WO2015020010A1 - 表示パネルの製造方法及び表示パネル - Google Patents

表示パネルの製造方法及び表示パネル Download PDF

Info

Publication number
WO2015020010A1
WO2015020010A1 PCT/JP2014/070514 JP2014070514W WO2015020010A1 WO 2015020010 A1 WO2015020010 A1 WO 2015020010A1 JP 2014070514 W JP2014070514 W JP 2014070514W WO 2015020010 A1 WO2015020010 A1 WO 2015020010A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
signal
display panel
substrate
additional capacitor
Prior art date
Application number
PCT/JP2014/070514
Other languages
English (en)
French (fr)
Inventor
進次 松崎
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to US14/784,261 priority Critical patent/US20160048066A1/en
Publication of WO2015020010A1 publication Critical patent/WO2015020010A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects

Definitions

  • the present invention relates to a method for manufacturing a display panel for displaying video and a display panel.
  • Thin display devices such as liquid crystal display devices, are generally widespread because they have a larger display area than the installation area.
  • an active matrix substrate can be given (for example, Patent Document 1).
  • the active matrix substrate includes thin film transistors (hereinafter referred to as TFTs) which are switching elements formed in a matrix, a plurality of pixel electrodes formed in a matrix corresponding to each TFT, and the row direction and the column direction thereof.
  • TFTs thin film transistors
  • the gate wiring and the gate wiring as the scanning wiring and the source wiring as the signal wiring.
  • the gate wiring also serves as the gate electrode of the TFT configured thereon, and the TFT is driven and controlled by giving a scanning signal thereto.
  • the source wiring is connected to the source electrode of each TFT, and applies a data signal to the pixel electrode through the TFT when the TFT is driven.
  • the drain electrode of the TFT is connected to one terminal of the pixel electrode and the additional capacitor, and the other terminal of the additional capacitor is connected to the additional capacitor wiring and is connected to the counter electrode on the counter substrate.
  • the number of pixel electrodes must be increased by reducing the pixel electrodes.
  • the number of TFTs must be reduced and the number increased.
  • the TFT characteristic defect, the pixel electrode and each wiring, and the electrical leakage between the wirings occur due to the accuracy of the manufacturing apparatus and dust.
  • it When it is lit as a liquid crystal display device, it appears as a point defect or a line defect, which is not preferable for display quality.
  • an opening is provided in the gate wiring.
  • One edge portion of the opening parallel to the gate wiring and the other edge portion facing the one edge portion are electrical paths.
  • the source wiring intersects on the one edge and the other edge, and a defect occurs at the intersection between the one edge or the other edge and the source wiring, a gate is formed at the intersection. Wiring is cut to prevent generation of bright spots and to avoid disconnection of the gate wiring.
  • a spare wiring for applying a voltage is provided on the periphery of the active matrix substrate. Since no voltage is applied to the source wiring that is not connected to the drive unit among the source wirings that are divided by cutting, the source wiring and the spare wiring are connected by laser irradiation to prevent this. ing. However, the connection may not be sufficient with laser irradiation.
  • the present invention has been made in view of such circumstances, and relates to a display panel manufacturing method and a display panel that can reliably perform connection for correction when wiring or the like on a substrate is corrected.
  • a display panel manufacturing method is formed on a substrate holding liquid crystal, and a signal wiring for transmitting a signal for displaying an image, and a voltage applying wiring for applying a voltage to the signal wiring.
  • the signal wiring is formed on the substrate, the voltage application wiring is formed on the substrate, the signal wiring is cut, and one of the signal wirings divided by the cutting and the voltage The application wiring is connected by an ion implantation method.
  • the display panel manufacturing method is formed on a substrate that holds liquid crystal, and a scanning wiring for transmitting a scanning signal, a signal wiring orthogonal to the scanning wiring, and the signal wiring and the scanning wiring intersect.
  • a method for manufacturing a display panel comprising a switching element formed corresponding to a location and an additional capacitor connected to an electrode of the switching element, the switching element is formed on the substrate, and the additional capacitor is formed on the substrate. Formed, the connection between the electrode of the switching element and the additional capacitor is disconnected, and both electrodes of the additional capacitor are connected by an ion implantation method.
  • the method for manufacturing a display panel according to the present invention is characterized in that a mask is disposed on one side of the substrate, and an ion beam is irradiated by an electron gun from the opposite side of the substrate to the mask.
  • a display panel according to the present invention is formed on a substrate that holds liquid crystal, and includes a signal wiring for transmitting a signal for displaying an image and a voltage application wiring for applying a voltage to the signal wiring.
  • the signal wiring is cut, one of the signal wirings divided by cutting and the voltage application wiring are connected, and the ion concentration of one of the signal wirings and the connection portion of the voltage application wiring is It is characterized in that the concentration is higher than other portions in the signal wiring.
  • the display panel according to the present invention is formed on a substrate that holds liquid crystal, and corresponds to a scanning wiring for transmitting a scanning signal, a signal wiring orthogonal to the scanning wiring, and a location where the signal wiring and the scanning wiring intersect.
  • the display panel comprising the switching element formed as described above and the additional capacitor connected to the electrode of the switching element, the connection between the electrode of the switching element and the additional capacitor is disconnected, and both electrodes of the additional capacitor are It is connected,
  • the ion concentration of the connection part of the said both electrodes is higher concentration than the other part in the said both electrodes, It is characterized by the above-mentioned.
  • the signal wiring is divided at the defective portion, one of the divided signal wirings is connected to the voltage applying wiring by the ion implantation method, and the signal wiring and the voltage applying wiring are reliably connected.
  • the connection between the electrode and the additional capacitor is disconnected, and both electrodes of the additional capacitor are connected by the ion implantation method. Make sure the connection is successful.
  • the substrate is arranged on one side (lower side) of the mask, and the ion beam is irradiated by the electron gun from the other side (upper side) of the mask. Therefore, one mask can be applied to a plurality of substrates, and a resist pattern As compared with the case where the ion beam is formed and the ion beam is irradiated, the ion implantation method can be executed efficiently in a short time, and the manufacturing cost can be reduced.
  • a display panel manufacturing method and a display panel according to the present invention include dividing a signal wiring at a defective portion, connecting one of the divided signal wirings and a wiring for applying a voltage by an ion implantation method, and Compared with the case of using, it is possible to reliably execute connection of signal wiring and wiring for applying a voltage.
  • the connection between the drain electrode and the additional capacitor is disconnected, both electrodes of the additional capacitor are connected by the ion implantation method, and the laser is Compared with the case of using, it is possible to reliably connect the additional capacity.
  • FIG. 3 is an equivalent circuit diagram of an active matrix substrate of the liquid crystal display panel according to Embodiment 1.
  • FIG. It is a typical expanded sectional view near a foreign material. It is typical sectional drawing of a connection location. It is explanatory drawing explaining the connection method of a source wiring and a spare wiring. It is explanatory drawing explaining the connection method of a source wiring and a spare wiring. It is typical sectional drawing which shows the connection location by laser irradiation.
  • 6 is an equivalent circuit diagram of an active matrix substrate showing a configuration in the vicinity of a TFT of a liquid crystal display panel according to Embodiment 2.
  • FIG. It is explanatory drawing explaining the connection method of additional capacity. It is explanatory drawing explaining the connection method of additional capacity. It is typical sectional drawing which shows the connection location by laser irradiation.
  • FIG. 1 is an equivalent circuit diagram of an active matrix substrate of a liquid crystal display panel
  • FIG. 2 is a schematic enlarged cross-sectional view in the vicinity of a foreign object
  • FIG. 3 is a schematic cross-sectional view of a connection location.
  • the liquid crystal panel is manufactured by manufacturing the TFT 20 (that is, the active matrix substrate 10), providing a liquid crystal between the manufactured active matrix substrate 10 and the substrate on the color filter side, bonding both substrates, and dividing them into predetermined dimensions. Is done.
  • the active matrix substrate 10 includes a TFT side glass substrate 1, a gate wiring 2 provided on the TFT side glass substrate 1, an insulating film 3 provided on the TFT side glass substrate 1 and the gate wiring 2, A source line 4 provided on the insulating film 3 and a protective film 5 provided on the source line 4 are provided.
  • the insulating film 3 is formed by plasma CVD (Chemical Vapor Deposition).
  • the active matrix substrate 10 faces the color filter side glass substrate 6.
  • An ITO film 7 is provided on one surface of the color filter side glass substrate 6.
  • the ITO film 7 and the protective film 5 of the active matrix substrate 10 face each other.
  • the gate wiring 2 which is a scanning wiring and the source wiring 4 which is a signal wiring are formed so as to intersect in the vertical and horizontal directions. For example, as shown in FIG. 1, a plurality of gate wirings 2 along the horizontal direction are arranged in the vertical direction, and a plurality of source wirings 4 along the vertical direction are arranged in the horizontal direction.
  • the source line 4 is located above the gate line 2.
  • a source driver 14 for applying a voltage is connected to one end of the source wiring 4.
  • a gate driver 12 for applying a voltage is connected to one end of the gate wiring 2.
  • a spare wiring 11 for applying a voltage is provided on the periphery of the active matrix substrate 10 (in other words, outside the active area for displaying an image).
  • the spare wiring 11 is formed when the gate wiring 2 is formed, and is composed of the same components as the gate wiring 2. A voltage is applied to the spare wiring 11 from the source driver 14.
  • the TFT 20 is provided in the vicinity of the location where the gate wiring 2 and the source wiring 4 intersect, and inside the cell formed by the gate wiring 2 and the source wiring 4.
  • the gate electrode 21 of the TFT 20 is connected to the gate wiring 2, and the source electrode 22 is connected to the source wiring 4.
  • the TFT 20 is formed on the gate wiring 2.
  • additional capacity lines 34 are formed in parallel with the gate lines 2.
  • the additional capacity wiring 34 is grounded. Since the alignment speed of the liquid crystal is high, an additional capacitor 30 is interposed between the drain electrode 23 of the TFT 20 and the additional capacitor wiring 34 in order to prevent a flicker phenomenon in which the screen flickers. That is, one electrode of the additional capacitor 30 and the drain electrode 23 are connected, and the other electrode and the additional capacitor wiring 34 are connected.
  • the drain electrode 23 is connected to one of the pixel electrodes 40.
  • the other of the pixel electrodes 40 is grounded.
  • the foreign material 8 may enter and be positioned on the insulating film 3.
  • the source wiring 4 is also formed on the foreign material 8.
  • the protective film 5 is formed on the source wiring 4, since the source wiring 4 formed on the foreign material 8 protrudes following the foreign material 8, the protective film 5 covers the source wiring 4 on the foreign material 8. I can't cover it.
  • the source wiring 4 comes into contact with the ITO film 7 provided on the color filter side glass substrate 6, and electrical leakage (opposing leakage) occurs.
  • the presence or absence of a defect (such as the presence of the foreign material 8 having a height higher than a predetermined level) that may cause a counter leak is inspected.
  • the cutting portion in the source wiring 4 is also referred to as a cutting portion 4a).
  • the cutting portion 4a can prevent the occurrence of counter leakage.
  • the source line 4 is divided into two parts, a source line 4 connected to the source driver 14 and a source line 4 not connected to the source driver 14 by the cutting part 4 a.
  • the source wiring 4 not connected to the source driving unit 14 is connected to the spare wiring 11 so as to transmit a signal (voltage) from the source driving unit 14.
  • FIG. 3 is a schematic cross-sectional view showing a connection portion 15 between the source wiring 4 and the spare wiring 11.
  • the insulating film 3 exists between the source wiring 4 and the spare wiring 11.
  • a layer (N + layer) 50 containing more impurities (ions) than other portions is formed in the connection portion 15.
  • the N + layer 50 is formed from the insulating film 3 to the source wiring 4 and the spare wiring 11. In other words, the source wiring 4 and the spare wiring 11 are connected by the N + layer 50.
  • 4A and 4B are explanatory diagrams for explaining a method of connecting the source wiring 4 and the spare wiring 11.
  • a mask 60 in which a mask hole 61 is formed at a position corresponding to the connection portion 15 between the source wiring 4 and the spare wiring 11 is prepared.
  • An electron gun 70 for irradiating an ion beam is disposed above the mask hole 61.
  • the electron gun 70 is directed to the mask hole 61.
  • the electron gun 70 can be rotated horizontally and vertically.
  • the electron gun 70 rotates a predetermined distance in one horizontal direction, and then rotates a slight distance (a distance sufficiently shorter than the predetermined distance) in one vertical direction. Then, after rotating a predetermined distance in the other direction in the horizontal direction, it is rotated a small distance in one direction in the vertical direction, and these operations are repeated.
  • the trajectory of the ion beam irradiated from the electron gun 70 has a zigzag shape in which the horizontal crank shape is continuous.
  • the active matrix substrate 10 is disposed at a predetermined position below the mask 60.
  • the electron gun 70 irradiates an ion beam (ion particles) toward the mask hole 61 while rotating.
  • the ion beam that has passed through the mask hole 61 is applied to the connection portion 15 between the source wiring 4 and the spare wiring 11, and ions are implanted into the connection portion 15.
  • the electron gun 70 irradiates the ion beam while rotating, the irradiation area tends to increase. However, by using the mask 60, it is possible to inject ions at connection points in a pinpoint manner.
  • Examples of the types of ions used in the ion implantation include arsenic ions and phosphorus ions. Further, the dose amount of ions to be implanted is preferably 10 18 [ions / cm 2 ] or more. Further, the energy of the ion beam is preferably 500 [keV] to several [MkeV].
  • the ion concentration by the ion implantation method is highest at a predetermined depth, and the ion concentration becomes lower as the depth becomes deeper than the predetermined depth and becomes shallower than the predetermined depth.
  • ions are implanted in the vicinity of the insulating film 3 so that the ion concentration becomes the highest.
  • the ion concentration in the vicinity of the source wiring 4 and the spare wiring 11 is lower than that in the vicinity of the insulating film 3, but has an ion concentration sufficient for the source wiring 4 and the spare wiring 11 to be electrically connected.
  • ion implantation may be performed a plurality of times in order to electrically connect the source wiring 4 and the spare wiring 11.
  • FIG. 5 is a schematic cross-sectional view showing the connection portion 15 by laser irradiation.
  • the spare wiring 11 when the spare wiring 11 is irradiated with a laser, a hole is formed in the active matrix substrate 10, and the spare wiring 11 protrudes to the source wiring 4 along the inner peripheral surface of the hole. Connect to.
  • connection area is smaller than the connection by the N + layer 50. Therefore, when the display panel is bent, or when a force is applied from the outside, the connection may be disconnected.
  • the entire N + layer 50 forms a connection portion and is embedded in the layer. Further, since the insulating film 3 is formed by plasma CVD, it has high adhesion, and when the display panel is bent, even if a force is applied from the outside, it is not easily removed. Therefore, a more reliable connection can be realized.
  • the source wiring 4 is divided at the defective portion, and the source wiring 4 and the spare wiring 11 that are not connected to the source driver 14 are connected by the ion implantation method. . Therefore, it is possible to reliably connect the source wiring 4 and the spare wiring 11 as compared with the case of using a laser.
  • the active matrix substrate 10 is disposed below the mask 60 and the ion beam is irradiated from above the mask 60 by the electron gun 70, one mask 60 can be applied to a plurality of substrates, and one active matrix substrate 10 Since the ion implantation method can be performed efficiently in a short time as compared with the case where the resist pattern is formed and the ion beam is irradiated, the manufacturing cost can be reduced.
  • FIG. 6 is an equivalent circuit diagram of the active matrix substrate 10 showing the configuration in the vicinity of the TFT 20
  • FIGS. 7A and 7B are explanatory diagrams for explaining a connection method of the additional capacitor 30.
  • the drain electrode 23 and the source electrode 22 of the TFT 20 may be short-circuited, and so-called SD leakage may occur.
  • the pixel in which the SD leak has occurred becomes a bright spot.
  • the cut portion is also referred to as a cut portion 23a. Further, both electrodes of the additional capacitor 30 are connected, and the additional capacitor 30 is set to the same potential (0 V) as that of the additional capacitor wiring 34.
  • the cutting portion 23 a prevents the potential of the drain electrode 23 from being affected by the potential of the additional capacitor 30.
  • the additional capacitor 30 is configured by disposing an insulating film 33 that is a dielectric between a first metal layer 31 and a second metal layer 32 that are electrodes.
  • Each of the first metal layer 31 and the second metal layer 32 is formed when the source wiring 4 and the gate wiring 2 are formed, and is composed of the same components as the source wiring 4 and the gate wiring 2.
  • an N + layer 36 is formed at the connection location 35 of the additional capacitor 30.
  • the N + layer 36 is formed from the insulating film 33 to the first metal layer 31 and the second metal layer 32. In other words, the first metal layer 31 and the second metal layer 32 are connected by the N + layer 36.
  • a mask 60 in which a mask hole 61 is formed at a position corresponding to the connection portion 35 between the first metal layer 31 and the second metal layer 32 is prepared.
  • An electron gun 70 for irradiating an ion beam is disposed above the mask hole 61.
  • the electron gun 70 is directed to the mask hole 61.
  • the electron gun 70 can be rotated in the horizontal direction and the vertical direction.
  • the electron gun 70 rotates a predetermined distance in one horizontal direction, and then rotates a slight distance (a distance sufficiently shorter than the predetermined distance) in one vertical direction. Then, after rotating a predetermined distance in the other direction in the horizontal direction, it is rotated a small distance in one direction in the vertical direction, and these operations are repeated.
  • the trajectory of the ion beam irradiated from the electron gun 70 has a zigzag shape in which the horizontal crank shape is continuous.
  • the active matrix substrate 10 is disposed at a predetermined position below the mask 60.
  • the electron gun 70 irradiates an ion beam toward the mask hole 61 while rotating.
  • the ion beam that has passed through the mask hole 61 is applied to the connection portion 35 of the first metal layer 31 and the second metal layer 32, and ions are implanted into the connection portion 35.
  • FIG. 8 is a schematic cross-sectional view showing a connection portion 35 by laser irradiation.
  • the electrodes of the additional capacitor 30 are connected by laser irradiation, a hole is formed in the active matrix substrate 10, and the first metal layer 31 protrudes to the second metal layer 32 along the inner peripheral surface of the hole. Connected to the second metal layer 32. Since the second metal layer 32 is connected to the protruding portion of the first metal layer 31, the connection area is smaller than the connection by the N + layer.
  • the entire N + layer 36 forms a connection portion and is embedded in the layer, so that a more reliable connection can be realized. .
  • the display panel manufacturing method and the display panel according to Embodiment 2 connect the drain electrode 23 and the additional capacitor 30 when an electrical leak occurs between the source electrode 22 and the drain electrode 23 of the TFT 20.
  • the two electrodes of the additional capacitor 30 are disconnected and connected by an ion implantation method, and the connection of the additional capacitor 30 can be performed more reliably than in the case of using a laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 基板における配線等を修正する場合に、修正のための接続を確実に実行することができる表示パネルの製造方法及び表示パネルを提供する。 液晶を保持する基板に形成されており、映像を表示するための信号が伝達する信号配線4と、該信号配線4に電圧を印可するための電圧印加配線11とを備える表示パネルの製造方法において、前記信号配線4を前記基板に形成し、前記電圧印加配線11を前記基板に形成し、前記信号配線4を切断し、切断によって分断された前記信号配線4の一方及び前記電圧印加配線11をイオン注入法によって接続することを特徴とする。

Description

表示パネルの製造方法及び表示パネル
 本発明は映像を表示する表示パネルの製造方法及び表示パネルに関する。
 薄型の表示装置、例えば液晶表示装置は、設置面積に比べて表示面積が大きいことから一般に広く普及している。液晶表示装置に使用されている表示パネルとしては、アクティブマトリクス基板が挙げられる(例えば特許文献1)。
 アクティブマトリクス基板は、マトリクス状に形成されたスイッチング素子である薄膜トランジスタ(以下、TFTという)と、各TFTに対応して、マトリクス状に形成された複数の画素電極と、これらの行方向および列方向に対応して直交するように形成された走査配線であるゲート配線および信号配線であるソース配線とを有している。
 ゲート配線は、その上に構成されたTFTのゲート電極を兼ね、それに走査信号を与えることによりTFTを駆動制御する。一方、ソース配線は各TFTのソース電極に接続され、TFTの駆動時にTFTを介してデータ信号を画素電極に与える。また、TFTのドレイン電極は画素電極および付加容量の一方の端子に接続され、付加容量の他方の端子は付加容量配線に接続され、対向基板上の対向電極に接続される。
 ところで、高精細な液晶表示装置を製造しようとした場合、画素電極を小さくして画素電極数を増やさなくてはならない。それにともない、TFTも小さくして数を増やさなくてはならない。こうなると、アクティブマトリクス基板の製造において、製造装置の精度やダストなどの理由で、TFTの特性不良、画素電極と各配線、配線間どうしの電気的リークが起こる可能性が高くなる。液晶表示装置として点灯した場合、点欠陥あるいは線欠陥として見え、表示品位上好ましくない。
 特許文献1に記載の液晶表示装置においては、ゲート配線に開口を設けている。ゲート配線に平行な開口の一縁部及び該一縁部に対向する他縁部は、それぞれ電気的な経路となる。前記一縁部及び他縁部上にソース配線が交差しており、前記一縁部又は他縁部いずれか一方とソース配線との交差部分に欠陥が生じている場合、その交差部分において、ゲート配線を切断し、輝点の発生を防止し且つゲート配線の断線を回避している。
特開平11-119253号公報
 電気的なリークは、ソース配線と、TFTに対向するカラーフィルタ側の基板との間でも生じ、いわゆる対向リークが生じることがある。この場合、対向リークが生じている箇所の両側にてソース配線を切断する。
 アクティブマトリクス基板の周縁部には、電圧を印可するための予備配線が設けてある。切断によって分断されたソース配線の内、駆動部に接続されていないソース配線には電圧が印可されないため、これを防止すべく、このソース配線と予備配線とをレーザ照射によって接続し、修正を行っている。しかしレーザ照射では、接続が十分でない場合がある。
 本発明は斯かる事情に鑑みてなされたものであり、基板における配線等を修正する場合に、修正のための接続を確実に実行することができる表示パネルの製造方法及び表示パネルに関する。
 本発明に係る表示パネルの製造方法は、液晶を保持する基板に形成されており、映像を表示するための信号が伝達する信号配線と、該信号配線に電圧を印可するための電圧印加配線とを備える表示パネルの製造方法において、前記信号配線を前記基板に形成し、前記電圧印加配線を前記基板に形成し、前記信号配線を切断し、切断によって分断された前記信号配線の一方及び前記電圧印加配線をイオン注入法によって接続することを特徴とする。
 本発明に係る表示パネルの製造方法は、液晶を保持する基板に形成されており、走査信号が伝達する走査配線と、該走査配線に直交する信号配線と、該信号配線及び走査配線が交差した箇所に対応して形成されたスイッチング素子と、該スイッチング素子の電極に接続された付加容量とを備える表示パネルの製造方法において、前記スイッチング素子を前記基板に形成し、前記付加容量を前記基板に形成し、前記スイッチング素子の電極及び付加容量の接続を切断し、前記付加容量の両電極をイオン注入法によって接続することを特徴とする。
 本発明に係る表示パネルの製造方法は、前記基板の一側にマスクを配置し、前記マスクにおける前記基板の反対側から電子銃によってイオンビームを照射することを特徴とする。
 本発明に係る表示パネルは、液晶を保持する基板に形成されており、映像を表示するための信号が伝達する信号配線と、該信号配線に電圧を印可するための電圧印加配線とを備える表示パネルにおいて、前記信号配線を切断してあり、切断によって分断された前記信号配線の一方及び前記電圧印加配線を接続してあり、前記信号配線の一方及び前記電圧印加配線の接続部分のイオン濃度が前記信号配線における他の部分よりも高濃度であることを特徴とする。
 本発明に係る表示パネルは、液晶を保持する基板に形成されており、走査信号が伝達する走査配線と、該走査配線に直交する信号配線と、該信号配線及び走査配線が交差した箇所に対応して形成されたスイッチング素子と、該スイッチング素子の電極に接続された付加容量とを備える表示パネルにおいて、前記スイッチング素子の電極及び付加容量の接続を切断してあり、前記付加容量の両電極が接続してあり、前記両電極の接続部分のイオン濃度が前記両電極における他の部分よりも高濃度であることを特徴とする。
 本発明においては、欠陥箇所にて信号配線を分断し、分断された信号配線の一方と電圧印可配線とをイオン注入法によって接続し、信号配線及び電圧印可配線の接続を確実に実行する。
 本発明においては、スイッチング素子の電極の間で、電気的リークが発生している場合に、電極及び付加容量の接続を切断し、付加容量の両電極をイオン注入法によって接続し、付加容量の接続を確実に実行する。
 本発明においては、基板をマスクの一側(下側)に配置し、マスクの他側(上側)から電子銃によってイオンビームを照射するので、一つのマスクを複数の基板に適用でき、レジストパターンを形成してイオンビームを照射する場合に比べて、短時間で効率よくイオン注入法を実行することができ、製造費用を削減することができる。
 本発明に係る表示パネルの製造方法及び表示パネルは、欠陥箇所にて信号配線を分断し、分断された信号配線の一方と電圧を印可するための配線とをイオン注入法によって接続し、レーザを使用する場合に比べて、信号配線及び電圧を印可するための配線の接続を確実に実行することができる。またスイッチング素子のソース電極及びドレイン電極の間で、電気的リークが発生している場合に、ドレイン電極及び付加容量の接続を切断し、付加容量の両電極をイオン注入法によって接続し、レーザを使用する場合に比べて、付加容量の接続を確実に実行することができる。
