WO2015017998A1 - 一种基于光纤光栅传感器的用于监测人体生理参数的床 - Google Patents

一种基于光纤光栅传感器的用于监测人体生理参数的床 Download PDF

Info

Publication number
WO2015017998A1
WO2015017998A1 PCT/CN2013/080977 CN2013080977W WO2015017998A1 WO 2015017998 A1 WO2015017998 A1 WO 2015017998A1 CN 2013080977 W CN2013080977 W CN 2013080977W WO 2015017998 A1 WO2015017998 A1 WO 2015017998A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
fiber grating
calculation unit
strain sensor
fiber
Prior art date
Application number
PCT/CN2013/080977
Other languages
English (en)
French (fr)
Inventor
黄勃
Original Assignee
Huang Bo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Bo filed Critical Huang Bo
Priority to PCT/CN2013/080977 priority Critical patent/WO2015017998A1/zh
Publication of WO2015017998A1 publication Critical patent/WO2015017998A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • A61B2562/0266Optical strain gauges

Definitions

  • the present invention relates to the field of fiber grating sensing, and more particularly to a bed for monitoring physiological parameters of a human body based on a fiber Bragg grating sensor.
  • Optical fiber sensing technology was rapidly developed in the 1970s with the development of optical fiber communication technology. It is a new sensing technology that uses light waves as a carrier and optical fiber as a medium to sense and transmit externally measured signals.
  • These fiber sensors can be divided into three categories according to their range of functions: point sensors (such as fiber microbend sensors, fiber Fabry-Perot sensors, fiber Bragg grating sensors, etc.), integral sensors (such as fiber Michelson interferometers and fiber Mach-Zehnder interference). Instrument), distributed sensors (such as stress and temperature distributed sensors made with Brillouin scattering effect).
  • the bed of the present invention can be used to monitor physiological parameters such as heart rate, respiratory rate and body weight of the human body, and can perform non-invasive real-time monitoring of the health status of the human body.
  • a bed for monitoring physiological parameters of a human body based on a fiber Bragg grating sensor comprising a bed panel, four bed support legs for supporting the bed panel, wherein each bed support leg is provided
  • a fiber grating strain sensor all fiber grating strain sensors are connected in series by an optical fiber connected with a photoelectric module and a data processing module
  • the photoelectric module has an LED light source, an optical coupler and a demodulation unit, and an LED light source
  • the emitted light is injected into the fiber grating strain sensor through the optical coupler, and the light satisfying the reflection condition is reflected and then enters the demodulation unit through the optical coupler
  • the data processing module is located in a monitoring host, and the monitoring host is further connected with a comprehensive The result display platform;
  • the data in the data processing module sequentially passes through a frequency shift calculation unit, a Gaussian denoising unit, a pattern recognition unit, a fiber grating strain sensor temperature compensation calculation unit, a heart rate calculation unit, a respiratory frequency calculation
  • the bed for measuring physiological parameters of human body of the present invention has the following technical advantages in application:
  • the bed of the present invention provides non-invasive real-time monitoring of the health of the human body.
  • the present invention allows the fiber grating strain sensor to produce a central reflection wavelength drift in consideration of temperature.
  • a fiber grating temperature sensor is disposed under each fiber grating strain sensor for compensating for temperature versus fiber grating strain sensor. The shadow, improve the detection accuracy.
  • the FBG sensor itself is electrically passive, it does not cause any electrical hazard to the human body lying on the bed, and the safety performance is very prominent.
  • Figure 1 is a schematic block diagram of the present invention.
  • the bed of the present invention is similar in structure to the prior art bed and includes a bed panel and a bed support leg for supporting the bed panel.
  • the bed support legs here are placed under the floor or under the ground to support the entire bed. When the human body lies on the bed panel, its back rests on the bed panel.
  • the bed comprises a bed panel, four bed support legs for supporting the bed panel, wherein each of the bed support legs is provided with a fiber grating strain sensor, and all the fiber grating strain sensors pass through one fiber.
  • the optical fiber is connected with a photoelectric module and a data processing module; the photoelectric module has an LED light source, an optical coupler and a demodulation unit, and the light emitted by the LED light source is injected into the fiber grating strain sensor through the optical coupler to meet the reflection condition.
  • the light is reflected and then enters the demodulation unit through the optocoupler; the data processing module is located in a monitoring host, and the monitoring host is further connected with a comprehensive result display platform; the data in the data processing module is sequentially passed through The frequency shift calculation unit, the Gaussian denoising unit, the pattern recognition unit, the fiber grating strain sensor temperature compensation calculation unit, the heart rate calculation unit, the respiratory frequency calculation unit, the weight calculation unit, and the final output result to the comprehensive result display platform.
  • the frequency shift calculation unit compares the center wavelength of the reflected light of the fiber grating strain sensor and the reflected light of the fiber grating strain sensor by the temperature and the strain, and obtains the center wavelength of the reflected light. Offset; the Gaussian denoising unit removes the noise signal in the processed data; the pattern recognition unit distinguishes the heartbeat, respiration, and weight signals; the fiber grating strain sensor temperature compensation calculation unit reflects the temperature on the fiber grating strain sensor The offset of the optical center wavelength is removed, leaving only the effect of the strain; the heart rate calculation unit and the respiratory frequency calculation unit calculate the heart rate and the respiratory rate; the body weight calculation unit calculates the body weight.
  • the invention improves the bed by using photoelectric technology and sensor technology, and the specific improvement is that a fiber grating strain sensor is arranged on the support leg of the bed, and the fiber grating strain sensor passes An optical fiber is connected in series, and the above-mentioned optical fiber is led out from one end, and the extracted optical fiber is connected with a photoelectric module and a data processing module.
  • the fiber grating strain sensor can detect the amount of strain deformation generated when the human body lies on the bed, and convert the deformation amount and the change condition by photoelectric signal conversion to electrical signal processing, thereby obtaining the deformation according to the operation.
  • some physiological parameters of the human body are measured. These physiological parameters include respiratory frequency and heart rate in addition to body weight.
  • a fiber grating strain sensor is disposed on each support leg of the bed, and four fiber grating strain sensors are disposed on the four support legs.
  • Four such strain sensors are installed for the purpose of increasing sensitivity and detection accuracy.
  • Both the heartbeat and the breath produce a force of different magnitude and frequency on the back, which acts on the four strain sensors, causing them to produce axial strain, which deflects the center wavelength of the reflected light from the fiber grating strain sensor. shift.
  • the frequency shift of the center wavelength of the reflected light of the fiber grating strain sensor caused by the heartbeat and the breath is different, so the frequency of the frequency shift is different, so according to this law, the strain sensor can detect the heart rate and the breath of the human body.
  • Physiological parameters such as frequency.
  • the total weight of the human body will act on the highest point of the curved structure on the fiber grating strain sensor when compared with the bed, which will cause the fiber grating strain sensor to generate an axial strain.
  • the center wavelength of the reflected light of the fiber grating strain sensor is shifted, and the offset has a linear relationship with the body weight. The larger the offset, the heavier the weight, and vice versa.
  • each of the fiber grating sensors is connected by a plurality of fiber segments divided by one fiber.
  • the optoelectronic module, the monitoring host, and the integrated results display platform are connected by cables, and all hardware components are connected by fiber optics.
  • the photoelectric module has an LED light source, an optical coupler and a demodulation unit. The light emitted by the broadband light source is injected into the fiber grating sensor through the optical coupler, and the light satisfying the reflection condition is reflected, and then enters the demodulation unit through the optical coupler to demodulate the center wavelength of the reflected light of each fiber grating sensor. It is then converted into an electrical signal and transmitted to the monitoring host.
  • the monitoring host has a built-in data acquisition module and a data processing module.
  • the data acquisition module is used to collect data and A ⁇ D conversion.
  • the data processing module is a core part of the monitoring host, and includes six module units: a frequency shift calculation unit, a Gaussian denoising unit, a pattern recognition unit, a fiber grating strain sensor temperature compensation calculation unit, a heart rate calculation unit, a respiratory frequency calculation unit, Weight calculation unit.
  • the data processing module first sends the data of the reflected light from each of the fiber grating sensors of the photoelectric module to the frequency shift calculation unit, and the frequency shift calculation unit converts the center wavelength of the reflected light of the fiber grating sensor subjected to temperature and strain.
  • the center wavelength of the calibrated reflected light is made a difference, and the offset of the center wavelength of the reflected light is obtained.
  • the processed data is removed by a Gaussian denoising unit, such as some noise superimposed signals generated by a person moving on a bed.
  • the heartbeat, respiration, and weight signals are distinguished by the pattern recognition unit.
  • the offset of the center wavelength of the reflected light generated by the temperature on the fiber grating strain sensor is removed by the fiber grating strain sensor temperature compensation calculation unit, leaving only the effect of strain.
  • the heart rate, the respiratory rate, and the body weight are calculated through the heart rate calculation unit, the respiratory frequency calculation unit, and the weight calculation unit, respectively.
  • the heart rate refers to the number of times the heart beats per minute, which is an important diagnostic basis in the doctor's clinical diagnosis.
  • Normal adults usually have a heart rate of 60 to 100 beats per minute.
  • heart rate can vary with age and gender.
  • the ups and downs of the chest are one breath, that is, one breath and one breath.
  • the number of breaths per minute is called the respiratory rate, which is also an important diagnostic basis in the doctor's clinical diagnosis.
  • Normal adults have a respiratory rate of about 16 to 18 beats per minute.
  • Weight is closely related to some parameters such as gender, age and height.
  • the integrated result shows that the display interface is configured on the platform. Users can view the heart rate, respiratory rate, weight and time curve directly on the display interface. Heart rate and respiratory rate are measured every hour, and body weight is measured once a day. Users can also view the changes of the three physiological parameters in one day, one month and one year in the display interface, so that users can better understand the changes in physical health status over a long period of time.
  • the bed containing the fiber grating sensor of the invention is mainly used for monitoring physiological parameters such as heart rate, respiratory frequency and body weight of the human body, and can perform non-intrusive real-time monitoring on the health condition of the human body.
  • physiological parameters such as heart rate, respiratory frequency and body weight of the human body
  • the bed of the present invention does not affect the comfort of sleeping, and a host device can be connected to multiple beds at the same time, which greatly reduces the cost and is simple to maintain.
  • the bed of the present invention is well suited for use by companies and government agencies as a benefit to the unit's employees, creating real-time personal health records for employees.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种基于光纤光栅传感器的用于监测人体生理参数的床,所述的床包括有床面板、用于支撑床面板的床支撑腿,所述床支撑腿上设有光纤光栅应变传感器,所有光纤光栅应变传感器通过一根光纤串联连接,引出的光纤连接有光电模块和数据处理模块。所述的床用来监测人体的心率、呼吸频率和体重等生理参数,可对人体的健康状况进行非介入式的实时监测。

Description

一种基于光纤光栅传感器的用于监测人体生理参数的床 技术领域
本发明涉及到光纤光栅传感领域,具体地说,是涉及到一种基于光纤光栅传感器的用于 监测人体生理参数 的床。
背景技术
   光纤传感技术是在20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,它是一种以光波为载体,光纤为媒质,感知和传输外界被测量信号的一种新型传感技术。这些光纤传感器根据作用范围又可以分为三类:点式传感器(如光纤微弯传感器、光纤Fabry-Perot传感器、光纤Bragg光栅传感器等),积分传感器(如光纤Michelson干涉仪和光纤Mach-Zehnder干涉仪),分布式传感器(如利用布里渊散射效应制成的应力、温度分布式传感器)。作为点式传感器的一种,光纤光栅在传感领域的应用已经得到世界范围内的广泛重视,其具有其它传统电传感器无可比拟的优点,主要是:抗电磁干扰、耐腐蚀、测量范围宽、便于复用成网、小型化和维护成本低等。
目前市场下,对能够监测人体生理参数(如呼吸频率、心率和体重等生理参数的监测)的家用和办公用医疗保健产品的需求量相当大。然而,将光纤光栅传感器用于非介入式的安全的医疗保健方面的实践却很少,而且由于人的呼吸与心跳信号往往容易混杂在一起,如果采用一般的监测人体生理参数的设备,难以保证信号质量与长期监测,此外外界温度也容易影响信号质量。
技术问题
本发明的目的是提供一种能够用于人体生理参数如心跳频率、呼吸频率以及体重的测量监控的床。本发明的床要能够用来监测人体的心率、呼吸频率和体重等生理参数,可对人体的健康状况进行非介入式的实时监测。
技术解决方案
   为了达到上述发明目的,本发明提供的技术方案如下:
   一种基于光纤光栅传感器的用于监测人体生理参数的床,所述的床包括有床面板、用于支撑床面板的4条床支撑腿,其特征在于,所述每条床支撑腿上设有一个光纤光栅应变传感器,所有光纤光栅应变传感器通过一根光纤串联连接,所述光纤连接有光电模块和数据处理模块;所述光电模块内置有LED光源、光耦合器和解调单元,LED光源发出的光经光耦合器注入光纤光栅应变传感器,满足反射条件的光被反射后经光耦合器进入解调单元;所述的数据处理模块位于一个监控主机内,该监控主机还连接有一个综合结果显示平台;所述的数据处理模块内的数据依次经过有频移量计算单元、高斯去噪单元、模式识别单元、光纤光栅应变传感器温度补偿计算单元、心率计算单元、呼吸频率计算单元、体重计算单元,最终输出结果至综合结果显示平台。
有益效果
   基于上述技术方案,本发明的用于人体生理参数测量的床在应用中具有如下技术优点:
   1.本发明的床可对人体的健康状况进行非介入式的实时监测。
   2.由于人们每天有8小时都是躺在床上,在床上时呼吸、心跳都比较平稳,有利于提高信号质量与长期监测。
   3.本发明考虑到温度也可使光纤光栅应变传感器产生中心反射波长的漂移,为此在每个光纤光栅应变传感器的边下安置了一个光纤光栅温度传感器,用于补偿温度对光纤光栅应变传感器的影啊,提高检测精度。
4.由于光纤光栅传感器本身是电无源的,因而不会对躺在床上的人体产生任何电危害,安全性能十分突出。
附图说明
图1为 本发明 的原理方框图 。
本发明的最佳实施方式
   为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
   本发明的床与现有技术中的床结构类似,在外形结构上都包括有床面板、用于支撑床面板的的床支撑腿。这里的床支撑腿放置到地板或者地面下,起到支撑整个床的作用。人体躺在床面板上时,其背部贴靠在床面板上。
   所述的床包括有床面板、用于支撑床面板的4条床支撑腿,其特征在于,所述每条床支撑腿上设有一个光纤光栅应变传感器,所有光纤光栅应变传感器通过一根光纤串联连接,所述光纤连接有光电模块和数据处理模块;所述光电模块内置有LED光源、光耦合器和解调单元,LED光源发出的光经光耦合器注入光纤光栅应变传感器,满足反射条件的光被反射后经光耦合器进入解调单元;所述的数据处理模块位于一个监控主机内,该监控主机还连接有一个综合结果显示平台;所述的数据处理模块内的数据依次经过有频移量计算单元、高斯去噪单元、模式识别单元、光纤光栅应变传感器温度补偿计算单元、心率计算单元、呼吸频率计算单元、体重计算单元,最终输出结果至综合结果显示平台。
   且所述的频移量计算单元将受温度、应变作用后的光纤光栅应变传感器光信号和光纤光栅应变传感器的反射光的中心波长与标定的反射光中心波长比较作差,得到反射光中心波长的偏移量;高斯去噪单元去除上述处理后数据中的噪声信号;模式识别单元区分出心跳、呼吸和体重信号;光纤光栅应变传感器温度补偿计算单元把温度在光纤光栅应变传感器上产生的反射光中心波长的偏移量去除,只留下应变的作用效应;心率计算单元、呼吸频率计算单元计算出心率和呼吸频率;体重计算单元计算出体重。
   本发明为了实现能够利用该床测量人体部分生理参数,利用光电技术和传感器技术对床进行了改进,具体的改进之处在于:在床支撑腿上设有光纤光栅应变传感器,光纤光栅应变传感器通过一根光纤串联连接起来,上述的光纤从一端引出来,引出的光纤连接有光电模块和数据处理模块。上述的光纤光栅应变传感器可以探测到人体躺靠在床上后产生的应变变形量,并把该变形量和变化情况通过激光信号检测后经过光电转换后转换成电信号处理,从而根据运算获知该变形,再结合引起该变形的原因,测算出人体的部分生理参数,这些生理参数除了体重以外,还包括有呼吸频率和心跳频率。
   床的每根支撑腿上设置有一个光纤光栅应变传感器,则四根支撑腿上设置有四个光纤光栅应变传感器,安装四个这样的应变传感器目的是为了增加灵敏度和检测精度。心跳和呼吸都分别会在背部产生一个不同幅值和频率的力,它们都会作用到四个应变传感器上,使它们产生轴向应变,从而使来自光纤光栅应变传感器的反射光的中心波长发生偏移。心跳和呼吸所致的光纤光栅应变传感器的反射光中心波长的频移量是不同的,因此频移量的复现频率也是不同的,因此根据这个规律,应变传感器可以检测到人体的心率和呼吸频率等生理参数。
   而当人开始躺在床上时,与床上无人时比较,人体的全部重量将会作用在光纤光栅应变传感器上的弧形结构的最高点上,会使光纤光栅应变传感器产生一个轴向应变,导致光纤光栅应变传感器的反射光的中心波长发生偏移,偏移量与人体体重存在线性的关系,偏移量越大则体重越重,反之亦然。
   在本发明的用于人体生理参数测量的床中,由于人体体温的存在,势必会对光纤光栅应变传感器造成影响,进而会影响到测量的精度。为了减小温度对光纤光栅应变传感器带来的不良影响,我们在靠近每个光纤光栅应变传感器的地方设置了一个光纤光栅温度传感器,以测出体温对应变的影响,在计算时考虑上述影响,将温度影响去除。具体温度补偿过程在监控主机运行时在光纤光栅应变传感器温度补偿计算单元中实现。
   在床的具体结构中,各个光纤光栅传感器通过一根光纤分成的多个光纤段连接。光电模块、监控主机和综合结果显示平台之间用电缆连接,除此之外所有硬件部件都采用光纤连接。光电模块内置有LED光源、光耦合器和解调单元。宽带光源发出的光经光耦合器注入光纤光栅传感器,满足反射条件的光被反射后,再经过光耦合器进入解调单元,解调出各光纤光栅传感器的反射光的中心波长。然后再将其转换成电信号,并传输给监控主机上。
   如图1所示,监控主机内置数据采集模块和数据处理模块。数据采集模块用于采集数据和A\D转换。数据处理模块是监控主机的核心部分,它包括6大模块单元:频移量计算单元、高斯去噪单元、模式识别单元、光纤光栅应变传感器温度补偿计算单元、心率计算单元、呼吸频率计算单元、体重计算单元。
   上述数据处理模块先将来自光电模块的各光纤光栅传感器的反射光的数据送给频移量计算单元,频移量计算单元将受温度、应变作用后的光纤光栅传感器的反射光的中心波长与标定的反射光中心波长作差,得到反射光中心波长的偏移量。然后,再把处理过的数据经由高斯去噪单元去除噪声信号,比如人在床上运动所产生的一些噪声叠加信号。然后,再经由模式识别单元区分出心跳、呼吸和体重信号。然后,再经由光纤光栅应变传感器温度补偿计算单元把温度在光纤光栅应变传感器上产生的反射光中心波长的偏移量去除,只留下应变的作用效应。然后,再分别经由心率计算单元、呼吸频率计算单元和体重计算单元计算出心率、呼吸频率和体重。
   在需要测定的生理参数中,心率是指心脏每分钟跳动的次数,是医生临床诊断中的一项重要诊断依据。正常成年人的心率一般为60至100次/分钟左右。同时心率又可因年龄和性别的不同而不同。胸部的依次起伏就是一次呼吸,即一次吸气一次呼气。每分钟呼吸的次数称为呼吸频率,其也是医生临床诊断中的一项重要诊断依据。正常成人的呼吸频率一般为16至18次/分钟左右。体重跟性别、年龄和身高等一些参数息息相关。最终需要显示的结果都送给综合结果显示平台。
   综合结果显示平台上,配置了显示界面。用户可以直接在显示界面上浏览心率、呼吸频率、体重与时间的变化曲线。心率和呼吸频率每一小时测一次,体重每天测一次。用户还可以在显示界面浏览到这三个生理参数在一天,一个月和一年内的变化曲线,以便用户更好地了解在较长时间内的身体健康状况变化的情况。
   本发明含有光纤光栅传感器的床主要用来监测人体的心率、呼吸频率和体重等生理参数,可对人体的健康状况进行非介入式的实时监测。人的一天约八小时都是睡在床上,因而在床下安装传感器用于实时监测人体的健康状况,可以给出一个初步的健康状况评判,为疾病的预防提供有力的保证。此外,本发明的床不会影响人睡觉的舒适性,一个主机设备可以同时接多个床,大大降低了成本,且维护简单。因而,本发明的床很适合公司及政府单位使用,作为单位员工的一种福利,为员工建立实时的个人健康档案。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (2)

  1. 一种基于光纤光栅传感器的用于监测人体生理参数的床,所述的床包括有床面板、用于支撑床面板的4条床支撑腿,其特征在于,所述每条床支撑腿上设有一个光纤光栅应变传感器,所有光纤光栅应变传感器通过一根光纤串联连接,所述光纤连接有光电模块和数据处理模块;所述光电模块内置有LED光源、光耦合器和解调单元,LED光源发出的光经光耦合器注入光纤光栅应变传感器,满足反射条件的光被反射后经光耦合器进入解调单元;所述的数据处理模块位于一个监控主机内,该监控主机还连接有一个综合结果显示平台;所述的数据处理模块内的数据依次经过有频移量计算单元、高斯去噪单元、模式识别单元、光纤光栅应变传感器温度补偿计算单元、心率计算单元、呼吸频率计算单元、体重计算单元,最终输出结果至综合结果显示平台。
  2. 据权利要求1所述的一种基于光纤光栅传感器的用于监测人体生理参数的床,其特征在于,所述的频移量计算单元将受温度、应变作用后的光纤光栅应变传感器光信号和光纤光栅应变传感器的反射光的中心波长与标定的反射光中心波长比较作差,得到反射光中心波长的偏移量;高斯去噪单元去除上述处理后数据中的噪声信号;模式识别单元区分出心跳、呼吸和体重信号;光纤光栅应变传感器温度补偿计算单元把温度在光纤光栅应变传感器上产生的反射光中心波长的偏移量去除,只留下应变的作用效应;心率计算单元、呼吸频率计算单元计算出心率和呼吸频率;体重计算单元计算出体重。
PCT/CN2013/080977 2013-08-07 2013-08-07 一种基于光纤光栅传感器的用于监测人体生理参数的床 WO2015017998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080977 WO2015017998A1 (zh) 2013-08-07 2013-08-07 一种基于光纤光栅传感器的用于监测人体生理参数的床

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080977 WO2015017998A1 (zh) 2013-08-07 2013-08-07 一种基于光纤光栅传感器的用于监测人体生理参数的床

Publications (1)

Publication Number Publication Date
WO2015017998A1 true WO2015017998A1 (zh) 2015-02-12

Family

ID=52460502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080977 WO2015017998A1 (zh) 2013-08-07 2013-08-07 一种基于光纤光栅传感器的用于监测人体生理参数的床

Country Status (1)

Country Link
WO (1) WO2015017998A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106943258A (zh) * 2017-05-11 2017-07-14 南京信息工程大学 一种多功能无线智能床垫及其人体生理信号测量方法
CN110108340A (zh) * 2019-06-04 2019-08-09 西北铁道电子股份有限公司 一种汽车动态称重装置
CN113624152A (zh) * 2021-06-22 2021-11-09 成都凯天电子股份有限公司 一种基于光栅的轮载信号检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253608A (ja) * 2004-03-10 2005-09-22 Sumitomo Osaka Cement Co Ltd 状態解析装置
CN101282686A (zh) * 2005-10-11 2008-10-08 皇家飞利浦电子股份有限公司 用于监测床上的病人多个不同参数的***
US20090185772A1 (en) * 2008-01-22 2009-07-23 General Electric Company Fiberoptic patient health multi-parameter monitoring devices and system
CN102334984A (zh) * 2011-07-20 2012-02-01 上海波汇通信科技有限公司 一种可用于人体生理参数测量的智能椅
CN202191274U (zh) * 2011-07-20 2012-04-18 上海波汇通信科技有限公司 一种智能椅
JP5107519B2 (ja) * 2005-12-27 2012-12-26 住友大阪セメント株式会社 状態解析装置及びソフトウエアプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253608A (ja) * 2004-03-10 2005-09-22 Sumitomo Osaka Cement Co Ltd 状態解析装置
CN101282686A (zh) * 2005-10-11 2008-10-08 皇家飞利浦电子股份有限公司 用于监测床上的病人多个不同参数的***
JP5107519B2 (ja) * 2005-12-27 2012-12-26 住友大阪セメント株式会社 状態解析装置及びソフトウエアプログラム
US20090185772A1 (en) * 2008-01-22 2009-07-23 General Electric Company Fiberoptic patient health multi-parameter monitoring devices and system
CN102334984A (zh) * 2011-07-20 2012-02-01 上海波汇通信科技有限公司 一种可用于人体生理参数测量的智能椅
CN202191274U (zh) * 2011-07-20 2012-04-18 上海波汇通信科技有限公司 一种智能椅

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106943258A (zh) * 2017-05-11 2017-07-14 南京信息工程大学 一种多功能无线智能床垫及其人体生理信号测量方法
CN106943258B (zh) * 2017-05-11 2022-01-28 南京信息工程大学 一种多功能无线智能床垫及其人体生理信号测量方法
CN110108340A (zh) * 2019-06-04 2019-08-09 西北铁道电子股份有限公司 一种汽车动态称重装置
CN110108340B (zh) * 2019-06-04 2024-03-22 西北铁道电子股份有限公司 一种汽车动态称重装置
CN113624152A (zh) * 2021-06-22 2021-11-09 成都凯天电子股份有限公司 一种基于光栅的轮载信号检测方法

Similar Documents

Publication Publication Date Title
Massaroni et al. Smart textile for respiratory monitoring and thoraco‐abdominal motion pattern evaluation
Jia et al. A fiber Bragg grating sensor for radial artery pulse waveform measurement
Han et al. Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring
Chethana et al. Fiber bragg grating sensor based device for simultaneous measurement of respiratory and cardiac activities
CN107072565B (zh) 生命体征光纤传感器***及方法
Witt et al. Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement
Dziuda Fiber-optic sensors for monitoring patient physiological parameters: A review of applicable technologies and relevance to use during magnetic resonance imaging procedures
Dziuda et al. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations
Wang et al. Noninvasive monitoring of vital signs based on highly sensitive fiber optic mattress
Dziuda et al. Fiber Bragg grating strain sensor incorporated to monitor patient vital signs during MRI
CN102334984B (zh) 一种可用于人体生理参数测量的智能椅
CN202191274U (zh) 一种智能椅
Petrović et al. Non-invasive respiratory monitoring using long-period fiber grating sensors
Yu et al. Non-invasive smart health monitoring system based on optical fiber interferometers
WO2018072232A1 (zh) 一种全光非接触式生命体征监测装置
Kuang et al. Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring
Chen et al. Non-invasive measurement of vital signs based on seven-core fiber interferometer
Miyauchi et al. Basic experiment of blood-pressure measurement which uses FBG sensors
WO2015017998A1 (zh) 一种基于光纤光栅传感器的用于监测人体生理参数的床
Das et al. Wearable system for real-time remote monitoring of respiratory rate during covid-19 using fiber Bragg grating
Xu et al. Unobtrusive vital signs and activity monitoring based on dual mode fiber
Koyama et al. Vital sign measurement using FBG sensor for new wearable sensor development
Chen et al. Plastic optical fiber microbend sensor used as breathing sensor
Presti et al. Cardiorespiratory monitoring using a mechanical and an optical system
Zhang et al. Wearable cardiorespiratory sensor for real-time monitoring with smartphone integration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891125

Country of ref document: EP

Kind code of ref document: A1