表示処理:
 図3~5は、第1実施例の3次元地図表示処理の流れを示すフローチャートである。この処理は、3次元地図の表示指示が入力されたときに、3次元地図表示システム100が実行する処理である。
 処理を開始すると、3次元地図表示システム100は、ユーザによって指定された3次元地図の縮尺、視点位置、視線方向を取得する(ステップS100)。そして、3次元地図表示システム100は、取得した3次元地図の縮尺、視点位置、視線方向に基づいて、表示エリアを決定し(ステップS110)、その表示エリア内に存在する地表面および地物について、地図データ12および文字データ14を読み込む(ステップS120)。
 次に、3次元地図表示システム100は、各地図データ12について、その種別を判別し(ステップS130)、「地下構造物」というサブ種別が付されていない地物、即ち地表面および地上地物を抽出し、Zバッファ(深度バッファ)を用いて奥行き判定および陰面処理を行って描画する(ステップS140)(以下、この描画結果を「通常描画」と呼ぶ)。ステップS140の枠内に、地表面および地上地物としての道路RD1,RD2および建物BLD1,BLD2,BLD3が描画された3次元地図を示した。本実施例では、道路は地上部分とトンネルとが一つの地物データとして構成されており、建物も地上部分、地下部分が一つの地物データとして構成されている。ステップS140の処理では、これらの地物データのうち、地上地物に相当する構成点、ポリゴンのみを抽出して描画することになる。
 奥行き判定を伴う描画では、地下地物は、地表面に隠されて描画されないから、ステップS140の処理においては、地上地物だけを抽出する処理を省略し、すべての地物を描画対象としてもよい。
 次に、3次元地図表示システム100は、ステップS130における判別結果に基づいて、表示エリア内に地下地物が存在するか否かを判断する(ステップS150)。表示エリア内に地下地物が存在しない場合には(ステップS150:NO)、3次元地図表示システム100は、処理をステップS190に進める。一方、表示エリア内に地下地物が存在する場合には(ステップS150:YES)、3次元地図表示システム100は、地下地物を描画する前に、Zバッファをクリアする(ステップS160)。こうすることにより、これ以降の地下地物の描画処理では、ステップS140による描画結果(通常描画)との間での奥行き判定および陰面処理を行われない。
 ステップS150における地下地物の抽出は、種別以外の方法を採ってもよい。例えば、本実施例では、地上地物は実線で描画され、地下地物は破線で描画されるように規定されているので、描画に用いられる線の種類に基づいて、地下地物を抽出するようにしてもよい。この他、テクスチャの有無など、地下地物を表すデータ上の特徴に基づいて抽出するようにしてもよい。
 次に、3次元地図表示システム100は、通常描画に上書きするように、地下地物を描画する。地下地物の描画時には、通常描画との間で奥行き判定が行われないため、地下地物と地上の建物との位置関係によっては、地下地物によって地上の建物が覆い隠されてしまうことが生じ得る。そこで、本実施例では、こうした状態を回避するため、地上の建物が描かれている部分には地下地物が表示されないようにする。換言すれば、地上の建物と地下地物との間で奥行き判定がなされているかのように、地下地物を描画する。このため、3次元地図表示システム100は、地下地物の描画に先立ち、ステップS140と同じ投影条件で地上の建物のみを投影して、マスク画像としてのステンシルマスクSMを生成する(ステップS170)。ステップS170の枠内に、地上の建物BLD1,BLD2,BLD3のみを投影して生成されたマスク領域MKを有するステンシルマスクSMを示した。ステンシルマスクSMにおけるマスク領域MKを黒塗りで示した。ステンシルマスクSMを生成する際に投影する地物の指定は、任意に変更可能である。
 そして、3次元地図表示システム100は、ステップS130における判別結果に基づいて地下地物を抽出し、ステンシルマスクSMによって地上の建物BLD1,BLD2,BLD3と重なるマスク領域MKへの描画を禁止しつつ、抽出した地下地物をステップS140による描画結果の上に上書きして描画する(ステップS180)。つまり、地下地物を描画する際に、各ピクセルがステンシルマスクSMに該当するか否かを判断し、ステンシルマスクSMに該当しない場合にのみ、そのピクセルへの描画を許容するのである。ステップS180の枠内に、地下地物としての道路のトンネルTNおよび建物BLD1,BLD2,BLD3の地下部分UG1,UG2,UG3が上書きして描画された3次元地図を示した。図示するように、本実施例では、地下地物は、輪郭線のみが破線で描画されるものとした。先に説明したように、本実施例では、トンネルTNは道路の一部であり、道路の3次元モデルはラインデータで管理されている。このため、3次元地図表示システム100は、トンネルTNを描画する際には、ステップS100で取得した3次元地図の縮尺、視点位置、視線方向に応じた幅をラインデータに持たせてポリゴン化し、そのエッジを破線で描画する。建物BLD1,BLD2,BLD3のみを投影して生成されたステンシルマスクSMを用いて地下地物を描画することによって、地上の建物BLD1,BLD2,BLD3と地下地物との間で奥行き判定が行われているかのように、地下地物を表示することができる。
 ステップS180において、3次元地図表示システム100は、地下地物同士については、奥行き判定および陰面処理を行う。図示した例では、建物BLD2の地下部分UG2の一部は、その手前の建物BLD3の地下部分UG3によって隠れている。こうすることによって、複数の地下地物が視点から見て重なる場合に、地下地物同士の位置関係を明確に表示することができる。
 次に、3次元地図表示システム100は、3次元地図中に文字を描画して(ステップS190)、3次元地図を表示装置50に表示する(ステップS192)。
 そして、3次元地図表示システム100は、3次元地図表示処理を終了する。
 以上説明した第1実施例の3次元地図表示処理によれば、地下地物を描画することができる。したがって、奥行き判定によって生じる3次元地図描画上の支障を緩和し、多様な地物に対して、位置関係の把握を容易にするすることができる。
D.第2実施例:
 第2実施例の3次元地図表示システム100の構成は、第1実施例の3次元地図表示システム100の構成と同じである。第2実施例の3次元地図表示システム100は、3次元地図表示処理の内容の一部が第1実施例と異なる。すなわち、第1実施例では、3次元地図表示処理において、地図データ12を参照して、各地物の種別を判別することによって地下地物を抽出するものとしたが、第2実施例では、各地物の構成点の座標を解析することによって地下地物を抽出する。以下、第2実施例の3次元地図表示処理について説明する。
 図6,7は、第2実施例の3次元地図表示処理の流れを示すフローチャートである。この処理は、3次元地図の表示指示が入力されたときに、3次元地図表示システム100が実行する処理である。
 処理を開始すると、3次元地図表示システム100は、縮尺、視点位置、視線方向の取得(ステップS200)、表示エリアの決定(ステップS210)、地図データ12および文字データ14の読み込み(ステップS220)を行う。これらの処理は、第1実施例と同様である。
 次に、3次元地図表示システム100は、地図データ12を参照して、各地物の構成点の座標を解析する(ステップS230)。本実施例では、地物を表すポリゴンまたはラインの構成点ごとに、鉛直方向について、地表面の座標値と構成点の座標値とを比較するものとした。構成点の座標値が地表面の座標値よりも大きければ、その構成点は地上地物の構成点であると判定することができ、構成点の座標値が地表面の座標値よりも小さければ、その構成点は地下地物の構成点であると判定することができる。そして、3次元地図表示システム100は、この解析結果に基づいて地物の地上部分を抽出し、Zバッファを用いて奥行き判定および陰面処理を行って、地表面および抽出した地上部分を描画する(ステップS240)。
 以下の処理は、第1実施例と同じである。つまり、3次元地図表示システム100は、地下地物が存在する場合には(ステップS250:YES)、Zバッファをクリアして(ステップS260)、ステンシルマスクSMを生成し(ステップS270)、これを用いて地下地物を描画する(ステップS280)。地下地物が存在しない場合には(ステップS250)、これらの処理をスキップする。その後、3次元地図表示システム100は、文字の描画(ステップS290)、3次元地図の表示を行う(ステップS292)。
 以上説明した第2実施例によれば、地下地物を表す種別を設定するまでなく、地下地物を描画することができる。
E.第3実施例:
 第3実施例の3次元地図表示システム100の構成は、第1実施例の3次元地図表示システム100の構成からマスク画像生成部44を除いた構成となっている。第3実施例の3次元地図表示システム100は、地図データベース10に格納されている地図データ12aおよび3次元地図表示処理の内容の一部が第1実施例と異なる。以下、第3実施例における地図データ12aの内容および3次元地図表示処理について説明する。