実施の形態1に係る液晶表示パネルのアクティブマトリクス基板の等価回路図である。 異物付近の模式的拡大断面図である。 接続箇所の模式的断面図である。 ソース配線と予備配線との接続方法を説明する説明図である。 ソース配線と予備配線との接続方法を説明する説明図である。 レーザ照射による接続箇所を示す模式的断面図である。 実施の形態2に係る液晶表示パネルのTFT付近の構成を示すアクティブマトリクス基板の等価回路図である。 付加容量の接続方法を説明する説明図である。 付加容量の接続方法を説明する説明図である。 レーザ照射による接続箇所を示す模式的断面図である。
 (実施の形態1)
 以下本発明を実施の形態1に係る液晶表示パネルを示す図面に基づいて説明する。図1は液晶表示パネルのアクティブマトリクス基板の等価回路図、図2は異物付近の模式的拡大断面図、図3は接続箇所の模式的断面図である。
 液晶パネルは、TFT20(すなわちアクティブマトリクス基板10)を製造し、製造したアクティブマトリクス基板10とカラーフィルタ側の基板との間に液晶を設け、両基板を貼り合わせ、所定の寸法に分断して製造される。
 アクティブマトリクス基板10は、TFT側ガラス基板1と、該TFT側ガラス基板1上に設けられたゲート配線2と、前記TFT側ガラス基板1及びゲート配線2上に設けられた絶縁膜3と、該絶縁膜3上に設けられたソース配線4と、該ソース配線4上に設けられた保護膜5とを備える。なお絶縁膜3はプラズマCVD(Chemical Vapor Deposition)によって形成されている。
 アクティブマトリクス基板10は、カラーフィルタ側ガラス基板6に対向している。カラーフィルタ側ガラス基板6の一面にはITO膜7が設けてある。該ITO膜7と、アクティブマトリクス基板10の保護膜5とが対向している。
 走査配線であるゲート配線2及び信号配線であるソース配線4は縦横方向に交差するように形成されている。例えば図1に示すように、横方向に沿った複数のゲート配線2が縦方向に並設され、縦方向に沿った複数のソース配線4が横方向に並設されている。ソース配線4は、ゲート配線2の上側に位置する。
 ソース配線4の一端部に、電圧を印加するソース駆動部14が接続してある。ゲート配線2の一端部に、電圧を印可するゲート駆動部12が接続してある。またアクティブマトリクス基板10の周縁部(換言すれば映像を表示するアクティブエリアの外側)に、電圧を印可するための予備配線11が設けてある。予備配線11はゲート配線2を形成するときに形成され、ゲート配線2と同じ成分で構成されている。予備配線11にはソース駆動部14から電圧が印可される。
 ゲート配線2及びソース配線4が交差する箇所の付近であって、ゲート配線2及びソース配線4によって形成されたマス目の内側にTFT20が設けてある。TFT20のゲート電極21はゲート配線2に接続してあり、ソース電極22はソース配線4に接続してある。なお、TFT20はゲート配線2上に形成されている。
 隣接するゲート配線2間には、ゲート配線2と平行に付加容量配線34が形成されている。付加容量配線34は接地してある。液晶の配向速度が速いために、画面がちらついて視認されるフリッカー現象を防止すべく、TFT20のドレイン電極23及び付加容量配線34の間に付加容量30が介装してある。すなわち付加容量30の一方の電極とドレイン電極23とが接続してあり、他方の電極と付加容量配線34とが接続してある。ドレイン電極23は画素電極40の一方に接続してある。画素電極40の他方は接地してある。
 図2に示すように、アクティブマトリクス基板10を製造する過程において、異物8が侵入し、絶縁膜3の上に位置することがある。ソース配線4を形成する場合に、異物8の上にもソース配線4は形成される。ソース配線4の上に保護膜5が形成されるが、異物8の上に形成されたソース配線4は異物8に倣って突出しているので、保護膜5が異物8の上のソース配線4を覆うことができない。
 このためソース配線4が、カラーフィルタ側ガラス基板6に設けられたITO膜7に接触し、電気的リーク(対向リーク)が発生する。アクティブマトリクス基板10を製造する過程において、対向リークが発生する可能性がある欠陥(所定以上の高さを有する異物8の存在等)の有無を検査する。この検査において、欠陥が発見された場合、ソース配線4における欠陥箇所の両側を切断する(以下、ソース配線4における切断箇所を切断部4aとも称する)。切断部4aによって、対向リークの発生を防止することができる。
 図1に示すように、切断部4aによって、ソース配線4は、ソース駆動部14に接続されたソース配線4と、ソース駆動部14に非接続のソース配線4との二つに分断される。ソース駆動部14に非接続のソース配線4は、ソース駆動部14からの信号(電圧)を伝達すべく、予備配線11に接続されている。
 図3は、ソース配線4と予備配線11との接続箇所15を示す模式的断面図である。ソース配線4及び予備配線11の間には、絶縁膜3が存在する。接続箇所15において、他の箇所に比べて不純物(イオン)を多く含んだ層(N+層)50が形成されている。N+層50は、絶縁膜3からソース配線4及び予備配線11に亘って形成されている。換言すればN+層50によって、ソース配線4と予備配線11とが接続されている。
 次にソース配線4と予備配線11との接続方法について説明する。図4A及び図4Bはソース配線4と予備配線11との接続方法を説明する説明図である。
 まずソース配線4と予備配線11との接続箇所15に対応した位置にマスク孔61を形成したマスク60を準備する。マスク孔61の上側にはイオンビームを照射する電子銃70を配置する。電子銃70はマスク孔61に向けられている。電子銃70は横向き及び縦向きに回動することができる。電子銃70は横向きの一方向に所定距離回動した後、縦向きの一方向に僅かな距離(前記所定距離に比べて十分に短い距離)回動する。その後横向きの他方向に所定距離回動した後、縦向きの一方向に僅かな距離回動し、これらの動作を繰り返す。その結果、電子銃70から照射されたイオンビームの軌跡は横長クランク形状が連続したジグザグ状をなす。
 マスク60の下側における所定位置にアクティブマトリクス基板10を配する。そして電子銃70は回動しつつ、イオンビーム(イオン粒子)をマスク孔61に向けて照射する。マスク孔61を通過したイオンビームは、ソース配線4と予備配線11との接続箇所15に照射され、接続箇所15にイオンが注入される。
 電子銃70は回転しながらイオンビームを照射するので、照射面積は大きくなる傾向にあるが、マスク60を使用することによって、接続箇所にピンポイントでイオンを注入することができる。
 イオン注入において用いられるイオンの種類としては、例えばヒ素イオン、リンイオン等が挙げられる。また注入されるイオンのドーズ量としては、1018[ions/cm]以上が好ましい。またイオンビームのエネルギーとしては、500[keV]~数[MkeV]が好ましい。
 ここでイオン濃度と膜の深さとの関係について説明する。イオン注入法によるイオン濃度は、所定の深さにおいて最も高く、所定の深さよりも深くなるに従って及び所定の深さよりも浅くなるに従って、イオン濃度は低くなる。実施の形態1においては、絶縁膜3付近において、イオン濃度が最も高くなるようにイオンが注入されている。
 ソース配線4及び予備配線11付近のイオン濃度は、絶縁膜3付近よりも低いが、ソース配線4及び予備配線11が電気的に接続されるには充分なイオン濃度を有する。なお絶縁膜3が厚い場合、ソース配線4及び予備配線11を電気的に接続させるべく、イオン注入を複数回行っても良い。
 次にイオン注入法による接続とレーザ照射による接続との相違を説明する。図5はレーザ照射による接続箇所15を示す模式的断面図である。図5に示すように、予備配線11にレーザを照射した場合、アクティブマトリクス基板10に孔が穿設され、該孔の内周面に沿って予備配線11がソース配線4まで突出し、ソース配線4に接続する。
 ソース配線4は、予備配線11の突出した部分に接続するため、N+層50による接続に比べて接続面積が小さい。そのため表示パネルに撓みが生じた場合、外部から力が作用した場合等に、接続が外れるおそれがある。
 図3に示すように、N+層50による接続の場合、N+層50全体が接続部分を形成し、しかも層内部に埋設されている状態である。また絶縁膜3はプラズマCVDによって形成されているので、密着性が高く、表示パネルに撓みが生じた場合、外部から力が作用した場合でも、容易には外れない。従ってより一層確実な接続を実現することができる。
 実施の形態1に係る表示パネルの製造方法及び表示パネルは、欠陥箇所にてソース配線4を分断し、ソース駆動部14に非接続のソース配線4と予備配線11とをイオン注入法によって接続する。そのためレーザを使用する場合に比べて、ソース配線4及び予備配線11の接続を確実に実行することができる。
 またアクティブマトリクス基板10をマスク60の下側に配置し、マスク60の上側から電子銃70によってイオンビームを照射するので、一つのマスク60を複数の基板に適用でき、また一つのアクティブマトリクス基板10に複数回使用することもできるので、レジストパターンを形成してイオンビームを照射する場合に比べて、短時間で効率よくイオン注入法を実行することができ、製造費用を削減することができる。
 (実施の形態2)
 以下本発明を実施の形態2に係る液晶表示パネルを示す図面に基づいて説明する。図6はTFT20付近の構成を示すアクティブマトリクス基板10の等価回路図、図7A及び図7Bは付加容量30の接続方法を説明する説明図である。
 アクティブマトリクス基板10を製造する過程において、TFT20のドレイン電極23及びソース電極22が短絡し、いわゆるS-Dリークが発生することがある。この場合、ノーマリーブラックのパネルにおいては、S-Dリークが発生した画素は輝点となる。
 そのため、アクティブマトリクス基板10の製造工程において、アクティブマトリクス基板10の検査を行い、S-Dリークが発生している場合には、図6に示すように、該当するTFT20のドレイン電極23と付加容量30とを接続する配線を切断する(この切断した部分を切断部23aとも称する)。また付加容量30の両電極を接続し、付加容量30を付加容量配線34と同電位(0V)にする。切断部23aによって、ドレイン電極23の電位が付加容量30の電位に影響されることを防止する。
 図7Aに示すように、付加容量30は、電極である第1金属層31及び第2金属層32の間に、誘電体である絶縁膜33を配置して構成されている。なお第1金属層31及び第2金属層32それぞれは、ソース配線4及びゲート配線2を形成する時に形成され、ソース配線4及びゲート配線2と同じ成分にて構成されている。
 図7Bに示すように、付加容量30の接続箇所35には、N+層36が形成されている。N+層36は、絶縁膜33から第1金属層31及び第2金属層32に亘って形成されている。換言すればN+層36によって、第1金属層31及び第2金属層32が接続されている。
 次に第1金属層31及び第2金属層32の接続方法について説明する。
 図7Aに示すように、まず第1金属層31及び第2金属層32との接続箇所35に対応した位置にマスク孔61を形成したマスク60を準備する。マスク孔61の上側にはイオンビームを照射する電子銃70を配置する。電子銃70はマスク孔61に向けられている。電子銃70は横方向及び縦方向に回動することができる。電子銃70は横向きの一方向に所定距離回動した後、縦向きの一方向に僅かな距離(前記所定距離に比べて十分に短い距離)回動する。その後横向きの他方向に所定距離回動した後、縦向きの一方向に僅かな距離回動し、これらの動作を繰り返す。その結果、電子銃70から照射されたイオンビームの軌跡は横長クランク形状が連続したジグザグ状をなす。
 マスク60の下側における所定位置にアクティブマトリクス基板10を配する。そして電子銃70は回動しつつ、イオンビームをマスク孔61に向けて照射する。マスク孔61を通過したイオンビームは、第1金属層31及び第2金属層32の接続箇所35に照射され、接続箇所35にイオンが注入される。
 図8はレーザ照射による接続箇所35を示す模式的断面図である。付加容量30の両電極の接続をレーザ照射によって行った場合、アクティブマトリクス基板10に孔が穿設され、該孔の内周面に沿って第1金属層31が第2金属層32まで突出し、第2金属層32に接続する。第2金属層32は、第1金属層31の突出した部分に接続するため、N+層36による接続に比べて接続面積が小さい。
 図7Bに示すように、N+層36による接続の場合、N+層36全体が接続部分を形成し、しかも層内部に埋設されている状態であるため、より一層確実な接続を実現することができる。
 実施の形態2に係る表示パネルの製造方法及び表示パネルは、TFT20のソース電極22及びドレイン電極23の間で、電気的リークが発生している場合に、ドレイン電極23及び付加容量30の接続を切断し、付加容量30の両電極をイオン注入法によって接続し、レーザを使用する場合に比べて、付加容量30の接続を確実に実行することができる。
 実施の形態2に係る表示パネルの構成の内、実施の形態1と同様な構成については同じ符号を付し、その詳細な説明を省略する。
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、請求の範囲内での全ての変更及び請求の範囲と均等の範囲が含まれることが意図される。
 1 TFT側ガラス基板(基板)
 2 ゲート配線(走査配線)
 4 ソース配線(信号配線)
 11 予備配線(電圧印加配線)
 15、35 接続箇所
 20 TFT(スイッチング素子)
 22 ソース電極
 23 ドレイン電極(電極)
 30 付加容量
 31 第1金属層
 32 第2金属層
 33 絶縁膜
 34 付加容量配線
 36、50 N+層
 60 マスク
 61 マスク孔
 70 電子銃

Claims (5)

  1.  液晶を保持する基板に形成されており、映像を表示するための信号が伝達する信号配線と、該信号配線に電圧を印可するための電圧印加配線とを備える表示パネルの製造方法において、
     前記信号配線を前記基板に形成し、
     前記電圧印加配線を前記基板に形成し、
     前記信号配線を切断し、
     切断によって分断された前記信号配線の一方及び前記電圧印加配線をイオン注入法によって接続すること
     を特徴とする表示パネルの製造方法。
  2.  液晶を保持する基板に形成されており、走査信号が伝達する走査配線と、該走査配線に直交する信号配線と、該信号配線及び走査配線が交差した箇所に対応して形成されたスイッチング素子と、該スイッチング素子の電極に接続された付加容量とを備える表示パネルの製造方法において、
     前記スイッチング素子を前記基板に形成し、
     前記付加容量を前記基板に形成し、
     前記スイッチング素子の電極及び付加容量の接続を切断し、
     前記付加容量の両電極をイオン注入法によって接続すること
     を特徴とする表示パネルの製造方法。
  3.  前記基板の一側にマスクを配置し、
     前記マスクにおける前記基板の反対側から電子銃によってイオンビームを照射すること
     を特徴とする請求項1又は2に記載の表示パネルの製造方法。
  4.  液晶を保持する基板に形成されており、映像を表示するための信号が伝達する信号配線と、該信号配線に電圧を印可するための電圧印加配線とを備える表示パネルにおいて、
     前記信号配線を切断してあり、
     切断によって分断された前記信号配線の一方及び前記電圧印加配線を接続してあり、
     前記信号配線の一方及び前記電圧印加配線の接続部分のイオン濃度が前記信号配線における他の部分よりも高濃度であること
     を特徴とする表示パネル。
  5.  液晶を保持する基板に形成されており、走査信号が伝達する走査配線と、該走査配線に直交する信号配線と、該信号配線及び走査配線が交差した箇所に対応して形成されたスイッチング素子と、該スイッチング素子の電極に接続された付加容量とを備える表示パネルにおいて、
     前記スイッチング素子の電極及び付加容量の接続を切断してあり、
     前記付加容量の両電極が接続してあり、
     前記両電極の接続部分のイオン濃度が前記両電極における他の部分よりも高濃度であること
     を特徴とする表示パネル。
PCT/JP2014/070514 2013-08-07 2014-08-04 表示パネルの製造方法及び表示パネル WO2015020010A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/784,261 US20160048066A1 (en) 2013-08-07 2014-08-04 Method for Manufacturing Display Panel and Display Panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013164442 2013-08-07
JP2013-164442 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015020010A1 true WO2015020010A1 (ja) 2015-02-12

Family

ID=52461342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070514 WO2015020010A1 (ja) 2013-08-07 2014-08-04 表示パネルの製造方法及び表示パネル

Country Status (2)

Country Link
US (1) US20160048066A1 (ja)
WO (1) WO2015020010A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102432A (ja) * 1987-10-15 1989-04-20 Matsushita Electric Ind Co Ltd アクティブマトリックスアレイの修正方法
JPH02135757A (ja) * 1988-11-17 1990-05-24 Sony Corp 多層配線の形成方法およびプログラム素子
JPH08139333A (ja) * 1994-11-05 1996-05-31 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2006303227A (ja) * 2005-04-21 2006-11-02 Sharp Corp 欠陥の修正方法および欠陥修正装置
JP2009104179A (ja) * 2004-12-16 2009-05-14 Sharp Corp アクティブマトリクス基板、表示装置、液晶表示装置およびテレビジョン装置
WO2011096125A1 (ja) * 2010-02-08 2011-08-11 シャープ株式会社 表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473452A (en) * 1994-12-21 1995-12-05 Goldstar Co., Ltd. Liquid crystal display device with repair structure
WO2002091421A1 (fr) * 2001-05-01 2002-11-14 Nikon Corporation Appareil a faisceau d'electrons et son utilisation pour la fabrication
JP4011002B2 (ja) * 2003-09-11 2007-11-21 シャープ株式会社 アクティブ基板、表示装置およびその製造方法
JP5254613B2 (ja) * 2004-08-24 2013-08-07 セラ セミコンダクター エンジニアリング ラボラトリーズ リミテッド 被加工物の有向多偏向イオンビームミリングならびにその程度の決定および制御
WO2012147704A1 (ja) * 2011-04-28 2012-11-01 シャープ株式会社 Tft基板およびtft基板の配線欠陥修正方法
JP5699069B2 (ja) * 2011-11-21 2015-04-08 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102432A (ja) * 1987-10-15 1989-04-20 Matsushita Electric Ind Co Ltd アクティブマトリックスアレイの修正方法
JPH02135757A (ja) * 1988-11-17 1990-05-24 Sony Corp 多層配線の形成方法およびプログラム素子
JPH08139333A (ja) * 1994-11-05 1996-05-31 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2009104179A (ja) * 2004-12-16 2009-05-14 Sharp Corp アクティブマトリクス基板、表示装置、液晶表示装置およびテレビジョン装置
JP2006303227A (ja) * 2005-04-21 2006-11-02 Sharp Corp 欠陥の修正方法および欠陥修正装置
WO2011096125A1 (ja) * 2010-02-08 2011-08-11 シャープ株式会社 表示装置

Also Published As

Publication number Publication date
US20160048066A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
JP4175482B2 (ja) 液晶表示素子及びその製造方法
KR101302622B1 (ko) 액정표시장치 및 액정표시장치의 리페어 방법
JP6734396B2 (ja) Tft基板の断線修復方法
JP2669954B2 (ja) アクティブマトリクス表示装置
JP5179337B2 (ja) 液晶表示装置及びその点欠陥修正方法
CN105974705B (zh) 阵列基板、其制作方法、修复方法、显示面板及显示装置
JP2009048189A (ja) アクティブマトリクス基板、液晶パネル、液晶表示装置、テレビジョン受像機
KR100866941B1 (ko) 액정표시장치 및 그 결함화소 수복방법
JP2008501127A (ja) 表示装置用基板、その修正方法、表示装置の修正方法及び液晶表示装置
JP2005091391A (ja) アクティブ基板、表示装置およびその製造方法
CN109613771B (zh) 液晶面板暗点化修复方法
US20070002242A1 (en) Liquid crystal display panel and method of correcting pixel defect
US20090279014A1 (en) Active matrix substrate, a liquid crystal panel, a display device, a television receiver, and methods of correcting and producing the substrate and panel
US20100309401A1 (en) Liquid crystal display device and method for manufacturing the same
JP2008203636A (ja) アレイ基板の製造方法、表示装置の製造方法、アレイ基板及び表示装置
WO2015020010A1 (ja) 表示パネルの製造方法及び表示パネル
JP5096127B2 (ja) 表示装置
JP2005115326A (ja) アクティブ基板、表示装置およびその製造方法
JP5080402B2 (ja) 液晶表示装置およびその製造方法
JP2010165866A (ja) 薄膜トランジスタ基板の製造方法
CN112213894B (zh) 显示面板用阵列基板的制造方法
CN110718576B (zh) 显示装置及其修补方法
CN1324390C (zh) 薄膜晶体管阵列基板及其修补方法
JPH04265943A (ja) アクティブマトリクス表示装置
JP2005309356A (ja) 薄膜トランジスタアレイおよびその修復方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784261

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP