WO2015018270A1 - 充电控制方法、电动汽车车载终端及充电控制*** - Google Patents

充电控制方法、电动汽车车载终端及充电控制*** Download PDF

Info

Publication number
WO2015018270A1
WO2015018270A1 PCT/CN2014/082381 CN2014082381W WO2015018270A1 WO 2015018270 A1 WO2015018270 A1 WO 2015018270A1 CN 2014082381 W CN2014082381 W CN 2014082381W WO 2015018270 A1 WO2015018270 A1 WO 2015018270A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power
charging control
discharging
discharge
Prior art date
Application number
PCT/CN2014/082381
Other languages
English (en)
French (fr)
Inventor
李军华
Original Assignee
奇瑞汽车股份有限公司
芜湖普威技研有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司, 芜湖普威技研有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2015018270A1 publication Critical patent/WO2015018270A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to the field of electric vehicles, and in particular, to a charging control method, an electric vehicle vehicle terminal, and a charging control system. Background technique
  • An electric vehicle is a vehicle that uses a vehicle power supply to power a motor to drive the wheels to rotate.
  • the embodiment of the invention provides a charging control method, an electric vehicle vehicle terminal and a charging control system.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a charging control method, the method comprising: receiving a charging control instruction, where the charging control instruction includes stopping a charging control instruction, pressing a preset power charging instruction or a discharging instruction, and the charging control The command is generated according to a grid load condition; when the charge control command includes a stop charge control command, and the charge and discharge condition indicates that the stop is allowed When the charging control command includes a preset power charging command, and the charging and discharging condition indicates that charging by the vehicle power source is allowed;
  • the charge and discharge device is controlled to discharge to the power grid.
  • the charging control instruction includes a discharging instruction
  • the charging and discharging condition includes whether the discharging is allowed or the minimum battery level
  • the determining whether to permit execution is performed according to the set charging and discharging condition.
  • the charging control instruction includes:
  • the discharging command is allowed to be executed.
  • the charging control instruction further includes a discharge power
  • the controlling the charging and discharging machine to discharge to the power grid includes:
  • the method further includes:
  • the predetermined power charging command is allowed to be executed.
  • the embodiment of the present invention further provides a charging control method, where the method includes: acquiring a grid load condition;
  • the charging control command includes stopping a charging control command, pressing a preset power charging command or a discharging command;
  • an embodiment of the present invention further provides an electric vehicle vehicle terminal, the terminal comprising: a receiving module, configured to receive a charging control instruction, where the charging control instruction includes stopping a charging control instruction, and pressing a preset power charging instruction. Or a discharge command, the charge control command is based on a grid load Generated
  • a control module configured to: when the charging control instruction includes stopping the charging control instruction, and charging the charging and discharging bar to the vehicle power source;
  • the charging control command includes a preset power charging command, and the charging and discharging condition indicates that charging by the vehicle power source is allowed;
  • the charge and discharge device is controlled to discharge to the power grid.
  • the determining module is configured to: when the charging and discharging condition is To allow discharge, determine the amount of power of the vehicle power source;
  • the discharging command is allowed to be executed.
  • the charging control instruction further includes a discharge power
  • the control module is configured to determine, when the power of the vehicle power source is greater than the minimum power, The maximum power discharged is controlled to discharge the charge and discharge machine to the grid using a smaller one of the maximum power allowed to discharge and the discharge power.
  • the charging and discharging condition includes: when the expected power value and the leaving time, the determining module is configured to:
  • the predetermined power charging command is allowed to be executed.
  • an embodiment of the present invention further provides a charging control system, where the system includes: an acquiring module, configured to acquire a load condition of a power grid;
  • a generating module configured to generate a charging control instruction according to the grid load condition, where the charging control instruction includes stopping a charging control instruction, pressing a preset power charging instruction or a discharging instruction;
  • a sending module configured to send the charging control instruction generated by the generating module.
  • FIG. 1 is a flowchart of a charging control method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a charging control method according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a charging control method according to Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural view of an electric vehicle vehicle terminal provided by Embodiment 4 of the present invention.
  • Embodiment 5 is a schematic structural diagram of an electric vehicle vehicle terminal provided in Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a charging control system according to Embodiment 6 of the present invention. detailed description
  • An embodiment of the present invention provides a charging control method.
  • the method includes: Step 101: An electric vehicle vehicle terminal receives a charging control instruction, where the charging control instruction includes stopping a charging control command, a discharging command, or pressing a preset power charging control.
  • the command, charge control command is generated based on the grid load condition.
  • Step 102 Determine whether the charging control command is allowed to be executed according to the set charging and discharging condition.
  • Step 103 When the charging control command includes stopping the charging control command, and the charging and discharging condition indicates that charging is allowed to stop, controlling the charging and discharging machine of the electric vehicle to stop charging the vehicle power source of the electric vehicle; when the charging control command includes charging the command according to the preset power And the charge and discharge condition indicates that the charging and discharging machine for controlling the electric vehicle is charged to the vehicle power supply of the electric vehicle according to the preset power when the charging is allowed to be performed according to the preset power. Electricity;
  • the charge and discharge motor is controlled to discharge to the grid.
  • the command sent by the receiving charging control system includes stopping the charging control command, and the charging and discharging condition indicates that the charging and discharging machine of the electric vehicle is stopped to stop charging the vehicle electric power of the electric vehicle.
  • the charging control command includes the charging command according to the preset power
  • the charging and discharging condition indicates that the charging is allowed to be performed according to the preset power
  • the charging and discharging machine controlling the electric vehicle is charged to the vehicle power source of the electric vehicle according to the preset power
  • the charging control instruction includes The discharge command
  • the charge and discharge condition indicates that the discharge and discharge machine is controlled to discharge to the grid when the discharge is allowed
  • the charging of the electric vehicle at the peak of the electric power is reduced to bring great pressure to the power grid, and the smart charging is realized.
  • the embodiment of the present invention provides a charging control method.
  • the method includes: Step 201: The electric vehicle vehicle terminal receives a charging control instruction, and the charging control instruction includes stopping the charging control instruction, discharging the command, or pressing the preset power charging control.
  • the command, charge control command is generated based on the grid load condition.
  • the electric vehicle vehicle terminal can receive the charging control command through a General Packet Radio Service (“GPRS").
  • GPRS General Packet Radio Service
  • the charging control command can be generated according to the following manner: When the charging control system detects that the grid load is large (for example, exceeds the set threshold), a preset power charging control command or a stop charging control command can be generated to limit the electric vehicle pressing Preset power charging or control the electric car to stop charging. After a period of time, if the charging is stopped and the grid power demand cannot be met (for example, the load is still large), a discharge command can be generated to request the electric vehicle to discharge to the grid.
  • the charging control command may also be generated according to the following manner: dividing the grid load into multiple levels, and generating a discharge command when the current level indicates a high load (above the set first threshold); when the current level indicates medium When the load (between the first threshold and the set second threshold, the first threshold is greater than the second threshold), a stop charging control command is generated; when the current level indicates a low load (below the second threshold) ), generates a charge control command by default power.
  • Step 202 Determine whether the charging control command is allowed to be executed according to the set charging and discharging condition. Specifically, the step 202 may include:
  • Step 1 Obtain the charge and discharge conditions set by the user.
  • the user can set the charge and discharge mode to set the charge and discharge conditions.
  • the charge/discharge mode set by the user can be obtained first, and then the charge/discharge conditions corresponding to the charge and discharge mode can be found based on the correspondence between the charge and discharge mode and the charge and discharge conditions.
  • the charging and discharging mode and charging and discharging conditions can be as follows: Normal mode, charging is allowed, discharge is not allowed; Economic mode, charging time is controlled according to electricity price information, discharge is not allowed; Remote mode, allowing discharge.
  • users can also design custom modes by setting other conditions.
