WO2015015836A1 - 太陽光発電システム - Google Patents

太陽光発電システム Download PDF

Info

Publication number
WO2015015836A1
WO2015015836A1 PCT/JP2014/059199 JP2014059199W WO2015015836A1 WO 2015015836 A1 WO2015015836 A1 WO 2015015836A1 JP 2014059199 W JP2014059199 W JP 2014059199W WO 2015015836 A1 WO2015015836 A1 WO 2015015836A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation unit
ground
ground fault
solar cell
Prior art date
Application number
PCT/JP2014/059199
Other languages
English (en)
French (fr)
Inventor
吉富政宣
石井隆文
佐藤真也
福田靖
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015015836A1 publication Critical patent/WO2015015836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/17Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass by means of an auxiliary voltage injected into the installation to be protected
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • JP2013-158871 application number filed in Japan on July 31, 2013.
  • the contents described in JP2013-158871 are incorporated into the present application.
  • One embodiment of the present invention relates to a photovoltaic power generation system and a photovoltaic power generation method, for example, a photovoltaic power generation system and method in which a PID (Potential Induced Degradation) measure is taken.
  • a PID Pultential Induced Degradation
  • a photovoltaic power generation system that generates power using sunlight
  • a plurality of solar cell modules are connected in series and in parallel, and the generated power that has become a large voltage and a large current is a power conditioner or the like.
  • a power conditioner or the like are supplied to a commercial power system and the like.
  • a plurality of solar cell modules are connected in series to form a solar cell string.
  • a plurality of solar cell strings are connected in parallel to form a solar cell array.
  • FIGS. 13A and 13B are conceptual diagrams for explaining an example of the PID phenomenon.
  • 13A and 13B show one solar cell string 502 as an example of the solar cell array of the photovoltaic power generation system.
  • FIG. 13A the case where a p-type semiconductor is used for the bulk of a solar cell is shown as an example.
  • FIG. 13B shows an example in which an n-type semiconductor is used for the bulk of the solar cell.
  • the performance may be deteriorated at a positive potential rather than the ground potential.
  • FIG. 15 is a conceptual diagram for explaining an example of the ground fault countermeasure of the photovoltaic power generation system in which the PID countermeasure is taken.
  • FIG. 15 shows a case where the negative electrode side of the solar cell string 502 is grounded.
  • FIG. 15 shows a configuration in which an ammeter or / and a fuse are arranged at the ground location 530 for PID countermeasures for ground fault countermeasures.
  • a closed loop circuit is provided between the grounding location 530 for PID countermeasures and the ground fault location 600.
  • a large current flows to the outside.
  • FIG. 16 is a conceptual diagram for explaining an example of a blind spot for detecting a ground fault in a photovoltaic power generation system in which a PID countermeasure is taken.
  • a PID countermeasure for example, first, when the first ground fault occurs on the negative electrode side of the solar cell string 502, no potential difference occurs between the grounding location 530 for PID countermeasures and the ground fault location 602. Therefore, it is difficult to detect such a first ground fault with an ammeter or / and a fuse arranged at the grounding location 530 for PID countermeasures. Therefore, the solar power generation system continues normal operation.
  • one aspect of the present invention provides a photovoltaic power generation system that can overcome the above-described problems and eliminate a blind spot where ground fault detection is difficult while grounding for PID countermeasures is performed. Objective.
  • the ground fault detection apparatus includes: A power generation unit configured using one or more solar cell modules that generate power using sunlight, and a load device that consumes or converts the power generated by the power generation unit while being insulated from the power generation unit or the ground.
  • a ground fault detection device for detecting a ground fault in the power generation unit, A first grounding circuit connected to a given point of the power generation unit to make the ground potential of all points of the power generation unit greater than or less than zero; A second grounding circuit for setting the ground potential of the power generation unit to a potential different from that when the first grounding circuit is connected; A potential control unit that controls the ground potential of the power generation unit by switching between the first grounding circuit and the second grounding circuit and connecting to the power generation unit; The potential control unit measures a measurement value based on the current flowing through the first grounding circuit connected to the power generation unit and a measurement value based on the current flowing through the second grounding circuit connected to the power generation unit, and based on the measurement result A ground fault detection unit that detects a ground fault of the power generation unit, The potential control unit connects the first grounding circuit to the power generation unit during normal operation.
  • the ground fault detection apparatus includes: A power generation unit configured using one or more solar cell modules that generate power using sunlight, and a load device that consumes or converts the power generated by the power generation unit while being insulated from the power generation unit or the ground.
  • a ground fault detection device for detecting a ground fault in the power generation unit, One side is connected to the ground, and the other side is connected to the positive electrode or negative electrode of the power generation unit,
  • a ground fault detection unit that measures a measurement value based on a current flowing through the grounding circuit and detects a ground fault based on the measurement result; and
  • the ground circuit has a direct current power source and is characterized in that the ground potential at all locations of the power generation unit is positive or negative.
  • the photovoltaic power generation method of one embodiment of the present invention includes: A power generation unit configured using one or more solar cell modules that generate power using sunlight, and a load device that consumes or converts the power generated by the power generation unit while being insulated from the power generation unit or the ground.
  • a power generation unit configured using one or more solar cell modules that generate power using sunlight
  • a load device that consumes or converts the power generated by the power generation unit while being insulated from the power generation unit or the ground.
  • the measured value based on the current flowing through the second grounding circuit is measured in a state where the ground potential of the power generation unit is set to a potential different from that when the first grounding circuit is connected to the power generation unit , A ground fault of the power generation unit is detected based on a measurement value based on a current flowing through a first grounding circuit connected to the power generation unit and a measurement value based on a current flowing through a second grounding circuit connected to the power generation unit.
  • the photovoltaic power generation method includes: A power generation unit configured using one or more solar cell modules that generate power using sunlight, and a load device that consumes or converts the power generated by the power generation unit while being insulated from the power generation unit or the ground.
  • a power generation unit configured using one or more solar cell modules that generate power using sunlight
  • a load device that consumes or converts the power generated by the power generation unit while being insulated from the power generation unit or the ground.
  • FIG. 1 is a configuration diagram showing a configuration of a photovoltaic power generation system in Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the solar energy power generation system in Embodiment 2.
  • FIG. 10 is a configuration diagram showing a configuration of a photovoltaic power generation system in a third embodiment. It is a block diagram which shows the structure of the solar energy power generation system in Embodiment 4.
  • FIG. 10 is a configuration diagram showing a configuration of a photovoltaic power generation system in a fifth embodiment.
  • FIG. 10 is a configuration diagram showing a configuration of a solar power generation system in a sixth embodiment.
  • FIG. 10 is a configuration diagram illustrating a configuration of a solar power generation system in a seventh embodiment.
  • FIG. 10 is a configuration diagram showing a configuration of a solar power generation system in a seventh embodiment.
  • FIG. 20 is a diagram for describing a ground fault detection operation in a seventh embodiment.
  • FIG. 10 is a configuration diagram showing a configuration of a photovoltaic power generation system in an eighth embodiment.
  • FIG. 20 is a diagram for describing a ground fault detection operation in an eighth embodiment.
  • FIG. 10 is a configuration diagram illustrating a configuration of a solar power generation system in a ninth embodiment.
  • 209 is a diagram for describing a ground fault detection operation in a ninth embodiment.
  • FIG. It is a conceptual diagram for demonstrating an example of a PID phenomenon. It is a conceptual diagram for demonstrating an example of a PID phenomenon. It is a conceptual diagram for demonstrating an example of a PID phenomenon. It is a conceptual diagram for demonstrating an example of the countermeasure method to a PID phenomenon.
  • FIG. 1 is a configuration diagram showing the configuration of the photovoltaic power generation system according to the first embodiment.
  • a solar power generation system 100 is a system that generates power using solar energy.
  • the solar power generation system 100 includes a solar cell array 300 (an example of a power generation unit) and a load device 400.
  • a plurality of solar cell modules 10a to 10e electrically connected in series constitute a solar cell string 12 (an example of a power generation unit).
  • Each solar cell module 10 is a module that uses sunlight to convert solar energy into electrical energy and output it as DC power.
  • the solar cell array 300 includes a plurality of solar cell strings 12a to 12c arranged in parallel.
  • each solar cell string 12 is constituted by five solar cell modules 10a to 10e connected in series, but is not limited thereto.
  • the number in series may be two, three, four, or six or more. What is necessary is just to set suitably.
  • the solar cell array 300 is configured by three solar cell strings 12a to 12c connected in parallel, but is not limited thereto.
  • the number in parallel may be one, two, or four or more. What is necessary is just to set suitably.
  • the power generation unit in the first embodiment is configured using one or more solar cell modules that generate power using sunlight.
  • the positive electrode (+) and the negative electrode (-) of each solar cell string 12a-c are connected to the solar cell strings 12a-c from the system or connected to the system, respectively. Is connected.
  • one end of the switch device 102a is connected to the negative electrode wiring of the solar cell string 12a, and one end of the switch device 102b is connected to the positive electrode wiring.
  • a backflow prevention diode 20a is connected to the other side of both ends of the switch device 102b.
  • one end of the switch device 102c is connected to the negative electrode wiring of the solar cell string 12b, and one end of the switch device 102d is connected to the positive electrode wiring.
  • a backflow prevention diode 20b is connected to the other side of both ends of the switch device 102d.
  • one end of the switch device 102e is connected to the negative electrode wiring of the solar cell string 12c, and one end of the switch device 102f is connected to the positive electrode wiring.
  • a backflow prevention diode 20c is connected to the other side of both ends of the switch device 102f.
  • Each of the backflow prevention diodes 20a to 20c is arranged such that the current flowing from the corresponding solar cell string 12a to 12c flows in the forward direction.
  • the number of switch devices 102 that can be arranged on both poles of the solar cell string 12 is arranged.
  • Each switch device 102 is preferably a switch capable of automatically controlling the opening / closing operation electrically.
  • the system when a ground fault is detected in the solar cell, the system can be disconnected up to the string unit and stopped.
  • a mechanical switch may be used, it is more preferable to use, for example, a semiconductor switch.
  • a MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the backflow prevention diode 20 is disposed only on the positive electrode side of each solar cell string 12, but is not limited thereto.
  • the backflow prevention diode 20 may be disposed only on the negative electrode side of each solar cell string 12.
  • the backflow prevention diode 20 may be arrange
  • each backflow prevention diode 20 is arranged such that the direction in which the current supplied from the corresponding solar cell string 12 flows is the forward direction.
  • each of the solar cell strings 12a to 12c is connected in parallel on the other side of the switch device 102, one of which is connected to the negative electrode of the corresponding solar cell string 12, and one of the corresponding solar cell strings 12
  • the other side of the backflow prevention diode 20 connected to the positive electrode side is connected in parallel.
  • the plurality of solar cell strings 12a to 12c are connected in parallel to form the solar cell array 300.
  • a fuse can be used instead of the backflow prevention diode. In this case, although a reverse current cannot be prevented completely, a solar cell array capable of preventing an excessive reverse current can be configured.
  • the negative electrode wiring (negative electrode bus) of the solar cell array 300 is connected to a switch 402 such as a circuit breaker or disconnector, and the positive electrode wiring (positive electrode bus) is connected to a switch 404 such as a circuit breaker or disconnector.
  • the switches 402 and 404 are connected to the load device 400, respectively.
  • the positive electrode (+) side of the solar cell array 300 is connected to the load device 400 via the switch 404
  • the negative electrode ( ⁇ ) side is connected to the load device 400 via the switch 402.
  • the load device 400 has an insulating transformer inside or on the output side, and prevents the solar cell array from being electrically connected to the ground. Examples of the load device 400 include a power conditioner.
  • the DC power supplied from the solar cell array 300 to the load device 400 is converted into, for example, three-phase AC power in the load device 400 and supplied to, for example, a commercial power system.
  • the load device 400 consumes or converts the power generated by the solar cell array 300 while being insulated from the solar cell array 300 (power generation unit) or the ground.
  • the ground fault detection apparatus 36 which detects the ground fault in the solar cell array 300 (power generation part) is further provided.
  • the ground fault detection device 36 includes a changeover switch 80 (an example of a potential control unit), a ground fault detection unit (a resistor 84 and a voltage monitoring unit 86), and a ground line 40.
  • the first terminal on one side of the changeover switch 80 branches off from the negative electrode wiring of the solar cell array 300 (“negative electrode bus” connecting the negative electrode of the solar cell array 300 and the negative electrode of the load device 400). Wiring is connected.
  • the second terminal on one side of the changeover switch 80 is connected to a wiring branched from the positive electrode wiring of the solar cell array 300 (“positive electrode bus” connecting the positive electrode of the solar cell array 300 and the positive electrode of the load device 400).
  • the changeover switch 80 is arranged to be able to switch between the negative electrode wiring (negative electrode bus) of the solar cell array 300 and the positive electrode wiring (positive electrode bus) of the solar cell array 300.
  • One end of the resistor 84 is connected to the other terminal of the changeover switch 80.
  • the other end of the resistor 84 is connected to the ground line 40. Then, the ground line 40 is grounded at the ground point 41.
  • the solar cell array 300 when the changeover switch 80 is connected to the negative electrode wiring side (first terminal) of the solar cell array 300, the solar cell array 300 includes a negative electrode side connection point 50, a changeover switch 80, a resistor 84, It will be in the state connected to the earthing electric circuit (1st earthing electric circuit) which consists of the earthing
  • the changeover switch 80 when the changeover switch 80 is connected to the positive electrode wiring side (second terminal) of the solar cell array 300, the solar cell array 300 has the positive electrode side connection point 51, the changeover switch 80, the resistor 84, and the ground line. 40 is connected to a grounding circuit (second grounding circuit) consisting of 40.
  • the changeover switch 80 switches and connects the two types of grounding electric circuits to the solar cell array 300.
  • the first grounding electric circuit is configured to be connectable to one pole of the power generation unit
  • the second grounding electric circuit is configured to be connectable to the other pole of the power generation unit.
  • the voltage monitoring unit 86 monitors the potential difference (voltage) at both ends of the resistor 84.
  • a voltmeter electrically connected in parallel with the resistor 84 can be used.
  • FIG. 1 a three-way switch is illustrated as the changeover switch 80, but the switch is not limited to this, and any switch can be used as long as it can switch between a state where the negative electrode bus is grounded and a state where the positive electrode bus is grounded.
  • a circuit configuration may be used.
  • the changeover switch 80 uses a switch that can automatically electrically control the opening / closing operation.
  • a mechanical switch may be used, it is more preferable to use, for example, a semiconductor switch.
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method.
  • the solar cell array 300 and the load device 400 are connected, and the ground potential at all locations of the solar cell array 300 is controlled to zero or more or less than zero using the ground wire 40.
  • Each switch device 102 and switches 402 and 404 that are driven by control from a control system (not shown) are both ON (closed), and the changeover switch 80 is connected to the negative electrode wiring (negative electrode bus) side of the solar cell array 300. Normal operation is performed in the connected state.
  • the first grounding circuit is connected to the solar cell array 300 as a countermeasure against PID (Potential Induced Degradation) (that is, the negative electrode of the solar cell array 300 is grounded via the grounding wire 40 and the resistor 84).
  • PID Physical Induced Degradation
  • FIG. 1 a solar cell using a p-type semiconductor for the bulk of the solar cell or a transparent conductive film is shown as an example. Therefore, the negative electrode wiring is grounded.
  • the positive electrode wiring positive electrode bus
  • the negative electrode of the photovoltaic power generation system 100 is grounded via the resistor 84.
  • the changeover switch 80 uses the ground wire 40 to connect the ground potential at a predetermined point of the solar cell array 300 to the positive electrode (the n-type semiconductor is placed in the bulk of the solar cell). When used, it is controlled to the potential of the negative electrode). Thereby, the negative electrode of each solar cell string 12a-c can be controlled to the same potential as the ground, and the PID phenomenon can be avoided.
  • the first grounding electric circuit is connected to a given location of the power generation unit, and makes the ground potential at all locations of the power generation unit to be greater than or equal to zero.
  • the voltage monitoring unit 86 detects a ground fault of the solar cell array 300 during normal operation of the solar power generation system 100. Specifically, voltage monitoring is performed in a state in which the negative electrode wiring (negative electrode bus) side of the solar cell array 300 is connected to the resistor 84 by the changeover switch 80 (that is, the first grounding circuit is connected to the solar cell array 300).
  • the unit 86 measures the voltage V ⁇ b> 1 across the resistor 84. That is, the voltage monitoring unit 86 measures the voltage V1 across the resistor 84 as a measurement value based on the current flowing through the first grounding circuit connected to the solar cell array 300. When the measured voltage V1 exceeds a preset threshold value, it is determined that there is a ground fault by a control system (not shown).
  • the solar power generation system 100 can be stopped urgently.
