WO2015016076A1 - 水素ガスの冷却方法及び水素ガスの冷却システム - Google Patents

水素ガスの冷却方法及び水素ガスの冷却システム Download PDF

Info

Publication number
WO2015016076A1
WO2015016076A1 PCT/JP2014/069030 JP2014069030W WO2015016076A1 WO 2015016076 A1 WO2015016076 A1 WO 2015016076A1 JP 2014069030 W JP2014069030 W JP 2014069030W WO 2015016076 A1 WO2015016076 A1 WO 2015016076A1
Authority
WO
WIPO (PCT)
Prior art keywords
brine
hydrogen gas
flow path
temperature
outlet
Prior art date
Application number
PCT/JP2014/069030
Other languages
English (en)
French (fr)
Inventor
野一色 公二
泰健 三輪
清水 邦彦
雄治 栗城
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020167002312A priority Critical patent/KR20160025589A/ko
Priority to EP14831952.8A priority patent/EP3029406B1/en
Priority to US14/890,562 priority patent/US20160131434A1/en
Publication of WO2015016076A1 publication Critical patent/WO2015016076A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a hydrogen gas cooling method and a hydrogen gas cooling system.
  • Patent Document 1 and Patent Document 2 disclose examples of a cooling method and a cooling system for cooling hydrogen gas before supply to such a fuel cell vehicle.
  • a cooling system including a heat exchanger having a container having a filling tank, a gas flow path, and a heat transfer medium flow path is used.
  • the packed layer is filled with a heat transfer medium containing metal powder.
  • the gas channel and the heat transfer medium channel are spirally drawn into the packed bed from the outside of the container.
  • the gas flow path and the heat transfer medium flow path are arranged in close proximity to each other.
  • Hydrogen gas flows through the gas flow path.
  • a low-temperature heat transfer medium different from the heat transfer medium filled in the filling tank flows through the heat transfer medium flow path.
  • Hydrogen gas is cooled by exchanging heat directly with the heat transfer medium flowing through the heat transfer medium flow path or through the heat transfer medium in the filling tank while flowing through the gas flow path.
  • a cooling system including a heat exchanger having a double pipe for circulating hydrogen gas and a refrigerant is used.
  • a double pipe in which the pressure of the hydrogen supply path and the pressure of the refrigerant supply path are made the same level is used.
  • the wall thickness of the inner pipe constituting the boundary between the two supply paths is reduced.
  • the heat transfer resistance of the heat exchanger is reduced and the heat exchanger is downsized.
  • the amount of refrigerant used as a heat transfer medium can be reduced as compared with the cooling method of Patent Document 1.
  • the heat exchanger becomes larger.
  • Patent Document 2 it is shown that the pressure of the hydrogen supply path and the pressure of the refrigerant supply path are set to the same level in order to improve the heat transfer efficiency.
  • the pressure of hydrogen gas changes every moment. For this reason, even if the pressure control of the hydrogen gas flowing through the hydrogen supply path is performed, the differential pressure between the hydrogen supply path and the refrigerant supply path actually increases.
  • the wall thickness of the pipe having a safety factor in consideration of this increasing differential pressure. For this reason, the wall thickness of the tube must eventually be increased, resulting in an increase in the thermal resistance of the tube. In this case, the hydrogen gas flowing through the hydrogen supply path in the inner pipe cannot be sufficiently cooled unless the refrigerant flowing through the refrigerant supply path in the outer pipe is cooled to a lower temperature. For this reason, the energy required for cooling the refrigerant increases.
  • the object of the present invention is to reduce the amount of brine used as a heat transfer medium used for cooling hydrogen gas and to cool the brine while simultaneously reducing the size of the heat exchanger and securing the amount of hydrogen gas cooling. An increase in required energy is suppressed, and hydrogen gas can be sufficiently cooled.
  • a method for cooling hydrogen gas according to one aspect of the present invention is a method for cooling hydrogen gas using brine, which is a non-evaporable antifreeze, and includes a plurality of first flow paths arranged as fine flow paths.
  • Hydrogen gas into each of the first flow paths so as to move
  • the brine flows through each second flow path so that the brine flowing through each second flow path moves from the other side toward the one side in the specific direction, and at the outlet of the second flow path.
  • the temperature and flow rate of the brine introduced into each second flow path are controlled so that the temperature of the brine is higher than the temperature of hydrogen gas at the outlet of the first flow path.
  • a hydrogen gas cooling system is a cooling system that cools hydrogen gas using brine, which is a non-evaporable antifreeze, and is provided between a refrigerator that cools brine and the refrigerator.
  • a heat exchanger that is connected to the refrigerator so that the brine circulates and cools the hydrogen gas by exchanging heat with the brine supplied from the refrigerator, and the brine cooled by the refrigerator.
  • a pump that feeds from the refrigerator to the heat exchanger; and a control unit that controls the temperature of the brine.
  • the heat exchanger includes a plurality of first flow paths that are fine flow paths through which hydrogen gas is introduced.
  • Each of the first flow paths has a first inlet for receiving hydrogen gas and a first outlet for discharging hydrogen gas, and the first inlet and the first outlet are:
  • Hydrogen gas introduced from the first inlet to the first flow path and flowing through the first flow path toward the first outlet side is one side in a specific direction orthogonal to the stacking direction of the first layer and the second layer.
  • Each of the second flow paths has a second inlet for receiving a brine and a second outlet for discharging the brine, and the second inlet and the second outlet are The brine introduced from the second inlet to the second flow path and flowing through the second flow path to the second outlet side is arranged to move from the other side toward the one side in the specific direction.
  • the control unit determines the temperature of the brine at the second outlet. To be higher than the temperature of the hydrogen gas in the first outlet to control the flow rate of the brine in which the pump is sent along with controlling the operation of the refrigerator.
  • substrate which forms a 1st flow path in the laminated body of the heat exchanger shown in FIG.
  • substrate which forms a 2nd flow path in the laminated body of the heat exchanger shown in FIG.
  • This cooling system is used, for example, for cooling hydrogen gas supplied to the fuel cell vehicle 90 (see FIG. 1) in a hydrogen station.
  • the hydrogen gas In the hydrogen station, in order to increase the charging efficiency of hydrogen gas into the fuel cell vehicle 90, the hydrogen gas is compressed to a high pressure and then supplied to the fuel cell vehicle 90. As the hydrogen gas is compressed, compression heat is generated.
  • the cooling system according to the present embodiment cools the compressed high-pressure hydrogen gas to a low temperature before filling the fuel cell vehicle 90 in order to avoid the temperature rise of the hydrogen gas due to the compression heat.
  • the cooling system of the present embodiment includes a refrigerator 2, a tank 4, a first pump 6, a second pump 8, a heat exchanger 10, a controller 58, and a second inlet.
  • the temperature detection part 60, the 2nd exit temperature detection part 62, and the 1st exit temperature detection part 64 are provided.
  • the refrigerator 2 is a device that cools the brine.
  • the refrigerator 2 is configured to be able to change the cooling power for cooling the brine.
  • the refrigerator 2 receives a control signal from the control unit 58 as will be described later.
  • the refrigerator 2 changes the cooling power according to the received control signal. That is, when the received control signal indicates an increase in cooling power, the refrigerator 2 increases the cooling power in response to the instruction, while the received control signal indicates a decrease in cooling power. If it is, the cooling power is reduced according to the instruction.
  • Brine is a non-evaporable antifreeze.
  • As the brine for example, ethylene glycol water, fluorine-based liquid, or the like is used.
  • the refrigerator 2 has an introduction part 2a and a discharge part 2b.
  • the introduction part 2a is a part into which brine heated by heat exchange with the hydrogen gas in the heat exchanger 10 is introduced.
  • the discharge part 2b is a part which discharges the brine after the refrigerator 2 cooled.
  • the refrigerator 2 cools the brine by heat-exchanging the brine introduced into the refrigerator 2 from the introduction part 2a with a refrigerant such as a low-temperature alternative chlorofluorocarbon.
  • the refrigerator 2 discharges the cooled brine from the discharge unit 2b.
  • the refrigerator 2 is configured to be able to change the temperature of the refrigerant.
  • the refrigerator 2 changes the cooling power for cooling the brine by changing the temperature of the refrigerant.
  • the refrigerator 2 decreases the temperature of the refrigerant to increase the cooling power, and the control signal received from the control unit 58. If the instruction is to decrease the cooling power, the temperature of the refrigerant is increased to decrease the cooling power. For example, a brine of ⁇ 30 ° C. is introduced into the refrigerator 2. The refrigerator 2 cools the introduced brine to, for example, ⁇ 40 ° C. or lower.
  • Tank 4 is for storing brine.
  • a first storage chamber 12 and a second storage chamber 14 are provided in the tank 4.
  • the first storage chamber 12 stores the cooled brine discharged from the refrigerator 2.
  • the second storage chamber 14 stores the brine after heat exchange discharged from the heat exchanger 10.
  • the first storage chamber 12 is connected to the discharge section 2b of the refrigerator 2 via a pipe 18 and is connected to a supply header 28 (to be described later) of the heat exchanger 10 via a pipe 20.
  • the second storage chamber 14 is connected to a discharge header 30 (to be described later) of the heat exchanger 10 through a pipe 22 and is connected to the introduction part 2 a of the refrigerator 2 through a pipe 24.
  • a partition wall 16 is provided between the first storage chamber 12 and the second storage chamber 14.
  • the partition wall 16 prevents the cooled brine stored in the first storage chamber 12 from mixing with the heat-exchanged brine stored in the second storage chamber 14.
  • the partition wall 16 is made of a highly heat insulating material. The partition wall 16 prevents heat exchange between the brine stored in the first storage chamber 12 and the brine stored in the second storage chamber 14.
  • the first pump 6 is provided in a pipe 20 connected to the outlet of the first storage chamber 12.
  • the first pump 6 sucks the brine stored in the first storage chamber 12 and sends it to the heat exchanger 10.
  • the first pump 6 is configured to be able to change a flow rate for sending brine per unit time (hereinafter simply referred to as a delivery flow rate).
  • the first pump 6 receives a control signal from the control unit 58.
  • the first pump 6 changes the delivery flow rate of the brine according to the received control signal. That is, if the received control signal is an instruction to increase the delivery flow rate, the first pump 6 increases the delivery flow rate of brine per unit time according to the instruction, while the received control signal is sent out. If the instruction is to decrease the flow rate, the brine flow rate per unit time is decreased according to the instruction.
  • the second pump 8 is provided in a pipe 24 connected to the outlet of the second storage chamber 14.
  • the second pump 8 sucks the brine stored in the second storage chamber 14 and sends it out to the introduction part 2 a of the refrigerator 2.
  • the second pump 8 is configured to be able to change the brine delivery flow rate per unit time.
  • the heat exchanger 10 cools the hydrogen gas compressed by the compressor 100 to a high pressure by exchanging heat with the low-temperature brine.
  • the heat exchanger 10 has a large number of microchannels (fine channels).
  • the heat exchanger 10 is a so-called microchannel heat exchanger in which heat is exchanged between the fluids while flowing the fluid through the microchannels.
  • the heat exchanger 10 includes a laminated body 26 in which a large number of flow paths are provided, a supply header 28 for supplying brine to a second flow path 34 described later in the stacked body 26, and a second flow described later. And a discharge header 30 for discharging brine from the path 34.
  • the laminated body 26 has a rectangular parallelepiped outer shape. As shown in FIG. 4, a large number of first flow paths 32 and a large number of second flow paths 34 are provided inside the stacked body 26. Each first flow path 32 and each second flow path 34 are microchannels (fine flow paths).
  • the 1st flow path 32 distribute
  • the 2nd flow path 34 distribute
  • the stacked body 26 is formed by a plurality of first substrates 38, a plurality of second substrates 40, and a pair of end plates 42.
  • the first substrate 38 and the second substrate 40 are alternately and repeatedly stacked, and a pair of end plates 42 are separately stacked at both ends in the stacking direction to form the stacked body 26.
  • the second substrate 40 is stacked on both sides of the first substrate 38 in the thickness direction.
  • a plurality of first flow paths 32 are arranged on each first substrate 38.
  • a plurality of second flow paths 34 are arranged on each second substrate 40.
  • Each of the substrates 38 and 40 is a thin flat plate made of, for example, stainless steel.
  • the laminated substrates 38 and 40 are integrated by diffusion-bonding their plate surfaces that are in contact with each other.
  • the first substrate 38 is an example of the first layer of the present invention.
  • the second substrate 40 is an example of a second layer of the present invention.
  • a plurality of first channel grooves 48 for forming a plurality of first channels 32 are formed on one plate surface (see FIG. 5) in the thickness direction of each first substrate 38.
  • FIG. 5 the overall outer shape of the plurality of first flow path grooves 48 formed on the first substrate 38 is shown. That is, in FIG. 5, illustration of each of the first flow path grooves 48 is omitted, but actually, a plurality of first flow path grooves 48 are arranged in parallel in the outer shape shown in FIG. 5.
  • the openings of the plurality of first flow channel grooves 48 formed on the one plate surface of the first substrate 38 are sealed with the second substrate 40 stacked on the plate surface.
  • the plurality of first flow path grooves 48 having the openings sealed therein are arranged on one plate surface side of the first substrate 38 and a plurality of first flow paths 32 are formed along the one plate surface. ing.
  • the first inlet of each first flow path 32 is located near one end in the longitudinal direction of the first substrate 38 (near the upper end of the laminate 26) and near one end in the width direction of the first substrate 38. 50 is formed.
  • the first inlet 50 is a portion that receives hydrogen gas.
  • the first inlet 50 is formed by a through hole that passes through each of the substrates 38 and 40 and one end plate 42 of the pair of end plates 42 at the same position in the thickness direction. Accordingly, the first inlet 50 is a hole that is continuous in the stacking direction of the substrates 38 and 40 and is open on the front surface of the one end plate 42.
  • the plurality of first flow paths 32 formed on each first substrate 38 are all connected to the first inlet 50. That is, the first inlet 50 serves as an inlet for hydrogen gas common to all the first flow paths 32 provided in the stacked body 26.
  • a first outlet 52 of each first flow path 32 is formed at a position near the end portion on the opposite side of the first inlet 50 in the longitudinal direction and the width direction of the first substrate 38 in the stacked body 26.