 図8は、第3実施例における地図データ12aの内容を示す説明図である。第3実施例における地図データ12aでは、各地物に対して「対象地物判定フラグ」が付されている。「対象地物判定フラグ」は、その地物が第2描画部46による描画対象か否か、即ちZバッファをクリアした後に描画する対象か否かを示す判定情報であり、描画対象の場合は「1」、描画対象でない場合は「0」に設定される。
 「対象地物判定フラグ」は、地図データ12aの提供者によって予め設定されているものとしてもよいし、ユーザによって設定あるいは変更可能としてもよい。本実施例では、第2描画部46による描画対象を個別に柔軟に設定あるは変更することができる。
 図9,10は、第3実施例の3次元地図表示処理の流れを示すフローチャートである。この処理は、3次元地図の表示指示が入力されたときに、3次元地図表示システム100が実行する処理である。
 処理を開始すると、3次元地図表示システム100は、縮尺、視点位置、視線方向の取得(ステップS300)、表示エリアの決定(ステップS310)、地図データ12および文字データ14の読み込み(ステップS320)を行う。これらの処理は、第1実施例と同じである。
 次に、3次元地図表示システム100は、地図データ12における対象地物判定フラグを参照し(ステップS330)、対象地物判定フラグが「0」の地物および地表面を、Zバッファを用いて奥行き判定および陰面処理を行って描画する(ステップS340)。ステップS340の枠内に、地表面および対象地物判定フラグが「0」の地物としての道路RD1,RD2、建物BLD1,BLD2,BLD3が描画された3次元地図を示した。
 次に、3次元地図表示システム100は、表示エリア内に対象地物判定フラグが「1」の地物が存在する場合には(ステップS350:YES)、Zバッファをクリアして(ステップS360)その地物をステップS340による描画結果の上に上書きして描画し(ステップS370)、文字の描画(ステップS380)、表示装置への表示(ステップS390)を行う。
 ステップS370の枠内に、対象地物判定フラグが「1」の地物としての建物BLD2およびその地下部分UG2が上書きして描画された3次元地図を示した。こうすることにより建物BLD2および地下部分UG2を建物BLD3など、他の地物よりも優先的に表示することができる。例えば、3次元地図内で建物BLD2が即時に視認できるように表示できるため、建物BLD2がユーザの指定した目的地である場合や、ランドマークなどの場合に有用な表示となる。
 本実施例では、図8に示した通り、地物ごとに対象地物判定フラグを設定しているため、建物BLD2および地下部分UG2を一体として、優先的に描画する扱いとした。例えば、建物BLD2については、通常通り奥行き判定を行って描画させ、地下部分UG2のみを後から描画する対象としたい場合には、建物BLD2と地下部分UG2とを別の地物データに分離し、それぞれに対象地物判定フラグを設定すればよい。また、こうした方法に代えて、第1実施例でサブ種別を設定可能としたように、地物データの一部の構成部分ごとに、対象地物判定フラグを設定可能な構造としてもよい。
F.第4実施例:
 第1実施例の3次元地図表示システム100では、3次元地図表示処理において、ステンシルマスクSMを用いて、マスク領域MKへの描画を禁止しつつ、地下地物を描画した。これに対し、第4実施例の3次元地図表示システム100Aでは、地上の地物の描画結果の上に地下地物全体を上書きして描画し、さらに、その描画結果の上に上書きするように、地上の建物のみを描画することによって、地下地物の少なくとも一部を地上の建物で隠して表示する。
 図11は、第4実施例の3次元地図表示システム100Aの概略構成を示す説明図である。第4実施例の3次元地図表示システム100Aは、図1に示した第1実施例の3次元地図表示システム100における表示制御部40の代わりに、表示制御部40Aを備えている。そして、表示制御部40Aは、表示制御部40におけるマスク画像生成部44の代わりに、第3描画部47を備えている。これ以外は、第1実施例の3次元地図表示システム100と同じである。
 第3描画部47は、第2描画部46による描画結果に上書きするように、地上の建物(建物の地上部分)のみを描画する。本実施例では、第3描画部47は、第1描画部42および第2描画部46による描画結果とは別に、地上の建物のみを描画したレイヤを生成し、これを第1描画部42および第2描画部46による描画結果の上に重畳するものとした。第3描画部47は、第1描画部42および第2描画部46による描画結果の上に、地上の建物を上書きして描画するようにしてもよい。
 図12~14は、第4実施例の3次元地図表示処理の流れを示すフローチャートである。この処理は、3次元地図の表示指示が入力されたときに、3次元地図表示システム100Aが実行する処理である。
 処理を開始すると、3次元地図表示システム100Aは、縮尺、視点位置、視線方向の取得(ステップS400)、表示エリアの決定(ステップS410)、地図データ12および文字データ14の読み込み(ステップS420)を行う。これらは第1実施例と同じ処理である。
 また、3次元地図表示システム100Aは、第1実施例と同様、各地図データ12の種別を判別し(ステップS430)、地表面および地上地物を抽出し、Zバッファを用いて奥行き判定および陰面処理を行って、抽出した地表面および地上地物を描画する(ステップS440)。
 次に、3次元地図表示システム100Aは、表示エリア内に地下地物が存在する場合には(ステップS450:YES)、Zバッファをクリアして(ステップS460)、地下地物をステップS440による描画結果の上に上書きして描画する(ステップS470)。ステンシルマスクSMの生成を省略している点(図4のステップS170参照)以外は、第1実施例と処理内容は同じである。
 ただし、ステンシルマスクSMの生成を省略するため、ステップS470の処理を終えた時点での出力結果は、第1実施例と異なる。ステップS470の枠内に、地下地物としての道路のトンネルTNおよび建物BLD1,BLD2,BLD3の地下部分UG1,UG2,UG3が上書きして描画された3次元地図を示した。この時点では、トンネルTNなどの地下地物は、先に描画されている地上の建物BLD1等を貫通するように描かれることになる。
 次に、3次元地図表示システム100Aは、ステップS470による描画結果とは別に、地上の建物(建物の地上部分)のみをステップS440と同じ投影条件で投影することによって描画したレイヤを生成する(ステップS480)。このとき、3次元地図表示システム100Aは、地上の建物同士の奥行き判定も行う。そして、3次元地図表示システム100Aは、このレイヤをステップS470による描画結果の上に重畳する(ステップS482)。こうすることによって、地上の建物BLD1,BLD2,BLD3と地下地物との間で奥行き判定が行われているかのように、地下地物を表示することができる。
 地下地物が存在しない場合(ステップS450:NO)には、これらの処理はスキップされる。
 次に、3次元地図表示システム100Aは、文字の描画(ステップS490)、表示装置への表示を行う(ステップS492)。
 以上説明した第4実施例の3次元地図表示処理によれば、ステンシルマスクSMを用いなくても第1実施例と同様の描画を実現することができる。
 上記第4実施例の3次元地図表示処理(図12~14参照)では、地表面および地上地物を描画(ステップS440)→Zバッファをクリア(ステップS460)→地下地物を描画(ステップS470)→地上の建物のみを描画したレイヤを重畳(ステップS480,482)の順に3次元地図の描画を行うものとしたが、本発明は、これに限られない。地表面および地上地物を描画→Zバッファをクリア→地下地物を描画→Zバッファをクリア→地上の建物を描画の順序で描画させてもよい。こうすることによっても、地上の建物(建物の地上部分)と地下地物との間で奥行き判定が行われているかのように、地下地物を表示することができる。
G.変形例:
 上記実施例および変形例で説明した種々の処理は、必ずしも全てを備えている必要はなく、一部を省略したり、他の処理と置換したり、組み合わせたりしても構わない。
 例えば、上記第1実施例の3次元地図表示システム100において、マスク画像生成部44を省略するようにしてもよい。また、上記第2実施例の3次元地図表示システム100Aにおいて、第3描画部47を省略するようにしてもよい。
 また、第1実施例または第2実施例の3次元地図表示処理と、第3実施例の3次元地図表示処理とを組み合わせるようにしてもよい。また、第3実施例の3次元地図表示処理と第4実施例の3次元地図表示処理とを組み合わせるようにしてもよい。
 Zバッファクリア後に描画する対象地物は、必ずしも地下地物に限られるものではない。
 上記実施例の3次元地図表示システム100,100Aを、3次元地図を利用して経路案内を行うナビゲーションシステムに適用することも可能である。
 上記実施例において、ソフトウェア的に実行されている処理は、ハードウェア的に実行してもよいし、その逆も可能である。
 本発明は、地表面および地物を3次元的に表現する3次元地図を表示する技術に利用することができる。
10…地図データベース
12,12a…地図データ
14…文字データ
20…コマンド入力部
30…送受信部
40,40A…表示制御部
42…第1描画部
44…マスク画像生成部
46…第2描画部
47…第3描画部
48…文字描画部
50…表示装置
100,100A…3次元地図表示システム

Claims (10)

  1.  地表面および地物を3次元的に表現する3次元地図を表示する3次元地図表示システムであって、
     前記地表面および地物の3次元形状を表した地図データを格納する地図データベースと、
     前記地図データベースを参照して、奥行き判定を行って前記地表面および地物を描画する第1描画部と、
     前記第1描画部による描画において地表面または他の地物に少なくとも一部が隠される地物を対象地物として、前記地図データを用いて、前記第1描画部による描画結果に上書きするように、前記第1描画部による描画結果との間での奥行き判定を行わずに前記対象地物を描画する第2描画部と、
     を備える3次元地図表示システム。
  2.  請求項1記載の3次元地図表示システムであって、
     前記地図データは、地下部分を表すデータを含み、
     前記第2描画部は、前記地下部分を表すデータに基づいて、前記対象地物を特定し、該対象地物を描画する、
     3次元地図表示システム。
  3.  請求項1記載の3次元地図表示システムであって、
     前記地図データには、前記地物が前記対象地物か否かを示す判定情報が格納されており、
     前記第2描画部は、前記判定情報に基づいて、前記対象地物を特定し、該対象地物を描画する、
     3次元地図表示システム。
  4.  請求項1記載の3次元地図表示システムであって、
     前記地図データには、前記地物の種別が格納されており、
     前記第2描画部は、前記地物の種別に基づいて、前記対象地物を特定し、該対象地物を描画する、
     3次元地図表示システム。
  5.  請求項1記載の3次元地図表示システムであって、
     前記第2描画部は、前記対象地物を判定するための基準として予め指定された基準地物との上下または前後の位置関係に基づいて前記対象地物を特定し、該対象地物を描画する、
     3次元地図表示システム。
  6.  請求項1ないし5のいずれかに記載の3次元地図表示システムであって、さらに、
     前記対象地物よりも前面に描画すべきものとして指定された地物のみを前記第1描画部と同じ投影条件で投影することでマスク画像を生成するマスク画像生成部を備え、
     前記第2描画部は、前記マスク画像に対応する部分における前記対象地物の描画を禁止しつつ、前記対象地物を描画する、
     3次元地図表示システム。
  7.  請求項1ないし5のいずれかに記載の3次元地図表示システムであって、さらに、
     前記第2描画部による描画結果に上書きするように、前記対象地物よりも前面に描画すべきものとして指定された地物のみを、前記第2描画部による描画結果との間での奥行き判定を行わずに描画する第3描画部を備える、
     3次元表示システム。
  8.  請求項1ないし7のいずれかに記載の3次元地図表示システムであって、
     前記第2描画部は、前記対象地物間においては、奥行き判定を行って前記対象地物を描画する、
     3次元地図表示システム。
  9.  コンピュータによって、地表面および地物を3次元的に表現する3次元地図を表示する3次元地図表示方法であって、
     前記コンピュータが、前記地表面および地物の3次元形状を表した地図データを格納する地図データベースを参照して、奥行き判定を行って前記地表面および地物を描画する第1描画工程と、
     前記コンピュータが、前記第1描画工程による描画において地表面または他の地物に少なくとも一部が隠される地物を対象地物として、前記地図データを用いて、前記第1描画工程による描画結果に上書きするように、前記第1描画工程による描画結果との間での奥行き判定を行わずに前記対象地物を描画する第2描画工程と、
     を備える3次元地図表示方法。
  10.  地表面および地物を3次元的に表現する3次元地図を表示するためのコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記地表面および地物の3次元形状を表した地図データを格納する地図データベースを参照して、奥行き判定を行って前記地表面および地物を描画する第1描画機能と、
     前記第1描画機能による描画において地表面または他の地物に少なくとも一部が隠される地物を対象地物として、前記地図データを用いて、前記第1描画機能による描画結果に上書きするように、前記第1描画機能による描画結果との間での奥行き判定を行わずに前記対象地物を描画する第2描画機能と、
     をコンピュータに実現させるためのコンピュータプログラムを記録した記録媒体。
PCT/JP2014/068658 2013-08-12 2014-07-14 3次元地図表示システム WO2015022829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480043937.5A CN105453140A (zh) 2013-08-12 2014-07-14 三维地图显示***
KR1020157036066A KR102214906B1 (ko) 2013-08-12 2014-07-14 3차원 지도 표시 시스템
EP14836758.4A EP3035293A4 (en) 2013-08-12 2014-07-14 Three-dimensional map display system
US15/008,291 US9741164B2 (en) 2013-08-12 2016-01-27 3D map display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013167235A JP6244137B2 (ja) 2013-08-12 2013-08-12 3次元地図表示システム
JP2013-167235 2013-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/008,291 Continuation US9741164B2 (en) 2013-08-12 2016-01-27 3D map display system

Publications (1)

Publication Number Publication Date
WO2015022829A1 true WO2015022829A1 (ja) 2015-02-19

Family

ID=52468219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068658 WO2015022829A1 (ja) 2013-08-12 2014-07-14 3次元地図表示システム

Country Status (6)

Country Link
US (1) US9741164B2 (ja)
EP (1) EP3035293A4 (ja)
JP (1) JP6244137B2 (ja)
KR (1) KR102214906B1 (ja)
CN (1) CN105453140A (ja)
WO (1) WO2015022829A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10621889B2 (en) * 2016-05-20 2020-04-14 Aisin Aw Co., Ltd. Map display system and map display program
JP2018111982A (ja) * 2017-01-11 2018-07-19 株式会社不動テトラ 地盤改良用施工管理システム
JP6967417B2 (ja) * 2017-10-03 2021-11-17 株式会社 ミックウェア 経路生成装置、及びプログラム
CN108597021B (zh) * 2018-04-20 2022-03-11 武汉地大信息工程股份有限公司 一种地上地下三维模型一体化展示方法及***
KR102273274B1 (ko) * 2019-11-21 2021-07-06 한국국토정보공사 지상 공간과 대칭되는 지하 공간에 관한 지하 공간 정보 생성 방법 및 장치
US20230377537A1 (en) 2020-10-27 2023-11-23 Nippon Telegraph And Telephone Corporation Display device, display method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138136A (ja) 1995-09-11 1997-05-27 Matsushita Electric Ind Co Ltd 車載用ナビゲーション装置
JP2003166836A (ja) 2001-11-30 2003-06-13 Alpine Electronics Inc 地下建築物立体表示装置
JP2004333155A (ja) 2003-04-30 2004-11-25 Sony Corp 情報提示装置及び情報提示方法、並びにコンピュータ・プログラム
JP2007026201A (ja) * 2005-07-19 2007-02-01 Sega Corp 画像処理装置、道路画像描画方法および道路画像描画プログラム
JP2008128928A (ja) 2006-11-24 2008-06-05 Xanavi Informatics Corp 車載地図表示装置、ナビゲーション装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351760B2 (ja) * 1999-04-07 2002-12-03 松下電器産業株式会社 3次元立体地図描画装置及び描画方法
US6542174B2 (en) * 1999-12-09 2003-04-01 Matsushita Electric Industrial Co., Ltd. Map displaying system and map displaying method
JP2005195475A (ja) * 2004-01-07 2005-07-21 Fujitsu Ten Ltd ナビゲーション装置
JP4468076B2 (ja) * 2004-06-03 2010-05-26 三菱電機株式会社 地図表示装置
KR100634536B1 (ko) * 2005-01-25 2006-10-13 삼성전자주식회사 3차원 그래픽스 환경에서의 2차원 고가도로 데이터의 3차원 변환 방법 및 장치, 그리고 이를 이용한 3차원 그래픽스 환경에서의 2차원 고가도로 데이터의 3차원 시각화 방법 및 장치
EP2307854A1 (en) * 2008-07-31 2011-04-13 Tele Atlas B.V. Method of displaying navigation data in 3d
KR101051310B1 (ko) * 2009-08-07 2011-07-22 팅크웨어(주) 내비게이션 장치 및 내비게이션 장치의 삼차원 맵 표시 방법
US20110225546A1 (en) * 2010-03-09 2011-09-15 Ramos Gonzalo A Map spotlights
US9552669B2 (en) * 2010-09-02 2017-01-24 Underground Imaging Technologies, Llc System, apparatus, and method for utilizing geographic information systems
US20130084838A1 (en) * 2011-10-03 2013-04-04 Geospatial Holdings, Inc. System, method, and apparatus for viewing underground structures
US8411113B1 (en) * 2011-10-12 2013-04-02 Google Inc. Layered digital image data reordering and related digital image rendering engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138136A (ja) 1995-09-11 1997-05-27 Matsushita Electric Ind Co Ltd 車載用ナビゲーション装置
JP2003166836A (ja) 2001-11-30 2003-06-13 Alpine Electronics Inc 地下建築物立体表示装置
JP2004333155A (ja) 2003-04-30 2004-11-25 Sony Corp 情報提示装置及び情報提示方法、並びにコンピュータ・プログラム
JP2007026201A (ja) * 2005-07-19 2007-02-01 Sega Corp 画像処理装置、道路画像描画方法および道路画像描画プログラム
JP2008128928A (ja) 2006-11-24 2008-06-05 Xanavi Informatics Corp 車載地図表示装置、ナビゲーション装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035293A4 *

Also Published As

Publication number Publication date
EP3035293A4 (en) 2017-03-08
US20160140756A1 (en) 2016-05-19
US9741164B2 (en) 2017-08-22
JP2015036824A (ja) 2015-02-23
CN105453140A (zh) 2016-03-30
JP6244137B2 (ja) 2017-12-06
EP3035293A1 (en) 2016-06-22
KR102214906B1 (ko) 2021-02-09
KR20160041853A (ko) 2016-04-18

Similar Documents

Publication Publication Date Title
WO2015022829A1 (ja) 3次元地図表示システム
US11698268B2 (en) Street-level guidance via route path
JP4964762B2 (ja) 地図表示装置および地図表示方法
US20130057550A1 (en) Three-dimensional map drawing system
JP5997640B2 (ja) 3次元画像出力装置および背景画像生成装置
US8532924B2 (en) Method and apparatus for displaying three-dimensional terrain and route guidance
JP2009157053A (ja) 立体地図表示ナビゲーション装置、立体地図表示システム及び立体地図表示プログラム
JP2007026201A (ja) 画像処理装置、道路画像描画方法および道路画像描画プログラム
JP5964771B2 (ja) 3次元地図表示装置、3次元地図表示方法、および、コンピュータプログラム
JP2012073397A (ja) 3次元地図表示システム
JP2009236843A (ja) ナビゲーション装置、ナビゲーション方法、およびナビゲーションプログラム
JP6345381B2 (ja) 拡張現実システム
JP6022386B2 (ja) 3次元地図表示装置、3次元地図表示方法、および、コンピュータプログラム
JP5959479B2 (ja) 3次元地図表示システム
JP5702476B2 (ja) 表示装置、制御方法、プログラム、記憶媒体
JP2009020906A (ja) 地図表示装置、地図上の位置を特定する方法、および、コンピュータプログラム
JP2013161466A (ja) 3次元地図における地点指定システム
JP2004333155A (ja) 情報提示装置及び情報提示方法、並びにコンピュータ・プログラム
JPWO2019016910A1 (ja) 新規道路推定支援装置、新規道路推定支援方法、コンピュータプログラム及びコンピュータプログラムを記録した記録媒体
JP2009003475A (ja) 地図表示装置、地図の表示方法、および、コンピュータプログラム
JP2022018015A (ja) 情報処理装置及びプログラム
JP2006235646A (ja) 3次元地図表示装置
JP2006039014A (ja) ナビゲーション装置および山並み表示方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043937.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036066

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014836758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014836758

Country of ref document: EP