  • a ground fault occurs in the middle of any solar cell string 12 or on the positive electrode side, a closed circuit is formed via the ground fault location and the first grounding circuit, and the sun existing between the ground fault location and the negative electrode Since a voltage is generated in the resistor 84 when a current flows through the ground circuit 40 due to the electromotive force of the battery, a ground fault can be determined based on the voltage V1.
  • a ground fault occurs on the negative electrode side of any of the solar battery strings 12
  • there is no electromotive force in the closed circuit formed via the grounding location and the first grounding circuit Since no voltage is generated in the resistor 84, it is difficult to detect a ground fault. Therefore, the blind spot of the ground fault detection that normal operation is continued as it is is generated.
  • the second grounding electrical circuit is connected to the solar cell array 300 by the changeover switch 80 and the ground fault detection device 36 performs ground fault detection periodically.
  • the second grounding circuit sets the ground potential of the power generation unit to a potential different from that when the first grounding circuit is connected. For example, the ground fault is detected every time the photovoltaic power generation system 100 is started or periodically during operation. For example, ground fault detection is performed at intervals of 1 to 2 hours.
  • the voltage monitoring unit 86 measures the voltage V ⁇ b> 2 applied across the resistor 84. That is, the voltage monitoring unit 86 measures the voltage V2 across the resistor 84 as a measurement value based on the current flowing through the second grounding circuit connected to the solar cell array 300.
  • the solar power generation system 100 can be stopped urgently.
  • a ground fault occurs in the middle of any one of the solar cell strings 12 or on the negative electrode side, a potential difference is generated between the positive electrode wiring (positive electrode bus) of the solar cell array 300 and the ground, so that the ground fault can be determined based on the voltage V2. That is, by switching the changeover switch 80, it can be compensated that the negative electrode is a blind spot for ground fault detection.
  • the changeover switch 80 (potential control unit) controls the ground potential of the power generation unit by switching between the first grounding circuit and the second grounding circuit and connecting to the power generation unit.
  • the ground fault detection device 36 detects a ground fault of the solar cell array 300 in each of two or more different ground potential states controlled by the changeover switch 80 (potential control unit).
  • the changeover switch 80 (potential control unit) controls the ground potential of the power generation unit by switching between the first grounding circuit and the second grounding circuit and connecting to the power generation unit.
  • the ground fault detection device 36 detects a ground fault of the solar cell array 300 in each of two or more different ground potential states controlled by the changeover switch 80 (potential control unit).
  • the changeover switch 80 in a state where the negative electrode wiring (negative electrode bus) side (negative electrode side connection point 50) side of the solar cell array 300 is connected to the resistor 84 by the changeover switch 80 (a state where the solar cell array 300 is connected to the first grounding electric circuit).
  • the ground potential of the positive electrode of solar cell array 300 (the positive electrode of each solar cell string 12a to 12c) is controlled to a positive potential.
  • the ground potential in the middle of each solar cell string 12a-c is also positive.
  • the changeover switch 80 (an example of a potential control unit) can intentionally control the ground potential of the solar cell array 300.
  • ground fault detection device As described above, in the example of the ground fault detection device shown in FIG. 1, it is possible to detect such a ground fault even if a ground fault (insulation failure or the like) occurs in any part of the solar cell array 300. Therefore, ground fault detection becomes possible at the stage when the first ground fault accident (first ground fault accident) occurs, and the blind spot location for ground fault detection can be eliminated.
  • the same grounding wire 40 is used, on the one hand, for PID countermeasures, and on the other hand, for ground fault detection excluding blind spots.
  • the changeover switch 80 potential control unit
  • the two different values controlled by the changeover switch 80 potential control unit.
  • One of the above ground potential states is set.
  • the insulation resistance is calculated using the resistance value R of the resistor 84 and the measured voltages V1, Va, V0. If the obtained insulation resistance is less than a preset threshold value, it is determined that there is a ground fault. Is also suitable.
  • the voltage across the resistor 84 is measured as the measurement value based on the current flowing through the first grounding circuit and the measurement value based on the current flowing through the second grounding circuit has been described.
  • the present invention is not limited to this. It is not necessary to measure the current in each state of the state in which the first grounding electric circuit is connected to the solar cell array 300 and the state in which the second grounding electric circuit is connected to the solar cell array 300, and compare it with the threshold value. It is good also as a structure which performs a ground fault determination.
  • the ground fault detection may be performed in units of 12 solar cell strings.
  • the two switch devices 102 connected to the solar cell string 12 to be detected are turned on (closed), and then the two switch devices 102 of the remaining solar cell strings 12 are turned off (open).
  • the above-described ground fault detection may be performed. Thereby, ground fault detection can be performed for the solar cell string 12 to be detected while only the solar cell string 12 to be detected is normally operated.
  • FIG. 2 is a configuration diagram showing the configuration of the photovoltaic power generation system according to the second embodiment.
  • a DC power supply 91 is further arranged in the configuration of FIG. 1 as one of the internal configurations of the ground fault detection device 36.
  • the ground fault detection device 36 includes a changeover switch 80 (an example of a potential control unit), a ground fault detection unit (a resistor 84 and a voltage monitoring unit 86), a DC power supply 91, and a ground line 40.
  • One end of the resistor 84 is connected to the changeover switch 80 and the positive electrode of the DC power supply 91, the other is connected to the ground line 40, and the ground line 40 is grounded at the ground point 41.
  • the solar cell array 300 is connected to the negative electrode side connection point. 50, a changeover switch 80 (first terminal 80 a), a resistor 84, and a grounding circuit (first grounding circuit) composed of the ground wire 40.
  • the changeover switch 80 is connected to the second terminal 80b (a state in which the second terminal 80b and the third terminal 80c are connected)
  • the solar cell array 300 is switched to the negative-side connection point 50.
  • the switch 80 (second terminal 80 b), the DC power supply 91, the resistor 84, and the ground line 40 are connected to a ground circuit (second ground circuit).
  • the changeover switch 80 switches and connects the two types of grounding electric circuits to the solar cell array 300.
  • the second grounding electric circuit has the DC power supply 91 and is configured to apply a DC voltage to the power generation unit while being connected to the solar cell array 300 (power generation unit).
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method.
  • the solar cell array 300 and the load device 400 are connected, and the ground potential at all locations of the solar cell array 300 is controlled to zero or more or less than zero using the ground wire 40.
  • Each switch device 102 driven by control from a control system (not shown) and the switches 402 and 404 are both ON (closed), and the changeover switch 80 is connected to the negative electrode wiring (negative electrode side connection point 50) of the solar cell array 300.
  • the resistor 84 (a state in which the changeover switch 80 is connected to the first terminal 80a and the solar cell array 300 is connected to the first ground circuit).
  • the first grounding circuit is connected to the solar cell array 300 as a countermeasure against PID (that is, the negative electrode of the solar cell array 300 is grounded at the grounding point 41 via the grounding wire 40 and the resistor 84).
  • PID that is, the negative electrode of the solar cell array 300 is grounded at the grounding point 41 via the grounding wire 40 and the resistor 84.
  • FIG. 2 a solar cell using a p-type semiconductor for the bulk of the solar cell or a transparent conductive film is shown as an example. Therefore, the negative electrode wiring is grounded.
  • the positive electrode wiring positive electrode bus
  • the negative electrode of the photovoltaic power generation system 100 is grounded via the resistor 84.
  • the changeover switch 80 uses the ground wire 40 to connect the negative electrode of the solar cell array 300 (positive electrode when an n-type semiconductor is used for the bulk of the solar cell). Is controlled to zero. Thereby, the ground potential of each of the solar cell strings 12a to 12c can be controlled to zero or more, and the PID phenomenon can be avoided.
  • the second grounding circuit is connected to the negative electrode wiring (negative electrode bus) side of the solar cell array 300 by the changeover switch 80 periodically, and the ground fault detection device 36 detects the ground fault.
  • the ground fault is detected every time the photovoltaic power generation system 100 is started or periodically during operation.
  • ground fault detection is performed at intervals of 1 to 2 hours.
  • the ground fault is detected in units of the solar cell array 300 in a state where the connection between the solar cell array 300 and the load device 400 is disconnected by the switches 402 and 404 driven by control from a control system (not shown).
  • a control system not shown
  • the DC power source 91 is, for example, solar It is preferable to apply a voltage so that the ground potential of the positive electrodes of the battery array 300 is almost zero.
  • the detection sensitivities in both the state where the DC power supply 90 is inserted between the changeover switch 80 and the resistor 84 and the state where the DC power source 90 is not inserted are combined, uniform ground fault detection is performed everywhere in the solar cell array 300. Sensitivity can be obtained.
  • the voltage monitoring unit 86 measures the voltage V ⁇ b> 2 applied across the resistor 84.
  • the voltage monitoring unit 86 measures the voltage V2 across the resistor 84 as a measurement value based on the current flowing through the second grounding circuit connected to the solar cell array 300.
  • the measured voltage V2 exceeds a preset threshold value, it is determined that there is a ground fault by a control system (not shown). And the solar power generation system 100 can be stopped urgently.
  • a ground fault such as defective insulation
  • a potential difference occurs between both ends of the resistor 84, so that the ground fault can be detected. It becomes.
  • the ground fault detection device 36 detects the ground fault of the solar cell array 300 in each of two or more different ground potential states controlled by the changeover switch 80 (potential control unit). To do.
  • the negative electrode wiring (negative electrode bus) side of the solar cell array 300 is connected to the resistor 84 by the changeover switch 80, the potential of the negative electrode of the solar cell array 300 is grounded by being connected to the ground line 40.
  • Potential Potential. Therefore, the ground potential of the positive electrode of solar cell array 300 (the positive electrode of each solar cell string 12a to 12c) is controlled to a positive potential.
  • the ground potential in the middle of each solar cell string 12a-c is also positive.
  • the changeover switch 80 (an example of a potential control unit) can intentionally control the ground potential of the solar cell array 300.
  • ground fault detection device 300 such a ground fault can be detected even when a ground fault (insulation failure or the like) occurs in any part of the solar cell array 300. Therefore, ground fault detection becomes possible at the stage when the first ground fault accident (first ground fault accident) occurs, and the blind spot location for ground fault detection can be eliminated.
  • the same ground wire 40 is used, on the one hand, for PID countermeasures, and on the other hand, for ground fault detection that excludes blind spots.
  • the changeover switch 80 potential control unit
  • the two different values controlled by the changeover switch 80 potential control unit. The point that one of the above ground potential states is set is the same as in FIG.
  • the ground fault determination is performed simply by comparing the voltage of the resistor 84 with the threshold value, but the present invention is not limited to this.
  • the voltage monitoring unit 86 measures the voltage V1 applied to both ends of the resistor 84.
  • the voltage monitoring unit 86 measures the voltage Vb applied to both ends of the resistor 84.
  • the insulation resistance is calculated using the voltage Vdc of the DC power supply 91, the resistance value R of the resistor 84, and the measured voltages V1 and Vb, and if the obtained insulation resistance is less than a preset threshold value, It is also preferable to determine that there is a fault.
  • FIG. 3 is a configuration diagram illustrating the configuration of the photovoltaic power generation system according to the third embodiment. 3, in photovoltaic power generation system 100 according to Embodiment 3, an AC power supply 87 is further arranged in the configuration of FIG. 1 as one of the internal configurations of ground fault detection device 36.
  • the ground fault detection device 36 includes a changeover switch 80 (an example of a potential control unit), a ground fault detection unit (a resistor 84 and a voltage monitoring unit 86), an AC power supply 87, and a ground line 40.
  • One of both ends of the resistor 84 is connected to the changeover switch 80 and the AC power supply 87, the other is connected to the ground line 40, and the ground line 40 is grounded at the ground point 41.
  • the voltage monitoring unit 86 monitors the voltage at both ends of the resistor 84.
  • One of the changeover switches 80 is connected to a wiring branched from the negative electrode wiring (negative electrode bus) of the solar cell array 300, and the other is connected so that the resistor 84 and the AC power supply 87 can be switched.
  • Other configurations are the same as those in FIG.
  • the contents other than those described in particular are the same as those in the first embodiment. That is, in FIG. 3, when the changeover switch 80 is connected to the first terminal 80a (a state where the first terminal 80a and the third terminal 80c are connected), the solar cell array 300 is connected to the negative electrode side connection point.
  • the changeover switch 80 switches and connects the two types of grounding electric circuits to the solar cell array 300.
  • the second grounding electric circuit has the AC power supply 87 and is configured to apply an AC voltage to the power generation unit while being connected to the solar cell array 300 (power generation unit).
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method.
  • solar power generation is performed with solar cell array 300 and load device 400 connected, and ground potential is controlled to be zero or more or zero or less at all locations of solar cell array 300 using ground wire 40.
  • Perform normal operation Specifically, it operates as follows.
  • Each switch device 102 driven by control from a control system (not shown) and the switches 402 and 404 are all in an ON state (closed), and the changeover switch 80 is connected to the negative electrode wiring (negative electrode bus) and the resistance of the solar cell array 300.
  • the normal operation is performed in a state where the terminal 84 is connected (a state where the resistor 84 is turned on).
  • the first grounding circuit is connected to the solar cell array 300 as a countermeasure against PID (that is, the negative electrode of the solar cell array 300 is grounded at the grounding point 41 via the grounding wire 40 and the resistor 84).
  • the negative electrode wiring is grounded.
  • the positive electrode wiring positive electrode bus
  • the negative electrode of the photovoltaic power generation system 100 is grounded via the resistor 84.
  • the voltage monitoring unit 86 detects a ground fault of the solar cell array 300 during normal operation of the solar power generation system 100. Specifically, in a state where the negative electrode wiring (negative electrode bus) side of the solar cell array 300 is connected to the resistor 84 by the changeover switch 80 (that is, connected to the first ground circuit), the voltage monitoring unit 86 is The voltage V1 applied across the resistor 84 is measured. That is, the voltage monitoring unit 86 measures the voltage V1 across the resistor 84 as a measurement value based on the current flowing through the first grounding circuit connected to the solar cell array 300. When the measured voltage V1 exceeds a preset threshold value, it is determined that there is a ground fault by a control system (not shown). And the solar power generation system 100 can be stopped urgently.
  • the voltage monitoring unit 86 measures the voltage V2 in phase with the AC power supply 87 applied to both ends of the resistor 84 in synchronization with the phase of the AC power supply 87. That is, the voltage monitoring unit 86 measures the voltage V2 across the resistor 84 as a measurement value based on the current flowing through the second grounding circuit connected to the solar cell array 300. Then, when the voltage V2 exceeds a preset threshold for the phase, a control system (not shown) determines that there is a ground fault. And the solar power generation system 100 can be stopped urgently. In the example of the ground fault detection device shown in FIG. 3, even when a ground fault (insulation failure or the like) occurs in any part of the solar cell array 300, a potential difference occurs between both ends of the resistor 84, so that the ground fault can be detected. It becomes.
  • the changeover switch 80 can intentionally control the ground potential of the solar cell array 300.
  • ground fault detection device As described above, in the example of the ground fault detection device shown in FIG. 3, it is possible to detect such a ground fault even when a ground fault (such as an insulation failure) occurs in any part of the solar cell array 300. Therefore, ground fault detection becomes possible at the stage when the first ground fault accident (first ground fault accident) occurs, and the blind spot location for ground fault detection can be eliminated.
  • a ground fault such as an insulation failure
  • the same ground wire 40 is used, on the one hand, for PID countermeasures, and on the other hand, for ground fault detection that excludes blind spots.
  • the changeover switch 80 (potential control unit) controls the AC voltage not to be applied to the negative electrode or the positive electrode of the solar cell array 300, and the ground potential of the negative electrode of the solar cell array 300 is ground (ground). 1 is the same as FIG. 1 in that it is set to one of two or more different ground potential states controlled by the changeover switch 80 (potential control unit).
  • the ground fault determination is performed simply by comparing the voltage of the resistor 84 with the threshold value, but the present invention is not limited to this.
  • the voltage monitoring unit 86 measures the voltage V1 applied to both ends of the resistor 84.
  • the voltage monitoring unit 86 measures the voltage Vc applied across the resistor 84.
  • the insulation resistance is calculated using the voltage Vac of the AC power supply 87, the resistance value R of the resistor 84, and the measured voltages V1 and Vc, and if the obtained insulation resistance is less than a preset threshold value, It is also preferable to determine that there is a fault.
  • FIG. 4 is a configuration diagram showing the configuration of the photovoltaic power generation system according to the fourth embodiment. 4, in the photovoltaic power generation system 100 according to the fourth embodiment, as an internal configuration of the ground fault detection device 36, a switch 81 and two resistors 83a and 83b are arranged instead of the changeover switch 80 of FIG.
  • the ground fault detection device 36 includes a switch 81 (an example of a potential control unit), resistors 83a and 83b, a ground fault detection unit (the resistor 84 and the voltage monitoring unit 86), and the ground line 40.
  • One end of the resistor 84 is connected to the switch 81 and the resistor 83a, the other end is connected to the ground line 40, and the ground line 40 is grounded at the ground point 41. Further, the voltage monitoring unit 86 monitors the voltage at both ends of the resistor 84.
  • the other of both ends of the switch 81 one of which is connected to the resistor 84, is connected to one of both ends of the resistor 83b.
