WO2013151290A1 - 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법 - Google Patents

전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법 Download PDF

Info

Publication number
WO2013151290A1
WO2013151290A1 PCT/KR2013/002687 KR2013002687W WO2013151290A1 WO 2013151290 A1 WO2013151290 A1 WO 2013151290A1 KR 2013002687 W KR2013002687 W KR 2013002687W WO 2013151290 A1 WO2013151290 A1 WO 2013151290A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
unit
frequency component
harmonic frequency
Prior art date
Application number
PCT/KR2013/002687
Other languages
English (en)
French (fr)
Inventor
배수호
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120035668A external-priority patent/KR101405806B1/ko
Priority claimed from KR1020120036087A external-priority patent/KR101393852B1/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US14/390,682 priority Critical patent/US9899874B2/en
Publication of WO2013151290A1 publication Critical patent/WO2013151290A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention relates to a wireless power transmission technology. More particularly, the present invention relates to a wireless power transmission technology capable of maximizing power transmission efficiency using resonance or electromagnetic induction.
  • Wireless power transmission technology (wireless power transmission or wireless energy transfer), which transfers electric energy wirelessly to a desired device, has already started to use electric motors or transformers using electromagnetic induction principles in the 1800's. A method of transmitting electrical energy by radiating the same electromagnetic wave has also been attempted. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • Electromagnetic induction refers to a phenomenon in which a voltage is induced and a current flows when a magnetic field is changed around a conductor. Electromagnetic induction method is rapidly commercialized around small devices, but there is a problem that the transmission distance of power is short.
  • energy transmission methods using wireless methods include remote transmission technology using resonance and short wavelength radio frequency in addition to electromagnetic induction.
  • the electric signals formed on the transmitting side and the receiving side are wirelessly transmitted through the coil, so that the user can easily charge an electronic device such as a portable device.
  • An object of the present invention is to provide a method for maximizing power transmission efficiency by reducing power loss generated when converting DC power into AC power.
  • An object of the present invention is to provide a method of increasing power transmission efficiency by reducing power of harmonic frequency components among AC powers transmitted from a power supply device to a wireless power transmitter.
  • An object of the present invention is to provide a method for maximizing power transmission efficiency in an electromagnetic induction or resonant wireless power transmission system.
  • a power supply apparatus for a wireless power transmitter includes a power supply unit for supplying DC power, an AC power generator for generating AC power using the DC power, and a harmonic frequency component among the generated AC power. And a harmonic component reducing unit for reducing the magnitude of the power to the.
  • a power supply method of a power supply apparatus for supplying power to a wireless power transmitter comprising: supplying DC power, outputting AC power using the DC power, and outputting the AC Reducing the magnitude of power for the harmonic frequency component of power.
  • the power consumption prevention unit may be configured in the wireless power transmission system to reduce power loss generated when converting DC power into AC power, thereby maximizing power transmission efficiency.
  • an object of the present invention is to provide a method of increasing power transmission efficiency by reducing power of harmonic frequency components among AC powers transmitted from a power supply device to a wireless power transmitter.
  • FIG. 1 is a configuration diagram of a power supply device 100 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a resonant wireless power transmission system 10 in the power supply device 100 according to the first embodiment of the present invention.
  • FIG 3 is a view for explaining a change in power transmission efficiency according to the frequency of the resonant wireless power transmission system 10 according to the first embodiment of the present invention
  • Figure 4 is a resonance according to the first embodiment of the present invention 4 is a view for explaining a change in input impedance according to the frequency of the wireless power transmission system 10.
  • FIG. 5 is a configuration diagram of a resonance type wireless power transmission system 20 according to a second embodiment of the present invention.
  • FIG. 6 is a view for explaining a change in power transmission efficiency according to the frequency of the resonant wireless power transmission system 20 according to a second embodiment of the present invention
  • Figure 7 is a resonance according to a second embodiment of the present invention
  • FIG. 8 is a flowchart illustrating a power supply method of a power supply device according to an embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a power supply device according to still another embodiment of the present invention.
  • 10 to 13 are views for explaining the output waveform of the power supply device according to whether the current change amount control unit is applied.
  • FIG. 14 is a flowchart illustrating a power supply method of a power supply device according to another embodiment of the present invention.
  • FIG. 15 is a block diagram illustrating a power supply device according to still another embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a power supply device 100 according to a first embodiment of the present invention
  • Figure 2 is a configuration diagram of a wireless power transmission system 10 according to a first embodiment of the present invention.
  • the power supply device 100 may include a power supply unit 110, an oscillator 120, a DC direct current conversion unit 130, an AC power generation unit 140, and a power consumption preventing unit 150. Can be.
  • the wireless power transmitter 100 when the wireless power transmitter 100 transmits power to the wireless power receiver 200 using resonance, as shown in FIG. 2, the wireless power transmitter 100 may transmit transmission induction code. Although a part 111 and the transmission resonant coil unit 112 is included, but the case of transmitting power to the wireless power receiver 300 by using electromagnetic induction, the wireless power transmitter 200 transmits the resonant coil unit 112. ) May not be included.
  • the power supply unit 110 may supply DC power to each component of the power supply device 100.
  • the oscillator 120 may generate an AC power signal having a predetermined frequency and transmit the generated AC power signal to the AC power generator 140.
  • the oscillator 120 generates an AC power signal having a frequency used for power transmission between the wireless power transmitter 200 and the wireless power receiver 300 to be described later to the AC power generator 140. I can deliver it.
  • the frequency used for the power transmission may be a resonance frequency.
  • the DC-DC converter 130 may convert the DC-DC converter 130 into a DC voltage having a predetermined voltage value by using the DC voltage supplied from the power supply 110.
  • the DC-DC converter 130 converts the DC voltage output from the power supply 110 into an AC voltage, and then boosts or steps down the rectified AC voltage to rectify the DC voltage with a predetermined voltage value.
  • the voltage can be output.
  • a switching regulator or a linear regulator may be used as a DC-DC converter 130.
  • a linear regulator is a converter that receives an input voltage and emits as much output voltage as needed, while remaining voltage is released as heat.
  • the switching regulator is a converter that can adjust the output voltage by using pulse width modulation (PWM).
  • PWM pulse width modulation
  • the AC power generator 140 may convert the DC power received from the DC direct current converter 130 into AC power using the AC power signal received from the oscillator 120.
  • the AC power generator 140 may include a dual MOSFET of a push-pull type.
  • the AC power generator 140 may include a first MOSFET 141 and a second MOSFET. (MOSFET) 143, driver 145 may be included.
  • MOSFET MOSFET
  • the driver 145 may receive an AC power signal having a predetermined frequency from the oscillator 120.
  • the AC power signal may be in the form of a rectangular wave.
  • the driver 145 may further include an amplification buffer (not shown) that may amplify the AC power signal received from the oscillator 120 and transmit the amplified AC power signal to the first MOSFET 141 and the second MOSFET 143.
  • an amplification buffer (not shown) that may amplify the AC power signal received from the oscillator 120 and transmit the amplified AC power signal to the first MOSFET 141 and the second MOSFET 143.
  • the driver 145 may apply AC power having the same size and opposite phases to the first MOSFET 141 and the second MOSFET 143, respectively.
  • the first MOSFET 141 is turned on as the AC power of opposite phase is applied, the second MOSFET 143 is turned off, and the first MOSFET 141 is turned off. ), The second MOSFET 143 is in an ON state.
  • the AC power generator 140 is a push pull type. It can be described as having a structure.
  • the square wave type AC power applied to the wireless power transmitter 200 may include a fundamental frequency component and a harmonic frequency component.
  • the fundamental frequency component refers to the frequency component of the fundamental wave among the frequency components of the AC power in the form of a square wave applied to the wireless power transmitter 200. Usually, it means a wave without distortion.
  • the harmonic frequency component refers to a frequency that is an integer multiple of the fundamental frequency.
  • the fundamental frequency may be 300 kHz, but this is merely an example.
  • the harmonic frequency is 600 kHz, 900 kHz, 1200 kHz, 1500 kHz, 1800 kHz, 2100 kHz, which is an integer multiple of 300 kHz.
  • AC power actually delivered in power transmission is a fundamental frequency component, and harmonic frequency components are unnecessary components. Therefore, in terms of power transmission efficiency, the harmonic frequency component may act as a factor causing power loss.
  • the power consumption prevention unit 150 may increase the magnitude of the input impedance of the harmonic frequency component of the AC power converted by the AC power generator 140 to reduce the magnitude of the power of the harmonic frequency component. .
  • the power consumption prevention unit 150 increases the input impedance of the harmonic frequency component among the AC powers converted by the AC power generator 140 so that unnecessary power generated by the harmonic frequency component is transmitted wirelessly. It can be prevented from being delivered to the device 200 to prevent unnecessary power consumption.
  • the power consumption preventing unit 150 may be configured as an inductor.
  • An input impedance of the wireless power transmission system is increased due to the power consumption preventing unit 150 in detail with reference to FIG. 5.
  • FIG. 2 is a block diagram of a wireless power transmission system 10 according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of the wireless power transmission system 10 using the power supply device 100 that does not include the power consumption preventing unit 150 described with reference to FIG. 1.
  • the wireless power transmission system 10 includes a power supply device 100, a wireless power transmitter 200, a wireless power receiver 300, and a load 400. It may include.
  • the power supply device 100 may supply AC power to the wireless power transmitter 200, and the wireless power transmitter 200 may transmit power to the wireless power receiver 300 using resonance of the supplied AC power. .
  • the wireless power transmitter 200 may transmit power to the wireless power receiver 300 using resonance occurring between coils magnetically coupled to each other.
  • the load 400 may mean a rechargeable battery or any device that requires power, and in the embodiment of the present invention, the load resistance of the load 400 is represented by RL. In an embodiment, the load 400 may be included in the wireless power receiver 300.
  • the power supply device 100 may include a power supply unit 110, an oscillator 120, a direct current DC converter 130, and an AC power generator 140, and the detailed description thereof is the same as that described with reference to FIG. 1. Do.
  • the wireless power transmitter 200 may include a transmission coil unit 210 and a detector 220.
  • the transmitting coil unit 210 wirelessly transmits the AC power supplied from the power supply device 100 to the wireless power receiver 300.
  • the transmission coil unit 210 may include a transmission induction coil unit 211 and a transmission resonance coil unit 212.
  • the transmission induction coil unit 211 is connected to the power supply device 100, and the AC current flows by the AC power provided from the power supply device 100.
  • an alternating current flows through the transmission induction coil unit 211, an alternating current is induced and flows in the transmission resonance coil unit 212 which is physically spaced by electromagnetic induction.
  • Power transmitted to the transmission resonant coil unit 212 is transmitted to the wireless power receiver 300 forming a resonance circuit with the wireless power transmitter 200 by resonance.
  • Power may be transferred by resonance between two impedance matched LC circuits. Such resonance-driven power transfer enables power transfer at higher efficiency over longer distances than power transfer by electromagnetic induction.
  • the transmission induction coil unit 211 may include a transmission induction coil L1 and a capacitor C1.