  • charging is usually performed when the electricity price is low, such as starting charging at 11:00 in the evening and stopping after filling. Users can also modify the charging time based on local electricity price information.
  • the electric vehicle vehicle terminal receives the charging control command, and determines whether the charging control command can be executed according to the charging and discharging conditions set by the current user.
  • the charge and discharge condition is for indicating whether or not the execution of the charge control command is permitted, and the charge and discharge condition may include, in addition to a direct condition for directly indicating whether the charge control command is allowed to be executed, an indirect for indirectly indicating whether the charge control command is allowed to be executed. condition.
  • Direct conditions include whether to allow charging to stop, whether to allow charging at a preset power, and whether to allow discharging. Indirect conditions may include the minimum battery charge and the desired charge value.
  • the user can also set the charging and discharging conditions such as the departure time and the expected power value.
  • the electric vehicle vehicle terminal will judge whether the maximum power can be charged to the departure time set by the user, and whether the desired power value can be achieved. , prompts the user to set the settings unreasonable.
  • Step 2 Determine whether the charging control command is allowed to be executed according to the obtained charging and discharging conditions. In the judgment, it is first judged whether the direct condition allows the execution of the charging control command. When the direct condition allows the execution of the charge control command and the charge and discharge condition also includes an indirect condition, it is judged whether the indirect condition allows the execution of the charge control command.
  • step 203 is performed.
  • step 204 is performed. If the charge and discharge conditions include: Allow charging at the preset power, expected power value, and departure time, follow these steps:
  • Step 1 Calculate the estimated power of the vehicle power supply when the vehicle power source is charged to the departure time according to the preset power
  • Step 2 If the expected power is greater than the expected power value, step 204 is performed.
  • step 205 is performed. If the charge and discharge conditions include: Allow discharge and minimum battery charge, follow the steps below: Step 1: Determine if the user is allowed to discharge.
  • Step 2 When the user allows the discharge, determine the power of the vehicle power supply.
  • Step 3 If the power of the vehicle power source is greater than the minimum battery power, go to step 205.
  • Step 1 Determine whether the current power value of the vehicle power supply is greater than the expected power value.
  • Step 2 When the current battery power value is greater than the expected power value, go to step 205. Further, after the second step, the maximum discharge power can be calculated according to the departure time. When the step 205 is performed, the discharge power is not greater than the maximum discharge power, so as to ensure that the vehicle power supply value at the departure time is not less than the expected power value.
  • Step 203 When the charging control command includes stopping the charging control command, and the charging/discharging condition indicates that the charging is stopped, the charging and discharging machine that controls the electric vehicle stops charging the vehicle-mounted power source of the electric vehicle.
  • Step 204 When the charging control command includes a preset power charging command, and the charging and discharging condition indicates that the power source is charged.
  • Step 205 When the charging control command includes a discharging command, and the charging and discharging condition indicates that the discharging is allowed, the charging and discharging device is controlled to discharge to the power grid.
  • the charging control command further includes discharging power to control the charging and discharging machine to discharge to the grid, and includes:
  • the command sent by the receiving charging control system includes stopping the charging control command, and the charging and discharging condition indicates that the charging and discharging machine of the electric vehicle is stopped to stop charging the vehicle electric power of the electric vehicle.
  • the charging control command includes the charging command according to the preset power
  • the charging and discharging condition indicates that the charging is allowed to be performed according to the preset power
  • the charging and discharging machine controlling the electric vehicle is charged to the vehicle power source of the electric vehicle according to the preset power
  • the charging control instruction includes The discharge command
  • the charge and discharge condition indicates that the discharge and discharge machine is controlled to discharge to the grid when the discharge is allowed
  • the charging of the electric vehicle at the peak of the electric power is reduced to bring great pressure to the power grid, and the smart charging is realized.
  • An embodiment of the present invention provides a charging control method.
  • the method includes: Step 301: A charging control system acquires a grid load condition.
  • Step 302 Generate a charging control instruction according to a grid load condition, where the charging control instruction includes stopping a charging control instruction, a discharging instruction, or pressing a preset power charging control instruction.
  • the charging control system may generate a charging control command according to the following manner: When the charging control system detects that the grid load is large (for example, exceeds a set threshold), a preset power charging control command or a stop charging control command may be generated. To limit the electric vehicle to charge at a preset power or to control the electric vehicle to stop charging. After a period of time, if the charging is stopped and the grid power demand cannot be met (for example, the load is still large), a discharge command can be generated to request the electric vehicle to discharge to the grid. When the grid load returns to normal, the normal charging process is resumed.
  • the charging control system may further generate a charging control command according to the following manner: dividing the grid load into a plurality of levels, and generating a discharge command when the current level indicates a high load (above the set first threshold); The level indicates a medium load (between the first threshold and the set second threshold, and the first threshold is greater than the second threshold), generating a stop charging control command; when the current level indicates a low load (below the first Two thresholds), generating a charging control command according to a preset power.
  • Step 303 Send a charging control command.
  • the charging control command can be transmitted via GPRS.
  • the charging control command is sent to the vehicle-mounted terminal of the electric vehicle according to the load condition of the power grid, so that the vehicle-mounted terminal of the electric vehicle controls the charging and discharging machine of the electric vehicle to stop charging the vehicle power source of the electric vehicle according to the charging control command, and presses the preset.
  • Power charging or discharging to the grid reduces the pressure on the power grid to charge the power grid, and realizes smart charging.
  • the terminal includes: a receiving module 401, configured to receive a charging control instruction, where the charging control instruction includes stopping a charging control instruction, a discharging instruction, or a preset power charging control.
  • the command, the charging control command is generated according to the grid load condition; the command; ' : , , : , the control module 403 is configured to control the electric vehicle when the charging control command includes stopping the charging control command, and the charging and discharging condition indicates that the charging is allowed to stop.
  • the charging and discharging machine stops charging the vehicle power supply of the electric vehicle;
  • the charging control command includes the charging command according to the preset power
  • the charging and discharging condition indicates that the charging is allowed to be performed according to the preset power
  • the charging and discharging machine controlling the electric vehicle is charged to the vehicle power source of the electric vehicle according to the preset power
  • the charge and discharge motor is controlled to discharge to the grid.
  • the command sent by the receiving charging control system includes stopping the charging control command, and the charging and discharging condition indicates that the charging and discharging machine of the electric vehicle is stopped to stop charging the vehicle electric power of the electric vehicle.
  • the charging control command includes the charging command according to the preset power
  • the charging and discharging condition indicates that the charging is allowed to be performed according to the preset power
  • the charging and discharging machine controlling the electric vehicle is charged to the vehicle power source of the electric vehicle according to the preset power
  • the charging control instruction includes The discharge command
  • the charge and discharge condition indicates that the discharge and discharge machine is controlled to discharge to the grid when the discharge is allowed
  • the charging of the electric vehicle at the peak of the electric power is reduced to bring great pressure to the power grid, and the smart charging is realized.
  • the embodiment of the present invention provides an electric vehicle vehicle terminal.
  • the terminal includes: a receiving module 501, a determining module 502, and a control module 503;
  • the receiving module 501 is configured to receive a charging control command sent by the charging control system, where the charging control command includes stopping the charging control command, the discharging command, or pressing the preset power charging control command, and the charging control command is generated according to a grid load condition.
  • the receiving module 501 includes a GPRS communication unit for communicating with the charging control system to receive the charging control command.
  • the charging control command can be generated according to the following manner: When the charging control system detects that the grid load is large (for example, exceeds the set threshold), a preset power charging control command or a stop charging control command can be generated to limit the electric vehicle pressing Preset power charging or control the electric car to stop charging. After a period of time, if the charging is stopped and the grid power demand cannot be met (for example, the load is still large), a discharge command can be generated to request the electric vehicle to discharge to the grid.
  • the charging control command may also be generated according to the following manner: dividing the grid load into multiple levels, and generating a discharge command when the current level indicates a high load (above the set first threshold); when the current level indicates medium When the load (between the first threshold and the set second threshold, the first threshold is greater than the second threshold), a stop charging control command is generated; when the current level indicates a low load (below the second threshold) ), generates a charge control command by default power. make. ' : , , , : ,
  • the control module 503 is configured to: when the charging control command includes stopping the charging control command, and the charging and discharging condition indicates that the charging is allowed to stop, controlling the charging and discharging machine of the electric vehicle to stop charging the vehicle power source of the electric vehicle;
  • the charging control command includes the charging command according to the preset power
  • the charging and discharging condition indicates that the charging is allowed to be performed according to the preset power
  • the charging and discharging machine controlling the electric vehicle is charged to the vehicle power source of the electric vehicle according to the preset power
  • the charge and discharge motor is controlled to discharge to the grid.
  • the control module 503 is electrically connected to the battery controller and the charging and discharging device through the CAN bus to determine the power of the vehicle power source and control the charging or discharging of the charging and discharging machine.
  • the determining module 502 can include:
  • the obtaining unit 5021 is configured to acquire a charging and discharging condition set by a user.
  • the user can set the charge and discharge mode to set the charge and discharge conditions.
  • the charge/discharge mode set by the user can be acquired first, and then the charge/discharge conditions corresponding to the charge and discharge mode can be found based on the correspondence relationship between the charge and discharge mode and the charge and discharge conditions.
  • the charge and discharge mode and the charge and discharge conditions can be as follows: Normal mode, charging is allowed, discharge is not allowed; Economic mode, charging time is controlled according to electricity price information, discharge is not allowed; Remote mode, discharge is allowed.
  • users can also pass Set other conditions to design a custom mode.
  • charging is usually performed when the electricity price is low, such as starting charging at 11:00 in the evening and stopping after filling. Users can also modify the charging time based on local electricity price information.
  • the electric vehicle vehicle terminal receives the charging control command, and determines whether the charging control command can be executed according to the charging and discharging conditions set by the current user.
  • the charge and discharge condition is for indicating whether or not the execution of the charge control command is permitted, and the charge and discharge condition may include, in addition to a direct condition for directly indicating whether the charge control command is allowed to be executed, an indirect for indirectly indicating whether the charge control command is allowed to be executed. condition.
  • Direct conditions include allowing to stop charging, whether to allow charging at a preset power, and whether to allow discharging. Indirect conditions may include the minimum battery charge and the desired charge value.
  • the user can also set the charging and discharging conditions such as the departure time and the expected power value.
  • the electric vehicle vehicle terminal will judge whether the maximum power can be charged to the departure time set by the user, and whether the desired power value can be achieved. , prompts the user to set the settings unreasonable.
  • the determining unit 5022 is configured to determine whether to permit execution of the charging control instruction according to the obtained charging and discharging condition.
  • the judging unit first judges whether the direct condition allows execution of the charging control command.
  • the direct condition allows the execution of the charge control command
  • the charge and discharge condition also includes an indirect condition, it is judged whether the indirect condition allows the execution of the charge control command.
  • the control module 503 controls the charging and discharging machine of the electric vehicle to stop charging the vehicle power source of the electric vehicle.
  • the control module 503 is configured to control the charging and discharging machine of the electric vehicle to the electric vehicle according to the preset power. The car power is charged.
  • the determining unit 5022 calculates the estimated power of the vehicle power source when the vehicle power is charged to the leaving time according to the preset power; if the determining unit 5022 determines the prediction
  • the control module 503 is configured to control the charging and discharging machine of the electric vehicle to charge the vehicle power source of the electric vehicle according to a preset power.
  • the control module 503 is configured to control the charging and discharging machine to discharge to the grid. If the charging and discharging conditions include: allowing the discharging and the minimum battery power, the determining unit 5022 determines the power of the vehicle power source; if the power of the vehicle power source is greater than the minimum battery power, the control module 503 is configured to control the charging and discharging machine to discharge to the power grid.
  • the determining unit 5022 determines whether the current power value of the vehicle power source is greater than the expected power value; if the current vehicle power value is greater than the expected power value, the control module 503, It is used to control the charging and discharging machine to discharge to the grid.
  • the determining unit 5022 may further calculate the maximum discharge power according to the departure time, and when the control module 503 controls the charging and discharging machine to discharge to the grid, the discharging power is not greater than the maximum The power is discharged to ensure that the vehicle power supply value at the time of leaving is not less than the expected power value.
  • determining the amount of vehicle power supply can be obtained by a battery controller connected to the vehicle power source.
  • the charging control command further includes a discharging power
  • the control module 503 is configured to: determine a maximum power that the vehicle power source is allowed to discharge, and control the charging and discharging machine to discharge the smaller one of the maximum power and the discharging power that is allowed to be discharged to the power grid.
  • the command sent by the receiving charging control system includes stopping the charging control command, and the charging and discharging condition indicates that the charging and discharging machine of the electric vehicle is stopped to stop charging the vehicle electric power of the electric vehicle.
  • the charging control command includes the charging command according to the preset power
  • the charging and discharging condition indicates that the charging is allowed to be performed according to the preset power
  • the charging and discharging machine controlling the electric vehicle is charged to the vehicle power source of the electric vehicle according to the preset power
  • the charging control instruction includes The discharge command
  • the charge and discharge condition indicates that the discharge and discharge machine is controlled to discharge to the grid when the discharge is allowed
  • the charging of the electric vehicle at the peak of the electric power is reduced to bring great pressure to the power grid, and the smart charging is realized.
  • the embodiment of the present invention provides a charging control system.
  • the system includes: an obtaining module 601, configured to acquire a grid load condition.
  • the generating module 602 is configured to generate a charging control instruction according to a grid load condition, where the charging control instruction includes stopping the charging control instruction, the discharging instruction, or pressing the preset power charging control instruction.
  • the charging control system may generate a charging control command according to the following manner: When the charging control system detects that the grid load is large (for example, exceeds a set threshold), a preset power charging control command or a stop charging control command may be generated. To limit the electric vehicle to charge or control the electric motor according to the preset power The car stops charging. After a period of time, if the charging is stopped and the grid power demand cannot be met (for example, the load is still large), a discharge command can be generated to request the electric vehicle to discharge to the grid. When the grid load returns to normal, the normal charging process is resumed.
  • the charging control system may further generate a charging control command according to the following manner: dividing the grid load into a plurality of levels, and generating a discharge command when the current level indicates a high load (above the set first threshold); The level indicates a medium load (between the first threshold and the set second threshold, and the first threshold is greater than the second threshold), generating a stop charging control command; when the current level indicates a low load (below the first Two thresholds), generating a charging control command according to a preset power.
  • the sending module 603 is configured to send a charging control command generated by the generating module.
  • the transmitting module 603 includes a GPRS communication unit for communicating with the in-vehicle terminal.
  • the charging control command is sent to the vehicle-mounted terminal of the electric vehicle according to the load condition of the power grid, so that the vehicle-mounted terminal of the electric vehicle controls the charging and discharging machine of the electric vehicle to stop charging the vehicle power source of the electric vehicle according to the charging control command, and presses the preset.
  • Power charging or discharging to the grid reduces the pressure on the power grid to charge the power grid, and realizes smart charging.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种充电控制方法、电动汽车车载终端及充电控制***,属于电动汽车领域。所述方法包括:接收充电控制指令,充电控制指令包括停止充电控制指令、按预设功率充电指令或放电指令;根据设定的充放电条件判断是否允许执行充电控制指令;当充电控制指令包括停止充电控制指令,且充放电条件表示允许停止充电时,控制电动汽车的充放电机停止向电动汽车的车载电源充电;当充电控制指令包括按预设功率充电指令,且充放电条件表示允许按预设功率充电时,控制电动汽车的充放电机按预设功率向电动汽车的车载电源充电;当充电控制指令包括放电指令,且充放电条件表示允许放电时,控制充放电机向电网放电。实现了电动汽车智能充电。

Description

充电控制方法、 电动汽车车载终端及充电控制***
本申请要求于 2013年 8月 6日提交中国专利局、申请号为 201310340024.7、 发明名称为 "充电控制方法、 电动汽车车载终端及充电控制***" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电动汽车领域, 特别涉及一种充电控制方法、 电动汽车车载终 端及充电控制***。 背景技术
电动汽车是指用车载电源为电机提供动力, 以驱动车轮转动的车辆。
电动汽车与普通汽车最大的区别在于, 用车载电源和电机代替了汽油和发 动机, 节能环保。 同时, 当车载电源的电量低时, 只需要在设有充电装置的停 车场即可充电, 相比普通汽车没油时必须去加油站, 更加方便快捷, 且成本更 低。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 电动汽车充电时间集中在下班后, 大规模电动汽车同时充电给电网带来巨 大压力。 发明内容
为了解决现有技术中大规模电动汽车同时充电给电网带来巨大压力的问 题, 本发明实施例提供了一种充电控制方法、 电动汽车车载终端及充电控制系 统。 所述技术方案如下:
一方面, 本发明实施例提供了一种充电控制方法, 所述方法包括: 接收充电控制指令, 所述充电控制指令包括停止充电控制指令、 按预设功 率充电指令或放电指令, 所述充电控制指令是根据电网负荷状况生成的; 当充电控制指令包括停止充电控制指令, 且所述充放电条件表示允许停止 当充电控制指令包括按预设功率充电指令, 且所述充放电条件表示允许按 车载电源充电;
当充电控制指令包括放电指令, 且所述充放电条件表示允许放电时, 控制 所述充放电机向所述电网放电。
在本发明实施例的一种实现方式中, 当所述充电控制指令包括放电指令, 所述充放电条件包括是否允许放电、 电池最低电量时, 所述根据设定的充放电 条件判断是否允许执行所述充电控制指令, 包括:
当所述充放电条件为允许放电时, 确定所述车载电源的电量;
若所述车载电源的电量大于所述电池最低电量, 则允许执行所述放电指 令。
在本发明实施例的另一种实现方式中, 所述充电控制指令还包括放电功 率, 所述控制所述充放电机向所述电网放电, 包括:
确定所述车载电源允许放出的最大功率,控制所述充放电机釆用所述允许 放出的最大功率和所述放电功率中较小的一个向所述电网放电。
在本发明实施例的另一种实现方式中, 当所述充电控制指令包括按预设功 率充电指令, 所述充放电条件包括: 期望电量值和离开时刻时, 所述方法还包 括:
计算按预设功率为所述车载电源充电至所述离开时刻时, 所述车载电源的 预计电量;
若所述预计电量大于所述期望电量值, 则允许执行所述按预设功率充电指 令。
另一方面, 本发明实施例还提供了一种充电控制方法, 所述方法包括: 获取电网负荷状况;
根据所述电网负荷状况生成充电控制指令, 所述充电控制指令包括停止充 电控制指令、 按预设功率充电指令或放电指令;
发送所述充电控制指令。
另一方面,本发明实施例还提供了一种电动汽车车载终端,所述终端包括: 接收模块, 用于接收充电控制指令, 所述充电控制指令包括停止充电控制 指令、 按预设功率充电指令或放电指令, 所述充电控制指令是根据电网负荷状 况生成的;
判断模块, 控制指 令;
控制模块, 用于当充电控制指令包括停止充电控制指令, 且所述充放电条 车载电源充电;
当充电控制指令包括按预设功率充电指令, 且所述充放电条件表示允许按 车载电源充电;
当充电控制指令包括放电指令, 且所述充放电条件表示允许放电时, 控制 所述充放电机向所述电网放电。
在本发明实施例的一种实现方式中, 当所述充电控制指令包括放电指令, 所述充放电条件包括是否允许放电、 电池最低电量时, 所述判断模块用于: 当所述充放电条件为允许放电, 确定所述车载电源的电量;
若所述车载电源的电量大于所述电池最低电量, 则允许执行所述放电指 令。
在本发明实施例的另一种实现方式中, 所述充电控制指令还包括放电功 率, 所述控制模块, 用于当所述车载电源的电量大于所述最低电量时, 确定所 述车载电源允许放出的最大功率,控制所述充放电机釆用所述允许放出的最大 功率和所述放电功率中较小的一个向所述电网放电。
在本发明实施例的另一种实现方式中, 当所述充电控制指令包括按预设功 率充电指令, 所述充放电条件包括: 期望电量值和离开时刻时, 所述判断模块 用于:
计算按预设功率为所述车载电源充电至所述离开时刻时, 所述车载电源的 预计电量;
若所述预计电量大于所述期望电量值, 则允许执行所述按预设功率充电指 令。
另一方面, 本发明实施例还提供了一种充电控制***, 所述***包括: 获取模块, 用于获取电网负荷状况;
生成模块, 用于根据所述电网负荷状况生成充电控制指令, 所述充电控制 指令包括停止充电控制指令、 按预设功率充电指令或放电指令; 发送模块, 用于发送生成模块生成的所述充电控制指令。
本发明实施例提供的技术方案带来的有益效果是:
通过在电动汽车充电过程中, 接收充电控制***发送的指令, 当指令包括 停止充电时, 控制电动汽车的充放电机停止向电动汽车的车载电源充电; 减小 了在用电高峰电动汽车充电给电网带来巨大压力, 实现了智能充电。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的充电控制方法流程图;
图 2是本发明实施例二提供的充电控制方法流程图;
图 3是本发明实施例三提供的充电控制方法流程图;
图 4是本发明实施例四提供的电动汽车车载终端的结构示意图;
图 5是本发明实施例五提供的电动汽车车载终端的结构示意图;
图 6是本发明实施例六提供的充电控制***的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
实施例一
本发明实施例提供了一种充电控制方法, 参见图 1, 该方法包括: 步骤 101: 电动汽车车载终端接收充电控制指令, 充电控制指令包括停止 充电控制指令、 放电指令或按预设功率充电控制指令, 充电控制指令是根据电 网负荷状况生成的。
步骤 102: 根据设定的充放电条件判断是否允许执行充电控制指令。
步骤 103: 当充电控制指令包括停止充电控制指令, 且充放电条件表示允 许停止充电时, 控制电动汽车的充放电机停止向电动汽车的车载电源充电; 当充电控制指令包括按预设功率充电指令, 且充放电条件表示允许按预设 功率充电时, 控制电动汽车的充放电机按预设功率向电动汽车的车载电源充 电;
当充电控制指令包括放电指令, 且充放电条件表示允许放电时, 控制充放 电机向电网放电。
本发明实施例通过在电动汽车充电过程中, 接收充电控制***发送的指 令包括停止充电控制指令, 且充放电条件表示允许停止充电时, 控制电动汽车 的充放电机停止向电动汽车的车载电源充电; 当充电控制指令包括按预设功率 充电指令, 且充放电条件表示允许按预设功率充电时, 控制电动汽车的充放电 机按预设功率向电动汽车的车载电源充电; 当充电控制指令包括放电指令, 且 充放电条件表示允许放电时, 控制充放电机向电网放电; 减小了在用电高峰电 动汽车充电给电网带来巨大压力, 实现了智能充电。 实施例二
本发明实施例提供了一种充电控制方法, 参见图 2, 该方法包括: 步骤 201 : 电动汽车车载终端接收充电控制指令, 充电控制指令包括停止 充电控制指令、 放电指令或按预设功率充电控制指令, 充电控制指令是根据电 网负荷状况生成的。
具体地, 电动汽车车载终端可以通过通用分组无线服务技术 (General Packet Radio Service, 简称 "GPRS" )接收充电控制指令。
充电控制指令可以根据以下方式生成: 当充电控制***检测到电网负荷较 大(例如, 超过设定阔值)时, 可以生成按预设功率充电控制指令或停止充电 控制指令, 以限制电动汽车按预设功率充电或者控制电动汽车停止充电。 经过 一段时间后, 若停止充电还不能满足电网用电需求(例如负荷仍然较大), 可 以生成放电指令, 请求电动汽车向电网放电。
又例如, 充电控制指令还可以根据以下方式生成: 将电网负荷分为多个等 级, 当当前等级表示高负荷(高于设定的第一阔值)时, 生成放电指令; 当当 前等级表示中等负荷(位于第一阔值和设定的第二阔值之间, 第一阔值大于第 二阔值)时, 生成停止充电控制指令; 当当前等级表示低负荷时(低于第二阔 值), 生成按预设功率充电控制指令。
容易知道, 在步骤 201之前, 需要将电动汽车车载终端与电动汽车电源连 接。 步骤 202: 根据设定的充放电条件判断是否允许执行充电控制指令。 具体地, 该步骤 202可以包括:
第一步: 获取用户设定的充放电条件。
在具体实现中, 用户可以釆用设置充放电模式来设定充放电条件。 也就是 说, 可以先获取用户设定的充放电模式, 然后根据充放电模式与充放电条件的 对应关系, 查找与该充放电模式对应的充放电条件。 例如, 充放电模式与充放 电的条件可以如下: 常规模式, 允许充电, 不允许放电; 经济模式, 根据电价 信息控制充电时间, 不允许放电; 远程模式, 允许放电。 当然, 用户还可以通 过设置其他条件来设计自定义模式。
具体地, 在常规模式下, 只要车载电源与电网连接即开始充电, 充满后停 止。 但是, 在充放电机故障或电池故障时, 也会停止充电。
在经济模式下, 通常是在电价低的时候进行充电, 比如晚间 11 点开始充 电, 充满后停止。 用户也可以根据当地电价信息, 修改充电时间。
在远程模式和自定义模式下, 电动汽车车载终端接收充电控制指令, 并根 据当前用户设定的充放电条件, 判断是否可以执行充电控制指令。 该充放电条 件用于表示是否允许执行充电控制指令, 充放电条件除了可以包括用于直接指 示是否允许执行充电控制指令的直接条件外,还可以包括用于间接指示是否允 许执行充电控制指令的间接条件。
直接条件包括是否允许停止充电、是否允许按预设功率充电和是否允许放 电。 间接条件可以包括电池最低电量和期望电量值。
另外, 自定义模式下, 用户还可以设置离开时刻和期望电量值等充放电条 件, 电动汽车车载终端会判断, 釆用最大功率充电至用户设置的离开时刻, 能 否达到期望电量值, 若不能, 则提示用户设置不合理。
第二步: 根据获取到的充放电条件判断是否允许执行充电控制指令。 在判断时, 先判断直接条件是否允许执行充电控制指令。 当直接条件允许 执行充电控制指令, 且充放电条件还包括间接条件时, 判断间接条件是否允许 执行充电控制指令。
具体地, 当充电控制指令包括停止充电控制指令时, 若充放电条件为允许 停止充电, 则执行步骤 203。
当充电控制指令包括按预设功率充电指令时, 若充放电条件为允许按预设 功率充电, 则执行步骤 204。 若充放电条件包括: 允许按预设功率充电、 期望电量值和离开时刻, 则按 以下步骤执行:
步骤一、 计算按预设功率为车载电源充电至离开时刻时, 车载电源的预计 电量;
步骤二、 若预计电量大于期望电量值, 则执行步骤 204。
当充电控制指令包括放电控制指令时, 若充放电条件为允许放电, 则执行 步骤 205。 若充放电条件包括: 允许放电和电池最低电量, 则按以下步骤执行: 步骤一: 判断用户是否允许放电。
步骤二: 当用户允许放电时, 确定车载电源的电量。
其中, 确定车载电源电量, 可以通过与车载电源连接的电池控制器获得。 步骤三: 若车载电源的电量大于电池最低电量, 则执行步骤 205。
值得说明的是, 当控制充放电机向电网放电一定时间后, 车载电源的电量 达到最低电量, 停止放电。
若充放电条件包括: 允许放电、 离开时间和期望电量值, 则可以按以下步 骤执行:
步骤一: 判断当前车载电源的电量值是否大于期望电量值。
步骤二: 当当前车载电源的电量值大于期望电量值时, 执行步骤 205。 进一步地,在上述步骤二之后,还可以根据离开时间计算出最大放电功率, 在执行步骤 205时, 放电功率不大于上述最大放电功率, 从而保证离开时刻的 车载电源电量值不小于期望电量值。
步骤 203: 当充电控制指令包括停止充电控制指令, 且充放电条件表示允 许停止充电时, 控制电动汽车的充放电机停止向电动汽车的车载电源充电。
步骤 204: 当充电控制指令包括按预设功率充电指令, 且充放电条件表示 载电源充电。
步骤 205: 当充电控制指令包括放电指令,且充放电条件表示允许放电时, 控制充放电机向电网放电。
进一步地, 充电控制指令还包括放电功率, 控制充放电机向电网放电, 包 括:
确定车载电源允许放出的最大功率,控制充放电机釆用允许放出的最大功 率和放电功率中较小的一个向电网放电。 本发明实施例通过在电动汽车充电过程中, 接收充电控制***发送的指 令包括停止充电控制指令, 且充放电条件表示允许停止充电时, 控制电动汽车 的充放电机停止向电动汽车的车载电源充电; 当充电控制指令包括按预设功率 充电指令, 且充放电条件表示允许按预设功率充电时, 控制电动汽车的充放电 机按预设功率向电动汽车的车载电源充电; 当充电控制指令包括放电指令, 且 充放电条件表示允许放电时, 控制充放电机向电网放电; 减小了在用电高峰电 动汽车充电给电网带来巨大压力, 实现了智能充电。 实施例三
本发明实施例提供了一种充电控制方法, 参见图 3, 该方法包括: 步骤 301 : 充电控制***获取电网负荷状况。
步骤 302: 根据电网负荷状况生成充电控制指令, 充电控制指令包括停止 充电控制指令、 放电指令或按预设功率充电控制指令。
例如, 充电控制***可以根据以下方式生成充电控制指令: 当充电控制系 统检测到电网负荷较大(例如, 超过设定阔值)时, 可以生成按预设功率充电 控制指令或停止充电控制指令, 以限制电动汽车按预设功率充电或者控制电动 汽车停止充电。 经过一段时间后, 若停止充电还不能满足电网用电需求(例如 负荷仍然较大), 可以生成放电指令, 请求电动汽车向电网放电。 当电网负荷 恢复正常时, 恢复正常的充电过程。
又例如, 充电控制***还可以根据以下方式生成充电控制指令: 将电网负 荷分为多个等级, 当当前等级表示高负荷(高于设定的第一阔值)时, 生成放 电指令; 当当前等级表示中等负荷(位于第一阔值和设定的第二阔值之间, 第 一阔值大于第二阔值)时, 生成停止充电控制指令; 当当前等级表示低负荷时 (低于第二阔值), 生成按预设功率充电控制指令。
步骤 303: 发送充电控制指令。
具体地, 可以通过 GPRS发送充电控制指令。
本发明实施例通过根据电网负荷状况, 向电动汽车车载终端发送充电控制 指令, 以使电动汽车车载终端根据充电控制指令来控制电动汽车的充放电机停 止向电动汽车的车载电源充电、 按预设功率充电或向电网放电, 减小了在用电 高峰电动汽车充电给电网带来巨大压力, 实现了智能充电。 实施例四
本发明实施例提供了一种电动汽车车载终端, 参见图 4, 该终端包括: 接收模块 401, 用于接收充电控制指令, 充电控制指令包括停止充电控制 指令、 放电指令或按预设功率充电控制指令, 充电控制指令是根据电网负荷状 况生成的; 令; ' : 、 、 : 、 控制模块 403, 用于当充电控制指令包括停止充电控制指令, 且充放电条 件表示允许停止充电时,控制电动汽车的充放电机停止向电动汽车的车载电源 充电;
当充电控制指令包括按预设功率充电指令, 且充放电条件表示允许按预设 功率充电时, 控制电动汽车的充放电机按预设功率向电动汽车的车载电源充 电;
当充电控制指令包括放电指令, 且充放电条件表示允许放电时, 控制充放 电机向电网放电。
本发明实施例通过在电动汽车充电过程中, 接收充电控制***发送的指 令包括停止充电控制指令, 且充放电条件表示允许停止充电时, 控制电动汽车 的充放电机停止向电动汽车的车载电源充电; 当充电控制指令包括按预设功率 充电指令, 且充放电条件表示允许按预设功率充电时, 控制电动汽车的充放电 机按预设功率向电动汽车的车载电源充电; 当充电控制指令包括放电指令, 且 充放电条件表示允许放电时, 控制充放电机向电网放电; 减小了在用电高峰电 动汽车充电给电网带来巨大压力, 实现了智能充电。 实施例五
本发明实施例提供了一种电动汽车车载终端, 参见图 5, 该终端包括: 接 收模块 501、 判断模块 502和控制模块 503;
其中, 接收模块 501, 用于接收充电控制***发送的充电控制指令, 充电 控制指令包括停止充电控制指令、 放电指令或按预设功率充电控制指令, 充电 控制指令是根据电网负荷状况生成的。 具体地, 接收模块 501这包括 GPRS通信单元, 该 GPRS通信单元用于与 充电控制***通信, 从而接收充电控制指令。
充电控制指令可以根据以下方式生成: 当充电控制***检测到电网负荷较 大(例如, 超过设定阔值)时, 可以生成按预设功率充电控制指令或停止充电 控制指令, 以限制电动汽车按预设功率充电或者控制电动汽车停止充电。 经过 一段时间后, 若停止充电还不能满足电网用电需求(例如负荷仍然较大), 可 以生成放电指令, 请求电动汽车向电网放电。
又例如, 充电控制指令还可以根据以下方式生成: 将电网负荷分为多个等 级, 当当前等级表示高负荷(高于设定的第一阔值)时, 生成放电指令; 当当 前等级表示中等负荷(位于第一阔值和设定的第二阔值之间, 第一阔值大于第 二阔值)时, 生成停止充电控制指令; 当当前等级表示低负荷时(低于第二阔 值), 生成按预设功率充电控制指令。 令。 ' : 、 、 : 、
控制模块 503, 用于当充电控制指令包括停止充电控制指令, 且充放电条 件表示允许停止充电时,控制电动汽车的充放电机停止向电动汽车的车载电源 充电;
当充电控制指令包括按预设功率充电指令, 且充放电条件表示允许按预设 功率充电时, 控制电动汽车的充放电机按预设功率向电动汽车的车载电源充 电;
当充电控制指令包括放电指令, 且充放电条件表示允许放电时, 控制充放 电机向电网放电。
其中, 控制模块 503通过 CAN总线与电池控制器和充放电机电连接, 从 而确定车载电源电量, 并控制充放电机充电或放电。
具体地, 该判断模块 502可以包括:
获取单元 5021, 用于获取用户设定的充放电条件。
在具体实现中, 用户可以釆用设置充放电模式来设定充放电条件。 也就是 说, 可以先获取用户设定的充放电模式, 然后根据充放电模式与充放电条件的 对应关系, 查找与该充放电模式对应的充放电条件。 例如, 充放电模式与充放 电的条件可以如下: 常规模式, 允许充电, 不允许放电; 经济模式, 根据电价 信息控制充电时间, 不允许放电; 远程模式, 允许放电。 当然, 用户还可以通 过设置其他条件来设计自定义模式。
具体地, 在常规模式下, 只要车载电源与电网连接即开始充电, 充满后停 止。 但是, 在充放电机故障或电池故障时, 也会停止充电。
在经济模式下, 通常是在电价低的时候进行充电, 比如晚间 11 点开始充 电, 充满后停止。 用户也可以根据当地电价信息, 修改充电时间。
在远程模式和自定义模式下, 电动汽车车载终端接收充电控制指令, 并根 据当前用户设定的充放电条件, 判断是否可以执行充电控制指令。 该充放电条 件用于表示是否允许执行充电控制指令, 充放电条件除了可以包括用于直接指 示是否允许执行充电控制指令的直接条件外,还可以包括用于间接指示是否允 许执行充电控制指令的间接条件。
直接条件包括允许停止充电、 是否允许按预设功率充电和是否允许放电。 间接条件可以包括电池最低电量和期望电量值。
另外, 自定义模式下, 用户还可以设置离开时刻和期望电量值等充放电条 件, 电动汽车车载终端会判断, 釆用最大功率充电至用户设置的离开时刻, 能 否达到期望电量值, 若不能, 则提示用户设置不合理。
判断单元 5022,用于根据获取到的充放电条件判断是否允许执行充电控制 指令。
在判断时, 判断单元先判断直接条件是否允许执行充电控制指令。 当直接 条件允许执行充电控制指令, 且充放电条件还包括间接条件时, 判断间接条件 是否允许执行充电控制指令。
具体地, 当充电控制指令包括停止充电控制指令时, 若判断单元 5022判 断充放电条件为允许停止充电, 控制模块 503, 用于控制电动汽车的充放电机 停止向电动汽车的车载电源充电。
当充电控制指令包括按预设功率充电指令时, 若判断单元 5022判断充放 电条件为允许按预设功率充电, 则控制模块 503, 用于控制电动汽车的充放电 机按预设功率向电动汽车的车载电源充电。 若充放电条件包括: 允许按预设功 率充电、 期望电量值和离开时刻, 则判断单元 5022计算按预设功率为车载电 源充电至离开时刻时, 车载电源的预计电量; 若判断单元 5022判断预计电量 大于期望电量值, 则控制模块 503, 用于控制电动汽车的充放电机按预设功率 向电动汽车的车载电源充电。
当充电控制指令包括放电控制指令时, 若判断单元 5022判断充放电条件 为允许放电, 则控制模块 503, 用于控制充放电机向电网放电。 若充放电条件 包括: 允许放电和电池最低电量, 则判断单元 5022确定车载电源的电量; 若 车载电源的电量大于电池最低电量, 则控制模块 503, 用于控制充放电机向电 网放电。 若充放电条件包括: 允许放电、 离开时间和期望电量值, 则判断单元 5022判断当前车载电源的电量值是否大于期望电量值;若当前车载电源的电量 值大于期望电量值, 则控制模块 503, 用于控制充放电机向电网放电。
进一步地, 判断单元 5022在判断当前车载电源的电量值大于期望电量值 后, 还可以根据离开时间计算出最大放电功率, 控制模块 503在控制充放电机 向电网放电时, 放电功率不大于上述最大放电功率, 从而保证离开时刻的车载 电源电量值不小于期望电量值。
其中, 确定车载电源电量, 可以通过与车载电源连接的电池控制器获得。 进一步地, 充电控制指令还包括放电功率, 控制模块 503, 用于: 确定车载电源允许放出的最大功率,控制充放电机釆用允许放出的最大功 率和放电功率中较小的一个向电网放电。
本发明实施例通过在电动汽车充电过程中, 接收充电控制***发送的指 令包括停止充电控制指令, 且充放电条件表示允许停止充电时, 控制电动汽车 的充放电机停止向电动汽车的车载电源充电; 当充电控制指令包括按预设功率 充电指令, 且充放电条件表示允许按预设功率充电时, 控制电动汽车的充放电 机按预设功率向电动汽车的车载电源充电; 当充电控制指令包括放电指令, 且 充放电条件表示允许放电时, 控制充放电机向电网放电; 减小了在用电高峰电 动汽车充电给电网带来巨大压力, 实现了智能充电。 实施例六
本发明实施例提供了一种充电控制***, 参见图 6, 该***包括: 获取模块 601, 用于获取电网负荷状况。
生成模块 602, 用于根据电网负荷状况生成充电控制指令, 充电控制指令 包括停止充电控制指令、 放电指令或按预设功率充电控制指令。
例如, 充电控制***可以根据以下方式生成充电控制指令: 当充电控制系 统检测到电网负荷较大(例如, 超过设定阔值)时, 可以生成按预设功率充电 控制指令或停止充电控制指令, 以限制电动汽车按预设功率充电或者控制电动 汽车停止充电。 经过一段时间后, 若停止充电还不能满足电网用电需求(例如 负荷仍然较大), 可以生成放电指令, 请求电动汽车向电网放电。 当电网负荷 恢复正常时, 恢复正常的充电过程。
又例如, 充电控制***还可以根据以下方式生成充电控制指令: 将电网负 荷分为多个等级, 当当前等级表示高负荷(高于设定的第一阔值)时, 生成放 电指令; 当当前等级表示中等负荷(位于第一阔值和设定的第二阔值之间, 第 一阔值大于第二阔值)时, 生成停止充电控制指令; 当当前等级表示低负荷时 (低于第二阔值), 生成按预设功率充电控制指令。
发送模块 603, 用于发送生成模块生成的充电控制指令。 具体地, 发送模 块 603包括 GPRS通信单元, 该 GPRS通信单元用于与车载终端通信。
本发明实施例通过根据电网负荷状况, 向电动汽车车载终端发送充电控制 指令, 以使电动汽车车载终端根据充电控制指令来控制电动汽车的充放电机停 止向电动汽车的车载电源充电、 按预设功率充电或向电网放电, 减小了在用电 高峰电动汽车充电给电网带来巨大压力, 实现了智能充电。 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种充电控制方法, 其特征在于, 所述方法包括:
接收充电控制指令, 所述充电控制指令包括停止充电控制指令、 按预设功 率充电指令或放电指令, 所述充电控制指令是根据电网负荷状况生成的; 当充电控制指令包括停止充电控制指令, 且所述充放电条件表示允许停止 当充电控制指令包括按预设功率充电指令, 且所述充放电条件表示允许按 车载电源充电;
当充电控制指令包括放电指令, 且所述充放电条件表示允许放电时, 控制 所述充放电机向所述电网放电。
2、 根据权利要求 1所述的方法, 其特征在于, 当所述充电控制指令包括放 电指令, 所述充放电条件包括是否允许放电、 电池最低电量时, 所述根据设定 的充放电条件判断是否允许执行所述充电控制指令, 包括:
当所述充放电条件为允许放电时, 确定所述车载电源的电量;
若所述车载电源的电量大于所述电池最低电量, 则允许执行所述放电指令。
3、 根据权利要求 2所述的方法, 其特征在于, 所述充电控制指令还包括放 电功率, 所述控制所述充放电机向所述电网放电, 包括:
确定所述车载电源允许放出的最大功率, 控制所述充放电机釆用所述允许 放出的最大功率和所述放电功率中较小的一个向所述电网放电。
4、 根据权利要求 2所述的方法, 其特征在于, 当所述充电控制指令包括按 预设功率充电指令, 所述充放电条件包括: 期望电量值和离开时刻时, 所述方 法还包括:
计算按预设功率为所述车载电源充电至所述离开时刻时, 所述车载电源的 预计电量;
若所述预计电量大于所述期望电量值, 则允许执行所述按预设功率充电指 令。
5、 一种充电控制方法, 其特征在于, 所述方法包括:
获取电网负荷状况; 根据所述电网负荷状况生成充电控制指令, 所述充电控制指令包括停止充 电控制指令、 按预设功率充电指令或放电指令;
发送所述充电控制指令。
6、 一种电动汽车车载终端, 其特征在于, 所述终端包括:
接收模块, 用于接收充电控制指令, 所述充电控制指令包括停止充电控制 指令、 按预设功率充电指令或放电指令, 所述充电控制指令是根据电网负荷状 况生成的; 令; ' : 、 、 : 、
控制模块, 用于当充电控制指令包括停止充电控制指令, 且所述充放电条 车载电源充电;
当充电控制指令包括按预设功率充电指令, 且所述充放电条件表示允许按 车载电源充电;
当充电控制指令包括放电指令, 且所述充放电条件表示允许放电时, 控制 所述充放电机向所述电网放电。
7、 根据权利要求 6所述的终端, 其特征在于, 当所述充电控制指令包括放 电指令, 所述充放电条件包括是否允许放电、 电池最低电量时, 所述判断模块 用于:
当所述充放电条件为允许放电, 确定所述车载电源的电量;
若所述车载电源的电量大于所述电池最低电量, 则允许执行所述放电指令。
8、 根据权利要求 7所述的终端, 其特征在于, 所述充电控制指令还包括放 电功率, 所述控制模块, 用于当所述车载电源的电量大于所述最低电量时, 确 定所述车载电源允许放出的最大功率, 控制所述充放电机釆用所述允许放出的 最大功率和所述放电功率中较小的一个向所述电网放电。
9、 根据权利要求 7所述的终端, 其特征在于, 当所述充电控制指令包括按 预设功率充电指令, 所述充放电条件包括: 期望电量值和离开时刻时, 所述判 断模块用于:
计算按预设功率为所述车载电源充电至所述离开时刻时, 所述车载电源的 预计电量; 若所述预计电量大于所述期望电量值, 则允许执行所述按预设功率充电指 令。
10、 一种充电控制***, 其特征在于, 所述***包括:
获取模块, 用于获取电网负荷状况;
生成模块, 用于根据所述电网负荷状况生成充电控制指令, 所述充电控制 指令包括停止充电控制指令、 按预设功率充电指令或放电指令;
发送模块, 用于发送所述生成模块生成的充电控制指令。
PCT/CN2014/082381 2013-08-06 2014-07-17 充电控制方法、电动汽车车载终端及充电控制*** WO2015018270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310340024.7 2013-08-06
CN201310340024.7A CN103441558B (zh) 2013-08-06 2013-08-06 充电控制方法及电动汽车车载终端

Publications (1)

Publication Number Publication Date
WO2015018270A1 true WO2015018270A1 (zh) 2015-02-12

Family

ID=49695240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082381 WO2015018270A1 (zh) 2013-08-06 2014-07-17 充电控制方法、电动汽车车载终端及充电控制***

Country Status (2)

Country Link
CN (1) CN103441558B (zh)
WO (1) WO2015018270A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167659B2 (en) 2019-02-05 2021-11-09 Inventus Holdings, LLC. Allocation of electrical energy within a storage cell
EP3890137A4 (en) * 2018-11-28 2022-08-24 Kyocera Corporation PERFORMANCE MANAGEMENT DEVICE, PERFORMANCE MANAGEMENT METHOD AND PERFORMANCE MANAGEMENT SYSTEM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441558B (zh) * 2013-08-06 2016-03-16 奇瑞汽车股份有限公司 充电控制方法及电动汽车车载终端
CN106058973A (zh) * 2016-06-14 2016-10-26 重庆长安汽车股份有限公司 一种智能充电控制方法及***
CN107017645A (zh) * 2017-03-31 2017-08-04 奇瑞汽车股份有限公司 一种电动车的充放电方法和车载终端
CN107512190A (zh) * 2017-09-11 2017-12-26 合肥亮天新能源科技有限公司 一种具有充放电功能的双向新能源汽车充电桩
JP6958287B2 (ja) 2017-11-24 2021-11-02 トヨタ自動車株式会社 電力制御システムおよび車両
SG10201805647RA (en) * 2018-03-23 2019-10-30 Beijing Hanergy Solar Power Investment Co Ltd Solar battery system and control method thereof
CN110395138A (zh) * 2018-04-25 2019-11-01 中能绿驰成都汽车科技有限公司 一种纯电动汽车交流充电智能控制***及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800432A (zh) * 2009-02-06 2010-08-11 精英电脑股份有限公司 ***电源监控装置及其方法
CN102361334A (zh) * 2011-10-17 2012-02-22 广东电网公司深圳供电局 光伏储能电动汽车充电站***及储能***状态切换方法
US20120256588A1 (en) * 2011-04-07 2012-10-11 Honda Motor Co., Ltd Electric vehicle charge control system
CN102868195A (zh) * 2012-09-20 2013-01-09 西安交通大学 一种利用风光市电互补路灯电能进行电动汽车充电***
CN103107600A (zh) * 2013-02-07 2013-05-15 中国地质大学(武汉) 一种物联网智能充电供电***及其调度方法
CN103441558A (zh) * 2013-08-06 2013-12-11 奇瑞汽车股份有限公司 充电控制方法、电动汽车车载终端及充电控制***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280903B (zh) * 2010-06-10 2014-07-30 上海市电力公司 一种v2g智能充放电***
CN102427240A (zh) * 2010-11-19 2012-04-25 上海市电力公司 实现电动车辆与电网互动的***
CN202004503U (zh) * 2010-12-17 2011-10-05 上海市电力公司 电动车辆接入电网进行充放电的***
CN102222928B (zh) * 2011-06-16 2014-01-15 北京许继电气有限公司 电动汽车动力电池大型集中储能智能型充放电***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800432A (zh) * 2009-02-06 2010-08-11 精英电脑股份有限公司 ***电源监控装置及其方法
US20120256588A1 (en) * 2011-04-07 2012-10-11 Honda Motor Co., Ltd Electric vehicle charge control system
CN102361334A (zh) * 2011-10-17 2012-02-22 广东电网公司深圳供电局 光伏储能电动汽车充电站***及储能***状态切换方法
CN102868195A (zh) * 2012-09-20 2013-01-09 西安交通大学 一种利用风光市电互补路灯电能进行电动汽车充电***
CN103107600A (zh) * 2013-02-07 2013-05-15 中国地质大学(武汉) 一种物联网智能充电供电***及其调度方法
CN103441558A (zh) * 2013-08-06 2013-12-11 奇瑞汽车股份有限公司 充电控制方法、电动汽车车载终端及充电控制***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890137A4 (en) * 2018-11-28 2022-08-24 Kyocera Corporation PERFORMANCE MANAGEMENT DEVICE, PERFORMANCE MANAGEMENT METHOD AND PERFORMANCE MANAGEMENT SYSTEM
US11167659B2 (en) 2019-02-05 2021-11-09 Inventus Holdings, LLC. Allocation of electrical energy within a storage cell
US11667212B2 (en) 2019-02-05 2023-06-06 Inventus Holdings, Llc Allocation of electrical energy within a storage cell

Also Published As

Publication number Publication date
CN103441558B (zh) 2016-03-16
CN103441558A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2015018270A1 (zh) 充电控制方法、电动汽车车载终端及充电控制***
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及***
CN103580248B (zh) 一种纯电动汽车定时、定量充电的控制***及方法
KR101974356B1 (ko) 교류 충전 장치를 이용한 전기차 충전 방법 및 장치
CN103490485B (zh) 应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法
JP5454697B2 (ja) 車両用電源装置およびそれを備える車両ならびに車載充電器の制御方法
KR101873666B1 (ko) 전력 수수 제어 장치
JP5504117B2 (ja) 電気自動車の制御装置
JP2013081324A (ja) 車両の充電システムおよび車両の充電方法
CN105922878B (zh) 用于增大车辆行程长度的方法和用于车辆的控制单元
CN105196888A (zh) 一种电动汽车充电机的充电管理***及方法
JP2009142062A (ja) 車両用電源装置
JP5880394B2 (ja) 車両の電源装置
CN103192721B (zh) 双轴驱动电动汽车的制动***及制动方法
CN109733249B (zh) 一种新能源汽车充电***及其控制方法
JP2012080689A (ja) 電気自動車用電源装置
CN102951027A (zh) 一种电动汽车制动能量回收自适应控制方法
WO2011000259A1 (zh) 电动汽车发电机组的控制方法
CN110920459A (zh) 一种电动汽车分布式储能方法、装置、设备和介质
KR101512879B1 (ko) 전기 자동차의 충전 시스템
CN110254287A (zh) 电动车辆的控制方法、装置、介质和电动车辆
CN111361456A (zh) 一种用于动力电池的自预热***及动力电池的加热方法
CN113696748B (zh) 一种燃料电池供电***及其控制方法和控制装置
CN209534765U (zh) 一种车载辅助电源的充电控制***及汽车
JP5710440B2 (ja) 車両の充電システムおよび車両の充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835380

Country of ref document: EP

Kind code of ref document: A1