  • the other side of the resistor 83a is connected to a wiring branched from the negative electrode wiring (negative electrode bus) of the solar cell array 300.
  • the other of the resistors 83b is connected to a wiring branched from the positive electrode wiring (positive electrode bus) of the solar cell array 300.
  • resistors 83a and 83b for example, resistors having the same resistance value may be used. In other words, when the switch 81 is ON (closed), the midpoint obtained by dividing the voltage (potential difference) between the two electrodes of the solar cell array 300 by the resistors 83a and 83b is connected to the ground via the resistor 84.
  • the switch 81 uses a switch that can automatically control the opening / closing operation electrically.
  • a mechanical switch may be used, it is more preferable to use, for example, a semiconductor switch.
  • a MOSFET metal-oxide-semiconductor
  • Other configurations are the same as those in FIG.
  • the contents other than those described in particular are the same as those in the first embodiment. That is, in FIG. 4, when the switch 81 is OFF (open), the solar cell array 300 has a ground circuit (first ground circuit) composed of the negative electrode side connection point 50, the resistor 83 a, the resistor 84, and the ground wire 40. ) Is connected.
  • the solar cell array 300 when the switch 81 is ON (closed), the solar cell array 300 includes the resistor 84 and the ground wire 40 at the midpoint obtained by dividing the negative electrode side connection point 50 and the positive electrode side connection point 51 by the resistor 83a and the resistor 83b. It will be in the state connected to the earthing electric circuit (2nd earthing electric circuit) connected to the earth through this.
  • the switch 81 switches and connects the two types of grounding circuit to the solar cell array 300.
  • the first grounding electric circuit is configured to be connectable to one electrode of the solar cell array 300 (power generation unit) and includes the first resistor 83a.
  • the second grounding electric circuit is configured to be an electric circuit that is grounded at a midpoint obtained by dividing the positive electrode and the negative electrode of the solar cell array 300 (power generation unit) by a given resistance (resistor 83a and resistor 83b). Yes.
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method. During normal operation, solar power generation is performed with solar cell array 300 and load device 400 connected, and ground potential at all locations of solar cell array 300 is controlled to be greater than or equal to zero using ground line 40. Perform normal operation. Specifically, it operates as follows. Each switch device 102 driven by control from a control system (not shown) and the switches 402 and 404 are all in an ON (closed) state, and the switch 81 is in an OFF (open) state (connected to the first ground circuit).
  • the negative electrode of the photovoltaic power generation system 100 is grounded via the resistor 84.
  • the changeover switch 80 uses the ground wire 40 to set the ground potential at a predetermined point of the solar cell array 300 to the positive electrode (the n-type semiconductor is placed in the solar cell bulk). When used, it is controlled to the potential of the negative electrode). Thereby, the negative electrode of each solar cell string 12a-c can be controlled to the ground potential, and the PID phenomenon can be avoided.
  • the voltage monitoring unit 86 detects a ground fault of the solar cell array 300 during normal operation of the solar power generation system 100. Specifically, the voltage monitoring unit 86 measures the voltage V1 applied to both ends of the resistor 84 in a state where the negative electrode wiring (negative electrode bus) side of the solar cell array 300 is connected to the series resistors 84 and 83a by the changeover switch 80. To do. That is, the voltage monitoring unit 86 measures the voltage V1 across the resistor 84 as a measurement value based on the current flowing through the first grounding circuit connected to the solar cell array 300. When the measured voltage V1 exceeds a preset threshold value, it is determined that there is a ground fault by a control system (not shown). And the solar power generation system 100 can be stopped urgently.
  • a ground fault When a ground fault occurs in the middle of any solar cell string 12 or on the positive electrode side, a closed circuit is formed via the ground fault location and the first grounding circuit, and the sun existing between the ground fault location and the negative electrode Since a voltage is generated in the resistor 84 when a current flows through the ground circuit 40 due to the electromotive force of the battery, a ground fault can be determined based on the voltage V1. However, in such a configuration, when a ground fault occurs on the negative electrode side of one of the solar battery strings 12, no electromotive force exists in the closed circuit formed via the ground fault location and the first grounding circuit. Since no voltage is generated in the resistor 84, ground fault detection is difficult. Therefore, the blind spot of the ground fault detection that normal operation is continued as it is is generated.
  • the ground fault detector 36 is further connected to the solar cell array 300 by periodically switching the switch 81 from OFF (open) to ON (closed) to connect the second grounding electric circuit to the solar cell array 300.
  • the ground fault is detected at.
  • the ground fault is detected every time the photovoltaic power generation system 100 is started or periodically during operation.
  • ground fault detection is performed at intervals of 1 to 2 hours.
  • the ground fault is detected in units of the solar cell array 300 in a state where the connection between the solar cell array 300 and the load device 400 is disconnected by the switches 402 and 404 driven by control from a control system (not shown). May be performed. Thereby, the influence from the load apparatus 400 can be excluded.
  • the ground fault can be determined during normal operation by the voltage V1 described above. Therefore, it becomes possible to detect a ground fault at the stage when the first ground fault accident (first ground fault accident) occurs, and it is possible to eliminate the blind spot of ground fault detection by the current monitoring unit 42 during normal operation.
  • the ground fault detection device 36 detects the ground fault of the solar cell array 300 in each of two or more different ground potential states controlled by the switch 81 (potential control unit). .
  • the switch 81 when the switch 81 is in the OFF state, the potential of the negative electrode of the solar cell array 300 becomes the potential of the ground (ground) by being connected to the ground line 40. Therefore, the ground potential of the positive electrode of solar cell array 300 (the positive electrode of each solar cell string 12a to 12c) is controlled to a positive potential.
  • the ground potential in the middle of each solar cell string 12a-c is also positive.
  • the changeover switch 80 (an example of a potential control unit) can intentionally control the ground potential of the solar cell array 300.
  • ground fault detection device As described above, in the example of the ground fault detection device shown in FIG. 4, it is possible to detect such a ground fault even when a ground fault accident (insulation failure or the like) occurs in any part of the solar cell array 300. Therefore, ground fault detection becomes possible at the stage when the first ground fault accident (first ground fault accident) occurs, and the blind spot location for ground fault detection can be eliminated.
  • a ground fault accident insulation failure or the like
  • the same ground wire 40 is used, on the one hand, for PID countermeasures, and on the other hand, for ground fault detection that excludes blind spots.
  • the ground potential of the negative electrode of the solar cell array 300 becomes the ground potential by the switch 81 (potential control unit)
  • two or more different voltages controlled by the switch 81 are used.
  • the point that one of the ground potential states is set is the same as in FIG.
  • FIG. 5 is a configuration diagram showing the configuration of the photovoltaic power generation system in the fifth embodiment.
  • a DC power source 92 is arranged instead of the changeover switch 80 in FIG.
  • the ground fault detection device 36 includes a DC power source 92, a ground fault detection unit (the resistor 84 and the voltage monitoring unit 86), and the ground line 40.
  • One end of the resistor 84 is connected to the negative electrode of the DC power supply 92, and is connected to a wiring branched from the negative electrode wiring (negative electrode bus) of the solar cell array 300 via the DC power supply 92.
  • the other end of the resistor 84 is grounded.
  • the DC power supply 92 applies a voltage so that the ground potential at all locations of the solar cell array 300 is positive.
  • Other configurations are the same as those in FIG.
  • the contents other than those described in particular are the same as those in the first embodiment.
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method. During normal operation, solar power generation is performed with solar cell array 300 and load device 400 connected, and ground potential at all locations of solar cell array 300 is controlled to be positive or negative using ground wire 40. To drive. Specifically, it operates as follows. Each switch device 102 driven by control from a control system (not shown) and the switches 402 and 404 are both in an ON (closed) state and are normally operated. That is, during normal operation, as a countermeasure against PID, the negative electrode of the DC power source 92 is grounded at the grounding point 41 by the ground wire 40 via at least a part (resistor 84) of the ground fault detection unit, and the positive electrode of the DC power source 92 is connected.
  • the grounding circuit is configured such that one side is connected to the ground and the other side is connectable to the positive electrode or the negative electrode of the solar cell array 300 (power generation unit).
  • the grounding circuit has a DC power source 92 and makes the ground potential at all locations of the solar cell array 300 (power generation unit) positive or negative.
  • the voltage monitoring unit 86 detects a ground fault of the solar cell array 300 during normal operation of the solar power generation system 100. Specifically, the voltage monitoring unit 86 measures the voltage V ⁇ b> 1 across the resistor 84 in a state in which the lowest ground potential of the solar cell array 300 is controlled to be a positive potential by the DC power source 92. That is, the voltage monitoring unit 86 measures the voltage V1 across the resistor 84 as a measurement value based on the current flowing through the grounding circuit (the grounding circuit having the DC power supply 92, the resistor 84, and the grounding line 40) connected to the solar cell array 300. To do. When the measured voltage V1 exceeds a preset threshold value, it is determined that there is a ground fault by a control system (not shown).
  • the solar power generation system 100 can be stopped urgently.
  • a ground fault occurs in the middle of one of the solar battery strings 12 or on the positive electrode side
  • a closed circuit is formed through the ground fault location and the grounding electrical circuit 40. Since the solar cell module existing between the ground fault location and the negative electrode and the DC power source 92 become an electromotive force and a current flows through the grounding circuit 40, a potential difference is generated between both ends of the resistor 84, so that the ground fault can be detected. Become.
  • the DC power supply 92 (an example of a potential control unit) can intentionally control the ground potential of the solar cell array 300.
  • the same ground wire 40 is used, on the one hand, for PID countermeasures, and on the other hand, for ground fault detection that excludes blind spots.
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method.
  • the solar cell array 300 and the load device 400 are connected, and the time average value of the ground potential at all points of the solar cell array 300 is controlled to a potential of zero or more or zero or less using the ground line 40.
  • drive solar power Specifically, it operates as follows.
  • Each switch device 102 driven by control from a control system (not shown) and the switches 402 and 404 are both in an ON (closed) state and are normally operated.
  • one phase of the AC power supply 93 is grounded at the grounding point 41 by the grounding wire 40 via at least a part (resistor 84) of the ground fault detection unit, as a countermeasure against PID.
  • the pole is connected to the negative electrode of the solar cell array 300.
  • the AC power supply 93 is controlled so that the time average value of the ground potential becomes zero even at the negative electrode (minimum potential) of the photovoltaic power generation system 100.
  • the AC power supply 93 potential control unit
  • uses the ground wire 40 uses the ground wire 40 to set the ground potential at a predetermined point of the solar cell array 300 to 0 or positive potential (n in the bulk of the solar cell). When a type semiconductor is used, control is performed to 0 or a negative potential). Thereby, the PID phenomenon can be avoided.
  • a solar cell using a p-type semiconductor for the bulk of the solar cell or a transparent conductive film is shown as an example. Therefore, the reverse phase of the AC power supply 93 whose one phase is grounded via the ground line 40 and the resistor 84 is grounded to the negative electrode wiring of the solar cell array 300.
  • the reverse phase of the AC power supply 93 whose positive electrode side is grounded via the ground wire 40 and the resistor 84 is grounded to the positive electrode wiring (positive electrode bus) of the solar cell array 300. Needless to say.
  • the grounding circuit is configured such that one side is connected to the ground and the other side is connectable to the positive electrode or the negative electrode of the solar cell array 300 (power generation unit).
  • the grounding circuit has an AC power supply 93, and the ground potential of all locations of the solar cell array 300 (power generation unit) is averaged over time to zero or less.
  • the voltage monitoring unit 86 detects a ground fault of the solar cell array 300 during normal operation of the solar power generation system 100. Specifically, the voltage monitoring unit 86 measures the voltage V ⁇ b> 1 applied across the resistor 84 in a state where the ground potential of the lowest potential of the solar cell array 300 is fluctuated around 0 by the AC power supply 93. To do. That is, the voltage monitoring unit 86 measures the voltage V1 across the resistor 84 as a measured value based on the current flowing through the grounding circuit (the AC power supply 93, the resistor 84, and the grounding circuit 40 having the grounding wire 40) connected to the solar cell array 300. To do.
  • the ground fault detection unit measures the measurement value based on the current flowing through the grounding circuit, and detects the ground fault based on the measurement result. And the solar power generation system 100 can be stopped urgently.
  • the ground fault detection device shown in FIG. 1 In the example of the ground fault detection device shown in FIG.
  • the AC power supply 93 (an example of a potential control unit) can intentionally control the ground potential of the solar cell array 300.
  • the same grounding wire 40 is used, on the one hand, for PID countermeasures, and on the other hand, for ground fault detection excluding blind spots.
  • FIG. 7 is a configuration diagram showing the configuration of the photovoltaic power generation system according to the seventh embodiment.
  • the negative electrode wiring of each solar cell string 12a-c and the corresponding switch device 102a, c, e the negative electrode of the corresponding solar cell string 12a-c is disconnected from the system or connected to the system.
  • Switch devices 103a, c, e are arranged.
  • the switch device for disconnecting the positive electrode of the corresponding solar cell string 12a-c from the system or connecting it to the system 103b, d, and f are arranged.
  • the switch device 103 uses a switch that can automatically electrically control the opening / closing operation. Although a mechanical switch may be used, it is more preferable to use, for example, a semiconductor switch. For example, it is preferable to use a MOSFET.
  • the wiring branched from the negative wiring connecting the negative electrode of the solar cell string 12a and the switch device 103a is connected to the negative electrode side of the ground fault detection device 36 via the backflow prevention diode 46a and the switch device 33a.
  • the wiring branched from the positive electrode wiring which connects the positive electrode of the solar cell string 12a and the switch apparatus 103b is connected to the positive electrode side of the ground fault detection apparatus 36 via the switch apparatus 31a.
  • a wire branched from a negative electrode wire connecting the negative electrode of the solar cell string 12b and the switch device 103c is connected to the negative electrode side of the ground fault detection device 36 via the backflow prevention diode 46b and the switch device 33b.
  • the wiring branched from the positive electrode wiring which connects the positive electrode of the solar cell string 12b and the switch apparatus 103d is connected to the positive electrode side of the ground fault detection apparatus 36 via the switch apparatus 31b.
  • a wire branched from a negative electrode wire connecting the negative electrode of the solar cell string 12c and the switch device 103e is connected to the negative electrode side of the ground fault detection device 36 via the backflow prevention diode 46c and the switch device 33c.
  • the wiring branched from the positive electrode wiring which connects the positive electrode of the solar cell string 12c and the switch apparatus 103f is connected to the ground fault detection apparatus 36 via the switch apparatus 31c. The connection from each solar cell string 12 to the ground fault detection device 36 is connected in parallel as shown in FIG.
  • the negative side of the ground fault detection device 36 is grounded to the ground location 41 via the ground wire 40.
  • the diodes 46a to 46c are connected with the direction from the ground (ground) toward the negative electrodes of the solar cell strings 12a to 12c as the forward direction.
  • the switch device 102, the backflow prevention diode 20, and the switches 402 and 404 are disposed in the same connection box (dotted line), and the switch device 103, the backflow prevention diode 46, and the ground fault detection device 36 are provided.
  • positioned in another one connection box (dotted line) is shown. If the connection box is not particularly divided, the function of the switch device 103 can be substituted by the switch device 102. In that case, the switch device 103 may be omitted.
  • a power generation unit for example, solar cell string 12a
  • a power generation unit or Using a photovoltaic power generation system comprising a load device 400 that consumes or converts power generated by the power generation unit while being insulated from the ground, the power generation unit (for example, the solar cell string 12a) and the load device 400 And connect the ground potential of all locations of the power generation unit to zero or more (when a p-type semiconductor is used for the bulk of the solar cell) or less than zero (use an n-type semiconductor for the bulk of the solar cell) using the first grounding circuit.
  • normal operation of solar power generation is performed.
  • ground fault detection is periodically performed for each of the solar cell strings a to c.
  • the ground fault detection unit uses the grounding wire 40 to generate power in a state where the power generation unit (for example, the solar cell string 12a) and the load device 400 are disconnected (a state where the power generation unit is disconnected from the system). The ground fault of the part is detected.
  • FIG. 8 is a diagram for explaining a ground fault detection operation using the ground fault detection device 36 described in FIG. 1 (Embodiment 1) in the seventh embodiment.
  • ground fault detection is performed for each solar cell string 12.
  • the switch device 103 for example, the switch devices 103a and 103b
  • the switch device 103 that is driven by the control from the control system (not shown) of the solar cell string 12 (for example, the solar cell string 12a) that is the target of the ground fault detection is turned off. (Open) and the solar cell string 12 to be subjected to ground fault detection is disconnected from the system.
  • the switch device 31 that is driven by control from a control system (not shown) while the switch device 33 (for example, the switch device 33a) of the solar cell string 12 (for example, the solar cell string 12a) that is a target of ground fault detection is kept ON.
  • the switch device 31a is turned ON (closed), and the positive electrode side and the negative electrode side of the solar cell string 12 to be detected for ground fault are connected to the ground fault detection device 36.
  • the switch devices 31 and 33 of the solar cell string 12 that are not the targets of ground fault detection are both turned OFF.