  • the capacitance of the capacitor C1 is a value adjusted to resonate at the resonance frequency w.
  • One end of the capacitor C1 is connected to one end of the power supply device 100, and the other end of the capacitor C1 is connected to one end of the transmission induction coil L1.
  • the other end of the transmission induction coil L1 is connected to the other end of the power supply device 100.
  • the transmission resonant coil unit 212 includes a transmission resonant coil L2, a capacitor C2, and a resistor R2.
  • the transmission resonant coil L2 includes one end connected to one end of the capacitor C2 and the other end connected to one end of the resistor R2.
  • the other end of the resistor R2 is connected to the other end of the capacitor C2.
  • R2 represents the amount generated by the power loss in the transmission resonant coil (L2) as a resistance.
  • the capacitance of the capacitor C2 is a value adjusted to resonate at the resonance frequency w.
  • the detector 220 may detect the first input impedance Z1.
  • the first input impedance Z1 may refer to an impedance of the power supply device 100 as viewed from the transmitting coil unit 210.
  • the detector 220 may detect a first input impedance by measuring an input current input from the power supply device 100 to the wireless power transmitter 200. Specifically, assuming that the input voltage of the wireless power transmitter 200 is fixed, the detector 220 may detect the first input impedance by measuring the input current of the wireless power transmitter 200.
  • the wireless power receiver 300 may include a receiving coil unit 310 and a rectifier 320.
  • the wireless power receiver 300 may be embedded in an electronic device such as a mobile phone, a mouse, a notebook, an MP3 player, or the like.
  • the reception coil unit 310 may include a reception resonance coil unit 311 and a reception induction coil unit 312.
  • the reception resonance coil unit 311 includes a reception resonance coil L3, a capacitor C3, and a resistor R3.
  • the reception resonance coil L3 includes one end connected to one end of the capacitor C3 and the other end connected to one end of the resistor R3.
  • the other end of the resistor R3 is connected to the other end of the capacitor C2.
  • the resistor R3 represents the amount generated by the power loss in the reception resonance coil L3 as a resistance.
  • the capacitance of the capacitor C3 is a value adjusted to resonate at the resonance frequency w.
  • the reception induction coil unit 312 may include a reception induction coil L4 and a capacitor C4. One end of the reception induction coil L4 is connected to one end of the capacitor C4, and the other end of the reception induction coil L4 is connected to the other end of the rectifier 320. The other end of the capacitor C4 is connected to one end of the rectifying view 320.
  • the capacitance of the capacitor C4 is a value adjusted to resonate at the resonance frequency w.
  • the reception resonance coil unit 311 maintains a resonance state at the resonance frequency with the transmission resonance coil unit 212. That is, the reception resonant coil unit 311 is coupled to the transmission resonant coil unit 212 so that an AC current flows. Accordingly, the power is transmitted from the wireless power transmitter 200 in a non-radiative manner. Can be received.
  • the reception induction coil unit 312 receives power from the reception resonance coil unit 311 by electromagnetic induction, and the received power is rectified through the rectifier 320 and transmitted to the load 400.
  • the rectifier 320 may receive AC power from the reception induction coil unit 312, convert the received AC power into DC power, and transmit the received AC power to the load 400.
  • the rectifier 320 may include a rectifier circuit (not shown) and a smoothing circuit (not shown).
  • the rectifier circuit may be composed of a diode and a capacitor, and may convert AC power received from the reception induction coil unit 312 into DC power.
  • the smoothing circuit serves to smooth the output waveform of the converted DC power.
  • the smoothing circuit may be comprised of a capacitor.
  • the load 400 can be any rechargeable battery or device that requires direct current power.
  • the load 400 may mean a battery.
  • the load 400 may be included in the wireless power receiver 300.
  • FIG. 3 is a view for explaining a change in power transmission efficiency according to the frequency of the wireless power transmission system 10 according to the first embodiment of the present invention
  • Figure 4 is a wireless power transmission according to the first embodiment of the present invention The figure for explaining the change of the input impedance according to the frequency of the system 10.
  • FIG. 3 is a view for explaining a change in power transmission efficiency according to the frequency of the wireless power transmission system 10 according to the first embodiment of the present invention
  • Figure 4 is a wireless power transmission according to the first embodiment of the present invention The figure for explaining the change of the input impedance according to the frequency of the system 10.
  • the fundamental frequency is 300 kHz
  • the harmonic frequency is 600 kHz, 900 kHz, 1200 kHz, 1500 kHz, 1800 kHz, 2100 kHz, which is an integer multiple of 300 kHz.
  • the fundamental frequency may refer to a frequency used to transmit power by resonance between the wireless power transmitter 200 and the wireless power receiver 300.
  • the horizontal axis represents frequency (unit: kHz), and the vertical axis represents power transmission efficiency.
  • the power transmission efficiency may mean power transmission efficiency between the wireless power transmitter 200 and the wireless power receiver 300. That is, the power transmission efficiency may mean a ratio of power received by the wireless power receiver 300 to power transmitted by the wireless power transmitter 200.
  • the horizontal axis represents frequency (unit: kHz), and the vertical axis represents input impedance.
  • the input impedance refers to the impedance measured when the power supply device 100 looks at the wireless power transmitter 200.
  • the detector 220 may measure the input impedance.
  • the power transmission efficiency is higher and the magnitude of the input impedance is higher than the harmonic frequencies (600 kHz, 900 kHz, 1200 kHz, 1500 kHz, 1800 kHz, 2100 kHz) at the fundamental frequency of 300 kHz.
  • the low power transmission efficiency at the harmonic frequencies (600 kHz, 900 kHz, 1200 kHz, 1500 kHz, 1800 kHz, 2100 kHz) means that power corresponding to the harmonic frequency component is not transmitted to the wireless power transmitter 200.
  • the small size of the input impedance at harmonic frequencies (600 kHz, 900 kHz, 1200 kHz, 1500 kHz, 1800 kHz, 2100 kHz) means that the power corresponding to the harmonic frequency component is increased, and unnecessary power consumption is generated.
  • FIG. 5 is a configuration diagram of a wireless power transmission system 20 according to a second embodiment of the present invention.
  • FIG 5 is a block diagram of the wireless power transmission system 20 using the power supply device 100 including the power consumption preventing unit 150.
  • the wireless power transmission system 20 may include a power supply device 100, a wireless power transmitter 200, a wireless power receiver 300, and a load 400.
  • the power supply device 100 is illustrated to include only the AC power generation unit 140 and the power consumption preventing unit 150, but the description of the power supply device 100 is the same as that described with reference to FIG. 1. It may include.
  • the descriptions of the wireless power transmitter 200, the wireless power receiver 300, and the load 400 are the same as those described with reference to FIG. 2.
  • the power supply device 100 may be included in the wireless power transmitter 200.
  • the power consumption prevention unit 150 may increase the magnitude of the input impedance of the harmonic frequency component of the AC power converted by the AC power generator 140 to reduce the magnitude of the power of the harmonic frequency component. .
  • the magnitude of the input impedance with respect to the harmonic frequency component is increased, the amount of power consumed by the harmonic frequency component is reduced. This is because the power is inversely proportional to the magnitude of the impedance when the voltage is fixed.
  • the power consumption preventing unit 150 increases the input impedance of the harmonic frequency component among the AC power generated by the AC power generator 140 to transmit unnecessary power generated by the harmonic frequency component to transmit wireless power. It can be prevented from being delivered to the device 200 to prevent unnecessary power consumption.
  • the inductor Lm may be connected in series to the transmission induction coil unit 211.
  • the AC power generating unit 140 of the power supply device 100 outputs AC power, and the AC power output includes a fundamental frequency component and a harmonic frequency component.
  • the inductor Lm may prevent the power corresponding to the harmonic frequency component from being transmitted to the transmission coil unit 210.
  • the power transmitted in the power transmission process between the wireless power transmitter 200 and the wireless power receiver 300 is power corresponding to the fundamental frequency component, and power corresponding to the harmonic frequency component is power of unnecessary components not transmitted.
  • the inductor Lm may prevent the power corresponding to the harmonic frequency component from being transmitted to the transmission coil unit 210, thereby increasing the overall power transmission efficiency of the wireless power transmission system 20.
  • the inductor Lm may decrease the power corresponding to the harmonic frequency component by increasing the input impedance with respect to the harmonic frequency component. That is, the inductor Lm may increase power transmission efficiency between the power supply device 100 and the wireless power transmitter 200 by reducing the power corresponding to the harmonic frequency component, and thus, the entire wireless power transmission system ( 20) may increase the power transmission efficiency.
  • the input impedance (first input impedance) for the harmonic frequency component is increased due to the addition of the inductor Lm.
  • the third input impedance Z3 may refer to an impedance measured when the reception resonance coil unit 311 looks at the load 400, and may be expressed as shown in [Equation 1].
  • w is a resonant frequency when the transmission resonant coil L2 and the reception resonant coil L3 transmit power through resonance
  • M3 denotes mutual inductance between the reception resonant coil L3 and the reception induction coil L4.
  • ZL means output impedance.
  • Equation 1 is an expression based on the frequency domain, and the following equations will also be expressed based on the frequency domain.
  • the second input impedance Z2 refers to an impedance measured when the wireless power transmitter 200 looks at the wireless power receiver 300, and may be expressed as shown in [Equation 2].
  • M2 denotes the mutual inductance between the transmission resonant coil L2 and the reception resonant coil L3
  • C3 denotes a capacitor expressed when the reception resonant coil unit 311 is converted into an equivalent circuit.
  • R3 represents the amount generated by the power loss in the reception resonance coil (L3) as a resistance.
  • the capacitor C3 and the leakage resistance R3 are fixed values, but the mutual inductance M2 is a value that can be changed depending on the coupling coefficient K2 between the transmission resonance coil L2 and the reception resonance coil L3.
  • the coupling coefficient K2 indicates the degree of electromagnetic coupling between the transmission resonant coil L2 and the reception resonant coil L3, and the wireless power transmitter 200 and the wireless power receiver 300 of the wireless power transmission system.
  • the value may vary depending on at least one of a distance, a direction, and a position of the liver.
  • the first input impedance Z1 refers to an impedance measured when the power supply device 100 faces the wireless power transmitter 200, and may be expressed as shown in [Equation 3].
  • M1 means mutual inductance between the transmission induction coil L1 and the transmission resonant coil L2.
  • Substituting the third input impedance Z3 of Equation 1 into Equation 2 and substituting the second input impedance Z2 according to the result into Equation 3 results in the first input impedance ( Z1) may be represented by the absence of the variable Z2 for the second input impedance and the variable Z3 for the third input impedance. Also, in this case, when all factors constituting the equation of the first input impedance Z1 are fixed (or known in advance), the first input impedance Z1 is measured through the fixed values of all the factors. Can be.
  • the detector 220 may detect the first input impedance by measuring an input current input to the wireless power transmitter 200.
  • the first input impedance with respect to the harmonic frequency component may vary depending on the inductance of the inductor Lm constituting the power consumption preventing unit 150. Specifically, as shown in Equation 3, when the inductance of the inductor Lm is increased, the magnitude of the first input impedance Z1 may also be increased.
  • the first input impedance for the harmonic frequency component may vary with frequency.
  • the first input impedance for the harmonic frequency component may increase as the multiple of the fundamental frequency increases. This will be described later.
  • the fundamental frequency (resonance frequency) is w1 and the value is determined such that the reception resonance coil L3 and the capacitor C3 and the reception induction coil L4 and the capacitor C4 resonate at the resonance frequency w1
  • the fundamental frequency is [ It can be expressed as shown in Equation 4].
  • Each harmonic frequency may be expressed by Equation 5 to Equation 7 below.