  • the first outlet 52 is a portion for discharging the hydrogen gas that has flowed through each first flow path 32. Similar to the first inlet 50, the first outlet 52 is formed by a through hole that passes through the substrates 38 and 40 and the one end plate 42 at the same position in the thickness direction. Further, like the first inlet 50, the first outlet 52 is a hydrogen gas discharge port common to all the first flow paths 32 provided in the stacked body 26.
  • the first flow path 32 is a portion extending linearly from one side to the other side in the width direction of the first substrate 38 between the first inlet 50 and the first outlet 52, and is folded back from that portion to the first substrate 38.
  • 38 has a meandering shape in which a portion extending linearly from the other side to the one side in the width direction is repeatedly provided.
  • a plurality of second channel grooves 54 for forming a plurality of second channels 34 are formed on one plate surface (see FIG. 6) in the thickness direction of each second substrate 40.
  • the openings of the plurality of second flow channel grooves 54 formed on the one plate surface of the second substrate 40 are sealed with the first substrate 38 stacked on the plate surface.
  • the plurality of second channel grooves 54 with the openings sealed form a plurality of second channels 34 arranged on one plate surface side of the second substrate 40 and along the one plate surface. ing.
  • the plurality of second flow paths 34 formed on each second substrate 40 is divided into two systems.
  • the plurality of second flow paths 34 includes one group of second flow paths 34 disposed on the one side in the width direction from the center in the width direction of the second substrate 40, and the second substrate 40.
  • the second channel 34 of the other group disposed on the other side in the width direction from the center in the width direction.
  • the second flow path 34 of the one group is folded back from the portion extending linearly from the center side in the width direction of the second substrate 40 to the edge side on the one side in the width direction of the second substrate 40.
  • the second substrate 40 has a meandering shape in which a portion extending linearly toward the center in the width direction is repeatedly provided.
  • the second flow path 34 of the other group has a meandering shape that is symmetrical with respect to the center of the second flow path 34 of the one group and the second substrate 40 in the width direction.
  • each second flow path 34 formed in the second substrate 40 is disposed on one end surface in the longitudinal direction of the laminate 26 along the longitudinal direction of the second substrate 40, specifically, the first outlet 52 is disposed.
  • An opening is formed at the end face of the formed side.
  • An opening at one end of each of the second flow paths 34 serves as a second inlet 34a for receiving brine.
  • the second inlet 34a is an example of the inlet of the second flow path according to the present invention.
  • the end of each second flow path 34 formed on the second substrate 40 on the side opposite to the second inlet 34a is the end surface on the other side in the longitudinal direction of the stacked body 26 along the longitudinal direction of the second substrate 40, specifically Is open at the end face on the side where the first inlet 50 is disposed.
  • the opening at the opposite end of each of the second flow paths 34 is a second outlet 34b that discharges the brine that has flowed through each of the second flow paths 34.
  • the 2nd exit 34b is an example of the exit of the 2nd channel
  • the stacked body 26 configured as described above, formation of a portion extending linearly in the width direction of the first substrate 38 among the plurality of first flow paths 32 arranged on one plate surface side of the first substrate 38.
  • the region and the formation region of a portion extending linearly in the width direction of the second substrate 40 among the plurality of second flow paths 34 arranged on one plate surface side of the second substrate 40 are defined as the regions of the substrates 38 and 40. They overlap and match each other when viewed from the stacking direction.
  • the heat exchanger 10 (laminated body 26) includes the first inlet 50 and the second outlet 34b located on the upper side, the first outlet 52 and the second inlet 34a located on the lower side, and the laminated body 26.
  • a longitudinal direction (longitudinal direction of each board
  • the hydrogen gas flowing to the first outlet 52 side through the path 32 is generally arranged so as to move from the upper side to the lower side in the vertical direction orthogonal to the stacking direction of the first substrate 38 and the second substrate 40.
  • the second inlet 34a and the second outlet 34b of each second flow path 34 are introduced from the second inlet 34a to each second flow path 34 and flow through each second flow path 34 toward the second outlet 34b.
  • the brine is generally arranged so as to move from the lower side to the upper side in the vertical direction.
  • the supply header 28 is attached to the end face of the laminate 26 where the second inlet 34a is formed.
  • a pipe 20 (see FIG. 1) is connected to the supply header 28.
  • the brine sent from the first pump 6 is supplied to the supply header 28 through the pipe 20.
  • an internal space through which the supplied brine passes is provided in the supply header 28 in the supply header 28, an internal space through which the supplied brine passes is provided. This internal space communicates with the second inlets 34 a of all the second flow paths 34 provided in the laminated body 26 in a state where the supply header 28 is attached to the laminated body 26. That is, the brine supplied to the supply header 28 is distributed and introduced from the internal space of the supply header 28 to the second inlets 34 a of the second flow paths 34.
  • the discharge header 30 is attached to the end surface of the laminate 26 where the second outlet 34b is formed.
  • a pipe 22 (see FIG. 1) is connected to the discharge header 30.
  • An interior space is provided in the discharge header 30. This internal space communicates with the second outlets 34 b of all the second flow paths 34 provided in the stacked body 26 in a state where the discharge header 30 is attached to the stacked body 26.
  • the brine that has flowed through each second flow path 34 flows out from the second outlet 34b of each of the second flow paths 34 to the internal space of the discharge header 30, and is discharged from the internal space to the pipe 22. .
  • the heat exchanger 10 of the cooling system according to the present embodiment is configured so that the shape, size and number of the flow paths 32 and 34 and the substrates 38 and 40 constituting the stacked body 26 are satisfied so as to satisfy the relationship of the following expression (1).
  • the structure such as the number of layers is designed.
  • the amount of heat exchange required for the heat exchanger 10 is Q (kW)
  • the overall heat transfer coefficient that is a value resulting from the form of the heat exchanger 10 is U (kW / m 2 ⁇ ° C.
  • the heat transfer area in the heat exchanger 10 is A (m 2 ), the brine temperature at the second inlet 34a of the second flow path 34 and the brine temperature at the second outlet 34b of the second flow path 34
  • the logarithmic average temperature of the brine in the second flow path 34 obtained from the temperature is dT (° C.).
  • the second inlet temperature detector 60 (see FIGS. 1 and 2) is connected to the supply header 28.
  • the second inlet temperature detector 60 is a detector that detects the temperature of the brine introduced into the second inlet 34 a of the second flow path 34. That is, the second inlet temperature detection unit 60 detects the temperature of the brine at the second inlet 34a.
  • the second outlet temperature detector 62 (see FIGS. 1 and 2) is connected to the discharge header 30.
  • the second outlet temperature detector 62 is a detector that detects the temperature of the brine discharged from the second outlet 34 b of the second flow path 34. In other words, the second outlet temperature detector 62 detects the temperature of the brine at the second outlet 34b.
  • the first outlet temperature detector 64 (see FIGS. 1 and 2) is connected to the first outlet 52 of the first flow path 32.
  • the first outlet temperature detector 64 is a detector that detects the temperature of the hydrogen gas discharged from the first outlet 52. That is, the first outlet temperature detection unit 64 detects the temperature of the hydrogen gas at the first outlet 52.
  • the second inlet temperature detector 60, the second outlet temperature detector 62, and the first outlet temperature detector 64 are each configured to transmit detected temperature data to the controller 58.
  • the controller 58 controls the temperature of the brine flowing through each second flow path 34.
  • the control unit 58 controls the operation of the refrigerator 2 and the flow rate of the brine sent from the first pump 6 based on the received data of each detected temperature, and thereby the brine flowing through each second flow path 34. To control the temperature.
  • the control unit 58 controls the operation of the refrigerator 2 so that the temperature of the brine at the second outlet 34b is higher than the temperature of the hydrogen gas at the first outlet 52, and also controls the brine sent from the first pump 6. Control the flow rate.
  • the above cooling system is prepared.
  • the refrigerator 2 (see FIG. 1) cools the brine by exchanging heat with the low-temperature refrigerant.
  • the cooled brine is sent from the discharge portion 2b to the first storage chamber 12 of the tank 4 through the pipe 18.
  • the brine introduced into the first storage chamber 12 is temporarily stored in the first storage chamber 12 and discharged to the pipe 20 by the suction force of the first pump 6.
  • the brine discharged to the pipe 20 is sent to the heat exchanger 10 by the first pump 6, and each second flow path 34 (see FIG. 2) in the stacked body 26 through the internal space of the supply header 28 (see FIGS. 2 and 3). 6)) from their second inlet 34a.
  • the controller 58 Based on the detected temperature data received from the second inlet temperature detector 60, the controller 58 operates the refrigerator 2 that cools the brine so that the temperature of the brine at the second inlet 34a becomes ⁇ 40 ° C. (Cooling power) is controlled. Specifically, the control unit 58 controls the cooling power of the refrigerator 2 by causing the refrigerator 2 to adjust the temperature of the refrigerant so that the temperature detected by the second inlet temperature detection unit 60 becomes ⁇ 40 ° C. Specifically, when the temperature detected by the second inlet temperature detector 60 is higher than ⁇ 40 ° C., the controller 58 sends a control signal instructing the refrigerator 2 to increase the cooling power and receives the control signal. The refrigerating machine 2 increases the cooling power according to the control signal.
  • the temperature of the brine at the second inlet 34a detected by the second inlet temperature detector 60 decreases so as to approach ⁇ 40 ° C.
  • the controller 58 sends a control signal instructing the refrigerator 2 to reduce the cooling power and receives the control signal.
  • the refrigerator 2 reduces the cooling power according to the control signal.
  • the temperature of the brine at the second inlet 34a detected by the second inlet temperature detector 60 increases so as to approach ⁇ 40 ° C.
  • the brine introduced into each second flow path 34 flows through the second flow path 34 from the second inlet 34a toward the second outlet 34b.
  • the brine flowing through each of the second flow paths 34 generally moves from the lower side to the upper side in the vertical direction perpendicular to the stacking direction of the substrates 38 and 40 of the stacked body 26.
  • the compressor 100 (see FIG. 1), hydrogen gas is compressed.
  • the compressed high-pressure hydrogen gas is introduced from the compressor 100 into the first inlet 50 of the heat exchanger 10.
  • the hydrogen gas introduced into the first inlet 50 is cooled by cooling water after being compressed by the compressor 100, and the temperature thereof is 40 ° C.
  • the hydrogen gas introduced into the first inlet 50 is distributed and supplied to the first flow paths 32 (see FIG. 5) in the stacked body 26.
  • the hydrogen gas supplied to each first flow path 32 flows through the first flow path 32 from the first inlet 50 side toward the first outlet 52 side, and generally from the upper side to the lower side in the vertical direction. Move towards. In this process, a stack is formed between hydrogen gas flowing through each first flow path 32 (see FIG.
  • the brine gradually increases in temperature as it flows to the downstream side (second outlet 34b side) of each second flow path 34.
  • the degree of temperature rise of the brine at this time varies depending on the temperature and flow rate of the brine introduced into the second flow path 34.
  • the controller 58 determines that the brine temperature at the second outlet 34b is higher than the hydrogen gas temperature ( ⁇ 37 ° C.) at the first outlet 52 and the brine at the second outlet 34b.
  • the flow rate of brine to be introduced into each second flow path 34 that is, the flow rate of brine sent from the first pump 6 is set so that the temperature is 10 ° C. or more higher than the temperature of brine ( ⁇ 40 ° C.) at the second inlet 34a.
  • Control Specifically, the control unit 58 controls the flow rate of the brine sent from the first pump 6 so that the brine temperature at the second outlet 34b becomes ⁇ 30 ° C.
  • the controller 58 receives the detected temperature data received from the first outlet temperature detector 64, the detected temperature data received from the second inlet temperature detector 60, and the second outlet temperature detector 62. Based on the detected temperature data, the brine flow rate of the first pump 6 is controlled.
  • the control unit 58 compares the detected temperature of the first outlet temperature detecting unit 64 with the detected temperature of the second outlet temperature detecting unit 62, and the detected temperature of the second outlet temperature detecting unit 62 is the first outlet.
  • the brine flow rate is supplied to the first pump 6 until the temperature detected by the second outlet temperature detector 62 becomes higher than the temperature detected by the first outlet temperature detector 64. Decrease.
  • the control unit 58 sends a control signal instructing a decrease in the delivery flow rate to the first pump 6, and the first pump 6 reduces the delivery flow rate of the brine according to the received control signal.
  • control unit 58 detects that the detected temperature of the second outlet temperature detecting unit 62 is higher than the detected temperature of the second inlet temperature detecting unit 60, and detects the detected temperature of the second outlet temperature detecting unit 62 and the second inlet temperature detection.
  • the control unit 58 sends the control signal instructing the first pump 6 to reduce the delivery flow rate, thereby reducing the brine delivery flow rate to the first pump 6.
  • the control unit 58 controls the brine flow rate of the first pump 6 so that the temperature detected by the second outlet temperature detection unit 62 becomes ⁇ 30 ° C. That is, when the temperature detected by the second outlet temperature detection unit 62 is lower than ⁇ 30 ° C., the control unit 58 sends a control signal instructing a decrease in the delivery flow rate to the first pump 6, and the first pump 6 The brine flow rate is decreased in accordance with the received control signal. In addition, when the temperature detected by the second outlet temperature detection unit 62 is higher than ⁇ 30 ° C., the control unit 58 sends a control signal instructing an increase in the delivery flow rate to the first pump 6, and the first pump 6 The brine flow rate is increased in response to the received control signal.
  • the cooled hydrogen gas is discharged through the first outlet 52 (see FIGS. 2 and 5) of each first flow path 32 and supplied to the fuel cell vehicle 90 (see FIG. 1).
  • the brine after the heat exchange is discharged from the second outlet 34 b of each second flow path 34 to the pipe 22 (see FIG. 1) through the internal space of the discharge header 30, and the second of the tank 4 through the pipe 22. It is introduced into the storage chamber 14 and stored.
  • the brine after heat exchange stored in the second storage chamber 14 is sucked through the pipe 24 by the second pump 8 and sent to the refrigerator 2, and is introduced into the refrigerator 2 from the introduction part 2 a.