  • the changeover switch 80 (potential control unit) in the ground fault detection device 36 is connected to the solar cell string 12a to be inspected by switching between the first grounding circuit and the second grounding circuit, and the solar cell string 12a.
  • the ground fault is detected by measuring the voltage drop value of the resistor 84 in two ground potential states having different ground potentials.
  • the step of connecting the first grounding circuit to the power generation unit and measuring the measurement value based on the current flowing through the first grounding circuit, the power generation unit and the load device In a state where the second grounding circuit is connected to the power generation unit, the ground potential of the power generation unit is set to a potential different from that when the first grounding circuit is connected to the power generation unit. Measuring a measurement value based on the flowing current.
  • FIG. 1 illustrates the case where a p-type semiconductor is used for the bulk of the solar cell or the case where a solar cell using a transparent conductive film is used as an example. In Embodiment 7, the bulk of the solar cell is described.
  • the voltage monitoring unit 86 may constantly monitor the voltage while taking measures against PID, and the ground fault may be determined.
  • N ( ⁇ ) of the ground fault detection device 36 in FIG. 50 nothing is connected to the P (+) side of the ground fault detection device 36 in FIG. That is, when the ground fault detection device 36 shown in FIG. 2 is used in the seventh embodiment, wiring branched from the positive electrode wiring of each of the solar cell strings 12a to 12c becomes unnecessary.
  • the switch devices 33a to 33c are turned on (closed), the changeover switch 80 in the ground fault detection device 36 is connected to the terminal 80a (that is, connected to the first ground circuit), and PID Take measures. Further, ground fault detection is periodically performed for each of the solar cell strings a to c.
  • the solar cell string (for example, the solar cell string 12a) to be inspected is disconnected from the system by the switch devices 103a and 103b (the other switch devices 103c to 103f are turned on (closed)). To do). Then, the switch device 33a is turned on (closed) to connect the solar cell string 12a to the ground fault detection device 36 (the other solar cell strings 12b and 12c are separated from the ground fault detection device 36 by the switch devices 33b and c). In this state, the changeover switch 80 in the ground fault detection device 36 is used to switch and connect the first grounding circuit and the second grounding circuit to the solar cell string 12a to be inspected. The ground fault is detected by measuring the voltage drop value of the resistor 84 in the potential state.
  • the voltage monitoring unit 86 may constantly monitor the voltage while taking measures against PID, and the ground fault determination may be performed.
  • FIG. 2 illustrates the case where a p-type semiconductor is used for the bulk of the solar cell or the case where a solar cell using a transparent conductive film is used as an example.
  • the ground fault detection device 36 shown in FIG. 2 is connected to the positive electrode wiring of each solar cell string 12a.
  • the terminal 80c of the changeover switch 80 of the ground fault detection device 36 shown in FIG. 2 is connected to P (+) of the ground fault detection device 36 shown in FIG. -)
  • the DC power supply 91 is arranged so that the positive electrode side is connected to the terminal 80b of the changeover switch 80, and is arranged so that a positive potential can be applied to the positive electrode wiring of each solar cell string 12a.
  • N ( ⁇ ) of the ground fault detection device 36 in FIG. This corresponds to the point 50, and nothing is connected to the P (+) side of the ground fault detection device 36 in FIG. That is, when the ground fault detection device 36 shown in FIG. 3 is used in the seventh embodiment, the wiring branched from the positive electrode wiring of each of the solar cell strings 12a to 12c becomes unnecessary.
  • the switch devices 33a to 33c are turned on (closed), the changeover switch 80 in the ground fault detection device 36 is connected to the terminal 80a (that is, connected to the first ground circuit), and PID Take measures.
  • ground fault detection is periodically performed for each of the solar cell strings a to c. Specifically, first, the solar cell string (for example, the solar cell string 12a) to be inspected is disconnected from the system by the switch devices 103a and 103b (the other switch devices 103c to 103f are turned on (closed)). To do). Then, the switch device 33a is turned on (closed) to connect the solar cell string 12a to the ground fault detection device 36 (the other solar cell strings 12b and 12c are separated from the ground fault detection device 36 by the switch devices 33b and c). In this state, the changeover switch 80 in the ground fault detection device 36 is used to switch and connect the first grounding circuit and the second grounding circuit to the solar cell string 12a to be inspected.
  • the ground fault is detected by measuring the voltage drop value of the resistor 84 in the potential state. In addition, it is good also as a structure which always monitors a voltage with the voltage monitoring part 86, taking a PID countermeasure, and performing a ground fault determination.
  • FIG. 3 illustrates the case where a p-type semiconductor is used for the bulk of the solar cell or the case where a solar cell using a transparent conductive film is used as an example. In Embodiment 7, the bulk of the solar cell is described.
  • the ground fault detection device 36 shown in FIG. 3 is connected to the positive electrode wiring of each solar cell string 12a.
  • the terminal 80c of the changeover switch 80 of the ground fault detection device 36 shown in FIG. 2 is connected to P (+) of the ground fault detection device 36 shown in FIG. -)
  • Nothing is connected to the side.
  • N ( ⁇ ) of the ground fault detection device 36 in FIG. 50, and P (+) of the ground fault detection device 36 in FIG. 7 corresponds to the positive electrode side connection point 51 shown in FIG.
  • the switch devices 33a to 33c are turned on (closed), the ground fault detector 36 is connected to the negative wiring of each of the solar cell strings 12a to 12c, and the switch devices 31a to 31c are turned off (open). ) To disconnect the ground fault detector 36 and the positive electrode wiring of each of the solar cell strings 12a to 12c.
  • the negative switch wiring of each of the solar cell strings 12a to 12c is connected to the resistor 84 (connected to the first ground circuit) by the changeover switch 80 in the ground fault detection device 36, and PID countermeasures are taken. Further, ground fault detection is periodically performed for each of the solar cell strings a to c. Specifically, first, the solar cell string (for example, the solar cell string 12a) to be inspected is disconnected from the system by the switch devices 103a and 103b (the other switch devices 103c to 103f are turned on (closed)). To do).
  • the switch device 33a and the switch device 31a are turned on (closed) to connect the solar cell string 12a to the ground fault detection device 36 (the other solar cell strings 12b and c are the switch devices 33b and c and the switch devices 31b and c).
  • the changeover switch 80 in the ground fault detection device 36 is used to switch and connect the first grounding circuit and the second grounding circuit to the solar cell string 12a to be inspected.
  • the ground fault is detected by measuring the voltage drop value of the resistor 84 in the potential state.
  • the voltage monitoring unit 86 may constantly monitor the voltage while taking countermeasures against PID to determine the ground fault.
  • the ground fault detection device 36 described in FIG. 5 when the ground fault detection device 36 described in FIG. 5 (the fifth embodiment) is used, N ( ⁇ ) of the ground fault detection device 36 in FIG. 50, and nothing is connected to the P (+) side of the ground fault detection device 36 in FIG. That is, when the ground fault detection device 36 shown in FIG. 5 is used in the seventh embodiment, the wiring branched from the positive electrode wiring of each of the solar cell strings 12a to 12c becomes unnecessary. In this case, the ground fault detection device 36 is always connected to the solar cell strings 12a to 12c. Therefore, in the seventh embodiment, when the ground fault detection device 36 shown in FIG. 5 is used, the switches 33a to 33c may be omitted. Note that FIG.
  • the ground fault detection device 36 shown in FIG. 5 illustrates the case where a p-type semiconductor is used for the bulk of the solar cell or the case where a solar cell using a transparent conductive film is used as an example.
  • the ground fault detection device 36 shown in FIG. 5 is connected to the positive electrode wiring of each solar cell string 12a.
  • the DC power source 92 shown in FIG. 5 is connected to P (+) of the ground fault detection device 36 shown in FIG. 7, and nothing is connected to the N ( ⁇ ) side of the ground fault detection device 36 in FIG. It becomes a state.
  • the DC power source 92 is arranged so that the negative electrode side is connected to the positive electrode wiring of each solar cell string 12a, and is arranged so that a negative potential can be applied to the positive electrode wiring of each solar cell string 12a.
  • the ground fault detection device 36 described in FIG. 6 when the ground fault detection device 36 described in FIG. 6 (the sixth embodiment) is used, N ( ⁇ ) of the ground fault detection device 36 in FIG. 50, and nothing is connected to the P (+) side of the ground fault detection device 36 in FIG. That is, when the ground fault detection device 36 shown in FIG. 5 is used in the seventh embodiment, the wiring branched from the positive electrode wiring of each of the solar cell strings 12a to 12c becomes unnecessary. In this case, the ground fault detection device 36 is always connected to the solar cell strings 12a to 12c. Therefore, in the seventh embodiment, when the ground fault detection device 36 shown in FIG. 6 is used, the switches 33a to 33c may be omitted.
  • FIG. 6 illustrates the case where a p-type semiconductor is used for the bulk of the solar cell or the case where a solar cell using a transparent conductive film is used as an example.
  • the ground fault detection device 36 shown in FIG. 6 is connected to the positive electrode wiring of each solar cell string 12a.
  • the AC power supply 93 shown in FIG. 6 is connected to P (+) of the ground fault detection device 36 shown in FIG. 7, and nothing is connected to the N ( ⁇ ) side of the ground fault detection device 36 in FIG. It becomes a state.
  • the internal configuration of the ground fault detection device 36 according to the seventh embodiment is, for example, a circuit configuration using the switch 80, the resistor 84, and the voltage monitoring unit 86 illustrated in FIG. Is used, the voltage V1 can be measured during normal operation. And voltage V2 can be measured in the case of periodic ground fault detection. Therefore, ground fault detection similar to the content described in FIG. 1 can be performed.
  • a ground fault detection device for example, the first to fourth embodiments that performs ground fault detection using two kinds of grounding electric circuits, or a direct current voltage is applied to the solar cell.
  • a ground fault detection device for example, Embodiment 5 that detects the ground fault by controlling the ground potential of the entire battery to be positive (or negative), or by constantly changing the ground potential of the solar battery by applying an AC voltage.
  • the negative electrode wiring (or positive electrode wiring) of each of the solar cell strings 12a to 12c is grounded during normal operation, and PID As a countermeasure, it is possible to reliably detect the ground fault of each of the solar cell strings 12a to 12c without a blind spot where it is difficult to detect the ground fault. That is, since the grounding circuit of the ground fault detection device is used, it is not necessary to add a new configuration for PID countermeasures, and ground fault detection can be reliably performed.
  • FIG. 9 is a configuration diagram showing the configuration of the photovoltaic power generation system in the eighth embodiment. 9 is the same as FIG. 7 except that the backflow prevention diode 46 is eliminated. Further, the contents other than those specifically described below are the same as those in the seventh embodiment.
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method.
  • the solar cell array 300 and the load device 400 are connected, and the ground potential at a predetermined point of each of the solar cell strings 12a to 12c is set to the positive or negative potential using the ground circuit in the ground fault detection device 36.
  • the state controlled to normal operation of solar power generation Specifically, it operates as follows.
  • the switch devices 102 and 103 and the switches 402 and 404 that are driven by control from a control system (not shown) are all ON (closed), and the switch devices 31 are all OFF (open).
  • the switch device 33 the normal operation is performed in a state where only the switch device 33 for any one of the solar cell strings 12a to 12c is ON (closed).
  • the ground fault detection device 36 is connected to the negative electrode of any one of the solar cell strings 12a to 12c (for example, the solar cell string 12a) as a countermeasure against PID.
  • the ground fault detection device 36 controls the ground potential of the solar cell string 12a, and executes PID countermeasures.
  • the first grounding electric circuit is connected to the solar cell string 12a by the changeover switch 80. Since the negative electrodes of the solar cell strings 12a to 12c are connected in parallel, all the solar cell strings 12a can be obtained by grounding the negative electrode of the solar cell string 12a via the first grounding circuit in the ground fault detection device 36.
  • the ground potential of the negative electrodes c to c can be controlled to the ground potential.
  • the case where a p-type semiconductor is used for the bulk of the solar cell or a solar cell using a transparent conductive film is shown as an example. Therefore, the negative electrode wiring is grounded.
  • the switch devices 31 and 33 use the grounding circuit of the ground fault detection device 36 to connect the ground potential at a predetermined point of the solar cell array 300 to the positive electrode (n-type in the bulk of the solar cell).
  • the potential is controlled to the negative electrode).
  • the negative electrode of each solar cell string 12a-c can be controlled to ground potential, and the PID phenomenon can be avoided.
  • the backflow prevention diode 46 can be omitted.
  • FIG. 10 is a diagram for explaining the ground fault detection operation in the eighth embodiment.
  • ground fault detection is performed for each solar cell string 12.
  • the solar cell string 12 for example, the solar cell string 12a
  • the switch device 103 for example, the switch devices 103a and 103b
  • the solar cell string 12 that is the target of ground fault detection is disconnected from the system.
  • the switch device 31 that is driven by control from a control system (not shown) while the switch device 33 (for example, the switch device 33a) of the solar cell string 12 (for example, the solar cell string 12a) that is a target of ground fault detection is kept ON.
  • the switch device 31a is turned ON (closed), and the positive electrode side and the negative electrode side of the solar cell string 12 to be detected for ground fault are connected to the ground fault detection device 36.
  • the switch devices 31 and 33 of the solar cell string 12 that are not the targets of ground fault detection are both turned OFF.
  • the internal configuration of the ground fault detection device 36 is, for example, a circuit configuration using the switch 80, the resistor 84, and the voltage monitoring unit 86 illustrated in FIG. Is used, the voltage V1 can be measured during normal operation. And voltage V2 can be measured in the case of periodic ground fault detection. Therefore, ground fault detection similar to the content described in FIG. 1 can be performed.
  • FIG. 11 is a configuration diagram showing the configuration of the photovoltaic power generation system according to the ninth embodiment.
  • the branch point of the wiring for branching from the negative electrode and the positive electrode of each of the ground fault detection device 36, each switch device 31, 33, and each solar cell string 12a-c and connecting to each switch device 31, 33 is shown.
  • the position is between the switch device 102 on the negative electrode side and the position where the negative electrodes of the solar cell strings 12a to 12c are connected in parallel.
  • the diode 20 and the positive electrode of the solar cell strings 12a to 12c are connected in parallel.
  • 9 is the same as FIG. 9 except that it has moved between the connected positions.
  • the position of the branch point of the wiring for branching from the negative electrode and the positive electrode of each solar cell string 12a-c and connecting to each switch device 31, 33 is set to the position of FIG. Even when the negative electrode of c is grounded at the same time, the diode 46 can be omitted. Further, the contents other than those specifically described below are the same as those in the seventh embodiment.
  • the solar power generation system 100 as described above is operated as follows as a solar power generation method.
  • the solar cell array 300 and the load device 400 are connected, and the ground potential at a predetermined point of each of the solar cell strings 12a to 12c is set to the positive or negative potential using the ground circuit in the ground fault detection device 36.
  • the state controlled to normal operation of solar power generation Specifically, it operates as follows.
  • the switch devices 102 and 103, the switch devices 33, and the switches 402 and 404 that are driven by control from a control system (not shown) are all ON (closed), and the switch devices 31 are all OFF (open). ), Normal operation is performed.
  • the ground fault detection device 36 is connected to the negative electrode of each of the solar cell strings 12a to 12c as a countermeasure against PID.
  • the switch devices 31 and 33 intentionally control only the switch device 31 on the negative electrode side ON and turn off the switch device 33 on the positive electrode side to ground the negative electrode wiring.
  • a solar cell using a p-type semiconductor for the bulk of the solar cell or a transparent conductive film is shown as an example. Therefore, the negative electrode wiring is grounded.
  • an n-type semiconductor is used for the bulk of the solar cell, it goes without saying that the positive electrode wiring is grounded.
  • the negative electrode of the photovoltaic power generation system 100 is in a state of being grounded via at least a part of the ground fault detection device 36 (negative electrode side circuit (not shown)).
  • the switch devices 31 and 33 use the grounding circuit of the ground fault detection device 36 to connect the ground potential at a predetermined point of the solar cell array 300 to the positive electrode (n-type in the bulk of the solar cell).
  • the potential is controlled to the negative electrode).
  • the negative electrode of each solar cell string 12a-c can be controlled to ground potential, and the PID phenomenon can be avoided.
  • FIG. 11 is a diagram for explaining a ground fault detection operation in the ninth embodiment.
  • ground fault detection is performed for each solar cell string 12.
  • the switch device 103 for example, the switch devices 103a and 103b
  • the switch device 103 that is driven by the control from the control system (not shown) of the solar cell string 12 (for example, the solar cell string 12a) that is the target of the ground fault detection is turned off. (Open) and the solar cell string 12 to be subjected to ground fault detection is disconnected from the system.
  • the switch device 31 that is driven by control from a control system (not shown) while the switch device 33 (for example, the switch device 33a) of the solar cell string 12 (for example, the solar cell string 12a) that is a target of ground fault detection is kept ON.
  • the switch device 31a is turned ON (closed), and the positive electrode side and the negative electrode side of the solar cell string 12 to be detected for ground fault are connected to the ground fault detection device 36.
  • the switch devices 31 and 33 of the solar cell string 12 that are not the targets of ground fault detection are both turned OFF.
  • the embodiment has been described above with reference to specific examples. However, the present invention is not limited to these specific examples.
  • the failure detection method described above is an example, and is not limited to the failure detection method described above. Any other fault detection method such as ground fault may be used as long as it is a ground fault detection method that intentionally controls the ground potential of the solar cell using a grounding circuit and determines the presence or absence of a ground fault without a blind spot.
  • One embodiment of the present invention relates to a solar power generation system and a solar power generation method, and can be used for, for example, a solar power generation system and method in which PID countermeasures are taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

 本発明の一態様の地絡検出装置は、太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、発電部の所与の箇所に接続されて発電部の全ての箇所の対地電位を零以上または零以下にする第1接地電路と、発電部の対地電位を、第1接地電路が接続された時と異なる電位にする第2接地電路と、第1接地電路と第2接地電路とを切り替えて発電部に接続することで、発電部の対地電位を制御する電位制御部と、電位制御部により、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき発電部の地絡を検知する地絡検知部と、を備え、電位制御部は、通常運転時に、発電部に第1接地電路を接続することを特徴とする。

Description

太陽光発電システム
 本出願は、2013年7月31に日本国に出願されたJP2013-158871(出願番号)を基礎出願とする優先権を主張する出願である。JP2013-158871に記載された内容は、本出願にインコーポレートされる。
 本発明の一態様は、太陽光発電システム及び太陽光発電方法に係り、例えば、PID(Potential Induced Degradation)対策が施された太陽光発電システム及び方法に関する。
 太陽光を利用して発電を行う太陽光発電システムでは、一般的に、複数の太陽電池モジュールが直列および並列に接続されて、大電圧および大電流となった発電された電力が、パワーコンディショナー等の負荷装置に供給され、商用電力系統等に供給される。太陽光発電システムでは、複数の太陽電池モジュールが直列に接続されて太陽電池ストリングが構成される。そして、複数の太陽電池ストリングが並列に接続されて太陽電池アレイが構成される。
 昨今、太陽光発電システムで発電される電圧が高くなるに伴い、かかる太陽光発電システムでは、太陽光発電システムの性能が対地電圧の影響によって劣化し、発電量が下がってしまうPID現象が問題となっている。
 図13Aと図13Bは、PID現象の一例を説明するための概念図である。図13Aと図13Bでは、太陽光発電システムの太陽電池アレイのうち、1つの太陽電池ストリング502を例に示している。そして、図13Aでは、太陽電池のバルクにp型半導体を使用した場合を一例として示している。負荷装置510に接続された太陽電池ストリング502の途中の電位が大地の電位になった場合、かかる大地の電位よりも負電位において性能低下が生じる場合がある。一方、図13Bでは、太陽電池のバルクにn型半導体を使用した場合を一例として示している。負荷装置510に接続された太陽電池ストリング502の途中の電位が大地の電位になった場合、かかる大地の電位よりも正電位において性能低下が生じる場合がある。
 図14Aと図14Bは、PID現象への対策手法の一例を説明するための概念図である。PID現象への対策手法としては、太陽電池モジュールやその内部のセル自体に対策を講ずることが検討されているが、確実な手法として、太陽光発電システムの負極或いは正極を接地することが検討されている。図14Aでは、太陽電池のバルクにp型半導体を使用した場合を一例として示している。かかる場合には、太陽光発電システムを商用電力系統等から絶縁したシステムに構築した状態で、太陽電池ストリング502の負極側を接地する。これにより、太陽電池ストリング502全体が大地の電位よりも負電位になることを防止できる。かかる対策によりPID現象を回避できる。図14Bでは、太陽電池のバルクにn型半導体を使用した場合を一例として示している。かかる場合には、太陽光発電システムを商用電力系統等から絶縁したシステムに構築した状態で、太陽電池ストリング502の正極側を接地する。これにより、太陽電池ストリング502全体が大地の電位よりも正電位になることを防止できる。かかる対策によりPID現象を回避できる。
 しかしながら、システムを接地することにより新たな問題が生じる。それは、システム内に地絡事故が発生した場合である。太陽電池アレイ内に絶縁不良があると、電気回路が外部と意図しない形で接触する地絡が生じる場合がある。例えば人や物が絶縁不良箇所に触れたときや、絶縁不良箇所と金属架台等とが接触したとき等が挙げられる。システム内に1か所でも地絡事故が発生すると、地絡箇所の電位は大地電位となるため、PID対策用の接地箇所と地絡箇所との間で閉ループ回路が形成され、大電流が外部に流れてしまうといった大きな事故につながってしまう場合がある。
特開2013-033825号公報
 図15は、PID対策が講じられた太陽光発電システムの地絡対策の一例を説明するための概念図である。図15では、太陽電池ストリング502の負極側を接地する場合を示している。図15では、地絡対策用にPID対策用の接地箇所530に電流計或いは/及びヒューズを配置した構成を示している。かかる構成では、図15に示すように、例えば、太陽電池ストリング502の途中或いは正極側で地絡事故が発生した場合、PID対策用の接地箇所530と地絡箇所600との間で閉ループ回路が形成され、大電流が外部に流れてしまう。よって、かかる電流を電流計或いは/及びヒューズで監視して、閾値以上の電流が流れた場合に、地絡事故として、太陽光発電システムを緊急停止させることができる。しかしながら、かかる構成では以下に示すように地絡検出の盲点を生んでしまう。
 図16は、PID対策が講じられた太陽光発電システムの地絡検出の盲点の一例を説明するための概念図である。図16に示すように、例えば、まず、太陽電池ストリング502の負極側で第1の地絡事故が発生した場合、PID対策用の接地箇所530と地絡箇所602との間では電位差が生じないので、PID対策用の接地箇所530に配置された電流計或いは/及びヒューズでは、かかる第1の地絡事故を検知することは困難である。そのため、太陽光発電システムは通常運転を継続することになる。かかる状態で、例えば、太陽電池ストリング502の途中或いは正極側で第2の地絡事故が発生した場合、第1の地絡事故の地絡箇所602と第2の地絡事故の地絡箇所600との間で閉ループ回路が形成され、第1の地絡事故点の絶縁抵抗が、PID対策用の接地線の抵抗値よりも小さいと、大電流が外部に流れてしまうことになる。しかし、PID対策用の接地箇所530は閉ループ回路の外部に位置するため、PID対策用の接地箇所530に配置された電流計或いは/及びヒューズでは、かかる第2の地絡事故を検知することは困難である。その結果、地絡を検知できないまま、大電流が外部に流れてしまうといった大きな事故につながってしまう。このように、図16に示した構成では、地絡検知が困難な盲点箇所(検出不感帯)を形成してしまう。
 そこで、本発明の一態様は、上述した問題点を克服し、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことが可能な太陽光発電システムを提供することを目的とする。
 本発明の一態様の地絡検出装置は、
 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、
 発電部の所与の箇所に接続されて発電部の全ての箇所の対地電位を零以上または零以下にする第1接地電路と、
 発電部の対地電位を、第1接地電路が接続された時と異なる電位にする第2接地電路と、
 第1接地電路と第2接地電路とを切り替えて発電部に接続することで、発電部の対地電位を制御する電位制御部と、
 電位制御部により、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき発電部の地絡を検知する地絡検知部と、を備え、
 電位制御部は、通常運転時に、発電部に第1接地電路を接続することを特徴とする。
 本発明の他の一態様の地絡検出装置は、
 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、
 一方側が大地に接続されていると共に、他方側が発電部の正極または負極に接続可能な接地電路と、
 接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
 接地電路は、直流電源を有し、発電部の全ての箇所の対地電位を正または負にすることを特徴とする。
 本発明の他の一態様の地絡検出装置は、
 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、発電部内の地絡を検出する地絡検出装置であって、
 一方側が大地に接続されていると共に、他方側が発電部の正極または負極に接続可能な接地電路と、
 接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
 接地電路は、交流電源を有し、発電部の全ての箇所の対地電位を時間平均して零以上または零以下にすることを特徴とする。
 本発明の一態様の太陽光発電方法は、
 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、発電部と負荷装置とを接続し、第1接地電路を用いて発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行うと共に、当該第1接地電路を流れる電流に基づく測定値を測定し、
 第2接地電路を用いて、発電部の対地電位を、第1接地電路が発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定し、
 発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とに基づき発電部の地絡を検知することを特徴とする。
 本発明の他の一態様の太陽光発電方法は、
 太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、発電部と負荷装置とを接続し、第1接地電路を用いて発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行い、
 発電部と負荷装置とを切り離した状態で、第1接地電路を発電部に接続し、当該第1接地電路を流れる電流に基づく測定値を測定し、
 発電部と負荷装置とを切り離した状態で、第2接地電路を発電部に接続し、発電部の対地電位を、第1接地電路が発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定し、
 発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とに基づき発電部の地絡を検知することを特徴とする。
 本発明の一態様によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
実施の形態1における太陽光発電システムの構成を示す構成図である。 実施の形態2における太陽光発電システムの構成を示す構成図である。 実施の形態3における太陽光発電システムの構成を示す構成図である。 実施の形態4における太陽光発電システムの構成を示す構成図である。 実施の形態5における太陽光発電システムの構成を示す構成図である。 実施の形態6における太陽光発電システムの構成を示す構成図である。 実施の形態7における太陽光発電システムの構成を示す構成図である。 実施の形態7における地絡検知動作を説明するための図である。 実施の形態8における太陽光発電システムの構成を示す構成図である。 実施の形態8における地絡検知動作を説明するための図である。 実施の形態9における太陽光発電システムの構成を示す構成図である。 実施の形態9における地絡検知動作を説明するための図である。 PID現象の一例を説明するための概念図である。 PID現象の一例を説明するための概念図である。 PID現象への対策手法の一例を説明するための概念図である。 PID現象への対策手法の一例を説明するための概念図である。 PID対策が講じられた太陽光発電システムの地絡対策の一例を説明するための概念図である。 PID対策が講じられた太陽光発電システムの地絡検出の盲点の一例を説明するための概念図である。
 図1は、実施の形態1における太陽光発電システムの構成を示す構成図である。図1において、太陽光発電システム100は、太陽光エネルギーを利用して発電するシステムである。太陽光発電システム100は、太陽電池アレイ300(発電部の一例)と、負荷装置400と、を備えている。電気的に直列に接続された複数の太陽電池モジュール10a~e(発電部の一例)によって太陽電池ストリング12(発電部の一例)が構成される。各太陽電池モジュール10は、太陽光を利用して、太陽光エネルギーを電気エネルギーに変換し、直流電力として出力するモジュールである。そして、太陽電池アレイ300は、並列に配置された複数の太陽電池ストリング12a~cによって構成される。複数の太陽電池ストリング12a~cは、太陽電池アレイ300内部で電気的に並列に接続される。図1の例では、各太陽電池ストリング12が直列に接続された5つの太陽電池モジュール10a~eによって構成されているが、これに限るものではない。直列数は、2つでも、3つでも、4つでも、或いは6つ以上であってもよい。適宜設定すればよい。同様に、太陽電池アレイ300は、並列に接続された3つの太陽電池ストリング12a~cによって構成されているが、これに限るものではない。並列数は、1つでも、2つでも、或いは4つ以上であってもよい。適宜設定すればよい。このように、実施の形態1における発電部は、太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される。
 太陽電池アレイ300内において、各太陽電池ストリング12a~cの正極(+)及び負極(-)には、それぞれ各太陽電池ストリング12a~cをシステムから解列或いはシステムに接続するスイッチ装置102a~fが接続される。図1の例では、太陽電池ストリング12aの負極配線にスイッチ装置102aの両端の一方が接続され、正極配線にスイッチ装置102bの両端の一方が接続される。また、スイッチ装置102bの両端の他方側には逆流防止ダイオード20aが接続される。同様に、太陽電池ストリング12bの負極配線にスイッチ装置102cの両端の一方が接続され、正極配線にスイッチ装置102dの両端の一方が接続される。また、スイッチ装置102dの両端の他方側には逆流防止ダイオード20bが接続される。同様に、太陽電池ストリング12cの負極配線にスイッチ装置102eの両端の一方が接続され、正極配線にスイッチ装置102fの両端の一方が接続される。また、スイッチ装置102fの両端の他方側には逆流防止ダイオード20cが接続される。各逆流防止ダイオード20a~cは、それぞれ対応する太陽電池ストリング12a~cから供給される電流が流れる方向が順方向になるように配置される。スイッチ装置102は、太陽電池ストリング12の両極に配置可能な数が配置される。各スイッチ装置102は、電気的に開閉動作を自動制御可能なスイッチを用いることが好ましい。この場合、太陽電池に地絡を検出した場合に、システムをストリング単位にまで解列して停止することが可能となる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いると好適である。
 また、図1の例では、各太陽電池ストリング12の正極側にだけ逆流防止ダイオード20が配置されているが、これに限るものではない。各太陽電池ストリング12の負極側にだけ逆流防止ダイオード20が配置されてもよい。或いは、各太陽電池ストリング12の正極及び負極の両極にそれぞれ逆流防止ダイオード20が配置されてもよい。いずれの場合も、各逆流防止ダイオード20は、それぞれ対応する太陽電池ストリング12から供給される電流が流れる方向が順方向になるように配置される。
 図1の例では、各太陽電池ストリング12a~cは、一方が対応する太陽電池ストリング12の負極に接続されたスイッチ装置102の他方側で並列に接続され、一方が対応する太陽電池ストリング12の正極側に接続された逆流防止ダイオード20の他方側で並列に接続される。これにより、複数の太陽電池ストリング12a~cが並列に接続され、太陽電池アレイ300が構成される。なお、逆流防止ダイオードの代わりに、ヒューズを使用することもできる。この場合逆方向電流を完全に防止することはできないが、過度の逆方向電流を防止することが可能な太陽電池アレイを構成することができる。
 太陽電池アレイ300の負極配線(負極母線)は遮断器或いは断路器といったスイッチ402に、正極配線(正極母線)は遮断器或いは断路器といったスイッチ404に接続される。そして、スイッチ402,404は、それぞれ負荷装置400に接続される。以上のようにして、太陽電池アレイ300の正極(+)側はスイッチ404を介して、負極(-)側はスイッチ402を介して、それぞれ負荷装置400に接続される。負荷装置400はその内部または出力側に、絶縁トランスを有し、太陽電池アレイが大地と電気的に接続されることを防いでいる。負荷装置400として、例えば、パワーコンディショナー等が挙げられる。太陽電池アレイ300から負荷装置400に供給された直流電力は、負荷装置400内で例えば三相交流電力等に変換され、例えば、商用電力系統等に供給される。このように、負荷装置400は、太陽電池アレイ300(発電部)または大地と絶縁された状態で、太陽電池アレイ300により発電された電力を消費又は変換する。
 また、実施の形態1では、さらに、太陽電池アレイ300(発電部)内の地絡を検出する地絡検知装置36を備えている。地絡検知装置36は、切り替えスイッチ80(電位制御部の一例)、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。図1では、切り替えスイッチ80の一方側の第1の端子には、太陽電池アレイ300の負極配線(太陽電池アレイ300の負極と負荷装置400の負極を接続する「負極母線」。)から分岐した配線が接続される。切り替えスイッチ80の一方側の第2の端子には、太陽電池アレイ300の正極配線(太陽電池アレイ300の正極と負荷装置400の正極を接続する「正極母線」。)から分岐した配線が接続される。切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極母線)と太陽電池アレイ300の正極配線(正極母線)とを切り替え可能に配置される。切り替えスイッチ80の他方側の端子には抵抗84の両端の一方が接続される。抵抗84の両端の他方は、接地線40に接続される。そして、接地線40は接地箇所41において接地される。
 図1において、切り替えスイッチ80が太陽電池アレイ300の負極配線側(第1の端子)に接続された場合、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80と、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、切り替えスイッチ80が太陽電池アレイ300の正極配線側(第2の端子)に接続された場合、太陽電池アレイ300は、正極側接続点51と、切り替えスイッチ80と、抵抗84と、接地線40とからなる接地電路(第2接地電路)に接続された状態となる。このように、切り替えスイッチ80は、太陽電池アレイ300に対して2種の接地電路を切り替えて接続する。このように、第1接地電路は、発電部の一方極に接続可能に構成され、第2接地電路は、発電部の他方極に接続可能に構成される。
 また、電圧監視部86は、抵抗84の両端部の電位差(電圧)を監視する。電圧監視部86として、例えば、抵抗84と電気的に並列に接続された電圧計を用いることができる。図1においては、切り替えスイッチ80として、3路スイッチを例示したが、これに限定されず、負極母線が接地された状態と正極母線が接地された状態とを切り替えることができれば、どの様なスイッチまたは回路構成でも良い。また、切り替えスイッチ80は、電気的に開閉動作を自動制御可能なスイッチを用いる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFETを用いると好適である。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上或いは零以下の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極母線)側と接続した状態で、通常運転が行われる。すなわち、通常運転時は、PID(Potential Induced Degradation)対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84を介して太陽電池アレイ300の負極を接地箇所41で接地する。)図1の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84を介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a~cの負極を大地と同電位に制御でき、PID現象を回避できる。以上のように、第1接地電路は、発電部の所与の箇所に接続されて発電部の全ての箇所の対地電位を零以上または零以下にする。
 電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態(すなわち、第1接地電路が太陽電池アレイ300に接続された状態)で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該接地個所と第1接地電路を介して形成される閉回路には起電力が存在せず、抵抗84にも電圧が発生せず地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
 そこで、実施の形態1では、さらに、定期的に、切り替えスイッチ80によって、第2接地電路を太陽電池アレイ300に接続して、地絡検知装置36で地絡検知を行う。第2接地電路は、発電部の対地電位を、第1接地電路が接続された時と異なる電位にする。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1~2時間毎の間隔で地絡検知を行う。かかる状態で電圧監視部86は、抵抗84の両端にかかる電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。そして、測定された電圧V2が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは負極側で地絡事故が発生した場合、太陽電池アレイ300の正極配線(正極母線)と大地の間で電位差が生じるので、電圧V2によって地絡判定できる。すなわち、切り替えスイッチ80を切り替えることにより、負極が地絡検出の盲点であったことを補うことができる。換言すれば、切り替えスイッチ80により、第1接地電路から第2接地電路に切り替えることにより、第1接地電路において盲点だった箇所の地絡を検出することができる。このように、地絡検知部は、切り替えスイッチ80(電位制御部)により、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき発電部の地絡を検知する。なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300の地絡を検知しても良い。これにより負荷装置400からの影響を排除することができる。
 このように、切り替えスイッチ80(電位制御部)は、第1接地電路と第2接地電路とを切り替えて発電部に接続することで、発電部の対地電位を制御する。地絡検知の際、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側(負極側接続点50)が抵抗84に接続された状態(第1接地電路に接続された状態)では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a~cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a~cの途中の対地電位も正となる。一方、切り替えスイッチ80によって太陽電池アレイ300の正極配線(正極母線)側(正極側接続点51)が抵抗84に接続された状態(第2接地電路に接続された状態)では、接地線40と接続されることで太陽電池アレイ300の正極の電位が大地(グランド)の電位に制御される。よって、太陽電池アレイ300の負極(各太陽電池ストリング12a~cの負極)の対地電位は、負の電位になる。また、各太陽電池ストリング12a~cの途中の対地電位も負となる。このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
 以上のように、図1に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
 以上のように、実施の形態1では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、切り替えスイッチ80(電位制御部)により太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる。
 なお、上述した例では、単に、抵抗84の電圧を閾値と比べることによって地絡判定を行っているが、これに限るものではない。例えば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。次に、切り替えスイッチ80によって太陽電池アレイ300の正極配線(正極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧Vaを測定する。さらに、図示しない装置によって、太陽電池アレイ300の負極と正極間の電圧V0を測定する。そして、抵抗84の抵抗値Rと、測定された電圧V1,Va,V0を用いて、絶縁抵抗を演算して、得られた絶縁抵抗が予め設定された閾値以下なら地絡と判定するようにしても好適である。
 また、実施の形態1では、第1接地電路を流れる電流に基づく測定値および第2接地電路を流れる電流に基づく測定値として、抵抗84の両端電圧を測定する場合について説明したが、これに限定する必要はなく、太陽電池アレイ300に第1接地電路が接続された状態と、太陽電池アレイ300に第2接地電路が接続された状態の、各状態における電流を測定し、閾値と比べることによって地絡判定を行う構成としても良い。
 なお、上述した例では、太陽電池アレイ300単位で地絡検知を行う場合を示したが、これに限るものではない。例えば、太陽電池ストリング12単位で地絡検知を行ってもよい。かかる場合には、検知対象の太陽電池ストリング12に接続された2つのスイッチ装置102をON(閉)にした後、残りの太陽電池ストリング12の各2つのスイッチ装置102をOFF(開)にした状態で、上述した内容の地絡検知を行えばよい。これにより、検知対象の太陽電池ストリング12のみを通常運転させながら、検知対象の太陽電池ストリング12について地絡検知を行うことができる。
 以上のように実施の形態1によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
 図2は、実施の形態2における太陽光発電システムの構成を示す構成図である。図2において、実施の形態2における太陽光発電システム100では、地絡検知装置36の内部構成の1つとして、図1の構成にさらに直流電源91が配置される。言い換えれば、地絡検知装置36は、切り替えスイッチ80(電位制御部の一例)、地絡検出部(抵抗84と電圧監視部86)、直流電源91、及び接地線40を有している。そして、抵抗84の両端の一方が切り替えスイッチ80と直流電源91の正極に接続され、他方が接地線40に接続され、接地線40は、接地箇所41で接地される。また、電圧監視部86は、抵抗84の両端部の電圧を監視する。切り替えスイッチ80は、一方が太陽電池アレイ300の負極配線(負極母線)から分岐した配線に接続され、他方が、抵抗84と直流電源91の負極とが切り替え可能に接続されている。直流電源91は、太陽電池アレイ300の負極を、直流電源91と抵抗84を介して大地に接続した際に、例えば、太陽電池アレイ300の正極の対地電位がほぼ0になるように電圧を印加すると好適である。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
 なお、図2において、切り替えスイッチ80が第1の端子80aに接続された場合(第1の端子80aと第3の端子80cとが接続された状態)、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第1の端子80a)と、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、切り替えスイッチ80が第2の端子80bに接続された場合(第2の端子80bと第3の端子80cとが接続された状態)、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第2の端子80b)と、直流電源91と、抵抗84と、接地線40とからなる接地電路(第2接地電路)に接続された状態となる。このように、切り替えスイッチ80は、太陽電池アレイ300に対して2種の接地電路を切り替えて接続する。このように、第2接地電路は、直流電源91を有し、太陽電池アレイ300(発電部)に接続された状態で、発電部に直流電圧を印可するように構成されている。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上或いは零以下の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極側接続点50)と抵抗84とを接続した状態(切り替えスイッチ80を第1の端子80aに接続し、太陽電池アレイ300を第1接地電路に接続した状態)で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84を介して太陽電池アレイ300の負極を接地箇所41で接地する)。図2の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84を介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の負極(太陽電池のバルクにn型半導体を使用した場合には正極)の対地電位を0に制御する。これにより、各太陽電池ストリング12a~cの対地電位を零以上に制御でき、PID現象を回避できる。
 電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態(すなわち、第1接地電路に接続された状態)で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該接地個所と第1接地電路を介して形成される閉回路には起電力が存在せず、したがって、抵抗84に電圧が発生せず、地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
 そこで、実施の形態2では、さらに、定期的に、切り替えスイッチ80によって、第2接地電路を太陽電池アレイ300の負極配線(負極母線)側に接続して、地絡検知装置36で地絡検知を行う。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1~2時間毎の間隔で地絡検知を行う。
 なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300単位で地絡検知を行ってもよく、これにより負荷装置400からの影響を排除できる。
 直流電源91は、太陽電池アレイ300の負極を、直流電源91と抵抗84を介して大地に接続した際に(すなわち、太陽電池アレイ300を第2接地電路に接続した際に)、例えば、太陽電池アレイ300の正極の対地電位がほぼ0になるように電圧を印加すると好適である。この場合、切り替えスイッチ80と抵抗84の間に直流電源90が挿入された状態と挿入されていない状態の両状態での検出感度を総合すると、太陽電池アレイ300のあらゆるところで一様な地絡検出感度を得ることが可能となる。かかる状態で、電圧監視部86は、抵抗84の両端にかかる電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。測定された電圧V2が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。図2に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でも抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。
 このように、地絡検知の際、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a~cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a~cの途中の対地電位も正となる。一方、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側を直流電源91側に接続を切り替えると、太陽電池アレイ300の正極の対地電位がほぼ0になるように直流電源91から電圧を印加される。そのため、太陽電池アレイ300の全体(各太陽電池ストリング12a~c全体)の対地電位は、大地電位以下の負の電位になる。
 このように正極の対地電位がほぼ0になる様に電圧を印加することによって、切り替えスイッチ80と抵抗84の間に直流電源90が挿入された状態と挿入されていない状態の両状態での検出感度を総合すると、太陽電池アレイ300のあらゆるところで一様な地絡検出感度を得ることが可能となる。
このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
 以上のように、図2に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
 以上のように、実施の形態2では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、切り替えスイッチ80(電位制御部)により太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる点は図1と同様である。
 なお、上述した例では、単に、抵抗84の電圧を閾値と比べることによって地絡判定を行っているが、これに限るものではない。例えば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。次に、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)が直流電源91側に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧Vbを測定する。そして、直流電源91の電圧Vdcと、抵抗84の抵抗値Rと、測定された電圧V1,Vbを用いて、絶縁抵抗を演算して、得られた絶縁抵抗が予め設定された閾値以下なら地絡と判定するようにしても好適である。
 以上のように実施の形態2によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
 図3は、実施の形態3における太陽光発電システムの構成を示す構成図である。図3において、実施の形態3における太陽光発電システム100では、地絡検知装置36の内部構成の1つとして、図1の構成にさらに交流電源87が配置される。言い換えれば、地絡検知装置36は、切り替えスイッチ80(電位制御部の一例)、地絡検出部(抵抗84と電圧監視部86)、交流電源87、及び接地線40を有している。そして、抵抗84の両端の一方が切り替えスイッチ80と交流電源87に接続され、他方が接地線40に接続され、接地線40は、接地箇所41で接地される。また、電圧監視部86は、抵抗84の両端部の電圧を監視する。切り替えスイッチ80は、一方が太陽電池アレイ300の負極配線(負極母線)から分岐した配線に接続され、他方が、抵抗84と交流電源87とが切り替え可能に接続されている。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
 すなわち、図3において、切り替えスイッチ80が第1の端子80aに接続された場合(第1の端子80aと第3の端子80cとが接続された状態)、太陽電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第1の端子80a)と、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、切り替えスイッチ80が第2の端子80bに接続された場合(第2の端子80bと第3の端子80cとが接続された状態)、対応電池アレイ300は、負極側接続点50と、切り替えスイッチ80(第2の端子80b)と、交流電圧源87と、抵抗84と、接地線40とからなる接地電路(第2接地電路)に接続された状態となる。このように、切り替えスイッチ80は、太陽電池アレイ300に対して2種の接地電路を切り替えて接続する。このように、第2接地電路は、交流電源87を有し、太陽電池アレイ300(発電部)に接続された状態で、発電部に交流電圧を印可するように構成されている。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上あるいは零以下に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、切り替えスイッチ80は、太陽電池アレイ300の負極配線(負極母線)と抵抗84とを接続した状態(抵抗84側にONとした状態)で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84を介して太陽電池アレイ300の負極を接地箇所41で接地する)。図3の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84を介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a~cの負極を大地と同電位に制御でき、PID現象を回避できる。
 電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で(すなわち、第1接地電路に接続された状態で)、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該接地個所と第1接地電路を介して形成される閉回路には起電力が存在せず、したがって、抵抗84に電圧が発生せず、地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
 そこで、実施の形態3では、さらに、定期的に、切り替えスイッチ80を切り替えることによって、第2接地電路を太陽電池アレイ300に接続して、地絡検知装置36で地絡検知を行う。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1~2時間毎の間隔で地絡検知を行う。
なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300単位で地絡検知を行っても良い。これにより負荷装置400からの影響を排除できる。
 かかる状態で電圧監視部86は、交流電源87の位相に同期させて、抵抗84の両端にかかる交流電源87と同相の電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。そして、電圧V2が当該相用に予め設定された閾値を超えた場合に図示しない制御システムが地絡事故有と判定する。そして、太陽光発電システム100を緊急停止させることができる。図3に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でも抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。
 このように、地絡検知の際、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態(第1接地電路に接続された状態)では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a~cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a~cの途中の対地電位も正となる。一方、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側を交流電源87側に接続を切り替えると(すなわち、切り替えスイッチ80により、太陽電池アレイ300を第2接地電路に接続すると)、太陽電池アレイ300の負極の対地電位が交流電源87から印加される電圧の極によって可変になる。このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
 以上のように、図3に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
 以上のように、実施の形態3では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、切り替えスイッチ80(電位制御部)により、太陽電池アレイ300の負極或いは正極に交流電圧が印加されないように制御すると共に、太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、切り替えスイッチ80(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる点は図1と同様である。
 なお、上述した例では、単に、抵抗84の電圧を閾値と比べることによって地絡判定を行っているが、これに限るものではない。例えば、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が抵抗84に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。次に、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)が交流電源87側に接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧Vcを測定する。そして、交流電源87の電圧Vacと、抵抗84の抵抗値Rと、測定された電圧V1,Vcを用いて、絶縁抵抗を演算して、得られた絶縁抵抗が予め設定された閾値以下なら地絡と判定するようにしても好適である。
 以上のように実施の形態3によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
 図4は、実施の形態4における太陽光発電システムの構成を示す構成図である。図4において、実施の形態4における太陽光発電システム100では、地絡検知装置36の内部構成として、図1の切り替えスイッチ80の代わりに、スイッチ81と、2つの抵抗83a,83bとが配置される。言い換えれば、地絡検知装置36は、スイッチ81(電位制御部の一例)、抵抗83a,83b、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。そして、抵抗84の両端の一方がスイッチ81と抵抗83aに接続され、他方が接地線40に接続され、接地線40は、接地箇所41で接地される。また、電圧監視部86は、抵抗84の両端部の電圧を監視する。一方が抵抗84に接続されたスイッチ81の両端の他方は、抵抗83bの両端の一方に接続される。抵抗83aの他方は太陽電池アレイ300の負極配線(負極母線)から分岐した配線に接続される。抵抗83bの他方は太陽電池アレイ300の正極配線(正極母線)から分岐した配線に接続される。抵抗83a,83bは、例えば、同じ抵抗値の抵抗を用いるとよい。換言すれば、スイッチ81がON(閉)の状態では、太陽電池アレイ300の両極間の電圧(電位差)を抵抗83a,83bで分圧した中点を、抵抗84を介して大地に接続する。
 スイッチ81は、電気的に開閉動作を自動制御可能なスイッチを用いる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFETを用いると好適である。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
 すなわち、図4において、スイッチ81がOFF(開)の場合、太陽電池アレイ300は、負極側接続点50と、抵抗83aと、抵抗84と、接地線40とからなる接地電路(第1接地電路)に接続された状態となる。他方、スイッチ81がON(閉)の場合、太陽電池アレイ300は、負極側接続点50と正極側接続点51とを抵抗83aと抵抗83bとで分圧した中点を抵抗84と接地線40を介して大地に接続する接地電路(第2接地電路)に接続された状態となる。このように、スイッチ81は、太陽電池アレイ300に対して2種の対地電路を切り替えて接続する。このように、第1接地電路は、太陽電池アレイ300(発電部)の一方極に接続可能に構成されると共に、第1抵抗83aを有している。そして、第2接地電路は、太陽電池アレイ300(発電部)の正極と負極間を所与の抵抗(抵抗83aと抵抗83b)で分圧した中点で接地する電路であるように構成されている。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を零以上或いは零以下に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、スイッチ81は、OFF(開)の状態(第1接地電路に接続された状態)で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、第1接地電路を太陽電池アレイ300に接続する(すなわち、接地線40と抵抗84,83aを介して太陽電池アレイ300の負極を接地箇所41で接地する)。図4の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線(正極母線)を抵抗84,83aを介して接地することは言うまでもない。このように、太陽光発電システム100の負極が抵抗84を介して接地された状態となる。このように、システムの通常運転時には、切り替えスイッチ80(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a~cの負極を大地電位に制御でき、PID現象を回避できる。
 電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、切り替えスイッチ80によって太陽電池アレイ300の負極配線(負極母線)側が直列の抵抗84,83aに接続された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第1接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池の起電力によって、接地電路40に電流が流れることにより、抵抗84に電圧が発生するため、電圧V1によって地絡判定できる。しかしながら、かかる構成では、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該地絡箇所と第1接地電路を介して形成される閉回路には起電力が存在せず、抵抗84に電圧が発生しない為、地絡検知は困難である。よって、そのまま通常運転を継続してしまうといった地絡検出の盲点を生んでしまう。
 そこで、実施の形態4では、さらに、定期的に、スイッチ81をOFF(開)からON(閉)に切り替えることによって、第2接地電路を太陽電池アレイ300に接続して、地絡検知装置36で地絡検知を行う。例えば、太陽光発電システム100の起動時毎に、或いは運転中に定期的に地絡検知を行う。例えば、1~2時間毎の間隔で地絡検知を行う。
 なお、地絡検知の際、図示しない制御システムからの制御によって駆動するスイッチ402,404により太陽電池アレイ300と負荷装置400との接続が切り離された状態で、太陽電池アレイ300単位で地絡検知を行っても良い。これにより負荷装置400からの影響を排除できる。
 かかる状態で電圧監視部86は、抵抗84の両端にかかる電圧V2を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された第2接地電路を流れる電流に基づく測定値として抵抗84の両端電圧V2を測定する。電圧V2が予め設定された閾値を超えた場合に図示しない制御システムが地絡事故有と判定する。そして、太陽光発電システム100を緊急停止させることができる。図4に示す地絡検知装置の例では、スイッチ81をON(閉)にした状態では、いずれかの太陽電池ストリング12の中間電位位置で地絡事故が発生した場合、地絡判定が困難となるが、かかる位置で地絡事故が発生した場合、上述した電圧V1によって通常運転時に地絡判定できる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、通常運転時の電流監視部42による地絡検出の盲点を排除できる。
 このように、地絡検知の際、スイッチ81(電位制御部)により制御された異なる2以上の対地電位状態の各状態において、地絡検知装置36は、太陽電池アレイ300の地絡を検知する。換言すれば、スイッチ81がOFFの状態では、接地線40と接続されることで太陽電池アレイ300の負極の電位が大地(グランド)の電位となる。よって、太陽電池アレイ300の正極(各太陽電池ストリング12a~cの正極)の対地電位は、正の電位に制御される。また、各太陽電池ストリング12a~cの途中の対地電位も正となる。一方、スイッチ81がONに接続を切り替えると、太陽電池アレイ300の両極の中間電位の対地電位が大地(グランド)の電位となる。このように、切り替えスイッチ80(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
 以上のように、図4に示す地絡検知装置の例では、太陽電池アレイ300のいずれの箇所で地絡事故(絶縁不良等)が発生した場合でもかかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
 以上のように、実施の形態4では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。なお、通常運転時は、スイッチ81(電位制御部)により太陽電池アレイ300の負極の対地電位が大地(グランド)の電位となるので、スイッチ81(電位制御部)により制御された異なる2以上の対地電位状態のうちの1つの状態に設定されることになる点は図1と同様である。
 以上のように実施の形態4によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くす或いはより低減できる。
 図5は、実施の形態5における太陽光発電システムの構成を示す構成図である。図5において、実施の形態5における太陽光発電システム100では、図1の切り替えスイッチ80の代わりに、直流電源92が配置される。言い換えれば、地絡検知装置36は、直流電源92、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。抵抗84は一方が直流電源92の負極に接続され、直流電源92を介して太陽電池アレイ300の負極配線(負極母線)から分岐された配線に接続される。また、抵抗84は他方が接地される。直流電源92は、太陽電池アレイ300の全ての箇所の対地電位が正になるように電圧を印加する。その他の構成は、図1と同様である。また、特に説明する点以外の内容は実施の形態1と同様である。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位を正或いは負の電位に制御した状態で、太陽光発電を運転する。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、直流電源92の負極を地絡検知部の少なくとも一部(抵抗84)を介して接地線40によって接地箇所41で接地し、直流電源92の正極を太陽電池アレイ300の負極に接続する。このように、直流電源92によって太陽光発電システム100の負極(最低電位)でも対地電位が正電位になるように制御する。このように、システムの通常運転時には、直流電源92(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を正電位(太陽電池のバルクにn型半導体を使用した場合には負電位)に制御する。これにより、各太陽電池ストリング12a~cの負極を対地電位に対して正電位に制御でき、PID現象を回避できる。
 図5の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極側が接地線40及び抵抗84を介して接地された直流電源92の正極を太陽電池アレイ300の負極配線に接地している。太陽電池のバルクにn型半導体を使用した場合には、正極側が接地線40及び抵抗84を介して接地された直流電源92の負極を太陽電池アレイ300の正極配線(正極母線)に接地することは言うまでもない。このように、図5において、接地電路は、一方側が大地に接続されていると共に、他方側が太陽電池アレイ300(発電部)の正極または負極に接続可能に構成される。そして、接地電路は、直流電源92を有し、太陽電池アレイ300(発電部)の全ての箇所の対地電位を正または負にする。
 電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、直流電源92よって太陽電池アレイ300の最低電位の対地電位が正電位になるように制御された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された接地電路(直流電源92、抵抗84、接地線40を有する接地電路)を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。そして、太陽光発電システム100を緊急停止させることができる。図5に示す地絡検知装置の例では、いずれかの太陽電池ストリング12の途中或いは正極側で地絡事故が発生した場合、当該地絡箇所と接地電路40を介して閉回路が形成され、当該地絡箇所と負極間に存在する太陽電池モジュールと直流電源92が起電力となって接地電路40に電流が流れることにより、抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。また、同様に、いずれかの太陽電池ストリング12の負極側で地絡事故が発生した場合、当該地絡箇所と負極間に存在する直流電源92が起電力となって接地電路40に電流が流れることにより、抵抗84の両端に電位差が生じるので、かかる地絡を検出できる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。このように、地絡検出部(抵抗84、電圧監視部86)は、接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する。
 このように、直流電源92(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
 以上のように、実施の形態5では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。
 以上のように実施の形態5によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
 図6は、実施の形態6における太陽光発電システムの構成を示す構成図である。図6において、実施の形態6における太陽光発電システム100では、図1の切り替えスイッチ80の代わりに、交流電源93が配置される。言い換えれば、地絡検知装置36は、交流電源93、地絡検出部(抵抗84と電圧監視部86)、及び接地線40を有している。抵抗84は一方が交流電源93に接続され、交流電源93を介して太陽電池アレイ300の負極配線(負極母線)の負極側接続点50から分岐された配線に接続される。また、抵抗84は他方が接地される。交流電源93は、太陽電池アレイ300の負極母線の対地電位が0Vを中心として変動するように交流電圧を印加する。その他の構成は、図5と同様である。また、特に説明する点以外の内容は実施の形態5と同様である。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、接地線40を用いて太陽電池アレイ300の全ての箇所の対地電位の時間平均値を零以上或いは零以下の電位に制御した状態で、太陽光発電を運転する。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、及びスイッチ402,404は、いずれもON(閉)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、交流電源93の片相を地絡検知部の少なくとも一部(抵抗84)を介して接地線40によって接地箇所41で接地し、交流電源93の逆極を太陽電池アレイ300の負極に接続する。このように、交流電源93によって太陽光発電システム100の負極(最低電位)でも対地電位の時間平均値が0になるように制御する。このように、システムの通常運転時には、交流電源93(電位制御部)は、接地線40を用いて、太陽電池アレイ300の所定の点の対地電位を0または正電位(太陽電池のバルクにn型半導体を使用した場合には0または負電位)に制御する。これにより、PID現象を回避できる。
 図6の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、片相が接地線40及び抵抗84を介して接地された交流電源93の逆相を太陽電池アレイ300の負極配線に接地している。太陽電池のバルクにn型半導体を使用した場合には、正極側が接地線40及び抵抗84を介して接地された交流電源93の逆相を太陽電池アレイ300の正極配線(正極母線)に接地することは言うまでもない。このように、接地電路は、一方側が大地に接続されていると共に、他方側が太陽電池アレイ300(発電部)の正極または負極に接続可能に構成される。そして、接地電路は、交流電源93を有し、太陽電池アレイ300(発電部)の全ての箇所の対地電位を時間平均して零以上または零以下にする。
 電圧監視部86は、太陽光発電システム100の通常運転中に太陽電池アレイ300の地絡を検出する。具体的には、交流電源93よって太陽電池アレイ300の最低電位の対地電位が0を中心として変動する様に制御された状態で、電圧監視部86は、抵抗84の両端にかかる電圧V1を測定する。すなわち、電圧監視部86は、太陽電池アレイ300に接続された接地電路(交流電源93、抵抗84、接地線40を有する接地電路)を流れる電流に基づく測定値として抵抗84の両端電圧V1を測定する。測定された電圧V1の振幅のうち、交流電源93と同位相の成分が予め設定された閾値を超えた場合に図示しない制御システムによって地絡事故有と判定される。このように、地絡検出部は、接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する。そして、太陽光発電システム100を緊急停止させることができる。図6に示す地絡検知装置の例では、太陽電池ストリング12のいずれの箇所で地絡が発生しても、当該地絡箇所と接地電路40を介して閉回路が形成され、当該閉回路中に交流電源93が含まれるため、接地電路40に電流が流れることにより、抵抗84の両端に電位差が生じるので、かかる地絡を検出可能となる。よって、最初の地絡事故(第1の地絡事故)が発生した段階で地絡検出が可能となり、地絡検出の盲点箇所を排除できる。
 このように、交流電源93(電位制御部の一例)は、太陽電池アレイ300の対地電位を意図的に制御できる。
 以上のように、実施の形態6では、同じ接地線40を用いて、一方では、PID対策に利用し、他方では、盲点箇所を排除した地絡検知に用いる。
 以上のように実施の形態5によれば、PID対策用の接地が行われながら、地絡検知が困難な盲点箇所を無くすことができる。
 上述した各実施の形態では、太陽電池アレイ300単位で、地絡検出を行うと共にPID対策を行う構成について説明した。しかしながら、これに限るものではない。実施の形態7では、太陽電池ストリング12a~c毎に、地絡検出とPID対策を行う構成について説明する。
 図7は、実施の形態7における太陽光発電システムの構成を示す構成図である。図7において、各太陽電池ストリング12a~cの負極配線と対応するスイッチ装置102a,c,eとの間に、それぞれ対応する太陽電池ストリング12a~cの負極をシステムから解列或いはシステムに接続するスイッチ装置103a,c,eが配置される。そして、各太陽電池ストリング12a~cの正極配線と対応するスイッチ装置102b,d,fとの間に、それぞれ対応する太陽電池ストリング12a~cの正極をシステムから解列或いはシステムに接続するスイッチ装置103b,d,fが配置される。また、各太陽電池ストリング12a~cの負極配線から分岐した配線が逆流防止ダイオード46およびスイッチ装置33を介して地絡検知装置36に接続される。スイッチ装置103は、電気的に開閉動作を自動制御可能なスイッチを用いる。機械的スイッチでもよいが、より好ましくは例えば半導体スイッチ等を用いると好適である。例えば、MOSFETを用いると好適である。
 具体的には、図7において、太陽電池ストリング12aの負極とスイッチ装置103aとを接続する負極配線から分岐した配線が逆流防止ダイオード46aおよびスイッチ装置33aを介して地絡検知装置36の負極側に接続される。また、太陽電池ストリング12aの正極とスイッチ装置103bとを接続する正極配線から分岐した配線がスイッチ装置31aを介して地絡検知装置36の正極側に接続される。同様に、太陽電池ストリング12bの負極とスイッチ装置103cとを接続する負極配線から分岐した配線が逆流防止ダイオード46bおよびスイッチ装置33bを介して地絡検知装置36の負極側に接続される。また、太陽電池ストリング12bの正極とスイッチ装置103dとを接続する正極配線から分岐した配線がスイッチ装置31bを介して地絡検知装置36の正極側に接続される。同様に、太陽電池ストリング12cの負極とスイッチ装置103eとを接続する負極配線から分岐した配線が逆流防止ダイオード46cおよびスイッチ装置33cを介して地絡検知装置36の負極側に接続される。また、太陽電池ストリング12cの正極とスイッチ装置103fとを接続する正極配線から分岐した配線がスイッチ装置31cを介して地絡検知装置36に接続される。各太陽電池ストリング12から地絡検知装置36への接続は、図7に示すように並列に接続される。地絡検知装置36の負極側は、接地線40を介して接地箇所41に接地される。各ダイオード46a~cは、図7に示すように大地(グランド)から太陽電池ストリング12a~cの負極に向かう方向を順方向として接続される。
 図7の例では、スイッチ装置102、逆流防止ダイオード20、及びスイッチ402,404が同じ1つの接続箱(点線)内に配置され、スイッチ装置103、逆流防止ダイオード46、及び地絡検知装置36が別の1つの接続箱(点線)内に配置された例を示している。特に接続箱を分けないのであれば、スイッチ装置103の機能はスイッチ装置102で代用できる。その場合には、スイッチ装置103を省略しても構わない。
 その他、特に説明する点以外の内容は実施の形態1と同様である。
 なお、本実施の形態7における地絡検出装置36の内部構成は、図1(実施の形態1)から図6(実施の形態6)に示した地絡検出装置36のいずれであっても良い。例えば、図1(実施の形態1)に記載の地絡検出装置を用いる場合、図7における地絡検出装置36のN(-)が図1に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)が図1に示す正極側接続点51に該当する。この場合、通常運転時は、図7に示すように、スイッチ装置33a~cをON(閉)にして、地絡検出装置36と各太陽電池ストリング12a~cの負極配線を接続し、スイッチ装置31a~cをOFF(開)にして地絡検出装置36と各太陽電池ストリング12a~cの正極配線を切り離す。係る状態で、地絡検出装置36内の切り替えスイッチ80によって各太陽電池ストリング12a~cの負極配線を抵抗84に接続し(第1接地電路に接続し)、PID対策をする。
 言い換えれば、太陽光発電の通常運転を行う工程では、太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部(例えば、太陽電池ストリング12a)と、発電部または大地と絶縁された状態で発電部により発電された電力を消費又は変換する負荷装置400と、を具備する太陽光発電システムを用いて、発電部(例えば、太陽電池ストリング12a)と負荷装置400とを接続し、第1接地電路を用いて発電部の全ての箇所の対地電位を零以上(太陽電池のバルクにp型半導体を使用した場合)または零以下(太陽電池のバルクにn型半導体を使用した場合)にした状態で、太陽光発電の通常運転を行う。
 更に、実施の形態7においては、定期的に、太陽電池ストリングa~c毎に地絡検出を行う。その際、地絡検知部は、発電部(例えば、太陽電池ストリング12a)と負荷装置400とを切り離した状態(発電部をシステムから解列させた状態)で、接地線40を用いて、発電部の地絡を検知する。
 図8は、実施の形態7において、図1(実施の形態1)に記載した地絡検出装置36を用いた地絡検知動作を説明するための図である。実施の形態7では、太陽電池ストリング12毎に地絡検知を行う。地絡検知の際、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)の図示しない制御システムからの制御によって駆動するスイッチ装置103(例えば、スイッチ装置103a,b)をOFF(開)にして、地絡検知の対象となる太陽電池ストリング12をシステムから解列させる。その後、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)のスイッチ装置33(例えば、スイッチ装置33a)をONのまま、図示しない制御システムからの制御によって駆動するスイッチ装置31(例えば、スイッチ装置31a)をON(閉)にして、地絡検知の対象となる太陽電池ストリング12の正極側及び負極側を地絡検知装置36に接続する。また、地絡検知の対象ではない太陽電池ストリング12のスイッチ装置31,33についてはいずれもOFFとする。係る状態で、地絡検出装置36内の切り替えスイッチ80(電位制御部)により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。言い換えれば、発電部と負荷装置とを切り離した状態で、第1接地電路を発電部に接続し、当該第1接地電路を流れる電流に基づく測定値を測定する工程と、発電部と負荷装置とを切り離した状態で、第2接地電路を発電部に接続し、発電部の対地電位を、第1接地電路が発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定する工程と、を実施する。そして、発電部に接続された第1接地電路を流れる電流に基づく測定値と、発電部に接続された第2接地電路を流れる電流に基づく測定値とに基づき発電部の地絡を検知する。なお、図1は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、通常運転時において、太陽電池ストリング12a~cの正極配線を地絡検出装置36に接続し、接地しておくことは言うまでもない。また、通常運転時において、PID対策をしながら電圧監視部86により常時電圧監視をし、地絡判定を行っても良い。
 また、実施の形態7において、図2(実施の形態2)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(-)が図2に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図2に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a~cの正極配線から分岐した配線は不要となる。この場合において、通常運転時は、スイッチ装置33a~cをON(閉)にし、地絡検出装置36内の切り替えスイッチ80を端子80aに接続し(すなわち、第1接地電路に接続し)、PID対策を行う。更に、定期的に、太陽電池ストリングa~c毎に地絡検出を行う。具体的には、まず、検査対象となった太陽電池ストリング(例えば、太陽電池ストリング12a)をスイッチ装置103a、bによりシステムから解列する(他のスイッチ装置103c~fはON(閉)状態とする)。そして、スイッチ装置33aをON(閉)にして太陽電池ストリング12aを地絡検出装置36に接続する(他の太陽電池ストリング12b、cはスイッチ装置33b、cにより地絡検出装置36から切り離す)。係る状態で、地絡検出装置36内の切り替えスイッチ80により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。なお、通常運転時において、PID対策をしながら電圧監視部86により常時電圧を監視し、地絡判定を行っても良い。なお、図2は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図2に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図2に示す地絡検出装置36の切り替えスイッチ80の端子80cは図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(-)側には何も接続されない状態となる。この時、直流電源91は、正極側が切り替えスイッチ80の端子80bに接続されるように配置され、各太陽電池ストリング12aの正極配線に対して正電位を印可できるように配置される。
 同様に、実施の形態7において、図3(実施の形態3)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(-)が図3に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図3に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a~cの正極配線から分岐した配線は不要となる。この場合において、通常運転時は、スイッチ装置33a~cをON(閉)にし、地絡検出装置36内の切り替えスイッチ80を端子80aに接続し(すなわち、第1接地電路に接続し)、PID対策を行う。更に、定期的に、各太陽電池ストリングa~c毎に地絡検出を行う。具体的には、まず、検査対象となった太陽電池ストリング(例えば、太陽電池ストリング12a)をスイッチ装置103a、bによりシステムから解列する(他のスイッチ装置103c~fはON(閉)状態とする)。そして、スイッチ装置33aをON(閉)にして太陽電池ストリング12aを地絡検出装置36に接続する(他の太陽電池ストリング12b、cはスイッチ装置33b、cにより地絡検出装置36から切り離す)。係る状態で、地絡検出装置36内の切り替えスイッチ80により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。なお、PID対策をしながら電圧監視部86により常時電圧監視をし、地絡判定を行う構成としても良い。なお、図3は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図3に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図2に示す地絡検出装置36の切り替えスイッチ80の端子80cは図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(-)側には何も接続されない状態となる。
 また、実施の形態7において、図4(実施の形態4)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(-)が図1に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)が図1に示す正極側接続点51に該当する。この場合、通常運転時は、スイッチ装置33a~cをON(閉)にして、地絡検出装置36と各太陽電池ストリング12a~cの負極配線を接続し、スイッチ装置31a~cをOFF(開)にして地絡検出装置36と各太陽電池ストリング12a~cの正極配線を切り離す。係る状態で、地絡検出装置36内の切り替えスイッチ80によって各太陽電池ストリング12a~cの負極配線を抵抗84に接続し(第1接地電路に接続し)、PID対策をする。更に、定期的に、各太陽電池ストリングa~c毎に地絡検出を行う。具体的には、まず、検査対象となった太陽電池ストリング(例えば、太陽電池ストリング12a)をスイッチ装置103a、bによりシステムから解列する(他のスイッチ装置103c~fはON(閉)状態とする)。そして、スイッチ装置33aとスイッチ装置31aをON(閉)にして太陽電池ストリング12aを地絡検出装置36に接続する(他の太陽電池ストリング12b、cはスイッチ装置33b、cとスイッチ装置31b、cにより地絡検出装置36から切り離す)。係る状態で、地絡検出装置36内の切り替えスイッチ80により、検査対象となった太陽電池ストリング12aに第1接地電路と第2接地電路を切り替えて接続し、太陽電池ストリング12aの異なる2つの対地電位状態における抵抗84の電圧降下値を測定して地絡検出を行う。なお、通常運転時において、PID対策をしながら電圧監視部86により常時電圧監視をし、地絡判定を行っても良い。
 また、実施の形態7において、図5(実施の形態5)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(-)が図5に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図5に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a~cの正極配線から分岐した配線は不要となる。この場合において、地絡検出装置36は、常時、太陽電池ストリング12a~cに接続される。従って、実施の形態7において、図5に示す地絡検出装置36を使用する場合には、スイッチ33a~cは省略しても構わない。なお、図5は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図5に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図5に示す直流電源92は図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(-)側には何も接続されない状態となる。この時、直流電源92は、負極側が各太陽電池ストリング12aの正極配線に接続されるように配置され、各太陽電池ストリング12aの正極配線に対して負電位を印可できるように配置される。
 また、実施の形態7において、図6(実施の形態6)に記載の地絡検出装置36を用いる場合、図7における地絡検出装置36のN(-)が図6に示す負極側接続点50に該当し、図7における地絡検出装置36のP(+)側には何も接続されない状態となる。すなわち、図5に示す地絡検出装置36を実施の形態7において使用する場合には、各太陽電池ストリング12a~cの正極配線から分岐した配線は不要となる。この場合において、地絡検出装置36は、常時、太陽電池ストリング12a~cに接続される。従って、実施の形態7において、図6に示す地絡検出装置36を使用する場合には、スイッチ33a~cは省略しても構わない。なお、図6は、太陽電池のバルクにp型半導体を使用した場合あるいは透明導電膜を使用した太陽電池を使用する場合を例に説明したものであるが、実施の形態7において太陽電池のバルクにn型半導体を用いる場合は、図6に示す地絡検出装置36は、各太陽電池ストリング12aの正極配線に接続される。換言すれば、図6に示す交流電源93は図7に示す地絡検出装置36のP(+)に接続され、図7における地絡検出装置36のN(-)側には何も接続されない状態となる。
 以上のような切り替え動作を行うことで、実施の形態7における地絡検知装置36の内部構成が、例えば、図1に示した切り替えスイッチ80、抵抗84、及び電圧監視部86を用いた回路構成を採用する場合、通常運転時は電圧V1を測定できる。そして、定期的な地絡検知の際に電圧V2を測定できる。よって、図1で説明した内容と同様の地絡検知ができる。
 このように、実施の形態7においては、2種の接地電路を用いて地絡検出を行うタイプの地絡検出装置(例えば実施の形態1~4)や、直流電圧を加極印可して太陽電池全体の対地電位を正(または負)に制御して地絡検出を行うタイプの地絡検出装置(例えば実施の形態5)や、交流電圧を印可して常時太陽電池の対地電位を変化させて地絡検出を行うタイプの地絡検出装置(例えば実施の形態6)における接地電路を利用して、通常運転時に各太陽電池ストリング12a~cの負極配線(あるいは正極配線)を接地してPID対策をし、且つ、各太陽電池ストリング12a~cを地絡検出が困難な盲点箇所なく確実に地絡検出をすることができる。すなわち、地絡検出装置の接地電路を利用する為、PID対策用に新たな構成を追加する必要がなく、しかも、確実に地絡検出を行う事が可能となる。
 図9は、実施の形態8における太陽光発電システムの構成を示す構成図である。図9において、逆流防止ダイオード46が無くなった点以外は、図7と同様である。また、以下、特に説明する点以外の内容は実施の形態7と同様である。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、地絡検出装置36内の接地電路を用いて各太陽電池ストリング12a~cの所定の点の対地電位を正極或いは負極の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、103、及びスイッチ402,404は、いずれもON(閉)の状態で、各スイッチ装置31は、いずれもOFF(開)の状態で、スイッチ装置33については、いずれかの太陽電池ストリング12a~c用のスイッチ装置33のみON(閉)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、地絡検知装置36が、いずれか1つの太陽電池ストリング12a~c(例えば、太陽電池ストリング12a)の負極に接続される。この状態で地絡検出装置36は太陽電池ストリング12aの対地電位を制御し、PID対策を実行する。例えば、図1(実施の形態1)に示す地絡検出装置36を用いる場合には、切り替えスイッチ80により第1接地電路を太陽電池ストリング12aに接続する。各太陽電池ストリング12a~cの負極は、並列に接続されているので、太陽電池ストリング12aの負極を地絡検出装置36内の第1接地電路を介して接地すれば、すべての太陽電池ストリング12a~cの負極の対地電位を大地の電位に制御できる。図9の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線を接地することは言うまでもない。このように、システムの通常運転時には、スイッチ装置31,33は、地絡検出装置36の接地電路を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a~cの負極を対地電位に制御でき、PID現象を回避できる。
 以上のように、いずれかの太陽電池ストリング12a~c用のスイッチ装置33のみON(閉)にすることで、他の太陽電池ストリング12a~cからの逆流がなくすことができる。よって、逆流防止ダイオード46を省略できる。
 図10は、実施の形態8における地絡検知動作を説明するための図である。実施の形態8では、太陽電池ストリング12毎に地絡検知を行う。例えば、図1(実施の形態1)に示す地絡検出装置36を用いる場合には、地絡検知の際、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)の図示しない制御システムからの制御によって駆動するスイッチ装置103(例えば、スイッチ装置103a,b)をOFF(開)にして、地絡検知の対象となる太陽電池ストリング12をシステムから解列させる。その後、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)のスイッチ装置33(例えば、スイッチ装置33a)をONのまま、図示しない制御システムからの制御によって駆動するスイッチ装置31(例えば、スイッチ装置31a)をON(閉)にして、地絡検知の対象となる太陽電池ストリング12の正極側及び負極側を地絡検知装置36に接続する。また、地絡検知の対象ではない太陽電池ストリング12のスイッチ装置31,33についてはいずれもOFFとする。
 以上のような切り替え動作を行うことで、実施の形態8における地絡検知装置36の内部構成が、例えば、図1に示した切り替えスイッチ80、抵抗84、及び電圧監視部86を用いた回路構成を採用する場合、通常運転時は電圧V1を測定できる。そして、定期的な地絡検知の際に電圧V2を測定できる。よって、図1で説明した内容と同様の地絡検知ができる。
 以上のように実施の形態8では、PID対策用の接地が行われながら、太陽電池ストリング12毎に、地絡検知が困難な盲点箇所を無くすことができる。
 図11は、実施の形態9における太陽光発電システムの構成を示す構成図である。図11において、地絡検知装置36、各スイッチ装置31,33、及び各太陽電池ストリング12a~cの負極および正極から分岐して各スイッチ装置31,33へと接続するための配線の分岐点の位置が、負極側において各スイッチ装置102と各太陽電池ストリング12a~cの負極が並列に接続される位置との間、正極側において各ダイオード20と各太陽電池ストリング12a~cの正極が並列に接続される位置との間に移動した点以外は、図9と同様である。各太陽電池ストリング12a~cの負極および正極から分岐して各スイッチ装置31,33へと接続するための配線の分岐点の位置を、図11の位置にすることで、各太陽電池ストリング12a~cの負極を同時期に接地する場合でもダイオード46を省略することができる。また、以下、特に説明する点以外の内容は実施の形態7と同様である。
 以上のような太陽光発電システム100では、太陽光発電方法として、以下のように運転される。通常運転時は、太陽電池アレイ300と負荷装置400とを接続し、地絡検出装置36内の接地電路を用いて各太陽電池ストリング12a~cの所定の点の対地電位を正極或いは負極の電位に制御した状態で、太陽光発電の通常運転を行う。具体的には以下のように動作する。図示しない制御システムからの制御によって駆動する各スイッチ装置102、103、各スイッチ装置33、及びスイッチ402,404は、いずれもON(閉)の状態で、各スイッチ装置31は、いずれもOFF(開)の状態で、通常運転が行われる。すなわち、通常運転時は、PID対策用に、地絡検知装置36が、各太陽電池ストリング12a~cの負極に接続される。換言すれば、スイッチ装置31,33は、通常運転時に、意図的に負極側のスイッチ装置31のみON、正極側のスイッチ装置33をOFFに制御して負極配線を接地している。図11の例では、太陽電池のバルクにp型半導体を使用した場合、或いは透明導電膜を使用した太陽電池を一例として示している。そのため、負極配線を接地している。太陽電池のバルクにn型半導体を使用した場合には、正極配線を接地することは言うまでもない。このように、太陽光発電システム100の負極が地絡検知装置36の少なくとも一部(図示しない負極側回路)を介して接地された状態となる。このように、システムの通常運転時には、スイッチ装置31,33は、地絡検出装置36の接地電路を用いて、太陽電池アレイ300の所定の点の対地電位を正極(太陽電池のバルクにn型半導体を使用した場合には負極)の電位に制御する。これにより、各太陽電池ストリング12a~cの負極を対地電位に制御でき、PID現象を回避できる。
 図11は、実施の形態9における地絡検知動作を説明するための図である。実施の形態9では、太陽電池ストリング12毎に地絡検知を行う。地絡検知の際、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)の図示しない制御システムからの制御によって駆動するスイッチ装置103(例えば、スイッチ装置103a,b)をOFF(開)にして、地絡検知の対象となる太陽電池ストリング12をシステムから解列させる。その後、地絡検知の対象となる太陽電池ストリング12(例えば、太陽電池ストリング12a)のスイッチ装置33(例えば、スイッチ装置33a)をONのまま、図示しない制御システムからの制御によって駆動するスイッチ装置31(例えば、スイッチ装置31a)をON(閉)にして、地絡検知の対象となる太陽電池ストリング12の正極側及び負極側を地絡検知装置36に接続する。また、地絡検知の対象ではない太陽電池ストリング12のスイッチ装置31,33についてはいずれもOFFとする。
 以上のような切り替え動作を行うことで、実施の形態9における地絡検知装置36の内部構成が、例えば、図1に示した切り替えスイッチ80、抵抗84、及び電圧監視部86を用いた回路構成を採用する場合、通常運転時は電圧V1を測定できる。そして、定期的な地絡検知の際に電圧V2を測定できる。よって、図1で説明した内容と同様の地絡検知ができる。
 以上のように実施の形態9では、PID対策用の接地が行われながら、太陽電池ストリング12毎に、地絡検知が困難な盲点箇所を無くすことできる。
 以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。上述した故障検知の手法は、一例であって、上述した故障検知の手法に限るものではない。接地電路を用いて太陽電池の対地電位を意図的に制御し、盲点箇所なく地絡の存否を判定する地絡検出方法であれば、その他の地絡等の故障検知手法を用いてもよい。
 また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
 その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての太陽光発電システムは、本発明の範囲に包含される。
 本発明の一態様は、太陽光発電システム及び太陽光発電方法に係り、例えば、PID対策が施された太陽光発電システム及び方法に利用できる。
10 太陽電池モジュール
12,502 太陽電池ストリング
20,46 ダイオード
31,33,102,103 スイッチ装置
36 検知部
40 接地線
41,530 接地箇所
80,81 切り替えスイッチ
83,84 抵抗
91 直流電源
86 電圧監視部
87 交流電源
100 太陽光発電システム
300 太陽電池アレイ
400,510 負荷装置
402,404 スイッチ
500 太陽光発電システム
600,602 地絡箇所

Claims (12)

  1.  太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、前記発電部内の地絡を検出する地絡検出装置であって、
     前記発電部の所与の箇所に接続されて前記発電部の全ての箇所の対地電位を零以上または零以下にする第1接地電路と、
     前記発電部の対地電位を、前記第1接地電路が接続された時と異なる電位にする第2接地電路と、
     前記第1接地電路と前記第2接地電路とを切り替えて前記発電部に接続することで、前記発電部の対地電位を制御する電位制御部と、
     前記電位制御部により、前記発電部に接続された前記第1接地電路を流れる電流に基づく測定値と、前記発電部に接続された前記第2接地電路を流れる電流に基づく測定値とを測定し、測定結果に基づき前記発電部の地絡を検知する地絡検知部と、を備え、
     前記電位制御部は、通常運転時に、前記発電部に前記第1接地電路を接続することを特徴とする地絡検出装置。
  2.  前記第1接地電路は、前記発電部の一方極に接続可能に構成され、前記第2接地電路は、前記発電部の他方極に接続可能に構成されていることを特徴とする請求項1に記載の地絡検出装置。
  3.  前記第2接地電路は、直流電源を有し、前記発電部に接続された状態で、前記発電部に直流電圧を印可することを特徴とする請求項1に記載の地絡検出装置。
  4.  前記第2接地電路は、交流電源を有し、前記発電部に接続された状態で、前記発電部に交流電圧を印可することを特徴とする請求項1に記載の地絡検出装置。
  5.  前記第1接地電路は、前記発電部の一方極に接続可能に構成されると共に、第1抵抗を有し、
     前記第2接地電路は、前記発電部の正極と負極間を所与の抵抗で分圧した中点で接地する電路であることを特徴とする請求項1に記載の地絡検出装置。
  6.  前記地絡検知部は、前記発電部と前記負荷装置とを切り離した状態で、前記接地線を用いて、前記発電部の地絡を検知することを特徴とする請求項1記載の太陽光発電システム。
     
  7.  太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、前記発電部内の地絡を検出する地絡検出装置であって、
     一方側が大地に接続されていると共に、他方側が前記発電部の正極または負極に接続可能な接地電路と、
     前記接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
     前記接地電路は、直流電源を有し、前記発電部の全ての箇所の対地電位を正または負にすることを特徴とする地絡検出装置。
  8.  前記地絡検知部は、前記発電部と前記負荷装置とを切り離した状態で、前記接地線を用いて、前記発電部の地絡を検知することを特徴とする請求項7記載の太陽光発電システム。
  9.  太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムにおいて、前記発電部内の地絡を検出する地絡検出装置であって、
     一方側が大地に接続されていると共に、他方側が前記発電部の正極または負極に接続可能な接地電路と、
     前記接地電路を流れる電流に基づく測定値を測定し、その測定結果に基づき地絡を検出する地絡検出部と、を備え、
     前記接地電路は、交流電源を有し、前記発電部の全ての箇所の対地電位を時間平均して零以上または零以下にすることを特徴とする地絡検出装置。
  10.  前記地絡検知部は、前記発電部と前記負荷装置とを切り離した状態で、前記接地線を用いて、前記発電部の地絡を検知することを特徴とする請求項9記載の太陽光発電システム。
  11.  太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、前記発電部と前記負荷装置とを接続し、第1接地電路を用いて前記発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行うと共に、当該第1接地電路を流れる電流に基づく測定値を測定し、
     第2接地電路を用いて、前記発電部の対地電位を、前記第1接地電路が前記発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定し、
     前記発電部に接続された前記第1接地電路を流れる電流に基づく測定値と、前記発電部に接続された前記第2接地電路を流れる電流に基づく測定値とに基づき前記発電部の地絡を検知することを特徴とする太陽光発電方法。
  12.  太陽光を利用して発電する1つ以上の太陽電池モジュールを用いて構成される発電部と、前記発電部または大地と絶縁された状態で前記発電部により発電された電力を消費又は変換する負荷装置と、を具備する太陽光発電システムを用いて、前記発電部と前記負荷装置とを接続し、第1接地電路を用いて前記発電部の全ての箇所の対地電位を零以上または零以下にした状態で、太陽光発電の通常運転を行い、
     前記発電部と前記負荷装置とを切り離した状態で、前記第1接地電路を前記発電部に接続し、当該第1接地電路を流れる電流に基づく測定値を測定し、
     前記発電部と前記負荷装置とを切り離した状態で、第2接地電路を前記発電部に接続し、前記発電部の対地電位を、前記第1接地電路が前記発電部に接続された時と異なる電位にした状態で、当該第2接地電路を流れる電流に基づく測定値を測定し、
     前記発電部に接続された前記第1接地電路を流れる電流に基づく測定値と、前記発電部に接続された前記第2接地電路を流れる電流に基づく測定値とに基づき前記発電部の地絡を検知することを特徴とする太陽光発電方法。
PCT/JP2014/059199 2013-07-31 2014-03-28 太陽光発電システム WO2015015836A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158871 2013-07-31
JP2013158871A JP2015032602A (ja) 2013-07-31 2013-07-31 太陽光発電システム及び太陽光発電方法

Publications (1)

Publication Number Publication Date
WO2015015836A1 true WO2015015836A1 (ja) 2015-02-05

Family

ID=52431387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059199 WO2015015836A1 (ja) 2013-07-31 2014-03-28 太陽光発電システム

Country Status (2)

Country Link
JP (1) JP2015032602A (ja)
WO (1) WO2015015836A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682858A (zh) * 2015-02-07 2015-06-03 杭州桑尼能源科技有限公司 光伏高压诱导衰减效应(pid)消除电路及其方法
CN105591609A (zh) * 2015-12-31 2016-05-18 北京天诚同创电气有限公司 光伏***的pid处理方法和***
EP3314752A4 (en) * 2015-06-26 2019-03-13 Newport Corporation DEVICE AND METHOD FOR MEASURING ONE OR MULTIPLE PROPERTIES OF ONE OR MORE PHOTOVOLTAIC CELLS
TWI675535B (zh) * 2018-03-13 2019-10-21 日商歐姆龍股份有限公司 轉換裝置以及混合電源系統
CN113489354A (zh) * 2021-05-27 2021-10-08 华为技术有限公司 一种光伏发电***及变换电路
WO2022032635A1 (zh) * 2020-08-14 2022-02-17 华为数字能源技术有限公司 一种光伏电站联动保护***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547447B2 (ja) * 2015-06-25 2019-07-24 オムロン株式会社 太陽光発電システムの出力回復方法およびその装置
KR102670331B1 (ko) * 2023-06-16 2024-05-30 박동철 Dc 개폐 기능을 가진 태양광 접속반

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033827A (ja) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033827A (ja) * 2011-08-01 2013-02-14 Jx Nippon Oil & Energy Corp 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682858A (zh) * 2015-02-07 2015-06-03 杭州桑尼能源科技有限公司 光伏高压诱导衰减效应(pid)消除电路及其方法
EP3314752A4 (en) * 2015-06-26 2019-03-13 Newport Corporation DEVICE AND METHOD FOR MEASURING ONE OR MULTIPLE PROPERTIES OF ONE OR MORE PHOTOVOLTAIC CELLS
US10965247B2 (en) 2015-06-26 2021-03-30 Newport Corporation Apparatus and method for measuring one or more characteristics of one or more photovoltaic cells
CN105591609A (zh) * 2015-12-31 2016-05-18 北京天诚同创电气有限公司 光伏***的pid处理方法和***
TWI675535B (zh) * 2018-03-13 2019-10-21 日商歐姆龍股份有限公司 轉換裝置以及混合電源系統
US10965211B2 (en) 2018-03-13 2021-03-30 Omron Corporation Conversion device and hybrid power supply system
WO2022032635A1 (zh) * 2020-08-14 2022-02-17 华为数字能源技术有限公司 一种光伏电站联动保护***及方法
CN113489354A (zh) * 2021-05-27 2021-10-08 华为技术有限公司 一种光伏发电***及变换电路
CN113489354B (zh) * 2021-05-27 2022-05-31 华为数字能源技术有限公司 一种光伏发电***及变换电路

Also Published As

Publication number Publication date
JP2015032602A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2015015836A1 (ja) 太陽光発電システム
JP6113220B2 (ja) 太陽電池検査装置および太陽電池検査方法
JP5841906B2 (ja) 故障検知装置、故障検知システム、及び故障検知方法
JP4780416B2 (ja) 太陽電池アレイ故障診断方法
JP6547447B2 (ja) 太陽光発電システムの出力回復方法およびその装置
WO2015015835A1 (ja) 太陽光発電システム
US20140239968A1 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
JP5730716B2 (ja) 太陽光発電システムの故障診断方法
US20150131187A1 (en) Systems and Methods for Photovoltaic String Protection
WO2012073836A1 (ja) 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
JP2014011428A (ja) 故障検知装置、故障検知システム、及び故障検知方法
US20110273163A1 (en) Solar monitor for solar device
KR20120027181A (ko) 태양광 발전기 고장 진단 방법
JP2014038961A (ja) 導通不良検知装置及び導通不良検知方法
JP6481571B2 (ja) 検査装置および検査方法
US10530250B2 (en) Multiphase converter
AU2019204551A1 (en) Electrical supply system
JP6405807B2 (ja) 太陽光発電システムの検査装置および太陽光発電システムの検査方法
US20130208516A1 (en) Power conversion equipment
JP2011127983A (ja) 絶縁抵抗測定方法、検査方法および絶縁抵抗測定装置
WO2014007255A1 (ja) 太陽電池検査用電流制御装置
WO2016199445A1 (ja) 太陽光発電システムの検査方法および検査装置
JP2016123232A (ja) 太陽電池の検査方法およびその装置並びに太陽電池検査装置に用いられる信号源
JP2014011429A (ja) 導通不良検知装置、導通不良検知システム、及び導通不良検知方法
GB2586343A (en) Power electronic converter with a ground fault detection unit that shares a common ground with both DC ports and AC ports

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831543

Country of ref document: EP

Kind code of ref document: A1