  • Equation 5 shows the harmonic frequency, which is a frequency having a magnitude twice the fundamental frequency.
  • Equation 6 shows a harmonic frequency, which is a frequency having a magnitude three times the fundamental frequency.
  • Equation 7 shows a harmonic frequency having a magnitude four times the fundamental frequency.
  • the input impedance for each harmonic frequency component can be obtained by substituting w2, w3 and w4 of [Equation 5] to [Equation 7] instead of w of [Equation 3].
  • FIG. 6 is a view for explaining a change in power transmission efficiency according to the frequency of the wireless power transmission system 20 according to a second embodiment of the present invention
  • Figure 7 is a wireless power transmission according to a second embodiment of the present invention The figure for explaining the change of the input impedance according to the frequency of the system 20.
  • FIG. 6 is a view for explaining a change in power transmission efficiency according to the frequency of the wireless power transmission system 20 according to a second embodiment of the present invention
  • Figure 7 is a wireless power transmission according to a second embodiment of the present invention The figure for explaining the change of the input impedance according to the frequency of the system 20.
  • the fundamental frequency is 300 kHz
  • the harmonic frequencies are 600 kHz, 900 kHz, 1200 kHz, 1500 kHz, 1800 kHz, and 2100 kHz, which are integer multiples of 300 kHz.
  • the fundamental frequency may refer to a frequency used to transmit power by resonance between the wireless power transmitter 200 and the wireless power receiver 300.
  • the horizontal axis represents frequency (unit: kHz), and the vertical axis represents power transmission efficiency.
  • the power transmission efficiency may mean power transmission efficiency between the wireless power transmitter 200 and the wireless power receiver 300. That is, the power transmission efficiency may mean a ratio of power received by the wireless power receiver 300 to power transmitted by the wireless power transmitter 200.
  • the horizontal axis represents frequency (unit: kHz), and the vertical axis represents input impedance Z1.
  • the input impedance refers to the impedance measured when the power supply device 100 looks at the wireless power transmitter 200.
  • the change in power transmission efficiency between the wireless power transmitter 200 and the wireless power receiver 300 is approximately 35% at 300 kHz, which is a fundamental frequency.
  • the magnitude of the input impedance increased by about 0.5 ohms at the fundamental frequency of 300 kHz, and the magnitude of the input impedance was 3.5 ohms at the harmonic frequency of 600 kHz and 5.5 ohms at the harmonic frequency of 900 kHz.
  • the input impedance is 8 ohms at the harmonic frequency of 1200 kHz, the input impedance is 10 ohms at the harmonic frequency of 1500 kHz, and the input impedance is 11.5 ohms at the harmonic frequency of 1800 kHz. You can see that 13 ohms is increased.
  • the inductor Lm is connected to the transmission induction coil unit 211 as the power consumption preventing unit 150, the power transmission efficiency between the wireless power transmitter 200 and the wireless power receiver 300 is almost changed. However, the input impedance at the harmonic frequency is increased so that power corresponding to the harmonic frequency is not consumed.
  • the power transfer efficiency between the power supply device 100 and the wireless power transmitter 200 may be improved by connecting the inductor Lm, thereby increasing the power transfer efficiency of the entire wireless power transfer system 20.
  • FIG. 8 is a flowchart illustrating a power supply method of a power supply device according to an embodiment of the present invention.
  • the configuration of the power supply device 100 is the same as that described in FIG.
  • the power supply unit 110 supplies DC power to each component of the power supply device 100 (S101).
  • the direct current DC converter 130 converts the direct current into a DC voltage having a predetermined voltage value by using the DC power supplied from the power supply 110.
  • the DC-DC converter 130 converts the DC voltage supplied from the power supply 110 into an AC voltage, and then boosts or steps down the rectified AC voltage to rectify the DC voltage with a predetermined voltage value.
  • the voltage can be output.
  • the AC power generation unit 140 may convert the AC power into AC power using the DC power received from the DC DC converter 130 (S103).
  • the AC power generator 140 may convert the DC power received from the DC direct current converter 130 into AC power using the AC power signal received from the oscillator 120.
  • the AC power generator 140 may include a dual MOSFET of a push-pull type.
  • the power consumption preventing unit 150 adjusts the input impedance of the harmonic frequency component among the converted AC powers (S105). That is, the power consumption prevention unit 150 increases the magnitude of the input impedance of the harmonic frequency component of the AC power converted by the AC power generator 140 to consume power of the harmonic frequency component. Can reduce the size.
  • the power consumption preventing unit 150 may prevent unnecessary power generated by the harmonic frequency component from being transmitted to the wireless power transmitter 200 to prevent power consumption.
  • the power consumption preventing unit 150 transmits the AC power in the state where the power of the harmonic frequency component is reduced to the wireless power transmitter 200 (S107).
  • FIG. 9 is a configuration diagram of a power supply device according to still another embodiment of the present invention.
  • the power supply device 100 may include a power supply unit 110, an oscillator 120, a direct current DC converter 130, a current change controller 160, and an alternating current. It may include a power generation unit 140.
  • the current change controller 160 may adjust a change amount of the DC current applied to the AC power generator 140.
  • the current variation controller 160 may include an inductor.
  • the current change amount adjusting unit 160 may be disposed between the DC direct current converting unit 130 and the AC power generating unit 140 to adjust the amount of change in the DC current applied to the AC power generating unit 140.
  • the current change amount adjusting unit 160 may prevent the amount of DC current applied to the AC power generating unit 140 from changing rapidly. When the amount of the DC current suddenly changes, an unnecessary frequency signal may be generated in the AC current output from the AC power generator 140.
  • the power supply 110 to the AC power generator 140 (specifically, the first MOSFET 141 and the second MOSFET 143).
  • the amount of DC current applied may suddenly change, but the current change controller 160 prevents the amount of DC current from suddenly changing.
  • the inductor When the inductor is used as the current change control unit 160, even if the amount of current flowing to the AC power generation unit 140 tries to change rapidly, the magnetic field cannot follow it, and the current is constant in proportion to the applied voltage. This is because the slope increases gradually.
  • the value corresponding to the constant slope means the self-inductance of the inductor.
  • the inductor may prevent the AC power signal output from the AC power generator 140 from becoming a complete square wave. This may mean that the magnitude of the harmonic frequency component among the components of the AC power signal output by the AC power generator 140 is reduced.
  • the inductor can increase the conversion efficiency when converting the DC power to AC power by reducing the size of unnecessary harmonic frequency components among the components of the AC power signal output from the AC power generator 140, thereby transmitting wireless power.
  • the power transfer efficiency of the system can be improved.
  • the conversion efficiency may increase.
  • the variable amount inductor may be used as the current change controller 160.
  • the power supply device 100 may further include a controller (not shown) to adjust the inductance value of the variable inductor.
  • the harmonic frequency component and the fundamental frequency component decrease together, but in particular, the magnitude of the harmonic frequency component may be reduced relatively more, thereby increasing the conversion efficiency of the power supply device 100.
  • the magnitude of the impedance of the inductor for each frequency is 2? FL, and as the inductance value at higher frequencies increases, the magnitude of the impedance also increases, thereby reducing the harmonic frequency component.
  • 10 to 13 are views for explaining the output waveform of the power supply device according to whether the current change amount control unit is applied.
  • FIGS. 10 and 11 are views illustrating output waveforms of the AC power generator 140 when the current change amount adjusting unit 160 is not included, and FIGS. 12 and 13 show the current change amount adjusting unit 160.
  • the output waveform of the AC power generating unit 140 is a diagram.
  • the default frequency is assumed to be 300 kHz, but this is only an example.
  • FIG. 10 and FIG. 12 are compared.
  • 10 and 12 are graphs showing the magnitude of the voltage output from the AC power generator 140 with respect to time.
  • the output waveform is a square wave.
  • the inductor is connected to the current change amount adjusting unit 160 to the first MOSFET 141 of the AC power generating unit 140, and unlike the graph of FIG. 10, the output waveform does not have the shape of a square wave. Do not. That is, the output waveform has a waveform that is slightly increased or slightly decreased without a sharp increase like a square wave.
  • the waveform output from the AC power generation unit 140 also has no sharp evidence or decrease portion, and a portion where the slope gradually increases or decreases slowly, such as a curve, appears.
  • FIG. 11 and FIG. 13 are compared.
  • 11 and 13 are graphs showing the magnitude of the voltage output from the AC power generator 140 with respect to frequency.
  • the harmonic frequency component is output from the output of the AC power generator 140. It can be reduced to improve the overall power transfer efficiency.
  • FIG. 14 is a flowchart illustrating a power supply method of a power supply device according to another embodiment of the present invention.
  • the configuration of the power supply device 100 is as described with reference to FIG. 9.
  • the power supply unit 110 supplies the DC power to the DC DC converter 130 (S201).
  • the DC DC converter 130 converts the DC power having the predetermined DC voltage value using the DC power supplied from the power supply 110 and outputs the DC power (S203).
  • the DC DC converter 130 may convert a DC voltage supplied from the power supply 110 into an AC voltage, and then boost or step down and rectify the converted AC voltage to output a DC voltage having a predetermined voltage value. .
  • the current change amount adjusting unit 160 may adjust the amount of change in the current component of DC power applied to the AC power generating unit 140 (S205). Specifically, the current change amount adjusting unit 160 may prevent the change of the current component from being rapidly increased or decreased in the DC power received from the DC direct current converter 130.
  • the harmonic frequency component of the AC power generated by the AC power generating unit 140 may be reduced.
  • the AC power generator 140 may convert the DC power in which the change amount of the current component is adjusted into AC power (S207). As described above, the AC power generator 140 may output AC power having a reduced harmonic frequency component to reduce unnecessary power consumption caused by the harmonic frequency component.
  • FIG. 15 is a block diagram illustrating a power supply device according to still another embodiment of the present invention.
  • the power supply device 100 may include a power supply unit 110, an oscillator 120, a DC DC converter 130, and an AC power supply unit 170. Can be.
  • the AC power supply unit 170 may include a harmonic component reducing unit 175 and an AC power generating unit 140.
  • the harmonic component reducing unit 175 may include at least one of the power consumption preventing unit 150 described with reference to FIG. 5 and the current change amount adjusting unit 160 described with reference to FIG. 9.
  • the harmonic component reducing unit 175 may reduce the magnitude of the power of the harmonic frequency component among the power delivered to the wireless power transmitter 200.
  • the harmonic component reducing unit 175 may reduce the magnitude of the power of the harmonic frequency component of the power applied to the AC power generating unit 140 or output from the AC power generating unit 140.
  • the power consumption preventing unit 150 may determine a harmonic frequency component of the AC power converted by the AC power generating unit 140. Increasing the magnitude of the input impedance can reduce the magnitude of the power for the harmonic frequency component. A detailed description thereof is as described with reference to FIG. 5.
  • the harmonic component reducing unit 175 includes the current change amount adjusting unit 160
  • the current change amount adjusting unit 160 prevents a sudden change in the amount of DC power applied to the AC power generating unit 140 to be harmonized.
  • the amount of power for the frequency component can be reduced. A detailed description thereof is as described with reference to FIG. 9.
  • the power transmission efficiency may be increased by reducing the power of the harmonic frequency component of the AC power transmitted from the power supply device 100 to the wireless power transmitter 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 실시 예에 따른 무선전력 송신장치의 전력 공급 장치는 직류 전력을 공급하는 전원 공급부와 상기 직류 전력을 이용하여 교류 전력을 생성하는 교류 전력 생성부 및 상기 생성된 교류 전력 중 조화주파수 성분에 대한 전력의 크기를 감소시키는 조화성분 감소부를 포함한다.

Description

전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
본 발명은 무선전력 전송 기술에 관한 것이다. 보다 상세하게는, 공진 또는 전자기 유도를 이용하여 전력 전송 효율을 극대화시킬 수 있는 무선전력 전송 기술에 관한 것이다.
무선으로 전기 에너지를 원하는 기기로 전달하는 무선전력전송 기술(wireless power transmission 또는 wireless energy transfer)은 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도 되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다. 전자기 유도는 도체의 주변에서 자기장을 변화시켰을 때 전압이 유도되어 전류가 흐르는 현상을 말한다. 전자기 유도 방식은 소형 기기를 중심으로 상용화가 빠르게 진행되고 있으나, 전력의 전송 거리가 짧은 문제가 있다.
현재까지 무선 방식에 의한 에너지 전달 방식은 전자기 유도 이외에 공진 및 단파장 무선 주파수를 이용한 원거리 송신 기술 등이 있다.
최근에는 이와 같은 무선 전력 전송 기술 중 전자기 유도 또는 공진을 이용한 에너지 전달 방식이 많이 사용되고 있다.
전자기 유도 또는 공진을 이용한 무선전력 전송 시스템은 송신 측과 수신 측에 형성된 전기신호가 코일을 통해 무선으로 전달되기 때문에 사용자는 휴대용 기기와 같은 전자기기를 손쉽게 충전할 수 있다.
그러나, 기존의 무선전력 송신장치에 공급되는 교류 전력 중에는 불필요한 주파수 성분으로 인해 무선전력 전송 시스템의 전력 전송 효율을 떨어뜨리는 문제가 있었다.
본 발명은 직류전력을 교류전력으로 변환할 시 발생하는 전력 손실을 줄여 전력 전송 효율을 극대화시킬 수 있는 방법의 제공을 목적으로 한다.
본 발명은 전력 공급 장치에서 무선전력 송신장치로 전달하는 교류 전력 중 조화 주파수 성분의 전력을 감소시켜 전력 전송 효율을 높일 수 있는 방법의 제공을 목적으로 한다.
본 발명은 전자기 유도 또는 공진형 무선전력 전송 시스템에서 전력 전송 효율을 극대화시킬 수 있는 방법의 제공을 목적으로 한다.
본 발명의 실시 예에 따른 무선전력 송신장치의 전력 공급 장치는 직류 전력을 공급하는 전원 공급부와 상기 직류 전력을 이용하여 교류 전력을 생성하는 교류 전력 생성부 및 상기 생성된 교류 전력 중 조화주파수 성분에 대한 전력의 크기를 감소시키는 조화성분 감소부를 포함한다.
본 발명의 또 다른 실시 예에 따른 무선전력 송신장치에 전력을 공급하는 전력 공급 장치의 전력 공급 방법은 직류 전력을 공급하는 단계와 상기 직류 전력을 이용하여 교류 전력을 출력하는 단계 및 상기 출력된 교류 전력 중 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 단계를 포함한다.
본 발명의 실시 예에 따르면, 무선전력 전송 시스템에 전력 소모 방지부의 구성을 두어 직류전력을 교류전력으로 변환할 시 발생하는 전력 손실을 줄여 전력 전송 효율을 극대화시킬 수 있다.
또한, 전력 공급 장치에서 무선전력 송신장치로 전달하는 교류 전력 중 조화 주파수 성분의 전력을 감소시켜 전력 전송 효율을 높일 수 있는 방법의 제공을 목적으로 한다.
한편 그 외의 다양한 효과는 후술될 본 발명의 실시 예에 따른 상세한 설명에서 직접적 또는 암시적으로 개시될 것이다.
도 1은 본 발명의 일 실시 예에 따른 전력 공급 장치(100)의 구성도이다.
도 2는 본 발명의 제1 실시 예에 따른 전력 공급 장치(100)에서 공진형 무선전력 전송 시스템(10)의 구성도이다.
도 3은 본 발명의 제1 실시 예에 따른 공진형 무선전력 전송 시스템(10)의 주파수에 따른 전력전송 효율의 변화를 설명하기 위한 도면이고, 도 4는 본 발명의 제1 실시 예에 따른 공진형 무선전력 전송 시스템(10)의 주파수에 따른 입력 임피던스의 변화를 설명하기 위한 도면이다.
도 5는 본 발명의 제2 실시 예에 따른 공진형 무선전력 전송 시스템(20)의 구성도이다.
도 6은 본 발명의 제2 실시 예에 따른 공진형 무선전력 전송 시스템(20)의 주파수에 따른 전력전송 효율의 변화를 설명하기 위한 도면이고, 도 7은 본 발명의 제2 실시 예에 따른 공진형 무선전력 전송 시스템(20)의 주파수에 따른 입력 임피던스의 변화를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시 예에 따른 전력 공급 장치의 전력 공급 방법을 설명하기 위한 흐름도이다.
도 9는 본 발명의 또 다른 실시 예에 따른 전력 공급 장치의 구성도이다.
도 10 내지 도 13은 전류 변화량 조절부의 적용여부에 따른 전력 공급 장치의 출력 파형을 설명하기 위한 도면이다.
도 14는 본 발명의 또 다른 실시 예에 따른 전력 공급 장치의 전력 공급 방법을 설명하기 위한 흐름도이다.
도 15는 본 발명의 또 다른 실시 예에 따른 전력 공급 장치를 설명하기 위한 블록도이다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 제1 실시 예에 따른 전력 공급 장치(100)의 구성도이고, 도 2는 본 발명의 제1 실시 예에 따른 무선전력 전송 시스템(10)의 구성도이다.
도 1을 참고하면, 전력 공급 장치(100)는 전원 공급부(110), 발진기(120), 직류 직류 변환부(130), 교류 전력 생성부(140), 전력 소모 방지부(150)를 포함할 수 있다.
일 실시 예에서 무선전력 송신장치(100)가 공진을 이용하여 무선전력 수신장치(200)에 전력을 전송하는 경우라면, 도 2에 도시된 바와 같이, 무선전력 송신장치(100)는 송신 유도 코일부(111) 및 송신 공진 코일부(112)를 포함하지만, 전자기 유도를 이용하여 무선전력 수신장치(300)에 전력을 전송하는 경우라면, 무선전력 송신장치(200)는 송신 공진 코일부(112)을 포함하지 않을 수 있다.
전원 공급부(110)는 전력 공급 장치(100)의 각 구성요소에 직류전원을 공급할 수 있다.
발진기(Oscillator)(120)는 소정의 주파수를 갖는 교류전력 신호를 생성하여 교류 전력 생성부(140)에 전달할 수 있다.
특히, 발진기(Oscillator)(120)는 후술할 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송에 사용되는 주파수를 갖는 교류전력 신호를 생성하여 교류 전력 생성부(140)에 전달할 수 있다. 일 실시 예에서 무선전력 송신장치(200)가 무선전력 수신장치(300)에 공진을 통해 전력을 전송하는 경우, 상기 전력 전송에 사용되는 주파수는 공진 주파수일 수 있다.
직류 직류 변환부(DC-DC converter)(130)는 전원 공급부(110)로부터 공급받은 직류전압을 이용하여 소정의 전압 값을 갖는 직류전압으로 변환하여 출력할 수 있다.
직류 직류 변환부(DC-DC converter)(130)는 전원 공급부(110)에서 출력된 직류전압을 교류전압으로 변환한 다음, 변환된 교류전압을 승압 또는 강압하고 정류하여 소정의 전압 값을 갖는 직류전압을 출력할 수 있다.
직류-직류 변환부(DC-DC converter)(130)로 스위칭 레귤레이터(Switching regulator) 또는 리니어 레귤레이터(Linear regulator)가 사용될 수 있다.
리니어 레귤레이터(Linear regulator)는 입력전압을 받아 필요한 만큼 출력전압을 내보내고, 나머지 전압은 열로 방출하는 변환부다.
스위칭 레귤레이터(Switching regulator)는 펄스 폭 변조(PWM: Pulse Width Modulation)를 이용하여 출력전압을 조절할 수 있는 변환부다.
교류 전력 생성부(140)는 발진기(120)로부터 전달받은 교류전력 신호를 이용하여 직류 직류 변환부(130)로부터 전달받은 직류전력을 교류전력으로 변환할 수 있다.
교류 전력 생성부(140)는 푸쉬 풀 타입(push-pull type)의 듀얼 모스펫(Dual MOSFET)을 포함할 수 있다.
교류 전력 생성부(140)가 푸쉬 풀 타입(push-pull type)의 듀얼 모스펫(Dual MOSFET)을 포함하는 경우, 교류 전력 생성부(140)는 제1 모스펫(MOSFET)(141), 제2 모스펫(MOSFET)(143), 드라이버(145)를 포함할 수 있다.
드라이버(145)는 발진기(120)로부터 소정의 주파수를 갖는 교류전력 신호를 전달받을 수 있다. 일 실시 예에서 교류전력 신호는 구형파(rectangular) 형태일 수 있다.
드라이버(145)는 발진기(120)로부터 전달받은 교류전력 신호를 증폭하여 제1 모스펫(141) 및 제2 모스펫(143)에 전달할 수 있는 증폭 버퍼(미도시)를 더 포함할 수 있다.
드라이버(145)는 제1 모스펫(141) 및 제2 모스펫(143)에 각각 크기는 같고, 위상은 반대인 교류전력을 인가할 수 있다. 위상이 반대인 교류전력이 인가됨에 따라 제1 모스펫(141)이 온(ON) 상태가 되면, 제2 모스펫(143)은 오프(OFF) 상태가 되고, 제1 모스펫(141)이 오프(OFF) 상태가 되면, 제2 모스펫(143)은 온(ON) 상태가 된다.
제1 모스펫(141)이 온(ON) 상태, 제2 모스펫(143)은 오프(OFF) 상태가 되면, 제1 모스펫(141)을 통해 무선전력 송신장치(200)로 교류전류가 흐르게 되고, 반대로 제1 모스펫(161)이 오프(OFF) 상태, 제2 모스펫(163)은 온(ON) 상태가 되면, 무선전력 송신장치(200)에서 제2 모스펫(143)을 통해 그라운드 방향으로 교류전류가 흐르게 된다.
위와 같이, 교류전류는 제1 모스펫(141), 제2 모스펫(143) 및 무선전력 송신장치(200) 사이를 밀고, 당기는 것처럼 흐르기 때문에 교류 전력 생성부(140)는 푸쉬 풀 타입(push pull type)구조를 갖는 것으로 설명될 수 있다.
무선전력 송신장치(200)로 인가되는 구형파 형태의 교류전력은 기본 주파수(Fundamental Frequency) 성분 및 조화 주파수(Harmonic Frequency) 성분을 포함할 수 있다.
기본 주파수(Fundamental Frequency) 성분은 무선전력 송신장치(200)로 인가되는 구형파 형태의 교류전력의 주파수 성분 중 기본파의 주파수 성분을 의미한다. 보통, 일그러짐이 없는 파를 의미한다.
조화 주파수(Harmonic Frequency) 성분은 기본 주파수(Fundamental Frequency)의 정수배인 주파수를 의미한다.
일 실시 예에서 기본 주파수는 300kHz일 수 있으나, 이는 예시에 불과하다.
기본 주파수가 300kHz인 경우, 조화 주파수는 300kHz의 정수배인 600kHz, 900kHz, 1200kHz, 1500kHz, 1800kHz, 2100kHz가 된다.
전력 전송에서 실제 전달되는 교류전력은 기본 주파수 성분이고, 조화 주파수 성분은 불필요한 성분이다. 따라서, 전력 전송 효율 측면에서 조화 주파수 성분은 전력 손실을 일으키는 한 요인으로 작용할 수 있다.
전력 소모 방지부(150)는 교류 전력 생성부(140)에서 변환된 교류 전력 중 조화 주파수(Harmonic Frequency) 성분에 대한 입력 임피던스의 크기를 증가시켜 조화 주파수 성분에 대한 전력의 크기를 감소시킬 수 있다.
조화 주파수(Harmonic Frequency) 성분에 대한 입력 임피던스의 크기가 증가되면, 조화 주파수(Harmonic Frequency) 성분이 소모하는 전력의 크기가 줄어들게 된다. 왜냐하면, 전력은 입력 임피던스의 크기에 반비례하기 때문이다.
전력 소모 방지부(150)는 교류 전력 생성부(140)에서 변환된 교류 전력 중 조화(harmonic) 주파수 성분에 대한 입력 임피던스를 증가시켜 조화(harmonic) 주파수 성분으로 인해 발생하는 불필요한 전력이 무선전력 송신장치(200)에 전달되는 것을 방지하여 불필요한 전력 소모를 방지할 수 있다.
일 실시 예에서 전력 소모 방지부(150)는 인덕터로 구성될 수 있다.
전력 소모 방지부(150)로 인해 무선전력 전송 시스템의 입력 임피던스가 증가됨은 도 5에서 상세히 설명한다.
도 2는 본 발명의 제1 실시 예에 따른 무선전력 전송 시스템(10)의 구성도이다.
도 2는 특히, 도 1에서 설명한 전력 소모 방지부(150)를 포함하지 않은 전력 공급 장치(100)를 이용한 무선전력 전송 시스템(10)의 구성도이다.
도 2를 참고하면, 본 발명의 제1 실시 예에 따른 무선전력 전송 시스템(10)은 전력 공급 장치(100), 무선전력 송신장치(200), 무선전력 수신장치(300), 부하(400)을 포함할 수 있다.
전력 공급 장치(100)는 무선전력 송신장치(200)에 교류 전력을 공급하고, 무선전력 송신장치(200)는 공급받은 교류 전력을 공진을 이용해 무선전력 수신장치(300)로 전력을 전송할 수 있다.
무선전력 송신장치(200)는 자기적으로 상호 결합된 코일간에 일어나는 공진을 이용해 무선전력 수신장치(300)에 전력 전송을 수행할 수 있다.
무선전력 수신장치(300)로 전송된 전력은 부하(400)로 전달된다. 부하(400)는 충전지 또는 기타 전력을 필요로 하는 임의의 장치를 의미할 수 있고, 본 발명의 실시 예에서는 부하(400)의 부하저항을 RL로 나타낸다. 일 실시 예에서 부하(400)는 무선전력 수신장치(300)에 포함될 수도 있다.
전력 공급 장치(100)는 전원 공급부(110), 발진기(120), 직류 직류 변환부(130), 교류 전력 생성부(140)를 포함할 수 있고, 이에 대한 자세한 설명은 도 1에서 설명한 것과 동일하다.
무선전력 송신장치(200)는 송신 코일부(210), 검출부(220)를 포함할 수 있다.
송신 코일부(210)는 전력 공급 장치(100)로부터 공급받은 교류 전력을 무선전력 수신장치(300)에 무선으로 전송한다.
송신 코일부(210)는 송신 유도 코일부(211), 송신 공진 코일부(212)를 포함할 수 있다.
송신 유도 코일부(211)는 전력 공급 장치(100)와 연결되며, 전력 공급 장치(100)로부터 제공받은 교류전력에 의해 교류 전류가 흐르게 된다. 송신 유도 코일부(211)에 교류 전류가 흐르면, 전자기 유도에 의해 물리적으로 이격되어 있는 송신 공진 코일부(212)에도 교류 전류가 유도되어 흐르게 된다. 송신 공진 코일부(212)로 전달된 전력은 공진에 의해 무선전력 송신장치(200)와 공진 회로를 이루는 무선전력 수신장치(300)로 전달된다.
임피던스가 매칭된 2개의 LC 회로 사이는 공진에 의해 전력이 전송될 수 있다. 이와 같은 공진에 의한 전력 전송은 전자기 유도에 의한 전력 전송보다 더 먼 거리까지 더 높은 효율로 전력 전달이 가능하게 한다.
송신 유도 코일부(211)는 송신 유도 코일(L1)과 캐패시터(C1)를 포함할 수 있다. 여기서, 캐패시터(C1)의 캐패시턴스는 공진주파수 w에서 공진하도록 조절된 값이다.
캐패시터(C1)의 일단은 전력 공급 장치(100)의 일단에 연결되고, 캐패시터(C1)의 타단은 송신 유도 코일(L1)의 일단에 연결된다. 송신 유도 코일(L1)의 타단은 전력 공급 장치(100)의 타단에 연결된다.
송신 공진 코일부(212)는 송신 공진 코일(L2), 캐패시터(C2), 저항(R2)을 포함한다. 송신 공진 코일(L2)은 캐패시터(C2)의 일단에 연결된 일단과 저항(R2)의 일단에 연결된 타단을 포함한다. 저항(R2)의 타단은 캐패시터(C2)의 타단에 연결된다. R2는 송신 공진 코일(L2)에서 전력손실로 발생하는 양을 저항으로 나타낸 것이다. 캐패시터(C2)의 캐패시턴스는 공진주파수 w에서 공진하도록 조절된 값이다.
검출부(220)는 제1 입력 임피던스(Z1)를 검출할 수 있다. 일 실시 예에서 제1 입력 임피던스(Z1)는 전력 공급 장치(100)에서 송신 코일부(210) 측을 바라본 임피던스를 의미할 수 있다.
일 실시 예에서 검출부(220)는 전력 공급 장치(100)에서 무선전력 송신장치(200)로 입력되는 입력 전류를 측정하여 제1 입력 임피던스를 검출할 수 있다. 구체적으로, 무선전력 송신장치(200)의 입력 전압이 고정된 경우를 가정하면, 검출부(220)는 무선전력 송신장치(200)의 입력 전류를 측정하여 상기 제1 입력 임피던스를 검출할 수 있다.
무선전력 수신장치(300)는 수신 코일부(310), 정류부(320)를 포함할 수 있다.
무선전력 수신장치(300)는 휴대폰, 마우스, 노트북, MP3 플레이어 등과 같은 전자기기에 내장될 수 있다.
수신 코일부(310)는 수신 공진 코일부(311)와 수신 유도 코일부(312)를 포함할 수 있다.
수신 공진 코일부(311)는 수신 공진 코일(L3), 캐패시터(C3), 저항(R3)을 포함한다. 수신 공진 코일(L3)은 캐패시터(C3)의 일단에 연결된 일단과 저항(R3)의 일단에 연결된 타단을 포함한다. 저항(R3)의 타단은 캐패시터(C2)의 타단에 연결된다. 저항(R3)는 수신 공진 코일(L3)에서 전력손실로 발생하는 량을 저항으로 나타낸 것이다. 캐패시터(C3)의 캐패시턴스는 공진주파수 w에서 공진하도록 조절된 값이다.
수신 유도 코일부(312)는 수신 유도 코일(L4) 및 캐패시터(C4)를 포함할 수 있다. 수신 유도 코일(L4)의 일단은 캐패시터(C4)의 일단에 연결되고, 수신 유도 코일(L4)의 타단은 정류부(320)의 타단에 연결된다. 캐패시터(C4)의 타단은 정류뷰(320)의 일단에 연결된다. 캐패시터(C4)의 캐패시턴스는 공진주파수 w에서 공진하도록 조절된 값이다.
수신 공진 코일부(311)는 송신 공진 코일부(212)와 공진주파수에서 공진 상태를 유지한다. 즉, 수신 공진 코일부(311)는 송신 공진 코일부(212)와 커플링(coupling)되어 교류전류가 흐르게 되고, 이에 따라 비방사(Non-Radiative) 방식으로 무선전력 송신장치(200)로부터 전력을 수신할 수 있다.
수신 유도 코일부(312)는 수신 공진 코일부(311)로부터 전자기 유도에 의해 전력을 수신하고, 수신된 전력은 정류부(320)를 통해 정류되어 부하(400)로 전달된다.
정류부(320)는 수신 유도 코일부(312)로부터 교류전력을 전달받고, 전달받은 교류전력을 직류전력으로 변환시켜 부하(400)로 전달할 수 있다.
정류부(320)는 정류회로(미도시)와 평활회로(미도시)를 포함할 수 있다.
정류회로는 다이오드와 캐패시터로 구성될 수 있으며, 수신 유도 코일부(312)로부터 전달받은 교류전력을 직류전력으로 변환할 수 있다.
평활 회로는 변환된 직류전력의 출력 파형을 매끄럽게 하는 역할을 한다. 평활회로는 캐패시터로 구성될 수 있다.
부하(400)는 직류 전력을 필요로 하는 임의의 충전지 또는 장치일 수 있다. 예를 들어, 부하(400)는 배터리를 의미할 수 있다.
일 실시 예에서 부하(400)는 무선전력 수신장치(300)에 포함될 수도 있다.
다음으로 도 3 내지 도 4에서 본 발명의 제1 실시 예에 따른 무선전력 전송 시스템(10)의 주파수에 따른 전력전송 효율 및 입력 임피던스 변화를 설명한다.
도 3은 본 발명의 제1 실시 예에 따른 무선전력 전송 시스템(10)의 주파수에 따른 전력전송 효율의 변화를 설명하기 위한 도면이고, 도 4는 본 발명의 제1 실시 예에 따른 무선전력 전송 시스템(10)의 주파수에 따른 입력 임피던스의 변화를 설명하기 위한 도면이다.
도 3 및 도 4에서 기본 주파수는 300kHz이고, 조화 주파수는 300kHz의 정수배인 600kHz, 900kHz, 1200kHz, 1500kHz, 1800kHz, 2100kHz임을 가정한다.
또한, 기본 주파수는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 공진에 의해 전력 전송하기 위해 사용되는 주파수를 의미할 수 있다.
도 3을 참고하면, 가로축은 주파수(단위: kHz)이고, 세로축은 전력전송 효율을 의미한다. 여기서, 전력전송 효율은 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송 효율을 의미할 수 있다. 즉, 전력전송 효율은 무선전력 송신장치(200)에서 송신한 전력 대비 무선전력 수신장치(300)가 수신한 전력의 비율을 의미할 수 있다.
도 4를 참고하면, 가로축은 주파수(단위: kHz)이고, 세로축은 입력 임피던스를 의미한다. 여기서, 입력 임피던스는 전력 공급 장치(100)에서 무선전력 송신장치(200)를 바라보았을 때, 측정되는 임피던스를 의미한다. 검출부(220)는 상기 입력 임피던스를 측정할 수 있다.
도 3 및 도 4를 참고하면, 기본 주파수인 300kHz에서는 조화 주파수(600kHz, 900kHz, 1200kHz, 1500kHz, 1800kHz, 2100kHz)에 비해 전력전송 효율이 높고, 입력 임피던스의 크기도 큼을 확인할 수 있다.
조화 주파수(600kHz, 900kHz, 1200kHz, 1500kHz, 1800kHz, 2100kHz)에서 전력전송 효율이 낮다는 것은 조화 주파수 성분에 대응하는 전력이 무선전력 송신장치(200)측으로 전달되지 못함을 의미한다.
또한, 조화 주파수(600kHz, 900kHz, 1200kHz, 1500kHz, 1800kHz, 2100kHz)에서 입력 임피던스의 크기가 작다는 것은 조화 주파수 성분에 대응하는 전력이 커지게 되어, 불필요한 전력 소모가 발생됨을 의미한다.
도 5는 본 발명의 제2 실시 예에 따른 무선전력 전송 시스템(20)의 구성도이다.
도 5는 특히, 전력 소모 방지부(150)를 포함한 전력 공급 장치(100)를 이용한 무선전력 전송 시스템(20)의 구성도이다.
도 5를 참고하면, 무선전력 전송 시스템(20)은 전력 공급 장치(100), 무선전력 송신장치(200), 무선전력 수신장치(300), 부하(400)을 포함할 수 있다.
도 5에서 전력 공급 장치(100)는 교류 전력 생성부(140) 및 전력 소모 방지부(150)만을 포함하는 것으로 도시되어 있으나, 전력 공급 장치(100)에 대한 설명은 도 1에서 설명한 것과 동일한 구성을 포함할 수 있다.
또한, 무선전력 송신장치(200), 무선전력 수신장치(300), 부하(400)에 대한 설명은 도 2에서 설명한 것과 동일하다. 일 실시 예에서 전력 공급 장치(100)는 무선전력 송신장치(200)에 포함될 수 있다.
전력 소모 방지부(150)는 교류 전력 생성부(140)에서 변환된 교류 전력 중 조화 주파수(Harmonic Frequency) 성분에 대한 입력 임피던스의 크기를 증가시켜 조화 주파수 성분에 대한 전력의 크기를 감소시킬 수 있다. 조화 주파수(Harmonic Frequency) 성분에 대한 입력 임피던스의 크기가 증가되면, 조화 주파수(Harmonic Frequency) 성분이 소모하는 전력의 크기가 줄어들게 된다. 왜냐하면, 전력은 전압이 고정된 경우, 임피던스의 크기에 반비례하기 때문이다.
전력 소모 방지부(150)는 교류 전력 생성부(140)에서 생성된 교류 전력 중 조화(harmonic) 주파수 성분에 대한 입력 임피던스를 증가시켜 조화(harmonic) 주파수 성분으로 인해 발생하는 불필요한 전력이 무선전력 송신장치(200)에 전달되는 것을 방지하여 불필요한 전력 소모를 방지할 수 있다.
도 5에서는 전력 소모 방지부(150)로 인덕터(Lm)를 사용한 경우를 가정하여 설명한다.
인덕터(Lm)는 송신 유도 코일부(211)에 직렬 연결될 수 있다.
전력 공급 장치(100)의 교류 전력 생성부(140)는 교류 전력을 출력하는데, 출력되는 교류 전력에는 기본 주파수 성분과 조화 주파수 성분이 포함되어 있다.
인덕터(Lm)는 조화 주파수 성분에 해당하는 전력이 송신 코일부(210)에 전달되는 것을 방지할 수 있다. 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송 과정에서 전송되는 전력은 기본 주파수 성분에 해당하는 전력이고, 조화 주파수 성분에 해당하는 전력은 전송되지 않는 불필요한 성분의 전력이다.
인덕터(Lm)는 조화 주파수 성분에 해당하는 전력이 송신 코일부(210)로 전달되는 것을 방지하여, 무선전력 전송 시스템(20)의 전체 전력 전송 효율을 증가시킬 수 있다.
구체적으로, 인덕터(Lm)는 조화 주파수 성분에 대한 입력 임피던스를 증가시켜 조화 주파수 성분에 대응하는 전력을 감소시킬 수 있다. 즉, 인덕터(Lm)는 조화 주파수 성분에 대응하는 전력을 감소시켜 전력 공급 장치(100)과 무선전력 송신장치(200)간 전력 전송 효율을 증가시킬 수 있고, 이로 인해, 전체 무선전력 전송 시스템(20)의 전력 전송 효율을 증가시킬 수 있다.
이하에서는, 인덕터(Lm)의 추가로 인해 조화 주파수 성분에 대한 입력 임피던스(제1 입력 임피던스)가 증가됨을 대해 설명한다.
제3 입력 임피던스(Z3)는 수신 공진 코일부(311)에서 부하(400)를 바라보았을 때 측정되는 임피던스를 의미할 수 있고, [수학식 1]과 같이 표현될 수 있다.
[수학식 1]
Figure PCTKR2013002687-appb-I000001
여기서, w는 송신 공진 코일(L2)와 수신 공진 코일(L3)이 공진을 통해 전력 전송할 때의 공진주파수이고, M3는 수신 공진 코일(L3)와 수신 유도 코일(L4)간 상호 인덕턴스를 의미한다. 또한, ZL은 출력 임피던스를 의미한다.
[수학식 1]은 주파수 영역을 기준으로 한 수식이고, 이하의 수식들도 주파수 영역을 기준으로 하여 표현하기로 한다.
제2 입력 임피던스(Z2)는 무선전력 송신장치(200)에서 무선전력 수신장치(300)를 바라보았을 때 측정되는 임피던스를 의미하고, [수학식 2]와 같이 표현될 수 있다.
[수학식 2]
Figure PCTKR2013002687-appb-I000002
여기서, M2는 송신 공진 코일(L2)와 수신 공진 코일(L3)간의 상호 인덕턴스를 의미하고, C3는 수신 공진 코일부(311)를 등가회로로 변환시 표현되는 캐패시터를 의미한다. 또한, R3는 수신 공진 코일(L3)에서 전력손실로 발생하는 량을 저항으로 나타낸 것이다.
캐패시터(C3), 누설저항(R3)은 고정된 값이나, 상호 인덕턴스 M2는 송신 공진 코일(L2)와 수신 공진 코일(L3)간의 결합계수(K2)에 따라 변화될 수 있는 값이다.
결합계수(K2)는 송신 공진 코일(L2)와 수신 공진 코일(L3)간의 전자기적 결합의 정도를 표시하는 것으로, 무선전력 전송 시스템의 무선전력 송신장치(200) 및 무선전력 수신장치(300) 간의 거리, 방향, 위치 중 적어도 어느 하나에 의해 달라질 수 있는 값이다.
제1 입력 임피던스(Z1)는 전력 공급 장치(100)에서 무선전력 송신장치(200) 측을 바라보았을 때 측정되는 임피던스를 의미하고, [수학식 3]과 같이 표현될 수 있다.
[수학식 3]
Figure PCTKR2013002687-appb-I000003
여기서, M1은 송신 유도 코일(L1)과 송신 공진 코일(L2)간 상호 인덕턴스를 의미한다.
[수학식 1]의 제3 입력 임피던스(Z3)를 [수학식 2]에 대입한 후, 그 결과에 따른 제2 입력 임피던스(Z2)를 [수학식 3]에 대입하면, 제1 입력 임피던스(Z1)는 제2 입력 임피던스에 대한 변수 Z2, 제3 입력 임피던스에 대한 변수 Z3가 없는 식으로 표현될 수 있다. 또한, 이 때, 제1 입력 임피던스(Z1)의 수학식을 구성하는 모든 인자들이 고정된(또는 미리 알고 있는) 값인 경우, 제1 입력 임피던스(Z1)는 상기 모든 인자들의 고정된 값을 통해 측정될 수 있다.
또 다른 실시 예에서 검출부(220)는 무선전력 송신장치(200)의 입력 전압이 고정된 경우, 무선전력 송신장치(200)에 입력되는 입력 전류를 측정하여 제1 입력 임피던스를 검출할 수도 있다.
조화 주파수 성분에 대한 제1 입력 임피던스는 전력 소모 방지부(150)를 구성하는 인덕터(Lm)의 인덕턴스에 따라 달라질 수 있다. 구체적으로, [수학식 3]과 같이, 인덕터(Lm)의 인덕턴스가 증가되면, 제1 입력 임피던스(Z1)의 크기도 증가될 수 있다.
한편, 도 2의 경우처럼, 인덕터(Lm)를 포함하지 않는 경우, 제1 입력 임피던스(Z1)는 [수학식 3]에서 jwLm 성분이 제거되어야 한다.
또한, 조화 주파수 성분에 대한 제1 입력 임피던스는 주파수에 따라 가변될 수 있다. 구체적으로, 조화 주파수 성분에 대한 제1 입력 임피던스는 기본 주파수의 배수가 증가할수록 커질 수 있다. 이에 대해서는 후술한다.
또한, 기본 주파수(공진 주파수)가 w1이고, 수신 공진 코일(L3)과 캐패시터(C3) 및 수신 유도 코일(L4)과 캐패시터(C4)가 공진 주파수 w1에서 공진하도록 값을 정하면, 기본 주파수는 [수학식 4]와 같이 표현될 수 있다.
[수학식 4]
Figure PCTKR2013002687-appb-I000004
각 조화 주파수는 다음의 [수학식 5] 내지 [수학식 7]과 같이 표현될 수 있다.
[수학식 5]는 기본 주파수의 2배 크기를 갖는 주파수인 조화 주파수를 나타낸 것이다.
[수학식 5]
Figure PCTKR2013002687-appb-I000005
[수학식 6]은 기본 주파수의 3배의 크기를 갖는 주파수인 조화 주파수를 나타낸 것이다.
[수학식 6]
Figure PCTKR2013002687-appb-I000006
[수학식 7]은 기본 주파수의 4배의 크기를 갖는 조화 주파수를 나타낸 것이다.
[수학식 7]
각 조화 주파수 성분에 대한 입력 임피던스는 [수학식 3]의 w대신 [수학식 5] 내지 [수학식 7]의 w2, w3, w4를 대입하여 얻어질 수 있다.
다음으로 도 6 내지 도 7에서 도 5에서 설명한 본 발명의 제2 실시 예에 따른 무선전력 전송 시스템(20)의 주파수에 따른 전력전송 효율 및 입력 임피던스 변화를 설명한다.
도 6은 본 발명의 제2 실시 예에 따른 무선전력 전송 시스템(20)의 주파수에 따른 전력전송 효율의 변화를 설명하기 위한 도면이고, 도 7은 본 발명의 제2 실시 예에 따른 무선전력 전송 시스템(20)의 주파수에 따른 입력 임피던스의 변화를 설명하기 위한 도면이다.
기본 주파수는 300kHz이고, 조화 주파수는 300kHz의 정수배인 600kHz, 900kHz, 1200kHz, 1500kHz, 1800kHz, 2100kHz이다.
또한, 기본 주파수는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 공진에 의해 전력을 전송할 수 사용되는 주파수를 의미할 수 있다.
도 6을 참고하면, 가로축은 주파수(단위: kHz)이고, 세로축은 전력전송 효율을 의미한다. 여기서, 전력전송 효율은 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송 효율을 의미할 수 있다. 즉, 전력전송 효율은 무선전력 송신장치(200)에서 송신한 전력 대비 무선전력 수신장치(300)가 수신한 전력의 비율을 의미할 수 있다.
도 7을 참고하면, 가로축은 주파수(단위: kHz)이고, 세로축은 입력 임피던스(Z1)를 의미한다. 여기서, 입력 임피던스는 전력 공급 장치(100)에서 무선전력 송신장치(200)를 바라보았을 때, 측정되는 임피던스를 의미한다.
도 3과 도 6을 비교해 보면, 기본 주파수인 300kHz에서는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송 효율의 변화가 35%정도로 거의 차이가 없다.
도 4와 도 7을 비교해 보면, 기본 주파수인 300kHz에서 입력 임피던스의 크기가 0.5옴 정도 증가하였고, 조화 주파수인 600kHz에서 입력 임피던스의 크기가 3.5옴, 조화 주파수인 900kHz에서 입력 임피던스의 크기가 5.5옴, 조화 주파수인 1200kHz에서 입력 임피던스의 크기가 8옴, 조화 주파수인 1500kHz에서 입력 임피던스의 크기가 10옴, 조화 주파수인 1800kHz에서 입력 임피던스의 크기가 11.5옴, 조화 주파수인 2100kHz에서 입력 임피던스의 크기가 13옴이 증가되었음을 확인할 수 있다.
즉, 송신 유도 코일부(211)에 전력 소모 방지부(150)로 인덕터(Lm)를 연결한 경우, 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송 효율은 거의 변화가 없지만, 조화 주파수에서의 입력 임피던스를 증가시켜 조화 주파수에 대응하는 전력이 소모되지 않게 된다.
따라서, 인덕터(Lm)의 연결을 통해 전력 공급 장치(100)와 무선전력 송신장치(200)간 전력 전달 효율이 개선되어 전체 무선전력 전송 시스템(20)의 전력 전송 효율도 증가될 수 있다.
도 8은 본 발명의 일 실시 예에 따른 전력 공급 장치의 전력 공급 방법을 설명하기 위한 흐름도이다.
전력 공급 장치(100)의 구성은 도 1에서 설명한 것과 동일하다.
도 8을 참고하면, 전원 공급부(110)는 전원 공급 장치(100)의 각 구성요소에 직류 전력을 공급한다(S101).
그 후, 직류 직류 변환부(130)는 전원 공급부(110)로부터 공급받은 직류 전력을 이용하여 소정의 전압 값을 갖는 직류 전압으로 변환하여 출력한다. 직류 직류 변환부(DC-DC converter)(130)는 전원 공급부(110)에서 공급받은 직류전압을 교류전압으로 변환한 다음, 변환된 교류전압을 승압 또는 강압하고 정류하여 소정의 전압 값을 갖는 직류전압을 출력할 수 있다.
그 후, 교류 전력 생성부(140)는 직류 직류 변환부(130)로부터 전달받은 직류 전력을 이용하여 교류 전력으로 변환할 수 있다(S103).
교류 전력 생성부(140)는 발진기(120)로부터 전달받은 교류전력 신호를 이용하여 직류 직류 변환부(130)로부터 전달받은 직류전력을 교류전력으로 변환할 수 있다.
교류 전력 생성부(140)는 푸쉬 풀 타입(push-pull type)의 듀얼 모스펫(Dual MOSFET)을 포함할 수 있다.
그 후, 전력 소모 방지부(150)는 변환된 교류 전력 중 조화 주파수 성분의 입력 임피던스 크기를 조절한다(S105). 즉, 전력 소모 방지부(150)는 교류 전력 생성부(140)에서 변환된 교류 전력 중 조화 주파수(Harmonic Frequency) 성분에 대한 입력 임피던스의 크기를 증가시켜 조화 주파수(Harmonic Frequency) 성분이 소모하는 전력의 크기를 감소시킬 수 있다.
이로 인해, 전력 소모 방지부(150)는 조화(harmonic) 주파수 성분으로 인해 발생하는 불필요한 전력이 무선전력 송신장치(200)에 전달되는 것을 방지하여 전력 소모를 방지할 수 있다.
그 후, 전력 소모 방지부(150)는 조화 주파수 성분의 전력이 감소된 상태의 교류 전력을 무선전력 송신장치(200)에 전달한다(S107).
도 9는 본 발명의 또 다른 실시 예에 따른 전력 공급 장치의 구성도이다.
도 9를 참조하면, 본 발명의 또 다른 실시 예에 따른 전력 공급 장치(100)는 전원 공급부(110), 발진기(120), 직류 직류 변환부(130), 전류 변화량 조절부(160) 및 교류 전력 생성부(140)를 포함할 수 있다.
전원 공급부(110), 발진기(120), 직류 직류 변환부(130) 및 교류 전력 생성부(140)는 도 1에서 설명한 내용과 같으므로 자세한 설명은 생략한다.
전류 변화량 조절부(160)는 교류 전력 생성부(140)에 인가되는 직류전류의 변화량을 조절할 수 있다. 일 실시 예에서 전류 변화량 조절부(160)는 인덕터를 포함할 수 있다.
전류 변화량 조절부(160)는 직류 직류 변환부(130)와 교류 전력 생성부(140)의 사이에 배치되어 교류 전력 생성부(140)에 인가되는 직류전류의 변화량을 조절할 수 있다.
특히, 전류 변화량 조절부(160)는 교류 전력 생성부(140)에 인가되는 직류전류의 양이 급격히 변화하는 것을 방지할 수 있다. 직류전류의 양이 갑자기 변화하게 되면, 교류 전력 생성부(140)에서 출력하는 교류전류에 불필요한 주파수 신호가 발생할 수 있다.
즉, 무선전력 송신장치와 무선전력 수신장치의 전력 전송 상태에 따라 전원 공급부(110)에서 교류 전력 생성부(140)(구체적으로는, 제1 모스펫(141) 및 제2 모스펫(143))로 인가되는 직류전류의 양이 갑자기 변화할 수 있는데, 전류 변화량 조절부(160)는 직류전류의 양이 갑자기 변화되는 것을 방지한다.
이는, 전류 변화량 조절부(160)로 인덕터가 사용된 경우, 교류 전력 생성부(140)로 흐르는 전류의 양이 급격히 변화하려고 해도 자기장이 이를 따라올 수 없어, 전류는 인가된 전압에 비례하는 일정한 기울기를 가지고 서서히 증가하기 때문이다. 일정한 기울기에 해당하는 값은 인덕터의 자기 인덕턴스(self-inductance)을 의미한다.
인덕터는 교류 전력 생성부(140)가 출력하는 교류전력의 신호가 완전한 구형파가 되는 것을 방지할 수 있다. 이는, 교류 전력 생성부(140)가 출력하는 교류전력 신호의 성분 중 조화 주파수 성분의 크기가 작아지게 됨을 의미할 수 있다.
결과적으로, 인덕터는 교류 전력 생성부(140)가 출력하는 교류전력 신호의 성분 중 불필요한 조화 주파수 성분의 크기를 낮추어 직류전력을 교류전력으로 변환할 시 변환효율을 높일 수 있고, 이에 따라 무선전력 전송 시스템의 전력 전송 효율이 향상될 수 있다.
일 실시 예에서 인덕터의 인덕턴스 값이 커지면, 변환효율이 높아질 수 있다. 이를 위해 전류 변화량 조절부(160)는 가변 인덕터가 사용될 수 있다. 전력 공급 장치(100)는 제어부(미도시)를 별도로 더 구비하여 가변 인덕터의 인덕턴스 값을 조절할 수 있다.
또한, 인덕터의 인덕턴스 값이 커지면, 조화 주파수 성분 및 기본 주파수 성분이 함께 감소하지만, 특히, 조화 주파수 성분의 크기가 상대적으로 더 많이 줄어들어 전력 공급 장치(100)의 변환효율을 높일 수 있다. 그 이유는, 각 주파수에 대한 인덕터의 임피던스의 크기는 2πfL로, 높은 주파수에서 인덕턴스 값이 커질수록 임피던스의 크기도 커져 조화 주파수 성분을 감소시키기 때문이다.
다음으로 도 10 내지 도 13을 참고하여, 전류 변화량 조절부(160)로 인덕터를 적용하지 않은 경우와 적용한 경우, 교류 전력 생성부(140)의 출력 파형을 설명한다.
도 10 내지 도 13은 전류 변화량 조절부의 적용여부에 따른 전력 공급 장치의 출력 파형을 설명하기 위한 도면이다.
구체적으로, 도 10 및 도 11은 전류 변화량 조절부(160)를 포함하지 않은 경우, 교류 전력 생성부(140)의 출력 파형에 대한 도면이고, 도 12 및 도 13은 전류 변화량 조절부(160)로 인덕터를 적용한 경우, 교류 전력 생성부(140)의 출력 파형에 대한 도면이다.
기본 주파수는 300kHz로 가정하나, 이는 예시에 불과하다.
먼저, 도 10 및 도 12를 비교한다.
도 10 및 도 12는 시간에 대한 교류 전력 생성부(140)에서 출력하는 전압의 크기를 나타낸 그래프이다.
도 10 참고하면, 교류 전력 생성부(140)는 push-pull type으로 제1 모스펫(141) 및 제2 모스펫(143)을 스위칭하는 방식을 취하고 있으므로, 출력 파형은 구형파의 형태이다.
이에 반해, 도 12는 교류 전력 생성부(140)의 제1 모스펫(141)에 전류 변화량 조절부(160)로 인덕터가 연결되어, 도 10의 그래프와는 달리, 출력 파형이 구형파의 형태를 갖지 않는다. 즉, 출력 파형이 구형파처럼 급격히 증가하는 부분이 없이 다소 완만하게 증가하거나, 다소 완만하게 감소하는 파형을 갖는다.
이는, 인덕터가 가지는 자기 인덕턴스(self-inductance) 특성으로 인하여, 인덕터를 통과하는 전류가 급격히 증가하거나, 감소할 수 없기 때문이다. 결과적으로 교류 전력 생성부(140)에서 출력되는 파형 또한, 급격히 증거하거나, 감소하는 부분이 없게 되고, 곡선과 같이 기울기가 완만하게 증가하거나, 완만하게 감소하는 부분이 나타나게 된다.
다음으로 도 11과 도 13을 비교한다.
도 11 및 도 13은 주파수에 대한 교류 전력 생성부(140)에서 출력하는 전압의 크기를 나타낸 그래프이다.
도 11 및 도 13을 참고하여 교류 전력 생성부(140)에서 출력하는 파형을 비교해보면, 주파수가 커질수록 도 11의 경우보다, 전류 변화량 조절부(160)가 포함된 실시 예인 도 13의 경우가 조화 주파수(Harmonic Frequency) 성분이 감소한 것을 확인할 수 있다. 즉, 기본 주파수를 제외한, 조화 주파수 성분의 전압이 주파수가 커짐에 따라 감소함을 확인할 수 있다.
전력 전송에서 실제 전달되는 교류전력 신호는 기본 주파수 성분이고, 조화 주파수 성분은 불필요한 성분이므로, 전류 변화량 조절부(160)로 인덕터를 적용하면, 교류 전력 생성부(140)의 출력에서 조화 주파수 성분을 감소시켜 전체적인 전력 전송 효율을 향상시킬 수 있다.
도 14는 본 발명의 또 다른 실시 예에 따른 전력 공급 장치의 전력 공급 방법에 대한 흐름도이다.
전력 공급 장치(100)의 구성은 도 9에서 설명한 것과 같다.
전원 공급부(110)는 직류 전력을 직류 직류 변환부(130)에 공급한다(S201).
그 후, 직류 직류 변환부(130)는 전원 공급부(110)로부터 공급받은 직류 전력을 이용하여 소정의 직류 전압 값을 갖는 직류 전력으로 변환하여 출력한다(S203).
직류 직류 변환부(130)는 전원 공급부(110)에서 공급받은 직류전압을 교류전압으로 변환한 다음, 변환된 교류전압을 승압 또는 강압하고 정류하여 소정의 전압 값을 갖는 직류전압을 출력할 수 있다.
그 후, 전류 변화량 조절부(160)는 교류 전력 생성부(140)에 인가되는 직류전력의 전류 성분의 변화량을 조절할 수 있다(S205). 구체적으로, 전류 변화량 조절부(160)는 직류 직류 변환부(130)로부터 전달받은 직류전력에서 전류 성분의 변화가 급격히 증가하거나 감소하는 것을 방지할 수 있다.
전류 변화량 조절부(160)에 의해 직류전력의 전류 성분의 변화가 급격히 증가되거나 감소되는 것이 방지되면, 교류 전력 생성부(140)에서 생성된 교류 전력의 조화 주파수 성분이 감소될 수 있다.
그 후, 교류 전력 생성부(140)는 전류 성분의 변화량이 조절된 직류전력을 교류전력으로 변환할 수 있다(S207). 위에서 설명한 것처럼, 교류 전력 생성부(140)는 조화 주파수 성분이 감소된 교류 전력을 출력하여 조화 주파수 성분으로 인해 발생하는 불필요한 전력 소모를 줄일 수 있다.
도 15는 본 발명의 또 다른 실시 예에 따른 전력 공급 장치를 설명하기 위한 블록도이다.
도 15를 참조하면, 본 발명의 또 다른 실시 예에 따른 전력 공급 장치(100)는 전원 공급부(110), 발진기(120), 직류직류 변환부(130), 교류 전력 공급부(170)를 포함할 수 있다.
전원 공급부(110), 발진기(120) 및 직류직류 변환부(130)는 도 1에서 설명한 내용과 같으므로 자세한 설명은 생략한다.
교류전력 공급부(170)는 조화성분 감소부(175) 및 교류전력 생성부(140)를 포함할 수 있다.
조화성분 감소부(175)는 도 5에서 설명한 전력 소모 방지부(150) 및 도 9에서 설명한 전류 변화량 조절부(160) 중 적어도 하나를 포함할 수 있다.
조화성분 감소부(175)는 무선전력 송신장치(200)에 전달되는 전력 중 조화주파수 성분에 대한 전력의 크기를 감소시킬 수 있다. 특히, 조화성분 감소부(175)는 교류 전력 생성부(140)에 인가되거나 교류 전력 생성부(140)에서 출력되는 전력 중 조화주파수 성분에 대한 전력의 크기를 감소시킬 수 있다.
조화성분 감소부(175)가 전력 소모 방지부(150)를 포함하는 경우, 전력 소모 방지부(150)는 교류 전력 생성부(140)에서 변환된 교류 전력 중 조화 주파수(Harmonic Frequency) 성분에 대한 입력 임피던스의 크기를 증가시켜 조화 주파수 성분에 대한 전력의 크기를 감소시킬 수 있다. 이에 대한 구체적은 설명은 도 5에서 설명한 것과 같다.
조화성분 감소부(175)가 전류 변화량 조절부(160)를 포함하는 경우, 전류 변화량 조절부(160)는 교류전력 생성부(140)에 인가되는 직류전력의 양이 급격히 변화하는 것을 방지하여 조화주파수 성분에 대한 전력의 크기를 감소시킬 수 있다. 이에 대한 구체적인 설명은 도 9에서 설명한 것과 같다.
본 발명의 실시 예에 따르면, 전력 공급 장치(100)에서 무선전력 송신장치(200)로 전달하는 교류 전력 중 조화 주파수 성분의 전력을 감소시켜 전력 전송 효율을 높일 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해 되어서는 안될 것이다.

Claims (11)

  1. 무선전력 송신장치의 전력 공급 장치로서,
    직류 전력을 공급하는 전원 공급부;
    상기 직류 전력을 이용하여 교류 전력을 생성하는 교류 전력 생성부; 및
    상기 생성된 교류 전력 중 조화주파수 성분에 대한 전력의 크기를 감소시키는 조화성분 감소부를 포함하는
    전력 공급 장치.
  2. 제1항에 있어서,
    상기 조화성분 감소부는
    상기 생성된 교류 전력 중 조화 주파수 성분에 대한 임피던스를 증가시켜 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 전력 소모 방지부를 포함하는 것을 특징으로 하는
    전력 공급 장치.
  3. 제2항에 있어서,
    상기 전력 소모 방지부는
    상기 전력 공급 장치에서 상기 무선전력 송신장치를 바라본 입력 임피던스를 증가시켜 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 것을 특징으로 하는
    전력 공급 장치.
  4. 제1항에 있어서,
    상기 조화성분 감소부는,
    상기 전원 공급부에서 상기 교류 전력 생성부로 공급되는 전류의 변화량을 조절하여 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 전류 변화량 조절부를 포함하는
    전력 공급 장치.
  5. 제1항에 있어서,
    상기 조화성분 감소부는,
    인덕터를 포함하는 것을 특징으로 하는
    전력 공급 장치.
  6. 제1항에 있어서,
    상기 교류 전력 생성부는
    상기 직류 전력을 교류 전력으로 변환하는 제1 모스펫 및 제2 모스펫;
    상기 제1 모스펫 및 상기 제2 모스펫에 각각 크기는 같고, 위상은 반대인 교류전력 신호를 인가하는 드라이버를 포함하는 것을 특징으로 하는
    전력 공급 장치.
  7. 제6항에 있어서,
    소정의 주파수를 갖는 교류전력 신호를 상기 드라이버에 인가하는 발진기를 더 포함하는 것을 특징으로 하는
    전력 공급 장치.
  8. 제1항에 있어서,
    상기 전원 공급부로부터 공급받은 직류전력을 소정의 크기를 갖는 직류전력으로 변환하고, 상기 변환된 직류전력을 상기 교류 전력 생성부에 전달하는 직류 직류 변환부를 더 포함하는
    전력 공급 장치.
  9. 무선전력 송신장치에 전력을 공급하는 전력 공급 장치의 전력 공급 방법에 있어서,
    직류 전력을 공급하는 단계;
    상기 직류 전력을 이용하여 교류 전력을 출력하는 단계; 및
    상기 출력된 교류 전력 중 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 단계를 포함하는
    전력 공급 장치의 전력 공급 방법.
  10. 제9항에 있어서,
    상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 단계는
    상기 전력 공급 장치에서 상기 무선전력 송신장치를 바라본 입력 임피던스를 증가시켜 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 단계를 포함하는
    전력 공급 장치의 전력 공급 방법.
  11. 제9항에 있어서,
    상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 단계는
    상기 교류 전력을 출력하는 교류 전력 생성부로 공급되는 전류의 변화량을 조절하여 상기 조화 주파수 성분에 대한 전력의 크기를 감소시키는 단계를 포함하는
    전력 공급 장치의 전력 공급 방법.
PCT/KR2013/002687 2012-04-05 2013-04-01 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법 WO2013151290A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/390,682 US9899874B2 (en) 2012-04-05 2013-04-01 Electric power supplying device, of a wireless electric power transmission apparatus and method for supplying electric power

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0035668 2012-04-05
KR1020120035668A KR101405806B1 (ko) 2012-04-05 2012-04-05 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
KR10-2012-0036087 2012-04-06
KR1020120036087A KR101393852B1 (ko) 2012-04-06 2012-04-06 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법

Publications (1)

Publication Number Publication Date
WO2013151290A1 true WO2013151290A1 (ko) 2013-10-10

Family

ID=49300729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002687 WO2013151290A1 (ko) 2012-04-05 2013-04-01 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법

Country Status (2)

Country Link
US (1) US9899874B2 (ko)
WO (1) WO2013151290A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458770B1 (ko) * 2015-07-17 2022-10-26 한국전자통신연구원 전자파 저감 장치 및 방법
US20170047914A1 (en) * 2015-08-12 2017-02-16 International Business Machines Corporation Pulse generator with switched capacitors
CN105244883B (zh) * 2015-11-20 2018-08-17 国家电网公司 一种高频滤波器
US9973092B2 (en) * 2016-04-22 2018-05-15 General Electric Company Gas tube-switched high voltage DC power converter
US11170360B2 (en) 2016-08-01 2021-11-09 Samsung Electronics Co., Ltd. Magnetic secure transmission (MST) device, MST system and controller including the same
KR102491814B1 (ko) 2016-08-01 2023-01-26 삼성전자주식회사 자기 보안 전송 장치, 이를 포함하는 전자 장치 및 모바일 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207606A (ja) * 1992-01-24 1993-08-13 Daifuku Co Ltd 移動体の無接触給電設備
JPH10201144A (ja) * 1997-01-09 1998-07-31 Yamaha Motor Co Ltd 給電装置
JP2004080844A (ja) * 2002-08-09 2004-03-11 Yazaki Corp 電力伝送装置および電力・信号伝送装置
KR20050054816A (ko) * 2003-12-05 2005-06-10 가부시키가이샤 다이후쿠 무접촉 급전설비

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522878B2 (en) * 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6825620B2 (en) * 1999-06-21 2004-11-30 Access Business Group International Llc Inductively coupled ballast circuit
US6160374A (en) * 1999-08-02 2000-12-12 General Motors Corporation Power-factor-corrected single-stage inductive charger
WO2007029438A1 (ja) * 2005-09-01 2007-03-15 National University Corporation Saitama University 非接触給電装置
KR101248453B1 (ko) * 2008-12-09 2013-04-01 도요타지도샤가부시키가이샤 비접촉 전력 전송 장치 및 비접촉 전력 전송 장치에 있어서의 전력 전송 방법
JP5459058B2 (ja) 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
US20130049674A1 (en) * 2011-08-24 2013-02-28 Qualcomm Incorporated Integrated photo voltaic solar plant and electric vehicle charging station and method of operation
US9118203B2 (en) * 2011-11-15 2015-08-25 Qualcomm Incorporated Systems and methods for induction charging with a closed magnetic loop

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207606A (ja) * 1992-01-24 1993-08-13 Daifuku Co Ltd 移動体の無接触給電設備
JPH10201144A (ja) * 1997-01-09 1998-07-31 Yamaha Motor Co Ltd 給電装置
JP2004080844A (ja) * 2002-08-09 2004-03-11 Yazaki Corp 電力伝送装置および電力・信号伝送装置
KR20050054816A (ko) * 2003-12-05 2005-06-10 가부시키가이샤 다이후쿠 무접촉 급전설비

Also Published As

Publication number Publication date
US20150102683A1 (en) 2015-04-16
US9899874B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
WO2015037949A1 (ko) 충전 제어 장치, 충전 제어 방법 및 이를 구비한 무선전력 수신장치
WO2017065526A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2012111969A2 (en) Apparatus and method for high efficiency variable power transmission
WO2014073863A1 (en) Wireless power receiving device and power control method thereof
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2015105334A1 (ko) 무선 전력 송신 장치 및 무선 전력 전송 시스템
WO2013162336A1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
WO2016195249A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2016093478A1 (ko) 무선전력 송신장치
WO2017034143A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2014092339A1 (en) Wirless power receiver and method of controlling the same
WO2018194337A1 (ko) 무선 충전을 위한 무선 전력 송신 장치
WO2019143028A1 (ko) 높은 품질 인자를 가지는 무선 충전 코일
WO2017026721A1 (ko) 무선 전력 전송 시스템 및 이의 구동 방법
WO2016052865A1 (ko) 무선전력전송 시스템
WO2015064815A1 (ko) 하이브리드 무선 전력 전송 시스템 및 그 방법
WO2013048034A1 (en) Wireless power transmitter, wireless power receiver and impedence control method
WO2014062023A1 (ko) 무선 전력 송수신 장치
WO2014073932A1 (en) Power supplying apparatus and wireless power transmitterpower transmitter
WO2014119871A1 (en) Wireless power transmitting apparatus and method thereof
WO2015020432A1 (ko) 무선전력 송신장치
WO2018008841A1 (ko) 무선 충전을 위한 무선 전력 제어 방법 및 장치
WO2015012509A1 (en) Power transmitting unit (ptu) and power receiving unit (pru), and communication method of ptu and pru in wireless power transmission system
WO2017023064A1 (ko) 무선 전력 전송 시스템 및 이의 구동 방법
WO2017200193A1 (ko) 무선 전력 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14390682

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771801

Country of ref document: EP

Kind code of ref document: A1