  • the brine after heat exchange introduced into the refrigerator 2 is cooled again and supplied from the refrigerator 2 to the heat exchanger 10.
  • the hydrogen gas cooling method according to the present embodiment is implemented.
  • the temperature of the hydrogen gas flowing through the first flow path 32 decreases as it goes downstream, and the temperature of the brine flowing through the second flow path 34 increases as it goes downstream, that is, toward the first inlet 50 of the first flow path 32.
  • the hydrogen gas flowing through each first flow path 32 moves from the upper side to the lower side as a whole, and the brine flowing through each second flow path 34 moves from the lower side to the upper side as a whole. Therefore, the hydrogen gas can exchange heat with the colder brine on the upstream side of the second flow path 34 as it flows downstream of the first flow path 32. For this reason, the cooling efficiency of hydrogen gas can be improved more.
  • each second flow path is such that the temperature of the brine at the second outlet 34 b of the second flow path 34 is higher than the temperature of the hydrogen gas at the first outlet 52 of the first flow path 32.
  • 34 controls the temperature and flow rate of the brine introduced. For this reason, compared with the case where the temperature of the brine in the 2nd exit 34b of the 2nd flow path 34 becomes below the temperature of the hydrogen gas in the 1st exit 52 of the 1st flow path 32, it is hydrogen from brine with the heat exchanger 10.
  • the cold heat per brine flow rate (unit volume) given to the gas increases, and the hydrogen gas can be cooled more effectively.
  • the cooling efficiency of hydrogen gas can be increased, even if the amount of brine used is reduced, the hydrogen gas can be sufficiently supplied even if the brine is not excessively cooled to a low temperature. Can be cooled to.
  • first flow paths 32 that are microchannels and a large number of second flow paths 34 that are microchannels can be integrated in the stacked body 26 of the heat exchanger 10. For this reason, it is possible to secure a sufficient amount of cooling treatment of the hydrogen gas while reducing the size of the heat exchanger 10.
  • the amount of brine used for cooling the hydrogen gas is reduced, and the cooling of the brine is performed by the refrigerator 2.
  • Increase in energy required for cooling energy required for cooling the refrigerant
  • hydrogen gas can be sufficiently cooled.
  • the energy required for driving the first pump 6 and the second pump 8 for circulating the brine between the refrigerator 2 and the heat exchanger 10 can be reduced by reducing the amount of brine used. can do.
  • each first flow path 32 and each second flow path 34 are formed in a meandering shape. For this reason, for example, the number of the flow paths 32 and 34 provided for each of the substrates 38 and 40 is reduced as compared with the case where the flow paths are formed in a straight line, but the flow paths 32 and 34 are not provided. The length can be increased. As a result, the heat transfer area of the first flow path 32 and the second flow path 34 in the stacked body 26 can be sufficiently secured. Further, since the number of the flow paths 32 and 34 provided for each of the substrates 38 and 40 is reduced, each flow path 32 even when the total flow rate of the fluid flowing through the flow paths 32 and 34 is the same. , 34 can be increased in flow rate.
  • the flow rate of the hydrogen gas flowing through each first flow path 32 and each second flow path 34 are ensured while ensuring a sufficient heat transfer area between the first flow path 32 and the second flow path 34.
  • the flow rate of the brine can be increased to improve the heat transfer performance between the hydrogen gas and the brine. For this reason, hydrogen gas can be cooled more effectively.
  • the temperature of the brine at the second outlet 34b of the second flow path 34 is 10 ° C. or more higher than the temperature of the brine at the second inlet 34a of the second flow path 34.
  • the flow rate of the brine introduced into the two flow paths 34 is controlled. For this reason, in the heat exchanger 10, the cold heat given to the hydrogen gas which flows into the 1st flow path 32 from the brine which flows through the 2nd flow path 34 can be enlarged enough. As a result, the cooling efficiency of hydrogen gas can be further increased.
  • the temperature of the brine introduced into each second flow path 34 is controlled so that the temperature of the brine at the second inlet 34a of the second flow path 34 becomes ⁇ 40 ° C. For this reason, it is possible to sufficiently cool the hydrogen gas while suppressing hydrogen embrittlement of the stacked body 26 of the heat exchanger 10.
  • stainless steel which is the material of each of the substrates 38 and 40 constituting the laminated body 26, may be significantly hydrogen embrittled if it is in contact with hydrogen gas in a state cooled to a temperature lower than ⁇ 40 ° C. are known.
  • the stacked body 26 becomes ⁇ 40 The temperature becomes not lower than ° C., and hydrogen embrittlement can be suppressed. Then, by introducing brine at ⁇ 40 ° C. into the second inlet 34a, the hydrogen gas flowing through the first flow path 32 can be sufficiently cooled while suppressing hydrogen embrittlement of the stacked body 26.
  • first flow path and the second flow path are not limited to those having a meandering shape that repeats folding as described above, and may be, for example, linearly extending.
  • first flow paths formed on one first substrate and the number of second flow paths formed on one second substrate can be freely set. Further, the width and cross-sectional shape of each first flow path and the width and cross-sectional shape of each second flow path can also be set freely.
  • the first substrate on which the first flow paths are arranged and the second substrate on which the second flow paths are arranged are alternately laminated, but the form of lamination is not limited to this.
  • two or more second substrates in which second flow paths for circulating brine are arranged may be stacked on one first substrate in which first flow paths for flowing hydrogen gas are arranged. .
  • the orientation of the heat exchanger is not limited to the orientation in which the longitudinal direction of the substrate coincides with the vertical direction as described above.
  • the heat exchanger (laminated body) may be arranged in a direction in which the longitudinal direction of the substrate coincides with the horizontal direction or in an oblique direction.
  • the method for cooling hydrogen gas is a method for cooling hydrogen gas using brine, which is a non-evaporable antifreeze, and is a first layer in which a plurality of first flow paths that are fine flow paths are arranged. And a preparation step of preparing a heat exchanger comprising a laminate in which a plurality of second flow paths, which are fine flow paths, are arranged, and hydrogen gas is circulated through the first flow paths.
  • the hydrogen gas is cooled by circulating a brine having a temperature lower than that of hydrogen gas through each of the second flow paths and exchanging heat between the hydrogen gas flowing through the first flow path and the brine flowing through the second flow path.
  • each first flow path moves from one side to the other side in a specific direction orthogonal to the stacking direction of the first layer and the second layer. So that hydrogen gas flows through each of the first flow paths.
  • the brine flows through each of the second channels so that the brine flowing through each of the second channels moves from the other side toward the one side in the specific direction, and the brine at the outlet of the second channel.
  • the temperature and flow rate of the brine introduced into each second flow path are controlled so that the temperature of the water becomes higher than the temperature of the hydrogen gas at the outlet of the first flow path.
  • the temperature of the hydrogen gas flowing through the first flow path decreases as it goes downstream, and the temperature of the brine flowing through the second flow path increases as it goes downstream, that is, toward the hydrogen gas inlet side of the first flow path.
  • the hydrogen gas flowing through each first flow path moves from one side to the other side in a specific direction orthogonal to the stacking direction of each layer of the laminate, and flows through each second flow path. Introduce hydrogen gas into each first flow path and introduce brine into each second flow path so that moves from the other side toward the one side. Therefore, the hydrogen gas can exchange heat with the colder brine on the upstream side of the second flow path as it flows through the first flow path to the downstream side. For this reason, the cooling efficiency of hydrogen gas can be improved more.
  • the cooling efficiency of hydrogen gas can be increased. Therefore, even if the amount of brine used is reduced or the brine is not cooled to an excessively low temperature, sufficient hydrogen gas can be obtained. Can be cooled to.
  • a plurality of first flow paths that are fine flow paths and a plurality of second flow paths that are fine flow paths can be integrated in the stack of heat exchangers. For this reason, it is possible to secure a sufficient amount of hydrogen gas cooling while reducing the size of the heat exchanger. Therefore, in this cooling method, while reducing the size of the heat exchanger and ensuring the amount of hydrogen gas cooling, the amount of brine used for cooling the hydrogen gas is reduced and the energy required for cooling the brine is increased. The hydrogen gas can be sufficiently cooled.
  • a laminated body formed inside in the meandering shape of the first flow paths and the second flow paths is used as the laminated body.
  • a heat exchanger is provided, and in the cooling step, hydrogen gas is circulated to each first flow path along the meandering shape of each first flow path, and brine is meandered to each second flow path. It is preferable to distribute the second flow paths along the shape.
  • the length of each flow path can be increased although the number of flow paths provided per layer is reduced as compared with the case where the flow paths are formed linearly. For this reason, the heat transfer area of the 1st flow path and 2nd flow path in a laminated body is fully securable. Further, since the number of flow paths provided per layer is reduced, the flow velocity of the fluid flowing through each flow path can be increased even when the total flow rate of the fluid flowing through these flow paths is the same. Generally, when the flow velocity of the fluid flowing through the flow path increases, the fluid turbulence in the flow path increases, and as a result, the heat transfer performance improves.
  • the temperature of the brine at the outlet of the second flow path is 10 ° C. higher than the temperature of the brine at the inlet of the second flow path. It is preferable to control the flow rate of the brine introduced into the two flow paths.
  • the brine to each second flow path that can sufficiently increase the cold heat given from the brine flowing through the second flow path to the hydrogen gas flowing through the first flow path in the stack of heat exchangers.
  • the specific conditions of the introduction flow rate can be set.
  • the temperature of the brine introduced into each second flow path may be controlled so that the temperature of the brine at the inlet of the second flow path is ⁇ 40 ° C. preferable.
  • the hydrogen gas cooling system is a cooling system that cools hydrogen gas using brine, which is a non-evaporable antifreeze, and the brine is cooled between the refrigerator that cools the brine and the refrigerator.
  • a heat exchanger that is connected to the refrigerator so as to circulate and cools the hydrogen gas by heat exchange with the brine supplied from the refrigerator, and the brine cooled by the refrigerator is the refrigerator And a controller that controls the temperature of the brine.
  • the heat exchanger has a plurality of first flow paths arranged as fine flow paths through which hydrogen gas is introduced.
  • a hydrogen gas flowing through the first flow path having a laminated body in which the first layer and a second layer in which a plurality of second flow paths are arranged, which are fine flow paths that flow through the introduction of brine, are stacked. And flow through the second flow path Heat exchange is performed with brine, and each of the first flow paths has a first inlet for receiving hydrogen gas and a first outlet for discharging hydrogen gas, and the first inlet and the first outlet are Hydrogen gas introduced from the first inlet into the first flow path and flowing through the first flow path toward the first outlet side from one side in a specific direction orthogonal to the stacking direction of the first layer and the second layer.
  • the second flow paths are arranged to move toward the other side, and each of the second flow paths has a second inlet for receiving brine and a second outlet for discharging the brine, and the second inlet and the second outlet are:
  • the brine introduced from the second inlet to the second flow path and flowing through the second flow path to the second outlet side is arranged to move from the other side toward the one side in the specific direction,
  • the controller is configured so that the brine temperature at the second outlet is To be higher than the temperature of the hydrogen gas in the first outlet, it is preferable to control the flow rate of the brine in which the pump is sent along with controlling the operation of the refrigerator.
  • the amount of brine used for cooling the hydrogen gas while at the same time reducing the size of the heat exchanger and securing the cooling processing amount of the hydrogen gas. , The increase in energy required for cooling the brine can be suppressed, and the hydrogen gas can be sufficiently cooled.
  • the hydrogen gas cooling system further includes a first outlet temperature detector that detects the temperature of the hydrogen gas at the first outlet, and a second outlet temperature detector that detects the temperature of the brine at the second outlet.
  • the control unit controls the flow rate of the brine delivered by the pump based on the temperature detected by the first outlet temperature detection unit and the temperature detected by the second outlet temperature detection unit. preferable.
  • each of the first flow paths and each of the second flow paths is formed in the laminated body in a meandering shape.
  • the length of each flow path can be increased, although the number of flow paths provided per layer is reduced as compared with the case where the flow paths are formed in a straight line, for example.
  • the heat transfer area of the first flow path and the second flow path can be sufficiently secured.
  • the number of flow paths provided per layer is reduced, the flow velocity of the fluid flowing through each flow path can be increased even when the total flow rate of the fluid flowing through these flow paths is the same.
  • the fluid disturbance in the flow path increases, and as a result, the heat transfer performance improves.
  • control unit causes the brine to pass through each of the second flow paths at a flow rate at which the brine temperature at the second outlet is 10 ° C. or more higher than the brine temperature at the second inlet. It is preferable to let the pump deliver brine so that it flows.
  • the flow rate of the brine in the pump capable of sufficiently increasing the cold heat given from the brine flowing through the second flow path to the hydrogen gas flowing through the first flow path in the stack of heat exchangers Can be set automatically.
  • control unit preferably controls the cooling power of the refrigerator so that the temperature of the brine at the inlet of the second flow path becomes ⁇ 40 ° C.
  • the cooling temperature of the brine in the refrigerator capable of effectively cooling the hydrogen gas can be specifically set while suppressing the hydrogen embrittlement of the stacked body of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 水素ガスの冷却方法は、微細流路である複数の第1流路が配列された第1層と微細流路である複数の第2流路が配列された第2層とが積層された積層体を備える熱交換器を用意する用意工程と、前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させることにより水素ガスを冷却する冷却工程とを備え、前記冷却工程では、前記各第1流路を流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように前記各第1流路に水素ガスを流すとともに前記各第2流路を流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように前記各第2流路にブラインを流し、前記第2流路の出口でのブラインの温度が前記第1流路の出口での水素ガスの温度よりも高くなるように前記各第2流路に導入するブラインの温度及び流量を制御する。

Description

水素ガスの冷却方法及び水素ガスの冷却システム
 本発明は、水素ガスの冷却方法及び水素ガスの冷却システムに関する。
 燃料電池車に水素ガスを供給する水素ステーションでは、燃料電池車への水素ガスの充填効率を高めるため、水素ガスを充填前に高圧に圧縮する。この圧縮された水素ガスを燃料電池車のタンクへ充填する際、タンク内の圧力上昇に伴って圧縮熱が生じる。このため、その圧縮熱によるタンクの昇温を避けるために水素ステーションで高圧にされた水素ガスを冷却してから燃料電池車へ供給する。下記特許文献1及び下記特許文献2には、このような燃料電池車への供給前に水素ガスを冷却するための冷却方法及び冷却システムの一例が開示されている。
 下記特許文献1では、充填槽を内部に有する容器と、ガス流路と、伝熱媒体流路とを有する熱交換器を備えた冷却システムが用いられている。充填層には、金属粉を含む伝熱媒体が充填されている。ガス流路及び伝熱媒体流路は、容器の外部から充填層に引き込まれて螺旋状をなす。ガス流路と伝熱媒体流路とは、互いに沿うように近接した状態で配設されている。ガス流路には、水素ガスが流される。伝熱媒体流路には、充填槽に充填された伝熱媒体とは異なる低温の伝熱媒体が流される。水素ガスは、ガス流路を流れながら、伝熱媒体流路を流れる伝熱媒体との間で直接的に又は充填槽中の伝熱媒体を介して熱交換することにより冷却される。
 また、下記特許文献2では、水素ガスと冷媒を流通させる二重管を有する熱交換器を備えた冷却システムが用いられている。この冷却システムでは、伝熱効率を向上させるため、水素供給路の圧力と冷媒供給路の圧力を同程度にした二重管を用いている。それにより、両供給路の境界を構成する内管の管壁の薄肉化を実現している。その結果、熱交換器の伝熱抵抗を低減するとともに熱交換器を小型化している。
 上記特許文献1に開示された水素ガスの冷却方法では、充填槽に多量の伝熱媒体を充填する必要がある。このため、伝熱媒体の使用量が増大する。また、充填槽に充填された多量の伝熱媒体の熱抵抗は大きいから、上記特許文献1に開示された冷却方法で水素ガスの十分な冷却を行うためには、伝熱媒体流路に流す伝熱媒体をより低温にする必要がある。このため、その伝熱媒体の冷却に要するエネルギが増大する。
 一方、上記特許文献2に開示された水素ガスの冷却方法では、上記特許文献1の冷却方法に比べて伝熱媒体としての冷媒の使用量は減らすことができる。しかし、水素ガスの冷却処理量を増加するためには例えば二重管の本数を増やす必要がある。二重管の本数を増やす場合には、熱交換器が大型化する。また、上記特許文献2では、伝熱効率を向上させるため、水素供給路の圧力と冷媒供給路の圧力を同程度にすることが示されているが、実際には、高圧の水素ガスを燃料電池車に充填する際、水素ガスの圧力は刻々と変化する。このため、水素供給路に流す水素ガスの圧力制御を行ったとしても、実際には水素供給路と冷媒供給路との差圧は大きくなる。従って、この大きくなる差圧を考慮して安全率を有する管の肉厚を決定することが必要となる。このため、結局は管の肉厚を大きくせざるを得ず、その結果、管の熱抵抗が大きくなる。この場合には、外管内の冷媒供給路に流す冷媒をより低温にしなければ、内管内の水素供給路を流れる水素ガスを十分に冷却することができなくなる。このため、冷媒の冷却に要するエネルギが増大する。
特開2010-121657号公報 特開2011-80495号公報
 本発明の目的は、熱交換器の小型化及び水素ガスの冷却処理量の確保を両立しながら、水素ガスの冷却に用いる伝熱媒体としてのブラインの使用量を削減するとともに、ブラインの冷却に要するエネルギの増大を抑制し、且つ、水素ガスを十分に冷却できるようにすることである。
 本発明の一局面に従う水素ガスの冷却方法は、非蒸発性の不凍液であるブラインを用いて水素ガスを冷却する方法であって、微細流路である複数の第1流路が配列された第1層と微細流路である複数の第2流路が配列された第2層とが積層された積層体を備える熱交換器を用意する用意工程と、前記各第1流路に水素ガスを流通させるとともに前記各第2流路に水素ガスよりも低温のブラインを流通させて前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させることにより水素ガスを冷却する冷却工程とを備え、前記冷却工程では、前記各第1流路を流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように前記各第1流路に水素ガスを流すとともに前記各第2流路を流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように前記各第2流路にブラインを流し、前記第2流路の出口でのブラインの温度が前記第1流路の出口での水素ガスの温度よりも高くなるように前記各第2流路に導入するブラインの温度及び流量を制御する。
 本発明の別の局面に従う水素ガスの冷却システムは、非蒸発性の不凍液であるブラインを用いて水素ガスを冷却する冷却システムであって、ブラインを冷却する冷凍機と、前記冷凍機との間でブラインが循環するように前記冷凍機に接続され、水素ガスを前記冷凍機から供給されたブラインとの間で熱交換させることにより冷却する熱交換器と、前記冷凍機で冷却されたブラインを前記冷凍機から前記熱交換器へ送るポンプと、ブラインの温度を制御する制御部とを備え、前記熱交換器は、水素ガスが導入されて流れる微細流路である複数の第1流路が配列された第1層とブラインが導入されて流れる微細流路である複数の第2流路が配列された第2層とが積層された積層体を有していて、前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させ、前記各第1流路は、水素ガスを受け入れる第1入口と水素ガスを排出する第1出口とを有し、前記第1入口と前記第1出口は、前記第1入口から前記第1流路に導入されて当該第1流路を前記第1出口側へ流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように配置され、前記各第2流路は、ブラインを受け入れる第2入口とブラインを排出する第2出口とを有し、前記第2入口と前記第2出口は、前記第2入口から前記第2流路に導入されて当該第2流路を前記第2出口側へ流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように配置され、前記制御部は、前記第2出口でのブラインの温度が前記第1出口での水素ガスの温度よりも高くなるように、前記冷凍機の作動を制御するとともに前記ポンプが送出するブラインの流量を制御する。
本発明の一実施形態による水素ガスの冷却システムの全体構成を示す模式図である。 本発明の一実施形態による水素ガスの冷却システムに用いる熱交換器を基板積層方向における一方側から見た正面図である。 図2に示した熱交換器を図2における右側から見た側面図である。 図3に示した熱交換器の積層体の部分的な断面図である。 図3に示した熱交換器の積層体において第1流路を形成する第1基板の概略的な平面図である。 図3に示した熱交換器の積層体において第2流路を形成する第2基板の概略的な平面図である。
 以下、本発明の実施形態について図面を参照して説明する。
 まず、図1~図6を参照して、本発明の一実施形態による水素ガスの冷却方法に用いる冷却システムの構成について説明する。
 この冷却システムは、例えば水素ステーションにおいて燃料電池車90(図1参照)に供給する水素ガスを冷却するために用いられるものである。水素ステーションでは、燃料電池車90への水素ガスの充填効率を高めるために、水素ガスを高圧に圧縮した上で燃料電池車90へ供給する。この水素ガスの圧縮に伴って圧縮熱が生じる。本実施形態の冷却システムは、この圧縮熱による水素ガスの昇温を避けるため、圧縮後の高圧の水素ガスを燃料電池車90への充填前に低温に冷却するものである。
 本実施形態の冷却システムは、図1に示すように、冷凍機2と、タンク4と、第1ポンプ6と、第2ポンプ8と、熱交換器10と、制御部58と、第2入口温度検出部60と、第2出口温度検出部62と、第1出口温度検出部64とを備える。
 冷凍機2は、ブラインを冷却する装置である。冷凍機2は、ブラインを冷却する冷却力を変更可能に構成されている。冷凍機2は、後述するように制御部58から制御信号を受信するようになっている。冷凍機2は、受信した制御信号に応じて冷却力を変更する。すなわち、冷凍機2は、受信した制御信号が冷却力の増加を指示するものである場合にはその指示に応じて冷却力を増加する一方、受信した制御信号が冷却力の減少を指示するものである場合にはその指示に応じて冷却力を減少させる。ブラインは、非蒸発性の不凍液である。ブラインとしては、例えば、エチレングリコール水や、フッ素系の液体等が用いられる。
 冷凍機2は、導入部2aと、吐出部2bとを有する。導入部2aは、熱交換器10で水素ガスと熱交換して昇温したブラインが導入される部分である。吐出部2bは、冷凍機2が冷却した後のブラインを吐出する部分である。冷凍機2は、導入部2aから当該冷凍機2に導入されたブラインを低温の代替フロン等の冷媒との間で熱交換させることにより、そのブラインを冷却する。冷凍機2は、冷却後のブラインを吐出部2bから吐出する。冷凍機2は、冷媒の温度を変更可能に構成されている。冷凍機2は、その冷媒の温度を変更することによって、ブラインを冷却するための冷却力を変更するようになっている。すなわち、冷凍機2は、制御部58から受信した制御信号が冷却力の増加を指示するものである場合には冷媒の温度を低下させて冷却力を増加し、制御部58から受信した制御信号が冷却力の減少を指示するものである場合には冷媒の温度を上昇させて冷却力を減少させる。冷凍機2には、例えば-30℃のブラインが導入される。冷凍機2は、その導入されたブラインを例えば-40℃以下にまで冷却する。
 タンク4は、ブラインを貯留するためのものである。タンク4内には、第1貯留室12と、第2貯留室14とが設けられている。第1貯留室12は、冷凍機2から吐出された冷却後のブラインを貯留するものである。第2貯留室14は、熱交換器10から排出された熱交換後のブラインを貯留するものである。
 第1貯留室12は、配管18を介して冷凍機2の吐出部2bに接続されているとともに、配管20を介して熱交換器10の後述する供給ヘッダ28に接続されている。第2貯留室14は、配管22を介して熱交換器10の後述する排出ヘッダ30に接続されているとともに、配管24を介して冷凍機2の導入部2aに接続されている。
 第1貯留室12と第2貯留室14との間には、仕切壁16が設けられている。この仕切壁16により、第1貯留室12に貯留された冷却後のブラインと第2貯留室14に貯留された熱交換後のブラインとが混ざるのが防止されるようになっている。また、仕切壁16は、高断熱性の材料によって形成されている。仕切壁16は、第1貯留室12に貯留されたブラインと第2貯留室14に貯留されたブラインとの間で熱交換が生じるのを防ぐ。
 第1ポンプ6は、第1貯留室12の出口に繋がる配管20に設けられている。第1ポンプ6は、第1貯留室12に貯留されたブラインを吸引するとともに熱交換器10へ送出するものである。この第1ポンプ6は、単位時間当たりにブラインを送出する流量(以下、単に送出流量という)を変更可能に構成されている。第1ポンプ6は、後述するように制御部58から制御信号を受信するようになっている。第1ポンプ6は、受信した制御信号に応じてブラインの送出流量を変更する。すなわち、第1ポンプ6は、受信した制御信号が送出流量の増加を指示するものである場合にはその指示に応じて単位時間当たりのブラインの送出流量を増加する一方、受信した制御信号が送出流量の減少を指示するものである場合にはその指示に応じて単位時間当たりのブラインの送出流量を減少させる。
 第2ポンプ8は、第2貯留室14の出口に繋がる配管24に設けられている。第2ポンプ8は、第2貯留室14に貯留されたブラインを吸引するとともに冷凍機2の導入部2aへ送出するものである。この第2ポンプ8は、単位時間当たりのブラインの送出流量を変更可能に構成されている。
 熱交換器10は、圧縮機100で圧縮されて高圧となった水素ガスを低温のブラインとの間で熱交換させて冷却するものである。この熱交換器10は、多数のマイクロチャネル(微細流路)を有する。熱交換器10は、各マイクロチャネルにそれぞれ流体を流通させながら、その流体同士の間で熱交換を行わせる、いわゆるマイクロチャネル熱交換器である。
 熱交換器10は、多数の流路が内部に設けられた積層体26と、積層体26内の後述する第2流路34にブラインを供給するための供給ヘッダ28と、後述する第2流路34からブラインを排出するための排出ヘッダ30とを有する。
 積層体26は、直方体状の外形を有している。積層体26の内部には、図4に示すように、多数の第1流路32と、多数の第2流路34とが設けられている。各第1流路32及び各第2流路34は、マイクロチャネル(微細流路)である。第1流路32は、水素ガスを流通させるものである。第2流路34は、水素ガスを冷却するためのブラインを流通させるものである。
 積層体26は、図3に示すように、複数の第1基板38と、複数の第2基板40と、一対の端板42とによって形成されている。具体的には、第1基板38と第2基板40とが交互に繰り返し積層され、その積層方向の両端に一対の端板42が分かれて積層されることによって積層体26が形成されている。積層体26では、第1基板38の厚み方向の両側に第2基板40がそれぞれ積層されている。各第1基板38には、複数の第1流路32がそれぞれ配列されている。各第2基板40には、複数の第2流路34がそれぞれ配列されている。各基板38,40は、例えばステンレス鋼等によって形成された薄い平板である。積層された基板38,40は、それらの互いに接触する板面同士が拡散接合されることによって一体化されている。なお、第1基板38は、本発明の第1層の一例である。第2基板40は、本発明の第2層の一例である。
 各第1基板38の厚み方向における一方の板面(図5参照)には、複数の第1流路32を形成するための複数の第1流路用溝部48が形成されている。なお、図5では、第1基板38に形成された複数の第1流路用溝部48全体の外形を示している。すなわち、図5では、第1流路用溝部48の1本ずつの図示については省略しているが、実際には図5に示した外形内に複数の第1流路用溝部48が並列配置されている。第1基板38の前記一方の板面に形成された複数の第1流路用溝部48の開口が、その板面上に積層された第2基板40で封止される。この開口が封止された複数の第1流路用溝部48により、第1基板38の一方の板面側に配列されるとともにその一方の板面に沿う複数の第1流路32が形成されている。
 積層体26のうち第1基板38の長手方向の一端近傍(積層体26の上端近傍)で且つ第1基板38の幅方向の一端近傍の位置には、各第1流路32の第1入口50が形成されている。この第1入口50は、水素ガスを受け入れる部分である。第1入口50は、各基板38,40と一対の端板42のうちの一方の端板42とを同じ位置で厚み方向に貫通して連通する貫通穴によって形成されている。これにより、第1入口50は、基板38,40の積層方向に連続し、前記一方の端板42の表側の板面において開口した穴となっている。また、各第1基板38に形成された複数の第1流路32は、全て、この第1入口50に繋がっている。すなわち、第1入口50は、積層体26内に設けられた全ての第1流路32に共通の水素ガスの導入口となっている。
 積層体26のうち第1基板38の長手方向及び幅方向において第1入口50と反対側の端部近傍の位置には、各第1流路32の第1出口52が形成されている。この第1出口52は、各第1流路32を流れた水素ガスを排出する部分である。第1出口52は、第1入口50と同様、各基板38,40と前記一方の端板42を同じ位置で厚み方向に貫通して連通する貫通穴によって形成されている。また、第1出口52は、第1入口50と同様、積層体26内に設けられた全ての第1流路32に共通の水素ガスの排出口となっている。
 第1流路32は、第1入口50と第1出口52の間で、第1基板38の幅方向の一方側から他方側へ直線的に延びる部分と、その部分から折り返されて第1基板38の幅方向の前記他方側から前記一方側へ直線的に延びる部分とが繰り返し設けられた蛇行した形状を有する。
 各第2基板40の厚み方向における一方の板面(図6参照)には、複数の第2流路34を形成するための複数の第2流路用溝部54が形成されている。なお、図6では、図5と同様、第2基板40に形成された複数の第2流路用溝部54全体の外形を示している。すなわち、図6では、第2流路用溝部54の1本ずつの図示については省略しているが、実際には図6に示した外形内に複数の第2流路用溝部54が並列配置されている。第2基板40の前記一方の板面に形成された複数の第2流路用溝部54の開口が、その板面上に積層された第1基板38で封止される。この開口が封止された複数の第2流路用溝部54により、第2基板40の一方の板面側に配列されるとともにその一方の板面に沿う複数の第2流路34が形成されている。
 各第2基板40に形成された複数の第2流路34は、2系統に分かれている。具体的には、この複数の第2流路34は、第2基板40の幅方向の中心からその幅方向の一方側に配置された一方の群の第2流路34と、第2基板40の幅方向の中心からその幅方向の他方側に配置された他方の群の第2流路34とによって構成されている。前記一方の群の第2流路34は、第2基板40の幅方向の中心側からその第2基板40の幅方向の前記一方側の端縁側へ直線的に延びる部分と、その部分から折り返されて第2基板40の幅方向の中心側へ直線的に延びる部分とが繰り返し設けられた蛇行した形状を有する。また、前記他方の群の第2流路34は、前記一方の群の第2流路34と第2基板40の幅方向の中心に対して対称となる蛇行した形状を有する。
 第2基板40に形成された各第2流路34の一端は、第2基板40の長手方向に沿う積層体26の長手方向の一方側の端面、具体的には前記第1出口52が配置された側の端面において開口している。これら各第2流路34の一端の開口は、ブラインを受け入れる第2入口34aとなっている。第2入口34aは、本発明による第2流路の入口の一例である。第2基板40に形成された各第2流路34の第2入口34aと反対側の端部は、第2基板40の長手方向に沿う積層体26長手方向の他方側の端面、具体的には前記第1入口50が配置された側の端面において開口している。これら各第2流路34の反対側の端部の開口は、各第2流路34を流れたブラインを排出する第2出口34bとなっている。第2出口34bは、本発明による第2流路の出口の一例である。
 以上のように構成された積層体26において、第1基板38の一方の板面側に配列された複数の第1流路32のうち第1基板38の幅方向に直線的に延びる部分の形成領域と、第2基板40の一方の板面側に配列された複数の第2流路34のうち第2基板40の幅方向に直線的に延びる部分の形成領域とは、基板38,40の積層方向から見て互いに重なって一致している。また、熱交換器10(積層体26)は、第1入口50及び第2出口34bが上側に位置するとともに第1出口52及び第2入口34aが下側に位置し、且つ、積層体26の長手方向(各基板38,40の長手方向)が上下方向に一致するように配置される。すなわち、熱交換器10の積層体26では、各第1流路32の第1入口50及び第1出口52が、第1入口50から各第1流路32に導入されてその各第1流路32を第1出口52側へ流れる水素ガスが総体的には第1基板38及び第2基板40の積層方向に直交する鉛直方向において上側から下側へ向かって移動するように配置されている。また、各第2流路34の第2入口34a及び第2出口34bが、第2入口34aから各第2流路34に導入されてその各第2流路34を第2出口34b側へ流れるブラインが総体的には鉛直方向において下側から上側へ向かって移動するように配置されている。
 供給ヘッダ28は、積層体26のうち第2入口34aが形成された端面に取り付けられている。供給ヘッダ28には、配管20(図1参照)が接続されている。第1ポンプ6から送出されたブラインが、配管20を通じて供給ヘッダ28に供給されるようになっている。供給ヘッダ28内には、供給されたブラインが通る内部空間が設けられている。この内部空間は、供給ヘッダ28が積層体26に取り付けられた状態で、積層体26に設けられた全ての第2流路34の第2入口34aと連通するようになっている。すなわち、供給ヘッダ28に供給されたブラインは、その供給ヘッダ28の内部空間から各第2流路34の第2入口34aに分配されて導入されるようになっている。
 排出ヘッダ30は、積層体26のうち第2出口34bが形成された端面に取り付けられている。排出ヘッダ30には、配管22(図1参照)が接続されている。排出ヘッダ30内には、内部空間が設けられている。この内部空間は、排出ヘッダ30が積層体26に取り付けられた状態で、積層体26に設けられた全ての第2流路34の第2出口34bと連通する。各第2流路34を流れたブラインは、それら各第2流路34の第2出口34bから排出ヘッダ30の内部空間に流出し、その内部空間から配管22へ排出されるようになっている。
 また、本実施形態による冷却システムの熱交換器10は、次式(1)の関係を満たすように、流路32,34の形状、サイズ及び本数、積層体26を構成する基板38,40の積層数等の構造が設計されている。次式(1)では、熱交換器10に要求される熱交換量をQ(kW)とし、熱交換器10の形態に起因する値である総括伝熱係数をU(kW/m・℃)とし、熱交換器10内の伝熱面積をA(m)とし、第2流路34の第2入口34aでのブラインの温度と第2流路34の第2出口34bでのブラインの温度とから求められる第2流路34でのブラインの対数平均温度をdT(℃)としている。
 Q=U×A×dT・・・(1)
 第2入口温度検出部60(図1及び図2参照)は、供給ヘッダ28に接続されている。第2入口温度検出部60は、第2流路34の第2入口34aに導入されるブラインの温度を検出する検出器である。すなわち、第2入口温度検出部60は、第2入口34aでのブラインの温度を検出する。
 第2出口温度検出部62(図1及び図2参照)は、排出ヘッダ30に接続されている。第2出口温度検出部62は、第2流路34の第2出口34bから排出されるブラインの温度を検出する検出器である。すなわち、第2出口温度検出部62は、第2出口34bでのブラインの温度を検出する。
 第1出口温度検出部64(図1及び図2参照)は、第1流路32の第1出口52に接続されている。第1出口温度検出部64は、第1出口52から排出される水素ガスの温度を検出する検出器である。すなわち、第1出口温度検出部64は、第1出口52での水素ガスの温度を検出する。
 第2入口温度検出部60、第2出口温度検出部62及び第1出口温度検出部64は、それぞれ、検出した温度のデータを制御部58へ送信するようになっている。制御部58は、各第2流路34を流れるブラインの温度を制御するものである。制御部58は、受信した各検出温度のデータに基づいて、冷凍機2の作動を制御するとともに第1ポンプ6が送出するブラインの流量を制御し、それによって各第2流路34を流れるブラインの温度を制御する。制御部58は、第2出口34bでのブラインの温度が第1出口52での水素ガスの温度よりも高くなるように、冷凍機2の作動を制御するとともに第1ポンプ6が送出するブラインの流量を制御する。
 次に、本実施形態による水素ガスの冷却方法について説明する。
 本実施形態による水素ガスの冷却方法では、上記の冷却システムを用意する。そして、冷凍機2(図1参照)がブラインを低温の冷媒との間で熱交換させることにより冷却する。冷却後のブラインは、吐出部2bから配管18を通じてタンク4の第1貯留室12へ送られる。第1貯留室12に導入されたブラインは、その第1貯留室12において一時的に貯留されるとともに、第1ポンプ6の吸引力により配管20へ排出される。配管20に排出されたブラインは、第1ポンプ6により熱交換器10へ送られ、供給ヘッダ28(図2及び図3参照)の内部空間を通じて積層体26内の各第2流路34(図6参照)へそれらの第2入口34aから導入される。
 制御部58は、第2入口温度検出部60から受信する検出温度のデータに基づいて、第2入口34aでのブラインの温度が-40℃になるように、ブラインを冷却する冷凍機2の作動(冷却力)を制御する。具体的には、制御部58は、第2入口温度検出部60の検出温度が-40℃になるように冷凍機2に冷媒の温度を調節させてその冷凍機2の冷却力を制御する。詳しくは、制御部58は、第2入口温度検出部60の検出温度が-40℃よりも高い場合には、冷凍機2に冷却力の増大を指示する制御信号を送り、その制御信号を受信した冷凍機2がその制御信号に応じて冷却力を増大させる。その結果、第2入口温度検出部60によって検出される第2入口34aでのブラインの温度が-40℃に近づくように低下する。一方、制御部58は、第2入口温度検出部60の検出温度が-40℃よりも低い場合には、冷凍機2に冷却力の低下を指示する制御信号を送り、その制御信号を受信した冷凍機2がその制御信号に応じて冷却力を低下させる。その結果、第2入口温度検出部60によって検出される第2入口34aでのブラインの温度が-40℃に近づくように上昇する。
 各第2流路34に導入されたブラインは、第2入口34aから第2出口34b側へ向かってその第2流路34を流れる。この各第2流路34を流れるブラインは、全体的には、積層体26の基板38,40の積層方向に直交する鉛直方向において下側から上側へ向かって移動する。
 一方、圧縮機100(図1参照)では、水素ガスが圧縮される。その圧縮後の高圧の水素ガスは、圧縮機100から熱交換器10の第1入口50へ導入される。この第1入口50に導入される水素ガスは、圧縮機100での圧縮後、冷却水により冷却されてその温度が40℃になっている。そして、第1入口50に導入された水素ガスは、積層体26内の各第1流路32(図5参照)へ分配されて供給される。各第1流路32に供給された水素ガスは、第1入口50側から第1出口52側へ向かってその第1流路32を流れ、全体的には、鉛直方向において上側から下側へ向かって移動する。この過程において、各第1流路32(図4参照)を流れる水素ガスとその第1流路32に対して隣り合う第2流路34(図4参照)を流れるブラインとの間で、積層体26のうちその両流路32,34間に位置する部分を介して熱交換が行われる。これにより、水素ガスが冷却される。この際、水素ガスは、各第1流路32の下流側(第1出口52側)へ流れるに従って漸次降温する。その結果、第1出口52における水素ガスの温度は-37℃になる。
 一方、ブラインは、各第2流路34の下流側(第2出口34b側)へ流れるに従って漸次昇温する。この時のブラインの昇温の度合いは、第2流路34に導入されるブラインの温度及び流量によって異なる。本実施形態では、制御部58が、第2出口34bでのブラインの温度が第1出口52での水素ガスの温度(-37℃)よりも高くなり、且つ、第2出口34bでのブラインの温度が第2入口34aでのブラインの温度(-40℃)よりも10℃以上高くなるように、各第2流路34に導入するブラインの流量、すなわち第1ポンプ6のブラインの送出流量を制御する。具体的には、制御部58は、第1ポンプ6によるブラインの送出流量を、第2出口34bでのブラインの温度が-30℃になるような流量に制御する。
 この時、制御部58は、第1出口温度検出部64から受信する検出温度のデータと、第2入口温度検出部60から受信する検出温度のデータと、第2出口温度検出部62から受信する検出温度のデータとに基づいて、第1ポンプ6のブラインの送出流量を制御する。
 具体的に、制御部58は、第1出口温度検出部64の検出温度と第2出口温度検出部62の検出温度とを比較して、第2出口温度検出部62の検出温度が第1出口温度検出部64の検出温度以下である場合には、第2出口温度検出部62の検出温度が第1出口温度検出部64の検出温度よりも高くなるまで第1ポンプ6にブラインの送出流量を減少させる。この時、制御部58は、第1ポンプ6へ送出流量の減少を指示する制御信号を送り、第1ポンプ6は、受信した制御信号に応じてブラインの送出流量を減少させる。
 また、制御部58は、第2出口温度検出部62の検出温度が第2入口温度検出部60の検出温度よりも高く、且つ、第2出口温度検出部62の検出温度と第2入口温度検出部60の検出温度との温度差が10℃よりも小さい場合には、その温度差が10℃以上になるまで第1ポンプ6にブラインの送出流量を減少させる。この時も、制御部58は、第1ポンプ6へ送出流量の減少を指示する制御信号を送ることによって、第1ポンプ6にブラインの送出流量を減少させる。
 また、この時、制御部58は、第2出口温度検出部62の検出温度が-30℃になるように第1ポンプ6のブラインの送出流量を制御する。すなわち、制御部58は、第2出口温度検出部62の検出温度が-30℃よりも低い場合には、第1ポンプ6へ送出流量の減少を指示する制御信号を送り、第1ポンプ6は、受信した制御信号に応じてブラインの送出流量を減少させる。また、制御部58は、第2出口温度検出部62の検出温度が-30℃よりも高い場合には、第1ポンプ6へ送出流量の増加を指示する制御信号を送り、第1ポンプ6は、受信した制御信号に応じてブラインの送出流量を増加させる。
 冷却後の水素ガスは、各第1流路32の第1出口52(図2及び図5参照)を通じて排出され、燃料電池車90(図1参照)へ供給される。一方、熱交換後のブラインは、各第2流路34の第2出口34bから排出ヘッダ30の内部空間を通じて配管22(図1参照)へ排出されるとともに、その配管22を通じてタンク4の第2貯留室14へ導入されて貯留される。第2貯留室14に貯留された熱交換後のブラインは、第2ポンプ8により配管24を通じて吸引されるとともに冷凍機2へ送られ、その導入部2aから冷凍機2へ導入される。冷凍機2に導入された熱交換後のブラインは、再度冷却されて冷凍機2から熱交換器10へ供給される。
 以上のようにして本実施形態による水素ガスの冷却方法が実施される。
 本実施形態では、熱交換器10の積層体26内においてマイクロチャネルである各第1流路32を流れる水素ガスとマイクロチャネルである各第2流路34を流れるブラインとの間での熱交換により水素ガスが冷却される。このため、ブラインの単位体積当たりでの水素ガスとの熱交換効率を高めて水素ガスの冷却効率を高めることができる。
 また、第1流路32を流れる水素ガスは下流側へ向かうに従って降温し、第2流路34を流れるブラインは下流側、すなわち第1流路32の第1入口50側へ向かうに従って昇温する。本実施形態では、各第1流路32を流れる水素ガスが全体的に上側から下側へ向かって移動するとともに各第2流路34を流れるブラインが全体的に下側から上側へ向かって移動するため、水素ガスは、第1流路32の下流側へ流れるに従って第2流路34の上流側のより低温のブラインとの間で熱交換することができる。このため、水素ガスの冷却効率をより高めることができる。
 さらに、本実施形態では、第2流路34の第2出口34bでのブラインの温度が第1流路32の第1出口52での水素ガスの温度よりも高くなるように各第2流路34に導入するブラインの温度及び流量を制御する。このため、第2流路34の第2出口34bでのブラインの温度が第1流路32の第1出口52での水素ガスの温度以下になる場合に比べて熱交換器10でブラインから水素ガスへ与えられるブライン流量(単位体積)あたりの冷熱が大きくなり、水素ガスをより有効に冷却することができる。
 以上のように、本実施形態では、水素ガスの冷却効率を高めることができることから、ブラインの使用量を削減したとしても、また、ブラインを過剰に低温まで冷却しなくても、水素ガスを十分に冷却することができる。
 また、本実施形態では、熱交換器10の積層体26内にマイクロチャネルである多数の第1流路32とマイクロチャネルである多数の第2流路34を集積することができる。このため、熱交換器10の小型化を図りつつ水素ガスの冷却処理量を十分に確保することができる。
 従って、本実施形態では、熱交換器10の小型化及び水素ガスの冷却処理量の確保を両立しながら、水素ガスの冷却に用いるブラインの使用量を削減するとともに、冷凍機2でブラインの冷却に要するエネルギ(冷媒の冷却に要するエネルギ)の増大を抑制でき、且つ、水素ガスを十分に冷却することができる。また、本実施形態では、ブラインの使用量を削減できることによって、冷凍機2と熱交換器10との間でブラインを循環させるための第1ポンプ6及び第2ポンプ8の駆動に要するエネルギを削減することができる。
 また、本実施形態では、各第1流路32と各第2流路34が蛇行した形状で形成されている。このため、例えばそれらの流路が直線状に形成されている場合に比べて各基板38,40の1枚あたりに設けられる流路32,34の本数は少なくなるものの各流路32,34の長さを大きくすることができる。その結果、積層体26における第1流路32と第2流路34の伝熱面積を十分に確保することができる。また、各基板38,40の1枚あたりに設けられる流路32,34の本数が少なくなることによって、それらの流路32,34に流す流体の総流量が同じである場合でも各流路32,34をそれぞれ流れる流体の流速を上げることができる。一般的に、流路を流れる流体の流速が上がると、その流路内での流体の乱れが大きくなり、その結果、伝熱性能が向上する。従って、本実施形態では、第1流路32と第2流路34の伝熱面積を十分に確保しつつ、各第1流路32を流れる水素ガスの流速と各第2流路34を流れるブラインの流速を上げてそれらの水素ガスとブラインとの間での伝熱性能を向上することができる。このため、水素ガスをより有効に冷却することができる。
 また、本実施形態では、第2流路34の第2出口34bでのブラインの温度がその第2流路34の第2入口34aでのブラインの温度よりも10℃以上高くなるように各第2流路34に導入するブラインの流量を制御する。このため、熱交換器10において第2流路34を流れるブラインから第1流路32を流れる水素ガスへ与えられる冷熱を十分に大きくすることができる。その結果、水素ガスの冷却効率をより高めることができる。
 また、本実施形態では、第2流路34の第2入口34aでのブラインの温度が-40℃になるように各第2流路34に導入するブラインの温度を制御する。このため、熱交換器10の積層体26の水素脆化を抑制しつつ、水素ガスを十分に冷却することができる。具体的に、積層体26を構成する各基板38,40の材料であるステンレス鋼は-40℃よりも低温に冷却された状態で水素ガスと接触していると水素脆化が著しくなることが知られている。このため、本実施形態のように第2入口34aでのブラインの温度が-40℃になるように各第2流路34に導入するブラインの温度を制御することにより、積層体26は-40℃以上の温度になり、水素脆化を抑制することができる。そして、第2入口34aに-40℃のブラインを導入することで、積層体26の水素脆化を抑制しつつ第1流路32を流れる水素ガスを十分に冷却することができる。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、また、請求の範囲と均等の意味及び範囲内でのすべての変更を含む。
 例えば、第1流路及び第2流路の形状としては、上記以外の様々な形状を適用することができる。例えば、第1流路及び第2流路は、上記のような折り返しを繰り返す蛇行形状をなすものに限定されず、例えば、直線状に延びるものであってもよい。
 また、1枚の第1基板に形成される第1流路の数及び1枚の第2基板に形成される第2流路の数は、自由に設定可能である。また、各第1流路の幅及び断面形状と、各第2流路の幅及び断面形状についても自由に設定可能である。
 また、上記実施形態では、第1流路が配列された第1基板と第2流路が配列された第2基板とが交互に積層されているが、積層の形態はこれに限定されない。例えば、水素ガスを流通させる第1流路が配列された1枚の第1基板に対して、ブラインを流通させる第2流路が配列された2枚以上の第2基板が積層されてもよい。
 また、熱交換器(積層体)の配置の向きは、上記のように基板の長手方向が上下方向に一致する向きに限定されない。例えば、基板の長手方向が水平方向に一致する向きや、その他、斜め向き等に熱交換器(積層体)を配置してもよい。
 [実施の形態の概要]
 前記実施形態をまとめると、以下の通りである。
 前記実施形態による水素ガスの冷却方法は、非蒸発性の不凍液であるブラインを用いて水素ガスを冷却する方法であって、微細流路である複数の第1流路が配列された第1層と微細流路である複数の第2流路が配列された第2層とが積層された積層体を備える熱交換器を用意する用意工程と、前記各第1流路に水素ガスを流通させるとともに前記各第2流路に水素ガスよりも低温のブラインを流通させて前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させることにより水素ガスを冷却する冷却工程とを備え、前記冷却工程では、前記各第1流路を流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように前記各第1流路に水素ガスを流すとともに前記各第2流路を流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように前記各第2流路にブラインを流し、前記第2流路の出口でのブラインの温度が前記第1流路の出口での水素ガスの温度よりも高くなるように前記各第2流路に導入するブラインの温度及び流量を制御する。
 この水素ガスの冷却方法では、熱交換器の積層体内において微細流路である各第1流路を流れる水素ガスと微細流路である各第2流路を流れるブラインとの間での熱交換により水素ガスが冷却される。このため、従来の充填槽に充填された伝熱媒体を介しての熱交換による水素ガスの冷却方法や従来の二重管内での冷媒と水素ガスとの間での熱交換による水素ガスの冷却方法に比べて、ブラインの単位体積当たりでの水素ガスとの熱交換効率が高くなる。その結果、ブラインの単位体積当たりでの水素ガスの冷却効率を高めることができる。
 また、第1流路を流れる水素ガスは下流側へ向かうに従って降温し、第2流路を流れるブラインは下流側、すなわち第1流路の水素ガスの入口側へ向かうに従って昇温する。この水素ガスの冷却方法では、各第1流路を流れる水素ガスが積層体の各層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するとともに各第2流路を流れるブラインが前記他方側から前記一方側へ向かって移動するように各第1流路に水素ガスを導入するとともに各第2流路にブラインを導入する。このため、水素ガスは、第1流路を下流側へ流れるに従って、第2流路の上流側のより低温のブラインとの間で熱交換することができる。このため、水素ガスの冷却効率をより高めることができる。
 さらに、この水素ガスの冷却方法では、第2流路の出口でのブラインの温度が第1流路の出口での水素ガスの温度よりも高くなるように各第2流路に導入するブラインの温度及び流量を制御する。このため、第2流路の出口でのブラインの温度が第1流路の出口での水素ガスの温度以下になる場合に比べてブラインから水素ガスへ与えられるブライン流量(単位体積)あたりの冷熱が大きくなる。その結果、水素ガスをより有効に冷却することができる。
 以上のように、本冷却方法では、水素ガスの冷却効率を高めることができることから、ブラインの使用量を削減したとしても、また、ブラインを過剰に低温まで冷却しなくても、水素ガスを十分に冷却することができる。
 また、本冷却方法では、熱交換器の積層体内に微細流路である複数の第1流路と微細流路である複数の第2流路を集積することができる。このため、熱交換器の小型化を図りつつ水素ガスの冷却処理量を十分に確保することができる。従って、本冷却方法では、熱交換器の小型化及び水素ガスの冷却処理量の確保を両立しながら、水素ガスの冷却に用いるブラインの使用量を削減するとともに、ブラインの冷却に要するエネルギの増大を抑制でき、且つ、水素ガスを十分に冷却することができる。
 上記水素ガスの冷却方法において、前記用意工程では、前記熱交換器として、前記各第1流路と前記各第2流路がそれぞれ蛇行した形状で内部に形成された積層体を前記積層体として備える熱交換器を用意し、前記冷却工程では、水素ガスを前記各第1流路の蛇行した形状に沿ってその各第1流路に流通させ、ブラインを前記各第2流路の蛇行した形状に沿ってその各第2流路に流通させることが好ましい。
 この構成によれば、例えば流路が直線状に形成されている場合に比べて1つの層あたりに設けられる流路本数は少なくなるものの各流路の長さを大きくすることができる。このため、積層体における第1流路と第2流路の伝熱面積を十分に確保することができる。また、1つの層あたりに設けられる流路本数が少なくなることによって、それらの流路に流す流体の総流量が同じである場合でも各流路をそれぞれ流れる流体の流速を上げることができる。一般的に、流路を流れる流体の流速が上がると、その流路内での流体の乱れが大きくなり、その結果、伝熱性能が向上する。従って、この構成では、第1流路と第2流路の伝熱面積を十分に確保しつつ、各第1流路を流れる水素ガスの流速と各第2流路を流れるブラインの流速を上げてそれらの水素ガスとブラインとの間での伝熱性能を向上することができ、水素ガスをより有効に冷却することができる。
 上記水素ガスの冷却方法において、前記冷却工程では、前記第2流路の出口でのブラインの温度がその第2流路の入口でのブラインの温度よりも10℃以上高くなるように前記各第2流路に導入するブラインの流量を制御することが好ましい。
 この構成によれば、熱交換器の積層体内において第2流路を流れるブラインから第1流路を流れる水素ガスへ与えられる冷熱を十分に大きくすることが可能な各第2流路へのブラインの導入流量の具体的な条件を設定することができる。
 上記水素ガスの冷却方法において、前記冷却工程では、前記第2流路の入口でのブラインの温度が-40℃になるように前記各第2流路に導入するブラインの温度を制御することが好ましい。
 この構成によれば、熱交換器の積層体の水素脆化を抑制しつつ、水素ガスを有効に冷却可能な各第2流路へ導入するブラインの温度条件を設定することができる。
 前記実施形態による水素ガスの冷却システムは、非蒸発性の不凍液であるブラインを用いて水素ガスを冷却する冷却システムであって、ブラインを冷却する冷凍機と、前記冷凍機との間でブラインが循環するように前記冷凍機に接続され、水素ガスを前記冷凍機から供給されたブラインとの間で熱交換させることにより冷却する熱交換器と、前記冷凍機で冷却されたブラインを前記冷凍機から前記熱交換器へ送るポンプと、ブラインの温度を制御する制御部とを備え、前記熱交換器は、水素ガスが導入されて流れる微細流路である複数の第1流路が配列された第1層とブラインが導入されて流れる微細流路である複数の第2流路が配列された第2層とが積層された積層体を有していて、前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させ、前記各第1流路は、水素ガスを受け入れる第1入口と水素ガスを排出する第1出口とを有し、前記第1入口と前記第1出口は、前記第1入口から前記第1流路に導入されて当該第1流路を前記第1出口側へ流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように配置され、前記各第2流路は、ブラインを受け入れる第2入口とブラインを排出する第2出口とを有し、前記第2入口と前記第2出口は、前記第2入口から前記第2流路に導入されて当該第2流路を前記第2出口側へ流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように配置され、前記制御部は、前記第2出口でのブラインの温度が前記第1出口での水素ガスの温度よりも高くなるように、前記冷凍機の作動を制御するとともに前記ポンプが送出するブラインの流量を制御することが好ましい。
 この水素ガスの冷却システムでは、上記水素ガスの冷却方法と同様の理由により、熱交換器の小型化及び水素ガスの冷却処理量の確保を両立しながら、水素ガスの冷却に用いるブラインの使用量を削減するとともに、ブラインの冷却に要するエネルギの増大を抑制でき、且つ、水素ガスを十分に冷却することができる。
 上記水素ガスの冷却システムは、前記第1出口での水素ガスの温度を検出する第1出口温度検出部と、前記第2出口でのブラインの温度を検出する第2出口温度検出部とをさらに備え、前記制御部は、前記第1出口温度検出部によって検出された温度と前記第2出口温度検出部によって検出された温度とに基づいて、前記ポンプが送出するブラインの流量を制御することが好ましい。
 上記水素ガスの冷却システムにおいて、前記各第1流路と前記各第2流路は、それぞれ蛇行した形状で前記積層体内に形成されていることが好ましい。
 この構成によれば、例えば流路が直線状に形成されている場合に比べて1つの層あたりに設けられる流路本数は少なくなるものの各流路の長さを大きくすることができ、積層体における第1流路と第2流路の伝熱面積を十分に確保することができる。また、1つの層あたりに設けられる流路本数が少なくなることによって、それらの流路に流す流体の総流量が同じである場合でも各流路をそれぞれ流れる流体の流速を上げることができる。一般的に、流路を流れる流体の流速が上がると、その流路内での流体の乱れが大きくなり、その結果、伝熱性能が向上する。従って、この構成では、第1流路と第2流路の伝熱面積を十分に確保しつつ、各第1流路を流れる水素ガスの流速と各第2流路を流れるブラインの流速を上げてそれらの水素ガスとブラインとの間での伝熱性能を向上することができ、水素ガスをより有効に冷却することができる。
 上記水素ガスの冷却システムにおいて、前記制御部は、前記第2出口でのブラインの温度が前記第2入口でのブラインの温度よりも10℃以上高くなる流量でブラインが前記各第2流路を流れるように前記ポンプにブラインを送出させることが好ましい。
 この構成によれば、熱交換器の積層体内において第2流路を流れるブラインから第1流路を流れる水素ガスへ与えられる冷熱を十分に大きくすることが可能なポンプのブラインの送出流量を具体的に設定することができる。
 上記水素ガスの冷却システムにおいて、前記制御部は、前記第2流路の入口でのブラインの温度が-40℃になるように前記冷凍機の冷却力を制御することが好ましい。
 この構成によれば、熱交換器の積層体の水素脆化を抑制しつつ、水素ガスを有効に冷却可能な冷凍機のブラインの冷却温度を具体的に設定することができる。
 以上説明したように、前記実施形態によれば、熱交換器の小型化及び水素ガスの冷却処理量の確保を両立しながら、水素ガスの冷却に用いるブラインの使用量を削減するとともに、ブラインの冷却に要するエネルギの増大を抑制でき、且つ、水素ガスを十分に冷却することができる。

Claims (7)

  1.  非蒸発性の不凍液であるブラインを用いて水素ガスを冷却する方法であって、
     微細流路である複数の第1流路が配列された第1層と微細流路である複数の第2流路が配列された第2層とが積層された積層体を備える熱交換器を用意する用意工程と、
     前記各第1流路に水素ガスを流通させるとともに前記各第2流路に水素ガスよりも低温のブラインを流通させて前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させることにより水素ガスを冷却する冷却工程とを備え、
     前記冷却工程では、前記各第1流路を流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように前記各第1流路に水素ガスを流すとともに前記各第2流路を流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように前記各第2流路にブラインを流し、前記第2流路の出口でのブラインの温度が前記第1流路の出口での水素ガスの温度よりも高くなるように前記各第2流路に導入するブラインの温度及び流量を制御する、水素ガスの冷却方法。
  2.  請求項1に記載の水素ガスの冷却方法において、
     前記用意工程では、前記熱交換器として、前記各第1流路と前記各第2流路がそれぞれ蛇行した形状で内部に形成された積層体を前記積層体として備える熱交換器を用意し、
     前記冷却工程では、水素ガスを前記各第1流路の蛇行した形状に沿ってその各第1流路に流通させ、ブラインを前記各第2流路の蛇行した形状に沿ってその各第2流路に流通させる、水素ガスの冷却方法。
  3.  請求項1に記載の水素ガスの冷却方法において、
     前記冷却工程では、前記第2流路の出口でのブラインの温度がその第2流路の入口でのブラインの温度よりも10℃以上高くなるように前記各第2流路に導入するブラインの流量を制御する、水素ガスの冷却方法。
  4.  非蒸発性の不凍液であるブラインを用いて水素ガスを冷却する冷却システムであって、
     ブラインを冷却する冷凍機と、
     前記冷凍機との間でブラインが循環するように前記冷凍機に接続され、水素ガスを前記冷凍機から供給されたブラインとの間で熱交換させることにより冷却する熱交換器と、
     前記冷凍機で冷却されたブラインを前記冷凍機から前記熱交換器へ送るポンプと、
     ブラインの温度を制御する制御部とを備え、
     前記熱交換器は、水素ガスが導入されて流れる微細流路である複数の第1流路が配列された第1層とブラインが導入されて流れる微細流路である複数の第2流路が配列された第2層とが積層された積層体を有していて、前記第1流路を流れる水素ガスと前記第2流路を流れるブラインとの間で熱交換させ、
     前記各第1流路は、水素ガスを受け入れる第1入口と水素ガスを排出する第1出口とを有し、前記第1入口と前記第1出口は、前記第1入口から前記第1流路に導入されて当該第1流路を前記第1出口側へ流れる水素ガスが前記第1層及び前記第2層の積層方向に直交する特定方向において一方側から他方側へ向かって移動するように配置され、
     前記各第2流路は、ブラインを受け入れる第2入口とブラインを排出する第2出口とを有し、前記第2入口と前記第2出口は、前記第2入口から前記第2流路に導入されて当該第2流路を前記第2出口側へ流れるブラインが前記特定方向において前記他方側から前記一方側へ向かって移動するように配置され、
     前記制御部は、前記第2出口でのブラインの温度が前記第1出口での水素ガスの温度よりも高くなるように、前記冷凍機の作動を制御するとともに前記ポンプが送出するブラインの流量を制御する、水素ガスの冷却システム。
  5.  請求項4に記載の水素ガスの冷却システムにおいて、
     前記第1出口での水素ガスの温度を検出する第1出口温度検出部と、
     前記第2出口でのブラインの温度を検出する第2出口温度検出部とをさらに備え、
     前記制御部は、前記第1出口温度検出部によって検出された温度と前記第2出口温度検出部によって検出された温度とに基づいて、前記ポンプが送出するブラインの流量を制御する、水素ガスの冷却システム。
  6.  請求項4に記載の水素ガスの冷却システムにおいて、
     前記各第1流路と前記各第2流路は、それぞれ蛇行した形状で前記積層体内に形成されている、水素ガスの冷却システム。
  7.  請求項4に記載の水素ガスの冷却システムにおいて、
     前記制御部は、前記第2出口でのブラインの温度が前記第2入口でのブラインの温度よりも10℃以上高くなる流量でブラインが前記各第2流路を流れるように前記ポンプにブラインを送出させる、水素ガスの冷却システム。
     
     

     
PCT/JP2014/069030 2013-07-31 2014-07-17 水素ガスの冷却方法及び水素ガスの冷却システム WO2015016076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167002312A KR20160025589A (ko) 2013-07-31 2014-07-17 수소 가스의 냉각 방법 및 수소 가스의 냉각 시스템
EP14831952.8A EP3029406B1 (en) 2013-07-31 2014-07-17 Hydrogen gas cooling method and hydrogen gas cooling system
US14/890,562 US20160131434A1 (en) 2013-07-31 2014-07-17 Hydrogen gas cooling method and hydrogen gas cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-159513 2013-07-31
JP2013159513A JP2015031420A (ja) 2013-07-31 2013-07-31 水素ガスの冷却方法及び水素ガスの冷却システム

Publications (1)

Publication Number Publication Date
WO2015016076A1 true WO2015016076A1 (ja) 2015-02-05

Family

ID=52431616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069030 WO2015016076A1 (ja) 2013-07-31 2014-07-17 水素ガスの冷却方法及び水素ガスの冷却システム

Country Status (5)

Country Link
US (1) US20160131434A1 (ja)
EP (1) EP3029406B1 (ja)
JP (1) JP2015031420A (ja)
KR (1) KR20160025589A (ja)
WO (1) WO2015016076A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220088A1 (en) * 2016-03-17 2017-09-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Stacked type fluid heater and method of heating fluid with stacked type fluid heater

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217468A (ja) * 2015-05-21 2016-12-22 日立オートモティブシステムズメジャメント株式会社 水素ガス充填装置
JP6539533B2 (ja) * 2015-07-30 2019-07-03 株式会社神戸製鋼所 水素ガス供給方法及び水素ステーション
JP6660693B2 (ja) * 2015-09-14 2020-03-11 トキコシステムソリューションズ株式会社 水素ガス充填装置
JP6643105B2 (ja) * 2016-01-22 2020-02-12 伸和コントロールズ株式会社 冷却水素供給ステーション及び水素冷却装置
JP6738642B2 (ja) * 2016-04-13 2020-08-12 美浜株式会社 ガス供給設備と冷却設備とを融合したシステム
EP3677866A4 (en) * 2017-08-29 2021-03-17 Welcon Inc. HEAT EXCHANGER
CN109751900B (zh) * 2017-11-03 2020-10-16 斗山重工业建设有限公司 包括一体型结构的印刷电路板式热交换器
US10809007B2 (en) * 2017-11-17 2020-10-20 General Electric Company Contoured wall heat exchanger
KR102031978B1 (ko) 2017-12-21 2019-10-14 두산중공업 주식회사 기액 분리 구조를 포함하는 인쇄기판형 열교환기
JP6810101B2 (ja) * 2018-06-06 2021-01-06 株式会社神戸製鋼所 積層型熱交換器
US11333448B2 (en) 2018-09-18 2022-05-17 Doosan Heavy Industries & Construction Co., Ltd. Printed circuit heat exchanger and heat exchange device including the same
JP6957029B2 (ja) * 2018-10-16 2021-11-02 オリオン機械株式会社 プレート式熱交換器製造方法
KR102271875B1 (ko) 2019-08-23 2021-07-01 한국가스공사 수소 충전용 냉각 장치 및 이를 이용한 수소 자동차 충전 방법
US11557775B2 (en) 2019-12-20 2023-01-17 Saint-Gobain Ceramics & Plastics, Inc. Apparatus including electrochemical devices and heat exchanger
DE102020101528A1 (de) 2020-01-23 2021-07-29 Audi Aktiengesellschaft Brennstoffzellenvorrichtung und Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
US12006870B2 (en) 2020-12-10 2024-06-11 General Electric Company Heat exchanger for an aircraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336990A (ja) * 2002-05-15 2003-11-28 Matsushita Electric Ind Co Ltd 熱交換器
JP2004116619A (ja) * 2002-09-25 2004-04-15 Nippon Sanso Corp 燃料充てん装置および方法
JP2005282951A (ja) * 2004-03-30 2005-10-13 Institute Of Tsukuba Liaison Co Ltd 一体型積層構造熱交換器
JP2008164177A (ja) * 2006-12-27 2008-07-17 Taiyo Nippon Sanso Corp 熱交換器
JP2010121657A (ja) 2008-11-17 2010-06-03 Air Liquide Japan Ltd 高圧ガス充填用装置に用いる熱交換器、これを用いた高圧ガス充填用装置および高圧ガスの充填方法
JP2011080495A (ja) 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology 水素充填システムの水素用熱交換器
WO2014122890A1 (ja) * 2013-02-06 2014-08-14 株式会社神戸製鋼所 熱交換器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662870A (en) * 1924-10-09 1928-03-20 Stancliffe Engineering Corp Grooved-plate heat interchanger
US4523638A (en) * 1979-10-01 1985-06-18 Rockwell International Corporation Internally manifolded unibody plate for a plate/fin-type heat exchanger
US4543978A (en) * 1983-07-25 1985-10-01 Chicago Bridge & Iron Company Single tank for dual thermal energy storage with internal movable partition
US4714175A (en) * 1986-12-01 1987-12-22 Cbi Industries, Inc. Tank liquid interface separation deck with leveling lines
JP3858484B2 (ja) * 1998-11-24 2006-12-13 松下電器産業株式会社 積層式熱交換器
US20100015483A1 (en) * 2004-09-03 2010-01-21 Yang Jefferson Ys Reaction gas temperature and humidity regulating module for fuel cell stack
KR101256076B1 (ko) * 2006-01-06 2013-04-18 삼성에스디아이 주식회사 평판형 열교환기 및 이를 포함하는 연료 전지 시스템
JP2008128574A (ja) * 2006-11-21 2008-06-05 Toshiba Corp 熱交換器
EP2124008A1 (en) * 2006-12-19 2009-11-25 Taiyo Nippon Sanso Corporation Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336990A (ja) * 2002-05-15 2003-11-28 Matsushita Electric Ind Co Ltd 熱交換器
JP2004116619A (ja) * 2002-09-25 2004-04-15 Nippon Sanso Corp 燃料充てん装置および方法
JP2005282951A (ja) * 2004-03-30 2005-10-13 Institute Of Tsukuba Liaison Co Ltd 一体型積層構造熱交換器
JP2008164177A (ja) * 2006-12-27 2008-07-17 Taiyo Nippon Sanso Corp 熱交換器
JP2010121657A (ja) 2008-11-17 2010-06-03 Air Liquide Japan Ltd 高圧ガス充填用装置に用いる熱交換器、これを用いた高圧ガス充填用装置および高圧ガスの充填方法
JP2011080495A (ja) 2009-10-05 2011-04-21 National Institute Of Advanced Industrial Science & Technology 水素充填システムの水素用熱交換器
WO2014122890A1 (ja) * 2013-02-06 2014-08-14 株式会社神戸製鋼所 熱交換器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220088A1 (en) * 2016-03-17 2017-09-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Stacked type fluid heater and method of heating fluid with stacked type fluid heater
US10746473B2 (en) 2016-03-17 2020-08-18 Kobe Steel, Ltd. Stacked type fluid heater and method of heating fluid with stacked type fluid heater

Also Published As

Publication number Publication date
JP2015031420A (ja) 2015-02-16
KR20160025589A (ko) 2016-03-08
US20160131434A1 (en) 2016-05-12
EP3029406A1 (en) 2016-06-08
EP3029406A4 (en) 2017-04-12
EP3029406B1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
WO2015016076A1 (ja) 水素ガスの冷却方法及び水素ガスの冷却システム
JP6368396B2 (ja) 水素ガスの冷却方法及び水素ガスの冷却システム
US9791213B2 (en) Heat exchanger
EP3314188B1 (en) Three-fluid liquid to air membrane energy exchanger
US9372034B2 (en) Cool-storage type heat exchanger
JPWO2008023732A1 (ja) 高耐圧コンパクト熱交換器および水素吸蔵用容器、並びにそれらの製造方法
JP6118008B1 (ja) 熱交換器
US20170362073A1 (en) Cold-water generating tank, and water cooler equippped with same
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
US9638471B2 (en) Balanced heat exchanger systems and methods
WO2007122685A1 (ja) 熱交換器及び冷凍空調装置
JP2006242406A (ja) 蒸発器
EP3537088A1 (en) Low refrigerant charge microchannel heat exchanger
JP4890337B2 (ja) 蒸発器
CN113167547A (zh) 储热容器中的流体流动
CN105492855A (zh) 层叠型集管、换热器以及空调装置
EP2932162B1 (en) Low pressure chiller
EP2724107B1 (en) Shell and tube heat exchanger with micro-channels
WO2020179651A1 (ja) 車両用バッテリの冷却モジュール
US10696128B2 (en) Cold storage heat exchanger
EP3943862A1 (en) Heat exchanger
CN112344604A (zh) 均液装置和空调
US20130233525A1 (en) Multi-flow passage device
JP5141730B2 (ja) 熱交換器及び冷凍空調装置
CN106796090A (zh) 增强管内的湍流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890562

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014831952

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167002312

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE